How to use this Handbook

The information in this book has been divided into seven parts.

General Information (the India coloured pages) lists what you need to know about the University as a whole, introduces some of the services available and notes the most important rules and procedures. You should read this part in its entirety.

For further information about the University and its activities, see the University Calendar.

Faculty Information.

Undergraduate Study outlines the courses available in each school in the faculty.

Graduate Study is about higher degrees.

Subject Descriptions lists each subject offered by the schools in the faculty. The schools are listed numerically.

Information includes:
• Subject number, title and description
• Prerequisite, co-requisite and excluded subjects, where applicable
• Additional information about the subject such as unit values, credit hours, teaching hours per week, sessions when taught

Financial Assistance to Students is a list of scholarships and prizes, available at undergraduate and graduate level in the faculty.

Staff list.

For detailed reference, see the list of Contents.
The address of the University of New South Wales is:

PO Box 1, Kensington, New South Wales, Australia 2033

Telephone: (02) 663 0351
Telegraph: UNITECH, SYDNEY
Telex AA26054

The University of New South Wales Library has catalogued this work as follows:

UNIVERSITY OF NEW SOUTH WALES —
Faculty of Applied Science
Handbook.
Annual. Kensington.
1968 +

University of New South Wales — Faculty of Applied Science — Periodicals.
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 13 September 1982, but may be amended without notice by the University Council.

Contents

General Information .. 1
Some People Who Can Help You 1
Calendar of Dates .. 2
The Academic Year .. 2
1983 4
1984 4
Organization of the University 5
Arms of the University/Council/Professional Board/Faculties/Boards of Study/Schools/Executive Officers/Administration/ Student Representation/Award of the University Medal/Subject Numbers/Textbook Lists/Co-operative Bookshop/General Studies

Student Services and Activities 7
Accommodation .. 7
Residential Colleges .. 7
Other Accommodation ... 7
Associations, Clubs and Societies 7
The Sports Association .. 7
School and Faculty Associations 8
Australian Armed Services 8
Chaplaincy Centre .. 8
Deputy Registrar (Student Services) 8
Sport and Recreation Section 8
Physical Education and Recreation Centre 8
Student Counselling and Research Unit 9
Careers and Employment Section 9
Student Health Unit .. 9
The Students' Union ... 9
The University Library ... 10
The University Union .. 10

Financial Assistance to Students 11
Tertiary Education Assistance Scheme/Other Financial Assistance/Financial Assistance to Aboriginal Students/Fund for Physically Handicapped and Disabled Students
Rules and Procedures
General Conduct
Appeals
Admission and Enrolment

First Year Entry/Deferment of First Year Enrolment
Enrolment Procedures and Fees Schedules 1983
1. Introduction 12
2. New Undergraduate Enrolments 13
3. Re-enrolment 13
4. Restrictions Upon Re-enrolling 13
5. New Research Students 13
6. Re-enrolling Research Students 13
7. Submission of Project Report 13
8. Enrolments by Miscellaneous Students 13
9. Final Dates to Completion of Enrolment 14
10. University and University Union Membership Card 14
11. Payment of Fees 14
12. Assisted Students 14
13. Extension of Time 14
14. Failure to Pay Fees and Other Debts 14
15. Fees 15
16. Penalties 15
17. Exemptions — Fees 15
18. Variations in Enrolment (including Withdrawal) 16
19. Exemption — Membership 16

Private Overseas Students

Private Course Transfers

Admission with Advanced Standing
Resumption of Courses

Examinations

Assessment
18. Results
18. Availability of Results
18. Review of Results
18. Special Consideration

Examinations Held Away from the Campus

Acknowledgement of Sources

Further Assessment

Restrictions upon Students Re-enrolling

Schedule A

Admission to Degree or Diploma
Attendance at Classes
Student Records
Release of Information to Third Parties
Change of Address
Ownership of Students’ Work
Notices
Parking within the University Grounds
Academic Dress
Further Information

Vice-Chancellor’s Official Welcome to New Students

Foreword

Faculty Information
Who to Contact
Enrolment Procedures
Student Clubs and Societies
Library Facilities
Bachelor of Social Science Degree Course (3420)
Conditions for the Award of the Degree of Bachelor of Science or Bachelor of Engineering
Conditions for the Award of the Degrees of Bachelor of Science (Technology) and Bachelor of Science (Engineering)
General Studies Program

Undergraduate Study: Course Outlines
School of Applied Geology
3000 Applied Geology (BSc) Full-time (New Course) 30

School of Chemical Engineering and Industrial Chemistry
3040 Chemical Engineering (BE) Full-time 32
3040 Chemical Engineering (BE) Full-time/Part-time 34
3100 Industrial Chemistry (BSc) Full-time 35
3110 Industrial Chemistry (BSc(Tech)) Part-time 36

Professional Electives in Course 3040 Chemical Engineering
Biological Process Engineering 37
Chemical Engineering 37
Fuel Engineering 37

Options in Course 3100 Industrial Chemistry

Polymer Science 37
Contents

<table>
<thead>
<tr>
<th>Subject Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Food Technology</td>
<td>38</td>
</tr>
<tr>
<td>School of Geography</td>
<td>40</td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td>42</td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td>47</td>
</tr>
<tr>
<td>School of Textile Technology</td>
<td>50</td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td>52</td>
</tr>
<tr>
<td>Graduate Study</td>
<td>55</td>
</tr>
<tr>
<td>Graduate Enrolment Procedures</td>
<td>55</td>
</tr>
<tr>
<td>Graduate Study</td>
<td>55</td>
</tr>
<tr>
<td>Faculty of Applied Science</td>
<td>56</td>
</tr>
<tr>
<td>School of Applied Geology</td>
<td>61</td>
</tr>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry</td>
<td>63</td>
</tr>
<tr>
<td>School of Food Technology</td>
<td>66</td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td>68</td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td>69</td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td>71</td>
</tr>
<tr>
<td>Graduate Study: Conditions for the Award of Higher Degrees</td>
<td>72</td>
</tr>
<tr>
<td>Subject Descriptions</td>
<td>83</td>
</tr>
<tr>
<td>Identification of Subjects by Number</td>
<td>83</td>
</tr>
<tr>
<td>School of Physics</td>
<td>85</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td>85</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td>86</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td>88</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering</td>
<td>92</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Electrical Engineering and Computer Science</td>
<td>93</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td>96</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td>99</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td>102</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>106</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Psychology</td>
<td>109</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Textile Technology</td>
<td>110</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Accountancy</td>
<td>111</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Economics</td>
<td>113</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>113</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Department of Industrial Engineering</td>
<td>113</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Nuclear Engineering</td>
<td>113</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Applied Geology</td>
<td>114</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Geography</td>
<td>118</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Marketing</td>
<td>124</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Surveying</td>
<td>126</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Department of Organizational Behaviour</td>
<td>127</td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Town Planning</td>
<td>127</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Landscape Architecture</td>
<td>127</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>School of Food Technology</td>
<td>128</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
</tbody>
</table>

Applied Science
Graduate School of the Built Environment
Graduate Study 134
School of Biochemistry
Undergraduate Study 134
School of Biotechnology
Undergraduate Study 135
Graduate Study 135
School of Botany
Undergraduate Study 136
School of Microbiology
Undergraduate Study 136
School of Zoology
Undergraduate Study 137
Graduate Study 137
Faculty of Applied Science
Graduate Study 138
Environmental Studies 138
School of Chemical Engineering and Industrial Chemistry
Undergraduate Study 138
General 138
Department of Biological Process Engineering 144
Department of Fuel Technology 144
Department of Polymer Science 145
Graduate Study 145
General 145
Department of Biological Process Engineering 147
Department of Fuel Technology 148
Department of Polymer Science 149
School of Sociology
Undergraduate Study 150
School of Political Science
Undergraduate Study 150
Australian Graduate School of Management
Graduate Study 150

Financial Assistance to Students
Scholarships 151
Undergraduate 151
Graduate 155
Prizes 158
Undergraduate 158
Graduate 162

Staff
Faculty of Applied Science 163
Broken Hill Division 167
General Information

To obtain the maximum benefit from your studies you should make an effort to learn what facilities the University offers, to investigate the best methods of study and to discover as much as possible about the course for which you are enrolled.

This Handbook has been specially designed as a detailed source of reference for you in all matters related to your Faculty. This General Information Section is intended to help you put the Faculty into perspective with the University as a whole, to introduce you to some of the services available to students and to note some of the most important rules and procedures.

For fuller details about some aspects of the University and its activities you might need to consult the University Calendar.

Some people who can help you

If you are experiencing difficulties in adjusting to the requirements of the University you will probably need advice. The best people to talk to on matters relating to progress in studies are your tutors and lecturers. If your problem lies outside this area there are many other people with specialized knowledge and skills who may be able to help you.

The Deputy Registrar (Student Services), Mr Peter O’Brien, and his Administrative Assistant, Mrs Anne Beaumont, are located on the first floor of the Chancellery. They will help those students who need advice and who have problems but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with general enquiries they are especially concerned with the problems of physically handicapped and disabled students. Enquire at room 148E, phone 2482.

The Assistant Registrar (Admissions and Examinations), Mr Jack Hill, is located on the ground floor of the Chancellery. General enquiries should be directed to 3715. For information regarding examinations, including examination timetables and clash of examinations, contact the Senior Administrative Officer, Mr John Grigg, phone 2143.

Note: All phone numbers below are University extension numbers. If you are outside the University, dial 663 0351 and ask for the extension. Alternatively you may dial 662 and then the extension number. This prefix should only be used when you are certain of the extension that you require as callers using 662 cannot be transferred to any other number.
The Assistant Registrar (Student Records and Scholarships – Undergraduate and Postgraduate), Mr Graham Mayne is located on the ground floor of the Chancellery. For particular enquiries regarding illness and other matters affecting performance in examinations and assessment, academic statements, graduation ceremonies, prizes, release of examination results and variations to enrolment programs, phone 3711.

The Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery and is available for personal interview. For an appointment phone 3453.

The Assistant Registrar (Careers and Employment), Mr Jack Foley, is located in the Chancellery. Enquiries should be directed to 3259.

The Off-campus Housing Officer, Mrs Judy Hay, is located in Room 148E in the Chancellery. For assistance in obtaining suitable lodgings phone 3260.

Student Loans enquiries should be directed to Mrs Judy Hay, Room 148E in the Chancellery, phone 3164.

The Student Health Unit is located in Hut El 5b at the foot of Basser Steps. The Director is Dr Geoffrey Hansen. For medical aid phone 2679, 2678 or 2677.

The Student Counselling and Research Unit is located at the foot of Basser Steps. For assistance with educational or vocational problems ring 3681 or 3685 for an appointment.

The University Librarian is Mr Allan Horton. Library enquiries should be directed to 2048.

The Chaplaincy Centre is located in Hut E15a at the foot of Basser Steps. For spiritual counselling phone Anglican – 2684; Catholic – 2379; Greek Orthodox – 2683; Lutheran – 2683; Uniting Church – 2685.

The Students' Union is located on the second floor of Stage III of the University Union, where the SU President, Secretary-Treasurer, Education Vice-President, Welfare-Research Officer, Director of Overseas Students and a full-time solicitor employed by the Students’ Union are available to discuss any problems you might have.

Cashier's Hours The University Cashier's office is open from 9.30 am to 1.00 pm and from 2.00 pm to 4.30 pm, Monday to Friday. It is open for additional periods at the beginning of Session 1. Consult noticeboards for details.
General Information

February
- Thursday 3: Enrolment period begins for new undergraduate students and undergraduate students repeating first year.
- Monday 21: Enrolment period begins for second and later year undergraduate students and graduate students enrolled in formal courses.
- Monday 28: Last day for undergraduate students who have completed requirements for pass degrees to advise the Registrar they are proceeding to an honours degree or do not wish to take out the degree for which they have applied for any other reason.

March
- Monday 7: Session 1 begins - all courses except Medicine III, IV and V.
- Wednesday 9: List of graduands for April/May ceremonies and 1982 prize-winners published in *The Sydney Morning Herald*.
- Monday 14: Last day for notification of correction of details published in *The Sydney Morning Herald* on 9 March concerning April/May graduation ceremonies.
- Friday 18: Last day for acceptance of enrolment by new undergraduate students (late fee payable thereafter).
- Thursday 31: Last day for acceptance of enrolment by undergraduate students re-enrolling in second and later years (late fee payable thereafter).

April
- Monday 2: Confirmation of Enrolment forms despatched to all students.
- Wednesday 11: Last day for acceptance of corrected Confirmation of Enrolment forms.
- Friday 13: Last day for undergraduate students completing requirements for degrees at the end of Session 1 to submit Application for Admission to Degree forms.
- Monday 16: May Recess begins.
- Thursday 19: Publication of provisional timetable for June/July examinations.
- Sunday 22: May Recess ends.
- Friday 27: Last day for students to advise of examination clashes.

June
- Tuesday 7: Publication of timetable for June/July examinations.
- Monday 13: Queen's Birthday Holiday.
- Sunday 19: Session 1 ends.
- Monday 20: Midyear Recess begins.
- Tuesday 21: Examinations begin.

July
- Wednesday 6: Examinations end.
- Monday 18: Examination results mailed to students.
- Tuesday 19: Examination results displayed on University noticeboards.
- Tuesday 13 to Friday 22: Students to amend enrolment programs following receipt of June examination results.
- Sunday 24: Midyear Recess ends.
- Monday 25: Session 2 begins.

August
- Thursday 4: Foundation Day - no classes held.
- Friday 5: Last day for students to discontinue without failure subjects which extend over the whole academic year.
- Monday 29: August Recess begins.

September
- Sunday 4: List of graduands for October graduation ceremonies published in *The Sydney Morning Herald*.
- Tuesday 6: Last day for undergraduate students who have completed requirements for pass degrees to advise the Registrar they are proceeding to an honours degree or do not wish to take out the degree for which they have applied for any other reason.
- Wednesday 7: List of graduands for October graduation ceremonies published in *The Sydney Morning Herald*.
- Friday 9: Last day for undergraduate students to discontinue without failure subjects which extend over Session 2 only.
- Monday 12: Last day for notification of correction of details published in *The Sydney Morning Herald* on 7 September concerning October graduation ceremonies.
- Monday 19: Confirmation of Enrolment forms despatched to all students.
- Wednesday 28: Last day for acceptance of corrected Confirmation of Enrolment forms.
- Friday 30: Last day for applications from undergraduate students completing requirements for degrees at the end of Session 2 to submit applications for Application for Admission to Degree forms.
- Sunday 22: Last day to apply to UCAC for transfer to another tertiary institution in New South Wales.

May
- Monday 2: Confirmation of Enrolment forms despatched to all students.
- Wednesday 11: Last day for acceptance of corrected Confirmation of Enrolment forms.
- Friday 13: Last day for undergraduate students completing requirements for degrees at the end of Session 1 to submit Application for Admission to Degree forms.
- Monday 16: May Recess begins.
- Thursday 19: Publication of provisional timetable for June/July examinations.
- Sunday 22: May Recess ends.
- Friday 27: Last day for students to advise of examination clashes.
October
Monday 3
Eight Hour Day – Public Holiday
Thursday 6
Publication of provisional examination timetable
Friday 14
Last day for students to advise of examination timetable clashes
Thursday 27
Publication of examination timetables

November
Sunday 6
Session 2 ends
Monday 7
Study Recess begins
Sunday 13
Study Recess ends
Monday 14
Examinations recess begins

December
Friday 2
Examinations end
Monday 19
Examination results mailed to students
Study Recess begins
Tuesday 20
Examination results displayed on University noticeboards
Sunday 25
Christmas Day
Monday 26
Boxing Day – Public Holiday
Tuesday 27
Public Holiday

Faculty of Medicine
First and Second Years
Third and Fourth Years

Fifth Year

January
Monday 2
Public Holiday
Monday 16
Last day for applications for review of results of annual examinations
Friday 13
Last day for acceptance of applications by office of the Admissions Section for transfer to another undergraduate course within the University
Monday 30
Australia Day – Public Holiday

February
Monday 20
Enrolment period begins for second and later year undergraduate students and students enrolled in formal courses

March
Monday 5
Session 1 begins – all courses except Medicine III, IV and V

April
Friday 20 to Monday 23
Easter – Public Holiday
Wednesday 25
Anzac Day – Public Holiday

1984

Faculties other than Medicine
Session 1
(14 weeks)
5 March to 13 May
May Recess: 14 May to 20 May
21 May to 17 June
Midyear Recess: 18 June to 22 July
Examinations 19 June to 5 July

Session 2
(14 weeks)
23 July to 26 August
August Recess: 27 August to 2 September
3 September to 4 November
Study Recess: 5 November to 11 November
Examinations 12 November to 30 November
Organization of the University

Rapid development has been characteristic of the University of New South Wales since it was first incorporated by an Act of Parliament in 1949, under the name of the New South Wales University of Technology.

In 1982 the University had 19,016 students and over 3,600 staff who worked in more than eighty buildings. These figures include staff and students at Broken Hill (W.S. and L.B. Robinson University College), Duntroon (the Faculty of Military Studies) and Jervis Bay.

The Chairman of the Council is the Chancellor, the Hon. Mr. Justice Samuels.

The Professorial Board

The Professorial Board is one of the two chief academic bodies within the University and includes all the professors from the various faculties. It deliberates on all questions such as matriculation requirements, the content of courses, the arrangement of syllabuses, the appointment of examiners and the conditions for graduate degrees. Its recommendations on these and similar matters are presented to Council for its consideration and adoption.

Arms of the University of New South Wales

The arms of the University are reproduced on the front cover of this handbook. The arms were granted by the College of Heralds in London, on 3 March 1952, and the heraldic description is as follows:

'Argent on a Cross Gules a Lion passant guardant between four Mullets of eight points Or a Chief Sable charged with an open Book proper thereon the word SCIENTIA in letters also Sable.

'The lion and the four stars of the Southern Cross on the Cross of St George have reference to the State of New South Wales which brought the University into being; the open book with SCIENTIA across its page reminds us of its original purpose. Beneath the shield is the motto 'Manu et Mente', which is the motto of the Sydney Technical College, from which the University has developed. The motto is not an integral part of the Grant of Arms and could be changed at will; but it was the opinion of the University Council that the relationship with the parent institution should in some way be recorded.'

The Council

The chief governing body of the University is the Council which has the responsibility of making all major decisions regarding its policy, conduct and welfare.

The Council consists of 44 members from the State Parliament, industry and commerce, agriculture, the trade unions, professional bodies, the staff, the students and the graduates of the University.

The Council meets six times per year and its members also serve on special committees dealing with, for example, academic matters, finance, buildings and equipment, personnel matters, student affairs and public relations.

The Faculties/Boards of Studies

The dean, who is also a professor, is the executive head of the faculty or board of studies. Members of each faculty or Board meet regularly to consider matters pertaining to their own areas of study and research, the result of their deliberations being then submitted to the Professorial Board.

The term ‘faculty’ is used in two distinct senses in the University. Sometimes it is used to refer to the group of schools comprising the faculty, and at others to the deliberative body of academic members of the Schools within the faculty.

The eleven faculties are Applied Science, Architecture, Arts, Biological Sciences, Commerce, Engineering, Law, Medicine, Military Studies, Professional Studies and Science. In addition, the Board of Studies of the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education fulfil a function similar to that of the faculties. The Board of Studies in Science and Mathematics, which was established to facilitate the joint academic administration of the Science and Mathematics degree course by the faculties of Biological Sciences and Science, considers and reports to the Professorial Board on all matters relating to studies, lectures and examinations in the science and mathematics degree course.

The Schools

Once courses of study have been approved they come under the control of the individual schools (eg the School of Chemistry, the School of Mathematics). The head of the school in which you are studying is the person in this academic structure with whom you will be most directly concerned.
Executive Officers

As chief executive officer of the University, the Vice-Chancellor and Principal, Professor Michael Birt, is charged with managing and supervising the administrative, financial and other activities of the University.

He is assisted in this task by two Pro-Vice-Chancellors, Professor Ray Golding and Professor Athol Carrington, together with the Deans and the three heads of the administrative divisions.

General Administration

The administration of general matters within the University comes mainly within the province of the Registrar, Mr Ian Way, the Bursar, Mr Tom Daly, and the Property Manager Mr Peter Koller.

The Registrar’s Division is concerned chiefly with academic matters such as the admission of students, and the administration of examinations as well as the various student services (health, employment, amenities, and counselling).

The Bursar’s Division is concerned with the financial details of the day-to-day administration and matters to do with staff appointments, promotions, etc.

The Property Division is responsible for the building program and the ‘household’ services of the University, including electricity, telephones, cleaning, traffic and parking control and maintenance of buildings and grounds.

Award of the University Medal

The University may award a bronze medal to undergraduate students who have achieved highly distinguished merit throughout their degree course.

Identification of Subjects by Numbers

For information concerning the identifying number of each subject taught in each faculty as well as the full list of identifying numbers and subjects taught in the University, turn to the first page of the section Subject Descriptions. This list is also published in the Calendar.

Textbook Lists

Textbook lists are not published in the faculty handbooks. Separate lists are issued early in the year and are available at key points on the campus.

Students should allow quite a substantial sum for textbooks. This can vary from $250 to $600 per year depending on the course taken. These figures are based on the cost of new books. The Students’ Union operates a secondhand bookshop. Information about special equipment costs, accommodation charges and cost of subsistence on excursions, field work, etc, and for hospital residence (medical students) are available from individual schools.

Co-operative Bookshop

Membership is open to all students, on initial payment of a fee of $10, refundable when membership is terminated.

General Studies Program

Almost all undergraduates in faculties other than Arts and Law are required to complete a General Studies program. The Department of General Studies within the Board of Studies in General Education publishes its own Handbook which is available free of charge. All enquiries about General Studies should be made to the General Studies Office, Room G56, Morven Brown Building, phone 3476.
General Information

Student Services and Activities

to the Master, Shalom College, the University of New South Wales, PO Box 1, Kensington, NSW 2033.

Warrane College
Warrane College provides accommodation for 200 men and is open to students of all ages, backgrounds and beliefs. The College offers a comprehensive tutorial program along with a wide range of activities, professional orientation and opportunities to meet members of the University staff informally. Non-resident membership is available to male students who wish to participate in College activities and to make use of its facilities. The general spiritual care of the College has been entrusted to the Catholic association Opus Dei. Enquiries: The Master, Warrane College, PO Box 123, Kensington 2033. Telephone (02) 662 6199.

Creston Residence
Creston Residence offers accommodation to 25 undergraduate and graduate women students. Activities and tutorials are open to non-resident students. The spiritual activities offered at Creston are entrusted to the Women's Section of Opus Dei. Enquiries: 36 High Street, Randwick 2031. Telephone (02) 398 5693.

Other Accommodation

Off-campus Accommodation
Students requiring other than College accommodation may contact the Housing Officer in the Chancellery, Room 148E for assistance in obtaining suitable accommodation in the way of rooms with cooking facilities, flats, houses, share flats etc. Extensive listings of all varieties of housing are kept up-to-date throughout the year and during vacations. Accommodation in the immediate vicinity of the University is not usually easy to find at short notice, and is expensive.

No appointment is necessary but there may be some delay in February and March. The Housing staff are always happy to discuss any aspect of accommodation.

Special pamphlets on accommodation, lists of estate agents and hints on house-hunting are available on request.

Associations, Clubs and Societies

The Sports Association
The Sports Association is a student organization within the University which caters for a variety of sports for both men
and women. In December 1952 the University Council approved the establishment of the Sports Association, which then consisted of five clubs. As the University has grown the Association has expanded, and it now includes thirty-eight clubs.

The Association office is situated on the 3rd floor, Squarehouse, E4, lower campus, and can be contacted on extension 2673. The control of the Association is vested in the General Committee which includes delegates from all the clubs.

Membership is compulsory for all registered students, and the annual fee is as set out later, in Rules and Procedures, Enrolment Procedures and Fees Schedules, section 15. Fees. Membership is also open to all members of staff and graduates of the University on payment of an annual fee as prescribed in the By-laws of the Association. All members are invited to take part in any of the activities arranged by the Association, and to make use of the University’s sporting and recreational facilities.

The Association is affiliated with the Australian Universities Sports Association (AUSA) which is the controlling body for sport in all Australian universities.

School and Faculty Associations

Many schools and faculties have special clubs with interests in particular subject fields. Enquire at the relevant Faculty or School Office for information.

Australian Armed Services

The University maintains links with the Royal Australian Navy, the Australian Army Reserve and the Royal Australian Air Force, and opportunities exist for student participation in their activities. See the General Information section of the Faculty Handbooks for details.

Chaplaincy Centre

The University Chapel

The University provides a small chapel for the use of all faiths. In its temporary housing it is located in Hut E15a near the Chemistry Building. The chapel is available for services of worship by arrangement with the full-time chaplains. At other times it is available for private meditation to all members of the University.

Chaplaincy Service

A Chaplaincy Service is available within the University of New South Wales for the benefit of students and staff.

The service offers fellowship, personal counselling and guidance, together with leadership in biblical and doctrinal studies and in worship. The chaplains maintain close liaison with student religious societies.

The chaplains are located in Hut E15a at the foot of Basser steps, which also contains the temporary chapel.

Deputy Registrar (Student Services)

The Deputy Registrar (Student Services), Mr Peter O’Brien, and his Administrative Assistant, Mrs Anne Beaumont, are located on the first floor of the Chancellery.

They will help those students who have problems and need advice but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with those enquiries, they are especially concerned with the problems of physically handicapped and disabled students.

All enquiries should be made either at room 148E or by telephoning extension 2482 (general enquiries).

Sport and Recreation Section

The Sport and Recreation Section seeks ways to encourage students and staff to include exercise as an essential part of their daily lives. It does this through Sports Clubs on a competitive basis and by offering physical recreation on a more casual basis to the University community.

The Section serves the Sports Association and its 38 constituent clubs and is responsible for the continuing management of the Physical Education and Recreation Centre at which recreational programs are available for both students and staff.

It makes bookings for use of sporting facilities including tennis courts and playing fields. The section is located on the 3rd Floor, Squarehouse, E4, lower campus. The various services may be contacted by phone on the following extensions: Recreation Program 3271; Grounds Bookings 2235; Sports Association 2673.

Physical Education and Recreation Centre

The Sport and Recreation Section provides a recreational program for students and staff at the Physical Education and Recreation Centre. The Centre consists of eight squash courts, a main building, and a 50-metre indoor heated swimming pool. The main building has a large gymnasium and practice rooms for fencing, table tennis, judo, weight-lifting, karate and jazz ballet, also a physical fitness testing room. The recreational program includes
intramurals, teaching/coaching, camping. The Centre is located on the lower campus adjacent to High Street. The Supervisor at PERC may be contacted on extension 3271.

Student Counselling and Research Unit

The Student Counselling and Research Unit provides counselling services to students, prospective students, parents and other concerned persons.

The unit is located in the huts near the foot of Basser Steps (access from College Road or Engineering Road).

Appointments are offered throughout the academic year and during recesses between 8 am to 5 pm on week days (up to 7 pm on some evenings). A 'walk-in' service for short interviews is available between 9 am and 5 pm. Appointments may be made by phoning extension 3685 or 3681 between 8.30 am and 5.30 pm.

Counsellors offer assistance in planning, decision-making, problem solving, social and emotional development, and dealing with grievances. Group programs on such topics as study, tutorial and examination skills, stress management, communicating, and self-confidence are offered each session. Brochures are available from the receptionist.

Careers and Employment Section

The Careers and Employment Section provides careers advice and assistance in finding employment.

Assistance with careers and permanent employment opportunities includes: the regular mailing of a Job Vacancy Bulletin to registered students and graduates, a Library, and a Campus Interview Program in which final year students have the opportunity to speak to employers regarding employment prospects.

Assistance is also provided in obtaining course-related employment during long vacations as required by undergraduates in Engineering and Applied Science.

The Section is located in Undercroft Room LG05 in the Chancellery.

For further information, telephone as follows: careers and employment assistance 3259 or 3630; long vacation industrial training 2086.

Student Health Unit

A student health clinic and first aid centre is situated within the University. The medical service although therapeutic is not intended to replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected the student may be referred to a private practitioner or to an appropriate hospital. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.

The service is available to all enrolled students by appointment, free of charge, between 9 am and 5 pm Mondays to Fridays. For staff members, immunizations are available, and first aid service in the case of injury or illness on the campus.

The centre is located in Hut E15b on the northern side of the campus in College Road at the foot of the Basser Steps.

Appointments may be made by calling at the centre or by telephoning extension 2679, 2678 or 2677 during the above hours.

The Family Planning Association of NSW conducts clinics at the Student Health Unit and at the adjacent Prince of Wales Hospital which are available for both staff and students. Appointments may be made for the Student Health Unit clinic by telephoning 588 2833 or for the Prince of Wales Hospital clinics by telephoning 399 0111.

The Students' Union

The Students' Union was formed in 1952 as an organization, duly recognized by the University Council, to represent the student body and to provide a central organization for the administration of student activities. In the words of its constitution "The Students' Union is formed for the purpose of advancing the interests of University men and women, facilitating their general scientific and technical education, and fostering a University spirit among them".

The Students' Union affords a recognized means of communication between the student body and the University administration, and represents its members in all matters affecting their interests. It aims to promote the cultural, educational and recreational life of the University and to encourage a permanent interest among graduates in the life and progress of student activities within the University. The Students' Union also makes representations to government and other bodies outside the University on behalf of its members.

Membership of the Students' Union is compulsory for all registered students of the University; the annual subscription for full-time and part-time students is set out later, in Rules and Procedures, Enrolment Procedures and Fees Schedules, section 15. Fees. All Alumni of the University are eligible for Life Membership.

The Students' Union is governed by a Council consisting in the main of elected student representatives from the
The Water Reference Library situated at Manly Vale (telephone 948 0261) which is closely associated with the Physical Sciences Library.

The University Union

The University Union provides the facilities students, staff and graduates require in their daily University life and thus an opportunity for them to know and understand one another through associations outside the lecture room, the library and other places of work.

The Union is housed in three buildings near the entrance to the Kensington Campus from Anzac Parade. These are the Roundhouse, the Blockhouse and the Squarehouse. Membership of the Union is compulsory for all registered students and is open to all members of staff and graduates of the University.

The control of the Union is vested in the Board of Management whose Chief Executive Officer is the Warden.

The full range of facilities provided by the Union includes a cafeteria service and other dining facilities, a large shopping centre, (including clothing shop and delicatessen); travel service; banking, pharmaceutical, optometrical and hairdressing facilities; showers; common, games, reading, meeting, music, practice, craft and dark rooms. The Union also has shops on Campus which cater for student needs, including art materials and calculators. Photocopying, sign printing, and stencil cutting services are also available. The Union also sponsors special concerts (including lunchtime concerts) and conducts courses in many facets of the arts including weaving, photography, creative dance and yoga. Full information concerning courses is contained in a booklet obtainable from the Union's program department.

The University Union should not be confused with the Students' Union or Students' Representative Council as it is known in some other universities. This latter body has a representative function and is the instrument whereby student attitudes and opinions are crystallized and presented to the University and the community.

The University Library

The University libraries are mostly situated on the upper campus. The library buildings house the Undergraduate Library on Level 3, the Social Sciences and Humanities Library on Level 4, the Physical Sciences Library on Level 7 and the Law Library on Level 8. The Biomedical Library is in the western end of the Mathews Building and is closely associated with libraries in the teaching hospitals of the University.

For details consult Faculty Information in the relevant Faculty Handbook.

There are also library services at other centres:

The Water Reference Library situated at Manly Vale (telephone 948 0261) which is closely associated with the Physical Sciences Library.

The library at the Broken Hill Division in the W.S. and L.B. Robinson University College building (telephone 6022/3/4).

The library at the Royal Military College, Duntroon, ACT, serving the Faculty of Military Studies.

Each library provides reference and lending services to staff and students and each of the libraries on the Kensington campus is open throughout the year during day and evening periods. The exact hours of opening vary during the course of the academic year.

Staff and students normally use a machine-readable identification card to borrow from the University libraries.
Financial Assistance to Students

Tertiary Education Assistance Scheme

Under this scheme, which is financed by the Commonwealth Government, assistance is available for full-time study in approved courses, to students who are not bonded and who are permanent residents of Australia, subject to a means test on a non-competitive basis. The allowances paid are unlikely to be sufficient, even at the maximum rate, for all the living expenses of a student. Family help and/or incomes from vacation or spare-time work would also be needed.

Students in the following types of university courses are eligible for assistance:

- Undergraduate and graduate bachelor degree courses
- Graduate diplomas
- Approved combined bachelor degree courses
- Master's qualifying courses (one year)

The rates of allowance and conditions for eligibility are set out in a booklet obtainable from the Commonwealth Department of Education.

Tertiary students receiving an allowance, and prospective tertiary students, will be sent application forms in January 1983. Forms are also available from the Admissions Section or the Careers and Employment Section, or from the Director, Department of Education, 59 Goulburn Street, Sydney, NSW 2000 (telephone 218 8800). Continuing students should submit applications as soon as examination results are available. New students should do so as soon as they are enrolled. All students should apply by 31 March 1983, otherwise benefits will not be paid for the earlier months of the year.

It is most important that students advise the TEAS office if at any time they change or discontinue their study programs, as their eligibility for benefits might be affected.

Other Financial Assistance

In addition to the Tertiary Education Assistance Scheme financed by the Australian Government the following forms of assistance are available:

1. Deferment of Payment of Fees Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided the deferment is requested prior to the due date for fee payments.

2. Short Term Cash Loans Donations from various sources have made funds available for urgent cash loans not exceeding £100. These loans are normally repayable within one month.

3. Early in 1973 the Commonwealth Government made funds available to the University to provide loans to students in financial difficulty. The loans are to provide for living allowances and other approved expenses associated with attendance at university. Repayment usually commences after graduation or upon withdrawal from the course. Students are required to enter into a formal agreement with the University to repay the loan. The University is unable to provide from the fund amounts large enough for all or even a major part of the living expenses of a student.

From the same source students who are in extremely difficult financial circumstances may apply for assistance by way of a non-repayable grant. In order to qualify for a grant a student must generally show that the financial difficulty has arisen from exceptional misfortune. Grants are rarely made.

The University has also been the recipient of generous donations from the Arthur T. George Foundation, started by Sir Arthur George and his family, for the endowed student loan fund.

In all cases assistance is limited to students with reasonable academic records and whose financial circumstances warrant assistance.

Enquiries about all forms of financial assistance should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Financial Assistance to Aboriginal Students

Financial assistance is available to help Aboriginal students from the Commonwealth Government’s Aboriginal Study Grant Scheme. Furthermore, the University may assist Aboriginal students with loans to meet some essential living expenses.

The University has also received a generous bequest from the estate of the late Alice Brooks Gange for the education of Australian aborigines within the University. The University is engaged in consultations with groups and individuals for advice on the most effective ways of using the funds and has established a committee to advise the Vice-Chancellor in the matter.

All enquiries relating to these matters should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Fund for Physically Handicapped and Disabled Students

The University has a small fund (started by a generous gift from a member of staff who wishes to remain anonymous) available for projects of benefit to handicapped and disabled students. Enquiries should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.
Rules and Procedures

The University, in common with other large organizations, has established rules and procedures which are designed for the benefit of all members of the University. In some cases there are penalties (e.g. fines or exclusion from examinations) for non-compliance. Any student who, after carefully reading the rules set out in the following pages, requires further information on their application should seek further advice, in the first instance, at the Enquiry Counter in the North Wing of the Chancellery Building.

General Conduct

The University has not considered it necessary to formulate a detailed code of rules relating to the general conduct of students. Enrolment as a student of the University, however, involves an undertaking to observe the regulations, by-laws and rules of the University, and to pay due regard to any instructions given by any officer of the University.

Appeals

Section 5(c) of Chapter III of the By-laws provides that 'Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action by the Vice-Chancellor, whether on appeal or otherwise, to the Council'.

Admission and Enrolment

The Student Enquiry Counter, located near the Cashier in the Chancellery on the upper campus, provides information for students on admission requirements, undergraduate and graduate courses and enrolment procedures. Faculty handbooks and the Calendar may be purchased from the Cashier. The Enquiry Counter is open from 9 am to 5 pm, Monday to Friday. During enrolment it is also open for some part of the evening.

Information may be obtained here about special admission, admission with advanced standing and admission on overseas qualifications. Applications are also received from students who wish to transfer from one course to another, resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled. It is essential that the closing dates for lodgement of applications are adhered to. For further details see the section on Enrolment Procedures and Fees.

Applications for admission to undergraduate courses from students who do not satisfy the requirements for admission (see section on Admission Requirements) are referred by the Admissions Section to the Admissions Committee of the Professorial Board.

Students wishing to enrol as higher degree candidates should first consult the Head of the School in which they wish to study. An application is then lodged on a standard form and the Postgraduate Section, after obtaining a recommendation from the Head of School, refers the application to the appropriate Faculty or Board of Studies Higher Degree Committee.

Details of the procedure to be followed by students seeking entry to first year undergraduate degree courses at the University may be obtained from the Student Enquiry Counter or the Universities and Colleges Admissions Centre.

An Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery, and is available for personal interview with those who require additional information about the University.

First Year Entry

Those seeking entry to first year courses in one or more of eighteen institutions in the state including the three universities in the Sydney Metropolitan area (Macquarie University, the University of New South Wales and the University of Sydney) are required to lodge a single application form with the Universities and Colleges Admissions Centre, Challis House, 10 Martin Place, Sydney 2000 (GPO Box 7049, Sydney 2001). On the application form provision is made for applicants to indicate preferences for courses available in any one of the three universities and fifteen other tertiary institutions. Students are notified individually of the result of their applications and provided with information regarding the procedures to be followed in order to accept the offer of a place at this university. Enrolment is completed at the Enrolment Bureau, Unisearch House, 221 Anzac Parade, Kensington.

Deferment of First Year Enrolment

Students proceeding directly from school to University who have received an offer of a place may request deferment of enrolment for one year and will usually receive permission providing they do not enrol at another tertiary institution in that year.
Enrolment Procedures and Fees
Schedules 1983

1. Introduction

All students, except those enrolling in graduate research degree courses (see sections 5. and 6. below), must lodge an authorized enrolment form with the Cashier either on the day the enrolling officer signs the form or on the day any required General Studies electives are approved.

All students, except those enrolling in graduate research degree courses and those exempted as set out in section 17. below, should on that day also either pay the required fees or lodge an enrolment voucher or other appropriate authority.

Such vouchers and authorities are generally issued by the NSW Department of Education and the NSW Public Service. They are not always issued in time and students who expect to receive an enrolment voucher or other appropriate authority but have not done so should pay the student activities fees and arrange a refund later. Such vouchers and authorities are not the responsibility of the University and their late receipt is not to be assumed as automatically exempting a student from the requirements of enrolling and paying fees.

If a student is unable to pay the fees the enrolment form must still be lodged with the Cashier and the student will be issued with a 'nil' receipt. The student is then indebted to the University and must pay the fees by the end of the second week of the session for which enrolment is being effected.

Penalties apply if fees are paid after the time allowed (see section 16. below) unless the student has obtained an extension of time in which to pay fees from the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery). Such an application must be made before the fee is due. Payment may be made through the mail, in which case it is important that the student registration number be given accurately. Cash should not be sent through the mail.

2. New Undergraduate Enrolments

Persons who are applying for entry in 1983 must lodge an application for selection with the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1982.

Those who are selected will be required to complete enrolment at a specified time before the start of Session 1. Compulsory student activities fees should be paid on the day.

In special circumstances, however, and provided class places are still available, students may be allowed to complete enrolment after the prescribed time.

Application forms and details of the application procedures may be obtained from the Student Enquiries Counter, Ground Floor, North Wing of the Chancellery Building.

3. Re-enrolment

See also sections 4., 6. and 7. below.

Students who are continuing courses (or returning after approved leave of absence) should enrol through the appropriate school in accordance with the procedures set out in the current Enrolment Procedures booklet, available from the Student Enquiries Counter in the Chancellery and from School offices. Those who have completed part of a course and have been absent without leave need to apply for entry through the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1982.

4. Restrictions Upon Re-enrolling

Students who in 1982 have infringed the rules governing re-enrolment should not attempt to re-enrol in 1983 but should follow the written instructions they will receive from the Registrar.

5. New Research Students

Students enrolling for the first time in graduate research degree courses will receive an enrolment form by post. They have two weeks from the date of offer of registration in which to lodge the enrolment form with the Cashier. Completion of enrolment after this time will incur a penalty (see section 16. below).

6. Re-enrolling Research Students

Students undertaking purely research degree programs (course codes 0-2999) will be re-enrolled automatically each year and sent an account for any fees due.

7. Submission of Project Report

Students registered for formal masters degree programs (course codes 8000-9999) who at the commencement of Session 1 have completed all the work for a degree or diploma except for the submission of the relevant thesis or project report are required to re-enrol by the end of the second week of Session 1. Completion of enrolment after then will incur a penalty (see section 16. below).

Information about possible student activities fees exemption is set out in section 17. (10) below.

8. Enrolments by Miscellaneous Students

Enrolments by miscellaneous students are governed by the following rules:

(1) Enrolment in a particular subject or subjects as a miscellaneous student – ie as a student not proceeding to a degree or diploma – may be permitted provided that in every case the Head of School offering the subject considers that the student will benefit from the enrolment and provided also that accommodation is available and that the enrolment does not prevent a place in that subject being available to a student proceeding to a degree or diploma.

(2) A student who is under exclusion from any subject in the University may not be permitted to be enrolled as a miscellaneous student in that subject.

(3) A student who is under exclusion from any course in the University may not be permitted to enrol in any subject which forms a compulsory component of the course from which the student is excluded.

(4) A student who is subsequently admitted to a course of the University for which any subjects completed as a miscellaneous student form a part may receive standing for those subjects.
9. Final Dates for Completion of Enrolment
No enrolments for courses extending over the whole year or for Session 1 only will be accepted from new students after the end of the second week of Session 1 (18 March 1983) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned; no later year enrolments for courses extending over the whole year or for Session 1 only will be accepted after the end of the fourth week of Session 1 (1 April 1983) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned. No enrolments for courses in Session 2 only will be accepted after the end of the second week of Session 2 (5 August 1983) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned.

10. University of New South Wales and University Union Membership Card
All students enrolled in degree or diploma courses or as miscellaneous students, except those exempt from University Union fees under provisions of section 17. below, are issued with a University of New South Wales and University Union Membership Card. This card must be carried during attendance at the University and shown on official request.

The number appearing on the front of the card above the student’s name is the student registration number used in the University’s records. This number should be quoted in all correspondence.

The card must be presented when borrowing from the University libraries, when applying for travel concessions, and when notifying a change of address. It must also be presented when paying fees or re-enrolment each year when it will be made valid for the year and returned. Failure to present the card could result in inconvenience in completing re-enrolment.

Life members of the University Union and those exempt from payment of University Union fees, if enrolled in degree or diploma courses or miscellaneous students use the University’s fees receipt in place of the card when applying for travel concessions and when notifying a change of address. The University Library issues a library borrowing card on production of the fees receipt.

A student who loses a card must notify the University Union as soon as possible.

New students are issued with cards on enrolment if eligible.

New graduate students should complete an application for a card when they enrol unless they already possess one from previous study at the University. The card can be collected from the second floor of the University Union Blockhouse approximately three weeks after enrolment. The fees receipt may be used as necessary until the card is available.

11. Payment of Fees
The fees and charges which are payable include those charges raised to finance the expenses incurred in operating activities such as the University Union, the Students’ Union, the Sports Association, and the Physical Education and Recreation Centre. Penalty payments are also incurred if a student fails to complete procedures as required. Charges may also be payable, sometimes in the form of a deposit, for the hiring of kits of equipment in certain subjects. Accommodation charges, costs of subsistence on excursions, field work, etc, and for hospital residence (medical students) are payable in appropriate circumstances.

12. Assisted Students
Scholarship holders and sponsored students who have not received an enrolment voucher or appropriate letter of authority from their sponsor at the time they are enrolling should complete their enrolment by paying their own fees.

A refund of fees will be made when the enrolment voucher or letter of authority is subsequently lodged with the Cashier.

Those unable to pay their own fees in these circumstances can apply to the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery) for an extension of time in which to pay. Such an application must be made before the fees are due.

13. Extension of Time
Students who are unable to pay fees by the due date may apply to the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery) for an extension of time, which may be granted in extenuating circumstances. Such applications must be made before the due date.

14. Failure to Pay Fees and Other Debts
Students who fail to pay prescribed fees or charges or are otherwise indebted to the University and who fail either to make a satisfactory settlement of indebtedness upon receipt of due notice or to receive a special exemption ceases to be entitled to the use of University facilities. Such students are not permitted to register for a further session, to attend classes or examinations, or to be granted any official credentials. In the case of students enrolled for Session 1 only or for both Sessions 1 and 2 this disbarment applies if any portion of fees is outstanding after the end of the eighth week of Session 1 (23 April 1983). In the case of students enrolled for Session 2 only this disbarment applies if any portion of fees is outstanding after the end of the sixth week of Session 2 (2 September 1983).

In special cases the Registrar may grant exemption from the disqualification referred to in the preceding paragraph upon receipt of a written statement setting out all relevant circumstances.
15. Fees
Fees and penalties quoted are current at the time of publication but may be amended by the University without notice.

- University Union Entrance Fee
 Payable on first enrolment $28
 Students enrolling for only one session must pay the full University Union entrance fee.

- Student Activities Fees
 All students (with the exceptions set out in section 17. below) are required to pay the following fees if enrolling for a program involving two sessions. Those enrolling for only one session will pay the full University Union Entrance Fee, if applicable, and one half of any other fees due.
 Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies.
 Students often seek exemption from some or all of the student activities fees for reasons other than those set out in section 17. below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.
 Student Activities Fees are adjusted annually by a system of indexation and those set out below are current in 1982 and are therefore subject to an increase in 1983.
 University Union annual subscription $80
 Sports Association annual subscription $17
 Students' Union Annual Subscription
 Students enrolling in full-time courses $22
 Students enrolling in part-time courses or as miscellaneous students $17
 Miscellaneous Fund annual fee $28
 This fee is used to finance expenses generally of a capital nature relating to student activities and amenities. Funds are allocated for projects recommended by the Student Affairs Committee and approved by the University Council.

- Special Examination Fees
 Examinations conducted in special circumstances for each subject $11
 Review of examination results for each subject $11

- Other Charges
 In addition to the fees outlined above and depending on the subject being taken, students may be required to make a payment for equipment; money so paid is, in general, refunded if the equipment is returned in satisfactory condition.

16. Penalties
(1) Failure to lodge enrolment form according to enrolment procedure $20
(2) Payment of fees after end of second week of session $20
(3) Payment of fees after end of fourth week of session $40
Penalties (1) and (2) or (1) and (3) may accumulate.

17. Exemptions – Fees
Students often seek exemption from the fees for reasons other than those set out below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.

(1) Life members of the University Union, the Sports Association, and Students' Union are exempt from the relevant fee or fees*.

(2) Students enrolled in courses classified as External are exempt from all Student Activities Fees and the University Union Entrance Fee.

(3) Students enrolled in courses at the W. S. and L. B. Robinson University College and in the Faculty of Military Studies are exempt from the student activities fees and the University Union Entrance Fee in section 15. above but shall pay such other fees and charges as the Council may from time to time determine.

(4) University Union fees and subscriptions may be waived by the Deputy Registrar (Student Services) for students enrolled in graduate courses in which the formal academic requirements are undertaken at a part of the University away from the Kensington campus.

(5) Students who while enrolled at and attending another university (or other tertiary institution as approved by the Vice-Chancellor) in a degree or diploma course are given approval to enrol at the University of New South Wales but only as miscellaneous students for subjects to be credited towards the degrees or diplomas for which they are enrolled elsewhere are exempt from all Student Activities Fees and the University Union Entrance Fee†.

(6) Undergraduate students of a recognized university outside Australia who attend the University of New South Wales with the permission of the dean of the appropriate faculty and of the head of the appropriate school or department to take part as miscellaneous students in an academic program relevant to their regular studies and approved by the authorities of their own institution are exempt from all Student Activities Fees and the University Union Entrance Fee.

*Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies, not at the office of the Deputy Registrar (Student Services) or at the Cashier's office.

†Institutions approved are: Australian Film and Television School, New South Wales Institute of Technology, Sydney College of Advanced Education and Sydney College of Chiropractic.
(7) Graduate students not in attendance at the University and who are enrolling in a project only other than for the first time, are exempt from all Student Activities Fees.

(8) Graduate students resubmitting a thesis or project only are exempt from all Student Activities Fees.

(9) All Student Activities Fees, for one or more sessions, may be waived by the Deputy Registrar (Student Services) for students who are given formal permission to pursue their studies at another institution for one or more sessions.

(10) Graduate students who have completed all the work for a qualification at the commencement of Session 1, except for the submission of the relevant thesis or project report, may be exempted from the payment of Student Activities Fees by the Deputy Registrar (Student Services) on production of an appropriate statement signed by the relevant Supervisor or Head of School.

(11) Students enrolled in a session or sessions devoted entirely to training or experience away from the campus and its associated laboratories, hospitals, centres, institutes, and field stations are exempt from all Student Activities Fees for that session or sessions.

(12) Students whose registration is cancelled or suspended by the University shall receive refunds of fees paid in accordance with the provisions of section 18. (5) below except that a refund of one half of the fees shall be made if such cancellation or suspension takes place between the end of the fourth week of Session 1 and the end of the fourth week of Session 2.

(a) for one session subjects, the end of the seventh week of that session (22 April or 9 September)

(b) for whole year subjects, the end of the second week of Session 2 (5 August).

(5) Withdrawal from Course – Refunds – Student Activities Fees

Whether or not a student's withdrawal entails academic penalties (covered in Item (4) above) there are rules governing possible student activities fee refunds in the case of complete withdrawal from a course.

Details of the refunds which may be available may be obtained from the Student Enquiry Counter, the Chancellery.

(6) Acknowledgements

The Student Records and Scholarships Office will acknowledge each application for a variation in enrolment (including withdrawals from subjects) as follows:

(a) variations lodged before the Friday of the seventh week of each session (22 April or 9 September) will be incorporated in the Confirmation of Enrolment Program notice forwarded to students on 2 May or 20 September as appropriate

(b) variations lodged after those dates will be acknowledged by letter

(c) withdrawals from a course are acknowledged individually whenever they are lodged.

18. Variations in Enrolment (including Withdrawal)

(1) Students wishing to vary an enrolment program must make application on the form available from the appropriate Course Authority.

(2) Students withdrawing from courses (and see also information about withdrawal from subjects below) are required to notify the Registrar in writing. In some cases such students will be entitled to fee refunds (see below).

(3) Enrolment in additional subjects

Applications for enrolment in additional subjects must be submitted by:

31 March 1983 for Session 1 only and whole year subjects;
19 August 1983 for Session 2 only subjects.

(4) Withdrawal from subjects

Applications to withdraw from subjects may be submitted throughout the year but applications lodged after the following dates will result in students being regarded as having failed the subjects concerned, except in special circumstances:

(a) variations lodged before the Friday of the seventh week of each session (22 April or 9 September) will

(b) variations lodged after those dates will be acknowledged by letter

(c) withdrawals from a course are acknowledged individually whenever they are lodged.

(7) It is emphasized that failure to attend for any assessment procedure, or to lodge any material stipulated as part of an assessment procedure, in any subject in which a student is enrolled will be regarded as failure in that assessment procedure unless written approval to withdraw from the subject without failure has been obtained from the Student Records and Scholarships Office.

19. Exemption – Membership

The Registrar is empowered to grant exemption from membership of any or all of the University Union, the Students' Union and the Sports Association to students who have a genuine conscientious objection to such membership, subject to payment of the prescribed fees to the Miscellaneous Fund.
Private Overseas Students

Private overseas students should visit the Commonwealth Department of Education immediately on first arrival in Australia. The address is Sydney Plaza Building, 59 Goulburn Street, Sydney.

Private overseas students continuing their studies should confirm their enrolment with the Commonwealth Department of Education as early as possible each year in order to ensure that arrangements for the extension of their temporary entry permits can be made.

All private overseas students must advise the Department if they change their term residential address during the year. Telephone enquiries should be directed to (02) 218 8979, and country students may reverse the charge for the call.

Students whose applications to transfer are successful, and who are transferring from one school to another are required to comply with the enrolment procedure laid down for new students with advanced standing. Students transferring from one course to another within the same school are required to attend the appropriate enrolment session for the course to which they have approval to transfer.

Students must present the approval to transfer to the enrolling officer, and those who have not received advice regarding their application to transfer before the date on which they are required to enrol should check with the office of the Admissions Section.

Students should also advise the enrolling officer in the school in which they were enrolled in 1982 of their intention to transfer.

Leave of Absence

Leave of absence from an undergraduate course of study may be granted to students other than those in the first year of a course. Leave of absence has generally been restricted to one year but in special circumstances two years have been granted.

To apply for such leave of absence, a letter should be submitted to the Registrar immediately following the release of annual examination results and must include the student’s full name, registration number, the course and stage in which enrolled in the previous year and, most important, the reason why leave is being sought. The letter advising the result of the application will provide details about how to re-enrol.

Students who withdraw from the first year of their course are not granted leave of absence and must again apply for a place through the Universities and Colleges Admissions Centre.

