Subjects, courses and any arrangements for courses including staff allocated as stated in this Handbook are an expression of intent only. The University reserves the right to discontinue or vary arrangements at any time without notice. Information has been brought up to date as at 1 November 1994, but may be amended without notice by the University Council.
Contents

Introduction 1

Calendar of Dates 3

Staff 5

Handbook Guide 11

Faculty Information 15
- Some People Who Can Help You ... 15
- Enrolment Procedures .. 15
- Students With Disabilities ... 15
- Equal Opportunity in Education Policy Statement 15
- Student Clubs and Societies .. 16
- Applied Sciences Library Facilities ... 16
- Conditions for the Award of the Degree of Bachelor of Science or Bachelor of Engineering ... 17
- Conditions for the Award of the Degree of Bachelor of Science (Technology) or Bachelor of Science (Engineering) .. 17
- General Education Requirement .. 17
- General Education Requirement for Combined Degrees 18

Undergraduate Study: Course Outlines 19

Graduate Study: Course Outlines 21

School of Applied Bioscience 23
- Department of Biotechnology .. 23
- **Undergraduate Study** .. 24
 - Course Outlines ... 24
 - 3052 Biotechnology - Full-time Course .. 24
 - 3055 Bioprocess Engineering - Full-time Course 25
- Department of Food Science and Technology ... 26
- **Undergraduate Study** .. 26
 - Course Outlines ... 26
 - 3060 Food Science and Technology - Full-time Course 26
 - 3070 Food Science and Technology - Part-time Course 27
- **Graduate Study** ... 28
 - Course Outlines ... 28
 - 5015 Biotechnology Graduate Diploma Course 28
 - Master of Applied Science Degree Courses .. 29
 - 8042 Master of Applied Science (Biotechnology) Graduate Course 29
School of Chemical Engineering and Industrial Chemistry

Undergraduate Study
- Course Outlines

Course Outlines
- 3040 Chemical Engineering - Full-time Course
- 3050 Chemical Engineering - Part-time Course
- 3100 Industrial Chemistry - Full-time Course
- 3110 Industrial Chemistry - Part-time Course

Graduate Study
- Course Outlines
- Master of Applied Science Degree Courses
- 8015 Chemical Engineering and Industrial Chemistry Graduate Course
- 8016 Chemical Engineering and Industrial Chemistry Graduate Course
- 8060 Fuel Technology Graduate Course
- Subject Descriptions

School of Fibre Science and Technology

Department of Textile Technology

Undergraduate Study
- Course Outlines

Course Outlines
- 3170 Textile Technology - Full-time Course
- 3175 Textile Management - Full-time Course

Graduate Study
- Course Outlines
- Department of Textile Technology
- 5090 Textile Technology Graduate Diploma Course
- Department of Wool and Animal Science
- 5081 Wool and Pastoral Sciences Graduate Diploma Course
- Subject Descriptions

School of Geography

Undergraduate Study
- Course Outlines

Course Outlines
- 3010.1000/2000/3000 Applied Geography - Full-time Course

Graduate Study
- Course Outlines
- 8024 Graduate Program in Geographic Information Systems
- Graduate Programs in Rangeland Management
- 8025 Rangeland Management Graduate Course
- 5025 Rangeland Management Graduate Diploma Course
- Graduate Programs in Remote Sensing
- 8026 Remote Sensing Graduate Course
- 5026 Remote Sensing Graduate Diploma Course
- Graduate Programs in Environmental Studies
- 8045 Environmental Studies
- 8046 Environmental Management
- Subject Descriptions
School of Materials Science and Engineering

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic Engineering and Ceramics</td>
<td>93</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>94</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>94</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td>93</td>
</tr>
</tbody>
</table>

Undergraduate Study

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3025 Ceramic Engineering - Full-time Course</td>
<td>93</td>
</tr>
<tr>
<td>3030 Ceramic Engineering - Part-time Course</td>
<td>94</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>94</td>
</tr>
<tr>
<td>3125 Metallurgical Engineering - Full-time Course</td>
<td>94</td>
</tr>
<tr>
<td>3130 Metallurgy - Part-time Course</td>
<td>96</td>
</tr>
<tr>
<td>3615 Materials Engineering - Full-time Course</td>
<td>97</td>
</tr>
</tbody>
</table>

Graduate Study

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8065 Engineering Materials</td>
<td>98</td>
</tr>
<tr>
<td>8052 Corrosion Engineering</td>
<td>98</td>
</tr>
</tbody>
</table>

School of Mines

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Applied Geology</td>
<td>110</td>
</tr>
<tr>
<td>Department of Mining Engineering</td>
<td>110</td>
</tr>
<tr>
<td>Centre for Minerals Engineering</td>
<td>110</td>
</tr>
<tr>
<td>Key Centre for Mines</td>
<td>110</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td>111</td>
</tr>
</tbody>
</table>

Undergraduate Study

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000 Applied Geology - Full-time</td>
<td>111</td>
</tr>
<tr>
<td>3000 Applied Geology - Part-time</td>
<td>112</td>
</tr>
<tr>
<td>Department of Mining Engineering</td>
<td>112</td>
</tr>
<tr>
<td>3146 BE(Civil) BE(Mining) in Civil Engineering and Mining Engineering - Full-time</td>
<td>113</td>
</tr>
</tbody>
</table>

Graduate Study

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8020 Engineering Geology/Hydrogeology/ Environmental Geology Course</td>
<td>114</td>
</tr>
<tr>
<td>8094 Geological Data Processing</td>
<td>114</td>
</tr>
<tr>
<td>1000 Doctor of Philosophy (PhD) and 2000 Master of Science (MSc)</td>
<td>115</td>
</tr>
<tr>
<td>UNSW Groundwater Centre</td>
<td>115</td>
</tr>
<tr>
<td>8021 Groundwater Studies Graduate Course</td>
<td>115</td>
</tr>
<tr>
<td>Alternative Graduate Programs</td>
<td>116</td>
</tr>
<tr>
<td>Department of Mining Engineering</td>
<td>116</td>
</tr>
<tr>
<td>8056 Mining and Mineral Engineering Graduate Course</td>
<td>116</td>
</tr>
<tr>
<td>5040 Mining and Mineral Engineering Graduate Diploma Course</td>
<td>117</td>
</tr>
<tr>
<td>Key Centre for Mines</td>
<td>117</td>
</tr>
<tr>
<td>8057 Master of Mining Management MMInMgmt</td>
<td>118</td>
</tr>
</tbody>
</table>

Department of Safety Science

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Study</td>
<td>143</td>
</tr>
<tr>
<td>8044 Master of Applied Science (Occupational Health and Safety)</td>
<td>143</td>
</tr>
<tr>
<td>8045 Master of Environmental Studies</td>
<td>145</td>
</tr>
<tr>
<td>8075 Master of Applied Science (Ergonomics)</td>
<td>146</td>
</tr>
<tr>
<td>8545 Master of Engineering Science (Industrial Safety)</td>
<td>146</td>
</tr>
<tr>
<td>8671 Master of Safety Science</td>
<td>147</td>
</tr>
<tr>
<td>5480 Graduate Diploma in Safety Science</td>
<td>148</td>
</tr>
<tr>
<td>5485 Graduate Diploma in Ergonomics</td>
<td>148</td>
</tr>
</tbody>
</table>

Centres In the Faculty of Applied Science

<table>
<thead>
<tr>
<th>Course Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering Centre</td>
<td>154</td>
</tr>
<tr>
<td>Centre for Membrane and Separation Technology</td>
<td>154</td>
</tr>
</tbody>
</table>
Servicing Subject Descriptions