Admission with Advanced Standing

Any person who makes application to register as a candidate for any degree or other award granted by the University may be admitted to the course of study leading to such degree or award with such standing on the basis of previous attainments as may be determined by the Professorial Board provided that:

1. the Board shall not grant such standing under these rules as is inconsistent with the rules governing progression to such degree or award as are operative at the time the application is determined;
2. where a student transfers from another university such student shall not in general be granted standing in this University which is superior to what he has in the University from which he transfers;
3. the standing granted by the Board in the case of any application based on any degree or other award already held by the applicant, shall not be such as will permit the applicant to qualify for the degree or award for which he seeks to register without completing the courses of instruction and passing the examinations in at least those subjects comprising the latter half of the course, save that where such a program of studies would involve the applicant repeating courses of instruction in which the Board deems the applicant to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof;
4. the standing granted by the Board in the case of any application based on partial completion of the requirements for any degree or other award of another institution shall not be such as will permit the applicant to qualify for
the degree or award for which he seeks to register by satisfactory completion of a program of study deemed by the Board to be less than that required of a student in full-time attendance in the final year of the course in which the applicant seeks to register;

5. the standing granted by the Board in the case of any application based on the partial completion of the requirements for any degree or other award of the University may be such as to give full credit in the course to which the applicant seeks to transfer for work done in the course from which the student transfers.

Where the identity between the requirements for any award of the University already held and that of any other award of the University is such that the requirements outstanding for the second award are less than half the requirements of that award, then a student who merely completes such outstanding requirements shall not thereby be entitled to receive the second award but shall be entitled to receive a statement over the hand of the Registrar in appropriate terms.

Resumption of Courses

Students who have had a leave of absence for twelve months and wish to resume their course should follow the instructions about re-enrolling given in the letter granting leave of absence. If these instructions are not fully understood or have been lost, students should contact the Office of the Admissions Section before November in the year preceding the one in which they wish to resume their course.

If students have not obtained leave of absence from their course and have not been enrolled in the course over the past twelve months or more, they should apply for admission to the course through the Universities and Colleges Admissions Centre before 1 October in the year preceding that in which they wish to resume studies.

Examinations

Examinations are held in June/July and in November/December.

Provisional timetables indicating the dates and times of examinations are posted on the University noticeboards. Students must advise the Examinations Section (the Chancellery) of any clash in examinations. Final timetables indicating the dates, times, locations, and authorized aids are available for students two weeks before the end of each session.

Misreading of the timetable is not an acceptable excuse for failure to attend an examination.

Assessment of Course Progress

In the assessment of a student's progress in a course, consideration may be given to work in laboratory and class exercises and to any term or other tests given throughout the year as well as to the results of written examinations.

Examination Results

Grading of Passes

Passes will be graded as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Distinction</td>
<td>an outstanding performance</td>
</tr>
<tr>
<td>Distinction</td>
<td>a superior performance</td>
</tr>
<tr>
<td>Credit</td>
<td>a good performance</td>
</tr>
<tr>
<td>Pass</td>
<td>an acceptable level of performance</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>satisfactory completion of a subject for which graded passes are not available</td>
</tr>
</tbody>
</table>

Pass Conceded

A pass conceded may be granted to a student whose overall performance warrants consideration in a subject where the mark obtained is slightly below the standard required for a pass.

A pass conceded in a subject will normally allow progression to another subject for which the former subject is a prerequisite. In a particular subject, however, a subject authority may specify that a pass conceded is insufficient to meet a particular subject prerequisite. Such information is recorded in the appropriate faculty handbooks.

Availability of Results

Final examination results will be posted to a student's term address, or vacation address if requested. Forms requesting that results be posted to a vacation address are included in the examination timetable and change of address forms are obtainable at the Student Enquiry Counter, the Chancellery. Both forms can be accepted up to Friday 24 June for Session 1 results and Friday 25 November for Session 2 and whole year results. Results are also posted on School noticeboards and in the University Library. Results on noticeboards are listed by Student Registration Number.

No examination results are given by telephone.

Review of Results

A student may make application to the Registrar for the review of a result. The application form, accompanied by an appropriate fee, must be submitted not later than fifteen working days after the date of issue of the Notification of Result of Assessment form.

In reviewing a result, the subject authorities shall ensure that all components of the assessment have been assessed and a mark assigned.

A review of a result is not a detailed reassessment of a student's standard of knowledge and understanding of, and skills in, the subject. It is rather a search for arithmetic error in arriving at the composite mark and for gross and obvious error in assignment of marks in components of the final composite mark.

When a change in grade is recommended, the application fee will be refunded by the Registrar.
Special Consideration
Students who believe that their performance in a subject, either during session or in an examination, has been adversely affected by sickness or any other reason should inform the Registrar and ask for special consideration in the determination of their standing.

Such requests should be made as soon as practicable after the occurrence. Applications made more than seven days after the final examination in a subject will only be considered in exceptional circumstances.

When submitting a request for special consideration students should provide all possible supporting evidence (eg medical certificates) together with their registration number and enrolment details.

Physical Disabilities
Students suffering from a physical disability which puts them at a disadvantage in written examinations should advise Student Records (Ground Floor, the Chancellery) immediately their disability is known. If necessary, special arrangements will be made to meet the student's requirements.

Students who are permanently disabled and need the Examinations Section to make special arrangements for their examinations, should contact Student Records as soon as the final timetable becomes available.

Use of Electronic Calculators
Where the use of electronic calculators has been approved by a faculty or school, examiners may permit their use in examinations. Authorized electronic calculators are battery operated with the minimum operations of addition, subtraction, multiplication and division and are of a type in common use by university students. They are not provided by the University, although some schools may make them available in special circumstances.

Examinations Held Away from the Campus
Except in the case of students enrolled in external courses, examinations will not be permitted away from the campus unless the candidate is engaged on compulsory industrial training. Candidates must advise the Officer-in-charge, Examinations Section, immediately the details of the industrial training are known. Special forms for this purpose are available at the Student Enquiry Counter in the north wing of the Chancellery.

Arrival at Examinations
Examination Rooms will be open to students twenty-five minutes before the commencement of the examination. Candidates are requested to be in their places at least fifteen minutes before the commencement to hear announcements. The examination paper will be available for reading ten minutes before commencement.

Use of Linguistic Dictionaries
The answers in all examinations and in all work submitted must be in English unless otherwise directed. Students may apply for permission to use standard linguistic dictionaries in the presentation of written work for assessment. Such applications should be made in writing to the Examinations Section not later than 14 days prior to the need to use the linguistic dictionary.

Academic Misconduct
Students are reminded that the University regards academic misconduct as a very serious matter. Students found guilty of academic misconduct are usually excluded from the University for two years. Because of the circumstances in individual cases the period of exclusion can range from one session to permanent exclusion from the University.

The following are some of the actions which have resulted in students being found guilty of academic misconduct in recent years: use of unauthorized aids in an examination; submitting work for assessment knowing it to be the work of another person; improperly obtaining prior knowledge of an examination paper and using that knowledge in the examination; failing to acknowledge the source of material in an assignment.

Conduct of Examinations
Examinations are conducted in accordance with the following rules and procedure:

1. Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.

2. Candidates are required to be in their places in the examination room not less than fifteen minutes before the time for commencement.

3. No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.

4. Candidates shall not be admitted to an examination after thirty minutes from the time of commencement of the examination.

5. Candidates shall not be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.

6. Candidates shall not be re-admitted to the examination room after they have left it unless, during the full period of their absence, they have been under approved supervision.

7. Candidates shall not by any improper means obtain, or endeavour to obtain, assistance in their work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.
8. All answers must be in English unless otherwise stated. Foreign students who have the written approval of the Registrar may use standard linguistic dictionaries.

9. Smoking is not permitted during the course of examinations.

10. A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room and to such further penalty as may be determined in accordance with the By-Laws.

Acknowledgement of Sources
Students are expected to acknowledge the source of ideas and expressions used in submitted work. To provide adequate documentation is not only an indication of academic honesty but also a courtesy enabling the marker to consult sources with ease. Failure to do so may constitute plagiarism, which is subject to a charge of academic misconduct.

Further Assessment
In special circumstances further assessment including assessment or further assessment on medical or compassionate grounds may be granted.

Further assessment may be given by the subject authority at his or her discretion at any time prior to the meeting of the relevant faculty assessment committee (normally the fourth week of the Midyear Recess and the second week of December). Further assessment may also be awarded at the faculty assessment committee and students affected may need to be free to undertake that further assessment in the last week in the Midyear Recess and in the period up to the end of the second week in January; students should consult their subject authority for details of further assessment immediately their results are known.

Repeated Failure Rule
2. Students shall be required to show cause why they should be allowed to repeat a subject which they have failed more than once. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue that course.

General Rule
3. (1) Students shall be required to show cause why they should be allowed to repeat a subject they have failed if the assessment committee of the faculty or board of studies so decides on the basis of previous failures in that subject or in a related subject. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue their course.

(2) Students shall be required to show cause why they should be allowed to continue their course if the assessment committee of the faculty or board of studies so decides on the basis of their academic record.

The Session-Unit System
4. (1) Students who infringe the provisions of Rules 1. or 2. at the end of Session 1 of any year will be allowed to repeat the subject(s) (if offered) and/or continue the course in Session 2 of that year, subject to the rules of progression in the course.

(2) Such students will be required to show cause at the end of the year, except that students who infringe Rule 2. at the end of Session 1, and repeat the subjects in question in Session 2, and pass them, will not be required to show cause on account of any such subjects.

Exemption from Rules by Faculties
5. (1) A faculty or board of studies examinations committee may, in special circumstances, exempt students from some or all of the provisions of Rules 1. and 2.

(2) Such students will not be required to show cause under such provisions and will be notified accordingly by the Registrar.

Showing Cause
6. (1) Students wishing to show cause must apply for special permission to re-enrol. Application should be made on the form available from the Registrar and must be lodged with the Registrar by the dates published annually by the Registrar. A late application may be accepted at the discretion of the University.

(2) Each application shall be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies which shall determine whether the cause shown is adequate to justify the granting of permission to re-enrol.

*See Schedule A immediately below.
Appeal
7. (1) Students who are excluded by the Admissions and Re-enrolment Committee from a course and/or subject under the provisions of the Rules will have their applications to re-enrol reconsidered automatically by the Re-enrolment Committee of the Professorial Board.

(2) Students whose exclusion is upheld by the Re-enrolment Committee may appeal to an Appeal Committee constituted by Council for this purpose with the following membership:

A Pro-Vice-Chancellor, nominated by the Vice-Chancellor who shall be Chairman.

The Chairman of the Professorial Board, or if its chairman is unable to serve, a member of the Professorial Board, nominated by the Chairman of the Professorial Board, or when the Chairman of the Professorial Board is unable to make a nomination, nominated by the Vice-Chairman.

One of the category of members of the Council elected by the graduates of the University, nominated by the Vice-Chancellor.

The decision of the Committee shall be final.

(3) The notification to students of a decision which has been upheld by the Re-enrolment Committee of the Professorial Board to exclude them from re-enrolling in a course and/or subject shall indicate that they may appeal against that decision to the Appeal Committee. The appeal must be lodged with the Registrar within fourteen days of the date of notification of exclusion; in special circumstances a late appeal may be accepted at the discretion of the Chairman of the Appeal Committee. In lodging such an appeal with the Registrar students should provide a complete statement of all grounds on which the appeal is based.

(4) The Appeal Committee shall determine appeals after consideration of each appellant’s academic record, application for special permission to re-enrol, and stated grounds of appeal. In particular circumstances, the Appeal Committee may require students to appear in person.

Re-admission after Exclusion
9. (1) Excluded students may apply for re-admission after the period of exclusion has expired.

(2) (a) Applications for re-admission to a course should be made to the Universities and Colleges Admissions Centre before the closing date for normal applications in the year prior to that in which re-admission is sought. Such applications will be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies.

(b) Applications for re-admission to a subject should be made to the Registrar before 30 November in the year prior to that in which re-admission is sought. Such applications will be considered by the relevant subject authority.

(3) Applications should include evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity and/or evidence of action taken (including enrolment in course/s) to improve capacity to resume studies.

(4) Students whose applications for re-admission to a course or subject that are unsuccessful (see 9. (2) (a), (b) respectively) will be invited to appeal to the Re-Enrolment Committee of the Professorial Board. The decision of the Re-Enrolment Committee will be final.

10. Students who fail a subject at the examinations in any year or session and re-enrol in the same course in the following year or session must include in their programs of studies for that year or session the subject which they failed. This requirement will not be applicable if the subject is not offered the following year or session, is not a compulsory component of a particular course, or if there is some other cause which is acceptable to the Professorial Board for not immediately repeating the failed subject.

Restrictions and Definitions
11. (1) These rules do not apply to students enrolled in programs leading to a higher degree or graduate diploma.

(2) A subject is defined as a unit of instruction identified by a distinctive subject number.
Schedule A

(See First Year Rule 1. above)

Where the minimum requirement is half the program, this is defined as half the sum of the unit values of all the subjects in the program where the unit value for each subject in a course is defined as follows:

<table>
<thead>
<tr>
<th>Faculty/Board of Studies</th>
<th>Minimum Requirement</th>
<th>Course</th>
<th>Unit Values (UV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Science</td>
<td>Half the program</td>
<td>3000-3220</td>
<td>One-session subjects: UV1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4190-4220</td>
<td>Two-session subjects: UV2</td>
</tr>
<tr>
<td>Architecture</td>
<td>Half the program</td>
<td>3270, 3330</td>
<td>Elective subjects: UV0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All other subjects: appropriate UV corresponding to credit points*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3320</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3360, 3380</td>
<td>All other subjects: UV equal to the allocated hours*</td>
</tr>
<tr>
<td>Arts</td>
<td>18 first-level credit points</td>
<td>3400, 3410</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>2 subjects (or their Science unit or Arts credit-point equivalent)</td>
<td>3430</td>
<td></td>
</tr>
<tr>
<td>Commerce</td>
<td>Three subjects</td>
<td>3490-3595</td>
<td>One-session subjects: UV1</td>
</tr>
<tr>
<td></td>
<td>FT in both sessions</td>
<td></td>
<td>Two-session subjects: UV2</td>
</tr>
<tr>
<td></td>
<td>Two subjects</td>
<td>3490-3595</td>
<td>Two-session subjects: UV2</td>
</tr>
<tr>
<td></td>
<td>PT in either session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Half the program</td>
<td>3600-3750</td>
<td>One-session subjects: UV1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two-session subjects: UV2</td>
</tr>
<tr>
<td>Law</td>
<td>Half the program</td>
<td>4710-4790</td>
<td>One-session subjects: UV1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two-session subjects: UV2</td>
</tr>
<tr>
<td>Medicine</td>
<td>Half the program</td>
<td>3800</td>
<td>80.010: UV 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81.001: UV 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81.002: UV 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70.001: UV 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Studies: UV 1</td>
</tr>
<tr>
<td>Military Studies</td>
<td>Half the program</td>
<td>BA, BSc</td>
<td>All subjects: UV1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE</td>
<td>All subjects: appropriate weighted mark*</td>
</tr>
</tbody>
</table>

Admission to Degree or Diploma

Students whose current program will enable them to complete all requirements for the degree or diploma, including industrial training where necessary, should lodge with the Registrar the form Application for Admission to Degree/Diploma and return it to the Registrar by the second Monday in May for the October ceremonies, and the first Tuesday in October for all other ceremonies. The forms are available from the Student Enquiry Counter in the north wing of the Chancellery.

Students who have indicated on their enrolment form that they are potential graduands are forwarded an application form with their Enrolment Details form in September (or, in the case of students who expect to satisfy requirements at the end of Session 1, with the form issued in April). Students who do not complete an application form will not graduate; students who do not return their application form by the due date will graduate at a later series of ceremonies.

Students enrolled in courses 3400, 3910 and 3970 who have completed an application form to graduate at the pass level and who then decide to proceed to an honours year should advise the Registrar, in writing before 1 September for those completing requirements at the end of Session 1, or before 28 February for those completing requirements at the end of Session 2.

A list of graduands in Medicine who have applied for their degree is published in The Sydney Morning Herald in December.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in October is published in The Sydney Morning Herald on the second Wednesday in September.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in April/May the following year is published in The Sydney Morning Herald on the second Wednesday in March.

Students who are potential graduands and who wish to notify the Registrar of a change of address should submit...
an additional form Final Year Students' Graduation: Change of Address.

Attendance at Classes

Students are expected to be regular and punctual in attendance at all classes in the subjects in which they are enrolled. All applications for exemption from attendance at classes of any kind must be made in writing to the Registrar.

In the case of illness or of absence for some other unavoidable cause students may be excused by the Registrar for non-attendance at classes for a period of not more than one month or, on the recommendation of the Dean of the appropriate faculty, for a longer period.

Absence from Classes

Explanations of absences from classes, or requests for permission to be absent from forthcoming classes, should be addressed to the Registrar and, where applicable, should be accompanied by a medical certificate. If examinations or other forms of assessment have been missed, this should be stated in the application.

If students attend less than eighty per cent of their possible classes they may be refused final assessment.

Student Records

Confirmation of Enrolment Program notices are sent to all students on 2 May and 19 September. It is not necessary to return these forms unless any of the information recorded is incorrect. Amended forms must be returned to the Student Records and Scholarships Office within fourteen days. Amendments notified after the closing date will not be accepted unless exceptional circumstances exist and approval is obtained from the Registrar. Amended forms returned to the Registrar will be acknowledged in writing within fourteen days.

Release of Information to Third Parties

The University treats results of assessment and information it receives from a student as confidential and will not reveal such information to third parties without the permission of the student except at the discretion of senior officers in circumstances considered of benefit to the student and when it is either impossible or impracticable to gain the student's prior permission. This happens rarely. This policy is considered so important that it often involves officers of the University in very difficult situations, for example, when they must refuse to reveal the address of a student to parents or other relatives.

In spite of the policy, all students should be aware that students' addresses are eagerly sought by various commercial agents and that subterfuges of various kinds can be used to obtain them. From time to time, for example, people claiming to be from the University telephone students or their families and ask for information (usually another student's address) which is often given, unsuspectingly. There is evidence that this is a technique used by some commercial agents.

It would be generally helpful if students (and their families and friends) are cautious in revealing information, making it a practice to ask the name, position, and telephone extension of any caller claiming to be from the University and, if suspicious, returning the call to the extension given.

Change of Address

The Student Records and Scholarships Office of the Registrar's Division should be notified as soon as possible of any change of address. Failure to do this could lead to important correspondence (including results of assessment) going astray. The University cannot accept responsibility if official communications fail to reach students who have not given notice of their change of address. Change of Address Advice forms are available at Faculty and School offices and from the Student Enquiry Counter in the north wing of the Chancellery.

All communications from the University will be sent to the Session or Term address except when arrangements are made otherwise in the case of results of assessment (see Examinations: Availability of Results, earlier in this section). Change of Address Advice forms will be accepted up to Friday 25 November, except for final-year students wishing to change their Application for Admission for Degree/Diploma form. Changes to this form will be accepted up to a date four weeks before the student's graduation ceremony.

Ownership of Students' Work

The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, theses or other work executed by students as part of their courses, or submitted for any award or competition conducted by the University.

Notices

Official University notices are displayed on the notice-boards and students are expected to be acquainted with
the notices which concern them. These boards are in the Biological Sciences Building, the Mathews Building, the Chancellery (lower ground floor), Central Lecture Block, Dalton Building (Chemistry), Main Building (Physics and Mining) and in the Western Grounds Area.

Parking within the University Grounds

A limited amount of parking is available on campus. Copies of the University's parking rules may be obtained on application to Room 240, the Chancellery.

Academic Dress

Information about the University's academic dress requirements may be obtained from the Alumni and Ceremonials Section, Room 148E, the Chancellery (phone extension 2998).

Further Information

Lost Property

All enquiries concerning lost property should be made to the Superintendent on extension 3892 or to the Lost Property Office at the Union.

The Calendar

Please consult the Calendar for a more detailed account of the information contained in this section.

Vice-Chancellor's Official Welcome to New Students

All students initially enrolling in the University are officially welcomed by the Vice-Chancellor and Principal at the following times:

Full-time Students
In the Faculties of Architecture, Arts, Biological Sciences, Commerce, Law:

Thursday 3 March 1983
11 am in the Clancy Auditorium

In the Faculties of Applied Science, Engineering, Medicine, Professional Studies, Science, and the Board of Studies in Science and Mathematics:
Friday 4 March 1983
10 am in the Clancy Auditorium

Part-time Students
All courses:
Tuesday 8 March 1983
7.00 pm in the Clancy Auditorium

Meeting for Parents of New Students
Friday 4 March 1983
7.30 pm in the Clancy Auditorium
Foreword

The importance of the Applied Sciences in this University's development has always been recognized, and is especially referred to in our Act of Incorporation.

Undergraduate courses well established in the Faculty are: Applied Geography (including Applied Economic Geography and Applied Physical Geography), Applied Geology, Chemical Engineering (including Biological Process Engineering and Fuel Engineering), Industrial Chemistry, Food Technology, Metallurgy (including Ceramic Engineering and Metallurgical Process Engineering), Mining Engineering, Textile Technology (including Textile Chemistry, Textile Physics, Textile Engineering and Textile Manufacture) and Wool and Pastoral Sciences. The Faculty is concerned with a variety of research programs and many of the Faculty's research contributions have achieved international recognition.

It is hoped that students who enter the Faculty will share the enthusiasm and the dedication of those who have taken part in its development. It is of the greatest importance that students should acquire, from the very beginning, the right approach to their studies, and that they should achieve a proper balance between their work and their extra-curricular activities.

In addition to this Handbook, pamphlets and brochures issued in conjunction with the enrolment period and Orientation Week are available. These should be consulted, together with the Calendar, for further information.

It is hoped that this Handbook will be of value to present and prospective students in the Faculty and to employers.

M. Chaikin
Dean
Faculty of Applied Science
Faculty Information

Who to Contact

If you require advice and information of a general nature contact:
Mr R. Starr, Senior Administrative Officer, Faculty of Applied Science. Room 123, Sir Robert Webster Building, Tel. (02) 662 3401.

For information and advice of a specific nature, contact the appropriate school representative below:

Applied Geology Mr. G. Baldwin, Senior Administrative Officer.
Room 810, Applied Science Building, Tel. 662 2336.

Chemical Engineering and Industrial Chemistry Mr. J. Gatenby, Senior Administrative Officer.
Room 319, Applied Science Building, Tel. 662 2404.

Food Technology Mr. R. Greenwood, Administrative Officer.
Room 411, Applied Science Building, Tel. 662 3816.

Geography Mr. P. Dunkley, Administrative Assistant.
Room G10, Geography and Surveying, Tel. 662 2084.

Metallurgy Mr. R. Ball, Senior Administrative Officer.
Room 110B, Metallurgy Building, Tel. 662 2351.

Mining Engineering Mr. R. Rolls, Administrative Assistant.
Room 51B, Main Building, Tel. 662 2912.

Textile Technology Mr. R. Starr, Senior Administrative Officer.
Room 123, Sir Robert Webster Building, Tel. 662 3401.

Wool and Pastoral Sciences Mr. J. Lawrence, Administrative Officer.
Room 102, Wool and Pastoral Sciences Building, Tel. 662 2288.

Faculty of Applied Science
Enrolment Procedures

All students re-enrolling in 1983 should obtain a copy of the free booklet *Enrolment Procedures 1983* available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.
Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

- The Audio-Visual Section, containing cassette tapes, mainly lectures and other spoken word material. The Audio-Visual Section has wired study carrels and cassette players for student use.

Undergraduate Librarian Pat Howard

Applied Sciences Library Facilities

- Although any of the university libraries may meet specific needs, the staff and students of the Faculty of Applied Science are served mainly by the Biomedical Library, Physical Sciences Library and the Undergraduate Library.

The Biomedical Library

This library serves the information needs of the staff and students of the Schools of Food Technology and Wool and Pastoral Sciences for life sciences aspects of their study and research.

Biomedical Librarian George Franki

The Physical Sciences Library

This library, situated on Levels 6 and 7 of the Library tower, caters for the information needs of staff, graduate students and senior undergraduate students in the pure and applied sciences, engineering and architecture. Details of the books, serials and microfilms in the Physical Sciences Library are included in the central monograph and serial catalogues and the items themselves are identified by the prefix 'P'. Serials with the prefix 'PJ' are not available for loan, but self-service photocopying facilities are located on Level 7. This library provides reference, reader assistance and reader education services and also, where appropriate, inter-library loan and literature-searching services. Trained staff are always available on Level 7 to assist readers with their enquiries.

Physical Sciences Librarian Marian Bate

The Undergraduate Library

This library caters for the library needs of first and second year students and other groups where large numbers require mass teaching.

The Undergraduate Library provides a reader education program and reader assistance service aimed at teaching students the basic principles of finding information.

Services of particular interest to undergraduates and academic staff are:

- The Open Reserve Section, housing books and other material which are required reading.

The Bachelor of Social Science Degree Course (3420)

The Bachelor of Social Science (BSocSc) is a degree of special interest to students wishing to pursue careers in research, teaching, social planning and social administration. It enables students to gain a broad view of social issues, and introduces them to a diversity of social data. The program combines depth and breadth by requiring students to undertake a range of studies and to complete compulsory courses in the theories and methods of the various social sciences.

Although administered by the Faculty of Arts, the BSocSc degree course allows for in-depth study in two major disciplines drawn from various faculties. These disciplines are Economic History, Economics, Industrial Relations, Geography, History, History and Philosophy of Science, Mathematics, Philosophy, Political Science, Psychology, Sociology and Statistics.

It may be possible for a limited number of students who have completed a year of study in a faculty other than Arts to transfer into the second year stage of the course if their performance in at least two of the above disciplines is of a sufficiently high standard (credit level or better).

For further enquiries, contact the Arts Faculty Office, Room G1, Morven Brown Building, Tel. 662 2248.

Conditions for the Award of the Degree of Bachelor of Science or Bachelor of Engineering

The courses leading to the award of the degree of Bachelor of Science or Bachelor of Engineering in the Faculty of Applied
Science are normally programmed over four years of full time study. The normal programs may be varied by the Head of the School in which the student is enrolled. The regulations governing the award of these degrees are as follows:

1. A candidate for the award of the degree of Bachelor of Science or Bachelor of Engineering shall:
 (1) comply with the requirements for admission;
 (2) follow the prescribed course of study in the appropriate School, and satisfy the examiners in the necessary subjects;
 (3) complete an approved program of industrial or similar training for such periods as are prescribed.

2. A student may be granted advanced standing by the Professorial Board on the recommendation of Faculty, but in each case must complete the appropriate period of approved industrial training before being eligible for the award of the degree.

3. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
 Honours Class I
 Honours Class II, Division I
 Honours Class II, Division II

4. Students shall be required to conform with the general rules relating to University courses.

General Studies Program

Almost all undergraduates in faculties other than Arts and Law are required to complete a General Studies program. The only course in the Faculty of Applied Science which does not have this requirement is the Bachelor of Science course in Economic Geography.

For further details, consult General Information earlier in this handbook.

Conditions for the Award of the Degree of Bachelor of Science (Technology) or Bachelor of Science (Engineering)

The courses leading to the award of the degree of Bachelor of Science (Technology) or Bachelor of Science (Engineering) in the Faculty of Applied Science are normally programmed over six years of part-time study in the University whilst the student is employed in industry. The normal programs may be varied by the Head of the School in which the student is enrolled. The regulations governing the award of these degrees are as follows:

1. A candidate for the award of the degree of BSc(Tech) or BSc(Eng) shall:
 (1) comply with the requirements for admission;
 (2) follow the prescribed course of study in the appropriate school and pass the necessary examinations;
 (3) complete an approved program of industrial or similar training for such periods as are prescribed.

2. A student may be granted advanced standing by the Professorial Board on the recommendation of Faculty.

3. The degrees of BSc(Tech) and BSc(Eng) shall be awarded in the pass grade only but in the case of superior performance throughout the course the degree shall be conferred 'with merit'.

4. Students shall be required to conform with the general rules relating to University courses.
Undergraduate Study

Course Outlines

The Faculty of Applied Science consists of the Schools of Applied Geology, Chemical Engineering and Industrial Chemistry, Food Technology, Geography, Metallurgy, Mining Engineering, Textile Technology and Wool and Pastoral Sciences. These Schools offer full-time undergraduate courses leading to the degree of Bachelor of Science or Bachelor of Engineering, and some of the Schools also offer part-time courses leading to the award of the degree of Bachelor of Science (Technology) or Bachelor of Science (Engineering).

Full-time Courses

Full-time courses of four years' duration leading to the award of the degree of Bachelor of Science are offered in Applied Geography, Applied Geology, Food Technology, Industrial Chemistry, Metallurgy, Textile Technology and Wool and Pastoral Sciences. Four-year courses leading to the award of the degree of Bachelor of Engineering are offered in Ceramic Engineering, Chemical Engineering, Metallurgical Process Engineering and Mining Engineering.

Honours: Candidates for honours are required to undertake special reading and other assignments as directed by the Head of the School concerned. In considering the award of honours special attention is paid to the performance of a candidate in the final research project, for which a thesis describing a theoretical or experimental study is required. Honours are awarded in Class I; Class II Division I; and Class II Division II.

Industrial Training Requirements: In the scientific and technological courses close association with industry is maintained on the practical aspects of the professions. This is achieved in most of the courses of the Faculty by expecting students to complete an approved industrial training program prior to graduation. This is normally carried out during the Summer Recess. In the case of Wool and Pastoral Sciences, students are required to complete twenty-four weeks' approved practical work. In Mining Engineering students will undertake a program of practical training of at least 100 days.

Part-time Courses

Six-year, part-time courses leading to the award of the degree of Bachelor of Science (Technology) are offered by the School of Food Technology; in Industrial Chemistry by the School of Chemical Engineering and Industrial Chemistry; in Metallurgy and Ceramic Engineering by the School of Metallurgy; and in Mineral Processing* by the School of Mining Engineering (at Broken Hill only). The part-time Mining Engineering course leading to the award of the degree of Bachelor of Science (Engineering) is available at Broken Hill*.

The BSc(Tech) degree courses are intended for students who are employed in relevant industries and who wish to prepare for a degree mainly by part-time attendance. As part of the requirements for the award of the BSc(Tech) degree, students are required to complete an approved program of industrial training of not less than one year prior to the award of the degree. Industrial training should normally be completed concurrently with attendance in the course, but with the approval of the Head of School, may be completed after completion of the prescribed course of study.

Students who qualify for the award of the BSc(Tech) degree in the Faculty of Applied Science and who wish to proceed to the award of a BSc or BE degree will normally be required to complete further work which will involve at least one year of full-time attendance.

Holders of the degree of BSc(Tech) or BSc(Eng) will be eligible to proceed to the award of the degree of Master of Science, Master of Engineering or Master of Applied Science, subject to the regulations relating to these degrees.

*No new students will be admitted to these courses after 1982.
Transfer is also possible from full-time courses to the part-time BSc(Tech) and BSc(Eng) degree courses, but in both cases a period of approved industrial experience must be gained before graduation. This requirement will apply to students transferring from BSc and BE degree courses within the Faculty.

BSc(Eng) Courses With Partial Full-time Attendance

BSc(Eng) degree courses may be completed by a combination of full-time and part-time study. The first two stages are to be completed part-time; in the following two years students complete the second and third years of the corresponding full-time course; and in the fifth stage a special program is prepared. Full details are set out below under the Schools which provide the courses.

General Studies Electives

The following summary of the changes in General Studies requirements which take effect in the 1983 academic year is provided for the benefit of continuing students.

<table>
<thead>
<tr>
<th>Previous Requirement</th>
<th>New Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-42 hour electives or equivalent</td>
<td>3-56 hour electives or equivalent</td>
</tr>
<tr>
<td>3-42 hour electives or equivalent</td>
<td>2-56 hour electives or equivalent</td>
</tr>
<tr>
<td>2-42 hour electives or equivalent</td>
<td>1 1/2-56 hour electives or equivalent</td>
</tr>
<tr>
<td>1 1/2-42 hour electives or equivalent</td>
<td>1-56 hour electives or equivalent</td>
</tr>
</tbody>
</table>

School of Applied Geology

Head of School
Professor G. J. S. Govett

Senior Administrative Officer
Mr G. J. Baldwin

The structure and syllabus of the BSc degree course in Applied Geology are designed to prepare graduates for employment in some field of resource geology. Training to meet this objective demands a thorough understanding of basic geological principles; accordingly, in the early part of the course students receive instruction in standard fundamental geological subjects. As the course progresses, emphasis is increasingly placed on practical applications in engineering and environmental geology, mineral and energy deposits, and mineral exploration techniques including geological, geochemical and geophysical methods.

Attendance at the University for students taking the full-time professional course in Applied Geology is for twenty-eight weeks per year on the basis of two sessions of fourteen weeks each for four years. At least one session of the fourth year is devoted essentially to field and laboratory work on a specialized research project.

A three-year full-time course is available to students in the Faculty of Science, and provision is made for part-time study in the first year of geology within that Faculty. Selected students in the Faculty of Science may read for an honours degree in geology.

Master of Applied Science degree courses in Engineering Geology, Hydrogeology, Environmental Geology, Mineral Exploration, Exploration Geochemistry and Exploration Geophysics are offered on a part-time or full-time basis. The courses are designed to provide specialized training in practical applications of these fields.

General Studies Electives

For details of changes in the General Studies requirements refer to the table earlier in this chapter.

3000 Applied Geology — Full-time (New Course)

Bachelor of Science BSc

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>1.001</td>
<td>Physics I or</td>
</tr>
<tr>
<td>1.011</td>
<td>Higher Physics</td>
</tr>
<tr>
<td>2.121</td>
<td>Chemistry IA and</td>
</tr>
<tr>
<td>2.131</td>
<td>Chemistry IB</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I or</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I or</td>
</tr>
<tr>
<td>10.021B</td>
<td>General Mathematics IB and</td>
</tr>
<tr>
<td>10.021C</td>
<td>General Mathematics IC</td>
</tr>
<tr>
<td>25.110</td>
<td>Earth Materials and Processes*</td>
</tr>
<tr>
<td>25.120</td>
<td>Earth Environments and Dynamics*</td>
</tr>
</tbody>
</table>

*Up to 2 days of field tutorials in 25 110 Earth Materials and Processes and up to 4 days in 25 120 Earth Environments and Dynamics are essential parts of these subjects. Attendance is compulsory.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>25.211</td>
<td>Earth Materials I*</td>
</tr>
<tr>
<td>25.212</td>
<td>Earth Environments I**</td>
</tr>
<tr>
<td>25.221</td>
<td>Earth Materials II***</td>
</tr>
<tr>
<td>25.223</td>
<td>Earth Physics ****</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
</tr>
</tbody>
</table>

*Field work of up to one day is a compulsory part of the subject
**Field work of up to five days is a compulsory part of the subject
***Field work of up to eight days is a compulsory part of the subject
****Field work of up to one day is a compulsory part of the subject
Students take Ancillary Subjects for a total of not less than 10 hwp. Subjects are selected preferably from the following list. Other subjects, however, may be taken conditional on approval of the Head of School.

Ancillary Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hwp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>6 or 6</td>
</tr>
<tr>
<td>2.002C</td>
<td>Inorganic Chemistry</td>
<td>6 or 6</td>
</tr>
<tr>
<td>5.010</td>
<td>Engineering A</td>
<td>6 or 6</td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B</td>
<td>6 or 6</td>
</tr>
<tr>
<td>10.031</td>
<td>Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>10.301</td>
<td>Statistics SA or</td>
<td>2</td>
</tr>
<tr>
<td>10.331</td>
<td>Statistics SS</td>
<td>2</td>
</tr>
<tr>
<td>15.001</td>
<td>Microeconomics I</td>
<td>3½ or 3½</td>
</tr>
<tr>
<td>15.011</td>
<td>Macroeconomics I</td>
<td>3½ or 3½</td>
</tr>
<tr>
<td>17.031</td>
<td>Biology A</td>
<td>6</td>
</tr>
<tr>
<td>17.041</td>
<td>Biology B</td>
<td>0</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.311</td>
<td>Earth Materials III</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>25.321</td>
<td>Earth Materials IV*</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>25.312</td>
<td>Earth Environments II</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>25.313</td>
<td>Exploration and Data Processing**</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>25.314</td>
<td>Mineral and Energy Resources I***</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>25.324</td>
<td>Mineral and Energy Resources II****</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>25.325</td>
<td>Engineering and Environmental Geology†</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>25.326</td>
<td>Geological Techniques‡</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

*Field work of up to six days is a compulsory part of the subject
**Field work of up to five days is a compulsory part of the subject
***Field work of up to four days is a compulsory part of the subject
****Field work of up to one day is a compulsory part of the subject
†Field work of up to three days is a compulsory part of the subject
‡Field work of up to ten days is a compulsory part of the subject

Year 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hwp</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.411</td>
<td>Resource Geology**</td>
<td>8½</td>
</tr>
<tr>
<td>25.412</td>
<td>Mineral and Energy Resources†</td>
<td>12½</td>
</tr>
<tr>
<td>25.413</td>
<td>Engineering and Environmental Resources</td>
<td>12½</td>
</tr>
</tbody>
</table>

School of Chemical Engineering and Industrial Chemistry

- **Head of School**
 Professor D. L. Trimm

- **Senior Administrative Officer**
 Mr J. R. Gatenby

The former Schools of Chemical Engineering and Chemical Technology were amalgamated in January 1980 to form the combined School of Chemical Engineering and Industrial Chemistry. The new school offers the courses previously taught by the former two schools, i.e. a course in Chemical Engineering and a course in Industrial Chemistry. The combined school contains the Departments of Chemical Engineering and Industrial Chemistry which service the two degree courses, and the Departments of Biological Process Engineering, Fuel Technology and Polymer Science which offer professional electives in these degree courses.

Chemical engineering is the application of the principles of the physical sciences, together with the principles of economics and human relations, to fields in which matter undergoes a change in state, energy content or composition. The chemical engineer is generally responsible for the design, construction and operation of plant and equipment used in the chemical processing industries.

Biological process engineering is the extension of chemical engineering principles to systems involving biological materials. Typical areas of interest are: the manufacture of antibiotics; the fermentation industries; bacterial mineral extraction; and the production of industrially useful materials by the growth and utilization of micro-organisms.

Fuel engineering is primarily concerned with the practical and economic applications of scientific knowledge and engineering experience to the production, processing and utilization of fuels and energy.

Industrial Chemistry is the discipline in which the scientific work of the research chemist is translated into the activities of the chemical industry. The thermodynamic feasibility of a reaction in inorganic or organic chemistry, the conditions under which the reaction might proceed, the kinetics of the reaction and the means whereby the reaction might be controlled to produce the desired product are the fundamentals of the course.

For the award of honours in both the Chemical Engineering and Industrial Chemistry degree courses, students need to have distinguished themselves in the formal work, in other assignments as directed by the Head of the School, and in the final year project, for which a thesis is required.

It is compulsory that before completion of the course students in the full-time course in Chemical Engineering must obtain a minimum of twelve weeks' professionally oriented, or industrial experience. Students in the part-time courses must complete three years of industrial training concurrently with their University work.

It is recommended that before graduation students in the full-time courses in Industrial Chemistry obtain a minimum of eight weeks' professionally oriented or industrial experience.
Students in the part-time courses in Industrial Chemistry must complete an approved program of industrial experience of not less than twelve months prior to the award of the degree.

General Studies Electives

For details of changes in the General Studies requirements refer to the table earlier in this chapter.

3040

Chemical Engineering — Full-time Course

Bachelor of Engineering

BE

This course extends over four years and students study full-time during the day for twenty-eight weeks of each year (excluding examination and recess periods).

Successful completion of the BE degree course is accepted by the Institution of Chemical Engineers, the Institution of Engineers, Australia, and the Royal Australian Chemical Institute as sufficient academic qualification for corporate membership.

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics I or Higher Physics I</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry IA and IB</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry IM</td>
<td>6</td>
</tr>
<tr>
<td>Engineering A</td>
<td>6</td>
</tr>
<tr>
<td>Engineering C</td>
<td>0</td>
</tr>
<tr>
<td>(includes 48.001 Introduction to Chemical Industry)</td>
<td></td>
</tr>
<tr>
<td>Mathematics I or Higher Mathematics I</td>
<td>6</td>
</tr>
</tbody>
</table>

Total: 24 hours per week

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Electrical Machines</td>
<td>0</td>
</tr>
<tr>
<td>Structures</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>Statistics SA</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Engineering IA</td>
<td>5</td>
</tr>
<tr>
<td>Chemical Engineering IB</td>
<td>1</td>
</tr>
<tr>
<td>Fuel Engineering I*</td>
<td>2</td>
</tr>
<tr>
<td>Corrosion in Chemical Industry</td>
<td>0</td>
</tr>
<tr>
<td>Instrumental Analysis</td>
<td>0</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 25 hours per week

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Engineering IIA</td>
<td>7</td>
</tr>
<tr>
<td>Chemical Engineering IIB</td>
<td>0</td>
</tr>
<tr>
<td>Chemical Engineering IIC</td>
<td>0</td>
</tr>
<tr>
<td>Chemical Engineering Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Reactor Design I</td>
<td>1</td>
</tr>
<tr>
<td>Instrumentation and Process Control I</td>
<td>0</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 23 hours per week

Year 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering IIIA</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering IIIB</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering IIIC</td>
<td>5</td>
</tr>
<tr>
<td>Chemical Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Engineering IIID</td>
<td>0</td>
</tr>
<tr>
<td>Project*</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 17 hours per week

Chemical Engineering — Subjects and Units

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Chemical Industry</td>
<td>0</td>
</tr>
<tr>
<td>Chemical Engineering IA</td>
<td>2</td>
</tr>
<tr>
<td>Unit 1 Flow of Fluids</td>
<td>2</td>
</tr>
<tr>
<td>2 Material and Energy Balances</td>
<td>0</td>
</tr>
<tr>
<td>3 Dimensions</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 5 hours per week

In certain cases this subject may be replaced by another elective with approval of the Head of School.
Undergraduate Study: Course Outlines

48.022 Chemical Engineering IB

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Heat Transfer I
- **2 Computations 1**:
- **3 Pumps and Pumping**

48.023 Chemical Engineering Science I

(Applicable to Science programs)

Consists of:
- 48.021
- and
- 48.022

48.024 Chemical Engineering Principles I

(Applicable to Mathematics programs)

Consists of:
- Units 1 and 3 of 48.021
- and
- Unit 1 of 48.022

48.025 Chemical Engineering for Ceramic Engineers

Consists of:
- Units 1 and 3 of 48.022

48.031 Chemical Engineering IIA

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Mass Transfer (theory)
- **2 Heat Transfer II (theory)**
- **3 Plant Layout**
- **4 Process Engineering**
- **5 Surface Separation Processes**
- **6 Economics I**

48.032 Chemical Engineering IIB

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Solids Handling
- **2 Computations II**
- **3 Engineering Thermodynamics**
- **4 Economics II**
- **5 Safety and Failure Tolerance**

48.033 Chemical Engineering IIC

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Mass Transfer Design
- **2 Heat Transfer II (Design)**
- **3 Process Vessels**
- **4 Fluid-Particle Systems**

48.036 Chemical Engineering Laboratory I

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: 2
- **2**: 0

48.037 Chemical Engineering Science II

(Applicable to Science programs)

Consists of:
- Units 1, 2 and 5 of 48.031,
- Unit 2 of 48.032,
- Unit 4 of 48.033

48.038 Chemical Engineering Principles II

(Applicable to Mathematics programs)

Consists of:
- Units 1, 2 and 5 of 48.031
- and
- Unit 4 of 48.033

48.039 Chemical Engineering IJJ

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Process Dynamics and Control I
- **2 Optimization**

48.040 Chemical Engineering IIIA

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Convective Mass Transfer
- **2 Simultaneous Heat and Mass Transfer**
- **3 Multicomponent Separation**
- **4 Transport Phenomena**

48.041 Chemical Engineering IIIB

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Process Dynamics and Control I
- **2 Optimization**

48.042 Chemical Engineering IIIC

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- **Unit 1**: Process Dynamics and Control I
- **2 Optimization**
Chemical Engineering

48.043 Chemical Engineering IIIIC
- **Unit 1 Design Workshop**
 - Hpw: 3
 - S1: 0
- **2 Industrial Pollution Control**
 - Hpw: 2
 - S2: 0
 - **Total Hpw:** 5
 - **Total S1:** 0

48.044 Chemical Engineering Laboratory II
- Hpw: 3
- S1: 0

48.040 Chemical Engineering Projects
- Hpw: 1
- S2: 11

48.047 Chemical Engineering IIIID
- **Unit 1 Management**
 - Hpw: 0
 - S2: 2
- **2 Process Engineering II**
 - Hpw: 0
 - S2: 2
- **3 Process Dynamics and Control II**
 - Hpw: 0
 - S2: 2
 - **Total Hpw:** 0
 - **Total S2:** 6

48.048 Advanced Chemical Engineering
- **Unit 1 Petroleum and Reservoir Engineering**
 - Hpw: 3
 - S2: 3
- **2 Mineral Chemistry**
 - Hpw: 3
 - S2: 3
 - **Total Hpw:** 6
 - **Total S2:** 6

48.135 Thermodynamics
- Hpw: 0
- S1: 3

48.136 Reactor Design I
- **Unit 1 Reaction Engineering**
 - Hpw: 0
 - S1: 2
- **2 Kinetics of Rate Processes**
 - Hpw: 0
 - S1: 1
 - **Total Hpw:** 0
 - **Total S1:** 3

48.163 Instrumentation and Process Control
- Hpw: 0
- S2: 3

48.211 Biological Process Engineering
- Hpw: 6
- S2: 6

48.240 Biological Process Engineering Project
- Hpw: 1
- S2: 11

48.311 Fuel Engineering I*
- **Unit 1 Fuels and Energy Sources and Properties**
 - Hpw: 1
 - S1: 0
- **2 Energy Conversion**
 - Hpw: 0
 - S1: 1
- **3 Fuel Processing**
 - Hpw: 1
 - S1: 0
- **4 Fuel Plant Technology**
 - Hpw: 0
 - S1: 1
 - **Total Hpw:** 2
 - **Total S1:** 2

48.321 Fuel Engineering II*
- **Unit 1 Combustion Fundamentals and Science**
 - Hpw: 0
 - S2: 1
- **2 Principles of Gasification**
 - Hpw: 0
 - S2: 1
- **3 Radiation Heat Transfer and Application**
 - Hpw: 1
 - S2: 0
- **4 Measurements in Flames and Furnaces**
 - Hpw: 1
 - S2: 0
- **5 Laboratory Fuel Testing**
 - Hpw: 1
 - S2: 1
 - **Total Hpw:** 3
 - **Total S2:** 3

48.331 Fuel Engineering III
- **Unit 1 Combustion Engineering**
 - Hpw: 1
 - S2: 0
- **2 Furnace Design**
 - Hpw: 0
 - S2: 1
- **3 Fuel Plant Design**
 - Hpw: 0
 - S2: 1
- **4 Fuel Conservation and Efficiency**
 - Hpw: 0
 - S2: 1
- **5 Liquid Fuels**
 - Hpw: 0
 - S2: 1
- **6 Coal and its Evaluation**
 - Hpw: 0
 - S2: 1
- **7 Laboratory**
 - Hpw: 3
 - S2: 3
 - **Total Hpw:** 6
 - **Total S2:** 6

48.340 Fuel Engineering Project
- Hpw: 1
- S2: 11

*Laboratory programmed as 9 x 3 hour periods. Two lecture units each session are interchangeable.

3040 Chemical Engineering — Full-time/Part-time Course
Bachelor of Engineering BE

The BSc(Tech) degree course in Chemical Engineering was replaced in 1975 by a part-time/full-time course leading to the award of a BE degree normally to be completed in seven years. The preferred course pattern is as follows:

- **Stages 1 and 2 or Year I**
- **Stages 3 and 4 or Year II**
- **Stages 5 and 6 or Year III**
- **Stage 7 or Year IV**
Various course patterns involving full-time/part-time study may be approved by the Head of the School.

Candidates presently enrolled in the BSc(Tech) degree course are allowed to complete their degrees as outlined in the 1974 Calendar.

Preferred course pattern for BSc(Tech) and BE degree courses — Full-time/Part-time

For variations to this course pattern students should contact the School.

Stage 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I or</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1.011 Higher Physics I</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10.011 Higher Mathematics I</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121 Chemistry IA and</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2.131 Chemistry IB or</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2.141 Chemistry IM</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5.010 Engineering A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5.030 Engineering C</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>(Includes 48.001 Introduction to Chemical Industry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A Physical Chemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10.031 Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.301 Statistics SA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>48.122 Instrumental Analysis</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.832 Electrical Machines</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.112 Structures</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>48.021 Chemical Engineering IA</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>48.022 Chemical Engineering IB</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>48.121 Corrosion in Chemical Industry</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>48.311 Fuel Engineering I*</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

*In certain cases this subject may be replaced by another elective with approval of Head of School

Stage 5

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.032 Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>48.031 Chemical Engineering IIA</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>48.032 Chemical Engineering IIB</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>48.135 Thermodynamics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>48.136 Reactor Design I</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>48.163 Instrumentation and Process Control</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Stage 6

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002B Organic Chemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>48.033 Chemical Engineering II</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>48.036 Chemical Engineering Laboratory I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Plus one of the following electives:

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101 Introductory Microbiology**</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>48.039 Chemical Engineering II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>48.321 Fuel Engineering II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Any other elective approved by Head of School</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Students should note the special proviso for enrolment in this subject as indicated in the Subject Descriptions later in this handbook.

Stage 7

As per Year 4 of full-time course.

3100 Industrial Chemistry — Full-time Course

Bachelor of Science

BSc

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.011 Higher Physics</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.121 Chemistry IA and</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.131 Chemistry IB</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.141 Chemistry IM</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10.001 Mathematics I</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10.011 Higher Mathematics</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

*In certain cases this subject may be replaced by another elective with approval of Head of School
Applied Science

Plus:

<table>
<thead>
<tr>
<th>Hpw</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- **5.010** Engineering A*
- **or**
- **17.031** Biology A*
- **or**
- **25.110** Earth Materials* and Processes
- **and**
- **5.030** Engineering C*

Year 2

<table>
<thead>
<tr>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- **2.002A** Physical Chemistry
- **2.042C** Inorganic Chemistry
- **2.002B** Organic Chemistry
- **6.851** Electronics and Instrumentation
- **10.031** Mathematics
- **10.301** Statistics SA
- **48.122** Instrumental Analysis
- **48.125** Industrial Chemistry IA
- **48.126** Industrial Chemistry IB
- **General Studies Elective**

Year 3

<table>
<thead>
<tr>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- **2.030** Organic Chemistry
- **48.113** Chemistry of Industrial Processes
- **48.121** Corrosion in the Chemical Industry
- **48.135** Thermodynamics
- **48.136** Reactor Design I
- **48.137** Industrial Chemistry IIA
- **48.138** Industrial Chemistry IIB
- **48.139** Experimental Design
- **48.163** Instrumentation and Process Control I
- **48.171** Chemistry of High Temperature Materials
- **48.172** Instrumental Analysis II
- **48.403** Polymer Science
- **General Studies Elective**

Year 4

<table>
<thead>
<tr>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- **42.114** Fermentation Processes
- **48.124** Applied Kinetics
- **48.134** Applied Thermodynamics
- **48.165** Laboratory Automation Science
- **48.174** Seminars
- **18.121** Production Management
- **48.194** Project
- **General Studies Elective**

Plus:

- **two of the following:**
 - **48.115** Industrial Electrochemistry
 - **48.116** Water Chemistry
 - **48.166** Microprocessors in Analytical Instrumentation
 - **48.303** Fuel Science for Industrial Chemists
 - **48.404** Advanced Polymer Science

Year 3

<table>
<thead>
<tr>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*Only two of these are offered in any one year as selected by student preferences.

3110 Industrial Chemistry — Part-time Course

BSc(Tech)

Stages 1 and 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- **1.001** Physics I or
- **1.011** Higher Physics I
- **2.121** Chemistry IA and
- **2.131** Chemistry IB or
- **2.141** Chemistry IM
- **10.001** Mathematics I or
- **10.011** Higher Mathematics I

*Physics and Mathematics are usually taken in Stage 1 and the other subjects in Stage 2.

†One session only

*One session only
Stage 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.031</td>
<td>Mathematics</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.301</td>
<td>Statistics SA</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>48.122</td>
<td>Instrumental Analysis</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 12 units

Stage 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002B</td>
<td>Organic Chemistry</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.042C</td>
<td>Inorganic Chemistry</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6.851</td>
<td>Electronics and Instrumentation</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48.125</td>
<td>Industrial Chemistry Ia</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48.126</td>
<td>Industrial Chemistry Ib</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Total: 10 units

Stage 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.121</td>
<td>Corrosion in the Chemical Industry</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>48.135</td>
<td>Thermodynamics</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48.136</td>
<td>Reactor Design I</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>48.137</td>
<td>Industrial Chemistry IIa</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48.138</td>
<td>Industrial Chemistry IIb</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>48.139</td>
<td>Experimental Design</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>48.171</td>
<td>Chemistry of High Temperature Materials</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>48.172</td>
<td>Instrumental Analysis II</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Total: 12 units

Stage 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.003B</td>
<td>Organic Chemistry</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48.113</td>
<td>Chemistry of Industrial Processes</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>48.163</td>
<td>Instrumentation and Process Control I</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>48.403</td>
<td>Polymer Science</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total: 9 units

Professional Electives in Course 3040

Chemical Engineering

Students wishing to pursue a career in the chemicals, petroleum, petrochemical, minerals utilization or metallurgical industries are advised to take 48.039 Chemical Engineering I in Year 3 and 48.048 Advanced Chemical Engineering together with the 48.040 Chemical Engineering Project in Year 4. Part-time students should take these subjects at equivalent stages of the part-time degree.

Fuel Engineering

The Department of Fuel Technology offers a coherent professional elective in Fuel Engineering designed for those students wishing to pursue a career concerned with fuel and energy conversion and the application of fossil fuels to the process industries. The Department is the only one of its kind in Australia and has a long history of teaching and research in the fossil fuels area. The elective covers the broad areas of properties, constitution, processing and conversion, and utilization of fossil fuels. Topics include combustion science and engineering; radiation and flames; design and performance evaluation of fuel using plant such as furnaces, boilers and heat recovery appliances; coal and oil conversion processes; energy conservation; and progress in fuel science and fuel processing. Students choosing this professional elective should take 48.321 Fuel Engineering II in Year 3 and 48.331 Fuel Engineering III and 48.340 Fuel Engineering Project in Year 4. Part-time students should take these subjects at equivalent stages of the part-time degree.