Conditions for the Award of Degrees 185
First Degrees 185
Higher Degrees 185
Doctor of Philosophy (PhD) 188
Master of Applied Science (MAppSc) and
 Master of Environmental Studies (MEnvStudies) 190
Master of Engineering (ME) and Master of Science (MSc) 190
Master of Engineering (ME), Master of Science (MSc) and
 Master of Surveying (MSurv) without supervision 192
Master of Engineering Science (MEngSc) 193
Master of Environmental Studies (MEnvStudies) 195
Master of Safety Science (MSafetySc) 195
Master of Science (MSc) 196
Master of Science (MSc) without supervision 196
Graduate Diploma (GradDip) 197

Scholarships and Prizes 199
Scholarships 199
Undergraduate Scholarships 199
General 199
Applied Science 200
Applied Bioscience 200
Materials Science and Engineering 201
Mines 201
The UNSW Co-op Program 201
Graduate Scholarships 202
General 202
Applied Science 204
Prizes 205
Undergraduate University Prizes 205
General 205
School of Applied Bioscience 205
School of Chemical Engineering and Industrial Chemistry 205
School of Fibre Science and Technology 206
School of Geography 207
School of Materials Science and Engineering 207
School of Mines 209
Graduate University Prizes 210
Faculty of Applied Science 210
Faculty of Commerce and Economics 210
School of Applied Bioscience 211
School of Chemical Engineering and Industrial Chemistry 211
School of Fibre Science and Technology 211
School of Mines 211
Engineering and science disciplines that are directly concerned with aspects of Australia's resources have been established in the Faculty of Applied Science. Interdisciplinary and multidisciplinary course options are available to students through the various Schools within the Faculty - Applied Bioscience, Chemical Engineering and Industrial Chemistry, Fibre Science and Technology, Geography, Materials Science and Engineering, Mines, as well as the Department of Safety Science, and the Centre for Petroleum Engineering.

Undergraduate courses available are:

- Applied Geology (including specialization in Mineral Exploration and Mining Geology, Sedimentary Basin Studies, Geophysics, Engineering Geology, Environmental Geology, Geochemistry and Hydrogeology)
- Biotechnology
- Bioprocess Engineering
- Chemical Engineering (including Fuel and Energy Engineering and Mineral Engineering)
- Food Science and Technology
- Geography (including Applied Physical Geography, Applied Economic Geography, and Human and Physical Resources)
- Industrial Chemistry (including Polymer Science)
- Materials Science and Engineering (including Ceramic Engineering, Materials Engineering, and Metallurgical Engineering)
- Mining Engineering
- Petroleum Engineering
- Textile Management
- Textile Technology (including Textile Chemistry, Textile Engineering and Textile Physics)
- Wool and Pastoral Sciences

In most schools a variety of options are available, including joint degrees in other faculties. Students should discuss their programs with appropriate staff to ensure that their chosen course of study is appropriate to their aims and aspirations.

The importance of applied science to the University of New South Wales, and to the wider community, is fully recognized and is especially referred to in the University Act of Incorporation. The Faculty of Applied Science is dynamic, with changing activities and programmes to meet the rapid technological developments in the applied sciences. Many of the staff of the Faculty have achieved international recognition for their work, and there is a continuing and wide range of research programs underway. The staff are enthusiastic, and I hope that you will share their enthusiasm.

Once the academic year begins, it is essential that you participate fully in your study programme from the first day of the first year. You are also urged to play an active role in the extramural activities of the University, especially in the student societies in the Schools.

Explanatory pamphlets and brochures are issued at enrolment and these, together with the Calendar, should be consulted for further information. You should not hesitate to contact the appropriate School offices if you have questions or problems.

G.J.S. Govett
Dean
Faculty of Applied Science
The academic year is divided into two sessions, each containing 14 weeks for teaching. Between the two sessions there is a break of approximately six weeks, which includes a one-week study period, two weeks for examinations, and three weeks' recess. There is also a short recess of one week within each session.

Session 1 commences on the Monday nearest 1 March.

All Faculties (other than AGSM, Medicine and University College)

<table>
<thead>
<tr>
<th>Session 1</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14 weeks)</td>
<td>27 February to 13 April</td>
<td>4 March to 4 April</td>
</tr>
<tr>
<td></td>
<td>24 April to 9 June</td>
<td>15 April to 14 June</td>
</tr>
<tr>
<td>Mid-session recess</td>
<td>14 April to 23 April</td>
<td>5 April to 14 April</td>
</tr>
<tr>
<td>Study period</td>
<td>10 June to 15 June</td>
<td>15 June to 20 June</td>
</tr>
<tr>
<td>Examinations</td>
<td>16 June to 4 July</td>
<td>21 June to 9 July</td>
</tr>
<tr>
<td>Mid-year recess</td>
<td>5 July to 23 July</td>
<td>10 July to 28 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14 weeks)</td>
<td>24 July to 22 September</td>
<td>29 July to 27 September</td>
</tr>
<tr>
<td></td>
<td>3 October to 3 November</td>
<td>8 October to 8 November</td>
</tr>
<tr>
<td>Mid-session recess</td>
<td>23 September to 2 October</td>
<td>28 September to 7 October</td>
</tr>
<tr>
<td>Study period</td>
<td>4 November to 9 November</td>
<td>9 November to 14 November</td>
</tr>
<tr>
<td>Examinations</td>
<td>10 November to 28 November</td>
<td>15 November to 3 December</td>
</tr>
</tbody>
</table>

Important dates for 1995

January
- M 2 New Year's Day - Public Holiday
- M 9 Medicine IV - Term 1 begins
- M 16 Medicine V - Term 1 begins
- Th 26 Australia Day - Public Holiday
- T 31 Enrolment period begins for new undergraduate students and undergraduate students repeating first year.

February
- M 6 Re-enrolment period begins for second and later year undergraduate students and graduate students enrolled in formal courses. Students should consult the *Re-enrolling 1995* leaflets applicable to their courses for details.
- M 13 Semester 1 begins - AGSM Open Learning Graduate Management Qualification program

March
- M 6 Session 1 begins - University College, ADFA
- F 10 Last day applications are accepted from students to enrol in Session 1 or whole year subjects
- Su 12 Medicine IV - Term 1 ends
- M 13 Medicine IV - Term 2 begins
- Su 19 Medicine V - Term 1 ends
- M 27 Medicine V - Term 2 begins

M 20 Term 1 begins - AGSM MBA program - Year 1 classes
- Semester 1 begins - AGSM Open Learning Graduate Diploma in Management program
- Medicine VI - Term 2 begins

F 24 Last day for acceptance of enrolment by new and re-enrolling students
(Late fee payable thereafter if enrolment approved)

M 27 Session 1 begins - all courses except Medicine IV, V, VI
- Term 1 begins - AGSM MBA program - Year 2 classes
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 31</td>
<td>Last day for students to discontinue without failure subjects which extend over Session 1 only</td>
</tr>
<tr>
<td></td>
<td>HECS Census Date for Session 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
</tr>
<tr>
<td>Su 9</td>
<td>Medicine VI - Term 2 ends</td>
</tr>
<tr>
<td>F 14</td>
<td>Good Friday - Public Holiday</td>
</tr>
<tr>
<td>T 17</td>
<td>Mid-session recess begins</td>
</tr>
<tr>
<td>S 15</td>
<td>Easter Saturday - Public Holiday</td>
</tr>
<tr>
<td>M 17</td>
<td>Easter Monday - Public Holiday</td>
</tr>
<tr>
<td>Su 23</td>
<td>Medicine VI - Term 3 begins</td>
</tr>
<tr>
<td>T 25</td>
<td>Anzac Day - Public Holiday</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>M 1</td>
<td>Medicine IV - Term 3 begins</td>
</tr>
<tr>
<td>F 5</td>
<td>Term 1 ends - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>S 6</td>
<td>Mid-session recess begins - University College, ADFA</td>
</tr>
<tr>
<td>M 8</td>
<td>Examinations begin - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>T 9</td>
<td>Publication of provisional timetable for June examinations</td>
</tr>
<tr>
<td>F 12</td>
<td>Examinations end - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>S 13</td>
<td>Examination - AGSM Open Learning Graduate Diploma in Management program</td>
</tr>
<tr>
<td>W 17</td>
<td>Last day for students to advise of examination clashes</td>
</tr>
<tr>
<td>Su 21</td>
<td>Mid-session recess ends - University College, ADFA</td>
</tr>
<tr>
<td>Su 28</td>
<td>Medicine V - Term 2 ends</td>
</tr>
<tr>
<td>T 29</td>
<td>Medicine VI - Term 3 ends</td>
</tr>
<tr>
<td>Medicine 2 begins - AGSM MBA program - all classes</td>
<td></td>
</tr>
<tr>
<td>Medicine VI - Term 4 begins</td>
<td></td>
</tr>
<tr>
<td>T 30</td>
<td>Publication of timetable for June examinations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
</tr>
<tr>
<td>S 3</td>
<td>Examination - AGSM Open Learning Graduate</td>
</tr>
<tr>
<td></td>
<td>Management Qualification program</td>
</tr>
<tr>
<td></td>
<td>Semester 1 ends - AGSM Open Learning Graduate</td>
</tr>
<tr>
<td></td>
<td>Management Qualification program</td>
</tr>
<tr>
<td>M 5</td>
<td>Medicine V - Term 3 begins</td>
</tr>
<tr>
<td>F 9</td>
<td>Session 1 ends</td>
</tr>
<tr>
<td>S 10</td>
<td>Study recess begins</td>
</tr>
<tr>
<td>Su 11</td>
<td>Medicine IV - Term 3 ends</td>
</tr>
<tr>
<td>M 12</td>
<td>Queen's Birthday - Public Holiday</td>
</tr>
<tr>
<td>T 13</td>
<td>Medicine IV - Term 4 begins</td>
</tr>
<tr>
<td>Th 15</td>
<td>Study recess ends</td>
</tr>
<tr>
<td>F 16</td>
<td>Examinations begin</td>
</tr>
<tr>
<td></td>
<td>College of Fine Arts assessment week begins</td>
</tr>
<tr>
<td>F 23</td>
<td>Session 1 ends - University College, ADFA</td>
</tr>
<tr>
<td>S 24</td>
<td>Mid-year recess begins - University College, ADFA</td>
</tr>
<tr>
<td>M 26</td>
<td>Examinations begin - University College, ADFA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
</tr>
<tr>
<td>T 4</td>
<td>Examinations end</td>
</tr>
<tr>
<td>W 5</td>
<td>Mid-year recess begins</td>
</tr>
<tr>
<td>S 8</td>
<td>Examinations end - University College, ADFA</td>
</tr>
<tr>
<td>M 10</td>
<td>Semester 2 begins - AGSM Open Learning Graduate Diploma in Management program</td>
</tr>
<tr>
<td>M 17</td>
<td>Semester 2 begins - AGSM Open Learning Graduate Management Qualification program</td>
</tr>
<tr>
<td>F 21</td>
<td>Medicine VI - Term 4 ends</td>
</tr>
<tr>
<td>Su 23</td>
<td>Mid-year recess begins - University College, ADFA</td>
</tr>
<tr>
<td>M 24</td>
<td>Session 2 begins - all courses except Medicine IV, V, VI</td>
</tr>
<tr>
<td>M 31</td>
<td>Medicine VI - Term 5 begins</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
</tr>
<tr>
<td>F 4</td>
<td>Last day applications are accepted from students to enrol in Session 2 subjects.</td>
</tr>
<tr>
<td></td>
<td>Last day for students to discontinue without failure subjects which extend over the whole academic year</td>
</tr>
<tr>
<td></td>
<td>Term 2 ends - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>Su 6</td>
<td>Medicine IV - Term 4 ends</td>
</tr>
<tr>
<td>M 7</td>
<td>Bank Holiday</td>
</tr>
<tr>
<td>F 11</td>
<td>Examinations end - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>M 14</td>
<td>Medicine IV - Term 5 begins</td>
</tr>
<tr>
<td>M 28</td>
<td>Term 3 begins - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>Th 31</td>
<td>Last day for students to discontinue without failure subjects which extend over Session 2 only</td>
</tr>
<tr>
<td></td>
<td>HECS Census Date for Session 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td></td>
</tr>
<tr>
<td>Su 10</td>
<td>Medicine VI - Term 5 ends</td>
</tr>
<tr>
<td>M 11</td>
<td>Medicine VI - Term 6 begins</td>
</tr>
<tr>
<td>S 23</td>
<td>Mid-session recess begins</td>
</tr>
<tr>
<td>Su 24</td>
<td>Medicine IV - Term 5 ends</td>
</tr>
<tr>
<td>M 25</td>
<td>Medicine IV - Term 6 begins</td>
</tr>
<tr>
<td>F 29</td>
<td>Closing date for applications to the Universities Admissions Centre</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td></td>
</tr>
<tr>
<td>M 2</td>
<td>Labour Day - Public Holiday</td>
</tr>
<tr>
<td></td>
<td>Mid-session recess ends</td>
</tr>
<tr>
<td>T 3</td>
<td>Publication of provisional timetable for the November examinations</td>
</tr>
<tr>
<td>W 11</td>
<td>Last day for students to advise of examination clashes</td>
</tr>
<tr>
<td>S 14</td>
<td>Examinations - AGSM Open Learning Graduate Diploma in Management program</td>
</tr>
<tr>
<td>Su 15</td>
<td>Medicine V - Term 4 ends</td>
</tr>
<tr>
<td>Medicine VI - Term 3 ends</td>
<td></td>
</tr>
<tr>
<td>Medicine VI - Term 4 begins</td>
<td></td>
</tr>
<tr>
<td>T 24</td>
<td>Publication of timetable for November examinations</td>
</tr>
<tr>
<td>F 27</td>
<td>Session 2 ends - University College, ADFA</td>
</tr>
<tr>
<td>M 30</td>
<td>Examinations begin - University College, ADFA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td></td>
</tr>
<tr>
<td>F 3</td>
<td>Session 2 ends</td>
</tr>
<tr>
<td></td>
<td>Term 3 ends - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>S 4</td>
<td>Study recess begins</td>
</tr>
<tr>
<td></td>
<td>Final Examination - AGSM Open Learning Graduate Management Qualification program</td>
</tr>
<tr>
<td></td>
<td>Examination - AGSM Open Learning Graduate Diploma in Management program</td>
</tr>
<tr>
<td></td>
<td>Semester 2 ends - AGSM Open Learning Graduate Management Qualification program and AGSM Open Learning Graduate Diploma in Management</td>
</tr>
<tr>
<td>Su 5</td>
<td>Medicine IV - Term 6 ends</td>
</tr>
<tr>
<td>M 6</td>
<td>Examinations begin - AGSM MBA program - all classes</td>
</tr>
<tr>
<td></td>
<td>College of Fine Arts assessment week begins</td>
</tr>
<tr>
<td>Th 9</td>
<td>Study recess ends</td>
</tr>
<tr>
<td>F 10</td>
<td>Examinations begin</td>
</tr>
<tr>
<td></td>
<td>Examination - AGSM MBA program - all classes</td>
</tr>
<tr>
<td></td>
<td>College of Fine Arts assessment week ends</td>
</tr>
<tr>
<td>F 17</td>
<td>Examinations end - University College, ADFA</td>
</tr>
<tr>
<td>T 28</td>
<td>Examinations end</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
</tr>
<tr>
<td>Th 21</td>
<td>Last day for acceptance of applications by the Admissions Section for transfer to another undergraduate course within the University</td>
</tr>
<tr>
<td>M 25</td>
<td>Christmas Day - Public Holiday</td>
</tr>
<tr>
<td>T 26</td>
<td>Boxing Day - Public Holiday</td>
</tr>
</tbody>
</table>
Comprises Schools of Applied Bioscience, Chemical Engineering and Industrial Chemistry, Fibre Science and Technology, Geography, Materials Science and Engineering, Mines, Department of Safety Science, and the Centre for Petroleum Engineering Studies; as well as Centres located within Schools- Bioengineering, Membrane and Separation Technology, Minerals Engineering, Particle and Catalyst Technologies and the Key Centre for Mines. The Faculty is also associated with the UNSW Groundwater Centre and the Centre for Remote Sensing and Geographic Information Systems. It houses the Cooperative Research Centres for Biopharmaceutical Research and Food Industry Innovation.