This elective may qualify graduates for membership of the Australian Institute of Energy or the Institute of Energy (U.K.).

Options in Course 3100 Industrial Chemistry

Polymer Science

The Department of Polymer Science offers a professional elective strand in polymer chemistry and physics to students undertaking course 3100 Industrial Chemistry. Students electing for this strand should take 48.414 Polymer Chemistry and 48.424 Physical Chemistry of Polymers II or 48.434 Polymer Physics II in Year 4.

Permission of the Head of School is required.
There are elective specializations in physical geography (with special emphasis on either the biologic or geomorphic aspects), and in economic geography (with emphasis on urban geography). First year courses involve systematic studies of the physical or economic bases of geography. There is progressive specialization in the following years, but the course in physical geography has common training in fundamental observation and data handling. For the award of honours, students will be required to have distinguished themselves in formal work, in additional assignments as directed by the Head of the School, and in the final year project for which a thesis will be required.

All students are expected to spend a period of four to six weeks with organizations concerned with the investigation and planned use of resources et cetera.

Several units in Geography include laboratory and project work involving the use of quantitative techniques. Students need a battery-operated calculator; advice on appropriate machines may be obtained from the School Office. It is also required that students provide their own drawing materials such as tracing and graph paper. Details of exact requirements are given at the beginning of the relevant subjects.

School of Geography

Head of School
Professor J. A. Mabbutt

Administrative Assistant
Mr P. Dunkley

Geographers study the spatial relationships of the phenomena which make up man's physical and social environment, and aim to establish principles which govern those relationships. The geographer may concentrate on selected variables, as in systematic geography, or may deal with variables operative in a specific area, as in regional geography.

The cultural significance of geography lies in its contribution to an understanding of the total environment, but the geographer's skills also find practical application in the conservation and planned development of resources. Increasing numbers of geographers are finding such professional employment. For instance, geomorphologists and biogeographers are undertaking resource-inventory surveys and environmental assessment, and economic geographers are engaged as urban and regional planners and spatial analysts.

General Studies Electives

For details of changes in the General Studies requirements refer to the table earlier in this chapter.

Applied Geography — Full-time Courses

Bachelor of Science

The School offers two four-year full-time courses leading to the award of the degree of Bachelor of Science, which aim to train professional geographers for entry into applied fields.

38.131 Principles of Food Preservation

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.132 Plant Food Science</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>38.133 Animal Food Science</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>38.134 Food Science Laboratory</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>38.331 Food Microbiology I</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Applied Physical Geography

Year 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.021B General Mathematics IB and</td>
<td>6 6</td>
</tr>
<tr>
<td>10.021C General Mathematics IC or</td>
<td>6 6</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>6 0</td>
</tr>
<tr>
<td>17.031 Biology A</td>
<td>6 0</td>
</tr>
<tr>
<td>17.041 Biology B</td>
<td>6 6</td>
</tr>
<tr>
<td>25.110 Earth Materials and Processes†</td>
<td>6 0</td>
</tr>
<tr>
<td>25.120 Earth Environments and Dynamics†</td>
<td>0 6</td>
</tr>
<tr>
<td>27.111 Applied Physical Geography I*</td>
<td>6 6</td>
</tr>
</tbody>
</table>

†Up to 1½ days of field tutorials in 25.110 and up to 3½ days in 25.120 are essential parts of these subjects. Attendance is compulsory.

*Up to 3 days' field work, equivalent to 24 tutorial hours, is an essential part of this subject.
Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121 Chemistry IAor</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2.111 Introductory Chemistry</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2.131 Chemistry IB</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>27.162 Geographical Statistics and Computing</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>27.172 Environmental Measurements* and General Studies Elective</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>25.211 Earth Materials I and</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>25.221 Earth Materials II† and any two of the following (one each session)</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>43.111 Flowering Plants</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>43.101 Introductory Genetics</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>45.152 Population and Community Geography</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>45.201 Invertebrate Zoology</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>45.301 Vertebrate Zoology</td>
<td></td>
<td>6</td>
<td>or 6</td>
</tr>
</tbody>
</table>

24 22

*Up to 5 days’ field work, equivalent to 40 tutorial hours, is an essential part of the subject.

**Offered in alternate years.

†May be taken in either Second or Third Year. 10.001 or 10.011 is a prerequisite.

Applied Economic Geography

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.021B General Mathematics IB and I.C or H</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10.021C General Mathematics IC or H</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10.011 Higher Mathematics I</td>
<td></td>
<td>3½</td>
<td>0</td>
</tr>
<tr>
<td>15.001 Microeconomics I</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>15.011 Macroeconomics I</td>
<td></td>
<td>0</td>
<td>3½</td>
</tr>
<tr>
<td>27.611 Applied Economic Geography I</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>27.631 Geographic Data Analysis I</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>54.1002 Power and Democracy in Australia</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>54.1004 Government in the Modern World</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

18½ 19½

*Up to 5 days’ field work, equivalent to 40 tutorial hours, is an essential part of the subject.

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.002 Microeconomics II or</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>15.072 Economics II or</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>15.042 Macroeconomics II or</td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>15.062 Economics II or</td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>27.612 Applied Economic Geography IIA†</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>27.622 Applied Economic Geography IIB†</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>27.632 Geographic Data Analysis II</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>27.642 Mathematical Methods for Spatial Analysis</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

†Prerequisites for 27.1712 are: either 27.1711 or 29.514 or 29.511 and 29.631
Year 3

27.633 Geographic Data Analysis III 6 6
27.613 Applied Economic Geography IIIA 4 0
27.623 Applied Economic Geography III* 0 4

Plus six of the following, at least two subjects from economics and at least two subjects from geography**:

8.403G Theory of Land Use/Transport Interaction† 3 0
8.413G Transport Economics ‡ 0 4
15.003 Macroeconomics III 4 0
15.043 Marxian Political Economy 3 0
15.053 Economics of Developing Countries 0 3
15.073 Natural and Environmental Resources Economics 0 3
15.082 Labour Economics 3 0
15.083 Public Finance 0 3
15.093 Public Sector Economics 3 0
15.143 Microeconomics III 0 4
15.163 Industrial Organisation and Policy 3 0
27.1712 Remote Sensing Applications‡‡ 0 3
27.713 Marketing Geography§ 0 4
27.723 Transport Geography† 0 4
27.733 Regional Policy and Planning§ 4 0
27.743 Regional Population Analysis† 4 0
27.753 Social Welfare and Urban Development§ 4 0
27.763 Rural Resource Problems†§ 0 4
27.773 Spatial Aspects of the Housing Market† 4 0
27.783 Spatial Impacts and Opportunities† 4 0
27.793 Models of Spatial Systems† 4 0
28.012 Marketing Systems† 4 0
28.052 Marketing Research† 0 4

Year 4

27.504 Project* 10 15
27.514 Practical Applications in Geographic Thought and Perspectives 0 3
27.624 Seminars in Applied Geography 3 0
27.644 Public Policy Making 4 0

Geography in Other Faculties

Courses in Geography are available on a full-time basis in the Faculties of Arts, Commerce and Science.

School of Metallurgy

Head of School
Professor H. Muir
Administrative Officer
Mr U. Joosoo

The School of Metallurgy consists of the Departments of Chemical and Process Metallurgy, Physical and Industrial Metallurgy, Materials, and Ceramic Engineering. It offers courses in Metallurgy, Metallurgical Process Engineering and Ceramic Engineering.

Metallurgy and Metallurgical Process Engineering

The metallurgical profession is developing rapidly in importance in Australia, in keeping with the recent spectacular growth of our metal and mineral industry. In terms of value of production this industry has become recognized as one of Australia’s most important, especially in terms of export earnings. Expansion of the industry has greatly enhanced the need for metallurgists.

Industrial development in metallurgy has been accompanied by, and is based on, the development of metallurgical research. This is being carried on in a number of laboratories run by industry, government, and the universities.
Graduate metallurgists have a wide choice of type of employment and location. They may work in production, technical control or development, either in the ore treatment or extraction plants in locations such as Newcastle, Port Kembla, Broken Hill, Mt. Isa, Townsville, Gladstone, Port Pirie, Whyalla, Kwinana, Kalgoorlie or Pilbara; or in the metal manufacturing plants, including the automobile, aircraft, construction and other industries, of the main centres and capital cities. In the metal industry in general the opportunities for a career in management are excellent, since it is a tradition in this industry that management should be in the hands of technical people. If the graduates are inclined towards research for a career in management are excellent, since it is a tradition to prepare students for employment in metallurgical industries as metallurgical process engineers.

The undergraduate courses in metallurgy have been designed to prepare students for employment in metallurgical industries and research institutions, and involve a general training in basic sciences and engineering. These fundamental principles are then extended to cover studies of the extraction, refining, working, fabrication and use of metals. There are three undergraduate courses, two full-time in Metallurgy and Metallurgical Process Engineering, leading to the award of the BSc and the BE degree respectively, and one part-time in Metallurgy, leading to the award of the BSc(Tech) degree. The aim of the BE degree course is to prepare graduates for employment in the mineral, metallurgical and manufacturing industries as metallurgical process engineers.

The BSc and BE degree courses are almost identical up to third year and students enrolled in either of these courses may transfer from one to the other up to this point without loss of standing.

These courses meet the formal educational requirements for admission to the professional metallurgical institutes, such as the Australasian Institute of Mining and Metallurgy and the Institution of Metallurgists (London). Further details about membership of these institutes, the Australasian Institute of Metals and the undergraduate Metallurgical Society of the University, all of which students are encouraged to join, may be obtained from the Head of the School. It is expected that submissions to the Institution of Engineers for recognition of the Bachelor of Engineering degree course will meet with success.

General Studies Electives

For details of changes in the General Studies requirements refer to the table earlier in this chapter.

3120 Metallurgy — Full-time Course

Bachelor of Science

BSc

Students in this course attend the University for twenty-eight weeks over two sessions from March to November (excluding examinations and recesses).

Students are required, before graduation, to have gained at least sixteen weeks approved industrial experience, and to have submitted satisfactory reports on the work done to comply with this requirement. Industrial experience is normally obtained during the long vacations at the end of second and third years. During the second, third, and fourth years of the course, visits are made to various metallurgical works, and students are required to submit reports on some of these.

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I or 1.011 Higher Physics I</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2.121 Chemistry I A and 2.131 Chemistry IB</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I or 10.011 Higher Mathematics I</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Plus either: 5.010 Engineering A* and 5.030 Engineering C†</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>or 25.110 Earth Materials and Processes and 25.120 Earth Environments and Dynamics</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

*This subject includes 4.001 Introduction to Materials Science
†This subject includes 4.002 Introduction to Metallurgical Engineering.

Year 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A Physical Chemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4.302 Chemical and Extraction Metallurgy I</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.402 Physical Metallurgy I</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4.502 Mechanical Metallurgy</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.602 Metallurgical Engineering I</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4.802 Metallurgical Physics</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10.031 Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.010 Engineering A† and 5.030 Engineering C† or 25.541 Mineralogy General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>25.541 Mineralogy General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

†Part only

Year 3

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.303 Chemical and Extraction Metallurgy II</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4.403 Physical Metallurgy II</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4.613 Metallurgical Engineering II A</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.703 Materials Science</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.813 Mathematical Methods</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.854 Electrical Machinery and Supply</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.023 Mineral Process Engineering General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

24 26
Year 4

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hpw</th>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallurgy Project*</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgy Seminar</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical and Extraction Metallurgy IIIA</td>
<td>4½</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical and Extraction Metallurgy IIIB</td>
<td>0</td>
<td>4½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Metallurgy III</td>
<td>7½</td>
<td>4½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Industrial Metallurgy</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Project includes three weeks' laboratory work during Midyear Recess.

3180
Metallurgical Process Engineering —
Full-time Course
Bachelor of Engineering
BE

Attendance and Industrial Training requirements are as listed in the Bachelor of Science degree course.

Year 1

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics I or Higher Physics I</td>
<td>S1 S2</td>
</tr>
<tr>
<td>Chemistry IA and IB</td>
<td>6 6</td>
</tr>
<tr>
<td>Engineering A and C</td>
<td>6 6</td>
</tr>
<tr>
<td>Engineering A and C</td>
<td>6 0</td>
</tr>
<tr>
<td>Mathematics I or Higher Mathematics I</td>
<td>6 6</td>
</tr>
<tr>
<td>Total</td>
<td>24 24</td>
</tr>
</tbody>
</table>

3130
Metallurgy — Part-time Course
Bachelor of Science (Technology)
BSc(Tech)

This course is designed for students who are employed in the metallurgical industries. It extends over six part-time years of study, and leads to the award of the degree of Bachelor of Science (Technology). Students are required to complete an approved program of industrial training of not less than twelve months prior to the award of the degree. Industrial training...
should normally be completed concurrently with attendance in the course, but with the approval of the Head of School may be completed after completion of the prescribed course of study.

Stage 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I</td>
<td>S1: 6, S2: 6</td>
</tr>
<tr>
<td>10.001 Mathematics I or Higher Mathematics I*</td>
<td>S1: 6, S2: 6</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121 Chemistry IA and IB</td>
<td>S1: 6, S2: 6</td>
</tr>
<tr>
<td>4.034 Industrial Metallurgy Project</td>
<td>S1: 3, S2: 3</td>
</tr>
<tr>
<td>4.054 Metallurgy Seminar</td>
<td>S1: 2, S2: 2</td>
</tr>
<tr>
<td>4.514 Industrial Metallurgy</td>
<td>S1: 3, S2: 3</td>
</tr>
<tr>
<td>4.613 Metallurgical Engineering IIA</td>
<td>S1: 3, S2: 0</td>
</tr>
<tr>
<td>4.813 Metallurgical Engineering</td>
<td>S1: 3, S2: 3</td>
</tr>
<tr>
<td>5.010 Engineering A†</td>
<td>S1: 6, S2: 0</td>
</tr>
<tr>
<td>5.030 Engineering C†</td>
<td>S1: 0, S2: 6</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td>S1: 4, S2: 4</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A Physical Chemistry</td>
<td>S1: 6, S2: 0</td>
</tr>
<tr>
<td>4.312 Chemical and Extraction</td>
<td>S1: 1, S2: 5</td>
</tr>
<tr>
<td>4.602 Metallurgical Engineering</td>
<td>S1: 2, S2: 2</td>
</tr>
<tr>
<td>10.031 Mathematics</td>
<td>S1: 2, S2: 2</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td>S1: 4, S2: 4</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.402 Physical Metallurgy I</td>
<td>S1: 6, S2: 6</td>
</tr>
<tr>
<td>4.512 Mechanical Properties of Solids</td>
<td>S1: 4, S2: 0</td>
</tr>
<tr>
<td>4.602 Metallurgical Engineering</td>
<td>S1: 0, S2: 5</td>
</tr>
<tr>
<td>25.541 Mineralogy</td>
<td>S1: 2, S2: 2</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9222 Electronics</td>
<td>S1: 3, S2: 0</td>
</tr>
<tr>
<td>4.000 Metallurgy Special Topics</td>
<td>S1: 0, S2: 2</td>
</tr>
<tr>
<td>4.433 Physical Metallurgy IIC</td>
<td>S1: 9, S2: 6</td>
</tr>
<tr>
<td>4.522 Mechanical Metallurgy</td>
<td>S1: 0, S2: 3</td>
</tr>
</tbody>
</table>

Stage 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.001 Physics I</td>
<td>S1: 6, S2: 6</td>
</tr>
<tr>
<td>2.121 Chemistry IA and IB</td>
<td>S1: 6, S2: 6</td>
</tr>
</tbody>
</table>

Ceramic Engineering

The ceramic industry produces an enormous volume and variety of products used in engineering applications, building construction and in our everyday life. As well as the traditional bricks, roof tiles, sheet and container glass and tableware, ceramics have been found essential as abrasives, refractories, enamels and in electrical and electronic applications and nuclear fuels. In many of these cases, ceramic articles make possible the manufacture of other products either by being a key component, such as an electronic or magnetic part, or by forming the material of construction of, for example, a blast furnace or an abrasive wheel.

Modern ceramics comprise such a varied and complex group of materials that a high level of training is required to control their manufacture with the required precision and to supervise their proper use. Ceramic engineers are needed in increasing numbers both in Australia and overseas countries and the Department offers the only degree course in Ceramic Engineering in Australasia. The Ceramic Engineering course trains students in the relation between the structure and the properties of ceramic materials, the engineering and process chemistry of their manufacture and the design principles of their use. Careers open to graduates fall into two broad categories. Some go initially into activities associated directly with production, i.e., the design and layout of plants, supervision of their construction, and control of their operations. Others move into research and development in industrial laboratories or research institutions. In either case, graduates with organizing ability frequently move into management if they have an interest in this side of the industry.

In Australia, a number of government research organizations are active in ceramic research, e.g., the Australian Atomic Energy Commission Research Establishment, and the Divisions of Materials Science and Building Research of CSIRO. Investigations with more immediate applications are carried out in industrial laboratories. Even when the basic principles of a process have been worked out in the laboratory, its successful transfer to an industrial scale requires a great deal of effort and expertise. This is an area which offers great scope for further development in Australia.

Graduates in Ceramic Engineering are eligible for membership of the Institution of Engineers, Australia, the Institute of Ceramics (Great Britain) and the Royal Australian Chemical Institute.

3025

Ceramic Engineering — Full-time Course

Bachelor of Engineering

BE

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I</td>
<td>S1: 6, S2: 6</td>
</tr>
<tr>
<td>2.121 Chemistry IA and IB</td>
<td>S1: 6, S2: 6</td>
</tr>
</tbody>
</table>

45
3030

Ceramics — Part-time Course

Bachelor of Science (Technology) BSc(Tech)

Stages 1 and 2*

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td>6</td>
</tr>
<tr>
<td>2.121</td>
<td>Chemistry IA and IA*</td>
<td>6</td>
</tr>
<tr>
<td>2.131</td>
<td>Chemistry IB</td>
<td>6</td>
</tr>
<tr>
<td>4.231</td>
<td>Introduction to Ceramic Engineering**</td>
<td>2</td>
</tr>
<tr>
<td>5.010</td>
<td>Engineering A**</td>
<td>6</td>
</tr>
<tr>
<td>5.0302</td>
<td>Engineering Drawing and Descriptive Geometry**</td>
<td>4</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I or</td>
<td></td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I</td>
<td></td>
</tr>
</tbody>
</table>

*Physics and Mathematics are usually taken in Stage 1 and the other subjects in Stage 2.

One session only

Stage 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2.002D</td>
<td>Analytical Chemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4.941</td>
<td>Metallurgy for Engineers</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.023</td>
<td>Mineral Process Engineering</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8.112</td>
<td>Structures</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>10.031</td>
<td>Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.301</td>
<td>Statistics SA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>25.541</td>
<td>Mineralogy</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9322</td>
<td>Physics (Introduction to Solids)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.042C</td>
<td>Inorganic Chemistry</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4.232</td>
<td>Ceramic Engineering I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.823</td>
<td>Numerical Methods</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>48.021</td>
<td>Chemical Engineering IA*</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>48.025</td>
<td>Chemical Engineering for Ceramic Engineers</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>48.135</td>
<td>Thermodynamics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>48.163</td>
<td>Instrumentation and Process Control I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>48.311</td>
<td>Fuel Engineering I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>24</td>
<td>22</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9222</td>
<td>Electronics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.233</td>
<td>Ceramic Process Principles</td>
<td>3½</td>
<td>3½</td>
</tr>
<tr>
<td>48.021</td>
<td>Chemical Engineering IA*</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>48.025</td>
<td>Chemical Engineering for Ceramic Engineers</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>48.163</td>
<td>Instrumentation and Process Control I</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>11½</td>
<td>11½</td>
</tr>
</tbody>
</table>

*Additional 14 hrs bridging course for students not having done 48.001.

Additional 14 hours bridging course for students not having done 48.001.
After graduation, mining engineers are equipped to enter any sector of the mining industry such as coal mining, metalliferous mining, petroleum production, sea-floor mining, quarrying or mineral processing. If they choose to develop careers in production management, they will be required to gain further practical experience before obtaining a Mine Manager's Certificate of Competency, in either Coal or Metalliferous Mining. These statutory certificates of competency are issued by the State Government Department of Mines, which in the case of New South Wales coal mining comes under the Coal Mines Regulation Act No. 37, 1912, and for metalliferous mining under the Mines Inspection Act No. 75, 1901.

Graduate mining engineers are not, however, restricted to primary production for employment. Many find posts in civil sub-surface construction; research and development; with consultants, governments or universities; or with their broad engineering training, in a wide range of manufacturing industries.

Arrangements have been made with the Universities of Newcastle and Tasmania for students who have completed a specified program at these institutions to be admitted with advanced standing to Year 3 of the Mining Engineering degree course at the University of New South Wales.

General Studies Electives

For details of changes in the General Studies requirements refer to the table earlier in this chapter.

3140

Mining Engineering — Full-time Course

Bachelor of Engineering
BE

The first year of the course is essentially the same as that for several other Engineering courses and second year includes those subjects of common relevance to the Engineering disciplines. The third year is largely devoted to basic mining subjects and the fourth year provides advanced instruction in subjects essential to all mining engineers. In addition, the fourth year offers a wide range of elective subjects, allowing students, if they so wish, to concentrate their studies on a particular sector of the industry, such as coal mining or metalliferous mining. An important fourth year requirement is for students to undertake a personal research or study project in mining or minerals engineering on which they are required to submit a thesis for examination.

For the award of Honours at the conclusion of the full-time course, students will need to have distinguished themselves in the formal work, in other assignments as directed by the Head of School, and in the final year project.

In the undergraduate course it is compulsory for students to gain practical experience in the mining industry during successive long recesses. The minimum requirement is 100 days which must be completed before graduation. The School assists students in securing suitable vacation employment. Students are required to submit for assessment an industrial training report on the vacation and other relevant experience acquired.
Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2.951 Chemistry I (ME)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>5.010 Engineering A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5.0201 Engineering Dynamics</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.030 Engineering C†</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>8.171 Mechanics of Solids I</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.001 Mathematics I or Mathematics I</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

24 24

†Incorporates 7.111, Introduction to Mining Engineering. Visits to mines and related undertakings are a requirement of this subject.

Year 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9222 Electronics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.972 Materials for Mining Engineers</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>6.855 Electrical Power Utilization</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.142 Mine Development†</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.132 Fluid Mechanics and Machines</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.172 Mechanics of Solids II</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8.250 Properties of Materials</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.022 Engineering Mathematics II</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10.301 Statistics SA</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>29.441 Surveying for Engineers</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>25.520 Geology for Mining Engineers†</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>29.491 Survey Camp</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

23 26

†Visits to mines and related undertakings are a requirement of this subject.
‡Includes two compulsory field tutorials.

Year 3

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.113 Mining Methods†</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7.123 Geomechanics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.133 Mine Transport</td>
<td>0</td>
<td>2½</td>
</tr>
<tr>
<td>7.143 Mine Environment and Safety Engineering‡</td>
<td>3½</td>
<td>3½</td>
</tr>
<tr>
<td>7.153 Power Supply in Mines</td>
<td>2½</td>
<td>0</td>
</tr>
<tr>
<td>7.163 Excavation Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7.173 Computer Applications in Mining</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7.213 Mine Surveying</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7.313 Minerals Engineering Processes</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>25.521 Geology for Mining Engineers II§</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

26 24

†Visits to mines and related undertakings are a requirement of this subject
‡Includes field training in mine-rescue and recovery
§A geology field excursion is held at the end of Session 1

Year 4

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.974 Mining Materials</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7.114 Geotechnical Engineering</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.174 Mining Legislation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.214 Mine Economics and Planning</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7.224 Operational Management</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7.414 Minerals Industry Project</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.424 Industrial and Research Seminars</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

24 23

†Approval for a group of subjects must be obtained from the Head of School and must include at least one of the subjects marked *.

4200

Mining Engineering — Part-time Course*

W. S. and L. B. Robinson University College, Broken Hill

The School of Mining Engineering offers a part-time course in Mining Engineering at Broken Hill. The course is presented as a six-stage enrolment and there is provision for acceleration by a combination of full and part-time study.

A minimum of three years’ concurrent industrial training in approved industries is required before graduation.

*No new enrolments will be accepted at the College after 1982.

4200

Mining Engineering — Part-time Course

Bachelor of Engineering BE

Stage 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121 Chemistry IA</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5.030 Engineering C</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

48
Undergraduate Study: Course Outlines

Stage 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.142R Mine Development</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.001 Mathematics I</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14½</td>
<td>14½</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5.010 Engineering A</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5.020 Engineering B</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>25.520 Geology for Mining Engineers*</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

*Excursions will be necessary.

Note: Not all options are offered in Engineering A, B and C.

Stage 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.422 Mechanics of Solids II/</td>
<td></td>
<td>4½</td>
<td>4½</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>7.113R Mining Methods</td>
<td></td>
</tr>
<tr>
<td>10.022 Engineering Mathematics II</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>29.441 Surveying for Engineers</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>29.491 Survey Camp†</td>
<td></td>
<td>(40 class contact hours)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14½</td>
<td>14½</td>
</tr>
</tbody>
</table>

†Candidates with sufficient practical experience in a mine survey office may be excused from the camp.

Stage 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.622 Fluid Mechanics/Thermodynamics</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6.851R Electronics and Instrumentation</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6.852R Electrical Machinery and Supply</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.123R Geomechanics</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.351 Statistics SM</td>
<td></td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>25.112R Geology for Mining Engineers IIA</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.133R Mine Transport</td>
<td></td>
<td>0</td>
<td>2½</td>
</tr>
<tr>
<td>7.153R Power Supply in Mines</td>
<td></td>
<td>2½</td>
<td>0</td>
</tr>
<tr>
<td>7.163R Excavation Engineering</td>
<td></td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>7.213R Mine Surveying</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.224R Operational Management</td>
<td></td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>7.313R Mineral Processing</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>25.122R Geology for Mining Engineers IIB</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Note: A mining excursion of one week is necessary in either Stage 5 or 6.

4220 Mineral Processing — Part-time Course*

W. S. and L. B. Robinson University College, Broken Hill

Bachelor of Science (Technology) BSc(Tech)

This course is designed to meet the requirements of students who are employed by the mineral processing industries. It extends over six part-time years of study and leads to the award of the degree of Bachelor of Science (Technology). A minimum of three years’ concurrent industrial training in approved industries is required before graduation.

*No new enrolments are being accepted at the College after 1982.

Stage 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121 Chemistry IA</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2.131 Chemistry IB</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5.010 Engineering A</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5.020 Engineering B</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>25.201R Mineragraphic Laboratory Work</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25.520 Geology for Engineers I</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>
a number of chemical, physical and engineering processes. Graduates with a good background in physics, chemistry or engineering, and with a broad training in the range of textile sciences and technologies, as provided in the courses in Textile Technology, will substantially meet the present and future technological requirements of the textile and allied industries. Since present day textile technology is based on engineering and the fundamental sciences, excellent opportunities also await university-trained scientists and technologists in research and development organizations. Such scientists and technologists will play a decisive part in bridging the gap which exists between fundamental research and its industrial application.

Students are given the opportunity of choosing from four courses, viz Textile Chemistry, Textile Physics, Textile Engineering and Textile Manufacture. The course in Textile Manufacture, which includes subjects in Commerce, is especially designed to meet the need for executives in industry who have been given a comprehensive technological training. Each course extends over four years. All students take a common first year, and they need not choose the option they desire to follow until the end of that year. The aim of all four courses is to produce graduates who have acquired a comprehensive knowledge of all the textile sciences and technologies, the courses themselves differing only in the subjects offered outside the School in the second and third years. Students are normally required to undertake twelve weeks' industrial training during the long recesses between Years 2 and 3, and 3 and 4.

General Studies Electives
For details of changes in the General Studies requirements refer to the table earlier in this chapter.

3170
Textile Technology — Full-time Course
Bachelor of Science
BSc

Year 1 (All courses)

<table>
<thead>
<tr>
<th>Hours per week</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>1.001 Physics I† or</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1.011 Higher Physics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.121 Chemistry IA</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2.131 Chemistry IB</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>5.010 Engineering A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6.611 Computing I</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10.011 Higher Mathematics I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 24 | 24 |

†Students who do not qualify for entry into 1 001 Physics I, may be allowed, at the discretion of the Head of the School, to substitute 1 021 Introductory Physics I. Such students will be ineligible to proceed to the Textile Physics course.
Textile Chemistry

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.002B Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.002D Analytical Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>10.031 Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>10.301 Statistics SA</td>
<td>2</td>
</tr>
<tr>
<td>13.111 Textile Technology I</td>
<td>2</td>
</tr>
<tr>
<td>13.211 Textile Science I</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 26

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.003B Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>2.003H Molecular Spectroscopy and Structure</td>
<td></td>
</tr>
<tr>
<td>13.112 Textile Technology II</td>
<td>12</td>
</tr>
<tr>
<td>13.212 Textile Science II</td>
<td>2</td>
</tr>
<tr>
<td>13.311 Textile Engineering I</td>
<td>12</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 23

Textile Physics

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.002 Mechanics, Waves and Optics</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1.012 Electromagnetism and Thermal Physics</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1.022 Modern Physics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.1113 Multivariable Calculus</td>
<td>2½</td>
<td>0</td>
</tr>
<tr>
<td>10.2111 Vector Calculus</td>
<td>2½</td>
<td>0</td>
</tr>
<tr>
<td>10.2112 Mathematical Methods for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations</td>
<td>0</td>
<td>2½</td>
</tr>
<tr>
<td>10.301 Statistics SA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13.111 Textile Technology I</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>13.211 Textile Science I</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 26

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.023 Statistical Mechanics and Solid State Physics</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1.042 Measurement and Control Systems</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1.9222 Electronics*</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>13.112 Textile Technology II</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13.212 Textile Science II</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13.311 Textile Engineering I</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 24

Textile Engineering

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0301 Engineering Drawing</td>
<td>3</td>
</tr>
<tr>
<td>5.330 Engineering Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>7.132 Fluid Mechanics and Machines</td>
<td>2</td>
</tr>
<tr>
<td>8.112 Structures</td>
<td>3</td>
</tr>
<tr>
<td>10.022 Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>10.301 Statistics SA</td>
<td>2</td>
</tr>
<tr>
<td>13.111 Textile Technology I</td>
<td>8</td>
</tr>
<tr>
<td>13.211 Textile Science I</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 26

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9222 Electronics</td>
<td>3</td>
</tr>
<tr>
<td>5.122 Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>5.331 Dynamics of Machines I</td>
<td>2</td>
</tr>
<tr>
<td>6.855 Electrical Power Utilization</td>
<td>3</td>
</tr>
<tr>
<td>13.112 Textile Technology II</td>
<td>12</td>
</tr>
<tr>
<td>13.212 Textile Science II</td>
<td>2</td>
</tr>
<tr>
<td>13.311 Textile Engineering I</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 25

Textile Manufacture

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.301 Statistics SA</td>
<td>2</td>
</tr>
<tr>
<td>13.111 Textile Technology I</td>
<td>6</td>
</tr>
<tr>
<td>13.211 Textile Science I</td>
<td>3</td>
</tr>
<tr>
<td>14.501 Accounting and Financial Management IA</td>
<td>4½</td>
</tr>
<tr>
<td>14.511 Accounting and Financial Management IB</td>
<td>0</td>
</tr>
<tr>
<td>15.001 Microeconomics I</td>
<td>3½</td>
</tr>
<tr>
<td>15.011 Macroeconomics I</td>
<td>0</td>
</tr>
<tr>
<td>15.501 Introduction to Industrial Relations</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 24

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9222 Electronics</td>
<td>3</td>
</tr>
<tr>
<td>5.122 Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>5.331 Dynamics of Machines I</td>
<td>2</td>
</tr>
<tr>
<td>6.855 Electrical Power Utilization</td>
<td>3</td>
</tr>
<tr>
<td>13.112 Textile Technology II</td>
<td>12</td>
</tr>
<tr>
<td>13.212 Textile Science II</td>
<td>2</td>
</tr>
<tr>
<td>13.311 Textile Engineering I</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hpw: 25

In 1983, 1.0133 Quantum Mechanics replaces 1.9222 Electronics.
Despite growth in the minerals industry, agricultural products still contribute a significant share of Australia’s export income. Australian agriculture, and in particular the pastoral industries, has played a major role in the development of the continent and the largest single form of land-use still is grazing by sheep and cattle.

Farming has advanced technologically in recent years, however innovations are continually being sought to increase productivity, raise quality and improve marketing of rural products within the framework of local and international economics. There is a continual need for the feeding and clothing of mankind on a planet with finite mineral and fuel resources. This challenge must be balanced with the need for conservation and careful manipulation of a pool of renewable living resources. Wool and pastoral scientists are required to research, communicate and administer the changes which are occurring.

The School of Wool and Pastoral Sciences offers a full-time course of four years’ duration leading to the award of a Bachelor of Science degree at either honours or pass level. The course is the only one in Australia in which special emphasis is given to wool science. In addition, studies concentrate on the most important animal industries (sheep and cattle).

Students receive a thorough grounding in the appropriate basic scientific disciplines as well as the theory and application of principles which are relevant to all aspects of pastoral production, including production and utilization of pastures; reproduction, nutrition, health, genetic improvement, ecology and management of grazing animals and the production, preparation for sale and specification of wool and meat. The course also includes study of the design and interpretation of experimental investigations, economics and business management as well as elective options on crop production, rangeland management and rural communications. Relevant subjects offered by other schools may also be included. An important component is the final year project whereby students engage in an area of personal research on a theoretical or experimental topic on which they are required to submit a thesis.

The course provides students with a broad overview of the pastoral industries. It aims to produce generalists rather than specialists and, although there is some scope for studying topics of special interest, the course is designed so that certain core subjects must be undertaken. Because of the broad education received, Graduates are equipped for a wide variety of careers in and associated with agricultural production including research, advisory work, education, marketing, management and administration. Graduates are eligible for corporate membership of the Australian Institute of Agricultural Science.

The School also offers a course requiring one year of full-time or two years of part-time study leading to the award of the Graduate Diploma in Wool and Pastoral Sciences. Research may also be undertaken for the award of the degrees of Master of Science and Doctor of Philosophy.

Industrial Training Requirements

1. Students are required to obtain twenty-four weeks’ practical experience on commercial properties. At least twenty weeks of experience must be obtained concurrently with the course, while up to four weeks may be allowed for practical experience obtained immediately prior to the commencement of the course.
2. Students are encouraged to obtain experience in a diversity of pastoral enterprises, i.e. cattle, sheep and cropping, in different climatic zones.

3. A maximum of eight weeks shall be allowed for practical experience on any one property, including home properties. Up to eight weeks employment at research or teaching institutions is allowed towards the industrial training requirement.

4. In order to obtain recognition for practical work carried out, students shall, within six weeks of the commencement of the session immediately following the period of employment:
 (1) Submit written evidence from the owner/manager of the property or the director of the institution as to the length of employment.
 (2) Submit a written report along the guidelines which are available from the School.

General Studies Electives
For details of changes in the General Studies requirements refer to the table earlier in this chapter.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>2.003J</td>
<td>Agricultural and Biological Chemistry</td>
</tr>
<tr>
<td>9.111</td>
<td>Livestock Production I*</td>
</tr>
<tr>
<td>9.201</td>
<td>Agronomy</td>
</tr>
<tr>
<td>9.501</td>
<td>Wool Science I</td>
</tr>
<tr>
<td>9.601</td>
<td>Animal Physiology I</td>
</tr>
<tr>
<td>45.101</td>
<td>Biometry</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

* A 4 day field excursion is an essential part of the subject

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>9.131</td>
<td>Animal Health I</td>
</tr>
<tr>
<td>9.202</td>
<td>Pastoral Agronomy</td>
</tr>
<tr>
<td>9.301</td>
<td>Agricultural Economics and Management I</td>
</tr>
<tr>
<td>9.421</td>
<td>Animal Nutrition</td>
</tr>
<tr>
<td>9.801</td>
<td>Genetics I</td>
</tr>
<tr>
<td>41.101</td>
<td>Biochemistry</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>9.001</td>
<td>Project</td>
</tr>
<tr>
<td>9.002</td>
<td>Seminar</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
</tr>
</tbody>
</table>

Year 3

Optional subjects

Group A

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>9.113</td>
<td>Livestock Production III</td>
</tr>
<tr>
<td>9.132</td>
<td>Animal Health II</td>
</tr>
<tr>
<td>9.204</td>
<td>Range Management*†</td>
</tr>
</tbody>
</table>

* Students may with the approval of the Head of the School substitute 1.011 Higher Physics I or 1.001 Physics I or 1.021 Introductory Physics for 27.111 Applied Physical Geography I.

Undergraduate Study: Course Outlines

3220 Wool and Pastoral Sciences — Full-time Course
Bachelor of Science BSc

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
</tr>
<tr>
<td>2.111</td>
</tr>
<tr>
<td>2.121</td>
</tr>
<tr>
<td>2.131</td>
</tr>
<tr>
<td>9.101</td>
</tr>
<tr>
<td>10.011</td>
</tr>
<tr>
<td>10.021B</td>
</tr>
<tr>
<td>10.021C</td>
</tr>
<tr>
<td>17.041</td>
</tr>
<tr>
<td>27.111</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Optional subjects

Group A

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>9.113</td>
<td>Livestock Production III</td>
</tr>
<tr>
<td>9.132</td>
<td>Animal Health II</td>
</tr>
<tr>
<td>9.204</td>
<td>Range Management*†</td>
</tr>
</tbody>
</table>
*One week of instruction at Fowlers Gap Research Station is an essential part of this course.

Group B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HW</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.112</td>
<td>Livestock Production II</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9.203</td>
<td>Crop Agronomy†</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.302</td>
<td>Agricultural Economics and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9.412</td>
<td>Agricultural Chemistry II</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>9.502</td>
<td>Wool Science II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9.602</td>
<td>Animal Physiology II</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9.901</td>
<td>Rural Extension</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>28.012</td>
<td>Marketing Systems</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>28.052</td>
<td>Marketing Research</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>41.111</td>
<td>Biochemical Control</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>43.121</td>
<td>Plant Physiology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>43.142</td>
<td>Environmental Botany</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>44.101</td>
<td>Introductory Microbiology*</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

†Range Management and Crop Agronomy are offered in alternate years.

*Students should note the special proviso for enrolment in this subject as indicated in the Subject Descriptions later in this handbook.
Graduate Study

Graduate Enrolment Procedures

All students enrolling in graduate courses should obtain a copy of the free booklet Enrolment Procedures 1983 available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

The Faculty offers courses leading to the award of the degree of Master of Applied Science. The institution of this degree springs from the recognition of the considerable advance of knowledge in the fields of applied science and engineering which has marked recent years and the consequent increased scope for advanced formal instruction in these fields. Students are usually in attendance at the University for one year on a full-time basis, or for two years part-time.

The Faculty offers a course leading to the award of the degree of Master of Environmental Studies. This is an interdisciplinary course designed to study the nature of environmental problems and the evaluation methodology. Students are usually in attendance at the University for one year on a full-time basis or for two years part-time.

Courses are also offered at the graduate level leading to the award of a Graduate Diploma. Students are required to attend courses of study for one year full-time or two years part-time. The courses available for the Graduate Diploma are Arid Lands Management, Corrosion Technology, Food Technology, Mining and Mineral Engineering and Wool Technology.

Courses leading to the award of the degree of Master of Applied Science and of Graduate Diplomas are available at Kensington only. Candidates may register for all the research degrees at Kensington subject to adequate research facilities and satisfactory supervision being available in the candidate's particular field of study. Where these special conditions can be met the Professorial Board may grant permission to a candidate to register for the degree of Doctor of Philosophy in these centres.

The conditions governing the award of the various higher degrees and graduate diplomas are set out later in this handbook in Conditions for the Award of Higher Degrees.
Short, intensive graduate and special courses are provided throughout each year designed to keep practising scientists and technologists in touch with the latest developments in their various fields.

Faculty of Applied Science

Graduate Programs in Arid Lands Management

General

The University has considerable experience of research and teaching relating to the management of arid environments, gained over many years by several of its schools. This experience is being mobilized in the provision of graduate programs based at the University campus in Kensington, Sydney, but includes significant field studies using the resources at Fowlers Gap Arid Zone Research Station in western New South Wales.

The programs include the following areas of study:
- Hydrogeology
- Land Evaluation
- Terrain Management
- Soil Conservation
- Range Management
- Management of Pastoral Enterprises

For most of the above study areas, programs are available leading to the award of the following graduate degrees:

8025 Master of Applied Science in Arid Land Management by course work
5025 Graduate Diploma in Arid Lands Management

Hydrogeology

These programs involve training in groundwater investigations, including geophysical investigations, and the assessment, development and utilization of groundwater resources. They are suited to geologists, engineers, agricultural scientists, planners and resource managers.

Land Evaluation and Terrain Management

These programs are designed to provide graduate training in the evaluation of land management and in the prediction of the environmental impact of land use. They include the two sectors of land evaluation and terrain management, with a close relationship reflected in overlapping core programs. Terrain management also embraces geopollution management, with reference to groundwater and hydrological processes. Terrain evaluation is envisaged as serving a wide range of land management, including agricultural and biological management.

Soil Conservation

These programs are designed to provide graduate training in soil conservation for land management in arid zones. They are appropriate for personnel engaged in or preparing for positions in conservation or reclamation projects, agricultural advisory services, land-use planning, administration of pastoral lands, or research into problems of arid land management.

Range Management

These programs are designed to provide graduate training in the assessment and management of rangelands, and are also relevant to animal production and soil conservation, national parks and wildlife management, and land evaluation. They are appropriate for personnel engaged in or preparing for positions in project management, pastoral advisory services, and rangeland research or administration.

Management of Pastoral Enterprises

These programs are designed to provide graduate training in the production and management of grazing sheep and beef cattle, the production of pasture, range management, and in the economic management of pastoral enterprises.

8025 Arid Lands Management Graduate Course

Master of Applied Science
MAppSc

Hydrogeology

Prerequisite: Four-year degree of appropriate standard in geology or in a relevant science.

Compulsory Subject
25.915G Project in Hydrogeology or
25.916G Research Project in Hydrogeology

Recommended Core Subjects
8.842G Groundwater Hydrology
8.860G Investigation of Groundwater Resources I
8.861G Investigation of Groundwater Resources II
25.325 Engineering and Environmental Geology
25.411G Arid Zone Engineering Geology*
25.413 Engineering and Environmental Resources

Candidates must also include additional subjects selected from core subjects in other programs in Water Resources, or from the listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Applied Geology and the Heads of the other...
Schools concerned, to complete a program equivalent to an average of 20 hours per week for two sessions of full-time study.

Optional Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.701G</td>
<td>Economic Decision Making in Civil Engineering</td>
</tr>
<tr>
<td>8.703G</td>
<td>Optimization Techniques in Civil Engineering</td>
</tr>
<tr>
<td>8.833G</td>
<td>Free Surface Flow</td>
</tr>
<tr>
<td>8.839G</td>
<td>Advanced Flood Estimation</td>
</tr>
<tr>
<td>8.843G</td>
<td>Groundwater Hydraulics</td>
</tr>
<tr>
<td>8.847G</td>
<td>Water Resources Policy</td>
</tr>
<tr>
<td>8.848G</td>
<td>Water Resources System Design</td>
</tr>
<tr>
<td>8.849G</td>
<td>Irrigation</td>
</tr>
<tr>
<td>8.850G</td>
<td>Drainage of Agricultural Land</td>
</tr>
<tr>
<td>27.043G</td>
<td>Remote Sensing Applications</td>
</tr>
<tr>
<td>27.901G</td>
<td>Geomorphology for Hydrologists</td>
</tr>
<tr>
<td>27.914G</td>
<td>Terrain Evaluation</td>
</tr>
<tr>
<td>27.910G</td>
<td>Geomorphology of Arid Lands</td>
</tr>
<tr>
<td>27.911G</td>
<td>Soil Erosion and Conservation</td>
</tr>
<tr>
<td>27.913G</td>
<td>Soil Studies for Arid Lands Management</td>
</tr>
<tr>
<td>29.601G</td>
<td>Remote Sensing Principles and Procedures</td>
</tr>
<tr>
<td>29.604G</td>
<td>Land Information Systems</td>
</tr>
</tbody>
</table>

Includes a field exercise of at least three days duration at Fowlers Gap Research Station

Land Evaluation

Prerequisite: Four-year degree of appropriate standard in physical geography or geology, or in a relevant environmental, biological or agricultural science.

Compulsory Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.910G</td>
<td>Geomorphology of Arid Lands</td>
</tr>
<tr>
<td>27.913G</td>
<td>Soil Studies for Arid Lands Management</td>
</tr>
<tr>
<td>27.914G</td>
<td>Terrain Evaluation</td>
</tr>
<tr>
<td>27.916G</td>
<td>Research Project in Land Evaluation</td>
</tr>
</tbody>
</table>

Candidates must also include additional subjects selected from the following listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Geography and Heads of the other Schools concerned, to complete a program equivalent to an average of 20 hours per week for two sessions of full-time study.

Optional Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.205G</td>
<td>Range Management†</td>
</tr>
<tr>
<td>25.411G</td>
<td>Arid Zone Engineering Geology*</td>
</tr>
<tr>
<td>27.043G</td>
<td>Remote Sensing Applications</td>
</tr>
<tr>
<td>27.911G</td>
<td>Soil Erosion and Conservation</td>
</tr>
<tr>
<td>27.912G</td>
<td>Arid Zone Climatology</td>
</tr>
<tr>
<td>29.601G</td>
<td>Remote Sensing Principles and Procedures</td>
</tr>
<tr>
<td>29.604G</td>
<td>Land Information Systems</td>
</tr>
<tr>
<td>45.900G</td>
<td>Ecological Studies in Arid Lands Management</td>
</tr>
</tbody>
</table>

†Compulsory subjects jointly include one week of fieldwork, probably at Fowlers Gap Research Station

Terrain Management

Prerequisite: Four-year degree of appropriate standard in geology or physical geography, or in a relevant environmental, biological or agricultural science.

Compulsory Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.402G</td>
<td>Hydrogeology</td>
</tr>
<tr>
<td>25.407G</td>
<td>Geopollution Management</td>
</tr>
<tr>
<td>25.411G</td>
<td>Arid Zone Engineering Geology*</td>
</tr>
<tr>
<td>25.412G</td>
<td>Project in Terrain Management or Research Project in Terrain Management</td>
</tr>
<tr>
<td>27.910G</td>
<td>Geomorphology of Arid Lands</td>
</tr>
<tr>
<td>27.914G</td>
<td>Terrain Evaluation</td>
</tr>
</tbody>
</table>

Candidates must also include additional subjects selected from the following listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Applied Geology and Heads of the other Schools concerned, to complete a program equivalent to an average of 20 hours per week for two sessions of full-time study.

Optional Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.837G</td>
<td>Hydrological Processes</td>
</tr>
<tr>
<td>27.043G</td>
<td>Remote Sensing Applications</td>
</tr>
<tr>
<td>27.911G</td>
<td>Soil Erosion and Conservation</td>
</tr>
<tr>
<td>27.913G</td>
<td>Soil Studies for Arid Lands Management</td>
</tr>
<tr>
<td>29.601G</td>
<td>Remote Sensing Principles and Procedures</td>
</tr>
<tr>
<td>29.604G</td>
<td>Land Information Systems</td>
</tr>
</tbody>
</table>

†Compulsory subjects jointly include one week of fieldwork, probably at Fowlers Gap Research Station

Soil Conservation

Prerequisite: Four-year degree of appropriate standard in physical geography or agricultural science, or in a relevant earth science or biological science.

Compulsory Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.910G</td>
<td>Geomorphology of Arid Lands</td>
</tr>
<tr>
<td>27.911G</td>
<td>Soil Erosion and Conservation</td>
</tr>
<tr>
<td>27.913G</td>
<td>Soil Studies for Arid Lands Management</td>
</tr>
<tr>
<td>27.917G</td>
<td>Project in Soil Conservation or Research Project in Soil Conservation</td>
</tr>
</tbody>
</table>

Candidates must also include additional subjects selected from the following listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Geography and Heads of the other Schools concerned, to complete a program equivalent to an average of 20 hours per week for two sessions of full-time study.

Optional Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.864G</td>
<td>Arid Zone Surface Water Hydrology§</td>
</tr>
<tr>
<td>8.865G</td>
<td>Arid Zone Water Resources Management</td>
</tr>
<tr>
<td>9.205G</td>
<td>Range Management‡</td>
</tr>
<tr>
<td>25.411G</td>
<td>Arid Zone Engineering Geology*</td>
</tr>
<tr>
<td>27.043G</td>
<td>Remote Sensing Applications</td>
</tr>
<tr>
<td>27.912G</td>
<td>Arid Zone Climatology</td>
</tr>
</tbody>
</table>

‡Includes up to one week of fieldwork, probably at Fowlers Gap Research Station

§Includes a field exercise of at least three days duration at Fowlers Gap Research Station
Applied Science

27.914G Terrain Evaluation
29.601G Remote Sensing Principles and Procedures
29.604G Land Information Systems
45.900G Ecological Studies in Arid Lands Management

§Co-requisites 8 837G Hydrological Processes
9.205G Range Management†
25.411G Arid Zone Engineering Geology*
27.043G Remote Sensing Applications
27.911G Soil Erosion and Conservation
27.912G Arid Zone Climatology
29.601G Remote Sensing Principles and Procedures
29.604G Land Information Systems
45.900G Ecological Studies in Arid Lands Management

†Compulsory subjects jointly include one week of fieldwork, probably at Fowlers Gap Research Station.
*Includes up to one week of fieldwork at Fowlers Gap Research Station.
**Includes a field exercise of at least three days duration at Fowlers Gap Research Station.

5025
Arid Lands Management
Graduate Diploma Course
Graduate Diploma
GradDip

Hydrogeology

Prerequisite: Degree in engineering or geology or in a relevant science.

Recommended Core Subjects
As for 8025 MApPSc Hydrogeology strand (see earlier this section).

Candidates must also include additional subjects selected from core subjects in other programs in Water Resources, or from the listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Applied Geology and Heads of the other Schools concerned, to complete a program equivalent to an average of 18 hours per week for two sessions of full-time study.

Optional Subjects
As for 8025 MApPSc Hydrogeology strand (see earlier this section).

Land Evaluation

Prerequisite: Degree in physical geography or geology, or in a relevant environmental, biological or agricultural science.

Compulsory Subjects†
27.910G Geomorphology of Arid Lands
27.913G Soil Studies for Arid Lands Management
27.914G Terrain Evaluation
27.915G Project in Land Evaluation

Candidates must also include additional subjects selected from the following listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Geography and Heads of the other Schools concerned, to complete a program equivalent to an average of 18 hours per week for two sessions of full-time study.

Optional Subjects
8 837G Hydrological Processes
25.402G Hydrogeology
25.407G Geopollution Management
27.043G Remote Sensing Applications
27.911G Soil Erosion and Conservation
27.913G Soil Studies for Arid Lands Management
29.601G Remote Sensing Principles and Procedures
29.604G Land Information Systems

†Compulsory subjects jointly include one week of fieldwork, probably at Fowlers Gap Research Station.
*Includes a field exercise of at least three days duration at Fowlers Gap Research Station.

Soil Conservation

Prerequisite: Degree in physical geography or agricultural science, or in a relevant earth science or biological science.

Compulsory Subjects†
27.910G Geomorphology of Arid Lands
27.911G Soil Erosion and Conservation
27.913G Soil Studies for Arid Lands Management
27.917G Project in Soil Conservation
Candidates must also include additional subjects selected from the following listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Geography and Heads of the other Schools concerned, to complete a program equivalent to an average of 18 hours per week for two sessions of full-time study.

Optional Subjects

8.865G Arid Zone Water Resources Management
9.205G Range Management ‡
25.411G Arid Zone Engineering Geology *
27.043G Remote Sensing Applications
27.912G Arid Zone Climatology
27.914G Terrain Evaluation
29.601G Remote Sensing Principles and Procedures
29.604G Land Information Systems
45.900G Ecological Studies in Arid Lands Management

† Compulsory subjects jointly include one week of fieldwork, probably at Fowlers Gap Research Station.

Recommended Subject**

45.900G Ecological Studies in Arid Lands Management

Candidates must also include additional subjects selected from the following listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Wool and Pastoral Sciences and Heads of the other Schools concerned, to complete a program equivalent to an average of 18 hours per week for two sessions of full-time study.

Optional Subjects

9.105G Livestock Production
9.205G Range Management ‡
45.122 Ecology and Environmental Botany
43.142 Plant Physiology
43.149 Agriculture and Management
43.161 Animal Nutrition
45.122 Animal Behaviour

‡ Includes up to one week of fieldwork at Fowlers Gap Research Station.

Recommended Subject**

45.900G Ecological Studies in Arid Lands Management

Candidates must also include additional subjects selected from the following listed optional subjects, or from other relevant subjects offered within the University, as approved by the Head of the School of Wool and Pastoral Sciences and Heads of the other Schools concerned, to complete a program equivalent to an average of 18 hours per week for two sessions of full-time study.

Optional Subjects

9.001 Project in Management of Pastoral Enterprises
9.113 Livestock Production III
9.131 Animal Health I
9.132 Animal Health II
9.202 Pastoral Agronomy
9.301 Agricultural Economics and Management I
9.302 Agricultural Economics and Management II
9.421 Animal Nutrition
9.503 Wool Science III
9.504G Wool Science
9.602 Physiology II
9.802 Genetics II
9.803G Animal Breeding
9.811 Biostatistics I
9.812 Biostatistics II
9.813G Quantitative Methods
9.901 Rural Extension
45.122 Animal Behaviour
45.900G Ecological Studies in Arid Lands Management

‡ Includes up to one week of fieldwork at Fowlers Gap Research Station.