Dean
Professor G. J. S. Govett

Presiding Member
Associate Professor J. P. Kennedy

Executive Officer
John David Collins, BSc PhD UNSW, CText, ATI

Senior Administrative Officer
Graham John Baldwin, BA A.N.U.

Project Manager
Otto Zubzanda, Dipling T.U. Bratislava, PhD UNSW

Officer-in-charge, Drawing Office
Narendra Mohan SahaChaudhury, BME Jadavpur, MIEAust

Administrative Assistant
Wendy Margaret Wartho

Electron Microscope Unit
Physical Sciences Electron Microscopist
Vacant

School of Applied Bioscience

Professor of Biotechnology, Head of School and Head of Department of Biotechnology
Peter Philip Gray, BSc Syd., PhD UNSW, FTS, FIEAust, MABA

Professor of Food Science and Technology and Head of Department of Food Science and Technology
Kenneth Alan Buckle, BSc PhD UNSW, FTS, FAIFST, FCIA, MIET

Department of Biotechnology

Head of Department of Biotechnology
Professor P. P. Gray

Professors
Peter Lindsay Rogers, BE Adel., MBA UNSW, DPhil DSc Oxf.
Noel William Dunn, MSc Melb., PhD Monash
*John Shine, BSc PhD A.N.U.

*Conjoint appointment with The Garvan Institute of Medical Research.
Senior Lecturers
Stephen Francis Delaney, BSc Sheff., PhD Liv., MASM
Pauline Mavis Doran, BE Qld., MSc PhD CalTech.,
MiChemE
John Colin Madgwick, MSc PhD UNSW

Lecturers
Frances Chooi Foung Foong, BSc Sur., MS UPM, PhD UC
Davis
Dianne Glenn, BSc PhD UNSW
Stephen Michael Mahler, BSc Syd., PhD Qld.
Christopher Peter Marquis, BSc BE PhD Syd.

Professional Officers
Russell George Call, DipBiochem Bendigo I.T., PhD UNSW
Malcolm Hilary Noble, BSc Macq. MEnvStud UNSW
John Alton Ide, BSc PhD UNSW
Rose Ann Varga, BSc UNSW
Jeffrey Harold Welch, BSc UNSW

Administrative Officer
Robin Lee

Food Industry Development Centre

Director
Peter Michael Cranston, MSc UNSW, PhD Macq., GradDip.
UNSW and UNSW, MASM, FAIFST, ARACI

Australian Food Foundation Scientific Director
Frances Ann Warnock, BSc UNSW, GradDip(Ed)
Adel.C.A.E., DipND Flin., AAIFST

Administrative Assistant
Denyse Robertson

School of Chemical Engineering and
Industrial Chemistry

Professor of Chemical Technology and Head of
School
David Lawrence Trimm, BSc PhD Exe., DIC Lond., CPEng,
FTS, FRACI, FChemE, FIEAust

Professors of Chemical Engineering and Industrial
Chemistry
Anthony Gordon Fane, BSc PhD DIC Lond., CPEng,
FChemE, FIEAust
Christopher Joseph Dalzell Fell, BSc UNSW, PhD Camb.,
CPEng, FTS, FChemE, FIEAust, AICLE
Maria Skyllas-Kazacos, BSc PhD UNSW, FRACI, MES,
FIEAust, CPE
Mark Sebastian Wainwright, MAppSc Adel., PhD McM.,
FRACI, FIEAust, CPEng, FTS

Associate Professors
Michael Paul Brungs, BSc PhD UNSW, FSGT
Robert Paul Burford, BSc PhD Adel., FPRI(Aust), FRACI
Neil Russell Foster, BSc PhD UNSW, FARACI, AICLE, ACS
Judy Agnes Raper, BE,PhD UNSW, CPEng, MiChemE
Geoffrey David Sergeant, BSc PhD Wales, CEng, FAIE,
FIEAust, CPEng

Associate Professors
Michael Paul Brungs, BSc PhD UNSW, FSGT
Robert Paul Burford, BSc PhD Adel., FPRI(Aust), FRACI
Neil Russell Foster, BSc PhD UNSW, FARACI, AICLE, ACS
Judy Agnes Raper, BE,PhD UNSW, CPEng, MiChemE
Geoffrey David Sergeant, BSc PhD Wales, CEng, FAIE,
FIEAust, CPEng

Head of Department of Food Science and Technology
Professor K.A. Buckle

Associate Professors
Graham Harold Fleet, MSc Qld., PhD Calif., FASM, AAIFST
Heather Greenfield, BSc PhD Lond., FAIFST, MIBiol
Michael Wootton, BSc PhD UNSW, FAIFST, MAGI

Senior Lecturers
Barbara Anne Munce, BSc PhD UNSW, FAIFST, FCIA,
MASM, MIFT
MaryAnn Filadelfi-Keszi, BSc Concordia, MSc McGill, PhD
Guelph, MIFT, AAIFST
Christopher Mo Ching Yuen, BSc DipEd W.Aust., MAppSc
PhD UNSW, AAIFST

Lecturers
Jayashree Arcot, MSc Madras, PhD Hyd., AAIFST
Robert Hilton Driscoll, BSc A.N.U., PhD UNSW, AAIFST
Janet Lorraine Paterson, BSc UNSW, DipEd UNE, AAIFST
Jane Elizabeth Paton, BSc PhD UNSW, AAIFST

Administrative Officer
Richard John Greenwood, BA UNSW

Professional Officers
Maxwell Robert Bell, BSc MAppSc UNSW, ASTC
Yvonne ElGhetany, BScAg Ains Shams, MSc UNSW
Zbigniew Suminski, ME(Food Tech) Olstyn

Honorary Visiting Fellow
Kevin Joseph Scott, BSc(Agr) Dip Ed Syd.

Research Fellow
John David Craske, MSc PhD UNSW, ASTC, FRACI, FTS,
AAIFST

Visiting Professor
Wayne Lyle Gerlach, BSc PhD Adel.

Bioengineering Centre

Director
Professor P.P. Gray

Deputy Director
Professor J. Shine

Visiting Professor
Merilyn Sleigh, BSc Syd., PhD Macq.

Visiting Fellow
Warwick Marsden, MSc PhD UNSW

Department of Food Science and Technology

Head of Department of Food Science and Technology
Professor K.A. Buckle

Associate Professors
Graham Harold Fleet, MSc Qld., PhD Calif., FASM, AAIFST
Heather Greenfield, BSc PhD Lond., FAIFST, MIBiol
Michael Wootton, BSc PhD UNSW, FAIFST, MAGI

Senior Lecturers
Barbara Anne Munce, BSc PhD UNSW, FAIFST, FCIA,
MASM, MIFT
MaryAnn Filadelfi-Keszi, BSc Concordia, MSc McGill, PhD
Guelph, MIFT, AAIFST
Christopher Mo Ching Yuen, BSc DipEd W.Aust., MAppSc
PhD UNSW, AAIFST

Lecturers
Frances Chooi Foung Foong, BSc Sur., MS UPM, PhD UC
Davis
Dianne Glenn, BSc PhD UNSW
Stephen Michael Mahler, BSc Syd., PhD Qld.
Christopher Peter Marquis, BSc BE PhD Syd.