8026 Remote Sensing Graduate Course

Master of Applied Science

MApPSc

The masters degree program in Remote Sensing is offered in both the Faculty of Applied Science and the Faculty of Engineering. Entry into either Faculty will depend on the background of the applicant and the orientation of the proposed program.

Entry qualifications Four-year degree of appropriate standard in engineering, physical geography, geology, surveying, or in a relevant environmental biological or agricultural science.

Course requirements Candidates are required to complete a course totalling at least 36 credits, made up of compulsory subjects, elective subjects and a project or research project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject, approved by the
appropriate Head of School. The degree will normally comprise one year of full-time study (two sessions of 18 credits) or two years of part-time study (four sessions of 9 credits each).

Candidates who are not exempted from any of the compulsory subjects and who opt for the Research Project (18 credits), will achieve the required 36 credits without any elective subjects.

Compulsory subjects

- 6.380G Data Acquisition and Analysis in Remote Sensing C3
- 6.387G Programming and Software in Remote Sensing C3
- 27.043G Remote Sensing Applications C3
- 29.601G Remote Sensing Principles and Procedures* C6
- 29.605G Ground Investigations for Remote Sensing C3

*Includes Group Practical Exercise in Remote Sensing, C3

Elective subjects

Candidates are required to include additional subjects selected from the following listed elective subjects, or from other relevant subjects offered within the University, as approved by the appropriate Head of School, to complete a program totalling 36 credits.

- 6.458G Decision and Syntactic Systems for Digital Pattern Recognition C3
- 6.468G Computer Display Systems and Interactive Instrumentation C3
- 6.611 Computing I C4
- 6.621 Computing II A C3
- 25.816G Remote Sensing C2
- 27.642 Mathematical Methods for Spatial Analysis C2
- 27.643G Geographic Data Analysis C2
- 27.672G Geographic Information Systems C2
- 27.911G Soil Erosion and Conservation C6
- 29.520G Photogrammetric Production Processes C3
- 29.604G Land Information Systems C3

The course is designed around three broad components for a minimum of 40 credits (1 credit = 1 hour per week per one session):

- Core subjects (10 credits)
- Project (20 credits)
- Electives (10 credits)

The core subjects and electives will consist of subjects specially designed together with appropriate subjects taken from those offered by a number of Faculties and Boards of Studies within the University of New South Wales. Prerequisites shall be determined by the relevant Subject Authority.

Core Subjects

- 27.202G Environmental Planning and Evaluation C3
- 36.945G The Organization of Town Planning C2
- 46.201G Themes in Environmental Studies C3
- 48.064G Medical Aspects C1
- 48.066G Legislative Aspects C1

Elective Subjects

Earth Science — Engineering

- 8.021 Environmental Aspects of Civil Engineering C3
- 8.847G Water Resources Policy C3
- 25.404G Environmental Geology C3
- 25.407G Geopollution Management C3
- 25.410G Coastal Environmental Geology C3
- 27.1711 Introduction to Remote Sensing C1½
- 27.1712 Remote Sensing Applications C1½
- 27.234 Applied Geomorphology and Pedology C8
- 27.902G Meteorological and Hydrological Principles C3

Chemistry — Biology

- 2.043A Environmental Chemistry C6
- 2.251G Toxicology, Occupational and Public Health C6
- 9.424G Minerals and Their Effects on Grazing Animals C2
- 27.344 Applied Biogeography and Bioclimatology C8
- 42.212G Principles of Biochemistry C3
- 43.142 Ecology and Environmental Botany C6
- 48.381G Atmospheric Pollution Control C4
- 48.386G Unit Operations in Waste Management C3

Social-Economic-Planning

- 8.402G Transport, Environment, Community C6
- 8.403G Theory of Land Use/Transport Interaction C3
- 30.935G Organization Behaviour A C3
- 37.3015 Environmental Impact Assessment I C2
- 37.3016 Environmental Impact Assessment II C2
- 37.3347 Landscape Conservation and Rehabilitation C2
- 37.7116 Landscape Planning C3
- 37.7195 Recreation Management and Design C2
- 39.908G Community Noise Control C2
- 85.716G Public Policy C3
School of Applied Geology

8020
Engineering Geology-Hydrogeology-Environmental Geology Course

Master of Applied Science
MAppSc

The course consists of a Project (Group A) and six subjects chosen from Group B, at least one of which must be 25.702G Hydrogeology, 25.704G Environmental Geology, or 25.708G Engineering Geology. In special cases, eg where students have achieved a satisfactory standard in Geomechanics, those students taking 25.708G Engineering Geology and/or 25.709G Foundation Geology, may select in place of 25.706G either another subject from Group B, or one subject from another Faculty, provided such a subject is relevant to the course.

The Project normally consists of field and laboratory work, and is related to the student’s major interest. Students must consult the Professor of Engineering Geology for approval of the Project.

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.703G Project (Engineering Geology Graduate Course)</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25.702G Hydrogeology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>25.704G Environmental Geology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>25.705G Engineering Geophysics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>25.706G Geological Basis of Geomechanics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>25.707G Geopollution Management</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>25.708G Engineering Geology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>25.709G Foundation Geology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>25.710G Coastal Environmental Geology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>27.904G Geomorphology for Engineering Geologists</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

The duration of the course is one academic year of full-time study; the course is, however, divided into three units to facilitate part-time study. All students must complete Units A, B and C. Formal course work (Units A and B) accounts for 20-22 hours per week during Session 1. Some students (depending on their qualifications) may be required to take a Special Project, 25.000G, either as a pre- or co-requisite. The courses within the three units may be varied at the discretion of the Head of the School to suit the requirements of individual students.

Unit A (Weeks 1-7 Session 1)
25.800G Seminar
25.801G Geology in Exploration I
25.802G General Introduction to Exploration Geophysics
25.803G Introduction to Exploration Geochemistry
25.804G Introduction to Data Processing and Interpretation
25.805G Resource Economics I
and either
25.807G Exploration Geophysics
or
25.808G Exploration Project
or
7.013* Principles of Mining
and
7.044* Mining Economics

Seven days of field tutorials are an integral part of Unit A.

*These are one session subjects, ie weeks 1-14

Unit B (Weeks 8-14 Session 1)
25.811G Advanced Geology in Exploration
25.815G Resource Economics II
25.816G Remote Sensing
25.817G Mining Law and Exploration Management
25.840G Seminar
7.001G Exploration Drilling
and either
7.013* Principle of Mining
and
7.044* Mining Economics
or
25.818G Exploration Project

*These are one session subjects, ie weeks 1-14

Unit C (Session 2)
25.819G Field — Laboratory Project

8091
Mineral Exploration Graduate Course

Master of Applied Science
MAppSc

The course is designed to give broad training in techniques of modern mineral exploration to geologists and mining engineers. Practical aspects are emphasized and the field-laboratory project is oriented to current problems of mineral exploration.

8092
Exploration Geophysics Graduate Course

Master of Applied Science
MAppSc

This is a specialized course in the techniques of exploration geophysics relevant to the current needs of the exploration
industry. Practical applications are emphasized, and the field-laboratory project is designed to investigate aspects of specific exploration problems.

The duration of the course is one academic year full-time study; the course is, however, divided into three units to facilitate part-time study. All students must complete Units A, B and C. Formal course work (Units A and B) accounts for 20-22 hours per week during Session 1. Some students (depending upon their qualifications) may be required to take a Special Project 25.000G either as a pre- or co-requisite. The courses within the three units may be varied at the discretion of the Head of the School to suit the requirements of individual students.

Unit A (Weeks 1-7 Session 1)

25.800G Seminar
25.801G Geology in Exploration I
25.802G General Introduction to Exploration Geophysics
25.803G Introduction to Exploration Geochemistry
25.804G Introduction to Data Processing and Interpretation
25.805G Resource Economics I
25.807G Exploration Geophysics

Seven days field tutorials are an integral part of Unit A.

Unit B (Weeks 8-14 Session 1)

25.831G Geological Interpretation
25.832G Advanced Exploration Geophysics
25.840G Seminar

Unit C (Session 2)

25.839G Field — Laboratory Project

8093 Exploration Geochemistry Graduate Course
Master of Applied Science MAppSc

This is a specialist course in the techniques of exploration geochemistry covering general principles, specific field applications, laboratory techniques, and data display and interpretation. Practical applications are emphasized and the field-laboratory project is designed to investigate aspects of mineral exploration problems.

The duration of the course is one academic year full-time study; the course is, however, divided into three units to facilitate part-time study. All students must complete units A, B and C. Formal course work (Units A and B) accounts for 20-22 hours per week during Session 1. Some students (depending upon their qualifications) may be required to take a Special Project, 25.000G, either as a pre- or co-requisite. The courses within the three units may be varied at the discretion of the Head of the School to suit the requirements of individual students.

Unit A (Weeks 1-7 Session 1)

25.800G Seminar
25.801G Geology in Exploration I
25.802G General Introduction to Exploration Geophysics
25.803G Introduction to Exploration Geochemistry
25.804G Introduction to Data Processing and Interpretation
25.805G Resource Economics I
and either
7.013* Principles of Mining
and
7.044* Mining Economics
or
25.808 Exploration Project

Seven days field tutorials are an integral part of Unit A.

*These are one session subjects, ie weeks 1-14

Unit B (Weeks 8-14 Session 1)

25.821G Geology in Exploration II
25.823G Advanced Exploration Geochemistry
25.824G Advanced Data Processing and Interpretation
25.827G Laboratory methods
25.840G Seminar
and either
7.013* Principles of Mining
and
7.044* Mining Economics
or
25.828G Exploration Project

*These are one session subjects, ie weeks 1-14

Unit C (Session 2)

25.829G Field — Laboratory Project
Formal courses in the School of Chemical Engineering and Industrial Chemistry lead to the award of the Master of Applied Science or the Graduate Diploma.

Master of Applied Science Degree Courses

The MAppSc courses involve a project which must integrate and apply the principles treated in the course. It may take the form of a design feasibility study or an experimental investigation. Evidence of initiative and of a high level of ability and understanding is required in the student's approach, and the results must be embodied in a report and submitted in accordance with the University's requirements.

The following graduate courses are available to Master of Applied Science degree candidates. Candidates may specialize in the following areas:

8000 Bioprocess Engineering
815 Chemical Engineering and Industrial Chemistry
and
8060 Fuel Technology

The MAppSc degree courses provide for a comprehensive study of theoretical and practical aspects of many advanced topics. The courses are formal and elective in nature and provide an opportunity for graduates to apply their basic skills in fields in which the School has developed special expertise.

The courses specializing in Chemical Engineering and Industrial Chemistry and Fuel Technology are primarily intended for graduates in Applied Science, Engineering, or Science with principal interests in Chemistry, Mathematics and/or Physics. The course specializing in Bioprocess Engineering is primarily intended for graduates in Agriculture, Applied Science, and Science with principal interests in Biochemistry, Chemistry and/or Microbiology. They are designed to allow the maximum flexibility consistent with the standing of the award.

Intending candidates are invited to submit proposed study programs to the Head of the School for advice and recommendation. Each individual course must be approved by the Higher Degree Committee of the Faculty of Applied Science. An acceptable course would be a program of formal study aggregating approximately 20 hours weekly for two sessions full-time or ten hours weekly for four sessions part-time, and which could comprise:

1. A major strand of course material making up 75% of the total program. This includes a project constituting not less than 15% and not more than 30% of the program;

2. A minor strand of broader-based supporting material making up to 25% of the total program; and

3. Undergraduate material (generally designated as subjects without a suffixed G number), which may be included in one or both strands but may not exceed 25% of the total program.

Approximately 60% of the program (including the project) must be undertaken in the School of Chemical Engineering and Industrial Chemistry. The remainder, subject to approval and availability, may be undertaken in other Schools within the University. Full details of all subjects are listed under Disciplines of the University in the Calendar.

8000 Bioprocess Engineering Graduate Courses*

Master of Applied Science MAppSc

The graduate subjects offered have been unitized to provide maximum flexibility. Any combination of units may be selected, subject to prerequisites or co-requisites as specified. Further, some of these units are designed as bridging material and would not be offered to graduates with previous qualifications in these particular areas.

The units offered are summarized below.

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>$1</th>
<th>$2</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.281G Design of Microbial Reactors</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 Rate Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Fundamentals of Microbial Stoichiometry</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Unit 3 Design of Microbial Reactors</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>48.282G Microbial Kinetics and Energetics</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unit 1 Microbial Kinetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Microbial Energetics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>48.283G Bioprocess Unit Operations and Equipment Design</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>48.284G Heat, Mass and Momentum Transport</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>48.285G Bioprocess Laboratory</td>
<td>3 or 3</td>
<td></td>
</tr>
</tbody>
</table>

This course is designed to provide professional training in the application of chemical engineering principles in the bioprocess industries. It extends over one full-time year or two part-time years and leads to the award of the degree of Master of Applied Science as outlined above.

As the material in this course will be of interest to graduates from a wide range of disciplines, the suggested course outlines consist of a central core selected from the subjects above and a range of background material. This background material can be designed to suit graduates from either of the two groups.

*For additional information on the MAppSc degree course see above
Consisting of firstly Applied Science, Engineering or Science with principal interests in Chemistry, Mathematics, or Physics, or, secondly, Agriculture or Science graduates with principal interests in Biochemistry, Chemistry and/or Microbiology. Graduates with an inadequate background in Mathematics and/or rate processes will be required to do a bridging course consisting of a specified reading list with associated assignments up to a maximum of 1 hour per week.

Suggested course outlines for graduates from the two primary areas are given below, however these outlines maybe modified to suit individual interests within the general requirements for the MAppSc degree course described above.

Applied Science Graduate or equivalent

Core Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.281G</td>
<td>Unit 3 Design of Microbial Reactors</td>
<td>1</td>
</tr>
<tr>
<td>48.282G</td>
<td>Microbial Kinetics and Energetics</td>
<td>3</td>
</tr>
<tr>
<td>48.283G</td>
<td>Bioprocess Unit Operations and Equipment Design</td>
<td>2½</td>
</tr>
<tr>
<td>48.285G</td>
<td>Bioprocess Laboratory</td>
<td>1½</td>
</tr>
<tr>
<td>48.900G</td>
<td>Project</td>
<td>6</td>
</tr>
</tbody>
</table>

Plus 6 hours of other material, for example:

1. Students wishing a more complete coverage of the life sciences may select

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.211G</td>
<td>Principles of Biology</td>
<td>1½</td>
</tr>
<tr>
<td>42.212G</td>
<td>Principles of Biochemistry</td>
<td>1½</td>
</tr>
<tr>
<td>44.101</td>
<td>Introductory Microbiology*</td>
<td>6</td>
</tr>
</tbody>
</table>

(S1 only)

*Students should note the special proviso for enrolment in this subject as indicated in the Subject Descriptions later in this handbook.

2. Students wishing to reinforce other areas in chemical engineering may select

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101</td>
<td>Introductory Microbiology*</td>
<td>6</td>
</tr>
<tr>
<td>48.281G</td>
<td>Unit 2 — Fundamentals of Microbial Stoichiometry</td>
<td>½</td>
</tr>
</tbody>
</table>

plus other elective material

 plus other elective material

*Students should note the special proviso for enrolment in this subject as indicated in the Subject Descriptions later in this handbook.

Science Graduate with a principal interest in the Life Sciences or equivalent

Core Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.281G</td>
<td>Unit 1 Rate Processes</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>Unit 3 Design of Microbial Reactors</td>
<td>1</td>
</tr>
<tr>
<td>48.282G</td>
<td>Microbial Kinetics and Energetics</td>
<td>3</td>
</tr>
</tbody>
</table>

8015
Chemical Engineering and Industrial Chemistry Graduate Course

Master of Applied Science

MAppSc

This course is designed to allow students to select areas of specialization appropriate to their needs. The areas of specialization include Industrial Chemistry, Chemical Engineering and Industrial Pollution Control. Students are asked to consult the area supervisors in the School to develop a program of study which complies with the regulations for the Master of Applied Science degree. Students may undertake a Major Project (48.900G) amounting to six hours per week for a year or take a Minor Project (48.901G) of three hours per week for a year and select an extra elective subject.

8005
Chemical Technology Graduate Course*

Master of Applied Science

MAppSc

These courses have been discontinued. Continuing students should refer to the 1982 Applied Science Handbook for details.

*For additional information on the MAppSc degree course see earlier this section.
8060
Fuel Technology Graduate Course*
Master of Applied Science
MAppSc
A formal course leading to the award of the degree of Master of Applied Science. It is a two-year part-time course designed to provide professional training and specialization in fuel science or fuel engineering for graduates in science, applied science or engineering who have not had substantial previous formal education in these subjects.

The course is based on the general formula for a MAppSc degree program, whereby the subjects 48.311 and 48.321 can comprise the 25% undergraduate component, the project (15 or 30% of the program) is 48.900G, and the remainder of the hours can be taken from the units offered in the 48.38-G series of subjects. There are also compulsory seminar and laboratory practice subjects.

The course allows reasonable flexibility with a choice of subjects, and units within subjects, subject to the availability of staff.

Provision is made for subjects outside those offered by the Department to be incorporated in the program at either graduate or undergraduate level.

8080
Industrial Pollution Control Graduate Course*
Master of Applied Science
MAppSc
This course has been discontinued. Continuing students should refer to the 1982 Applied Science Handbook for details.

5010
Corrosion Technology Graduate Diploma Course
Graduate Diploma
GradDip
The Graduate Diploma course in Corrosion Technology is open to graduates in Engineering, Applied Science or Science who wish to undertake formal studies to promote their careers in industry. At present it may only be taken as a two year part-time course.

The course is designed for those professionals in industry who are faced with the problem of combating corrosion. Its aim is to develop an appreciation of the fundamentals, principles of corrosion and of the available methods of overcoming it.

For graduates from Engineering (non-chemical) or Science (in a particular major) a bridging course is a necessary introduction to the graduate level of certain subjects. For this purpose the subject, 48.070G Process Principles, is specified.

The first year of the course introduces elementary aspects of corrosion technology and suitably orientates students depending on their initial qualifications. The second year of the course contains more detailed instruction at a graduate level in corrosion theory and prevention, together with suitable laboratory assignments.

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.070G Process Principles or Corrosion Laboratory</td>
</tr>
<tr>
<td>48.071G Corrosion Technology I</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.073G Corrosion Materials</td>
</tr>
<tr>
<td>48.074G Corrosion Technology II</td>
</tr>
<tr>
<td>48.075G Seminar</td>
</tr>
<tr>
<td>48.076G Corrosion Literature Review</td>
</tr>
<tr>
<td>48.077G Testing Laboratory (by roster)</td>
</tr>
</tbody>
</table>

*For additional information on the MAppSc degree course see earlier this section.
The School of Food Technology conducts formal courses leading to the award of the Master of Applied Science degrees and of the Graduate Diploma in Food Technology.

In addition, the School welcomes enquiries from graduates in Chemistry, Biochemistry, Microbiology, Applied Science, Chemical Engineering, Physiology, Nutrition and Agriculture who are interested in pursuing research in food science and technology for the award of the degrees of Master of Science and Doctor of Philosophy.

The Head of School provides information on research scholarships, fellowships, grants-in-aid and School research activities. Graduates are advised to consult the Head of School before making a formal application for registration.

8030
Food Technology Graduate Course
Master of Applied Science
MAppSc

This course provides for a comprehensive study of theoretical and applied aspects of the science and technology of foods. The course is formal and elective in nature, providing an opportunity for graduates to apply their basic skills in areas relevant to this field of applied science. It is a course particularly relevant to graduates in Agriculture, Applied Science and Science with principal interests in Chemistry, Biochemistry, Microbiology, Physiology, Nutrition and Chemical Engineering.

Intending candidates are invited to submit proposed study programs to the Head of the School for advice and recommendation. Each individual course must be approved by the Higher Degree Committee of the Faculty of Applied Science. An acceptable course would be a program of formal study aggregating approximately 20 hours weekly for two sessions full-time or ten hours weekly for four sessions part-time, and which could comprise:

1. A major strand of course material making up 75 per cent of the total program. This would include a project constituting not less than 15 per cent and not more than 30 per cent of the program.

2. A minor strand of broader-based supporting material making up to 25 per cent of the total program.

Undergraduate material may be included in one or both strands but may not exceed 25 per cent of the total program. Approximately 60 per cent of the program (including the project) must be taken in the School of Food Technology. The remainder, subject to approval and availability, may be undertaken in other schools within the University.

Graduate subjects in Food Technology may be selected from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.151G</td>
<td>Introductory Food Science</td>
<td>1</td>
</tr>
<tr>
<td>38.152G</td>
<td>Food Process Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>38.153G</td>
<td>Food Technology Seminar</td>
<td>1</td>
</tr>
<tr>
<td>38.155G</td>
<td>Dairy Technology</td>
<td>2</td>
</tr>
<tr>
<td>38.156G</td>
<td>Oenology</td>
<td>1</td>
</tr>
<tr>
<td>38.157G</td>
<td>Technology of Cereal Products</td>
<td>1</td>
</tr>
<tr>
<td>38.158G</td>
<td>Marine Products</td>
<td>1</td>
</tr>
<tr>
<td>38.161G</td>
<td>Food Additives and Toxicology</td>
<td>1</td>
</tr>
<tr>
<td>38.162G</td>
<td>Postharvest Physiology and Handling of Fruit and Vegetables</td>
<td>3</td>
</tr>
<tr>
<td>38.163G</td>
<td>Methods in Food and Nutrition Education</td>
<td>1½</td>
</tr>
<tr>
<td>38.164G</td>
<td>Elements of Food Preservation</td>
<td>2½</td>
</tr>
<tr>
<td>38.165G</td>
<td>Plant Food Products</td>
<td>2</td>
</tr>
<tr>
<td>38.166G</td>
<td>Animal Food Products</td>
<td>1½</td>
</tr>
<tr>
<td>38.350G</td>
<td>Food Microbiology</td>
<td>2</td>
</tr>
<tr>
<td>38.351G</td>
<td>The Microbial Ecology of Foods</td>
<td>3</td>
</tr>
<tr>
<td>38.451G</td>
<td>Advanced Food Engineering</td>
<td>1½</td>
</tr>
<tr>
<td>38.452G</td>
<td>Drying of Foods</td>
<td>1½</td>
</tr>
<tr>
<td>38.551G</td>
<td>Advanced Nutrition</td>
<td>1½</td>
</tr>
<tr>
<td>38.552G</td>
<td>Methods in Nutritional Assessment and Analysis</td>
<td>1½</td>
</tr>
<tr>
<td>38.553G</td>
<td>Principles of Nutrition</td>
<td>2</td>
</tr>
<tr>
<td>38.900G</td>
<td>Major Project</td>
<td>6</td>
</tr>
<tr>
<td>38.901G</td>
<td>Minor Project</td>
<td>3</td>
</tr>
</tbody>
</table>

The work involved in the project must be embodied in a report and submitted in accordance with the requirements of the Faculty.

Depending on the candidate's background, enrolment in some of the above subjects may be accompanied by enrolment in related undergraduate subjects as prerequisites or co-requisites. A particular subject may not necessarily be conducted in any one year.

8035
Food Engineering Graduate Course
Master of Applied Science
MAppSc

This course is designed for graduates who have a degree in Engineering or a related field of study, and an interest in the processing of biological resources.

*Weekly equivalent of total hours for subject These hours may be concentrated in one session
The formal components of the course provide professional training at an advanced level in food science and in food engineering. The studies in food science deal with nutrition, food chemistry, microbiology, food preservation and the technology of plant, animal and marine foods. These subjects have been specially prepared and no previous experience in these areas is necessary. The studies in food engineering are designed to strengthen and broaden the engineering background of graduates and will emphasize the use of fundamental principles in solving problems associated with food processing.

Problem-solving skills are further developed in a research project devoted to an area of food engineering.

The course requires three sessions of full-time study and students are admitted to the program in the second session of each year. The details of the course are as follows:

Session A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.601G</td>
<td>Food Technology A</td>
<td>3</td>
</tr>
<tr>
<td>38.602G</td>
<td>Technology of Food Preservation A</td>
<td>3</td>
</tr>
<tr>
<td>38.603G</td>
<td>Food Engineering A</td>
<td>3</td>
</tr>
<tr>
<td>38.604G</td>
<td>Food Engineering B</td>
<td>3</td>
</tr>
<tr>
<td>38.902G</td>
<td>Reading Assignment or Elective Material</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 15 hours

Session B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.605G</td>
<td>Food Technology B</td>
<td>3</td>
</tr>
<tr>
<td>38.606G</td>
<td>Technology of Food Preservation B</td>
<td>3</td>
</tr>
<tr>
<td>38.607G</td>
<td>Technology of Food Processing A</td>
<td>3</td>
</tr>
<tr>
<td>38.608G</td>
<td>Food Engineering C</td>
<td>3</td>
</tr>
<tr>
<td>38.901G</td>
<td>Minor Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective Material</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 18 hours

Session C

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.609G</td>
<td>Technology of Food Processing B</td>
<td>3</td>
</tr>
<tr>
<td>38.610G</td>
<td>Food Engineering D</td>
<td>3</td>
</tr>
<tr>
<td>38.611G</td>
<td>Food Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>38.612G</td>
<td>Food Engineering Field Work</td>
<td>3</td>
</tr>
<tr>
<td>38.901G</td>
<td>Minor Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 15 hours

Elective material may be selected from any subject offered by the University, subject to approval by the Head of the School of Food Technology. The Australian Government, through the Australian Development Assistance Bureau (ADAB), Department of Foreign Affairs, recognizes this course as an Australian Development Assistance Course. Nominations for Australian awards to overseas graduates are considered only when made by national governments and submitted through the local Australian diplomatic mission.

5020 Food Technology Graduate Diploma Course

Graduate Diploma GradDip

The Graduate Diploma course is designed to provide professional training at an advanced level for graduates in Science, Applied Science or Engineering who have not had previous training in Food Technology.

Requirements are a first degree and, in some cases, the successful completion of assignments or examinations, as directed by the Head of the School.

The course is a blend of formal lectures and laboratory work at the undergraduate and graduate levels. The Graduate Diploma in Food Technology (GradDip) is awarded on the successful completion of one year of full-time study (17 hours/week), or two years of part-time study (8½ hours/week). It involves the following program:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.151G</td>
<td>Introductory Food Science</td>
<td>1</td>
</tr>
<tr>
<td>38.152G</td>
<td>Food Process Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>38.164G</td>
<td>Elements of Food Preservation</td>
<td>2½</td>
</tr>
<tr>
<td>38.165G</td>
<td>Plant Food Products</td>
<td>2</td>
</tr>
<tr>
<td>38.166G</td>
<td>Animal Food Products</td>
<td>1½</td>
</tr>
<tr>
<td>38.350G</td>
<td>Food Microbiology</td>
<td>2</td>
</tr>
<tr>
<td>38.553G</td>
<td>Principles of Nutrition</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electives†</td>
<td>4</td>
</tr>
</tbody>
</table>

†Electives are to be selected from the following list of subjects according to availability and with the approval of the Head of School.

*Weekly equivalent of total hours for subject. These hours may be concentrated in one session.

2.271G Chemistry and Analysis of Foods

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.142</td>
<td>Oenology</td>
<td>3</td>
</tr>
<tr>
<td>38.144</td>
<td>Treatment and Utilization of Food Processing Wastes</td>
<td>1½</td>
</tr>
</tbody>
</table>
8050

Metallurgy Graduate Course

Master of Applied Science
MAppSc

This course provides for a comprehensive study of theoretical and practical topics at an advanced level. It is designed to allow the maximum flexibility in choice of topics consistent with the standing of the award.

Intending candidates are invited to discuss proposed study programs with the Head of the School for advice and recommendation.

An acceptable program would be:

1. A program of formal study (including a project) totalling approximately twenty hours per week for two sessions full-time.

2. A project comprising about twenty per cent of the program.

At least eighty per cent of the total program must be composed of units selected from those available as part of the graduate subjects listed below, except that not more than eight hours per week for two sessions may be devoted to each of 4.211G Metallurgical Practice and 4.231G Advanced Theoretical Metallurgy and not more than six hours per week for two sessions may be devoted to 4.221G Advanced Metallurgical Techniques.

Graduate Subjects

4.241G Graduate Metallurgy Project
4.211G Metallurgical Practice
4.221G Advanced Metallurgical Techniques
4.231G Specialist lectures in Advanced Theoretical Metallurgy
4.251G Advanced Materials Technology
4.270G Solid State and Mineral Chemistry
4.271G Refractory Technology I
4.272G Refractory Technology II
4.281G Chemistry of Glass Melting

*These may be presented at twice the weekly rate over one session.

or such other electives approved by the Head of School. In all cases the hours devoted to graduate subjects constitute at least 50 per cent of the total course hours.

*Weekly equivalent of total hours for subject. These hours may be concentrated in one session.

School of Metallurgy

The School of Metallurgy conducts courses which lead to the award of Master of Applied Science.

In addition, the School welcomes enquiries from graduates in Science, Engineering and Applied Science who are interested in doing research leading to the award of the degrees of Master of Science, Master of Engineering or Doctor of Philosophy in metallurgy or ceramic engineering.

The Head of the School is pleased to give information about research scholarships, fellowships and grants-in-aid. Graduates are advised to consult him before making a formal application for registration.
Undergraduate Study

These subjects are intended for inclusion in qualifying courses and to satisfy prerequisites and co-requisites for students whose first degree is in a field other than metallurgy.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.121 Principles of Metal Extraction</td>
<td>3</td>
</tr>
<tr>
<td>4.131 Principles of Physical and Mechanical Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>4.141 Experimental Techniques in Physical Metallurgy</td>
<td>2</td>
</tr>
</tbody>
</table>

The above undergraduate subjects offered by the School of Metallurgy and undergraduate and graduate subjects offered by other Schools of the University may be included, but may not exceed 20 per cent of the total program.

1. When appropriate, and subject to the approval of the Head of the Department, up to 4 hours per week may be selected from approved courses offered within the University in place of units in which students have prior expertise.

2. Undergraduate material may not exceed 20 per cent of the total program.

3. The work involved in the project must be embodied in a report and submitted in accordance with the requirements of Faculty.

4. Attendance at field trips totalling up to one week may be required.

School of Mining Engineering

8055 Minerals Engineering Graduate Course
Master of Applied Science MAppSc

The course is designed to provide a comprehensive study of theoretical and practical aspects of mineral processing technology at an advanced level. Formal subjects represent approximately 75 per cent of the program, the remaining 25 per cent being devoted to a project. Election in choice of project work permits specialization in mineral processing or coal preparation. Candidates who do not have an appropriate academic background may be required to enrol in related undergraduate subjects as prerequisites. Consideration is given to full-time or part-time enrolment.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.013 Principles of Mining</td>
<td>2</td>
</tr>
<tr>
<td>7.361G Minerals Engineering I</td>
<td>7</td>
</tr>
<tr>
<td>7.362G Minerals Engineering II</td>
<td>8</td>
</tr>
</tbody>
</table>

8056 Mining Geomechanics Graduate Course
— Part-time (External)
Master of Applied Science MAppSc

The course is offered to enable graduate mining engineers, geologists and civil engineers stationed in remote locations to carry out advanced theoretical and practical studies in geomechanics applicable to mining operations. Most of the work is completed by correspondence, with the exception of short annual residential schools of two weeks duration at the Kensington campus.

Enquiries from graduates living in the Sydney metropolitan area, as well as from graduates in other disciplines, are welcomed. In the latter case it may be necessary to include supporting subjects at undergraduate level within the Masters' program as approved by the Head of School of Mining Engineering, up to a maximum of 25 per cent of the total program. It may also be necessary in some circumstances to take some prerequisite or co-requisite background undergraduate subjects, as directed by the Head of School.

The program consists of formal study equivalent to nine to ten hours of lectures per week, depending on the subjects chosen, for two years on a part-time external basis. Not less than 20 per cent of the total program consists of a project on an approved topic covering a field or laboratory investigation of a mining geomechanics problem.

Three of the subjects, in addition to the project, form a compulsory core strand. These are augmented by a range of
elective, optional subjects. A grouping of five options (including selections from undergraduate subjects, where appropriate) may be selected for study, subject to the approval of the Head of School and availability of the topics. Assessment is by formal examination (at appropriate country centres where necessary) and by assignment work.

Core Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.515X Rock Mechanics Measurements</td>
<td>3 3</td>
</tr>
<tr>
<td>7.525X Strata Control Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.776G Rock Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.455X Mining Geomechanics Project</td>
<td>4 4</td>
</tr>
</tbody>
</table>

Optional Subjects

Group A

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.535X Mine Fill Technology</td>
<td>2 2</td>
</tr>
<tr>
<td>7.545X Advanced Rock Cutting Technology</td>
<td>2 2</td>
</tr>
<tr>
<td>7.555X Blasting Technology</td>
<td>2 2</td>
</tr>
<tr>
<td>7.565X Rock Slope Stability</td>
<td>2 2</td>
</tr>
<tr>
<td>7.575X Subsidence Engineering</td>
<td>2 2</td>
</tr>
<tr>
<td>7.585X Economics and Management of Geomechanics Projects</td>
<td>2 2</td>
</tr>
</tbody>
</table>

Group B

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.777G Numerical Methods in Geomechanics</td>
<td>3</td>
</tr>
<tr>
<td>8.778G Geotechnical Processes for Energy Resources</td>
<td>3</td>
</tr>
<tr>
<td>8.780G Geological Engineering</td>
<td>3</td>
</tr>
<tr>
<td>25.702G *Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>25.706G Geological Basis of Geomechanics</td>
<td>3</td>
</tr>
<tr>
<td>25.708G *Engineering Geology</td>
<td>3</td>
</tr>
</tbody>
</table>

The program is arranged as follows:

Year 1 — Part-time

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.013 Principles of Mining</td>
<td>2 0</td>
</tr>
<tr>
<td>7.023 Mineral Process Engineering</td>
<td>2 0</td>
</tr>
<tr>
<td>7.033 Mineralogical Assessment</td>
<td>1 0</td>
</tr>
<tr>
<td>7.234 Mineral Economics</td>
<td>1 1</td>
</tr>
<tr>
<td>7.311G Mineral Beneficiation</td>
<td>0 3</td>
</tr>
<tr>
<td>7.111G Mining Engineering</td>
<td>0 3</td>
</tr>
</tbody>
</table>

*Subject not available in 1983 Offering to be reviewed

5040

Mining and Mineral Engineering Graduate Diploma Course

Graduate Diploma GradDip

The Graduate Diploma course in Mining and Mineral Engineering is designed to provide professional training for graduates in Science, Applied Science or Engineering who wish to specialize in the fields of mining and mineral beneficiation. The course is concerned primarily with instruction in the scientific and engineering principles associated with the mining and beneficiation of minerals and coal.

The Graduate Diploma in Mining and Mineral Engineering (GradDip) will be awarded on the successful completion of one year full-time or two years part-time study. The course is a blend of lecture and laboratory work and allows the choice of elective specialization in either mining engineering or mineral processing and coal preparation.

It should be noted that some degree of specialization will be possible in the laboratory investigations.

When appropriate, certain sections of the course may be offered as a unit over a short period of time to permit mineral industry personnel to attend the advanced course in a particular area of that discipline.

Year 2

The project is carried out in the second year, together with the remaining options or undergraduate subjects of the approved program.

Students may take three options from Group A or two options from Group A and one from Group B or one option from Group A and two Options from Group B.
Graduate Study

Year 2 — Part-time

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.122G Mining Engineering Technology</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td>3</td>
</tr>
<tr>
<td>7.322G Mineral Beneficiation Technology</td>
<td>3</td>
</tr>
<tr>
<td>and Project or</td>
<td>3</td>
</tr>
<tr>
<td>7.132G Mining Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>and Project or</td>
<td>3</td>
</tr>
<tr>
<td>7.332G Mineral Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>and Project or</td>
<td>3</td>
</tr>
</tbody>
</table>

When appropriate, up to 3 hours per week may be selected from approved courses available within this School or offered by other Schools within the University.

Veterinary Science and Pure Science for graduates who wish to study and work in the field of Wool and Pastoral Sciences, which is of such overall importance to Australia.

The normal requirement for admission to the course is a degree in Agriculture, Veterinary Science or Science in an appropriate field. In addition, students may be required to take a qualifying examination. Such qualifying examination will be of a standard which will ensure that the student has sufficient knowledge of the subject and the principles involved to profit by the course.

Applicants from Colleges of Advanced Education who have obtained credit passes or better in the Diploma of Applied Science (Agriculture) are eligible for consideration for direct entry into the Graduate Diploma course in Wool and Pastoral Sciences.

The following program may be completed either in one year on a full-time basis or over two years on a part-time basis. Students are required to carry out full-time study or its equivalent to the extent of eighteen hours lecture and laboratory work per week for two sessions. Both graduate subjects and undergraduate subjects may be chosen to suit the requirements of the student subject to their availability and the approval of the Head of the School.

Full-time Course

18 hours per week of which at least 10 must be chosen from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.105G Livestock Production</td>
<td>6</td>
</tr>
<tr>
<td>9.205G Range Management</td>
<td>4</td>
</tr>
<tr>
<td>9.504G Wool Science</td>
<td>6</td>
</tr>
<tr>
<td>9.803G Animal Breeding</td>
<td>4</td>
</tr>
<tr>
<td>9.813G Quantitative Methods</td>
<td>4</td>
</tr>
</tbody>
</table>

A maximum of 8 hours per week of study may be selected from approved undergraduate subjects.

Graduate Diploma students are expected to work at the level of honours students in the undergraduate courses and to carry out prescribed study of current research material in the appropriate field.

School of Wool and Pastoral Sciences

5081 Wool and Pastoral Sciences Graduate Diploma Course
Graduate Diploma GradDip

The course leading to the award of the Graduate Diploma in Wool and Pastoral Sciences is specially designed for graduate students preparing themselves for careers in the pastoral industry. One of the principal functions of the course is to provide a bridge from other disciplines such as Agriculture,
Graduate Study

Conditions for the Award of Higher Degrees

First Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Disciplines of the University: Faculty Table (Undergraduate Study) in the Calendar.

Higher Degrees

The following is the list of higher degrees and graduate diplomas of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Disciplines of the University: Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparations and Submissions of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Calendar Medicine</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar and all handbooks</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA(Hons)</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBuildE</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Education</td>
<td>ME</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of General Studies</td>
<td>MGenStud</td>
<td>General Studies</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPed</td>
<td>Calendar†</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws by Research</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhys</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Psychology</td>
<td>MPSychol</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Public Administration</td>
<td>MPA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Science (Biotechnology)</td>
<td>MSc(Biotech)</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Science (Building)</td>
<td>MSc(Building)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Psychology)</td>
<td>MSc(Psychol)</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
</tbody>
</table>
Doctor of Philosophy (PhD)

1. The degree of Doctor of Philosophy may be granted by the Council on the recommendation of the Professorial Board to a candidate who has made an original and significant contribution to knowledge and who has satisfied the following requirements:

2. A candidate for registration for the degree of Doctor of Philosophy shall:

 (1) hold an honours degree from the University of New South Wales; or
 (2) hold an honours degree of equivalent standing from another approved university; or
 (3) if the candidate holds a degree without honours from the University of New South Wales or other approved university, have achieved by subsequent work and study a standard recognized by the higher degree Committee of the appropriate faculty or board of studies (hereinafter referred to as the Committee) as equivalent to honours; or
 (4) in exceptional cases, submit such other evidence of general and professional qualifications as may be approved by the Professorial Board on the recommendation of the Committee.

3. When the Committee is not satisfied with the qualifications submitted by a candidate, the Committee may require the candidate, before being permitted to register, to undergo such examination or carry out such work as the Committee may prescribe.

4. A candidate for registration for a course of study leading to the degree of Doctor of Philosophy shall apply to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

5. Subsequent to registration the candidate shall pursue a program of advanced study and research for at least six academic sessions, save that:

 (1) a candidate fully engaged in advanced study and research for the degree, who before registration was engaged upon research to the satisfaction of the Committee, may be exempted from not more than two academic sessions;
 (2) in special circumstances the Committee may grant permission for the candidate to spend not more than one calendar year of the program in advanced study and research at another institution provided that the work can be supervised in a manner satisfactory to the Committee;
 (3) in exceptional cases, the Professorial Board on the recommendation of the Committee may grant permission for a candidate to be exempted from not more than two academic sessions.
6. A candidate who is fully engaged in research for the degree shall present for examination not later than ten academic sessions from the date of registration. A candidate not fully engaged in research shall present for examination not later than twelve academic sessions from the date of registration. In special cases an extension of these times may be granted by the Committee.

7. The candidate shall be fully engaged in advanced study and research, save that:

(a) the Committee may permit a candidate to undertake a limited amount of University teaching or outside work which in its judgement will not interfere with the continuous pursuit of the proposed course of advanced study and research;

(b) a member of the full-time staff of the University may be accepted as a part-time candidate for the degree, in which case the Committee shall prescribe a minimum period for the duration of the program;

(c) in special circumstances, the Committee may, with the concurrence of the Professorial Board, accept as a part-time candidate for the degree a person who is not a member of the full-time staff of the University and is engaged in an occupation which, in its opinion, leaves the candidate substantially free to pursue a program in a school* of the University. In such a case the Committee shall prescribe for the duration of the program a minimum period which, in its opinion, having regard to the proportion of the time which the candidate is able to devote to the program in the appropriate University school* is equivalent to the six sessions ordinarily required.

8. Every candidate shall pursue a program under the direction of a supervisor appointed by the Committee from the full-time members of the University staff. The work, other than field work, shall be carried out in a school* of the University save that in special cases the Committee may permit a candidate to conduct the work at other places where special facilities not possessed by the University may be available. Such permission will be granted only if the direction of the work remains wholly under the control of the supervisor.

9. Not later than two academic sessions after registration the candidate shall submit the topic of research for approval by the Committee. After the topic has been approved it may not be changed except with the permission of the Committee.

10. A candidate may be required by the Committee to attend a formal course of appropriate study.

11. On completing the course of study every candidate must submit a thesis which complies with the following requirements:

(a) the greater proportion of the work described must have been completed subsequent to registration for the PhD degree;

(b) it must be an original and significant contribution to the knowledge of the subject;

(c) it must be written in English except that a candidate in the Faculty of Arts may be required by the Faculty on the recommendation of the supervisor to write the thesis in an appropriate foreign language;

(d) it must reach a satisfactory standard of expression and presentation.

12. The thesis must present the candidate’s own account of the research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied on the candidate’s part in the joint research.

13. Every candidate shall be required to submit with the thesis a short abstract of the thesis comprising not more than 350 words.

The abstract shall indicate:

(a) the problem investigated;

(b) the procedures followed;

(c) the general results obtained;

(d) the major conclusions reached;

but shall not contain any illustrative matter, such as tables, graphs or charts.

*Or department where a department is not within a school
14. A candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award.

15. The candidate shall give in writing two months' notice of intention to submit the thesis.

16. Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may also submit any work previously published whether or not such work is related to the thesis.

17. It shall be understood that the University retains the four copies of the thesis submitted for examination, and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

18. There shall normally be three examiners of the thesis, appointed by the Professorial Board on the recommendation of the Committee, at least two of whom shall be external to the University.

19. At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:
 (1) The candidate be awarded the degree without further examination; or
 (2) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or
 (3) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
 (4) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
 (5) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

20. If the performance at the further examination recommended under Rule 19.(3) is not to the satisfaction of the Committee the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by them but not exceeding eighteen months.

21. The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be admitted to the degree.

22. A candidate shall be required to pay such fees as may be determined from time to time by the Council.
2. (1) An applicant for registration for the degree shall normally be a graduate from an appropriate four-year, full-time undergraduate course in the University or other approved university or tertiary institute at a standard acceptable to the Committee.

Qualifications

(2) The Committee may consider applications from graduates of three-year, full-time courses in the University or other approved university or tertiary institute who have satisfactorily completed an approved qualifying program of not less than one year full-time or its equivalent or have submitted evidence of attainment in appropriate graduate studies extending over a period of not less than one full-time year or its equivalent.

(3) The Committee may also consider applications from graduates of the Bachelor of Science (Technology) and Bachelor of Science (Engineering) courses of the University who have satisfactorily completed an approved qualifying program of not less than one year part-time or who can submit evidence of academic attainment in appropriate graduate studies extending over the same period or its equivalent.

(4) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and taking such examinations as the Committee may determine.

Registration and Progression

3. (1) An application to register as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the course.

(2) A candidate for the degree shall be required to undertake such course of formal study, pass such examinations and, where specified, submit a report on a project, as prescribed by the Committee.

(3) No candidate shall be considered for the award of the degree until the lapse of two sessions in the case of a full-time candidate or four sessions in the case of a part-time candidate from the date from which registration becomes effective. The Committee may approve remission of up to two sessions for a part-time candidate.

(4) The progress of a candidate shall be reviewed annually by the Committee on the recommendation of the Head of School or Department in which the candidate is registered and as a result of such review the Committee may terminate the candidature.

Project

4. (1) Where specified, a report on a project approved by the Committee may be submitted at the completion of the formal section of the course, but in any case shall be submitted not later than one year after the completion of such course.

(2) The format of the report shall accord with the instructions of the Head of School and shall comply with the requirements of the Committee for the submission of project reports.

(3) The report shall be under the supervision of a member of the academic staff and shall be examined by two examiners. The satisfactory completion of the project shall be regarded as part of the annual assessment.

Recommendation for Admission to Degree

5. Having considered the candidate's results in the prescribed course of study, the Committee shall recommend whether the candidate may be admitted to the degree.

Fees

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.
Master of Engineering (ME)

1. The degree of Master of Engineering may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate Faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an investigation.

Qualifications

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor in the University of New South Wales, or other approved university, in an appropriate school or department at a standard acceptable to the Committee.

(2) In exceptional cases a person may be permitted to register as a candidate for the degree if the person submits evidence of such academic and professional attainment as may be approved by the Professorial Board on the recommendation of the appropriate Committee.

(3) Notwithstanding any other provisions of these conditions, the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

Registration

3. (1) An application to register as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the session in which the candidate desires to register.

(2) In every case, before permitting an applicant to register as a candidate, the Committee shall be satisfied that adequate supervision and facilities are available.

(3) An approved applicant shall register in one of the following categories:

(a) student in full-time attendance at the University
(b) student in part-time attendance at the University
(c) student working externally to the University

(4) Every candidate for the degree shall be required to carry out a program of advanced study to take such examinations and perform such other work as may be prescribed by the Committee which shall include the preparation and submission of a thesis embodying the results of an original investigation. The work shall be carried out under the direction of a supervisor appointed by the Committee or under such conditions as the Committee may determine.

(5) No candidate shall be considered for the award of the degree until the lapse of four complete sessions from the date from which registration becomes effective save that, in the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may, with the approval of the Committee, be reduced by up to two sessions.

Thesis

4. (1) A candidate for the degree shall be required to submit three copies of the thesis referred to in paragraph 3. (4) which shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may submit any work the candidate has published whether or not such work is related to the thesis.

(2) For each candidate there shall be at least two examiners appointed by the Professorial Board, on the recommendation of the Committee one of whom shall, if possible, be an external examiner.

(3) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Recommendation for Admission to Degree

5. Having considered the examiners' reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.
1. The degree of Master of Environmental Studies may be awarded on the recommendation of the Higher Degree Committee of the Faculty of Applied Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed a program of advanced study comprising formal course work and the submission of a report on a project approved by the Committee.

2. (1) An applicant for registration for the degree shall normally be a graduate from an appropriate four-year full-time undergraduate course in the University or other approved university or tertiary institution at a standard acceptable to the Committee.

(2) An applicant may also be permitted to register as a candidate for the degree by submitting evidence of such academic or professional attainments as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the committee may require an applicant to demonstrate fitness for registration by carrying out such work and taking such examinations as the Committee may determine.

3. (1) An application to register as a candidate for the degree of Master shall be made on the prescribed form which shall be lodged with the Registrar at least two (2) months before the commencement of the course.

(2) A candidate for the degree shall be required to undertake such course of formal study, pass such examinations and submit a report on a project as prescribed by the Committee.

(3) No candidate shall be considered for the award of the degree until the lapse of two sessions in the case of a full-time candidate or four sessions in the case of a part-time candidate from the date from which registration becomes effective.

(4) The progress of a candidate shall be reviewed annually by the Committee and as a result of such review the Committee may terminate the candidature.

4. (1) A report on a project approved by the Committee shall be submitted at the completion of the formal section of the course, but in any case not later than one year after the completion of such course.

(2) The format of the report shall accord with the requirements of the Committee for the submission of project reports.

(3) (a) The report shall be examined by two examiners appointed by the Committee;

(b) A candidate may be required to attend for an oral or written examination.

5. Having considered the examiners' report and the candidate's other results in the prescribed course of study, the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Science may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate Faculty or Board of Studies (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.
Qualifications
2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor in the University of New South Wales, or other approved University in an appropriate school or department at a standard acceptable to the Committee.

(2) In exceptional cases a person may be permitted to register as a candidate for the degree if the person submits evidence of such academic and professional attainments as may be approved by the Professorial Board on the recommendation of the appropriate Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

Registration
3. (1) An application to register as a candidate for the degree of Master of Science shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the session in which the candidate desires to register.

(2) In every case before permitting an applicant to register as a candidate the Committee shall be satisfied that adequate supervision and facilities are available.

(3) An approved applicant shall register in one of the following categories:
(a) student in full-time attendance at the University
(b) student in part-time attendance at the University
(c) student working externally to the University

(4) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design, to take such examinations and to perform such other work as may be prescribed by the Committee. This work shall be carried out under the direction of a supervisor appointed by the Committee or under such conditions as the Committee may determine.

(5) At least once a year and at any other time that the Committee sees fit, the candidate's supervisor shall present to the head of school or department in which the candidate is registered a report on the progress of the candidate. The Committee shall review the report and may, if it decides as a result of its review that the progress of a candidate is unsatisfactory, cancel registration or take such other action as it considers appropriate.

(6) Unless otherwise recommended by the Committee, no candidate shall be awarded the degree until the lapse of four complete sessions from the date of registration, save that the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may be reduced by up to two sessions with the approval of the Committee. A candidate who is fully engaged in research for the degree shall present for examination not later than six academic sessions from the date of registration. A candidate not fully engaged in research shall present for examination not later than twelve academic sessions from the date of registration. In special cases an extension of these times may be granted by the Committee.

Thesis
4. (1) A candidate for the degree shall be required to submit three copies of the thesis referred to in paragraph 3. (4) which shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may submit also for examination any work the candidate has published whether or not such work is related to the thesis.

(2) For each candidate there shall be at least two examiners, appointed by the Professorial Board on the recommendation of the Committee, one of whom, if possible, shall be external to the University.

(3) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part in photostat or microfilm or other copying medium.
5. Having considered the examiners' reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

1. Where it is not possible for candidates to register under the normal conditions for the degree of Master of Science, Master of Engineering or Master of Surveying by reason of their location at centres which are distant from University Schools or where effective supervision is not practicable registration may be granted in these categories under the following conditions:

Master of Science (MSc) and Master of Engineering (ME) without supervision

2. An applicant for registration shall have been admitted to a degree of Bachelor in the University of New South Wales at a standard acceptable to the Higher Degree Committee of the appropriate Faculty (hereinafter referred to as the Committee).

3. (1) An application to register as an external candidate for the degree of Master of Science, Master of Engineering or Master of Surveying without supervision shall be lodged with the Registrar for recommendation by the Head of School and consideration by the Higher Degree Committee of the appropriate Faculty (hereinafter referred to as the Committee) not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should in the graduate's own interest at an early stage, seek the advice of the appropriate School with regard to the adequacy of the subject matter for the degree. A synopsis of the work should be enclosed.

(2) A candidate shall not be considered for the award of the degree until the lapse of six sessions in the case of honours graduates and eight sessions in the case of pass graduates from the date of graduation.

4. (1) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an investigation or design. The thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. A candidate may submit also for examination any work the candidate has published, whether or not such work is related to the thesis.

(b) Every candidate shall submit with the thesis a statutory declaration that the material contained therein is the candidate's own work, except where otherwise stated in the thesis.

(2) For each candidate there shall be at least two examiners appointed by the Professorial Board on the recommendation of the Committee, one of whom shall be an internal examiner.

(3) If the thesis reaches the required standard, the candidate shall be required to attend for an oral examination at a time and place nominated by the Committee. The examiners may also arrange at their discretion for the examination of the candidate by written and/or practical examinations on the subject of the thesis and/or subjects related thereto.

(4) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5. Having considered the examiners' reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved applicant shall pay such fees as may be determined from time to time by the Council.
1. An application for admission to a graduate diploma course shall be made on the prescribed form which should be lodged with the Registrar at least two full calendar months before the commencement of the course.

2. An applicant for admission to a graduate diploma course shall be:
 (1) a graduate of the University of New South Wales or other approved university.
 (2) a person with other qualifications as may be approved by Faculty.

3. Notwithstanding clause 2. above, Faculty may require an applicant to take such other prerequisite or concurrent studies and/or examinations as it may prescribe.

4. Every candidate for a graduate diploma shall be required to undertake the appropriate course of study, to pass any prescribed examinations, and if so laid down in the course, to complete a project or assignment specified by the Head of the School. The format of the report on such project or assignment shall accord with the instructions laid down by the Head of the School.

5. An approved applicant shall be required to pay the fee for the course in which the applicant desires to register. Fees shall be paid in advance.
Subject Descriptions

Identification of Subjects by Number

A subject is defined by the Professorial Board as ‘a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University’.

Each approved subject of the University is identifiable both by number and by name as this is a check against nomination of subject other than the one intended.

Subject numbers are allocated by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the number before the decimal point.

2. Each subject number is unique and is not used for more than one subject title.

3. Subject numbers which have not been used for some time are not used for new subject titles.

4. Graduate subjects are indicated by a suffix ‘G’ to a number with three digits after the decimal point. In other subjects three or four digits are used after the decimal point.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section of the handbooks.

Details of subjects available in Faculty of Applied Science courses but not included in this list may be obtained from the School responsible for the subject. Details of subjects in the Faculty of Arts which may be taken as humanities subjects may be found in the current Arts Faculty Handbook.