Professional Officers
Russell George Call, DipBiochem Bendigo I.T., PhD UNSW
Malcolm Hilary Noble, BSc Macq. MEnvStud UNSW
John Alton Ide, BSc PhD UNSW
Rose Ann Varga, BSc UNSW
Jeffrey Harold Welch, BSc UNSW

Administrative Officer
Robin Lee

Visiting Professor
Wayne Lyle Gerlach, BSc PhD Adel.

Visiting Fellows
Nigel Morrison, BSc Qld., PhD A.N.U.
Peter Robert Schofield, BScAgr Syd., PhD A.N.U.

Food Industry Development Centre

Director
Peter Michael Cranston, MSc UNSW, PhD Macq., GradDip.
UNSW and UNSW, MASM, FAIFST, ARACI

Australian Food Foundation Scientific Director
Frances Ann Warnock, BSc UNSW, GradDip(Ed)
Adel.C.A.E., DipND Flin., AAIFST

Administrative Assistant
Denyse Robertson

School of Chemical Engineering and
Industrial Chemistry

Professor of Chemical Technology and Head of
School
David Lawrence Trimm, BSc PhD Exe., DIC Lond., CPEng,
FTS, FRACI, FChemE, FIEAust

Professors of Chemical Engineering and Industrial
Chemistry
Anthony Gordon Fane, BSc PhD DIC Lond., CPEng,
FChemE, FIEAust
Christopher Joseph Dalzell Fell, BSc UNSW, PhD Camb.,
CPEng, FTS, FChemE, FIEAust, AICLE
Maria Skyllas-Kazacos, BSc PhD UNSW, FRACI, MES,
FIEAust, CPE
Mark Sebastian Wainwright, MAppSc Adel., PhD McM.,
FRACI, FIEAust, CPEng, FTS

Associate Professors
Michael Paul Brungs, BSc PhD UNSW, FSGT
Robert Paul Burford, BSc PhD Adel., FPRI(Aust), FRACI
Neil Russell Foster, BSc PhD UNSW, FARACI, AICLE, ACS
Judy Agnes Raper, BE,PhD UNSW, CPEng, MiChemE
Geoffrey David Sergeant, BSc PhD Wales, CEng, FAIE,
FIEAust, CPEng
Robert Marsden Wood, BSc DEng Leeds, PhD Camb., CEng, FIChemE

Senior Lecturers
Adesoji Adediran Adesina, BSc Lagos, MASc PhD Waterloo
Raj Chhabra, BSc Meerut, BE Roor., ME I.I.Sc., Bangalore, PhD Monash
Rodney Phillip Chaplin, BSc PhD Adel., CChem, MACS, MRACI
Phillip Thomas Crisp, BSc PhD Syd., ARACI
Henry Edward Curry-Hyde, BSc Natal, PhD UNSW
Thomas Paul Davis, BSc PhD Salford, CChem, MRSC
Douglas Christopher Dixon, BE MEngSc Syd., PhD UNSW, MIE Aust
John Clifford Jones, BSc PhD Leeds, ARACI, CChem
Tuan Quang Pham, BE PhD Cant., MIChemE, AIFSP
Heinz Adolf Preisig, BSc H.T.L., MSc PhD Arkansas
John Frank Stubington, BE Qld., PhD Camb., CEng, FAIE, MIChemE
T. Tran, BSc PhD UNSW, ARACI, MAIME

Lecturers
Rose Amal, BE PhD UNSW, MIChemE
Dianne Elizabeth Wiley, BAAppSc DDIAE DipEd Arm. C.A.E., PhD UNSW, ARACI

Associate Lecturer
Anthony John Papageiis, BE UNSW

Administrative Officer
Kim Maree Mason, BA Charles Sturt

Professional Officers
Robert Edmund Brand, BSc BE UNSW, ASTC, ARACI
Stephen Joseph Clough, BSc Syd., MAppSc UNSW, CChem, ARACI, AIE
Van Bong Dang, BSc MAppSc Gunma, MSc UNSW, AIE
Barry William Edenborough, BE PhD UNSW
Katia Simeonova Nasev, ME Higher Inst. Chem. Tech., Sofia, Grad IE Aust
John McEwan Starling, BE UNSW

Computer Systems Officer
Ross James Smith, BSc PhD UNSW

Department of Industrial Chemistry
Head
Associate Professor M. P. Brungs

Department of Polymer Science
Head
Associate Professor R. P. Burford

Centre for Membrane and Separation Technology
(in association with the Faculty of Science)

Director, Chemical Engineering
Professor A. G. Fane

Director, Biophysics
Professor H. G. Coster

Centre for Particle and Catalyst Technologies

Director
Associate Professor J. A. Raper

School of Fibre Science and Technology

Professor of Wool Technology and Head of School
Ross Ernest Griffith, BSc UNSW, PhD Leeds, CText, FTI

Lecturer
Peter Douglas Auer, BSc PhD UNSW

Administrative Officer
Frances Colville

Department of Chemical Engineering
Head
Associate Professor J. A. Raper

Department of Textile Technology

Professor and Head of Department
Michael Thomas Pallithorpe, BSc PhD UNSW, CText, FTI, MSDC(ANZ)

Professor of Textile Physics
Ronald Postle, BSc UNSW, PhD Leeds, CText, FTI, FAIP, Hon. Docteur, Haute Alsace

Department of Fuel Technology
Head
Associate Professor G. D. Sergeant
Senior Lecturers
John Ilmar Curiskis, BSc PhD UNSW
Lecturers
Shantha Kumari David, MSc Waik., PhD Br.Col
Xungai Wang, BE NITSTXian, PhD UNSW
Senior Project Scientist
Rup Chand Dhirgra, BSc Punj., MTech I.I.T.Delhi, PhD UNSW, CText, FTI
Professional Officers
Jindrich Vavrinec Brandk, MSc Brno, PhD MACS, FRSC
Alvin Siu Wah U, MSc Leeds, PhD UNSW, CText, ATi
Michael David Young, BSc PhD UNSW, CText, ATI
Post Doctoral Fellows
Jorge Enrique Garcia, BSc PhD UNSW, RACI

Department of Wool and Animal Science

Associate Professor and Head of Department
John Patrick Kennedy, MSc UNSW, BSc Oxf., FAIAS

Senior Lecturers
*Stephen James Filan, BAgEc N.E., MSc UNSW, MAIAS
Douglas McPherson Murray, BAgSc PhD Melb., MRurSc N.E.
Geoffrey Edward Robards, BSc UNSW, PhD Melb.

Lecturer
Gordon Whitfield King, BSc PhD UNSW, DipFinMgt N.E., MAIAS, AASA, CPA

Professional Officers
David John Petrie, BSc UNSW
Eammon William Purcell, BRurSc N.E.

Project Officer
Jeffrey Eppleston, MScAg Syd, PhD UNSW

*Conjoint appointment with the School of Geography

School of Geography

Associate Professor and Head of School
Marilyn Dale Fox, BSc Windsor, PhD Macq.

Professor of Geography
Barry Jardine Garner, BA Nott., MA PhD Northwestern

Associate Professors
Ian Harry Burnley, MA Cant., PhD Well.
John Richard Dodson, MSc Monash, PhD A.N.U.
Michael Dick Melville, BScAgr PhD Syd.
Anthony Kinnaird Milne, BA N.E., MA Syd., PhD Colorado

School of Materials Science and Engineering

Professor of Materials Science and Engineering and Head of School
David John Young, BSc PhD Melb., FRACI, FIEAust, CPEng, MAmerlChE, FTS

Associate Professor
Charles Christopher Sorrell, BS Missouri, MS Penn., PhD UNSW, DipDT, FGAA, NICE

Senior Lecturers
Sri Bandypadhyay, BTech MTech I.I.T. PhD Monash, FIEAust, CPEng MRACI
Alan Gordon Crocky, BSc PhD UNSW.
Peter Krauskis, BSc PhD UNSW, MIEAust, MIM, CEng, CPEng
Oleg Ostrovski, Dip.Ing.(Met.) PhD DSc (MISIS, Moscow)
Sviatoslav Antonovich Prokopovich, MSc UNSW, ASTC, CPEng, MIEAust

Lecturers
Brian Gleeson, MSc Uni. of Western Ontario, PhD UCLA
Alan Keith Hellier, MA Camb., PhD UNSW, AMIN, AMIMechE, MAusIMM, MIEAust, CPEng
Veena Sahajwalla, MSc, PhD Mich., MIFB, MAIE
Patrick Wong, BE PhD UNSW, MAutoIMM
Aibing Yu, MSc(Eng) NEUTChina, PhD Wgong.