The identifying numerical prefixes for each subject authority are set out below.

Servicing Subjects are those taught by a School or Department outside its own faculty and are listed at the end of Undergraduate Study and Graduate Study of the relevant School. Their subject descriptions are published in the handbook of the Faculty in which the subject is taught.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information supplied about each subject: S1 (Session 1); S2 (Session 2); F (Session 1 plus Session 2, ie full year); S1 or S2 (Session 1 or Session 2, ie choice of either session); SS (single session, ie which session taught is not known at time of publication); L (Lecture, followed by hours per week); T (Laboratory/Tutorial, followed by hours per week); Sem (Seminar, followed by hours per week) hpw (hours per week); C (Credit or Credit units), CR (Credit Level), DN (Distinction); R (after subject number) Broken Hill syllabus.
<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics*</td>
<td>Science</td>
<td>85</td>
</tr>
<tr>
<td>School of Chemistry*</td>
<td>Science</td>
<td>86</td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td>Applied Science</td>
<td>88</td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering*</td>
<td>Engineering</td>
<td>93</td>
</tr>
<tr>
<td>School of Electrical Engineering and Computer Science*</td>
<td>Engineering</td>
<td>95</td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td>Applied Science</td>
<td>96</td>
</tr>
<tr>
<td>School of Civil Engineering*</td>
<td>Engineering</td>
<td>102</td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td>Applied Science</td>
<td>104</td>
</tr>
<tr>
<td>School of Mathematics*</td>
<td>Science</td>
<td>107</td>
</tr>
<tr>
<td>School of Architecture</td>
<td>Architecture</td>
<td>109</td>
</tr>
<tr>
<td>School of Psychology*</td>
<td>Biological Sciences</td>
<td>109</td>
</tr>
<tr>
<td>School of Textile Technology</td>
<td>Applied Science</td>
<td>109</td>
</tr>
<tr>
<td>School of Accountancy*</td>
<td>Commerce</td>
<td>110</td>
</tr>
<tr>
<td>School of Economics*</td>
<td>Commerce</td>
<td>111</td>
</tr>
<tr>
<td>School of Health Administration</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences*</td>
<td>Biological Sciences</td>
<td>113</td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering (Industrial Engineering)*</td>
<td>Engineering</td>
<td>113</td>
</tr>
<tr>
<td>Department of Industrial Arts</td>
<td>Architecture</td>
<td>113</td>
</tr>
<tr>
<td>School of Nuclear Engineering*</td>
<td>Engineering</td>
<td>113</td>
</tr>
<tr>
<td>School of Applied Geology</td>
<td>Applied Science</td>
<td>114</td>
</tr>
<tr>
<td>Department of General Studies</td>
<td>Board of Studies in General Education</td>
<td></td>
</tr>
<tr>
<td>School of Geography</td>
<td>Applied Science</td>
<td>120</td>
</tr>
<tr>
<td>School of Marketing*</td>
<td>Commerce</td>
<td>126</td>
</tr>
<tr>
<td>School of Surveying*</td>
<td>Engineering</td>
<td>126</td>
</tr>
<tr>
<td>Department of Organizational Behaviour*</td>
<td>Commerce</td>
<td>127</td>
</tr>
<tr>
<td>School of Optometry</td>
<td>Science</td>
<td>127</td>
</tr>
<tr>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Building</td>
<td>Architecture</td>
<td>127</td>
</tr>
<tr>
<td>School of Town Planning*</td>
<td>Architecture</td>
<td>127</td>
</tr>
<tr>
<td>School of Landscape Architecture*</td>
<td>Architecture</td>
<td>127</td>
</tr>
<tr>
<td>School of Food Technology</td>
<td>Applied Science</td>
<td>128</td>
</tr>
<tr>
<td>Graduate School of the Built Environment*</td>
<td>Architecture</td>
<td>134</td>
</tr>
<tr>
<td>Professional Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Biochemistry*</td>
<td>Biological Sciences</td>
<td>134</td>
</tr>
<tr>
<td>School of Biotechnology*</td>
<td>Biological Sciences</td>
<td>135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Botany*</td>
<td>Biological Sciences</td>
<td>136</td>
</tr>
<tr>
<td>School of Microbiology*</td>
<td>Biological Sciences</td>
<td>136</td>
</tr>
<tr>
<td>School of Zoology*</td>
<td>Biological Sciences</td>
<td>137</td>
</tr>
<tr>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
<td>138</td>
</tr>
<tr>
<td>Faculty of Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry</td>
<td>Applied Science</td>
<td>138</td>
</tr>
<tr>
<td>School of English</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of History</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Philosophy</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Sociology*</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Political Science*</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Librarianship</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>School of French</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Drama</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Education</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Russian</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>Faculty of Arts</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of History and Philosophy of Science</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Social Work</td>
<td>Professional Studies</td>
<td>150</td>
</tr>
<tr>
<td>School of German Studies</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>School of Spanish and Latin American Studies</td>
<td>Arts</td>
<td>150</td>
</tr>
<tr>
<td>Subjects Available from Other Universities</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>Board of Studies in Science and Mathematics</td>
<td>150</td>
</tr>
<tr>
<td>School of Anatomy</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Medicine</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Pathology</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Physiology and Pharmacology</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Surgery</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Obstetrics and Gynaecology</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Paediatrics</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Psychiatry</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>School of Community Medicine</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>Faculty of Medicine</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>Medicine/Science/Biological Sciences</td>
<td>Medicine</td>
<td>150</td>
</tr>
<tr>
<td>Australian Graduate School of Management*</td>
<td>AGSM</td>
<td>150</td>
</tr>
<tr>
<td>Faculty of Law</td>
<td>Law</td>
<td>150</td>
</tr>
<tr>
<td>Division of Postgraduate Extension Studies</td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>
Physics Level I units

1.001 Physics I F L3T3
Prerequisites: 2 unit Mathematics or 3 unit Mathematics or 4 unit Mathematics and 2 unit Science (incl. Physics and/or Chem.) or 4 unit Science (incl. Physics and/or Chem.)

Co-requisites: 10.021 or 10.001 or 10.011.

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertial mass, energy, momentum, charge, potential, fields. Application of the conservation principles to solution of problems involving charge, energy and momentum. Electrical circuit theory, application of Kirchhoff's Laws to AC and DC circuits. Uniform circular motion, Kepler's Laws and rotational mechanics. Properties of matter: solids, liquids, gases. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization.

1.011 Higher Physics I F L3T3
Prerequisite: As for 1.001. Co-requisite: 10.001 or 10.011.

For students of all Faculties except Medicine who have a good secondary school record and who wish to do a more challenging course. Entry to this course requires permission from the Head of the School of Physics.

Vector algebra, kinematics, uniform circular motion, coriolis acceleration, dynamics of particles, motion in a resistive medium, work and energy, gravitation, rotational motion of rigid bodies about fixed axis, rotational motion about a fixed point. Lagrange and Hamilton equations, harmonic motions, waves in elastic media. Sound waves, physical optics, polarization and double refraction.

Electric charge, electric intensity, electric flux, Gauss's law, electric potential, capacity, dielectric materials, electric current and resistance, DC circuits, magnetic field, field due to a current, electromagnetic induction, inductance, magnetic materials, transients, AC circuits, electronics, diode, rectifier circuit, simple power supplies, electronic amplifier systems, single loop feedback systems, signal processing circuits using operational amplifiers.

1.021 Introductory Physics I (For Health and Life Scientists) F L3T3

An introductory subject in physics designed principally for students majoring in the life and health science disciplines. Discusses the following topics at an introductory level:

The methods of physics, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electromagnetic induction, alternating current, atomic nature of matter. X-rays, the nucleus and radioactivity, electronics, geometrical optics, optical instruments, wave optics, microscopes and their uses.

Physics Level II units

1.002 Mechanics, Waves and Optics S1 L3T1
Prerequisites: 1.001 or 1.011, 10.001 or 10.011. Co-requisite: 10.2111.

Harmonic motion, systems of particles, central force problems, Lagrange's equations, coupled oscillations, travelling waves, pulses, energy and momentum transfer, polarization, birefringence, interference, thin films, gratings, lasers, holography, fibre optics, Faraday effect, photoelasticity.

1.012 Electromagnetism and Thermal Physics S2 L3T1
Prerequisites: 1.001 or 1.011, 10.001 or 10.011. Co-requisite: 10.2111.

Electric field strength and potential, Gauss's Law, Poisson's and Laplace's equations, capacitance, dielectrics and polarization, magnetism, electromagnetic induction, Maxwell's equations, electromagnetic waves. Laws of thermodynamics, kinetic theory, microscopic processes, entropy, solid state defects, Helmholtz and Gibbs functions, Maxwell's relations, phase diagrams, chemical and electrochemical potential.

1.022 Modern Physics F L1½T½
Prerequisites: 1.001 or 1.011, 10.001 or 10.011. Co-requisites: 10.2112. Excluded: 1.9322.

Special theory of relativity — time dilation, length contraction, simultaneity, Lorentz transformations, energy and mass. Photon properties, de Broglie relations. Uncertainty principle, operators in quantum mechanics, postulates of quantum mechanics, potential wells, steps and barriers, harmonic oscillator, H atom, angular momentum, magnetic moment, electron spin, nuclear spin. Atomic and molecular spectra, lasers, quantum statistics, free electron model of a metal, band theory; nuclear size, density, mass; nuclear models, fission and fusion, nuclear forces.
1.032 Laboratory F T3
Prerequisite: 1.001 or 1.011, 10.001. Excluded: 1.9222.
Alternating current circuits, complex impedance, resonance, mutual inductance, introductory electronics, diode characteristics and circuits, power supplies, transistor characteristics, single stage and coupled amplifiers, experiments using AC circuits. Experimental investigations in a choice of areas including radioactivity, spectroscopy, properties of materials, Hall effect, nuclear magnetic resonance, photography, vacuum systems.

Terminating Physics Level II units

1.9222 Electronics S1 L1T2
Prerequisites: 1.001 or 1.011 or 1.021. Excluded: 1.032.
The application of electronics to other disciplines. Principles of circuit theory and analogue computing; amplifiers, their specification and application; transducers; electronic instrumentation; industrial data acquisition.

1.9322 Introduction to Solids S2 L2T1
Prerequisites: 1.001 or 1.011 or 1.021. Excluded: 1.022, 4.402, 4.412.
Introductory quantum mechanics and atomic physics; crystal structure, point and line defects; introductory band theory; conductors, semiconductor and insulators; energy level diagrams.

Physics Level III units

1.0133 Quantum Mechanics S1 L1½T½
Prerequisites: 1.022, 10.2112 Excluded: 2.023A, 10.222F, 1.013.
Revision of basic concepts, harmonic oscillator systems, spherically symmetric systems, angular momentum, \(\text{H} \) atom, first-order perturbation theory, identical particles, Exclusion Principle, atomic structure, spin-orbit coupling. Helium atom, introductory quantum theory of molecules.

1.0143 Nuclear Physics S2 L1½T½
Properties of nuclei, the deuteron, meson forces, liquid drop model, shell model, alpha, beta and gamma decay, nuclear reactions, fission and fusion, elementary particle properties, symmetries and quark models.

1.023 Statistical Mechanics and Solid State Physics S1 L3T1
Prerequisites: 1.012, 1.022, 10.2112.

1.0333 Electromagnetism S1 L1½T½
Prerequisites: 1.012, 10.2111, 10.212. Excluded: 10.222C, 1.033.
Electromagnetic fields; Maxwell's equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Fresnel equations, waveguides, radiation fields, dipoles and antenna theory.

School of Chemistry

Undergraduate Study

2.002A Physical Chemistry F or S1 or S2 L3T3
Prerequisites: 2.121 or 2.141 and 10.011 or 10.001 or 10.021B & 10.021C.
Thermodynamics: First, second and third laws of thermodynamics; statistical mechanical treatment of thermodynamic properties; applications of thermodynamics; chemical equilibria, phase equilibria, solutions of non-electrolytes and electrolytes, electrochemical cells.
Kinetics: Order and molecularity; effect of temperature on reaction rates; elementary reaction rate theory.
Surface Chemistry and Colloids: Absorption, properties of dispersions; macromolecules and association colloids.

2.002B Organic Chemistry F or S1 or S2 L3T3
Prerequisites: 2.131 or 2.141.
Chemistry of the more important functional groups: aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, alcohols, phenols, aldehydes, ketones, ethers, carboxylic acids and their derivatives, nitro compounds, amines, and sulphonic acids.

2.002D Analytical Chemistry S1 or S2 L2T4
Prerequisites: 2.121 & 2.131, or 2.141, 10.011 or 10.001 or 10.021B & 10.021C.
Chemical equilibria in analytical chemistry. Acid-base, complex formation, redox systems, solid/solution, and liquid/liquid equilibria with...

2.003B Organic Chemistry

Prerequisite: 2.002B.

Alicyclic Chemistry: Stereochemistry of acyclic systems; classical and non-classical strain in cyclic systems; stereochemistry and conformation of monocyclic and polycyclic compounds; synthesis, reactions and rearrangement of monomeric cyclic compounds, including stereo-chemical selectivity; transannular reactions in medium rings. Synthesis and reactions of fused and bridged polycyclic systems.

Heterocyclic Chemistry: Synthesis and reactions of the following hetero-aromatic systems: pyridine, quinoline, isoquinoline. Flavones and isoflavones; pyrimidine, pyrrole, furan, thiophen, indole, imidazole.

2.003H Molecular Spectroscopy and Structure

Prerequisites: 2.121 & 2.131, or 2.141.

Absorption and emission of radiation. Atomic spectra. Molecular spectroscopy: vibrational, including infrared and Raman; UV-visible; instrumentation and sample handling. Magnetic resonance. Mass spectrometry with particular reference to structure determination. Laboratory and tutorial work to illustrate the above, including inspection of major instruments.

2.003J Fundamentals of Biological and Agricultural Chemistry

Prerequisites: 2.121 & 2.131, or 2.141. Excluded: 2.013L, 41.101.

Aspects of the chemical and physical properties of materials important in biological systems. Methods of separation, of purification and estimation, and correlations of structure with reactivity.

Methods of separation and identification, such as gel permeation, discussed as appropriate to each topic.

Significance of isomerism in biological systems, optical and geometrical, absolute configuration. Amino acids, peptides and introduction to protein structure. Relevant properties, acid/base properties, pK values, zwitterion, isoelectric points. Simple peptide synthesis.

Treatment of carbohydrates, establishment of structures, reactivity. Chemistry of monosaccharides, disaccharides and polysaccharides. Methods of analysis, chemical and physiochemical.

Trace elements in biological systems. Chemistry of common heterocyclic systems with emphasis on molecules of biological importance.

2.013L Chemistry and Enzymology of Foods

Prerequisite: 2.002B. Excluded: 2.023L, 2.043L, 2.053L.

The chemistry of food constituents at an advanced level and the relationship between the chemistry and enzymology associated with the origin and handling of foodstuffs. Treatment of the stability of constituents, changes in colour and texture occurring during processing and storage. Methods of assessment, chemical and physical.

General classification of constituents, role of free and combined water. Fixed oils and fats, rancidity of enzymic and antioxidative origin, antioxidants — natural and synthetic — theories on mechanisms of action, carbohydrates, reactivity, role in brewing processes, carbohydrate polymers, starch structure, enzymic susceptibility and mode of action, estimations, enzymic degradation and enzymic browning, reactions and stability of natural pigments, vitamins, preservatives.

2.030 Organic Chemistry

Prerequisite: 2.002B.

The spectroscopic identification of organic compounds, free radical chemistry and electro-organic processes; various aspects of the organic industrial processes such as industrial synthesis based on petrochemicals, and organometallic reactions of industrial interest. Selected topics from the dyestuff, pharmaceutical and agricultural industries discussing syntheses and reactions including degradation.

2.042C Inorganic Chemistry

Prerequisites: 2.121 & 2.131, or 2.141.

Chemistry of the non-metals, including B, C, Si, N, P and S. Chemistry of the metals of groups IA, IIA and Al. Typical ionic, giant-molecule and close packed structures. Transition metal chemistry, including variable oxidation states, paramagnetism, Werner's theory, isomerism of six- and four-coordinate complexes, chelation, stabilization of valency states. Physical methods of molecular structure determination. Chemistry of Fe, Co, Ni, Cu, Ag, Au and Hg.

2.043A Environmental Chemistry

Prerequisites: 2.002A, 2.002D.

Physico-chemical aspects of atmospheric chemistry, dispersion of colloids and solid matter, photochemical reactions. Hydrological cycle; reactions in the sea, rivers and estuaries, chemical characteristics of surface and sub-surface water. Corrosion of metals. and either

Simple digital and analogue computer models of ecological systems based on chemical data and physico-chemical properties. or Distribution of elements and nutrient cycles in water; organic carbon cycles, oxygen balance (redox processes in aquatic systems). Chemical models of these processes (including an introduction to simple computing). Practical project mostly field work) dealing with nutrient cycles.

2.043L Chemistry and Enzymology of Foods

Prerequisite: 2.002B. Excluded: 2.013L, 2.023L, 2.053L.

Syllabus as for 2.013L but in greater detail and depth.

2.111 Introductory Chemistry†

Prerequisite: Nil.

Classification of matter and the language of chemistry. The gas laws and the Ideal Gas Equation, gas mixtures and partial pressure. The structure
of atoms, cations and anions, chemical bonding, properties of ionic and covalent compounds. The Periodic classification of elements, oxides, hydrides, halides of selected elements. Acids, bases, salts, neutralisation. Stoichiometry, the mole concept. Electron transfer reactions. Qualitative treatment of reversibility and chemical equilibrium, the pH scale. Introduction to the diversity of carbon compounds.

2.121 Chemistry IA†
S1 or S2 L2T4

Prerequisites:
HSC Exam Percentile
Range Required
71-100
2 unit Mathematics
or
3 unit Mathematics
21-100
4 unit Mathematics
1-100
2 unit Science (Physics or Chemistry)
31-100
4 unit Science (multistrand)
31-100
2 unit Science (other than Physics or Chemistry)
51-100
or
2.111.

Stoichiometry and solution stoichiometry. Structure of matter, solids, liquids, gases. Thermochemistry. Equilibria and equilibrium constants, entropy changes, free energy changes, the relationship between equilibrium and standard free energy changes. Ideal solutions, colligative properties. Equilibrium in electrolyte solutions, acid-base equilibria, solubility equilibria, and redox equilibria. The rate of a chemical change and chemical kinetics.

2.131 Chemistry IB
S1 or S2 L2T4

Prerequisite: 2.111 or 2.121.

2.141 Chemistry IM†
F L2T4

Prerequisites:
HSC Exam Percentile
Range Required
71-100
2 unit Mathematics
or
3 unit Mathematics
21-100
4 unit Mathematics
1-100
2 unit Science (Physics or Chemistry)
51-100
4 unit Science (multistrand)
51-100
2 unit Science (other than Physics or Chemistry)
51-100
or
2.111

This is an integrated syllabus of 2.121 and 2.131.

Graduate Study

2.251G Toxicology, Occupational and Public Health
F L1T2 C6

Important classes of toxic materials found in the environment, treatment of pesticide residues, industrial chemicals of various types, toxic gases and mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals etc. Effects of these substances on living organisms, particularly man. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling analysis, trace metal determination and experiments on the animal metabolism of toxic substances.

2.271G Chemistry and Analysis of Foods
F L1T3

Illustrates the bases and application of analytical techniques as applied to foods. Emphasis is placed on the design of methods, on the preparation of material for instrumental analysis and on the interpretation of data.

Subject matter includes: proteins and flesh foods, carbohydrates and saccharine foods, fats and oils, dairy and fermentation products, vitamins, food additives — preservatives and colouring matters, pesticide residues, metal contaminants — food microscopy.

School of Metallurgy

Undergraduate Study

4.001 Introduction to Materials Science
S1 or S2 L1

Forms part of 5.010 Engineering A.

The structure and properties of the main types of engineering materials, with emphasis on the way in which properties may be controlled by controlling structure.

4.002 Introduction to Metallurgical Engineering
S2 L2

Forms part of 5.030 Engineering C.

History and significance of the exploitation of metals. Ores, mineral economics, mineral processing, and metal extraction and processing methods illustrated by reference to the Australian mineral and metal industries. Properties, uses, and applications of metallic materials. The role of the metallurgist in industry and in processing and materials research, and in relation to conservation and the environment.

Students meeting the 2.121 or 2.141 prerequisite are not permitted to enrol in 2.111 without permission of the Head of the School of Chemistry. Once students enrol in 2.111 they must pass 2.111 before proceeding to 2.121 or 2.131 or 2.141.
4.024 Metallurgy Project S1 6 S2 3
An experimental investigation of some aspects of metallurgy. Includes three weeks laboratory work during the mid-year recess.

4.034 Industrial Metallurgy Project F3
An experimental investigation of some aspects of industrial metallurgy.

4.054 Metallurgy Seminar F L2
Lectures on the preparation and presentation of technical papers. Each student is required to prepare and present a paper on a nominated subject.

4.121 Principles of Metal Extraction F L2T1
The fundamental principles of metal extraction. Oxidation and reduction, roasting, slag reactions, distillation, leaching, precipitation and electrolysis.

4.131 Principles of Physical and Mechanical Metallurgy F L3T0
A condensed treatment of physical and mechanical metallurgy.

4.141 Experimental Techniques in Physical Metallurgy F LOT2
A condensed course of instruction in metallographic, crystallographic and X-ray diffraction techniques.

4.213 Chemical Ceramics S1 L3T3 S2 L2T3
Structural principles: crystal chemistry, structure of glasses, defect solid state: phase equilibria and transformations; diffusion; solid state reactions. A systematic treatment of the chemistry of ceramic products.
Students are required to take part in a series of factory inspections.

4.224 Physical Ceramics F L2T4
Prerequisites: 4.213, 4.233.
Physical Ceramics: Application of the principles of physical chemistry and solid-state physics to a study of the preparation and properties of ceramic materials. Clay Mineralogy: Structures and properties of the various clay minerals; techniques employed in the identification of clay minerals; composition and properties of the ceramic clays of New South Wales.

4.231 Introduction to Ceramic Engineering F S2 L2
The nature of ceramics. The scope of ceramic industry. The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials. Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, hot forming and other forming procedures.

4.232 Ceramic Engineering I S1 L3
The principles of operation, construction and fields of application of equipment used in the mining, preparation and fabrication of raw materials, and the drying and firing of ceramic products.

4.233 Ceramic Process Principles F L1T2½
Students are required to take part in a series of factory inspections.

4.234 Ceramic Engineering II F L2T2
Prerequisites: 4.232, 4.233, 8.112, 48.021, 48.025.
Students are required to take part in a series of factory inspections.

4.294 Project (Ceramic Engineering) S1 T6 S2 T9
An experimental or technical investigation or design related to some aspect of ceramic engineering. Prerequisites and/or co-requisites are determined depending on the nature of the project.

4.302 Chemical and Extraction Metallurgy I F L1T2
Co-requisite: 2.002A.
Metal extraction from ores in terms of unit operations and overall systems, illustrated by the extraction of iron, copper, aluminum and other metals. Elementary process analysis. Laboratory — analysis and solution of problems.

4.303 Chemical and Extraction Metallurgy II F L3T2
Prerequisites: 4.302, 4.602 and 4.402 or 4.412.
4.312 Chemical and Extraction Metallurgy IA
Co-requisites: 2.002A.
As for subject 4.302 above.

4.314 Chemical and Extraction Metallurgy IIIA
Prerequisite: 4.303.

4.324 Chemical and Extraction Metallurgy IIIB
Prerequisite: 4.303.
A selection of advanced topics in chemical and extractive metallurgy.

4.374 Metal Extraction Processes
Prerequisite: 4.303.
Analysis of pyrometallurgical and hydrometallurgical extraction and refining processes using the principles of chemical equilibrium and kinetics. Extraction and refining processes for commercially important ferrous and non-ferrous metals. Nature of the inter-relationship between raw material, extraction process and product characteristics. Economic factors in process selection and operation; acceptance standards for ores and concentrates, smelter charges; penalties and bonuses; by-products.

4.402 Physical Metallurgy I
Co-requisites: 2.002A, 4.502.
Excluded: 1.932, 4.412, 4.422.

4.403 Physical Metallurgy II
Prerequisite: 4.402.

4.404 Physical Metallurgy III
Co-requisites: 2.002A.
Applications of dislocation theory to work hardening and annealing processes. Phase transformations in alloys. Mathematical crystallography, reciprocal lattice, diffraction. Electron and X-ray metallography. Selection of advanced topics in physical metallurgy including radiation damage, martensitic transformations, neutron diffraction, internal friction, sintering, creep, superelasticity, fracture, microplasticity.

4.412 Metallurgical Phases—Structure and Equilibrium, Part 1
Co-requisite: 2.002A.
The crystal structure of metallic phases. Crystal defects. Physical properties of solids. Phase equilibrium in alloy systems. The genesis of microstructure. Metallography.

4.414 Physical Metallurgy IIIA
Prerequisite: 4.403.

4.422 Metallurgical Phases — Structure and Equilibrium, Part 2
Prerequisite: 4.412.

4.424 Physical Metallurgy IIIB
Prerequisite: 4.403.
Selection of advanced topics in physical metallurgy including radiation damage, martensitic transformations, neutron diffraction, internal friction, sintering, creep, superelasticity, fracture, microplasticity.

4.433 Physical Metallurgy IIC
Prerequisite: 4.402.

4.502 Mechanical Metallurgy
Combination of 4.512 and 4.522.
<table>
<thead>
<tr>
<th>Subject Description</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.512 Mechanical Properties of Solids</td>
<td>S1 L2T2</td>
<td>Co-requisite: 4.402.</td>
</tr>
<tr>
<td>4.522 Mechanical Metallurgy</td>
<td>S2 L1T2</td>
<td>Prerequisite: 4.512.</td>
</tr>
<tr>
<td>4.504 Mechanical and Industrial Metallurgy</td>
<td>S2 L3T0 S2 L3T6</td>
<td>Prerequisites: 4.403 or 4.433, 4.503.</td>
</tr>
<tr>
<td>The application of metallurgical principles to industrial processing with particular reference to casting, welding, shaping, properties and selection of materials. Metal finishing. Metallurgical aspects in engineering design. Fracture mechanics, design against fatigue, brittle and ductile fracture.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.613 Metallurgical Engineering IIA</td>
<td>S1 L2T1</td>
<td>Prerequisite: 4.602.</td>
</tr>
<tr>
<td>An extension of the principles and applications of transport processes to metallurgical systems. The principles of metallurgical heating and cooling including fuels, refractories and furnace design and operation. Solidification in moulds, continuous casting. Process Economics: As for 48.031 Chemical Engineering IIA Unit 6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.623 Metallurgical Engineering IIB</td>
<td>S2 L3T1</td>
<td>Prerequisite: 4.613.</td>
</tr>
<tr>
<td>Continuous Processes: The application of theoretical models and empirical data to the design of continuous processes involving two or more phases in contact. The principles of instrumentation and their application to research and on-stream measurement in metallurgical plants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.624 Metallurgical Engineering Project</td>
<td>F3</td>
<td>(Includes three weeks laboratory work during the mid-year recess.) An investigation of some aspects of metallurgical engineering.</td>
</tr>
<tr>
<td>4.703 Materials Science</td>
<td>S2 L2T1</td>
<td>Co-requisite: 4.403.</td>
</tr>
<tr>
<td>The application of the principles of physical metallurgy to the development of modern materials. Particular attention is paid to the structure property relationships that determine the design of materials. The topics covered include materials used for structural purposes, high temperature applications, corrosive environments, nuclear engineering, fuel cells, magnetic applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass and energy accounting in metallurgical processes. An introduction to the principles and applications of transport processes in systems with specific reference to industrial processes in primary and secondary metallurgy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.604 Metallurgical Engineering III</td>
<td>S1 L4T2 S2 L3T6</td>
<td>Prerequisite: 4.623.</td>
</tr>
<tr>
<td>Process dynamics and automatic control. Dynamics of simple linear systems; representation and analysis of metallurgical processes by linear models; effect of various control elements; analysis by empirical models; design of control systems for metallurgical processes, atmospheric and water pollution control. Optimization: as for 48.042 Chemical Engineering IIB, Unit 2. Industrial Practice: Case studies, design studies and assignments related to industrial practice and integrated process schemes for metal extraction, refining, fabrication, treatment and finishing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.802 Metallurgical Physics</td>
<td>S2 L2T0</td>
<td>Prerequisites: 1.001 or 1.011.</td>
</tr>
<tr>
<td>4.813 Mathematical Methods</td>
<td>F L2T1</td>
<td>Prerequisites: 10.031 or 10.211A.</td>
</tr>
</tbody>
</table>
4.823 Numerical Methods

F L1T½

Prerequisite: 10.031.

Consists of Unit 2 — Numerical Methods of 4.813 Mathematical Methods.

4.911 Materials Science

F L1T½

The atomic structure of metals. The grain structure of metals, origin, modification. Structure of alloys, theory. Structure, properties and heat treatment of commercially important alloys based on aluminium, copper and iron in particular. Corrosion; control of structure and properties, commercial alloys, materials selection.

4.913 Materials Science

F L2T1

4.941 Metallurgy for Engineers

F L1T0

4.951 Materials Technology

F L2T2

The structure, properties and technology of wood.

4.972 Materials for Mining Engineers

F L1T½

4.974 Mining Materials

S1 L1

Graduate Study

4.211G Metallurgical Practice

Detailed studies relating to one or more specialized areas of metallurgical practice, such as founding, welding, mineral treatment.

4.221G Advanced Metallurgical Techniques

Lectures and laboratory instruction will be offered in advanced techniques including the following: X-ray metallography; electron microscopy; electron probe microanalysis; quantitative metallography; stress and strain analysis; fracture toughness testing; metal melting and casting; mechanical testing; electrochemical techniques; research techniques — physical; research techniques — chemical; mineral investigation techniques.

4.231G Advanced Theoretical Metallurgy

Covers a wide range of theoretical topics drawn from physical metallurgy, chemical and extractive metallurgy, mineral chemistry, physics of metals and mechanical metallurgy.

4.241G Graduate Metallurgy Project

An experimental or technical investigation or design related to a branch of metallurgy.

4.251G Advanced Materials Technology

4.261G Modern Microscopy of Materials

Descriptions of light optical and electron optical instruments from the point of resolution, depth-of-field, contrast and additional data obtainable from the specimen as well as the application of these instruments to the study of materials.

4.270G Solid State and Mineral Chemistry F L2

Principles of crystal chemistry; structures of selected crystal types and glasses. Thermodynamics of solid systems; phase relations. Defects in crystals; non-stoichiometry. Solid state diffusion. Thermodynamics of solid systems; phase relations. Defects in crystals; non-stoichiometry. Solid state diffusion. Thermodynamics and kinetics of solid state reactions. Hydrothermal reactions. Stability of compounds at elevated temperatures; effect of heat on clay minerals; hydrothermal reactions between silicate and lime; volatility of compounds; reactions in nuclear fields; solid state electrolytes; biodegradation of rocks and minerals. Chemical strengthening of ceramics.

4.271G Refractory Technology I F L2T1

Engineering Properties and Applications: This subject deals with the philosophy and methods of development of refractories, the thermodynamic stability and volatility of high temperature materials and the manufacture and testing of refractory materials in industry. A detailed consideration is given to the composition, structure, and properties of typical refractory materials such as silica, alumina silicate, high alumina, basic and zirconia materials and special single and mixed oxides, carbide, nitride and oxynitrides. Furnace and kiln design is studied with respect to limitations imposed by the refractories used. Laboratory experiments and demonstrations will form part of the course.

Candidates are expected to have a background knowledge equivalent to that expressed in the syllabus for 4.232 Ceramic Engineering I.

4.272G Refractory Technology II F L2T1

Chemical Property and Service Behaviour: This subject deals with the study of chemical reactions occurring between refractories and reaction products in typical industrial situations. It will provide a basis for evaluating the predicting refractory performance in the manufacture of ferrous and non-ferrous metals, glass, enamels and cements. A detailed consideration of the chemical reactions occurring between refractories and solid, liquid and gaseous phases will be made. Laboratory experiments and demonstrations will form part of the course.

Candidates are expected to have a background knowledge equivalent to that expressed in the syllabus for 4.213 Chemical Ceramics (Session 1).

4.281G Chemistry of Glass Melting S1 or S2 L3T3

Pre- or co-requisites may be specified depending on student's background.

Glass structure — property relations; melting reactions and rates; refining; analytical techniques; economics of glass compositions; melting and refining agents; process chemistry; chemical durability; glass colour; glass-refractory reactions; phase transformations. Laboratory exercises.

5.010 Engineering A SS L4T2

Prerequisite:

(For students in Applied Geology and Mining Engineering)

HSC Exam Percentile

Range Required

Either

2 unit Science (Physics)

or

4 unit Science (multistrand)

or

2 unit Industrial Arts

or

3 unit Industrial Arts

Introduction to Engineering Design: Engineering method, problem identification, creative thinking, mathematical modelling, computer-aided design, materials and processes, communication of ideas, the place of engineering in society.

Introduction to Materials Science: For subject descriptions see under 4.001.

5.020 Engineering B SS L/T6

Prerequisite: 5.010.

(For students in Applied Geology and Mining Engineering)

5.030 Engineering C SS L/T6

Engineering Drawing: Graphic communication. First and third angle orthographic projection and isometric projection. Descriptive geometry fundamentals and their application to engineering problems with special

and either

Introduction to Chemical Industry: For subject description see under 48.001.

or

Introduction to Metallurgical Engineering: For subject description see under 4.002.

or

or

Introduction to Ceramic Engineering (4.231, Compulsory for Ceramic Engineering students): The classification of materials. The nature of ceramics. The materials science approach. The scope of the ceramic industry. The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials. Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, pot forming and other forming procedures.

5.0302 Engineering Drawing and Descriptive Geometry

Graph communication. First and third angle orthographic projection and isometric projection. Descriptive geometry fundamentals and their application to engineering problems with special emphasis on visualization of problems and development of methods for their solution. Australian standard engineering drawing practice. Applications involving detail and assembly drawings, functional dimensioning and tolerancing.

5.122 Mechanical Engineering Design I

Prerequisite: 5.010. Co- or prerequisites: 5.330, 5.622, 5.422 or 8.112, 8.250.

Application of design strategy to creative design. Modelling, analysis and design of basic engineering elements and systems with further engineering drawing practice. Review of currently available mechanical technology and use of standard equipment items, codes and trade literature.

5.330 Engineering Dynamics

Prerequisites: 1.001 or 1.011 or 1.951, 5.010 and 10.001 or 10.011.

Kinematics and kinetics of particles and rigid bodies in planar motion: absolute motion and motion relative to translating and rotating frames of reference; constraint and degrees of freedom; dynamic equilibrium, differential equations of motion; work and energy, variational principles; impulse and momentum, impact.

5.331 Dynamics of Machines I

Prerequisites: 5.330, 10.022.

Mechanical Vibrations: Simple harmonic motion. One degree of freedom systems, free and forced vibrations, transmissibility and motion isolation. Whirling of shafts.

5.422 Mechanics of Solids II/Materials

Prerequisites: 5.010 or 5.0101, 5.422 or 5.040 or 5.020, 10.001.

5.622 Fluid Mechanics/Thermodynamics

Prerequisites: 10.001 or 10.011; 1.951 or 1.011, 5.010 or 5.0101.

Comprises: 5.6221, 5.6222 and 5.6223

5.6221 Introductory Thermofluids

5.6222 Fluid Mechanics

5.6223 Thermodynamics

Subject Descriptions

School of Electrical Engineering and Computer Science

Undergraduate Study

6.611 Computing I

Prerequisite: As for 10.001. Co-requisite: 10.001 or 10.011. Excluded: 6.600, 6.620, 6.021D.

Introduction to programming: design and correctness of algorithms and data structures; programming in a high level algorithmic language which provides simple, high level program control and data structuring facilities. Problem solving: basic ideas of problem solving; introduction to abstract structures used for computing solutions to problems. Introduction to propositional logic, computer arithmetic, propositional logic, artificial intelligence, and the axiomatic semantics of a programming language.

6.832 Industrial Electrical Machinery

Prerequisite: 1.001 or equivalent.

An applications-oriented introduction to the usage of electrical machinery in industry. Provides a basis of circuit theory then considers the characteristics and selection of electrical machinery, their interface with the prime power supply, protection and electrical safety. Included is a project illustrating the application of electrical engineering to other disciplines.

Graduate Study

6.380G Data Acquisition and Analysis in Remote Sensing

Prerequisite: 10.361 or similar.

Techniques for extracting information from remotely sensed data with particular emphasis on satellite imagery. Topics taken from: nature and characteristics of earth resources and related satellites; satellite sensors and data formats; image enhancement techniques; image classification methods, including clustering, classification and feature selection; image classification methodologies; new horizons in remote sensing image analysis.

6.851 Electronics and Instrumentation

Prerequisite: 1.001 or equivalent.

An applications-oriented introduction to electronics. Provides a basis of circuit theory and elementary electronics and then treats filters, frequency response, general amplifier characteristics, operational amplifiers and their use in instrumentation, power supplies, analog computers and their use in modeling non-electrical systems. Included is a project illustrating the application of electrical engineering to other disciplines.

6.852R Electrical Machinery and Supply

Prerequisite: 6.851R.

A user-oriented introduction to the usage of electrical power in industry, covering the characteristics and selection of electrical machinery, its interface with the prime power supply, protection, electrical safety and compliance with Australian standards. Included in the subject is a project illustrating the application of electrical engineering to various aspects of industry.

6.854 Electrical Engineering

Prerequisite: 1.001 or equivalent.

Extensive introduction to the theory and application of heavy current electrical engineering. Requisite circuit theory, the distribution of electrical power and the characteristics and selection of electrical machinery. Topics include DC power supplies, three-phase AC supply, voltage regulation, transformers, AC and DC machines and their rating. Project illustrating application of electrical engineering to various aspects of industry. Two 2-hour tutorial or laboratory sessions per week each commencing with a structured mini-lecture. Detailed lecture notes are provided.

6.855 Electrical Power Utilization

Prerequisite: 6.851 or 1.9222.

Introduction to the distribution and utilization of electrical power in industry. Characteristics and selection of electrical machinery, its interface with the supply, protection and electrical safety. Project illustrating application of electrical engineering to various aspects of industry. Two 2-hour tutorial or laboratory sessions per week each commencing with a structured mini-lecture. The subject commences in week 4 of Session 2.
capabilities of the software packages LARSYS, ORSER, BICEP, LASP. Implementation of classification methodologies. Introduction to image processing hardware and associated operating systems; interactive image processing.

6.458G Decision and Syntactic Systems for Digital Pattern Recognition S2 C3

Concepts and techniques in decision-theoretic pattern recognition systems with an in-depth study of both non-parametric and parametric methods. Includes: pattern, feature and classification spaces; feature selection, linear, discriminant functions and training algorithms; piecewise linear, discriminant functions; decision rules; the Bayes framework, approximation of probability densities, clustering and dimensionality reduction. Structural pattern recognition, including such topics as formal linguistics, primitives, grammar and syntax analysis as a recognition procedure.

The fundamentals of image processing including such topics as visual perception and the image model; uniform and non-uniform sampling and quantization; image transforms; image enhancement, sharpening and smoothing; image restoration and least squares filtering; image encoding, mapping, quantizing and encoding; image segmentation and description, grammars, languages and similarity. Material oriented towards scene analysis and world models for industrial robots including scenes; labelling; shadows; shape information; structural descriptions and representing knowledge; computer vision for robots.

6.468G Computer Display Systems and Interactive Instrumentation S2 C3

Prerequisite: 6.060G.

Man-machine-process communication and control, and associated microprocessor based instrumentation. Review of appropriate analog and digital technology. Microcomputer hardware and programming for interactive communication using both machine and high-level languages. Display devices, operating principles and performance limitations. Hardware and software techniques for computer-generation and processing of pictures. Colour and movement. Interactive design and graphics creation. The geometry of transformations and projections. Light pens and other input devices. Non-visual communications including speech input-output.

School of Mining Engineering

Undergraduate Study

7.013 Principles of Mining S1 L2

7.023 Mineral Process Engineering S1 L1T1

7.023R Mineral Process Engineering F L1

7.033 Mineralogical Assessment S2 L1T1

Assessment of the physical and chemical properties of economic minerals. Significance of the textures of minerals on the selection of mineral beneficiation processes. Destructive and non-destructive testing of bore cores. Factors influencing effective comminution and liberation.

7.044 Mining Economics S1 L2T2

7.111 Introduction to Mining Engineering S1 L2T2

Forms part of 5.030 Engineering C.

7.113 Mining Methods F L2T2

Prerequisite: 7.142.

7.113R Mining Methods F L2T1

The syllabus is as for 7.113 with the addition of the following topics. Non-entry mining methods and petroleum engineering: Hydrocarbon accumulation, porosity and permeability of reservoir rocks. Flow through porous media. Darcy's law. Permeability of beds in series and parallel. Gas solubility. Reservoir energy, volumetric and radial flow calculations.

7.114 Geotechnical Engineering F L2T1
7.114R Geotechnical Engineering F L2

7.123 Geomechanics F L1T2
7.123R Geomechanics F L1T2

7.124 Coal Face Mechanisation F L2T1

7.132 Fluid Mechanics and Machines F L2

Prerequisites: 1.001 or 1.011 or 1.951, 5.010, 5.020, 10.001. Co- or prerequisite: 10.022.

7.133 Mine Transport S2 L2T½
7.133R Mine Transport S2 L2T½

7.134 Metalliferous Mining Systems F L2T1

Prerequisite: 7.113.

7.142 Mine Development F L1
7.142R Mine Development F L1

7.143 Mine Environment and Safety Engineering F L2T½
7.143R Mine Environment and Safety Engineering F L2T½

Prerequisite for 7.143: 7.132, 7.142.

7.144 Surface and Offshore Mining F L2T1

7.153 Power Supply in Mines S1 L2T½
7.153R Power Supply in Mines S1 L2T½

7.154 Petroleum Engineering

7.163 Excavation Engineering

7.164 Tunnel Engineering

7.173 Computer Applications in Mining
Prerequisite: 10.022.
FORTRAN programming. Simulation of mining problems. Application of selected programs to mining exploration, operations, economics and design.

7.174 Mining Legislation
An appreciation of the laws relating to mining practice and to safety and health in mines.

7.193R Mine Technology
A program of tutorials and laboratory work as the alternative to concurrent industrial experience. The student is given reading and technical assignments to complement the study of third year subjects in a full-time course.

7.194R Mine Design Practice
The student is given exercises in the application of mine equipment, and in safety and environmental precautions, to complement the lecture materials in third and fourth years of a full-time course. This is the alternative to concurrent industrial experience.

7.213 Mine Surveying
Prerequisites for 7.213: 10.341 and 29.441
Surveying methods applied to the development and extraction of minerals. Instruments of special value in mine surveying. Correlation of underground and surface surveys. Progress measurement. Determination of reserves. The surveying and logging of boreholes. Preparation of mine plans.

7.214 Mineral Economics and Planning
Prerequisite for 7.214: 7.113.

7.224 Operational Management

7.234 Mineral Economics

7.313 Minerals Engineering Processes
Prerequisites: 25.520 or 25.201, 5.030.
Beneficiation requirements. Scope of mineral processing. Sampling and mineralogical assessment. Comminution, fracture, liberation, size criteria, energy-size relationships. Crushing and grinding. Screening and

7.313R Mineral Processing F L2T3

A combination of 7.313, with selected topics from 4.374.

7.314 Mineral Process Technology F L2T1
7.314R Mineral Process Technology F L2T1

Prerequisite: 7.313 or 7.313R.

7.414 Minerals Industry Project F L1

Candidates are required to submit a dissertation or thesis on a mining, minerals engineering or other topic approved by the Head of School. The work may take the form of an engineering analysis, experimental investigation, theoretical study or design project. Candidates may be required to present themselves for oral examination on the subject of their submission.

7.414R Minerals Industry Project F T4

Periods are set aside each week to provide time for the students to consult library references, prepare notes and undertake experimental work. The project supervisor is available for discussion at agreed times but the student is expected to work on his or her own initiative. The only examination is by assessment of a submitted written thesis, which must consist of two parts: a literature survey and a report on research.

The thesis is to be based on a modest, but significant, research project, which may be on some aspects of a staff member’s or mine company research interests. Most projects are experimental in nature but some may be largely theoretical.

7.416R Minerals Industry Project F T2

A shorter version of 7.414R above.

7.424 Industrial and Research Seminars F L1

The program includes two types of seminar. One deals with research work being undertaken or recently completed by members of the School of Mining Engineering. The other involves engineers and scientists from industry, other University Schools and research establishments discussing projects of special or topical interest in mining and allied fields.

7.424R Feasibility Studies and Seminars F T2

Group work on the creation of a mining complex from an original mineral deposit with its approximate costing. Appraisal of the result as an investment. The work draws on all other courses and consists mainly of tutorials and seminars by students, and by visiting lecturers. Students are expected to present written technical reports and memoranda for assessment.

Graduate Study

Generally the subjects are of three hours’ duration per week or multiples of that time.

7.001G Exploratory Drilling and Development

7.111G Mining Engineering

7.122G Mining Engineering Technology

7.132G Mining Engineering Laboratory

A selection of advanced laboratory investigations in sampling and valuation, mine support, temporary or long term; mine design and plant related to extraction and servicing functions; rock properties; programming of mining methods and transport; non-entry mining; petroleum engineering; gasification; solvent processes.

7.151G Ground Control and Excavation Engineering

1. Natural state of stress in rock masses. Effects of geological structures on the stability of mine working. Stresses and rock movements induced

7.152G Mining Conservation

The reclamation of excavated land; integration with operational stages of mining. Mining cycles of alluvial, strip, and open cuts, land clearing, stabilizing the mined area, socio-economic aspects of mining, rehabilitation costs, government regulations. Examination and evaluation of a current operation.

7.153G Environmental Conditions in Mines

The energy equation applied to ventilation, sources of heat in mines, geothermal gradients, thermodynamics, pressure-volume diagrams. Practical aspects of high air temperatures and the control of atmospheric conditions in deep underground mines. Fan design, installation and testing. Psychrometry, ventilation planning. Computer applications. Selected laboratory experiments and network designs.

7.154G Rock Excavation and Transportation

Rock fragmentation drilling, blasting large rounds. Loading techniques, shovels, draglines, bucket wheel excavators, dredges, front-end loaders, tractor scrapers. Operating factors, selection procedures, cost estimating. Materials handling, continuous, semi-continuous, batch systems, cost analysis.

7.311G Mineral Beneficiation

Prerequisite: 7.023.

7.322G Mineral Beneficiation Technology

Prerequisite: 7.311G.

7.332G Mineral Engineering Laboratory

Prerequisite: 7.311G.

Laboratory investigations may be selected from the following according to availability and specialization: metalliferous ore concentration; coal preparation; beneficiation of non-metallics; processing of mineral fluids.

7.351G Mineral Beneficiation

Prerequisite: 7.313 or 7.311G.

Process design based upon mineral properties; extraction processes and environmental conditions. Selection of technology to be adopted. Base of feasibility studies. Special considerations for coal preparation and treatment of industrial minerals. Flowsheet planning, solid and fluid flows, auxiliary units, materials handling, product disposal. Experimental techniques used in testing. Scale up procedures. Plant control, automation, use of computers. Management of mineral processing operations.

7.361G Minerals Engineering I

Prerequisites: 7.311G and 7.313.

7.362G Minerals Engineering II

Prerequisites: 7.311G and 7.313.

7.363G Minerals Engineering Laboratory S1 L3
A series of laboratory investigations relating to material covered in subjects 7.361G and 7.362G.

7.364G Minerals Engineering III S2 L4 T4

7.365G Minerals Engineering Project S2 T10
Laboratory work to evaluate information necessary for the design of a process for the beneficiation of ore from a metalliferous deposit, preparation of coal or treatment of industrial minerals. Candidate's report to include a process flowsheet, an equipment and materials flowsheet and a plant design layout.

7.442G Mineral Industry Analysis S2 L2

7.455X Mining Geomechanics Project F 4 hpw
Individual project on an investigation related to an actual mining geomechanics problem, the topic to be chosen after consultation with a staff member. A report is required.

7.515X Rock Mechanics Measurements S1 3 hpw

7.525X Strata Control Engineering S2 3 hpw

7.535X Mine Fill Technology F 2 hpw

7.545X Advanced Rock Cutting Technology F 2 hpw

7.555X Blasting Technology F 2 hpw
7.565X Rock Slope Stability F 2 hpw

7.575X Subsidence Engineering F 2 hpw
Through subsidence resulting from the extraction of bedded mineral deposits. Parameters influencing subsidence. Subsidence-related phenomena causing damage to structures at or below the surface. Measurement and empirical prediction. Theories and modelling of subsidence. Control of subsidence.

7.585X Economics and Management of Geomechanics Projects F 2 hpw

8.171 Mechanics of Solids I SS L1½T1½
Prerequisite: 8.170.

8.172 Mechanics of Solids II SS L2T2
Prerequisite: 8.171.
Structural statics. Bending moments, shear force, and torsion. Stresses due to shear force in solid and thin-walled sections; shear centre. Torsion of circular, non-circular and thin-walled sections. Principal stresses and strains; yield criteria. Combined stresses. Concepts of instability.

8.250 Properties of Materials F L1T1

School of Civil Engineering

Undergraduate Study

8.021 Environmental Aspects of Civil Engineering SS L2T1
Prerequisite: 8.301, or equivalent.
Examination of the professional issues arising from the environmental impact of civil engineering planning, design and construction. Methodologies for environmental impact evaluation and general project evaluation. Environmental legislation, institutional procedures and decision-making processes. Case studies and project work.

8.112 Structures S1 L1T2

Graduate Study

8.402G Transport, Environment, Community F C6

8.403G Theory of Land Use/Transport Interaction C3
Theoretical aspects of land use transport planning. Basic concepts, data collection methods, systems models and equation of state (functional, behavioural, optimizing). Introduction to land use-transport modelling (land use, generation, distribution, modal assignment, network assignment, evaluation). Planning methodologies (short-, medium- long-term; action planning, strategic planning; local, urban, regional, national).
8.413G Transport Economics
Cost and price analysis of each of the transport modes (road, rail, air and sea). Welfare analysis and taxation theory with respect to transport. Economics of location, economics of land use models: regional trade model.

8.701G Economic Decision Making in Civil Engineering
Review of practical engineering decision-making problems and relevant techniques: Engineering economics, benefit/cost analysis, consideration of inflation and taxation in investment decisions, bidding, decision theory, microeconomic theory, objectives and criteria, multiple objective planning.

8.703G Optimization Techniques in Civil Engineering
Search, linear programming, non-linear programming, geometric programming, calculus of variations, maximum principle, applications.

8.753G Soil Engineering

8.776G Rock Mechanics
Strength and deformation characteristics of rock masses and joints; failure criteria; non-linear behaviour; weathering; fracture mechanics applied to rock fragmentation; stability of excavations and slopes in rock; finite element analysis of underground and open pit mining problems.

8.777G Numerical Methods in Geomechanics
Fundamentals of finite element and boundary element methods: Deformation and flow problems; linear and non-linear analysis; applications to underground openings, stability of slopes, foundations, mining excavation; seepage and consolidation; soil-structure interaction problems; earth pressures, retaining walls and buried pipes; thermal stress analysis.

8.778G Geotechnical Processes for Energy Resources
Principles of rock fragmentation; blasting patterns; prediction and estimation of ground vibrations; damage criteria; numerical techniques for the prediction of rock fracture; grouting materials and techniques.

8.780G Geological Engineering

8.820G Structural Analysis and Finite Elements I (SAFE 1)

8.833G Free Surface Flow
Theory of water flow in open channels: Application of theory to design of hydraulic structures, spillways, control gates, energy dissipators, channel transitions. Use of hydraulic models.

8.837G Hydrological Processes
Hydrologic cycle, water and energy balances, atmospheric moisture, precipitation process, evaporation and transpiration, storm runoff process, land use and management, stream gauging, instruments.

8.838G Flood Design
Introduction to flood estimation, design rainfall data, hydrograph analysis, storm runoff, loss rates, rational method, unit hydrographs, introduction to urban drainage design, flood frequency.

8.839G Advanced Flood Estimation
Flood routing, catchment characteristics, runoff routing, synthetic unit hydrographs, urban runoff, regional empirical flood estimation methods, advanced unit hydrograph theory.

8.842G Groundwater Hydrology
Confined and unconfined aquifers, analogue and digital models of aquifer systems, water movement in the unsaturated zone, recharge, groundwater quality, sea water intrusion.

8.843G Groundwater Hydraulics
Mechanics of flow in saturated porous materials, steady and unsteady flow to wells, leaky aquifers, partial penetration, multiple aquifer boundaries, delayed yield from storage, regional studies.

8.847G Water Resources Policy
Resource economics, water supply, water demand, multiple objective planning, multiple purpose projects, water law, water administration, case studies.

8.848G Water Resource System Design
Principles of the optimal design and operation of multiple purpose, multiple component, water resource systems; evaluation of cost and benefits in complex and simple systems.
8.849G Irrigation C3
Soils, soil-water relationships, plants, climate, crop requirements; water budgets, sources, quality, measurement; irrigation efficiency. Design of irrigation systems, appurtenant works, distribution.

8.850G Drainage of Agricultural Land C3
Characteristics of drainage systems, steady and unsteady state drainage formulae, conformal transformation solutions, soil characteristics, field measurement of hydraulic conductivity and soil water pressure, significance of unsaturated zone, practical aspects.

8.860G Investigation of Groundwater Resources I C3
Occurrence and extraction of groundwater, investigation and drilling methods, systems approach, optimization techniques, conjunctive use studies, quality of groundwater.

8.861G Investigation of Groundwater Resources II C3
Geophysical methods, remote sensing, photo-interpretation, and environment studies, analog models, case studies.

8.864G Arid Zone Hydrology S1 L1½T1½ C3
Co-requisites: 8.837G, 8.838G.
Arid zone rainfall characteristics; data collection and instrumentation; runoff processes; infiltration, transmission loss; recharge processes; flood characteristics and design; water yield; storage of water; evaporation and evaporation suppression; sediment transport and measurements.

8.865G Arid Zone Water Resources Management S1 or S2 L1½T1½ C3
Water as a resource: demand for and supply of water; works and management to match demand with supply. Special features of the arid zone: climate, water uses, quantification of demand quantities and qualities, and zone grazing system modelling; water supplies, quantities and qualities, measurement of flow rate, volume, quality. Engineering works: design, construction, operation and maintenance of works, including excavated tanks, dams, pipelines, pumps, windmills, engines and motors, troughs; costs; reliability; energy sources for pumping. Special practices: water spreading, irrigation including trickle irrigation; evaporation reduction, desalination.

8.909G Project S2T9* C9
A minor research investigation involving analysis and interpretation of data, or a critical review and interpretation of literature on a selected topic, or a design project. Entails the equivalent of 12 weeks of full-time study under minimal supervision.

8.918G Research Project FT9* C18
As for 8.909G but involving more substantial research entailing the equivalent of six months of full-time study.

School of Wool and Pastoral Sciences

Undergraduate Study

9.001 Project
Students are required to conduct an experimental or theoretical investigation under supervision and to submit a thesis describing the results of their investigations. Throughout the year students are required to submit progress reports to their supervisors and to present seminars. The written reports of the project shall be submitted by the last day of Session 2.

9.002 Seminar
Seminars deal with research and/or development work being undertaken or recently completed by members of the School of Wool and Pastoral Sciences, other University schools and research organisations. There are also seminars on communication in wool and pastoral sciences and on problems facing rural industries.

9.101 Biology of Grazing Sheep and Cattle S1 L2T½
Introduces the principles of Wool and Pastoral Sciences. Covers the sheep and cattle industries and wool and meat as end products of these industries; production and use of pasture, nutrition of grazing ruminants, reproduction in sheep and cattle; climate and animal production; an introduction to concepts of animal health.

Field excursions and laboratory work are integral parts of the course.

9.111 Livestock Production I S1 L2T½
Prerequisite: 9.111.
The sheep and beef cattle industries and their place in the economic life of Australia; levels of production and trends. The physical, biological, managerial and economic conditions influencing production. Sheep producing zones. Sheep breeds for wool production. Cross-breeding prime lamb production. Sheep and cattle management; nutrition, reproduction, survival.

A field excursion of one week's duration is held in session 1.

9.112 Livestock Production II S1 L2T½
Prerequisite: 9.111.
The scope for intensification of ruminant production. The behaviour, nutrition, environmental physiology and health of intensively managed animals. Housing and environmental control of facilities. Examples of intensification, eg feed lots, sea transport.

9.113 Livestock Production III F L1T2

*Equivalent contact hours, but also including fieldwork out of session
9.131 Animal Health I
Prerequisite: 9.111.
Managerial prevention and control of grazing livestock health, the animal species involved, the concept of economic approach to animal health. Introductory immunology. Skin health; sheep and cattle. Control of external parasites, particularly by insecticides. Reproductive health; sheep and cattle. Internal parasites; flukes, cysticercosis and tapeworms, nematodes. Legal and Public Health responsibilities, Acts of Parliament relating to animal health.

9.132 Animal Health II
Prerequisite: 9.131.

9.201 Agronomy
Prerequisite: 9.101.

9.202 Pastoral Agronomy
Prerequisite: 9.201.

9.203 Crop Agronomy
Prerequisite: 9.201.

9.204 Range Management
Co- or Prerequisite: 9.202.
Basic range ecology and rangeland ecosystems. Plant physiology — growth and development of rangeland plants. Rangeland management practices. Monitoring of long-term trends in productivity. Applications of remote sensing and ground truth sampling. Wild life resources and feral animals and their management. Sheep and beef cattle production in arid and semi-arid environments. Administration of rangelands (e.g., the functions of the Western Lands Commission, the National Parks and Wildlife Service, and the Soil Conservation Service in New South Wales). Involves one week of instruction at Fowlers Gap Research Station.

9.301 Agricultural Economics and Management I
The subject covers two broad strands; basic economic principles, and applied methods for farm management planning. The material on economic principles centres on (a) the theory of production economics, which provides the background for many of the tools of applied farm management; and (b) price theory with emphasis on agricultural markets.

The management planning strand emphasizes basic farm planning procedures such as partial, whole-farm and parametric budgeting, and gross margins analysis. As necessary background for the application of such methods, the course also includes coverage of valuation principles, land tenure, systems of title, discounting procedures, depreciation methods, tax and credit structures, and discussion of the design and use of farm record systems.

9.302 Agricultural Economics and Management II
Prerequisite: 9.301.
Analysis of agricultural policies: agricultural marketing concepts, and an introduction to international trade theory. Investment appraisal and cost-benefit analysis.

Quantitative methods in agricultural economics and farm management with emphasis on — (i) Response surface estimation and analysis (ii) Linear programming methods, with an introduction to other mathematical programming methods (iii) Systems analysis and simulation methods.

9.412 Agricultural Chemistry II
Prerequisite: 2.003J.

Animal milks, analysis and heat treatment changes and detection. Roles of trace metals in biological processes, metal complexes with proteins and metal catalysis.

9.421 Animal Nutrition

While particular emphasis is given to nutritional requirements of sheep, those of other farm livestock are dealt with in this section.
9.501 Wool Science I
Prerequisite: 9.101.
Raw materials and fibre identification; yarn manufacture; fabric manufacture; dyeing and finishing, testing and quality control. Wool biology; wool growth; wool fibre properties. Physical fleece characteristics; clip preparation; fleece defects; wool marketing procedures.

9.502 Wool Science II
Prerequisite: 9.501.
The effect of clip preparation on textile processing; wool metrology (raw wool); distribution of fibre parameters.

9.503 Wool Science III
Co- or prerequisite: 9.502.
Evaluation and typing; organizational structure of the wool industry.
Marketing schemes: commercial (reserve price: AWC marketing plan); technical (traditional, sale by sample, sale by separation, sale by description).
Wool metrology; advanced appraisal and evaluation; current wool outlook; research developments.

9.601 Animal Physiology I
Prerequisite: 17.041.
Physiological systems of mammalia are treated with special attention to homeostasis. Cell membranes; blood and body fluids; the immune reaction. Cardiac control, functions and haemodynamics. Respiration. The endocrine system with particular emphasis upon growth, reproduction, lactation and stress. The nerve impulse, its excitation and transmission. Physiology of digestion, the gastro-intestinal tract and of the kidney. Heat tolerance and climatic adaptation.

9.602 Animal Physiology II
Prerequisite: 9.601.

9.801 Genetics I
Prerequisite: 9.111.

9.802 Genetics II
Prerequisite: 9.801.

9.811 Biostatistics I
Prerequisite: 45.101.

9.812 Biostatistics II
Prerequisite: 9.811.

9.901 Rural Extension
Development of communication skills through experiential or active learning situations. Educational, psychological and sociological factors relating to the diffusion of innovations. Program planning and evaluation.

Graduate Study

9.105G Livestock Production
Biology of reproduction and reproductive performance of sheep and cattle; growth and body composition, meat production and quality.

9.205G Range Management

9.424G Minerals and Their Effects on Grazing Animals
The importance of minerals for mammals. The nutritional significance of the important elements and the effect of ingestion, inhalation, or absorption of excessive amounts of these elements will be discussed. Emphasis on grazing sheep and cattle, but with other examples where appropriate.
9.504G Wool Science
F L2 T4

9.803G Animal Breeding
F L2 T2
Co-requisite: 9.802.
Definition of breeding objectives; case studies of production recording and breed improvement programs for sheep and beef cattle. Development of performance recording systems; choice of traits to be recorded, recording and processing methods. Estimation of breeding value from performance records. Breed evaluation. Optimal design for breeding programs. The impact on genetic improvement of techniques for controlling reproduction.

9.813G Quantitative Methods
F L2 T2
Selected topics in: biostatistics and economic statistics, with emphasis on experimental design and on least squares procedures; response surface estimation and analysis; mathematical programming methods for rural industries; data processing and computer programming; systems analysis and simulation methods.

10.011 Higher Mathematics I
F L4T2
Prerequisites:
HSC Exam Percentile
Range Required
3 unit Mathematics
or
4 unit Mathematics
Excluded**: 10.001, 10.021A, 10.021A, 10.021C.
Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.021A General Mathematics I A*
S1 L4T2
Number systems (including absolute value, inequalities, surds, etc.); coordinate geometry; polynomials, quadratics; concepts of the function; trigonometric functions, logarithmic and indical functions and their laws of operation; introduction to differentiation and integration with simple applications.

10.021B General Mathematics IB
S1 or S2 L4T2
Prerequisites:
HSC Exam Percentile
Range Required
2 unit Mathematics
or
3 unit Mathematics
or
4 unit Mathematics
or
10.021A
Excluded**: 10.001, 10.011.
Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions, the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the Binomial Theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra.

10.021C General Mathematics IC
S2 L4T2
Prerequisite: 10.021B. Excluded**: 10.001, 10.011, 10.021A.
Techniques for integration, improper integrals; Taylor's Theorem; first order differential equations and applications; introduction to multivariate calculus; conics; finite sets; probability; vectors, matrices and linear equations.

10.022 Engineering Mathematics II
F L2T2
Prerequisite: 10.001.
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series, introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.
**If a unit on this list is counted the unit above may not be counted.
10.031 Mathematics†

Prerequisite: 10.001 or 10.021C (CR).

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series, multiple integrals, matrices and their application to theory of linear equations, eigenvalues, introduction to numerical methods.

10.032 Mathematics†

Prerequisite: 10.031.

Vector calculus; special functions; convolution theorem and applications, complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.

10.111A Pure Mathematics II — Linear Algebra

Prerequisite: 10.001. Excluded: 10.121A.

10.1113 Pure Mathematics II — Multivariable Calculus

Prerequisites: 10.001. Excluded: 10.1213.

Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

10.1114 Pure Mathematics II — Complex Analysis

Prerequisite: 10.001. Excluded: 10.1214.

Analytic functions, Taylor and Laurent series, integrals. Cauchy’s Theorem, residues, evaluation of certain real integrals.

10.121A Higher Pure Mathematics II — Algebra

Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.111A, 10.1111.

Linear Algebra: vector spaces, commutative rings, polynomials, modules, linear transformations, eigenvectors, invariant subspaces, canonical forms, linear functions, bilinear and multi-linear algebra. Group Theory: sub-groups, quotient groups, isomorphisms, Lagrange’s theorem, Sylow’s theorem.

10.1213 Higher Pure Mathematics II — Multivariable Calculus

Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.1113.

As for 10.1113 but in greater depth.

10.1214 Higher Pure Mathematics II — Complex Analysis

Prerequisite: 10.1213. Excluded: 10.1114.

As for 10.1114 but in greater depth.

10.2111 Applied Mathematics II — Vector Calculus

Prerequisite: 10.001. Excluded: 10.2211, 4.813.

Vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss’ and Stokes’ theorems. Curvilinear coordinates.

10.2112 Applied Mathematics II — Mathematical Methods for Differential Equations

Prerequisite: 10.001. Excluded: 10.2212, 4.813.

10.2211 Higher Applied Mathematics II — Vector Analysis

Prerequisite: 10.011 or 10.001 (DN) Excluded: 10.2111.

As for 10.2111 but in greater depth.

10.2212 Higher Applied Mathematics II — Mathematical Methods for Differential Equations

Prerequisite: 10.2211. Excluded: 10.2112.

As for 10.2212 but in greater depth.

10.301 Statistics SA

Probability, random variables, independence, binomial, Poisson and normal distributions, transformations to normality, estimation of mean and variance, confidence intervals, tests of hypotheses, contingency tables, two sample tests of location, simple and multiple linear regression, analysis of variance for simple models.

10.331 Statistics SS

An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions; binomial, Poisson and normal; an introduction to multivariate * Entry to General Mathematics IA is allowed only with the permission of the Head of the School of Mathematics, and that permission will be given only to students who do not qualify to enter General Mathematics IB.

If a unit in this list is counted the unit above may not be counted.

† Mathematics 10.031 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics or Applied Mathematics are taken, 10.031 Mathematics will not be counted.

‡ Mathematics 10.032 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics, Applied Mathematics or Theoretical Mechanics are taken, 10.032 Mathematics will not be counted.
Subject Descriptions

School of Psychology

Undergraduate Study

12.100 Psychology 1 F L3T2

Excluded: 12.001.

Introduction to the content and methods of psychology as a basic science, with emphasis on the biological and social bases of behaviour, relationship to the environment, and individual differences. Training in the methods of psychological enquiry, and in the use of elementary statistical procedures.

13.112 Textile Technology II F L5T7

Part B. Yarn Manufacture: Manufacture of man-made fibre yarns: staple conversion, throwing, texturing. The traditional manufacturing systems: cotton, worsted, woolen. Special procedures for processing other fibres such as mohair, silk, flax, etc.

Part D. Dyeing and Finishing: General descriptions of properties of dyes, dyeing assistants, solvents used in dyeing, water supplies and water treatment, machinery used in dyeing, classification and methods of application of dyes, textile printing methods. Objects of finishing and typical flow diagrams, the principles underlying the technology of processes concerned with: the removal of impurities and discoloration; the improvement and elimination of deficiencies in properties of textile fibres.

School of Textile Technology

Undergraduate Study

13.111 Textile Technology I F L3T5

Yarn Manufacture: Principles of manufacture of yarns from staple fibres.

13.211 Textile Science I F L2T1

(b) One of:
 1.533 Biophysical techniques
 1.3033 Mechanical Properties of Materials

Mill illumination. Elements of strength of materials — tension, compression, shear, torsion and bending. Dynamics of rotary motion and mechanical power transmission. Industrial electricity.

(a) Same as (a) in 13.233 Textile Physics.
(b) Heat and mass transfer. Conveying of gases, fluids and solids.

Students are required to carry out a research project and to submit a thesis describing the results of their investigations. It is usual for students to be allocated projects in areas related to the particular course strand they are studying. The following examples are typical: Textile Chemistry: Topics related to the dyeing and finishing of textiles and to the chemistry of fibres. Textile Engineering: Engineering design work, some engineer-
School of Economics

Undergraduate Study

15.001 Microeconomics I S1 or S2 L2T1½
Prerequisites: 15.001 plus
HSC Exam Percentile
Range Required
2 unit A English
31-100
or
2 unit English
21-100
or
3 unit English
11-100

15.002 Microeconomics II S1 L2T2
Prerequisites: 15.011 plus
HSC Exam Percentile
Range Required
2 unit Mathematics
51-100
or
3 unit Mathematics
21-100
or
4 unit Mathematics
1-100
Revealed preference theory of demand, index numbers and aggregation; externalities, time preference, consumer surplus and compensation concepts. Short and long-run costs, returns to scale, producer surplus and quasi-rents. Monopolistic competition, oligopoly, cartels, public enterprise. Investment criteria, benefit-cost analysis. Efficiency and equity trade-offs, microeconomic policy in a second best framework.

15.003 Macroeconomics III S1 L2T2
Prerequisite: 15.042.
Macroeconomic theory and policy, including an introduction to the theory of economic policy, the structure and dynamic characteristics of macro-models, recent developments in monetary theory and policy, theories of inflation and policy in a dynamic setting.

15.011 Macroeconomics I S1 or S2 L2T1½
Prerequisite: 15.001.
The economics of output, employment and inflation, including social accounting, consumption and investment functions, the Keynesian goods market model, supply and demand for money, interactions between the goods and money markets in equilibrium and disequilibrium situations, inflation and the balance of payments.

15.042 Macroeconomics II S2 L2T2
Prerequisite: 15.011 plus HSC results as for 15.002.
Extensions to the Keynesian model of income determination to include the government and overseas sectors and a more detailed examination of both demand and supply functions; money and financial institutions; an introduction to dynamic economics.

15.043 Marxian Political Economy S1 L2T1
Prerequisite: 15.011.
Varieties of political economy, Marx and the classics, the Marxian system, Marxian economics since Marx, Marx and socialist planning, Marxian analysis of current economic problems.

15.053 Economics of Developing Countries S2 L2T1
Prerequisite: 15.072 or 15.103 or 15.113.
Aspects of economic development in the less developed countries. The characteristics of these countries and the policies available to them, simplified models of underdevelopment, the phenomenon of structural change in the development process, the role of industrialization in promoting structural change, the international relationships of developing countries and strategies of development based on industry or agriculture.

15.062 Economics IID S1 or S2 L2T1½
Prerequisite: 15.011.
Unemployment and inflation and the balance of payments, goals of macroeconomic policies; introduction to monetary, fiscal and incomes policies; money, credit, and financial institutions; monetary policy in Australia; theory of fiscal policy, fiscal policy in Australia.

15.072 Economics IIE S1 or S2 L2T1½
Prerequisite: 15.011.
Positive and normative economics; value judgements in the competitive model and its role as a benchmark for evaluating microeconomic policies. Consumer and producer surplus as welfare criteria. Investment decisions in private and public sectors. Monopolistic markets, oligopolies, cartels, mergers, advertising and non-price competition, research and development, public regulation and control. International economic issues, including effects of government intervention in agriculture, mining and manufacturing. Foreign investment, including multinational corporations and joint ventures.

15.073 Natural and Environmental Resources Economics S2 L2T1
Prerequisite: 15.002 or 15.012 or 15.072.
An introduction to the concepts and issues in the management and evaluation of natural and environmental resources.
15.082 Labour Economics* S1 L2T1
Prerequisite: Any Year II Economics subject.

Theories of the labour market and segmented labour markets and applications to the Australian situation, including labour supply and demand, with emphasis on structural changes in the labour force, and the effects of technology and migration; work-leisure preferences, job satisfaction and worker participation; unemployment and underemployment; wage theory and practice, with reference to market forces, collective bargaining and government regulation; the Australian arbitration system and its interaction with other wage determinants, wage differentials.

15.083 Public Finance S2 L2T1
Prerequisite: 15.002 or 15.012 or 15.072.

General aspects of public sector expenditure and its financing with special reference to Australia: the role of government in the economy; principles and types of public expenditure; tax sharing and revenue systems; economic and welfare aspects of different types of taxes and social service systems; inflation and tax indexation, loss of finance and the public debt; fiscal policy, the Budget and the economy.

15.093 Public Sector Economics S1 L2T1
Prerequisite: 15.002 or 15.072 with the approval of the Head of the Department of Economics.

Public goods and social issues, such as poverty, health, education, transport and conservation. Theory and application of benefit-cost analysis. The pricing policies of public utilities.

15.103 International Economics S2 L2T1
Prerequisite: 15.002 or 15.012.

15.143 Microeconomics III S2 L2T2
Prerequisite: 15.002 or 15.012.

15.163 Industry Economics and Australian Industrial Policy* S1 L2T1
Prerequisite: 15.002 or 15.012 or 15.072.

The structure of industry; interrelationships between the role of the business firm and industrial structure; multinational corporations; factors affecting size-structure and performance such as economies of scale; barriers to entry, vertical integration, diversification and mergers; patents, the development and transmission of technology; industrial policy in Australia with special reference to competition policy, foreign investment and mergers, and some specific industry policies (e.g. motor vehicles, electronics, steel, petroleum).

15.501 Introduction to Industrial Relations S2 L2T1
Prerequisite: Nil.

For students enrolled in Faculties other than Commerce and Arts. It is designed to provide a practical introduction to important industrial relations concepts, issues and procedures. Topics covered include the origins, evolution and operation of the Australian system of industrial relations; the structure and role of trade unions and employer bodies; the function of industrial tribunals such as the Australian Conciliation and Arbitration Commission and the N.S.W. Industrial Commission; wages structure and determination; employment, unemployment and retraining, the nature and causes of strikes and other forms of industrial conflict; the processes and procedures for conflict resolution. Where appropriate to class composition, particular attention is paid to individual industries.

15.601 Economic History IA — The Making of Modern Economic Society S1 or S2 L2T1

Prerequisites:

<table>
<thead>
<tr>
<th>Course</th>
<th>HSC Exam Percentile Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit A English</td>
<td>31-100</td>
</tr>
<tr>
<td>2 unit English</td>
<td>21-100</td>
</tr>
<tr>
<td>3 unit English</td>
<td>11-100</td>
</tr>
</tbody>
</table>

Analysis of the forces that have determined the pattern and course of economic and social development in the twelfth century. Modern problems placed within an historical perspective including the relationship between economic growth, the emergence of the corporate economy, and the changing quality of life. The development of interdependence in modern economies in terms of the growth of big business, multinational enterprise, and changes in the distribution of income since the nineteenth century. Use of historical material as the basis of understanding of the background to the contemporary economic world.

15.611 Economic History IB — Australian Economic Development in the Twentieth Century S1 or S2 L2T1

Prerequisite: 15.601.

The development of the Australian economy from the Long Boom and the deep depression at the end of the nineteenth century to the present day. Topics include: a general overview of Australian economic development and its main features; economic fluctuations and their consequences, especially the Great Depression of the 1930s; the rise of Australian economic institutions, changes in the philosophy of development and the role of the State; impact of war, migration and the development strategies of the States; the growth of manufacturing and the creation of an industrial base; problems of the rural sector; and changes in the Australian standard of living. Throughout the course particular attention is given to Australia's changing economic relations with other countries.

*Not offered in 1983.
Biological Sciences

Undergraduate Study

Students must pay the laboratory fee and then use the receipt to obtain a 'course guide' during Orientation Week from the Biology Information Centre, Laboratory A, Ground Floor, Biological Sciences Building.

17.031 Biology A S1
Prerequisite:

- HSC Exam Percentile
 - Range Required
 - 31-100
- 2 unit Science (any strand)
- or
- 4 unit Science (multistrand)

Basic cell structure; membranes, organelles, prokaryotic and eukaryotic cells; cellular locomotion; basic biological molecules; enzymes; structure and metabolic roles, cellular compartmentalization and enzyme function, diffusion, osmosis and active transport; theory of inheritance, linkage, gene interaction, sex determination, mutation, selection and evolution, information transfer and protein synthesis.

17.041 Biology B S2
Prerequisite: 17.031.
The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes.

School of Nuclear Engineering

Department of Industrial Engineering

Undergraduate Study

18.121 Production Management F L3T0
Prerequisites: 10.031, 10.331.

Engineering Economy: Economic objectives of the firm. Economic measures of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment. The Use of Human and Physical Resources: Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout. Production and Quality Control: Control of jobbing, repetitive batch and continuous production. Manufacturing organizations, functions, inter-relationships and information flow. Sampling techniques in quality control, control charts. Introduction to Inventory Control: Analysis of some engineering planning decisions. Introduction to Operational Research: The formation and optimization of mathematical models of industrial processes. The development of decision rules. Some techniques of operational research and applications, eg mathematical programming, queueing theory, inventory models, simulation.

18.131 Operations Research

Introduction to Operational Research: The formation and optimization of mathematical models of industrial processes. The development of decision rules. Some techniques of operational research and applications, eg mathematical programming, queueing theory, inventory models, simulation.

18.551 Operations Research F L2T1
Prerequisites: either 5.071 and 18.021 or 10.031, 10.331 and 18.121.
The formulating and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queueing theory, inventory models, replacement and reliability models, and simulation will be introduced. These techniques will be applied to situations drawn from industrial fields, eg production planning and inventory control. Practical problems of data collection, problem formulation and analysis will be included.

23.051 Nuclear Power Technology F L2½T½
Atomic nuclei, radioactivity, neutron reactions, fissile and fertile materials, nuclear conversion and breeding cycles, plutonium. Criticality requirements, heat removal, control and safety of nuclear reactors. The thermal, hydraulic and structural aspects of gas and liquid cooled thermal reactors and liquid metal cooled fast breeder reactors. The status of fusion research and development. The technology, safety, economics and environmental impact of nuclear fuel cycles, from mining, through enrichment, fabrication and burnup to waste disposal. Comparative assessment of nuclear, fossil and alternative energy systems in local and global contexts.
School of Applied Geology

Undergraduate Study

25.110 Earth Materials and Processes S1 L2T4

Prerequisites:
- HSC Exam Percentile
 - 2 unit Science (any strand) 31-100
 - 4 unit Science (multistrand) 31-100

Field Work of up to two days is a compulsory part of the subject.

25.112R Geology for Mining Engineers IIA

Prerequisite: 25.520.

Laboratory Work: Examination of rocks in hand specimen and thin section. Examination of hand specimens of economic minerals. Mineragraphic examination of ore mineral suites. Study of geological maps of economic mineral deposits.

25.120 Earth Environments and Dynamics S2 L2T4

Prerequisite: 25.110.

Field Work of up to four days is a compulsory part of the subject.

25.122R Geology for Mining Engineers IIB

Prerequisite: 25.520.

Laboratory Work: Exercises in structural analysis including the analysis of structure of an ore deposit. Hand specimen examination of non-metallic economic minerals. Exercises in groundwater hydrology.

25.201R Mineragraphic Laboratory Work

Comprises the mineralogy and Introductory Mineragraphy topics from 25.112R Geology for Mining Engineers IIA.

25.211 Earth Materials I S1 L2T4

Prerequisite: 25.120.

Practical: Macroscopic and microscopic examination of rock forming and ore minerals and igneous rocks in the field and the laboratory.

Field Work of one day is a compulsory part of the subject.

25.212 Earth Environments I S1 L3T3

Prerequisite: 25.120.

Field Work of up to five days is a compulsory part of the subject.
25.221 Earth Materials II
Prerequisite: 25.211.

Sedimentary Petrology: The influence of transportation, deposition and diagenesis on the composition, texture and structure of detrital sedimentary rocks. The chemically formed sedimentary rocks including the phosphates, zeolites, evaporites, ferraligous and siliceous deposits.

Field Work of up to eight days is a compulsory part of the subject.

25.223 Earth Physics
Global Geophysics: Principles of gravity, geomagnetism, palaeomagnetism, geothermy and seismology and their relation to shape, internal constitution, dynamic processes and major tectonic features of the earth.

Exploration Geophysics: Physical properties of rocks and soils. An introduction to electrical, electromagnetic, seismic, gravity, magnetic and radiometric methods of geophysical exploration. Application of these methods in the search for mineral deposits, petroleum, coal and groundwater and in civil and mining engineering projects.

Field Work of one day is a compulsory part of the subject.

25.301R Geoscience IIIA
Stratigraphy, palaeontology, oceanography

25.302R Geoscience IIIB
X-ray crystallography, mineralogy, metamorphic petrology, structural geology, tectonics.

25.303R Geoscience IIIC
Igneous petrology, geochemistry, clay mineralogy, sedimentary petrology.

25.304R Geoscience IIID
Economic geology, mathematical geology, geophysics.

25.311 Earth Materials III
Prerequisite: 25.221. Co-requisite: 25.326.

25.321 Earth Materials IV
Prerequisite: 25.311.

Clay Mineralogy: The structure and properties of the clay mineral groups including the kandites, illites, smectites, chlorites, mixed layered and fibrous clay minerals. Techniques for the identification of the clay minerals. Clay-water systems and ion exchange. Chemical weathering and the origin of the clay minerals.

Advanced Igneous Petrology: Origin of silicate liquids. High pressure and low pressure fractionation. Liquids and fluids: Nature of the Upper Mantle. The use of trace elements and isotopes are petrogenetic indicators. Practical petrography and literature studies of igneous suites.

Field study.

Field Work of up to six days is a compulsory part of the subject.

25.312 Earth Environments II
Prerequisite: 25.212. Co-requisite: 25.326.

Stratigraphy: Biological and physical methods of correlation. Definition of international stratigraphic boundaries. Stratotypes and reference points. The development of the Precambrian craton of Australia. The geological evolution of eastern Australia, particularly the late Palaeozoic and Mesozoic history of the Tasman Mobile Belt. Intracratonic basins of western and southern Australia and the effects of the dispersal of Gondwanaland. Geological evolution of the northern margin of the Australian plate, particularly the Mesozoic to Recent of Papua-New Guinea. Stratigraphic and structural evolution of aulacogens.

25.313 Exploration and Data Processing
Prerequisite: 25.223.

Exploration Geophysics: The practice and theory of geophysics as a basic tool of geological exploration with applications in areas of energy, mineral and ground-water resources and engineering projects.

Mathematical Geology: An introduction to develop proficiency in the acquisition, display and analysis of geological data utilizing digital computer processing. Elementary descriptive and inferential statistics and sampling. Fortran programming language (including hands-on computing experience). Analytical methods of mathematical geology including time series analysis, Markov Chain analysis, map analysis and
multivariate identification and classification techniques. A practical approach is adopted throughout whereby the student makes extensive use of a library of programs implemented on the University's CDC multiframe Cyber 72/171 installation for processing and interpretation of real data.

Field Work of up to five days is a compulsory part of the subject.

<table>
<thead>
<tr>
<th>25.314 Mineral and Energy Resources I</th>
<th>S1 L3T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite: 25.221. Co-requisite: 25.311.</td>
<td></td>
</tr>
<tr>
<td>Metallic Resources: Classification and origin of ore deposits, geochemical processes, research methods. Orthomagmatic, hydrothermal, porphyry, volcanic-sedimentary, Mississippi Valley type, chromium, iron, manganese ores, residual and mechanical ores. Introduction to mineral exploration. Laboratory study of hand specimens, thin sections and polished sections of various ore types; study of selected mining areas representing various genetic types of ore.</td>
<td></td>
</tr>
</tbody>
</table>
| **Economic Mineralogy:** Nature of reflected light. Orthoscopic and conoscopic rotation, dispersion phenomena. Microhardness and reflectivity, etch tests, XRD and microprobe techniques. Ore textures and their interpretation. Phase relations and paragenesis of ore minerals. Practical work in optical properties of ore minerals, hardness and reflectivity measurements; study of selected ores and ore minerals under the microscope including textural studies. |}

Field Work of up to four days is a compulsory part of the subject.

<table>
<thead>
<tr>
<th>25.324 Mineral and Energy Resources II</th>
<th>S2 L3T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite: 25.312.</td>
<td></td>
</tr>
<tr>
<td>Non-metallic Resources: Factors critical to the occurrence of oil, natural gas, oil shales and coal. Geochemistry of hydrocarbons and formation fluids. Typical Australian and overseas occurrences of petroleum. Techniques of petroleum exploration, assessment and development of reserves. Introduction to coal petrology. Geological controls on the formation and distribution of coal. Occurrence and economic use of non-metallic products including phosphates, bauxites, beach sands and industrial minerals.</td>
<td></td>
</tr>
</tbody>
</table>
| **Advanced Structural Geology:** Analysis of structural elements at the microscopic, mesoscopic and macroscopic scales. Modern methods of petrofabric analysis. Detailed studies of the analysis of metamorphic terrains, eg Otago Schist, Cooma Complex. Field Work of one day is a compulsory part of the subject. |}

<table>
<thead>
<tr>
<th>25.325 Engineering and Environmental Geology</th>
<th>S2 L4T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogeology: The hydrological cycle, confined and unconfined groundwater. Hydrological characteristics of rocks and their measurement. Pump tests, aquifer boundaries. Exploration for groundwater, development and monitoring of groundwater resources. Groundwater flow nets. Case studies on the Great Artesian Basin and on the Murrumbidgee area.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25.326 Geological Techniques</th>
<th>S2 L3T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites: 25.212, 25.311.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25.411 Resource Geology</th>
<th>S2 L3T3</th>
</tr>
</thead>
</table>
| **Geophysics:** The planning of geophysical surveys within the context of overall exploration and engineering development programs. Geological interpretation of geophysical data and discussion of selected case studies. **Resource Economics:** An introduction to the role of earth resources in industrial society; availability of resources and consideration of grade, price, economic, technical and political factors. Distribution, production, consumption and trade in minerals. Supply adequacy and resources assessment. Review of Australian and New South Wales mineral industry. Economics of engineering geological works. **Mineral Exploration:** Use of geology in mineral exploration and areal selection; principles of exploration geochemistry; radiometric and remote sensing methods, exploration drilling; ore reserve estimation and exploration ground tenure in New South Wales. **Engineering Geology:** Rock slope stability analysis and stabilization techniques for mine developments. Ground water control and hydrogeological principles applied to mineral and energy resource development: mine dewatering. **World Evolution:** Precambrian: global distribution and concepts; the Archean and Proterozoic of Australia; crustal development and the role of plate tectonics; special conditions and mineral resources. Stratigraphic and tectonic aspects of the Phanerzoic. Field Work of up to ten days is a compulsory part of the subject. |}

<table>
<thead>
<tr>
<th>25.412 Mineral and Energy Resources</th>
<th>S2 L4T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students taking this option are expected to show preference for either mineral or energy resources. Projects, lectures, tutorials and seminars are designed accordingly. Mineral Resources: A major part is a student field-laboratory research project in some aspect of mineral resources. This may be a general geological project, or a specialised mineral exploration project, eg, geochemical, geophysical, or mineralogical, etc. During the first session only there are additional lectures/seminars that follow on from 25.411 to give more detailed appreciation of various aspects of mineral resources and include exploration management, mine evaluation</td>
<td></td>
</tr>
</tbody>
</table>
energy resources: a major section consists of a field mapping project in a sedimentary terrain. Depending on students’ requirements, specialized field/laboratory studies are arranged in sedimentology, macro- and micropalaeontology, palynology, mathematical geology, geophysics and well-log analysis. Where possible, projects are directly related to problems of coal and petroleum occurrence. During the first session attendance is expected at lectures/seminars described in the Mineral Resources section above and of common interest to understanding evaluation and exploitation of energy resources.

25.413 Engineering and Environmental Resources
A major part is a field/laboratory research project in some aspect of engineering or environmental geology. During the first session additional lectures are given on: foundation geology; construction materials; rock weathering and fabric analysis applications to engineering problems; site investigations; practical construction geology; soil slope stability analyses and stabilization; geomechanical principles; engineering geophysical techniques; engineering geological case histories; and advanced geological surveying applied to engineering works.

25.510 Geology for Geomorphologists and Pedologists
Prerequisites: 25.211, 25.221, 25.212.

25.520 Geology for Mining Engineers I
Outline of the main branches of geology and their application to Mining Engineering. Introduction to geomorphological processes and resulting landforms. Fundamentals of the atomic structure of minerals including major rock-forming minerals and ore minerals, their crystal symmetry, their physical and chemical properties. Igneous Rocks: formation, texture, composition and classification of the more important igneous rocks. Sedimentary Rocks: processes of formation and depositional environment, composition and classification. Metamorphic Rocks: metamorphic processes and metamorphic structures, classification and description of metamorphic rocks. Physical properties of rocks including porosity, permeability and capillarity. Weathering processes of rocks and minerals. Deformation of rocks and the resulting effects such as folds, faults, joints and foliation. An introduction to modern theories of tectonism. Integration of geological observations.
Practical Work: Laboratory work consists of exercises related to the lecture course: geological mapping including structure contour problems. Study of minerals and rocks in hand specimens.
Field Tutorials: Two field tutorials are conducted at which attendance is compulsory. Satisfactory reports must be submitted.
Note: Total hours: 56. The course is divided equally between lectures and laboratory work. Field Tutorial hours are additional.

25.521 Geology for Mining Engineers II
Palaeontology and Stratigraphy: principles of stratigraphy; the use of fossils in stratigraphic correlation and bore logging. Structural Geology: elements of structural geology; stereographic projection and fracture analysis applied to mining operations. Geology of Fuels: origin of coal, oil and natural gas; stratigraphic and structural considerations of oil and coalfields. Hydrogeology: principles of hydrogeology. Transmission of ground water in rocks and soils applied to mining operations. Ore Deposits: mineralogy of industrially important metallic and non-metallic minerals; theories of ore formation including secondary enrichment processes. Exploration Procedures: theories and application of exploration techniques in mineral and coalfield exploration including geological and geophysical methods. Field Tutorial: a geology field excursion is held at the end of Session 1; attendance is compulsory.

25.532 Advanced Engineering Geology
Prerequisite or co-requisite: 8.272.
The fabric of rocks at various scales; fabric analysis at the mesoscopic scales; the influence of anisotropy on rock properties; engineering applications. The role of geological structure in determining the stability of slopes and excavations; probability analysis of structures in slope studies; case histories. Petrology of rock and earth construction materials; fabric changes with weathering; soil fabrics; engineering aspects, and engineering classification of weathered rocks.

25.541 Mineralogy (Applied Science Course)

Servicing Subjects
25.621 Marine Geology I
25.622 Hydrological and Coastal Surveying
25.631 Marine Geology II
25.632 Estuarine Geology
25.634 Marine Mineral Deposits and Exploration
25.6341 Marine Mineral Deposits and Oceanic Minerals
25.6342 Exploration and Seismic Methods
25.635 Marine Resources
Graduate Study

25.702G Hydrogeology

Surface and sub-surface methods of geological and geophysical investigation; ground water exploration of confined and unconfined aquifers. Geological and hydraulic characteristics of rocks; aquifer boundaries, groundwater storage and quality. Hydraulic of wells. Hydrogeological systems analysis, including computer methods, mapping techniques and groundwater resources evaluation. Hydrogeology of arid and semi-arid zones. Case history studies of groundwater fields.

25.703G Project (Engineering Geology Graduate Course)

The project is a research investigation consisting of field and laboratory work in any of the disciplines: Engineering Geology, Hydrogeology, Environmental Geology.

25.704G Environmental Geology

25.705G Engineering Geophysics

Shallow seismic refraction; elastic theory, sources and equipment. Determination of fracture index, rippability. Applications to dam sites, highways, depth of weathering, material quality. Seismic refraction. Sparkler and boomer profiling, side scan sonar with application to coastal harbours, sewer outfalls. Electrical methods: direct current geoelectric theory, resistivity sounding and profiling with applications to determination to bedrock depth, location of water table, clay filled dykes, shear zones. Magnetic, electromagnetic and gravity methods as applied; to engineering problems. Geophysical well logging: resistivity, self-potential, gamma ray and sonic logs applied to determination of rock properties and location of clay-filled joints.

Field tutorials: Short field tutorials are included.

25.706G Geological Basis of Geomechanics

25.707G Geopollution Management

25.708G Engineering Geology

Co-requisite: 25.406G.

Several field tutorials form part of this subject.

25.709G Foundation Geology

Co-requisite: 25.406G.

Foundation principles: design, construction, improvements on rock and soil. Geology of dam, road, airfield, bridge and building foundations. Geology of tunnels and large underground openings. Foundations on unstable landforms and in seismically active regions.

25.710G Coastal Environmental Geology

25.711G Arid Zone Engineering Geology

25.712G Project in Terrain Management

A practical exercise to illustrate the application of engineering geology in terrain evaluation and management, to be carried out at Fowlers Gap Research Station. A report is required.

**Equivalent contact hours, but also including fieldwork out of session.
25.713G Research Project in Terrain Management
F T9** C18
A substantial research project involving the application of engineering geology in terrain evaluation and management. Involves fieldwork at Fowlers Gap Research Station. A report is required.

25.800G Seminar
S1* Sem 2
A weekly seminar to present and discuss student papers on exploration topics: speakers from industry are invited to attend and present papers from time to time.

25.801G Geology in Exploration I
S1* L4
The development of conceptual models in mineral exploration and formulation of exploration programs. Consideration of significant guides to ore including structure, lithology, alteration and gossans.

25.802G General Introduction to Exploration Geophysics
S1* L3
A basic introduction to the theory and practice of exploration geophysics, including treatment of applications and limitations of the main methods of seismic, electric, electromagnetic, gravity, magnetic and radiometric methods to geological problems in hydrocarbon, coal, ground water, mineral and engineering exploration. Treatment includes fundamental aspects of the method and case histories illustrating applications areas.

An integrated, geological, geophysical and geochemical field tutorial survey camp of seven days’ duration is an integral part of this course.

25.803G Introduction to Exploration Geochemistry
S1* L3
Basic principles of exploration geochemistry and the role of exploration geochemistry in the generalized exploration sequence. Principles and problems of anomaly recognition. Examples of main applications.

25.804G Introduction to Data Processing and Interpretation
S1* L3
FORTRAN and computer programming: use of terminal facilities. Basic data storage and retrieval. Simple interpretative procedures for exploration data.

25.805G Resource Economics I
S1* L1
Interdependence of political, economic and technical factors in mineral resource supplies. Examination of the main factors in reserves and resources estimation.

25.807G Exploration Geophysics
S1* L6
An introduction to the theory and practices of all geophysical methods in exploration for energy, minerals, groundwater and engineering applications. These will include seismic reflections, seismic refraction, electrical, electro-magnetic, magnetic, gravity and radio-metric methods of exploration, including the planning and conduct of field surveys for general and particular applications, and the theory and practice of the interpretation of geophysical results in terms of geological problems, conditions and occurrences.

25.808G Exploration Project
S1* T6
Interpretation of exploration case-history data designed to familiarize students with the type of information normally required by exploration companies.

25.811G Advanced Geology in Exploration
S1† L4
Definition of the geological environment and search techniques for major categories of mineral deposits including porphyry coppers, carbonate- and shale-hosted lead-zinc ores, volcanogenic massive sulphide ores, vein and sandstone uranium. Geological aspects of reserve estimation. Exploration case histories.

25.815G Resource Economics II
S1† L2
Distribution, production, consumption and trade in minerals. Supply adequacy and resource assessments and projected requirements. Review of the Australian minerals industry in a global context.

25.816G Remote Sensing
S1† L4
The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; Intra-red remote sensing techniques; side looking airborne radar; theory and applications of Landsat imagery; enhancement techniques for satellite imagery; interpretation of Landsat photographic products and application to several case history areas. Integration of remote sensing information with the overall data base as applied to exploration.

25.817G Mining Law and Exploration Management
S1† L1
Mining law in Australia with special reference to land tenure and lease acquisition; organization and management of exploration programs.

25.818G Exploration Project
S1† T6
Design and costing of exploration program by students. This may be based on simulated conditions or actual situations.

25.819G Field-Laboratory Project
S2
An individual exploration project that requires the student to acquire field and laboratory data on geological, geochemical and geophysical aspects of an actual exploration problem. As far as possible the project should be designed in consultation with the exploration industry. A report is required.

25.821G Geology in Exploration II
S1† L2
Specialized search techniques for selected types of metallic ores, with appropriate case histories.

25.823G Advanced Exploration Geochemistry
S1† L2T6
Detailed consideration of the main techniques with emphasis on soil, drainage and rock surveys. All applications and problems will be examined on the basis of case-histories of actual surveys. Special consideration is given to problems of applications under Australian conditions.

*Weeks 1-7 only
†Weeks 8-14 only
**Equivalent contact hours, but also including fieldwork out of session
25.824G Advanced Data Processing and Interpretation S1† L2T2

Advanced concepts of data storage and retrieval; problems of display of geochemical data; multi-variate statistical data interpretation. Students are encouraged to supply their own data sets for processing.

25.827G Laboratory Methods S1† L1T3

Instruction in the main techniques of sample preparation and instrumental analysis appropriate to exploration geochemistry. Practical experience with AAS and XRF. Students are encouraged to supply their own samples.

25.828G Exploration Project S1† T6

Interpretation of exploration data from geochemical surveys; this may be based on data from actual surveys, or data generated by the students themselves.

25.829G Field-Laboratory Project S2

An individual research project designed to contribute to the solution of a practical exploration problem; as far as possible the project should be chosen in consultation with the exploration industry to ensure relevancy to current exploration problems. In general the project involves collection of field data and samples, chemical analysis of samples, and interpretation of the results. A report is required.

25.813G Geological Interpretation S1† T2

The geological interpretation of geophysical data and geophysical models in seismic electrical, electromagnetics, gravity and magnetic methods, including selected case studies from petroleum, coal, mineral and engineering exploration.

25.832G Advanced Exploration Geophysics S1† L16

An extension of, and considerable advanced treatment of the subject matter in 25.807G, in the theory and practice of field and interpretation procedures in all methods and aspects of exploration geophysics, including instrumentation, manual and electronic data processing and interpretation. Specific applications areas for prominent geophysical exploration techniques in the solution of relevant geological problems, are treated in detail in both field and theoretical aspects of the methods.

25.839G Field-Laboratory Project S2

Exploration geophysical project on one or more topics of relevance in energy, water, mineral or engineering exploration. Includes tutorial sessions and seminars on relevant topics of geophysical/geological/geochemistry exploration.

25.840G Seminar S1† Sem2

A weekly joint seminar of Mineral Exploration, Exploration Geochemistry, and Exploration Geophysics students who present papers on aspects of their own particular specialization. Outside speakers from industry and government organizations are invited to participate in the seminars from time to time.

25.915G Project in Hydrogeology

Small project involving the analysis of hydrogeological data from Fowler Gap.

25.916G Research Project in Hydrogeology

Research project on some aspect of the hydrogeology of an arid region.

School of Geography

Undergraduate Study

27.111 Applied Physical Geography I F L2T4

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam Percentile Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>71-100</td>
</tr>
<tr>
<td>31-100</td>
</tr>
<tr>
<td>31-100</td>
</tr>
<tr>
<td>31-100</td>
</tr>
<tr>
<td>71-100</td>
</tr>
<tr>
<td>31-100</td>
</tr>
<tr>
<td>11-100</td>
</tr>
</tbody>
</table>

A systematic introduction to physical geography as a basis for applied studies.

Principles of meteorology and climatology with particular emphasis on climatic controls at global and regional scales. Weather systems and forecasting methods. Climatic classification and the regional pattern of climates in Australia. Geologic and climatic factors in landforms and soils, and in the physiographic build and major landforms of Australia.

Mass movement and hillslope form. River action and associated valley and channel forms. Properties and types of soil, with emphasis on factors and processes.

†Weeks 8-14 only
controlling global and regional distribution. Soil profiles and laboratory measurement of soil properties. Principles of soil classification and mapping. Spatial organization of plants and animals, and factors and processes relating to that organization. Composition, structure, population dynamics and classification of vegetation. Laboratory classes concerned with the interpretation of various forms of data in physical geography and their representation quantitatively and graphically.

27.133 Pedology
Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology.

27.143 Biogeography

27.153 Climatology

27.162 Geographical Statistics and Computing

27.163 Methods in Physical Geography

27.171 Introduction to Remote Sensing
Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation.

27.172 Environmental Measurements
Sampling strategies and survey methods for the collection of environmental data. Data analyses using laboratory and statistical methods. The collection and analyses of weather and climatic data, and the maintenance of meteorological stations. Methods of field surveying and instrumentation for the study of geomorphologic and hydrologic processes. Drainage basin morphometry, dynamics and function, including controls on run-off and sediment transport. The measurement of soil physical and chemical properties in the field and laboratory with special reference to plant growth and soil water and geomorphological processes. The relationships between weathering processes and soil properties. Methods of surveying, classifying and mapping soils. Measurement and description of vegetation. Vegetation survey, sampling and species abundance measure. Monitoring energy and nutrient flow and the effects of man on ecosystems.

27.183 Geomorphology
Beaches and their response to waves, currents and sediment movement. Barrier systems, lagoons and estuaries. Rock platforms. Quaternary sea level changes. Hydraulic geometry of stream channels, including effects of sediment transport and man's activities. Hillslope form, process and associated slope materials. Methods of slope measurement, analysis and survey. Hillslope models. Systems approach, equilibrium concepts and modeling in landform studies. Field projects in coastal and fluvial geomorphology, and laboratory time is devoted to statistical exercises using data collected from maps, aerial photographs and in the field.
27.193 Environmental Impact Assessment S1 L1½

Rationale and basic objectives: standardized types of Environmental Impact Assessment (EIA), including Matrix Approach; adopted methods of EIA in NSW and other Australian states. Frequently used assessment techniques and their limitations; meteorological, hydrological, biological, socio-economic. Environmental decision-making and planning under conditions of uncertainty. Local case studies exemplifying various techniques and issues. Trends, changes and likely future developments in EIA. Practical exercises representing components of typical EIAs.

27.194 Assessment and Management of Physical and Biological Resources S1 L6T6

A core of study relating to methods of assessment of resources and of natural and man-made environments; assessment of land capability and conservation; management; evaluation of risk from natural hazards; application of remote sensing for mapping and assessing land, water and biological resources; investigational procedures relating to community and governmental perception and response. This core is supplemented by study of two of the following areas, chosen as to suit the project:

2. Soils Methods of classifying and mapping soils. Movement of water and nutrients through soils and problems of physical and chemical instability with differing land use. Soil properties in relation to the stability of natural or introduced ecosystems.

27.623 Applied Economic Geography II B S2 L2T2

Selected topics in applied economic geography with particular reference to urban and regional analysis and planning.

27.622 Applied Economic Geography IIB S2 L2T4

Theoretical principles underlying the location of firms and the spatial organization of land use are emphasized. Topics include: factor costs and location problem; demand, scale and agglomeration; rent theory and location patterns; location decisions under conditions of uncertainty; linear models in location analysis.

27.611 Applied Economic Geography I I F L2T4/L2T1

Prerequisite: HSC Exam Percentile Range Required

<table>
<thead>
<tr>
<th>Offered subject to availability of staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Geography</td>
</tr>
<tr>
<td>or 3 unit Geography</td>
</tr>
<tr>
<td>2 unit Economics</td>
</tr>
<tr>
<td>or 3 unit Economics</td>
</tr>
<tr>
<td>2 unit Mathematics</td>
</tr>
<tr>
<td>or 3 unit Mathematics</td>
</tr>
<tr>
<td>or 4 unit Mathematics</td>
</tr>
</tbody>
</table>

Emphasis is on basic concepts, themes and issues in economic geography. Topics include: spatial interaction and analysis of movement patterns; location principles; the organization of settlement patterns and the space economy; behavioural and decision-making processes. Australian case studies are stressed. Laboratory classes deal with handling and presentation of data in economic geography.

27.612 Applied Economic Geography IIA S1 L2T4

The exploration of concepts relating to the city as a complex system with emphasis on spatial structure and processes and change in the spatial organisation of urban areas. Particular emphasis is on industrial location, residential development, population distributions, and service provision.

27.504 Projects in Applied Geography S1 T10 and S2 T15

Biogeography and Bioclimatology: study of the vegetation in an area, and detailed consideration of a problem arising from this survey, preferably with an applied aspect, or a study of the climate of some well-defined plant or animal habitat as related to characteristics of the vegetative cover and substrate. Economic Geography: a problem in applied economic geography involving experimental design, the acquisition and manipulation of field data, and the presentation of a report. Geomorphology and pedology: an area study introducing soils-landscape relationships in a dynamic or chronologic sense; or a systematic study which may be primarily geomorphic or pedologic, but with some interdisciplinary aspect. To include a field element and a supporting laboratory program.
27.624 Geographic Thought and Perspectives S1 T3
Aspects of social science theory and philosophy as they relate to the development of human landscapes and as they enter into planning and policy making. Themes to include: The persistent utopian element; utilitarianism and positivist economic geography; conflict approaches; value-critical stances; the political economy critique; participation, advocacy and action-research, humanistic and welfare approaches; ideology and planning; theories of the state and the basis for intervention.

27.631 Geographic Data Analysis I S2 L1T3
Emphasis is on a variety of methods for measuring spatial associations and relationships within a hypothesis-testing framework. Laboratory work is based on the use of S.P.S.S. procedures.

27.632 Geographic Data Analysis II F L1T2
Focus is on interregional problems in the analysis of location patterns and the application of multivariate methods in economic geography, particularly multiple regression and factor analysis. Laboratory work is based on the use of the CYBER and FORTRAN language with particular reference to geographical information systems.

27.633 Geographic Data Analysis III F L2T4
Principles of research design, field survey methods, numerical taxonomy, non-metric measurement techniques, multivariate methods. Introduction to additional computer software. Student projects and development of Year 4 thesis topics.

27.642 Mathematical Methods for Spatial Analysis F L1T2
The application of selected mathematics to spatial problems including: Algebra of space and principles of system description using concepts of co-ordinate geometry; quadrat analysis and network theory; matrix algebra and the use of matrices in spatial analysis; differential and integral calculus in modeling geographic systems; optimization methods — constraint maximization; algorithmic methods including linear programming, stochastic processes.

27.644 Seminars in Applied Geography S1 T4
Seminars on selected topics relating to problems of rural areas, urban land-use, spatial activity systems, and regional problems and planning.

27.652 Geographic Information Systems S2 L2T1
An introduction to source material and published statistics of relevance to Economic Geographers: problems of geocoding and spatial identifiers; coding information and data banks; and automated cartography. Project work in the development of information systems for monitoring spatial change.

27.662 Urban and Regional Systems S1 L2T2
Focus is on processes of change in urban and regional systems. Topics include: the spatial distribution of economic activities; the economic structure of cities and regions; regional linkages and the transmission of economic change; input-output analysis; urban and regional growth and decline; concentration and dispersion of economic activities; regional disparities; policy issues in urban and regional development. Laboratory classes include methods of urban and regional analysis and an introduction to regional forecasting.

27.713 Marketing Geography** S2 L2T2
Spatial reality as a result of consumer and producer decisions. The relationship between consumer spatial behaviour and the pattern and structure of marketing establishments. Organisation and operation of the marketing function with emphasis upon the pattern of consumer-oriented enterprises and the structure of market areas in intra-urban areas. Spatial behaviour of consumers including search and decision processes. Workshop seminars on analytical techniques and issues raised in lectures.

27.723 Transport Geography* S2 L2T2
The analysis of the transportation system in terms of its relationship with economic and geographical indicators. Focus is on network analysis, trip generation models, freight movement; transport impact studies and the transport energy problem. Lectures are accompanied by seminars which stress the consideration of major problem areas in transportation in Australia.

27.733 Regional Policy and Planning** S1 L2T2
Regional forecasting and techniques for evaluating regional plans are emphasised. Topics include: Regional information systems and budgets; exploratory and normative forecasting methods; time series projections; integrated forecasting models; cost-benefit analysis; planning balance sheets; goals — achievement matrix methods of evaluation; reviews of plans and programs for regional development in Australia. Lectures are accompanied by workshop sessions which concentrate on methodology.