Honorary Visiting Professor
Max Hatherly, MSc PhD UNSW, ASTC, CPEng, FTS, FIM

Professional Officers
Bruce Martin Beilby, BSc Monash, MSc PhD UNSW
John Walton Sharp, BScTech UNSW

School of Materials Science and Engineering

Professor of Materials Science and Engineering and Head of School
David John Young, BSc PhD Melb., FRACI, FIEAust, CPEng, MAmerlChE, FTS

Associate Professor
Charles Christopher Sorrell, BS Missouri, MS Penn., PhD UNSW, DipDT, FGAA, NICE

Senior Lecturers
Sri Bandypadhyay, BTech MTech I.I.T. PhD Monash, FIEAust, CPEng MRACI
Alan Gordon Crocky, BSc PhD UNSW.
Peter Krauskis, BSc PhD UNSW, MIEAust, MIM, CEng, CPEng
Oleg Ostrovski, Dip.Ing.(Met.) PhD DSc (MISIS, Moscow)
Sviatoslav Antonovich Prokopovich, MSc UNSW, ASTC, CPEng, MIEAust

Lecturers
Brian Gleeson, MSc Uni. of Western Ontario, PhD UCLA
Alan Keith Hellier, MA Camb., PhD UNSW, AMIN, AMIMechE, MAusIMM, MIEAust, CPEng
Veena Sahajwalla, MSc, PhD Mich., MIFB, MAIE
Patrick Wong, BE PhD UNSW, MAutoIMM
Aibing Yu, MSc(Eng) NEUTChina, PhD Wgong.

Honorary Visiting Professor
Max Hatherly, MSc PhD UNSW, ASTC, CPEng, FTS, FIM

Professional Officers
Bruce Martin Beilby, BSc Monash, MSc PhD UNSW
John Walton Sharp, BScTech UNSW
School of Mines

Associate Professor and Head of School
Geoffrey Robert Taylor, MSc Birm., PhD N.E., FGS, MIMM, MAusIMM

Honorary Associates
Frederick Charles Loughnan, BSc Syd., PhD DSc UNSW
Edward Tyne, BSc GradDip(Geophys) PhD UNSW
Wenlong Qian, MSc Nanjing, PhD UNSW

Research Associates
David John Christopher Briggs, BSc PhD Qld.
Bo Zhou, BSc Beijing, PhD Syd.

Professional Officers
Zaynab Fidahusayn Muhammad Aly, MSc Lond.
Peter Richard Atherden, BSc UNSW, MSc Macq.

Department of Applied Geology

Associate Professor and Head of Department
Colin Rex Ward, BSc PhD UNSW, FAusIMM, FAIG

Professor of Engineering Geology
Grant Hocking, BTech C.E. S.A.I.T., MSc N'cle.(U.K.), PhD DIC Lond., FGS, MAusIMM, MSRM

Professors of Geology
Gerald James Spurgeon Govett, DSc Wales, PhD DIC Lond., CEng, FIEAust, CPEng
John Roberts, BSc N.E., PhD W.Aust.

Associate Professors
Alberto Albani, DrGeoLSc Florence, MSc PhD UNSW
Bastiaan Jan Hansen, MSc Ley., PhD A.N.U.

Senior Lecturers
Alistair Chisholm Dunlop, BSc N.E., PhD Lond., DIC, MIMM
Michael Barry Katz, BSc Mich.T.U., MSc McG., PhD Tor.
Paul Gordon Lennox, BSc Tas., PhD Monash
Jerzy Jankowski, MSc PhD Wroc.
Gregory Hugh McNally, BSc Syd., BA N.E., MAppSc UNSW
Derecke Palmer, MSc Syd.
Peter Cyril Rickwood, BSc Lond., PhD Cape T., CChem, MRIC, MAusIMM

Lecturers
Malcolm David Buck, MSc Waik., PhD Macq.
David Ronald Cohen, BSc Syd., MSc Queens., PhD UNSW, MAIG

Honorary Visiting Fellow
Ervin Slansky, BSc PhD RnDr Charles

Department of Mining Engineering

Professor of Mining Engineering and Head of Department
James Maurice Galvin, BSc BE Syd., PhD Wits, MAusIMM

Professor of Mining Engineering
Frank Ferdinand Roxborough, BSc PhD Durh., CEng, CEng, FIMM, FAusIMM, MCIMM, PEng
Anthony Charles Partridge, BSc Leeds, MSc PhD McGill, CEng, FIMM, MSc N'cle.(U.K.), CE aud, CPEng
Venkata Satyanarayana Vutukuri, BScEng Ban., MS Wis., PhD Tech.Sc Poland, MAusIMM
John Ormiston Watson, BScEng Nott., PhD S'ton.

Associate Professor
Gour Chand Sen, MSc Wales, PhD Durh., CEng, FIMM, FAusIMM, HonFExpE

Senior Lecturers
Amal Krishna Bhattacharyya, BSc Glas., MSc Durh., PhD N'cle.(U.K.), CEng, MAusIMM, FIMM, FAusIMM, MCIMM, PEng
Anthony Charles Partridge, BSc Leeds, MSc PhD McGill, CEng, CEng, MIMM
Venkata Satyanarayana Vutukuri, BScEng Ban., MS Wis., PhD Tech.Sc Poland, MIMM
John Ormiston Watson, BScEng Nott., PhD S'ton.

Lecturers
Christopher Raymond Daly, BE MSc(Acoustics) PhD UNSW, GradDip(MinEcs) Macq. AIME
Drago Panich, BE UNSW, MSc N'cle.(U.K.)

Project Scientist
Carlos Roberto Quinteiro, BS MSc Ouro Preto (Brazil) PhD Colorado School of Mines

Visiting Fellow
Frank Fairclough, BSc Leeds, CEng, FIME

Professional Officer
Bin Lin, ME P.R.China

Centre for Minerals Engineering

Director
Tam Tran, BSc PhD UNSW, ARACI, MAIME

Deputy Director and Senior Lecturer
Anthony Charles Partridge
Key Centre for Mines

(incorporates the University of New South Wales and the University of Wollongong)

Director and Associate Professor
Geoffrey Robert Taylor, MSc *Birm.*, PhD *N.E.*, FGS, MIMM, MAusIMM

Associate Director International

Industry Research Officer
Susan Nicola Border, BSc *Lond.*, GradDip(IndMinSc) *U.T.S.*

Senior Research Assistant
Judith Egan, BSc *LaT.*, MSc *UNCCH*

Administrative Assistant
Amanda Jaculin Blacklock

Department of Safety Science

Professor of Safety Engineering and Head of Department
Jean Cross, BSc *Manc.*, PhD *Lond.*, FIEAust, MIEE, MAIP, CEng

Visiting Professor of Mechanical Engineering
Noel Levin Svensson, AM, MMechE, PhD *Melb.*, CEng, CPEng, FIEAust, MIMechE

Senior Lecturers
Ronald Rosen, MSc *N.Z.*, PhD *UNSW*, CPhys, FinstP, FAIP, FIPSM, MACPSEM
Chris Winder, BA *Open U.*, MSc *City, Lond.*, PhD *Lond.*

Lecturers
Dianne Heather Gardner, BA *Adel.*, MPsy chol *UNSW*
Roger Roy Hall, BSc *A.N.U.*, MSc *UNSW*, FESA
Kamal Kothiyal, MSc MTech PhD *I.I.T. Delhi*

Professional Officers
Shaharin Yussof, BEng *Car.*

Administrative Assistant
Barbara Littlewood

Visiting Fellows
Neil Leon Adams, BSc PhD *UNSW*, MESA, MHFS, MAITD, MICOH
Edward Maxwell Nicholls, MD BS *Adel.*, FACOM
Keith Post, BE PhD *UNSW*
Conjoint appointment with the Faculty of Medicine.