27.743 Regional Population Analysis* S1 L2T2
The primary emphasis is on regional population estimation and forecasting with reference to Australian conditions and the use of Australian data. The secondary emphasis is estimation for regions in adjacent Third World countries. The population forecasting is handled within the framework of demographic theory and component analysis; migration analysis is given particular attention because of the importance of mobility in Australia. The derivation of regional and local social indicators in the context of population change and service provision in Australia.

27.753 Social Welfare and Urban Development** S1 L2T2
A consideration of welfare aspects of urban development, including: Social policies and urban structure; social costs and benefits of urban renewal especially in the inner city; growth centres and new towns; distributional aspects of social services; and spatial disparities in social well-being.

*Offered subject to availability of staff.
**Not offered in 1983.
27.763 Rural Resource Problems** S2 L2T2
Structural adjustment in agriculture; government intervention; rural land subdivision; competing uses for rural land; conservation/development conflicts; the future of country towns; depressed rural regions as poles of underdevelopment; economic and social organisations — family farms, agribusiness, village co-operatives and farm tourism; integrated rural planning initiatives. Emphasis on Australian cases with international experience as context. Workshops to emphasise planning applications.

27.773 Spatial Aspects of the Housing Market* S1 L2T2
Advanced residential location theory; housing market models; determinants of house prices and the cost of housing; residential growth on the urban fringe; inner city housing and urban renewal. Housing problems in Australia and the determination of housing policy.

27.783 Spatial Impacts and Opportunities* S1 L2T2
Selected problems in the location of public services and measurement of spatial opportunity; methods for assessing the local and regional effects of new facilities; multiplier models; and socio-economic impact studies.

27.793 Models of Spatial Systems* S2 L2T2
The design and development of models of spatial systems, including: Entropy maximisation methods; control theory; evaluation of alternative models; and case studies of models in urban and regional analysis.

**Offered subject to availability of staff
*Not offered in 1983

Graduate Study

27.043G Remote Sensing Applications S1 L1T2 C3
The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials; multi-temporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in the coastal zone. Use of remote sensing in environmental management and in environmental impact assessment.

27.202G Environmental Planning and Evaluation C3
Lectures and seminars on environmentalism and political economy, environmental information, impact assessment, and economic evaluation.

27.643G Geographic Data Analysis C2
Principles of research design; sampling and field survey methods; multivariate statistics; numerical taxonomy; spatial statistics.

27.672G Geographic Information Systems C2
Study of selected geographic information systems; problems of data capture and display, data storage and manipulation, system design and development; cartographic displays and computer mapping.

Servicing Subjects

27.295 Physical Geography for Surveyors
27.801 Introduction to Physical Geography
27.802 Introduction to Human Geography
27.811 Physical Geography
27.812 Human Geography
27.2813 Geographic Methods
27.2814 Geographic Field Methods
27.824 Spatial Population Analysis
27.825 Urban Activity Systems
27.826 Urban and Regional Development
27.834 Spatial Population Analysis (Advanced)
27.835 Urban Activity Systems (Advanced)
27.836 Urban and Regional Development (Advanced)
27.412 Coastal Geomorphology
27.901G Geomorphology for Hydrologists† S2 L1½T1½ C3

27.902G Meteorological and Hydrological Principles S2 L3T0 C3

27.904G Geomorphology for Engineering Geologists† S2 L1½T1½ C3

27.910G Geomorphology of Arid Lands S1 or S2 L2T4 C6

27.911G Soil Erosion and Conservation S1 or S2 L2T4 C6

27.912G Arid Zone Climatology S1 or S2 L2T4 C6
Definitions of aridity based on climatic data and their relevance at different scales from hydrologic and biologic considerations. Measures of precipitation effectiveness. Meteorological controls of aridity at global and regional scales, and distinctive features of arid climates over the world. Characteristics and physical controls of the radiation, water and heat budgets as commonly found within and environments. Climate as a fact in resource utilization considered in terms of plant growth and development, animal ecology, insects and diseases, soil erosion, and human adjustments to and conditions, including problems of comfort, health, buildings design and energy use. Laboratory and field work is directed towards 1. instrumentation and measurements of climatic variables of special interest in arid environments, particularly those important to the radiation, water, and heat budgets; and 2. statistical and other quantitative methods for summarization and interpretation of single and combined climatic elements to provide relevant information required for sound management of arid lands.

27.913G Soil Studies for Arid Lands Management S1 or S2 L2T4 C6
Soil forming processes in arid regions. Physical, mineralogical and chemical characteristics of and soils, with emphasis on properties significant for land capability. Chemical and physical properties of saline and alkali soils. Soil response to irrigation, secondary salinization and alkalinization. Classifications and distribution of and zone soils and their environmental relationships. Field methods and soils survey techniques; statistical analysis of soil data and its application to mapping. Laboratory analyses of physical and chemical characteristics of soils, with emphasis on properties significant for land capability. Based on 27.133, with additional reading, tutorials, seminars and practical classes to stress the features of and zone soils. The formal component of the above teaching is completed at Kensington. However, a number of tutorial and laboratory hours are devoted to a field-based soil mapping project based at Fowlers Gap Research Station.

27.914G Terrain Evaluation S1 or S2 L2T4 C6
Methods of defining and mapping land units for resource assessment and management. Principles of land capability classification with reference to pastoral, agricultural and irrigation land use in arid and semi-arid regions. Physical indicators of desertification and land degradation in dry regions including accelerated wind and water erosion and secondary salinization.

27.915G Project in Land Evaluation S2 T9* C9
Practical application of a system of land classification in an arid or semi-arid environment as a basis for land management or land-use planning, or a comparative review of existing approaches to land evaluation. Involves fieldwork, probably at Fowlers Gap Research Station, and the preparation of a report.

27.916G Research Project in Land Evaluation F T9* C9
As for 27.915G, but involving more substantial research over a longer period.

†Offered subject to availability of staff.
*Equivalent contact hours, but also involving fieldwork out of session.
27.917G Project in Soil Conservation S2 T9* C9
A practical investigation of soil degradation associated with the deterioration of rangeland on Fowlers Gap Research Station, or in another part of arid or semi-arid Australia, in relation to soil-vegetation characteristics and land use. May involve investigation of techniques used in combating soil erosion problems. Involves the preparation of a report.

27.918G Research Project in Soil Conservation F T9* C9
As for 27.917G, but involving more substantial research over a longer period.

School of Marketing

Undergraduate Study

28.012 Marketing Systems S1 L2T2
A conceptual introduction to marketing from the systems viewpoint. Discusses the evolution and characteristics of marketing systems, buyer behaviour, marketing channel flows (equalizing supply and demand, communication, ownership, finance, physical distribution), marketing activities in the firm (planning the marketing program, co-ordination and control of marketing activities, problem solving, product planning, promotion and pricing, physical distribution management), resources allocation by competition, the expanding role of government, social performance of marketing and social efficiency of marketing.

28.032 Behavioural Science S1 L2T2
Prerequisite: Nil.
Major concepts and research in the behavioural sciences which reveal the dynamics of human behaviour and the variety of viewpoints that can be adopted in explaining behaviour. The nature and scope of behavioural science; culture; social institutions; groups; social class; interpersonal and mass media communication; learning, perception; personality.

28.042 Consumer Behaviour S2 L2T2
Prerequisite: 28.032
The specific sociological and psychological topics in Behavioural Science are applied to the problem of understanding the consumer in the marketing context. The following areas are covered: motivation and arousal; consumer behaviour as a decision process; problem recognition; search behaviour; choice behaviour; purchasing processes; purchase behaviour.

28.052 Marketing Research S2 L2T2
Prerequisite: 15.421 or approved substitute.
Sources and types of marketing information. Design, conduct, analysis and reporting of market surveys, experiments. Techniques of statistical inference.

School of Surveying

Undergraduate Study

29.441 Surveying for Engineers S1 or S2 L2T2

29.491 Survey Camp
A one-week field camp for students studying 29.441 Surveying for Engineers.

Graduate Study

29.520G Photogrammetric Production Processes SS L1½T1½ C2
*Equivalent contact hours, but also involving fieldwork out of session
Subject: 127

School of Town Planning

Undergraduate Study

36.411 Town Planning S1 L2T1

Introduction to the purpose, scope and application of planning. The urban planning process. Objectives and means of planning cities. Levels of planning and types of plans. Planning law and administration. Future of cities.

Graduate Study

36.062G Urban Planning C1

Priorities in urban planning, topography, community services, industry, selective zoning and decentralization; relationships to regional planning. Cost of pollution and control measures; legal aspects; planned development; architectural aspects; density distribution. Case histories.

36.945G The Organization of Town Planning C2

Aims, means and consequences of town planning in Australia. Aims of planning: organization of the environment in respect of space and time, interrelationship of functions, equity of resource distribution, human satisfaction, the nature of the planning approach. Means of planning: overview of the planning process, laws related to planning, planning assessment procedures, environmental management at different levels, decision-making processes — financiers', firms' and private decisions, changes in public values, public participation, political and economic constraints. Consequences of planning: illustrative case studies, evaluation of planning methodology and procedures.

School of Landscape Architecture

Undergraduate Study

Students should contact the Head of School before enrolling in any of the following subjects:

37.3015 Environmental Impact Assessment I S1 L1T1 C2
School of Food Technology

Undergraduate Study

38.122 Man and Food

Food in history; world food production and trade; world food agencies; food developmental programs. Food habits, attitudes and beliefs, food choice. Principles of food preservation.

38.131 Principles of Food Preservation

38.132 Plant Food Science

Classification, distribution, production and trade of world plant foods. The science and technology of fruits and vegetables: genetic and environmental effects on composition and quality; biology of development, maturation and ripening; harvesting; concept of deterioration of fresh fruit and vegetables; technology of wine production; technology of juice and beverage production; chemical and sensory quality control procedures. Cereals: structure, composition and uses of wheat, rice, rye, corn, sorghum; wheat milling, flour properties; technology of bread, pasta, biscuit and cake manufacture; starch-gluten separations, derived products.

Plant-derived products. Sugars: sources, types, composition, use with other foods; sugar milling, refining, confectionery manufacture, control of spoilage. Lipids: sources, composition, extraction, purification processes, chemistry, processing of cooking oils, margarine, shortenings; use with other foods. Proteins: sources, extraction procedures, nutritional and toxicological factors, texturizing processes, use with other foods.

Methods of pest control.

38.133 Animal Food Science

Materials and techniques of resource data collection, analysis and valuation. History of landscape planning in Australia and overseas with reference to pioneering case studies. Projects include the use of maps, air photos and simple computer programs.

Classification of planning methods. Study of complex methods and techniques used in recent landscape planning models. Development of land use suitability models for recreation, residential, industrial, commercial, grazing, agriculture, forestry and conservation. Projects include the use of remote sensing techniques and advanced computer programs.

Prerequisites: 37.3015.

The environment defined in terms of bio-physical and socio-economic factors. Introduction to the general principles of environmental survey and analysis and the assessment of impact. Specific methodologies are reviewed on a comparative basis. The importance of communication between the environmental sciences and professions and the problems of objectivity.

Emphasis is upon the role that environmental impact assessment should play as part of the planning process and landscape assessment methodologies are reviewed with specific reference to their adaptability for use as a 'before and after' technique for comparatively assessing impact in relation to visual/aesthetic factors.

The student undertakes a specific study of current social significance on a group basis in two phases over two consecutive sessions, in the same year. Each phase is used as a partial assessment of progress.

37.5817 Land Management

An investigation of resources and their management, with reference to managed landscapes, both cultural and natural. Conservation and rehabilitation methods are studied in relation to rural and urban landscapes, including coastal processes. Rehabilitation methods are related to land use types with studies of specific examples, following investigations of human impacts and their assessment.

37.7415 Landscape Planning I

Basic methods and techniques of resource data collection, analysis and valuation. History of landscape planning in Australia and overseas with reference to pioneering case studies. Projects include the use of maps, air photos and simple computer programs.

37.7416 Landscape Planning II

Classification of planning methods. Study of complex methods and techniques used in recent landscape planning models. Development of land use suitability models for recreation, residential, industrial, commercial, grazing, agriculture, forestry and conservation. Projects include the use of remote sensing techniques and advanced computer programs.
Marine products: nature and distribution of world resources; harvesting of teleostean and elasmobranch species; spoilage reactions, their control and quality assessment; chilling, freezing, salting, drying, smoking and fermentation of fishery products; fish meal and fish protein concentrates.

Egg products: structure, composition of the avian egg, quality assessment and microbiology of intact and liquid egg products. Egg pulping, freezing and drying with reference to functional and microbiological qualities.

Milk and dairy products: chemical and physical properties of milk; general composition, proteins, lipids, carbohydrates, vitamins, minerals, flavour, colour; milk contaminants: antibiotics, pesticides, radiotracers, sanitizer residues; milk microbiology: spoilage, public health, pasteurization; chemistry, biochemistry, microbiology and manufacture of milk products: homogenized, dried and condensed milks, cream, butter, ice cream, cheese, yoghurt.

38.134 Food Science Laboratory T6
An integrated program of laboratory and pilot plant exercises designed to illustrate the principles and procedures presented in the subjects 38.131, 38.132, 38.133, 38.331 and 38.431. Includes examination and use of food processing equipment; food packaging materials; the evaluation of unit processes used in the preservation and modification of foods of plant and animal origin including fruit and vegetables, cereals, sugars, lipids, meat, fish, eggs and dairy products; their properties, uses, microbiological, chemical, biochemical and nutritional status and changes undergone during processing and storage.

38.135 Food Quality Assessment S2 L1 T2
Food quality review of characteristics of food quality; review of instrumental assessment of food quality. Sensory assessment of food. Review of theories of sensory perception; practical aspects of sensory assessment such as experimental design, questionnaire design, laboratory design, choosing a test method; outline of test methods, their execution and results analysis; sensory interactions, consumer testing methodology; correlation of subjective and objective methods; case studies, field studies involving evaluation of the role of sensory assessment in the Australian food industry; laboratory exercises.

38.140 Food Technology Project T8
The student undertakes an individual project involving a literature survey, an experimental investigation, and the final preparation of a detailed report on a selected topic in food science or technology.

38.141 Food Regulation and Control S1 L3
Prerequisites: 38.131, 38.132, 38.133, 38.134, 38.331.
Food legislation. State and NHMRC food standards and mechanisms; Codex standards; case studies in food standards development; food and nutrition policy. Food additives: functions and modes of action of various classes of food additives; consequences of their use; National, State and International attitudes and standards; principles of toxicological testing and evaluation of results. Product development needs for new food products, role of market research, advertising and food technology in the generation of new product ideas; steps in the development of a new product; new product failure and success, practical exercises in new product development. Microbiological quality control; good manufacturing practice; in-plant testing; microbiological sampling; sampling plans; decision criteria; microbiological criteria for food. Hazard analysis and critical control point (HACCP) concepts, case studies.

38.142 Oenology S1 L2 T4
Prerequisite: 38.132.
History and nature of grape wines; grape and wine statistics; concept of cultivars within Vitis vinifera, other Vitis species; wine and grape physiology and biochemistry; maturity assessment and significance; influence of climate, soil, and other factors on wine quality; harvesting procedures; oenological procedures including crushing, sulphiting, pressing and draining, fermentation, maturation and storage, stabilization and clarification, bottling, packaging, and distribution; wine types and composition; quality assessment; quality control and analytical procedures; distillation and production of fortified spirits and brandy. World wine industry, wine organizations, wine literature, social uses of alcohol.

38.143 Cereal Technology S1 L2 T4
Prerequisite: 38.132.
A treatment in greater depth of the following topics dealt with in graduate and undergraduate courses: production, storage, marketing and quality of cereal grains; current trends in these areas, technology of bread, biscuit and cake manufacture, chemical, physical and biochemical interactions in wheat flour doughs; flour milling and assessment of flour quality. Additional topics include cereal protein analysis, properties and behaviour, wheat variety identification; meat-cereal combinations, cereal enzymes, non-food uses of cereals; preparation and uses of cereal protein, starches and lipids.

38.144 Treatment and Utilization of Food Processing Wastes S2 L2 T1
Prerequisite: 38.131.
Ecological effects of waste discharges into the marine environment. Purification of water for domestic and industrial applications; water reuse; process modifications for effluent reduction. Origin, composition, treatment, disposal and utilization of wastes from food processing operations. Legal and economic aspects of waste disposal. Inspections of water and waste treatment plants. Seminars, assignments.

38.145 Marine Products Technology S1 L2
Prerequisite: 38.133.
Fish species, quality control and operations used in fish canning, problems encountered with canned marine products. Fish farming, processing of carp and fish roe. Preparation of individual fish portions and utilization of commercially unattractive species. Harvesting, handling, processing and spoilage of molluscs and crustaceans. Utilization of unusual marine organisms. Industrial fishery products.
38.146 Inspections

Inspection of food processing plants, growing areas and research stations in Sydney metropolitan area, New South Wales, Victoria and South Australia.

38.149 Postharvest Technology of Fruit and Vegetables

The systems available for the storage and handling of fruit and vegetables after harvest and the causes of wastage and deterioration in these systems. The effects of temperature, humidity, atmosphere control of the physiology and biochemistry of the product. The application of basic knowledge to develop improved commercial storage and marketing systems.

38.331 Food Microbiology I

Prerequisite: 44.143 or other equivalent introductory Microbiology subject.

38.341 Food Microbiology II

Prerequisite: 38.331.

A detailed theoretical and practical treatment of the ecology, taxonomy and biochemistry of bacteria, yeasts, fungi and viruses involved in food spoilage, food-borne disease and food fermentations. Emphasis on specific methodologies for the detection, enumeration and identification of food associated bacteria, yeasts and fungi. Problems of enumerating microorganisms in foods: techniques of food and surface sampling; formulation, performance and evaluation of selective-differential media; sublethal injury; the value of indicator organisms. Rapid methods for microbial enumeration and identification. Control of microorganisms in foods, microbiological quality control in food production; sanitation and disinfection; food legislation and microbiological standards.

38.344 Yeast Technology

Prerequisite: 38.331.

The ecological, taxonomic and biochemical fundamentals of yeasts. The role of yeasts in alcoholic fermentations, beer, wine, cider, distilled spirits. Baker's yeast production and the role of yeasts in baking. Yeast fermented foods. The spoilage of foods by yeasts. Yeasts and yeast extracts as food for animals and humans. Yeast enzymes in the food industry.

38.421 Food Engineering I

Raw materials, markets, organisation of the Australian food processing industries, food processing equipment; use of computers and automated control; dimensions, units, dimensionless groups, thermal and physical data of foods; material and energy balances. Includes appropriate factory inspections.

38.431 Food Engineering II

Prerequisite: 38.421.

Food rheology, fluid flow, selection of fluid flow equipment, steady-state heat transfer, selection of insulation, heat exchangers; materials of construction for food processing equipment, measurement and control of process variables.

38.441 Food Technology

(Chemical Engineering) L4T

38.443 Food Engineering III

Prerequisites: 38.421 and 38.431.

Multiple effect and vapour recompression evaporation; vapour compression and absorption refrigeration, distillation, gas absorption, liquid and liquid-solid extraction, use of computing equipment, transfer heat transfer, economic decision making; specification of equipment for filtering, mixing, concentration, refrigeration and handling of foods. Laboratory work involving automatic flow control, evaporation, computer control.

38.444 Computer Applications in Food Technology

Prerequisites: 38.411 and 38.431.

Introduction to VAX/VMS, KRONOS and other control languages; the use of SPSS, MPOS and other program packages to solve problems in food technology.

38.521 Introductory Nutrition

Co-Prerequisite: 41.101 Introductory Biochemistry

Dietary patterns: Role of nutrients in human structure and function. Nutritional needs of vulnerable groups, particularly infants, children, pregnant and lactating women, the elderly. Dietary imbalance: disorders related to the affluent diet including obesity, coronary heart disease, dental caries; problems of undernutrition including protein, energy, mineral and vitamin deficiencies. Assessment of nutritional status, use of dietary allowances, food groups, tables of food composition.
38.541 Advanced Nutrition
Prerequisite: 38.521.
Detailed study of the role of nutrients in human structure, function and disease, including study of micronutrients and trace minerals. Regulatory mechanisms such as appetite, control of nutrient metabolism and growth. Nutrition and infection. Alcoholism. Therapeutic nutrition and formulation of special dietary foods.

38.156G Oenology
Prerequisite: 38.521.

Graduate Study

38.151G Introductory Food Science
An introduction to the history of food preservation and human nutrition. Current world food patterns, organisations and trade. Food development programs, regional and international agencies and activities. Parameters of food quality, food choice and social behaviour. Food and society. Students present a seminar on aspects of food science in Session 2.

38.152G Food Process Laboratory
An integrated series of laboratory and pilot plant exercises illustrating the principles and procedures involved in processing and examination of foods.

38.153G Food Technology Seminar
Students present material arising from literature and/or laboratory assignments and/or plant investigations in the food and related industries. Critical assessments are made of the results of research in food science and technology.

38.155G Dairy Technology
A detailed review of trends in dairy industries at the national and international levels. The microbiology and biochemistry of dairy products with particular reference to the technology of milk, butter and cheese production. The development of new dairy products, the use of dairy products in other foods. Emphasis is placed upon the use and development of new technologies in the broad areas of dairy product processing.

38.157G Technology of Cereal Products
Prerequisite: 38.132 or 38.165G.

38.158G Marine Products
Prerequisite: 38.133 or 38.166G.

38.161G Food Additives and Toxicology
Functions, modes of action of food additives, consequences of use; ethical and legislative considerations. National, State and international attitudes and standards. Principles of toxicological testing, the evaluation of results.

38.162G Postharvest Physiology and Handling of Fruit and Vegetables
Biochemistry and physiology of metabolism in fresh fruit and vegetables; respiration measurements as an index of metabolism, maturation and senescence, concept of climacteric and non-climacteric produce; physiological and metabolic changes occurring during ripening. Effect of temperature on metabolism — constraints of high and low temperatures; role of humidity control and water loss in quality maintenance; use of atmosphere control to delay senescence and ripening. Physiological disorders of stored produce; microorganisms of importance to postharvest tissue; physical and chemical methods of control; postharvest disinfection and quarantine measures. Examination of current commercial storage and marketing operations.
38.163G Methods in Food and Nutrition Education S1 L1T2

Co-requisite: 38.553G

Community food and nutrition habits, knowledge and beliefs. Programs for nutrition education, design and evaluation. Communication and educational skills including use of instructional media and preparation of audiovisual materials.

38.164G Elements of Food Preservation S1 L4T1

38.165G Plant Food Products S2 L3T1

Fruits and vegetables: significance in world nutrition, trade; harvest, post-harvest deterioration and control; aspects of development, maturation, ripening; technology of juice, wine production, assessment procedures. Cereals: structure, composition, uses; wheat, rice milling, baking technology. Sugars: sources, types, composition, milling, refining, function in foods. Lipids: isolation, purification, chemistry, processing for frying, spreads, shortening; other food uses. Proteins: sources, extraction, texturising, processing; nutritional and toxicological considerations.

38.166G Animal Food Products S2 L2T1

Meat: animal distribution, breeds; slaughter, pre- and post-mortem handling; meat composition, structure, microbiology, quality; preservation by chilling, freezing, curing, drying, packaging, meat by-products. Marine products: types, distribution, harvesting, microbiology, autolytic and chemical changes; measurement and control of spoilage, use of microbiological and chemical methods, low temperature, drying. Eggs: production, preservation, structure, composition, microbiology; functional properties of components; egg quality, freezing and drying processes. Dairy products: milk composition, physical properties, microbiology, conversion to other dairy products, contaminant, sanitizers; chemistry and biochemistry of cream, butter, cheese, ice-cream, yoghurt; dried, condensed and homogenised products.

38.350G Food Microbiology S1 L3T1

Microbiological examination of foods: sampling methods, plans, specifications, standards; enumeration, rapid methods, sub-lethal injury. Food spoilage: ecology, associations, dominant species; biochemistry, physiology of growth, enzyme production; off-flavours, odours and slimes. Food fermentations: ecology and biochemistry; fermented milks, vegetable, meat, cereal and marine products; Asian fermented foods; yeast and autolysates; single cell protein. Food-borne microbial disease: foods as vectors of disease, food poisoning, incidence, occurrence of infection and intoxication; ecology and taxonomy of common bacterial pathogens; food-borne viral disease; mycotoxins; methods of detection and enumeration of pathogens, indicator organisms; control and prevention of food-borne disease, standards, legislation, food hygiene.

38.351G The Microbial Ecology of Foods S2 L2T1

Prerequisites: An introductory subject in microbiology, 38.350G or 38.331.

38.451G Advanced Food Engineering S1 L2T1

Prerequisites: 38.421 and 38.431 or an introductory subject in materials and energy balances, heat transfer and fluid mechanics.

Mathematical representation using vector calculus of heat and mass transfer and fluid mechanics in foods; numerical methods of solution, thermodynamic analysis of processes; laboratory work on the thermophysical properties of foods.

38.452G Drying of Foods S2 L2T1

Prerequisite: 38.451G.

Psychrometry; water activity of foods; transport in porous media; spray drying, fluidized bed drying, freeze drying, batch and continuous drying; drying of grain in bulk silos; solar drying of fruit and vegetables.

38.551G Advanced Nutrition S2 L2T1

Prerequisite: 38.553G.

Detailed treatment of the role of the nutrients in health and disease at different stages of the human life cycle. Nutritional topics of particular relevance to developing countries including population, infection, rehabilitation, productivity, education.

38.552G Methods of Nutritional Assessment and Analysis S2 L1T2

Co-requisite: 38.551G.

Nutrient assay of foods including bench and instrumental techniques. Human nutritional assessment by anthropometric, dietary and biochemical methods.

38.553G Principles of Nutrition S1 L2T2

The role of the nutrients in human structure and function, including nutritional imbalance states. Includes simple anthropometry and dietary intake study.
The principles of nutrition, digestion and absorption with reference to carbohydrates, fats, proteins and amino acids, mineral substances; calcium, phosphorus, iron, iodine and fluorine, vitamin A, C, D, E, K, the B-group vitamins; foodstuffs and nutrition; nutritional problems of SE Asia; an introduction to the chemistry and structure of carbohydrates, fats, proteins and amino acids; vitamins; enzymology of foods.

Brief history and principles of food preservation; current status of food preservation in developing countries with emphasis on the use of salt, sugar, acids and other chemical preservatives; effect of water activity on chemical and microbial stability of foods; intermediate moisture foods; preservation by heat, chilling and freezing, spoilage mechanisms; effects of processing on nutritional quality and functional status; prospects for food irradiation.

An introduction to food engineering concepts; foods of developing and developed countries; world trade in food and agriculture; international food organisations; food hygiene and public health; standards for foods; parameters of food quality; food choice and social behaviour.

Thermal and physical data for foods; food processing equipment; rheology of foods; non-newtonian fluid flow; specification of equipment for the processing of fluid foods.

Micro-organisms associated with foods; factors affecting microbial growth and survival; enumeration of micro-organisms in foods; ecology of microbial food spoilage; food-borne microbial disease; food hygiene; micro-organisms and fermented food products; simple laboratory procedures for the microbial and chemical analysis of foods.

Drying of foods; psychrometry; batch and continuous drying; drying of grain in storage silos; solar drying, sun drying of foods, spray, spouted bed, fluidized bed drying; nature and control of postharvest losses of cereal grains, grain legumes, tubers, fruit, vegetables, the role and use of packaging materials, container function and construction, storage life assessment of packaged foods.

The science and technology of meat, marine, poultry and milk products; livestock and fishery resources; meat structure, composition, post-mortem changes; meat microbiology; ambient storage and distribution, cold storage, chilling and freezing processes; meat drying, salting, curing and smoking; milk composition, properties, microbiology, pasteurisation processes, milk products; egg structure, composition, quality, defects; preservation of shell eggs, liquid egg products and uses; fish handling, spoilage and preservation; fish meals and protein concentrates; emphasis on upgrading of traditional products and procedures.

Non-newtonian heat transfer; specification of heat transfer equipment for food processing; materials of construction for food processing equipment; principles of liquid food evaporation; vapour compression and absorption refrigeration; liquid-liquid and liquid-solid extraction; transient heat transfer; measurement and control of process variables; economic decision-making.

The transport phenomena approach to heat transfer, mass transfer and fluid flow in continuous and discontinuous phases; numerical methods of solution; use of computer packages for statistical and other calculations, thermodynamic analysis of processes in both simple and complex food processing operations.

Laboratory and pilot plant exercises illustrating the principles and procedures involved in food processing and food quality assessment. Where applicable, emphasis on middle-level technology and nature of indigenous foods.

Inspection of food processing factories, agricultural and food research stations and the major food and grain producing areas in Queensland, New South Wales, Victoria and South Australia.
Undergraduate Study

41.101 Biochemistry

Prerequisites: 17.021, 2.121 and 2.131 or 2.141. Excluded: 2.003J

The chemical properties of amino acids, peptides and proteins, carbohydrates, nucleic acids and lipids and the biological roles of these compounds. The nature and function of enzymes. The intermediary metabolism of carbohydrates, lipids and nitrogenous compounds. The molecular mechanism of gene expression and protein synthesis. Practical work to amplify the lectures.

41.111 Biochemical Control

Prerequisite: 41.101.

The relationship between structure and function of enzymes, selected protein systems and hormones. Metabolic networks and control mechanisms. Practical work to amplify the lectures.

41.102A Biochemistry of Macromolecules

Prerequisites: 41.101 or 41.111* and 2.002B*

Polysaccharides and glycoproteins including bacterial cell walls. Chemistry and biology of polynucleotides. Methods of amino acid and nucleic acid sequence analysis. Protein structure and synthesis. Active centres of some proteins. Sub-unit organization of proteins. Enzyme kinetics. Practical work to illustrate the lectures and provide experience in modern biochemical techniques.

41.102B Physiological Biochemistry

Prerequisites: 41.101 or 41.111* and 2.002B*

41.102C Plant Biochemistry

Prerequisites: 41.101 or 41.111* and 2.002B.*

The biochemistry of the major pathways characteristic of plants will be studied; topics include the energetics and carbon path of photosynthesis, glyoxylate cycle, growth hormones and regulatory phenomena, nitrogen fixation and assimilation.

Experimental work to illustrate and amplify the subject utilizes radioactive isotopes and a number of newer techniques.

Students must obtain a clear pass (PS) in either 41.101 or 41.111.
41.102D Biosynthesis of Plant Metabolites S2 L2T4
Prerequisites: 41.101* or 41.111* and 2.002B. Co-requisite: 41.102C.
This unit complements 41.102C and is taken with it. Topics covered: cell wall formation and the synthesis and mobilization of reserve materials; biosynthesis of amino acids, its regulation, and their conversion into non-protein materials, eg, alkaloids and cyanogenetic glycosides; aromatic ring formation and the isoprene pathway as a sourse of rubber, steroids, carotenes and essential oils. Flower pigments and phytoalexins will be discussed briefly.

Practical work, combined with 41.102C, illustrates and amplifies the subject and includes a wide range of the latest techniques.

School of Biotechnology

Undergraduate Study

42.102A Biotechnology A S1 L2T4
Prerequisites: 41.101* and 41.201* or 44 101*.
The basic principles involved in the operation of microbial processes on an industrial scale, including: the selection, maintenance and improvement of microorganisms; the influence of physical and chemical factors on the microbial environment; the control of environmental factors; the effects of operational patterns on batch and continuous flow cultivation; aeration and agitation; scale-up of microbial processes; air and media sterilization; the harvesting, purification and standardization of products. Discussion of the principles involved in microbial processes for chemical, pharmaceutical and food production, microbial waste treatment and environmental control. The laboratory component includes manipulation of microorganisms, laboratory-scale fermenter operation, microbial enzyme isolation, visits to industrial fermentation plants and industrial seminars.

42.102B Biotechnology B S2 L2T4
Prerequisite: 42.102A.
Application of principles of biotechnology to the analysis and design of microbial processes of industrial relevance (antibiotics, microbial enzymes, single cell protein from carbohydrates and hydrocarbons, fermented foods and beverages, amino acids and vitamins, microbial polysaccharides, activated sludge and photosynthetic processes for waste treatment, microbial leaching of low-grade minerals). Emphasis on quantitative approach: mass and heat balance calculations, kinetic and thermodynamic analysis, detailed equipment design and specification.

Graduate Study

42.211G Principles of Biology SS L3
The characteristics of living systems including a functional treatment of cytology, metabolism, bioenergetics; structure, function and characteristics of single and multicellular systems; growth; cell division; reproduction; heredity and evolution.

42.212G Principles of Biochemistry SS L3 C3
A condensed treatment of biochemistry comprising the following aspects: the elemental and molecular composition of living organisms; the chemistry and roles of the biological elements and molecules; the thermodynamics and enzymatic catalysis of metabolism; catabolic, anabolic, amphibolic and anaplerotic processes, with emphasis on hydrolysis and synthesis of polymers, glycolysis and gluconeogenesis of glucose, β-oxidation and synthesis of fatty acids, deamination and decarboxylation of amino acids, the tricarboxylic acid cycle, electron transport and oxidative phosphorylation, metabolic regulation and integration.

42.213G Biochemical Methods SS T3
A laboratory program in practical biochemistry. The basic instrumentation and methodology of the biochemist is introduced by practical exercises and demonstrations. A comprehensive treatment of the relevance and applicability of biochemical techniques is covered in tutorials.

42.214G Biotechnology SS L2T1
The selection, maintenance and genetics of industrial organisms; metabolic control of microbial synthesis, fermentation kinetics and models of growth; batch and continuous culture; problems of scale-up and fermenter design; control of the microbial environment involving computer/fermenter interactions. Industrial examples are selected from: antibiotic and enzyme production, alcoholic beverages, single cell protein (SCP), microbial waste disposal and bacterial leaching.

Tutorial/practical sessions include: problem solving, instrumentation, continuous culture techniques, and mathematical modelling and simulation of industrial processes.
School of Botany

Undergraduate Study

43.101 Introductory Genetics S2 L2T4
Prerequisites: 17.041 and 17.021.

Various aspects of molecular, organismal and population genetics, including: relict and non-relict recombination, genome variations, mutagens and mutation rates, cytoplasmic inheritance, gene function, genetic code, gene structure, collinearity of polynucleotide and polypeptide, control of gene action, genes and development, population genetics, genetics and improvement of plants and animals.

43.111 Flowering Plants S1 L2T4
Prerequisites: 17.041 and 17.021.

Plant cell structure, structure and functions of the major organs in Angiosperms (flowers, roots, stems and leaves), secondary thickening and arborescence, transport systems in plants, seeds and germination. Variation in structure and function in relation to the environment. Introduction to taxonomy and identification of major Australian plant families. A weekend field excursion forms part of the course.

43.112 Plant Taxonomy* S2 L2T4
Prerequisite: 43.111. Co- or prerequisite: 43.101.

Considers the assessment, analysis and presentation of data for classifying plants both at the specific and supra-specific level with emphasis on vascular plants. Field work is part of the subject.

43.122 Plant Physiology* S2 L2T4
Prerequisites: 17.021, 17.041, 2.121 and 2.131, or 2.141.

The study of how plants work at all levels from the cell to the whole plant. Includes: photosynthesis, respiration, transport, inorganic nutrition, plant growth substances, germination, growth, development and flowering. Important practical applications of plant physiology are also considered.

43.142 Environmental Botany* S1 L2T4 C6
Prerequisites: 17.031 and 17.021

The soil and atmospheric environments in which plants live and the interaction of plants with their environment. Energy and mass transfer. Emphasis is placed on the role of environmental sciences in food production. Students are required to attend one week-day field excursion as part of the practical course.

43.152 Plant Community Ecology S2 L2T4
Prerequisites: 43.111 and 17.012 or 27.111.

Recognition and delimitation of plant communities. Ecology of selected Australian vegetation types. Use of numerical methods and application of community concepts of palaeoecology. Field work forms an integral part of this subject.

43.162 The Plant Kingdom* S2 L2T4
Prerequisite: 43.111.

The major taxa of the Plant Kingdom with emphasis on the green plants. The evolution of basic vegetative structures, reproductive structures and genetic systems are studied. Field work is part of the subject.

43.172 Phycology and Marine Botany S2 L2T4
Prerequisite: 43.111.

The biology of freshwater, marine and soil algae with particular emphasis on the marine flora of SE Australia. Field work is part of the subject.

School of Microbiology

Undergraduate Study

44.101 Introductory Microbiology S1 L2T4

The general nature, occurrence and importance of microorganisms. A systematic review of the major groups of microorganisms: the eucaryotic protista (microalgae, protozoa and fungi); procaryotic protista (blue-green algae, ‘higher’ bacteria, typical unicellular bacteria and small bacteria-like forms); plant, animal and bacterial viruses. The relationship between microorganisms and their environment, ecological considerations: interactions between microorganisms and higher organisms.

Students wishing to enrol in this subject must obtain the written approval of the Head of the School of Microbiology. Those who can provide evidence of previous satisfactory training in biological science will be permitted to enrol immediately. In the absence of such evidence, students will be required to attend a course of lectures in Basic Cellular Biology to be presented in the first three weeks of Session 1. This course introduces the concepts of cellular biology, cell theory and cellular diversity including structure and function of cells. It also briefly describes biologically important molecules (proteins, polycarbohydrates and nucleic acids), enzyme catalysis and biological dynamics.

*Note 1. The subject 43 112 Plant Taxonomy, alternates with 43 162 The Plant Kingdom (43 162 will be given in 1983) 2. 43 112 Plant Taxonomy, 43 162 The Plant Kingdom, 43 142 Environmental Botany, and 43 172 Phycology and Marine Botany may be taken in either second or third year of the Science course provided that prerequisites have been completed 3. Students intending to undertake honours work in the field of Plant Physiology should have obtained a pass in 41 101 (Biochemistry) or 45 101 (Botany) or 2 002A (Physical Chemistry) depending on their proposed field of specialization.
4.143 Microbiology AS S1 L4T6
Prerequisites: 17.031 and 17.021.

The history, general nature, occurrence and importance of microorganisms. General features of procaryotic and eucaryotic protista. Basic microbiological methodology; bacterial anatomy and cytology; cell walls, flagella, pili, nucleus, inclusions, capsules, endospores. Microbial growth: methods of measuring; growth curves; batch, continuous and synchronous cultures. Microbial nutrition and metabolism: autotrophs and heterotrophs; photosynthesis, fermentation and respiration; respiration. Bacterial genetics: adaptation, mutation and mutagens; conjugation; plasmids and drug resistance factors; genetic engineering concepts. Bacterial virology; lytic phages, lysogeny, transduction, phage typing. Bacterial taxonomy; ecology and diversity, basic principles and overview of the major bacterial genera and groups. Yeasts and fungi: general ecology, morphology and modes of reproduction; mycotoxins. Immunology and serology: antigens, antibodies and their interactions; applications to identification. Medical microbiology: microbes as pathogens. Applied microbiology. Microbiology of soils and waters, nitrogen fixation, industrial fermentations, alcoholic beverages, single cell protein, food microbiology.

45.152 Population and Community Ecology S1 L2T4
Prerequisites: 17.021 and 10.01 or 10.011.

Examination of the dynamics of one, two or more interacting populations. Systems analysis and simulation in ecology. Theoretical and mathematical analysis of the dynamics and stability of ecosystems. Topics in the optimal management of renewable resources. Unifying concepts in ecology.

45.201 Invertebrate Zoology S2 L2T4
Prerequisites: 17.031 and 17.021.

A comparative study of the major invertebrate phyla with emphasis on morphology, systematics and phylogeny. Practical work to illustrate the lecture course. Obligatory field camp.

45.301 Vertebrate Zoology S1 L2T4
Prerequisites: 17.031 and 17.021.

A comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement the lecture course. Field excursions as arranged.

45.302 Vertebrate Zoogeography and Evolution S2 L2T4
Prerequisite: 45.301.

A geographic approach to the current distribution, abundance and types of vertebrate species in the Australian region. Particular emphasis is placed on the basic principles of speciation, the history of the Australian continent, vertebrate adaptations and changes in the distribution and abundance of the Australian vertebrate fauna under the influence of man. Field excursions as arranged.

45.900G Ecological Studies in Arid Lands Management S2 L2T4 C6
Prerequisite: Degree with background in bioscience or equivalent.

Concurrent studies in relevant units in the School of Botany are prescribed to cover aspects of vegetation description and plant/environment interactions.

Faculty of Applied Science

Graduate Study

Environmental Studies

46.101G Project in Remote Sensing C9

A minor study of some aspects of remote sensing as it relates to investigations within a particular discipline or subject area offered by Schools within the Faculty of Applied Science.

46.102G Research Project in Remote Sensing C18

An investigation of a problem in remote sensing which involves an identifiable research-component. Such an investigation should be related to the research interests of particular Schools within the Faculty of Applied Science.

46.200G Project Not more than 20 credits

Research investigation on an approved topic, conducted either individually or as part of a team.

46.201G Themes in Environmental Studies C3

Lectures and seminars on a set of themes: resource use and conservation, pollution abatement, hazard perception and adjustment.

School of Chemical Engineering and Industrial Chemistry

Undergraduate Study

General

Students are expected to possess a calculator having exponential capabilities (\(\ln x \) and \(\exp x \) or \(x \) to the \(y \)), and this will normally be allowed to be used in examinations. However, it should be noted that calculators with very much greater capabilities than the above might not be allowed in examinations, because they could give the user an unfair advantage over other candidates. Further information may be obtained from the Head of the School.

Students of Chemical Engineering are expected to have a copy of Perry, J. H. ed Chemical Engineers’ Handbook 5th ed, McGraw-Hill. This book is used extensively for most subjects and units. Certain subject and units do not have specified textbooks and in these cases reference books are used or printed notes supplied.

48.001 Introduction to Chemical Industry S2 L1T+1 1

Introduction to the processing industry. Application of material and simple energy balances in chemical process operations. Information retrieval.

48.021 Chemical Engineering IA S1 L1T+1

Unit 1 Flow of fluids

Prerequisite: 10.001.

Unit 2 Material and Energy Balances

Prerequisite: 48.001

A revision and extension of material and energy balance calculations with more complex examples, including those arising from stage-wise operation of extraction equipment. Graphical solution of multi-stage calculations.

Students not having taken 48.001 will be required to complete a 1-hour bridging course offered by the School early in Session 1.

Unit 3 Dimensions and Dimensional Analysis

Prerequisites: 1.001 and 10.001

Units and measures. Conversions of units and equations. Dimensional Analysis. Basic principles of modelling.
48.022 Chemical Engineering IB

Unit 1 Heat Transfer I S2 L1T1
Introduction to steady state heat transfer including conduction, convection, radiation, boiling and condensation with an emphasis on problem solving. Resistance concept in heat transfer with series and parallel combinations.

Unit 2 Computations I S1 T1 S2 T1
A review of the fundamentals of FORTRAN, with extension to formatting, dimensioned variables and sub-routines. Application to the solution of selected problems involving heat and mass balances, fluid flow and pumping. This course is intended to be complementary to other material in 48.021 and 48.022.

Unit 3 Pumps and Pumping S2 L½T½
Types of piping and fittings. Blow cases. Air lift pumps. Reciprocating pumps, centrifugal pumps and gear pumps. Blowers and compressors.

48.025 Chemical Engineering for Ceramic Engineers
Consists of Units 1 and 3 of 48,021 and Units 1 and 3 of 48.022.

48.031 Chemical Engineering IIA

Unit 1 Mass Transfer (Theory) S1 L1T1
Prerequisite: 2002A, 48.021
Molecular diffusion in gases, liquids and solids and the measurement and calculation of diffusion coefficients. Diffusion at a interface — one component unidirectional diffusion and equimolar counter-diffusion under steady state conditions. Mass transfer coefficients. Estimation and application of chemical and phase equilibrium. Stage calculations applied to liquid/liquid, vapor/liquid and other mass transfer operations. The two film theory and the transfer unit concept in gas/liquid, vapour/liquid, and other operations.

Unit 2 Heat Transfer II (Theory) S1 L1
Prerequisite: 48.022, Unit 1. Co-requisite: 10.032
An extension of the work covered in 48.022 Unit 1, with an emphasis on the fundamentals of conduction, convection and unsteady state heat transfer.

Unit 3 Plant Layout S1 T1
Factory Layout: Factors governing location of processing plant. Typical dispositions of process batteries, central utilities, laboratories, workshops, amenities, storage areas, effluent treatments. Distribution of electricity, steam, process and reticulated cooling water. Boiler plants and cooling towers, steam turbine versus electric motors, local versus central location of particular utilities. Provision for expansion.

Piping & Fittings: fabrication, standards, most used sizes and types. Welded, screwed and bolted connections. Common valve types; their flow and serviceability characteristics, relative costs and integrity; bends and blanking valves. Practical assessment of pressure loss and line sizing in straight runs and simple networks involving pumps, or blowers, valves and bends.

48.032 Chemical Engineering IIB

Unit 1 Solids Handling S2 L1
Prerequisite: 48.021 Unit 1.
Classification of granular solids and powders according to properties which affect their storage and movement. Storage in and retrieval from stacks piles, silos and hoppers. Rules for their design. Feeders and their suitability to various kinds of granular solids. Mechanical conveyors and elevators: distance limitations; hoist height limitations. Rules for design of mechanical conveyors and elevators. Fluid-particle conveyors. Introduction to hydraulic and pneumatic conveyors, feeders and fluid-particle separation systems. Rules for design of simple slurry transportation and dilute phase pneumatic transportation systems. Practical and economic considerations determining choice of system.

Unit 2 Computations II S2 L1T1
Prerequisite: 10.031, 48.022 Unit 2.

Unit 3 Engineering Thermodynamics S2 L1
Prerequisite: 48.135.
Engineering applications of thermodynamics. Heat engines, refrigeration.
Unit 4 Economics II
Prerequisite: 48.031 Unit 6.

Unit 5 Safety and Failure Tolerance
Prerequisite: 48.031 Unit 4.

48.033 Chemical Engineering IIC

Unit 1 Mass Transfer (Design)
Prerequisite: 48.031 Unit 1.

The design of equipment for absorption, distillation and liquid-liquid extraction. Selection of column type. Design of sieve and other types of plate for plate columns. Design of packed columns. Performance characteristics of plate and packed columns. Selection of equipment for liquid-liquid extraction. Design of mixer settlers and column-type extractors. Factors affecting the performance of liquid-liquid extraction equipment. Other mass transfer equipment.

Unit 2 Heat Transfer II (Design)
Prerequisite: 48.031 Unit 2.

Thermal design procedures for shell and tube heat exchangers and fin-fan coolers. Service fluids for heating and cooling duties.

Unit 3 Process Vessels
Prerequisite: 8.112.

Mechanical design and fabrication of pressure vessels. Code and legal requirements. Design of supports for vertical and horizontal cylindrical vessels. Visualization, freehand sketching and presentation of formal drawings and specifications for pressure vessels and equipment components. Relief valves, bursting discs, venting and draining systems.

Unit 4 Fluid-particle Systems I
Prerequisite: 48.021 Unit 1.

Interaction between particles and fluids: drag, terminal velocity, sedimentation. Flow through porous media; pressure gradient, filtration, fluidization, dispersion, multiphase flow, irrigated packed columns.

48.036 Chemical Engineering Laboratory I

Unit 1 and 2
Prerequisites: 48.021, 48.022, 2.002A.

An integrated chemical engineering laboratory incorporating experiments in fluid flow, heat transfer, mass transfer, thermodynamics and reaction kinetics, instrumentation, process dynamics and control. The objectives of this laboratory are: to demonstrate, reinforce and extend the principles of chemical engineering which are covered in Chemical Engineering IA & B and II A-C, to introduce various laboratory techniques which are used in the experimental investigation of chemical engineering problems, to develop an interest in experimentation, and to develop a proficiency in technical report writing.

48.039 Chemical Engineering IIB
S1 or S2 L1½T1½

48.040 Chemical Engineering Project
S1 T1 S2 T1 S2 T1 S1 T2 S2 T2 or S1 T6 S2 T6

The design of plant for the production of chemicals and the estimation of product costs or an experimental investigation of some aspect of chemical engineering.

48.041 Chemical Engineering IIIA

Unit 1 Convective Mass Transfer
Prerequisite: 48.031

Models for convective mass transfer at fixed and free interfaces. Calculation of mass transfer rates at surfaces with simple geometry. Mass transfer in dispersions and in systems involving chemical reaction.

Unit 2 Simultaneous Heat & Mass Transfer
S1 L1

Psychrometry, principles of design calculations for cooling towers and low humidification-dehumidification operations. Topics selected from: drying of solids, crystallization, sublimation, molecular distillation, gaseous and thermal diffusion.

Unit 3 Multicomponent Separation
Prerequisites: 48.031 Unit 1, 48.135.

48.042 Chemical Engineering IIIB

Prerequisites: 10.032, 48.163.

Unit 1 Process Dynamics and Control I

Analysis of dynamic systems: derivation of equations for lumped parameter systems, linearization, reduction to transfer functions, numerical solutions. Control hardware: basic measuring instruments, control valves, analog controllers, digital computer-based controllers. Process control: analysis and synthesis of single feedback loops, using root-locus techniques, stability criteria, and criteria for satisfactory control.

Unit 2 Optimization

An introduction to some of the techniques of optimization and their application to problems from the process industries. The methods covered will include single and multiple dimensional search, linear programming and dynamic programming.

48.043 Chemical Engineering IIIC

Prerequisites: 48.031, 48.032

Unit 1 Design Workshop

Considerations of the ways and means of attempting a design project; emphasizes to students the need 1. to study the history and alternatives to the design project, and 2. to use proper design techniques for the assigned process and equipment. Students are each given a design project or some aspect of it and are expected to produce an appropriate report on their assignments.

Unit 2 Industrial Pollution Control

48.044 Chemical Engineering Laboratory II

An integrated chemical engineering laboratory at a more advanced level than the 48.036 laboratory and with an emphasis on open-ended experiments.

48.047 Chemical Engineering IIID

Prerequisites: 48.031, 48.032, 48.033, 48.163, 48.042.

Unit 1 Management

A workshop comprising exercises and case studies to introduce the human and organizational aspects of managing process or engineering enterprises. Includes discussion of typical organization structures and reasons for choosing them; problems of managing people in organizations; industrial relations questions.

Unit 2 Process Engineering II

Unit 3 Process Dynamics and Control II

Frequency response analysis and synthesis techniques. Control of dead time and distributed systems. Cascade feedforward and other multiloop systems. Introduction to analysis of multivariable systems. Identification and estimation techniques. Digital implementation of control algorithms.

48.048 Advanced Chemical Engineering

Unit 1 Petroleum and Reservoir Engineering

Unit 2 Mineral Chemistry

This subject includes 4.121 Principles of Metal Extraction (F L1T1) plus a sub-unit entitled Stabilities of Inorganic Aqueous Systems containing: sources of equilibrium stability data, methods of presenting stability data for application to interpreting the chemical reactions and mechanisms of aqueous processes.

48.049 Automation and Optimization for Ceramic Engineers

Consists of 48.165 Laboratory Automation Science and Unit 2 — Optimization of 48.042 Chemical Engineering IIIB.

48.090 Industrial Experience

Students are expected to accumulate, by the end of the four year course, twelve weeks of industrial experience gained during recesses.
48.113 Chemistry of Industrial Processes F L1T2

Prerequisite: 2.002A. Co- or prerequisites: 2.002B, 2.042C.

A study of the production of inorganic industrial chemicals from the standpoint of the application of the basic principles of inorganic and physical chemistry (acid industries, alkali industries, industrial gases, electric furnace products, superphosphates, aluminium and glass). A study of some sections of the organic industrial chemical industry — cellulose, industrial alcohols, formaldehyde, phenol, urea, phenolic and urea resins, acetic acid, polymers based on ethylene and acetylene, elastomers.

Laboratory: Students are required to attend lectures on Report Writing, carry out laboratory assignments and attend factory inspections at local and country centres as required.

48.115 Industrial Electrochemistry S1 or S2 L2

Prerequisites: 48.113, 48.138

Fundamentals of electrodes, the Butler-Volmer equation, current/potential laws in relationship to reaction mechanism. Electrocatalysis, gas evolution and co-deposition. Technological aspects of electrochemistry, energy conversion systems, storage systems and plants. Industrial processes — cell design and side reactions, gas bubble effect, current distribution and mass transfer effects. Developments in electrode technology, diaphragms and cell construction.

48.116 Water Chemistry S1 or S2 L2

48.121 Corrosion in the Chemical Industry S2 L2

Chemical and electrical aspects of corrosion and their application to corrosion problems encountered in the chemical process industries. Selection of materials for chemical plant. Design factors for corrosion prevention. Methods of corrosion prevention.

48.122 Instrumental Analysis S2 L1½T4½

Prerequisites: 1.001, 2.121, 2.131.

Basic principles of volumetric and gravimetric analysis and the application of spectrometric and selected techniques to the analysis of process streams and quality control.

48.124 Applied Kinetics S1 L1T1

Prerequisites: 48.138, 48.136.

Adsorption theory, kinetics of catalytic and non-catalytic fluid-solid reactions, rates of surface reactions, kinetics of heterogeneous reactions affected by diffusion, catalyst characterization.

48.125 Industrial Chemistry IA S1 L2T3

Comprises 48.021 Units 1 and 2.

48.126 Industrial Chemistry IB S2 L2T2

Comprises 48.022 Units 1 and 2.

48.134 Applied Thermodynamics S1 L1T1

Prerequisites: 48.135, 48.171

Calculation of thermodynamic properties for non-ideal liquid and solid solutions. Development of statistical models for real solutions of industrial importance. Thermodynamics of interfaces. Phase equilibria in binary and ternary systems. A study of chemical equilibria in multicomponent, polyphase systems including appropriate computational methods.

48.135 Thermodynamics S1 L2T1

48.136 Reactor Design I S1 L1 S2 L2

Introduction to reactor design — ideal batch, steady state mixed flow, steady state plug flow, size comparisons of ideal reactors, optimization of operating conditions. Multiple reactor systems; reactors in series and parallel, mixed flow reactors of different sizes in series, recycle reactors, autocatalytic reactions. Multiple reactions, reactor design for reaction in parallel and reactions in series, series-parallel reactions. Temperature effects, heat of reaction, equilibrium constants, optimum temperature progression, adiabatic and non-adiabatic operation, product distribution and temperature. Kinetics of rate processes. Significance of the rate laws and models for distributed and lumped parameter systems. Experimental measurement and correlation of process rates.

48.137 Industrial Chemistry IIA S1 L2T1

Selected aspects of unit operations for industrial chemistry students such as distillation, liquid-liquid extraction, gas absorption, filtration, evaporation and crystallization.

48.138 Industrial Chemistry IIB S2 L2T1

Consists of Computations II, normally given to chemical engineering students in 48.032, and a course on chemical kinetics to complement material given in 48.136.

48.139 Experimental Design S2 L1T1

Design of experiments; correlation and regression; quality control. Use of graphical methods, fitting empirical equations to experimental data. Preparation of nomograms using constructional determinants.

48.143 Introduction to Analog Computation

Eight two-hour periods devoted to lectures, demonstrations and laboratory exercises.
Analog computation, theory and application of analog computing elements, analog computer programming, solution of linear differential equations with constant coefficients, equation ordering and the elementary principles of modelling. Illustration by examples.

48.172 Instrumental Analysis II S1 TIT2

48.165 Laboratory Automation Science S1 L1½T1½
Prerequisite 48.163
The application of computers, eg microcomputers, to real-time data acquisition and process control in chemical laboratories and selected processes of interest to industrial chemists. Introduction to real-time operation and data manipulation. Organization of a process control computer; hardware considerations. The process/computer interface. Sequential and programmable logic control of batch processes. Data acquisition and process monitoring techniques. Digital process control; PID controller tuning. Graphics in process monitoring and control. Direct Digital Control.

48.166 Microprocessors in Analytical Instrumentation S1 or S2 L1T1
Prerequisite 6.851 Co-requisite 48.165
Computer interfacing to analytical instrumentation at a more fundamental level than that encountered in 48.165 Laboratory Automation Science and is suited to students who envisage working in a research and development environment, where greater flexibility and a more innovative approach are needed in data acquisition and control operations. Transducers, instrumentation amplifiers, signal filtering, conditioning, and processing. Data conversion systems. Principles of instrument interfacing, interface hardware. Typical analytical instrumentation interfaces.

48.171 Chemistry of High Temperature Materials S2 L2
Chemical aspects of high temperature materials, thermodynamics and kinetics of reactions in the solid state, phase equilibria in condensed systems; gas-solid and liquid-solid reactions.
Department of Biological Process Engineering

48.211 Biological Process Engineering F L2T4

Prerequisite: 44.101.

48.240 Biological Process Engineering Project S1 T1 S2 T11

Project in Biological Process Engineering for students in Chemical Engineering.

48.302 Fuels and Energy S2 L2T4

A servicing subject for students in Electrical Engineering which deals with sources and properties of fuels (with particular emphasis on coal, crude oil and natural gas). Principles of combustion including combustion calculations and the technology of boilers and other fuel plant. A variety of alternative energy sources and review of the national and global energy situation.

48.303 Fuel Science for Industrial Chemists S1 or S2 L2

Units 1 and 4 of 48.321 Fuel Engineering II

48.311 Fuel Engineering I S1 or S2 L1

Prerequisites: 1.001 or 1.011, 2.121, 2.131 or 2.141, 5.010, 5.030, 10.001 or 10.011.

Unit 1 Fuels and Energy. Sources and Properties

Fossil Fuels: coal, oil, gas; origin, occurrence in Australia; storage, sampling and analysis; properties and their significance; classification. Other energy sources: nuclear, solar, wind, water, etc.

Unit 2 Energy Conversion

Principles of combustion of solid, liquid and gaseous fuels. Limits of inflammability, burning velocity, ignition temperature. Design principles of burners, combustion efficiency, excess air, air supply.

Unit 3 Fuel Processing

Unit 4 Fuel Plant Technology

Design principles of boilers. Boiler water conditioning. Introduction to furnaces, ovens, kilns, etc.

48.321 Fuel Engineering II S1 or S2 L1

Unit 1 Combustion — Fundamentals and Science

Unit 2 Principles of Gasification

Thermodynamics of basic reactions and calculation of equilibrium compositions. The production of fuel and synthesis gases, controlled furnace atmospheres, gas purification.

Department of Fuel Technology

48.301 Fuel Engineering (for Mining Engineers)F L2T1

An elective introductory subject in fuels and energy for Mining Engineering students based on the subject 48.311 Fuel Engineering I, supplemented by appropriate laboratory experiments (consisting of 28 lectures and 14 hours of laboratory classes per session, taught over two sessions).
Subject Descriptions

Unit 3 Radiation Heat Transfer and Engineering Applications S1 or S2 L1

Unit 4 Measurements in Flames and Furnaces S1 or S2 L1

Unit 5 Laboratory F T1
Analysis and characterization of solid, liquid and gaseous fuels.

48.331 Fuel Engineering III

Unit 1 Combustion Engineering S1 or S2 L1

Unit 2 Furnace Design S1 or S2 L1
Furnace design for continuous or intermittent operation.

Unit 3 Fuel Plant Design S1 or S2 L1

Unit 4 Fuel Conservation and Efficiency S1 or S2 T1
A case history and investigative approach to energy saving in industrial, commercial and domestic applications.

Unit 5 Liquid Fuels S1 or S2 L1

Unit 6 Coal and its Evaluation S1 or S2 L1
Constitution, classification and evaluation of coals. Carbonization: blending, additives, plastic behaviour.

Unit 7 Laboratory F T3

48.340 Fuel Engineering Project S1 T1 S2 T11
Projects selected involving the design of fuel plant or experimental aspects of fuel science and/or fuel processing and utilization.

Department of Polymer Science

48.403 Polymer Science S1 or S2 L2 T1

48.404 Advanced Polymer Science S1 or S2 L2
Prerequisite: 48.403.
Selected topics from basic texts and the original literature covering: physics of glassy polymers, viscoelasticity, polymer rheology, polymer morphology fracture and environmental stress cracking, rubber elasticity, anionic, cationic and Ziegler-Natta catalysis in polymer chemistry, emulsion polymerization, silicon polymers and polymers for high temperature service.

Graduate Study

General

48.063G Industrial Water and Wastewater Engineering
Environmental consequences of water pollution. Water quality criteria and regulations related to industrial use and disposal. Water sources and requirements of industry. Theoretical and practical aspects of treatment methods, including screening, sedimentation, oil separation, coagulation and flocculation, filtration, biological treatment, adsorption, ion exchange, membrane processes. Strategies for industry including waste surveys, prevention at source, correction before discharge water reuse. Economic aspects. Seminars. Factory visits/labatory.

48.064G Medical Aspects
Aspects of medicine bearing upon physiological consequences of pollutants. Synergism and antagonisms; photosynthesis and phyto
toxicity, metabolic mechanisms; morbidity and mortality surveys. exposure indices. Particular pollutants: aldehydes, nitro-olefins, carbon monoxide, sulfur dioxide, oxides of nitrogen, hydrocarbons, ozone and oxidants; particulates, carcinogens.

48.066G Legislative Aspects

48.070G Process Principles

48.071G Corrosion Technology I

48.072G Corrosion Laboratory

Laboratory assignments to illustrate and measure the mechanism of corrosion. Electroplating/anodising experiments.

48.073G Corrosion Materials

Metallic — types available, properties and applications for each of the following: cast iron, alloy cast iron, carbon steels, low alloy steels, stainless steel, special alloys. The following metals and their alloys: aluminium, copper, nickel, titanium, lead, zinc, magnesium, tin, cadmium, chromium, cobalt. Refractory metals — molybdenum, tantalum, tungsten, zirconium. Noble metals — gold, platinum, silver.

48.074G Corrosion Technology II

48.075G Corrosion Seminar

Joint University/Industry colloquia on theory and practice of corrosion technology. Students present material arising from literature and/or laboratory assignments and industrialists are invited to contribute papers and/or participate in the colloquia.

48.076G Corrosion Literature Review

Students are expected to consult and read the wide literature on corrosion and to produce a comprehensive and detailed report on a selected topic, eg, aspects of corrosion in the acid industry; marine corrosion, corrosion problems in the food industry; underground corrosion of pipelines.

48.077G Testing Laboratory

Candidates undertake a project involving the design/evaluation of corrosion testing equipment/techniques. A comprehensive report is submitted.

48.081G Advanced Process Dynamics

48.082G Process Optimization

Multivariable analytical and numerical optimization in free and constrained parameter space. Optimization of functions of a continuous variable. Dynamic programming. Applications of these techniques to specific chemical engineering problems.

48.083G Equilibrium Concepts in Water Systems

The application and limitations of chemical thermodynamics in water systems. Aqueous inorganic process systems including water treatment and minerals processing. The effects and control of pollution. Thermodynamic diagrams such as InE/pH, potential/pH, temperature/pH and concentration/pH are developed as an aid to assessing system energetics.
Sources and estimation of thermodynamic data. Kinetics and mechanism in relation to aqueous system energetics. Analysis of kinetic data.

48.084G System Simulation and Control
This is a participatory course in which case studies, discussions of recent papers, development of digital simulation programs and analog computer laboratory work play an important part. Topics are selected from the following areas:

Unit 1 System Simulation
Numerical methods for digital simulation; programming languages and packages for system modelling of distributed parameter systems; use of analog computers in system simulation. Application of these techniques to the study of process plant and equipment, environmental systems, and similar areas.

Unit 2 Advanced Process Control
System identification and parameter estimation; control of multi-loop systems; non-linear systems; digital control and data-logging, sequencing control.

48.085G Interphase Mass Transfer
Advanced theories of mass transfer. The effect of interfacial instability and methods for predicting its presence. Theoretical prediction of mass transfer in dispersed systems. Multicomponent mass transfer.

48.086G Fluid Particle Interactions

48.089G Graduate Colloquia
Colloquia on research developments in the School of Chemical Engineering and Industrial Chemistry. Students are required to participate actively in the colloquia and give at least one dissertation based on their own investigations.

48.090G Specialist Lectures

48.091G Advanced Thermodynamics

48.092G Computer-aided Design
A workshop type of course with considerable time devoted to discussion, seminars, writing and running of programs. Programming: methods, conventions, and standards; program design, flow-charting, co-ordination and documentation. Design: individual plant units and components, flowsheets, optimization and economic analysis. Physical property estimation. Simulation: continuous change and discrete change systems.

48.131G Catalysts and Applied Reaction Kinetics S1 or S2 L2T4
Methods of catalyst preparation and characterization; adsorption theories; general mechanisms for gas-phase reactions catalyzed by solids; poisoning and catalyst decay; effectiveness factors; techniques in catalytic research; special topics in reaction kinetics including gas-solid non-catalytic reactions, polymer kinetics, electrochemical reaction kinetics and electrocatalysis; industrial catalytic processes; application of statistical methods to the solution of complex chemical data.

48.150G Instrumental Analysis for Industry F L1T2
Role of analysis in process optimization. Accuracies of analytical methods compared to needs for quality control. Frequency of analysis in relationship to control and analytical costs. Importance of speed of analysis for information feedback. Case studies for selected processes in relation to selecting the analytical method.

48.161G Electrochemical Techniques for Control and Analysis S1 or S2 L2T4
In-depth study of selected electroanalytical methods with respect to theoretical principles, instrumentation and practical utilization. The importance of adsorption and reaction mechanism on accuracies and application. Steady state and rapid scan voltammetry, stripping voltammetry, chronopotentiometry, chronocoulometry, classical coulometry and polarimetry. Instrument design and modification for specific needs.

Department of Biological Process Engineering

General
Units are offered separately subject to specified prerequisites as well as the restrictions on those units designed as bridging materials.
Unit 1 Rate Processes

Bridging unit designed to provide the background in rate processes in heterogeneous systems required for Unit 3. This unit could not be offered to a graduate with background in advanced rates processes, the equivalent of 48.0454 Reactor Engineering.

Process rates and rates of change; generalized definition of a process rate. Material balances with reaction — integral balances and balanced differential with respect to time, space, and both time and space. Measurement, interpretation and correlation of process rates. Heterogeneous systems, the influence of diffusional processes, linear and non-linear systems, lumped and distributed systems.

Unit 2 Fundamentals of Microbial Stoichiometry

This is a bridging unit offered to students with little or no background in the life sciences. A prerequisite or co-requisite would be 44.101 Introductory Microbiology or its equivalent. The unit is designed to provide an understanding of the structure of metabolism to allow the student to carry out the overall metabolic balances necessary for quantification of living systems.

Growth of an undifferentiated organism as a physico-chemical process leading to quantification of the growth processes. Overall structure of metabolic processes. Material, energy and redox balances under anaerobic and aerobic conditions. Specific metabolic rates and their quantification.

Unit 3 Design of Microbial Reactors

This unit would normally follow rate processes or fundamentals of microbial stoichiometry and is divided into two strands.

Reactor Design Fundamentals: Ideal and non-ideal reactors, residence time distribution and non-ideal reactor models. The significance of mixing and diffusion in microbial reactors for freely suspended microorganisms. The concept of a microfluid and a macrofluid and its application to the description of two-phase reacting systems — gas-liquid, oil-aqueous and solid-fluid systems will be examined with examples relevant to the biological process industries.

Microbial Reactor Calculations: The collection, quantification and interpretation of rate data, and the design of reactors for freely suspended microorganisms; batch, semi-batch and continuous reactors; gas exchange balances. Rate processes in microbial flocs and microbial films. Design for microbial floc and film reactors.
48.381G Atmospheric Pollution and Control C4
Unit 1 (4 SU) Causes, properties, dispersion, monitoring control and legislation.
Unit 2 (4 SU) Advanced atmospheric pollution (extension for EPC, IPC courses only. Unit 1 is a prerequisite).

48.382G Fuel Constitution
Unit 1 (1 SU) Coal constitution and pyrolytic behaviour.
Unit 2 (1 SU) Constitution and classification of oils
Unit 3 (2 SU) Advanced fuel constitution

48.383G Fuel Processing
Unit 1 (2 SU) Carbonization and gasification processes
Unit 2 (1 SU) Liquid fuels from coals
Unit 3 (1 SU) Chemicals from coals

48.384G Fuel Plant Engineering
Unit 1 (1 SU) Furnace design and heat recovery
Unit 2 (1 SU) Process heat transfer and efficient use of steam
Unit 4 (2 SU) Fuel plant heat transfer

48.385G Combustion and Energy Systems
Unit 1 (1 SU) Combustion technology
Unit 2 (1 SU) Fuel impurities removal of and deposits from equipment
Unit 3 (1 SU) Efficiency in energy utilization
Unit 4 (1 SU) Combined cycles and integrated systems

48.386G Unit Operations in Waste Management C3
Unit 1 (3 SU) The unit operations and processes associated with modern waste management practices; e.g. the origin, nature, characterization, handling, transportation, size reduction and storage of various waste materials; reduction at source and disposal by composting, landfill, incineration and chemical processing; recovery and re-use of marketable products. Legal aspects; case histories.

48.387G Fuel Technology Practice
Compulsory in MAppSc (Fuel) (4 SU). Content bias towards choice of G subjects.

48.400G Polymer Science F L3T3
Polymer Processes: Classification of polymers, methods of polymerization; bulk, solution, emulsion, suspension, high pressure; processes; step growth, chain growth; the chemistry and applications of polymer systems including polyesters, polyamides, phenolic condensation resins, vinyl polymers, synthetic elastomers. Natural polymers.

Mechanism and Kinetics: Step growth polymerization, kinetics, structure effects; chain growth polymerization. Free radical polymerization, chemistry and properties of free radicals and initiators; kinetics of propagation and termination reactions; co-polymerization; monomer radical structure and reactivity. Cationic and anionic polymerization; stereoregular polymers.

Polymer Characterization: Molecular weight: averages and distributions; thermodynamics of polymer solutions; theta temperature; fractionation methods; measurement of number-average molecular weight and weight-average molecular weight.

Polymer Physics: Principles of operation of conventional polymer processing equipment; safety procedures; polymer compound design; stress/strain behaviour of polymers in tension, compression, shear and flexure, elementary rheological behaviour of polymers; rubber elasticity; thermal characteristics of polymers.

48.410G Analytical Characterization of Polymers S1 or S2 L3T3
Composition of formulated polymeric material. Group reactions, specific and colour reactions. Instrumental characterization of polymers, and co-polymers and associated additives eg plasticizers, anti-oxidants, etc. by UV and IR spectrophotometry and pyrolysis gas chromatography. Analysis of films by transmission and reflectance spectrophotometric methods. Thermal analysis.

48.430G Polymer Engineering S1 or S2 L4T2

48.440G Polymer Physics S1 or S2 L4T2

48.900G Major Project
A substantial project on some aspect of chemical engineering, industrial chemistry, polymer science, fuel technology or biological process engineering.

48.901G Minor Project
A minor investigation on some aspect of chemical engineering, industrial chemistry, polymer science, fuel technology or biological process engineering.

Department of Polymer Science
School of Sociology

Undergraduate Study

53.001 Introduction to Sociology F L2 T1

Introduction to major issues in Sociology. Two main themes; culture, society and institutions; and social inequality. Topics: social control, power, sexism, work and leisure, class distinctions. These are treated both factually and theoretically and are considered as they relate to the situation in Australia and in the developing countries.

Assessment on the basis of performance in essays, written assignments, and tutorial classes.

School of Political Science

Undergraduate Study

54.1002 Power and Democracy in Australia S1 3CCH

Excluded: 54.1001 and 54.1003.

Examines the question: who has power in Australia? The formal political institutions: parliament, government, elections, the political parties; the trade unions, the media, business, pressure groups and the bureaucracy as sources of political power. The capitalist nature of Australian society; ideas about democracy, freedom and equality in Australia; the structure of Australian society. Sources of inequality such as education, sex, law and race.

54.2008 Public Policy Making in Australia S2 3CH

Prerequisite: 54.1001 (CR); or any two of: 54.1002 (CR), 54.1004 (CR), 54.1005 (CR); or 51.542 (CR); or 53.033 (CR) or 54.2013.

The problems of administering government and the problems of decision-making. Models of decision-making and problems in implementation. Areas of public policy in Australia, such as poverty and education.

Australian Graduate School of Management

Graduate Study

85.716G Public Policy C3

Not offered in 1983.

The processes by which public policies evolve and their outcomes in society. The role of the policy analyst in conceptualizing problems and developing strategies. Topics include techniques of analysing the decision-making process, specific methods of policy analysis, the relevance of political skill and bargaining in determining outcomes, and problems of policy implementation.

*S1 has evening lectures. Repeated in S2 during the day.
**S1 has daytime lectures. Repeated in S2 in the evening.
Financial Assistance to Students

The scholarships and prizes listed below are available to students whose courses are listed in this handbook. Each faculty handbook contains in its Financial Assistance to Students section the scholarships and prizes available within that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

As well as the assistance mentioned earlier in this handbook (see General Information: Financial Assistance to Students) there are a number of scholarships available to students. What follows is an outline only. Full information may be obtained from Room G20, located on the Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursary Endowment Board*</td>
<td>$150 pa</td>
<td>Minimum period of approved degree/combined degree course</td>
<td>Merit in HSC and total family income not exceeding $4000</td>
</tr>
</tbody>
</table>

*Apply to The Secretary, Bursary Endowment Board, PO Box 460, North Sydney 2060 immediately after sitting for HSC.
Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa payable in fortnightly instalments</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit, participation in sport both directly and administratively, and financial need</td>
</tr>
<tr>
<td>Girls' Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress and continued demonstration of need</td>
<td>Available only to female students under 35 years of age enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Ceramic Society</td>
<td>Up to $600 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Consolidated Industries Ltd</td>
<td>Up to $600 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monier Limited</td>
<td>Up to $1000 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Sydney Brick and Tile Co Ltd</td>
<td>Up to $1000 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Permanent residence in Australia and eligibility for admission to the first or second year of the full-time degree course in Ceramic Engineering</td>
</tr>
<tr>
<td>The Brick Manufacturers' Association of New South Wales</td>
<td>Up to $900 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The State Brickworks</td>
<td>Up to $900 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Thomson Family</td>
<td>Up to $1000 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wunderlich Limited</td>
<td>Up to $1000 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zacuba Pty Ltd</td>
<td>Up to $750 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering and Industrial Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Refining (Australia) Pty Ltd</td>
<td>Up to $800 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Eligibility for admission to the second year of the full-time degree course in Chemical Engineering</td>
</tr>
<tr>
<td>Dow Chemical (Australia)</td>
<td>Up to $1000 pa</td>
<td>Permanent residence in Australia and eligibility for admission to the second year of the full-time degree course in Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Australian Waste Disposal Conference Committee</td>
<td>Up to $300 pa</td>
<td>Permanent residence in Australia and eligibility for admission to any year of the full-time degree course in Fuel Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coca-Cola Export Corporation</td>
<td>Up to $1000 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Permanent residence in Australia. Not more than 22 years of age on 1 December preceding the year in which the award commences and eligibility for admission to Year 1 of the full-time degree course in Food Technology</td>
</tr>
<tr>
<td>Fielder Gillespie - White Wings</td>
<td>Up to $1000 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Technology Association</td>
<td>Up to $1000 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>George Weston Foods Ltd</td>
<td>Up to $4000 over 4 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Waste Disposal Conference Committee</td>
<td>Up to $300 pa</td>
<td>1 year with possibility of further extension subject to satisfactory progress</td>
<td>Permanent residence in Australia and eligibility for admission to any year of the full-time degree course in Fuel Engineering</td>
</tr>
<tr>
<td>Metallurgy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNC Industrial Products Pty Ltd</td>
<td>Up to $1000 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Permanent residence in Australia and eligibility for admission to the first and second year of the full-time degree course in Metallurgy or Metallurgical Process Engineering</td>
</tr>
<tr>
<td>Sandvik Australia Pty Ltd</td>
<td>Up to $1250 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sir Rupert Myers</td>
<td>Up to $1500 pa</td>
<td></td>
<td>Eligibility for admission to the first year of the full-time degree course in Metallurgy or Metallurgical Engineering</td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td>Up to $500 pa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stan Sawyer Memorial Scholarship to Coal Mining Students</td>
<td>Up to $200 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Eligibility for admission to the third or fourth year of the full-time degree course in Mining Engineering</td>
</tr>
</tbody>
</table>

Textile Technology			
The Australian Wool Corporation	$2583 or $1675 pa		
Bonds Industries Ltd	Up to $1600 pa	1 year renewable for the duration of the course subject to satisfactory progress	Permanent residence in Australia and eligibility for admission to the full-time degree course in Textile Technology
Bradmill Industries Ltd			
Bruck (Australia) Ltd	$2583 or $1675 pa		
Fibremakers Division of ICI Australia Operations Pty Ltd	$2500 or $1680 pa		
National Council of Wool Selling Brokers of Australia	Up to $1500		
Private Treaty Wool Merchants	Up to $1500 pa		
Textile Council of Australia	$2583 or $1675 pa		
Textile Technology Staff	Not less than $150 pa		

Wool and Pastoral Sciences			
Commercial Banking Company of Sydney Limited	Up to $1000 pa	1 year renewable for the duration of the course subject to satisfactory progress	Permanent residence in Australia and eligibility for admission to the full-time degree course in Wool and Pastoral Sciences
Merck, Sharp and Dohme	Up to $1000 pa		
National Council of Wool Selling Brokers of Australia	Up to $2500 pa		
Graduate Scholarships

Application forms and further information are available from the Student Enquiry Counter, located in the Chancellery. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

The following publications will also be of assistance:
1. *Awards for Postgraduate Study in Australia* and *Awards for Postgraduate Study Overseas*, published by The Graduate Careers Council of Australia, PO Box 28, Parkville, Victoria 3052;
2. *Study Abroad*, published by UNESCO;

General

<table>
<thead>
<tr>
<th>Scholarships</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of New South Wales Postgraduate Scholarships</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commonwealth Postgraduate Research Awards</td>
<td>Living allowance of $4620 pa. Other allowances may also be paid.</td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates (or equivalent). Applications to Registrar by 31 October (30 November in special circumstances). Preference is given to applicants with employment experience. Applicants must be graduates or scholars who will graduate in current academic year and who have not previously held a Commonwealth Postgraduate Award. Applications to Registrar by 30 September (in special circumstances applications will be accepted 30 November).</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Course Awards</td>
<td></td>
<td>1-2 years, minimum duration of course</td>
<td></td>
</tr>
<tr>
<td>Australian American Educational Foundation Travel Grant (Fulbright)†</td>
<td>Amount varies, depending on award</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates who have completed a University degree or diploma this year and who are Australian citizens or have resided in Australia for at least seven years. Selection is based on scholastic and literary achievements, demonstrable qualities of character, and accomplishments in cultural and/or sporting recreational activities. Applications close 30 September.</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Caltex Woman Graduate of the Year</td>
<td>$16000 over 2 years for further studies in USA, UK, Northern Europe or in special cases Australia. There are no special allowances for travel or accommodation for married graduates.</td>
<td>2 years</td>
<td>Applicants must be female graduates who have completed a University degree or diploma this year and who are Australian citizens or have resided in Australia for at least seven years. Selection is based on scholastic and literary achievements, demonstrable qualities of character, and accomplishments in cultural and/or sporting recreational activities. Applications close 30 September.</td>
</tr>
</tbody>
</table>

*A available for reference in the University Library.
†Application forms are available from: The Secretary, Department of Education, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.
‡Application forms available from The British Council, PO Box 88, Edgecliff, NSW 2077.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</td>
<td>Usually 2 years, sometimes 3</td>
<td>Applicants must be graduates who are Commonwealth citizens or British Protected Persons, and who are not older than 35 years of age. Applications close with Registrar by 30 September.</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa</td>
<td></td>
<td>See above under Undergraduate Scholarships, General</td>
</tr>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$5000</td>
<td></td>
<td>Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia.</td>
</tr>
<tr>
<td>Gowrie Scholarship Trust Fund</td>
<td>$3500 pa. Under special circumstances this may be increased.</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with Registrar by 31 October.</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York*</td>
<td>Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA</td>
<td>Between 12 to 21 months</td>
<td>Candidates must be either: 1. Members of the Australian or a State Public Service or semi-government Authority. 2. Staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close early August.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships at Harvard University</td>
<td>Stipend of $4000 pa plus tuition fees</td>
<td>1 year, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian University.</td>
</tr>
</tbody>
</table>

Application forms must be obtained from the Australian representative of the Fund, Mr L. T. Hinde, Reserve Bank of Australia, Box 3947, GPO, Sydney, NSW 2001. These must be submitted to the Registrar by early August.
<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Rhodes Scholarship†</td>
<td>Approximately £4000 stg pa</td>
<td>2 years, may be extended for a third year</td>
<td>Unmarried male and female Australian citizens, between the ages 19 and 25 who have been domiciled in Australia at least 5 years and have completed at least 2 years of an approved university course. Applications close in early September each year.</td>
</tr>
<tr>
<td>Rothmans Fellowships Award‡</td>
<td>$14000 pa</td>
<td>1 year, renewable up to 3 years</td>
<td>The field of study is unrestricted. Applicants must have at least 3 years graduate experience in research. Applications close in July.</td>
</tr>
</tbody>
</table>

Applied Science

- **Australian Pig Industry Research Committee Postgraduate Awards**
- **Australian Wool Corporation Research Scholarship in Textile Technology** $4620 pa plus allowances
- **Australian Wool Corporation Research Scholarship in Wool and Pastoral Sciences**
- **Australian Meat Research Committee Award**

1 year subject to satisfactory progress. Renewable annually; maximum tenure of 2 years for a Masters candidate or 3 to 4 years for a PhD degree

Minimum 2 years. Maximum 3 to 4 years

Applications close 15 September

Applicants must be graduates in textile physics, textile chemistry, or textile engineering or an appropriate discipline in science or engineering

Applicants must be graduates in applied science, agricultural science veterinary science

Awarded for research into the beef and cattle industry leading to the award of the Masters or PhD degree. Applications close by 31 July.

*Application forms from Executive Officer, Australian Meat Research Committee, Box 4129, GPO, Sydney 2001
†Applications to Mr H. McCreary, Secretary of the NSW Committee, University of Sydney, NSW 2006
‡Applications to The Secretary, Rothmans University Endowment Fund, University of Sydney, NSW 2006.
Prizes

Undergraduate University Prizes

Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded. Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor of the Chancellery.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sydney Technical College Union Award</td>
<td>50.00 and medal</td>
<td>Leadership in the development of student affairs, and academic proficiency throughout the course.</td>
</tr>
<tr>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit — students in their final or graduating year.</td>
</tr>
</tbody>
</table>

Faculties of Applied Science and Engineering

<table>
<thead>
<tr>
<th>Institution of Engineers, Australia</th>
<th>Medal and</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The most proficient final year (or last 2 years part-time) student in the Bachelor of Engineering (or Bachelor of Science (Engineering)) Degree courses offered by the following Schools: Civil Engineering, Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Chemical Engineering and Industrial Chemistry, Mining Engineering, Textile Technology (Engineering option only)</td>
<td></td>
</tr>
</tbody>
</table>

School of Chemical Engineering and Industrial Chemistry

<table>
<thead>
<tr>
<th>Abbott Laboratories Pty Ltd</th>
<th>100.00</th>
<th>Bachelor of Engineering degree course in Chemical Engineering — Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Australian Gas Light Company’s in Chemical Engineering</td>
<td>40.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Australian Paper Manufacturers Ltd</td>
<td>100.00</td>
<td>Best result in 48.163 Instrumentation and Process Control in Industrial Chemistry. Subject selected by Head of School</td>
</tr>
<tr>
<td>CSR Limited</td>
<td>50.00</td>
<td>Subject within the discipline of Industrial Chemistry, selected by Head of School</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Chemical Technology Society</td>
<td>25.00</td>
<td>Bachelor of Science degree course in Industrial Chemistry</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>Bachelor of Science degree course in Industrial Chemistry, Years 1 and 2 or Stages 1 to 4</td>
</tr>
<tr>
<td>Esso Australia Ltd</td>
<td>200.00</td>
<td>Best performance in Year 2 Chemical Engineering</td>
</tr>
<tr>
<td>Institution of Chemical Engineers</td>
<td>100.00 and medal</td>
<td>Best performance for the thesis in the final year, or equivalent part-time stage, of the Bachelor of Engineering degree course</td>
</tr>
<tr>
<td>Shell</td>
<td>100.00</td>
<td>General proficiency in the second year or its part-time equivalent in either the Chemical Engineering course or the Industrial Chemistry course.</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>General proficiency in the third year or its part-time equivalent in either the Chemical Engineering course or the Industrial Chemistry course.</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>General proficiency in the fourth year or its part-time equivalent in either the Chemical Engineering course or the Industrial Chemistry course.</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>For a student who, in the opinion of the Head of School, has performed some meritorious activity of note either inside or outside the University.</td>
</tr>
<tr>
<td>Simon-Carves Australia</td>
<td>21.00</td>
<td>Best performance in 48.135 Thermodynamics</td>
</tr>
<tr>
<td>Stauffer Australia Limited</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Western Mining Corporation Ltd</td>
<td>150.00</td>
<td>Best overall performance in 48.036 Chemical Engineering Laboratory I in the Bachelor of Engineering degree course</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best overall performance in 48.044 Chemical Engineering Laboratory II in the Bachelor of Engineering degree course</td>
</tr>
</tbody>
</table>

Department of Fuel Technology

<table>
<thead>
<tr>
<th>Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Institute of Energy</td>
<td>50.00</td>
<td>For a fuel subject or allied subject project</td>
</tr>
<tr>
<td>Shell</td>
<td>100.00</td>
<td>Subject selected by Head of School</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Food Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilfred B. S. Bishop</td>
<td>20.00</td>
<td>General proficiency throughout Bachelor of Science degree course in Food Technology</td>
</tr>
<tr>
<td>COTTEES General Foods</td>
<td>120.00</td>
<td>38.141 Food Regulation and Control</td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcan Australia Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Austral Crane</td>
<td>150.00</td>
<td></td>
</tr>
<tr>
<td>Australian Institute of Metals</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>Australian Welding Institute</td>
<td>30.00</td>
<td>book order</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>The Broken Hill Proprietary Co Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Eagle & Globe Steel Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>The Electrolytic Refining and Smelting Co of Australia Ltd</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>Western Mining Corporation Ltd</td>
<td>150.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best overall performance in Year 3 full-time (or its equivalent part-time) in the Bachelor of Engineering (or Bachelor of Science (Technology)) degree course</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best overall performance in Year 4 full-time (or its equivalent part-time) in the Bachelor of Engineering (or Bachelor of Science (Technology)) degree course</td>
</tr>
<tr>
<td>Zinc Corp Ltd</td>
<td>70.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Coal Board</td>
<td>125.00</td>
<td>Bachelor of Engineering degree course in Mining Engineering Year 2</td>
</tr>
<tr>
<td></td>
<td>125.00</td>
<td>Bachelor of Engineering degree course in Mining Engineering Year 3</td>
</tr>
<tr>
<td></td>
<td>250.00</td>
<td>Bachelor of Engineering degree course in Mining Engineering — general proficiency throughout course</td>
</tr>
<tr>
<td>Western Mining Corporation Ltd</td>
<td>150.00</td>
<td>Best overall performance in final year of Bachelor of Engineering degree</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>General proficiency throughout the Bachelor of Engineering degree course</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best overall performance in penultimate year of Bachelor of Engineering degree course</td>
</tr>
<tr>
<td>Donor/Name of Prize</td>
<td>Value $</td>
<td>Awarded for</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>School of Textile Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. B. Speakman</td>
<td>20.00</td>
<td>Undergraduate thesis</td>
</tr>
<tr>
<td>R. J. Webster</td>
<td>100.00</td>
<td>General proficiency throughout the Bachelor of Science degree course in Textile Technology</td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayer Sheep Dip</td>
<td>50.00</td>
<td>General proficiency — Wool and Pastoral Sciences degree course, Years 2 and 3</td>
</tr>
<tr>
<td>Parkes Wool Promotion Committee</td>
<td>A shield held in the School of Wool and Pastoral Sciences on which the successful student's name is engraved each year</td>
<td>Bachelor of Science degree course in Wool and Pastoral Sciences, Year 3</td>
</tr>
<tr>
<td>C. R. Lucock</td>
<td>A book or a voucher to the value of 50.00 payable to University Co-op Bookshop Limited</td>
<td>Meat Science</td>
</tr>
<tr>
<td>P. R. McMahon Memorial</td>
<td>100.00</td>
<td>Excellence in Wool Science</td>
</tr>
<tr>
<td>W. S. and L. B. Robinson University College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken Hill Women's Auxiliary of the Australasian Institute of Mining and Metallurgy</td>
<td>30.00</td>
<td>Performance by a student who achieves second place in a complete stage of a degree course</td>
</tr>
<tr>
<td>Mining Managers Association Broken Hill</td>
<td>70.00</td>
<td>Best overall performance in a complete course.</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining Managers Association</td>
<td>40.00</td>
<td>Three prizes: one for each best pass in any complete stage of the degree course in Mechanical Engineering, Mining Engineering, Science respectively</td>
</tr>
<tr>
<td></td>
<td>30.00</td>
<td>Seven Prizes to be awarded in individual subjects selected by the Director</td>
</tr>
<tr>
<td>Western Mining Corporation Limited</td>
<td>150.00</td>
<td>Four prizes to be awarded for best performance in 7.314R Mineral Process Technology, 7.313R Mineral Processing, 7.214R Mine Economics and Planning, 7.224R Operational Management</td>
</tr>
</tbody>
</table>

Graduate University Prizes

School of Chemical Engineering and Industrial Chemistry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Clean Air Society of Australia and New Zealand</td>
<td>100.00</td>
<td>48.381G Atmospheric Pollution and Control, or a subject of an equivalent nature, taken by students in graduate courses in the School of Chemical Engineering and Industrial Chemistry</td>
</tr>
</tbody>
</table>
Faculty of Applied Science

Staff

Comprises Schools of Applied Geology, Chemical Engineering and Industrial Chemistry, Food Technology, Geography, Metallurgy, Mining Engineering, Textile Technology, and Wool and Pastoral Sciences.

Dean
Professor M. Chaikin

Chairman
Professor R. T. Fowler

Executive Officer
John David Collins, BSc PhD N.S.W., ATI

Senior Administrative Officer
Robert Frederick Starr, ASTC

Senior Project Officer
Desmond Rokfalussy, BE Bud.

Professional Officers
Badan-Singh Deol, MSc Punjab, PhD Syd.
Endel Nomm, BA Macq., MSc N.S.W.

Electron Microscopist
Vivian Noel Edward Robinson, BSc PhD W.Aust.

Officer-in-charge, Drawing Office
Max Renner

School of Applied Geology

Professor of Geology and Head of School
Gerald James Spurgeon Govett, DSc Wales, PhD DIC Lond., FIMM

Professor of Engineering Geology
Francis Clifford Beavis, MA Cant., BSc PhD Melb., FGS

Associate Professors
Philip Richard Evans, BA Oxf., PhD Brist., FGS
Lairc Villier Hawkins, MSc Syd., FGS
Frederick Charles Loughnan, BSc Syd., PhD DSc N.S.W., AMAusIMM
John Roberts, BSc N.E., PhD W.Aust.
Bryce Leslie Wood, MSc DSc Otago, MAusIMM

Senior Lecturers
Alberto Albani, DrGeolSc Florence, MSc PhD N.S.W.
Alan Norval Carter, BSc PhD Melb., MSc Adel.
Bastiaan Jan Hansen, MSc Ley., PhD A.N.U.
Michael Barry Katz, BSc Mich. T.U., MSc Mcg., PhD Tor.
Michael John Knight, BSc PhD Melb.
Ittikhar Rasul Qureshi, MSc Punjab, PhD Glas., FGS
Peter Cyril Rickwood, BSc Lond., PhD Cape T., CChem, FGS, MRIC

Lecturers
Chin Yoon Chork, BSc Car., PhD New Br.
Alistair Chisholm Dunlop, BSc N.E., PhD Lond., DIC, MIMM
Geoffrey Robert Taylor, MSc Birm., PhD N.E., FGS, MIMM, AMAusIMM
Robert James Whiteley, MSc Syd.
School of Chemical Engineering and Industrial Chemistry

Professor of Chemical Technology and Head of School
David Lawrence Trimm, BSc PhD Exe., DIC Lond., CEng, FRACI, MIChemE

Professor of Chemical Engineering and Director of Undergraduate Studies
Christopher Joseph Dalzell Fell, BSc N.S.W., PhD Camb., CEng, FIChemE, MIEAust

Professor of Chemical Engineering and Director of Graduate Studies
Robert Thomas Fowler, BSc Wales, PhD Lond., DScEng Syd., CEng, FIEAust, FIChemE, FinstF, FAIE, MIM, ARIC

Associate Professors
Ian Dracup Doig, BSc(Eng) Lond., PhD N.S.W., CEng, MIMechE, MIChemE
John Kingsford Haken, MSc PhD N.S.W., ASTC, FRACI
Robert George Robins, MSc PhD N.S.W., MAMerlChE, ARACI, AMAusIMM
Geoffrey David Sergeant, BSc PhD Wales, CEng, FinstF, FAIE
Mark Sebastian Wainwright, MAppSc Adel., PhD McM., ARACI

Senior Lecturers
Denis Barrett, MSc Leeds, PhD N.S.W., CEng, FinstF, FAIE
Kenneth Spencer Basden, BSc PhD N.S.W., ASTC, CEng, FinstF, FAIE, MIEAust, ARACI, AMAusIMM
Michael Paul Brungs, BSc PhD N.S.W.
John Buchanan, ME Syd., PhD N.S.W.
Rodney Phillip Chaplin, BSc PhD Adel., ARACI
Douglas Christopher Dixon, BE MEngSc Syd., PhD N.S.W., MIEAust
Anthony Gordon Fane, BSc PhD Lond., CEng, MIChemE

Department of Biological Process Engineering

Head
Dr R. J. Hall

Department of Fuel Technology

Head
Associate Professor G. D. Sergeant

Department of Polymer Science

Head
Associate Professor J. K. Haken

Senior Administrative Officer
John Robin Gatenby, ASTC

Professional Officers
Robert Edmund Brand, BSc N.S.W., ASTC, ARACI
Orest Dworjanyn, MSc N.S.W., ASTC, ARACI
David John Kelly, BSc BE Syd.
Cyril Leslie Samways, BSc Syd., MSc N.S.W.
Johannes Peter Smits, BSc(Tech) MSc N.S.W., CEng, MinstF, MAIE
School of Food Technology

Professor of Food Technology and Head of School
Ronald Alexander Edwards, BSc PhD N.S.W., ASTC, FAIFST

Associate Professor
Ronald Baden Howe Wills, BSc N.S.W., PhD Macq., ASTC, AAIFST

Senior Lecturers
Ronald Graham Bowrey, BE PhD N.S.W., AAIFST
Kenneth Alan Buckle, BSc PhD N.S.W., AAIFST, AFCIA
Graham Harold Fleet, MSc Qld., PhD Calif., AAIFST
Heather Greenfield, BSc PhD Lond., AAIFST
Michael Wootton, BSc PhD N.S.W., AAIFST, ARACI, MAGI

Lecturers
Colin John Chartres, BSc Brist., PhD R'dg.
Anthony Kinnaird Miine, BA N.E., MA Syd., PhD Colorado
Donald John Webb, BA DipEd Melb., MPhil Lond., PhD N.S.W.

Tutors
Christine Robyn Bradley, BA DipEd N.S.W.
Graham William Turner, BSc N.S.W.
Alan Kenneth York, BSc N.S.W.

Administrative Assistant
Philip Brian Dunkley, BA N.S.W.

School of Metallurgy

Professor of Physical Metallurgy and Head of School
Hugh Muir, BMetE Melb., ScD M.I.T., CEng, FIM, FIEAust, MAusIMM

Research Professor of Physical Metallurgy
John Stephen Bowles, MSc Melb., CEng, FIM

Senior Project Scientist
Anthony Samuel Malin, MSc PhD N.S.W., CEng, MIM

Project Scientist
Ahmad Mukhtar Khalid, MSc Panj., PhD N.S.W., MASM, MNyas, ARACI, AMAusIMM

Professional Officers
Bernard James Baggaley, MSc N.S.W., DipCer N.Siaffe Poly., FICeram
Ulo Joasoo, MSc N.S.W., ASTC, AMAusIMM
Frederick Henry Scott, BSc N.S.W., MAIP
John Walton Sharp, BSc(Tech) N.S.W.
John Armitage Taylor, ASTC, FAISS, MIEAust, AMAusIMM

Honorary Associate
Bernhard John Frederick Ralph, BSc Tas., PhD Liv., FRACI, FTS
Department of Ceramic Engineering

Associate Professor
Eric Robert McCartney, BSc Syd., PhD N.S.W., FIEceram, MAIEaust, ARACI

Lecturer
Sviatoslav Antonovich Prokopovich, MSc N.S.W., ASTC, MAIEaust

Department of Chemical and Process Metallurgy

Senior Lecturers
Sidney Blairs, BSc PhD Manc.
Bruce Harris, BSc Syd., MSc N.S.W., MAusIMM
Alan Philip Prosser, BSc PhD DIC Lond., ARCS, ARACI, MAusIMM
David Ronald Young, BSc(Eng), PhD Lond., ARSM, MAusIMM

Department of Materials

Senior Lecturer
Keith Robin Lee Thompson, BSc Wales, PhD N.S.W., CEng, MIM

Lecturer
Peter Krauklis, BSc PhD N.S.W., CEng, MIM

Department of Physical and Industrial Metallurgy

Associate Professors
David John Haviland Corderoy, BSc N.S.W., PhD Sheff., CEng, FIM, MWeldIL(Lond), MAIEaust, MAusIMM
Max Hatherly, MSc PhD N.S.W., ASTC, CEng, FIM
Greig Richard Waiwork, PhD DSc N.S.W., ASTC, CEng, FIM

Senior Lecturers
Peter George McDougall, BSc PhD N.S.W., ASTC, CEng, MIM
Michael Bernard McGirr, BSc Syd., PhD N.S.W.
Roy Thomas Southin, PhD Camb., CEng, FIM, MIBF

School of Mining Engineering

Professor of Mining Engineering and Head of School
Frank Ferdinand Roxborough, BSc PhD DURh., CEng, FIInstE, FIETE, FIMM, MAusIMM

School of Textile Technology

Professor of Textile Technology and Head of School
Malcolm Chaikin, OBE, BSc PhD Leeds, DipEng L.I.T.(Shanghai), FTS, FTI

Associate Professors
Colin Herbert Nicholls, BSc Adel., PhD Leeds, FRACI, FTI
Ronald Postle, BSc N.S.W., PhD Leeds, FTI, FAIP

Senior Lecturers
Ross Ernest Griffith, BSc N.S.W., PhD Leeds, ATI
Thomas Stanislaus Hickie, BSc PhD N.S.W., ASTC
Mstislav Stephen Nossar, Dipling Harbin, PhD N.S.W., FIEAust
Michael Thomas Pailthorpe, BSc PhD N.S.W.
Lecturer
Nigel Anthony Gull Johnson, BSc N.S.W., PhD Leeds, ATI

Professional Officers
Jindrich Vavrinec Brancik, MSc Brno, PhD N.S.W.
Barry William Edenborough, BE PhD N.S.W.
Michael David Young, BSc PhD N.S.W., ATI
Oto Zubzanda, Dipling T. U. Bratislava, PhD N.S.W.

Honorary Associate
Arved Datyner, BSc PhD Lond., FTI, FRIC, FSDC

School of Wool and Pastoral Sciences

Associate Professor and Head of School
John Patrick Kennedy, MSc N.S.W., BSc Oxf., MAIAS

Professor of Pastoral Sciences
Haydn Lloyd Davies, PhD W. Aust., BSc Wales, MAIAS

Associate Professors
John William James, BA Old., DSc N.S.W.
Walter Ragnall McManus, BSc Agr Syd., PhD N.S.W.
Euan Maurice Roberts, M AgrSc N.Z., PhD N.S.W.

Administrative Officer
John Edward Lawrence

Senior Lecturers
Stephen James Filan, B Agr Ec N.E., MSc N.S.W.
John Douglas McFarlane, BSc Agr Dip Ed Syd., MSc N.S.W., MAIAS
Douglas McPherson Murray, B Agr Sc PhD Melb., MRurSc N.E.
Archibald Niven Sinclair, MVSc Syd., FRCVS, FACBS, FACVS

Lecturer
Dennis Charles Teasdale, BSc MBA N.S.W.

Senior Instructor
Ronald Edward Sallaway

Professional Officer
Ian Rowden McRae, BSc (Forestry) A. N. U.
Broken Hill Division

Staff

Director
Professor J. E. Andersen

Librarian
Peter Geoffrey Longrigg, BA P.N.G., DipLib Canberra C.A.E., ALAA

Mathematics

Senior Lecturer
Dennis William Trenerry, BSc PhD Adel.

Mechanical Engineering

Lecturers
Llewellyn Ramsay Jones, BSc N.Z., DipAm MEng Sheff., PhD Wales, MIEAust, MIMechE
Chakravarti Varadachar Madhusudana, BE Mys., ME I.I.Sc., PhD Monash, MIEAust

Mining Engineering

Senior Lecturer
Venkata Satyanarayana Vutukuri, BSc(Eng) Ban., MS Wis., MMGI, AIME, AMAusIMM

Mineral Science

Senior Lecturer
Barenya Kumar Banerji, MSc Patna, PhD Leeds, MAusIMM

Physics

Senior Lecturer
Kenneth Reid Vost, BSc Glas., MSc N.S.W., AMAusIMM
The University of New South Wales
Kensington Campus 1983

Theatres
- Biomedical Theatres E27
- Central Lecture Block E19
- Classroom Block (Western Grounds) H3
- Rex Vowels Theatre F17
- Keith Burrows Theatre J14
- Main Building Theatrette K14
- Mathews Theatres D23
- Parade Theatre E3
- Science Theatre F13
- Sir John Clancy Auditorium C24

Buildings
Affiliated Residential Colleges
- New (Anglican) L6
- Shalom (Jewish) N9
- Warrane M7
- Applied Science F10
- Architecture H14
- Arts (Morven Brown) C20
- Banks F22
- Barker Street Gatehouse N11
- Basser College C18
- Biological Sciences D26
- Central Store B13
- Chancellery C22
- Chemistry D10
- Dalton F12
- Robert Heffron E12
- Civil Engineering H20
- Commerce (John Goodsell) F20
- Dalton (Chemistry) F12
- Electrical Engineering G17
- Geography and Surveying K17
- Goldstein College D16
- Golf House A27
- Gymnasium B5
- House at Pooh Corner N8
- International House C6
- Io Myers Studio D9
- John Goodsell (Commerce) F20
- Kanga's House O14
- Kensington Colleges C17
- Basser C18
- Goldstein D16
- Philip Baxter D14
- Main Building K15
- Maintenance Workshop B13
- Maths F23
- Mechanical and Industrial Engineering J17
- Medicine (Administration) B27
- Menzies Library E21
- Metallurgy E8
- Morven Brown (Arts) C20
- New College (Anglican) L6
- Newton J12
- Padding Station H25
- Philip Baxter College D14
- Robert Heffron (Chemistry) E12
- Sam Cracknell Pavilion H8
- Shalom College (Jewish) N9
- Sir Robert Webster (Textile Technology) G14
- Squash Courts B7
- Swimming Pool B4
- Unisearch House L5
- University Regiment J2
- University Union (Roundhouse)—Stage I E6
- University Union (Blockhouse)—Stage II G6
- University Union (Squarehouse)—Stage III E4
- Wallace Wurth School of Medicine C27
- Warrane College M7
- Wool and Pastoral Sciences B8

General
- Academic Staff Office C22
- Accountancy F20
- Admissions C22
- Adviser for Prospective Students C22
- Alumni and Ceremonials C22
- Anatomy C27
- Applied Geology F10
- Applied Science (Faculty Office) F10
- Architecture (including Faculty Office) H14
- Arts (Faculty Office) C20
- Australian Graduate School of Management G27
- Biochemistry D26
- Biological Sciences (Faculty Office) D26
- Biomedical Library F23
- Biotechnology D26
- Bookshop G17
- Building H14
- Careers and Employment C22
- Cashier's Office C22
- Centre for Biomedical Engineering A28
- Centre for Medical Education
- Research and Development C27
- Centre for Remote Sensing K17
- Chaplains E15a
- Chemical Engineering and Industrial Chemistry F10
- Chemistry E12
- Child Care Centres N8, O14
- Civil Engineering H20
- Closed Circuit Television Centre F20
- Commerce (Faculty Office) F20
- Committee in Postgraduate Medical Education B12
- Community Medicine D26
- Computing Services Unit E21
- Drama B10
- Economics F20
- Education G2
- Electrical Engineering and Computer Science G17
- Energy Research, Development and Information Centre B8b
- Engineering (Faculty Office) K17
- English C20
- Examinations C22
- Fees Office C22
- Food Technology F10
- French C20
- General Staff Office C22
- General Studies C20
- Geography K17
- German Studies C20
- Graduate School of the Built Environment H14
- Health Administration C22
- History C20
- History and Philosophy of Science C20
- Industrial Arts C1
- Industrial Engineering J17
- Institute of Languages G14
- Institute of Rural Technology 88b
- Japanese Economic and Management Studies Centre G14
- Kanga's House O14
- Kindergarten (House at Pooh Corner) N8
- Landscape Architecture H14
- Law (Faculty Office) E21
- Librarianship F23
- Library E21
- Lost Property F20
- Marketing F20
- Mathematics F23
- Mechanical Engineering J17
- Medicine (Faculty Office) B27
- Metallurgy E8
- Microbiology D26
- Mining Engineering K15
- Music B11b
- National Institute of Dramatic Art C15
- Nuclear Engineering G17
- Off-campus Housing C22
- Optometry J12
- Organizational Behaviour F20
- Pathology C27
- Patrol and Cleaning Services F20
- Philosophy C20
- Physics K15
- Physical Education and Recreation Centre (PERC) B5
- Physiology and Pharmacology C27
- Political Science C20
- Postgraduate Extension Studies (Closed Circuit Television) F20
- Postgraduate Extension Studies (Radio Station and Administration) F23
- Psychology F23
- Public Affairs Unit C22
- Regional Teacher Training Centre C27
- Russian C20
- Science and Mathematics Course Office F23
- Social Work G2
- Sociology C20
- Spanish and Latin American Studies C20
- Sport and Recreation E4
- Student Counselling and Research E15c
- Student Health E15b
- Student Records C22
- Students' Union E4
- Surveying K17
- Teachers' College Liaison Office F15b
- Tertiary Education Research Centre E15d
- Textile Technology G14
- Town Planning K15
- University Archives C22
- University Press A28
- University Union (Blockhouse) G6
- Wool and Pastoral Sciences B8s
This Handbook has been specially designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University — its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce, Engineering, Law, Medicine, Professional Studies, Science (including Biological Sciences and the Board of Studies in Science and Mathematics), the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education.

The Calendar and Handbooks are available from the Cashier’s Office.

The Calendar costs $5.00 (plus postage $1.00, interstate $1.20).

The Handbooks vary in cost. Applied Science, Architecture, Arts, Commerce, Engineering, Professional Studies, and Sciences are $3.00. Postage is $1.00 in each case ($1.20 interstate). Law, Medicine and AGSM are $2.00. Postage is 60 cents in each case (70 cents interstate).

A set of books is $32.00. Postage is $2.00 ($4.50 interstate).

The General Studies Handbook is free. Postage is 60 cents (70 cents interstate).