Centre for Petroleum Engineering Studies

Director
Wolf Val Pinczewski, BE *N'cle*(N.S.W.), PhD *UNSW*, CPEng, MChemE

Professor
Ashok Kumar Khurana, BSc *Jabalpur*, BE *B'lore*, GradDip *Birm.*, PhD DIC *Lond.*

Senior Lecturer
Henry Alfred Salisch, BSc *Quito Poly. Inst.*, MSc *Oklahoma*, MS *Venezuela Central*
Sheikh Rahman, BSc *Chitt.*, MSc *Strath.*, PhD *Clausthal*

Visiting Professors
Charles S Aldrich, BSE *Texas*, MSE *Colorado Sch. of Mines*

Visiting Lecturers
Richard Christian Curnow, BE *Syd.*, BCom *UNSW*
Barry Walsh, BE PhD *Syd.*

Professional Officer
Juan Carlos Zajaczkowski, BE *Buenos Aires*

Administrative Assistant
Jennifer Ruth Lippiatt

Centre for Remote Sensing and Geographic Information Systems

(in association with the Faculty of Engineering)

Director
Ewan Gerald Masters, BSurv PhD *UNSW*, MISAust

UNSW Groundwater Centre

(in association with the Faculty of Engineering)

Director
Richard Ian Acworth, BSc *Leeds*, MSc PhD *Birm.*, FGS

Senior Lecturer
Dr J. Jankowski
This handbook is divided into separate sections for each School/Unit, identified by a four-letter code (e.g. GEOG, School of Geography). This code appears on the top right corner of each page relating to the School/Unit. Each School/Unit section is divided into Undergraduate and Graduate Study and includes course outlines and subject descriptions.

Read the opening sections of the handbook first, and then read the information contained under **Course Outlines** (Undergraduate or Graduate as appropriate) within the School/Unit you are interested in. These sections cover all degrees and diplomas offered by the Faculty. Detailed information on each subject then appears under **Subject Descriptions**, which includes session/s offered, pre/corequisite details, class hours, credit/unit value, etc.

Any subject which is not an Applied Science subject (i.e. a subject offered by another Faculty, but included in a course), appears under the **Servicing Subject Descriptions** section.

As changes may be made to information provided in this Handbook, students should frequently consult the noticeboards of the schools and the official noticeboards of the University.

Undergraduate Study

It is most important that you read the opening sections of the Handbook for general information on the Faculty of Applied Science, **Faculty Information**, and **Undergraduate Study, Course Outlines**. Both of these contain specific information relating to undergraduate degrees, including Enrolment Procedures, Conditions for the Award of Degrees, Honours, Course Transfers and a number of other details that you should be familiar with.

Once you have determined which course you want to do, you must read the course outlines and then the subject descriptions for all subjects to find out what each one entails.

Graduate Study

No matter which graduate degree course you plan to undertake you must read the general summary of graduate courses in the section, **Course Outlines, Graduate Study**. This covers both research degrees and course work programs. Information relating to the various Masters degrees by course work and Graduate Diplomas is detailed in the appropriate School or Centre sections.

You will also need to read the **Conditions for the Award of Degrees** at the back of the Handbook for the formal rules governing each degree.

Most importantly, staff in the Faculty of Applied Science are only too happy to help you with any queries you might have or problems that need to be sorted out. As a first step, contact the School Office. There is a list of people who can help you at the beginning of **Faculty Information**. You can then be directed to other staff members who can assist you if there are very specific matters that need to be solved.
Information Key

The following key provides a guide to abbreviations used in this book:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational Unit</th>
<th>Faculty/Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>credit points</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>full year (Session 1 plus Session 2)</td>
<td></td>
</tr>
<tr>
<td>HPW</td>
<td>hours per week</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>lecture</td>
<td></td>
</tr>
<tr>
<td>P/T</td>
<td>Part-time</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>Session 1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>Session 2</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>single Session, but which Session taught is not known at time of publication</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>tutorial/laboratory</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>unit value</td>
<td></td>
</tr>
<tr>
<td>WKS</td>
<td>weeks of duration</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>external</td>
<td></td>
</tr>
</tbody>
</table>

Prefixes

The identifying alphabetical prefixes for each organizational unit offering subjects to students in the Faculty of Applied Science follow.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational Unit</th>
<th>Faculty/Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIO</td>
<td>School of Applied Bioscience</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>APSE</td>
<td>Faculty of Applied Science</td>
<td></td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>COMP</td>
<td>School of Computer Science & Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Econometrics and Economics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ENVS</td>
<td>Environmental Studies</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>FIBR</td>
<td>School of Fibre Science & Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking & Finance</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>FOOD</td>
<td>Department of Food Science and Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GMAT</td>
<td>School of Geomatic Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>GSBE</td>
<td>Graduate School of the Built Environment</td>
<td>Built Environment</td>
</tr>
<tr>
<td>HEAL</td>
<td>School of Health Services Management</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>INDC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INFS</td>
<td>School of Information Systems</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organizational Behaviour</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational Unit</td>
<td>Faculty/Board</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>KCME</td>
<td>Key Centre for Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LAND</td>
<td>School of Landscape Architecture</td>
<td>Built Environment</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies & Taxation</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Information, Library and Archive Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>MANF</td>
<td>School of Mechanical & Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MARK</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science & Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical & Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MEED</td>
<td>School of Medical Education</td>
<td>Medicine</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology & Immunology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MINP</td>
<td>Centre for Minerals Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MNGT</td>
<td>Australian Graduate School of Management</td>
<td></td>
</tr>
<tr>
<td>MSCI</td>
<td>Board of Studies in Science & Mathematics</td>
<td></td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Built Environment</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>PTRL</td>
<td>Department of Petroleum Engineering Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>SAFE</td>
<td>Department of Safety Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>SOCI</td>
<td>School of Sociology</td>
<td>Arts & Social Sciences</td>
</tr>
<tr>
<td>TEXT</td>
<td>Department of Textile Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool & Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Some People Who Can Help You

If you require advice and information of a general nature contact: Mr G. Baldwin, Senior Administrative Officer, Room 1013, Applied Science Building. Tel. 385 4469

For information and advice of a specific nature, contact the appropriate school representative below:

Biotechnology Ms R. Lee, Administrative Officer, Room 110A, Biological Sciences Building. Tel. 385 2050

Chemical Engineering and Industrial Chemistry Ms K. Mason, Administrative Officer, Room 316, Applied Science Building. Tel. 385 4318.

Food Science and Technology Mr R. Greenwood, Administrative Officer, Room 115, Building B8A. Tel. 385 4364.

Geography Ms C. Bilic, Administrative Assistant, Room 143, Geography and Surveying. Tel. 385 4390.

Materials Science and Engineering Mr O. Andersen, Administrative Assistant, Room 110B, Materials Science and Engineering Building. Tel. 385 4436.

Mines (Applied Geology and Mining Engineering)
Ms R. Benninghaus, Administrative Officer, Room 916, Applied Science Building. Tel. 385 4262 or Ms L. Henry, Administrative Assistant, Room 159C, Main Building. Tel. 385 4516.

Petroleum Engineering Ms J. Lippatt, Room 115, Petroleum Engineering Building. Tel. 385 5188.

Textile Technology Ms F. Colville, Administrative Officer, Room 102, Sir Robert Webster Building. Tel. 385 4477.

Wool and Animal Science Assoc. Associate Professor J. Kennedy, Room 256, Sir Robert Webster Building. Tel. 385 4482.

Safety Science Ms B. Littlewood, Administrative Assistant, Hut B, 11a, Room 111. Tel. 385 4144.

Enrolment Procedures

All students re-enrolling in 1995 should obtain a copy of the free leaflet *ReEnrolling in 1995* available from School Offices and the Admissions Office. This leaflet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Students With Disabilities

The University of New South Wales has a policy of equal opportunity in education and seeks wherever possible to ensure maximum participation of students with disabilities.

The University offers a range of assistance: examination support; specialized equipment; educational support; parking provisions; library assistance.

A Resource Guide for students and staff with disabilities and a map showing wheelchair access is available from the Adviser to Students with Disabilities, the EEO Unit, the Library and the Students Union.

It is advisable to make contact with the Adviser to Students with Disabilities prior to, or immediately following enrolment, to discuss your support needs.

The Adviser can be contacted on 385 5418 or at Student Services, Quadrangle Building.

Equal Opportunity in Education

Policy Statement

Under the Federal Racial Discrimination Act (1975), Sex Discrimination Act (1984), Disability Discrimination Act (1992) and the New South Wales Anti-Discrimination Act (1977), the University is required not to discriminate against students or prospective students on the grounds of sex, marital status, pregnancy, race, nationality, national or ethnic origin, colour, homosexuality or disability. Under the University of New South Wales Act (1989), the University declares that it will not discriminate on the grounds of religious or political affiliations, views or beliefs.

University Commitment to Equal Opportunity in Education

As well as recognizing its statutory obligations as listed, the University will eliminate discrimination on any other grounds which it deems to constitute disadvantage. The
University is committed to providing a place to study free from harassment and discrimination, and one in which every student is encouraged to work towards her/his maximum potential. The University further commits itself to course design, curriculum content, classroom environment, assessment procedures and other aspects of campus life which will provide equality of educational opportunity to all students.

Special Admissions Schemes
The University will encourage the enrolment of students who belong to disadvantaged groups through programs such as the University Preparation Program and the ACCESS Scheme. Where members of disadvantaged groups are particularly under-represented in certain disciplines, the responsible faculties will actively encourage their enrolment.

Support of Disadvantaged Students
The University will provide support to assist the successful completion of studies by disadvantaged group members through such means as the Aboriginal Education Program, the Supportive English Program and the Learning Centre. It will work towards the provision of other resources, such as access for students with impaired mobility, assistance to students with other disabilities, the provision of a parents' room on the upper campus, and increased assistance with English language and communication.

Course Content, Curriculum Design, Teaching and Assessment, and Printed Material
Schools and faculties will monitor course content (including titles), teaching methods, assessment procedures, written material (including study guides and handbook and Calendar entries) and audiovisual material to ensure that they are not discriminatory or offensive and that they encourage and facilitate full participation in education by disadvantaged people.

Equal Opportunity Adviser Scheme
The University will continue its Equal Opportunity Adviser Scheme for students who feel that they have been harassed or who consider they have been disadvantaged in their education by practices and procedures within the University.

Harassment Policy
The University is committed to ensuring freedom from harassment for all people working or studying within the institution. It will continue to take action, including disciplinary action, to ensure that freedom from harassment is achieved.

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

Applied Sciences Library Facilities

Although any of the university libraries may meet specific needs, the staff and students of the Faculty of Applied Science are served mainly by the Biomedical Library and the Physical Sciences Library.

The Biomedical Library
The Biomedical Library provides library services for staff and students from the Faculties of Medicine and Biological and Behavioural Sciences, the Schools of Applied Bioscience, Health Services Management, Fibre Science and Technology, and the Department of Safety Science. It is closely associated with the libraries of the teaching hospitals of the University.

The Biomedical Library is located on Levels 2, 3 and 4 of the Mathews Building Annexe and is connected to the other Special Libraries via a link through the undergraduate collection.

Professional staff are available at the Reader Assistance Unit on Level 2 to provide reference services and to assist in the use of the catalogues. Instructional classes in the use of the online catalogue. Instructional classes in the use of the library and in specific subject material can be arranged through the Reader Assistance Unit.

Serials in the Biomedical Library are now shelved in alphabetical order by title and carry the prefix 'MB'.

Details about Biomedical Library books, serials and audiovisual material can be found in the Library Catalogue, (OPAC).

The Biomedical Library offers the following facilities: computerized literature searches; a wide range of Databases on CDROM; remote access to databases on CDROM and current contents throughout the campus; access to the Family Medicine Program (MCQ self assessment); interlibrary loans.

Biomedical Librarian: Monica Davis

The Physical Sciences Library
The Physical Sciences Library, located on levels 5, 6 and 7 of the Library Building, provides information for students and staff from the Faculties of Science, Engineering, the Built Environment and Applied Science.

The Library is open from 8.00 am to 10.00 pm Monday to Thursday, 8.00 am to 6.00 pm on Friday and 12.00 pm to 5.00 pm Saturday and Sunday. These hours are reduced during the vacations.

Personal reference assistance is available after 10.00 am including help with catalogue, CD Roms, inter-library loans, photocopying and online searching. An information skills program is in place with emphasis on developing basic information access and management skills for first years
and advanced skills for final year and postgraduate students.

The Library's catalogue and selected CD-Rom databases are available over the Campus Wide Network. Reserve and multimedia services are offered, including videos, tapes, microforms and maps.

Physical Sciences Librarian: Rhonda Langford

Computing Requirements

A number of courses in the Faculty of Applied Science have certain computing requirements. To obtain details of these, each student should contact the appropriate School Office in the first weeks of first session.

Conditions for the Award of the Degree of Bachelor of Science or Bachelor of Engineering

The courses leading to the award of the degree of Bachelor of Science or Bachelor of Engineering in the Faculty of Applied Science are programmed over four years of full-time study. The normal programs may be varied by the Head of the School in which the student is enrolled. The regulations governing the award of these degrees are as follows:

1. A candidate for the award of the degree of Bachelor of Science or Bachelor of Engineering shall:
 (1) comply with the requirements for admission;
 (2) follow the prescribed course of study in the appropriate School, and satisfy the examiners in the necessary subjects;
 (3) complete an approved program of industrial or similar training for such periods as are prescribed.

2. A student may be granted advanced standing by the Professorial Board on the recommendation of Faculty.

3. The degree of BSc(Tech) and BSc(Eng) shall be awarded at Pass level only but in the case of superior performance throughout the course the degree shall be conferred 'with merit'.

4. Students shall be required to conform with the general rules relating to University courses.

General Education Requirement

The University requires that all undergraduate students undertake a structured program in General Education as an integral part of studies for their degree.

Among its objectives, the General Education program provides the opportunity for students to address some of the key questions they will face as individuals, citizens and professionals.

There are differing requirements for general education for students commencing before, in, and after 1988. Students must complete a program of general education in accordance with the requirements in effect when they commenced their degree program. Students should consult the appropriate course authority or the Centre for Liberal and General Studies in Morven Brown Building, Room G58.

The program requires students to undertake studies in three categories of the program: The key questions addressed by the Program are:

Category A: The External Context: An introduction to an understanding of the environments in which humans function.

Course Requirement: 56 hours

1. Australia and the Development of the World Economy. How do we, can we, generate wealth?
2. Human Inequality. How can we, ought we, distribute wealth, status and power?
3. Science and Civilization. What steps should we take, and what policies should we adopt, in science and technology?
4. Ecosystems, Technology and Human Habitation. What effects do our wealth generating and techno-scientific activities have on the environment?
5. Mass Media and Communication. What are the effects of the new mass media of communication?
6. Australian Society and Culture. What are the key social and cultural influences on Australia today?

Category B: The Internal Context of Assumptions and Values: An introduction to, and a critical reflection upon, the cultural bases of knowledge, belief, language, identity and purpose.

Course Requirement: 56 hours
1. The Self and Society. How do we define ourselves in relation to the larger human community?
2. Changing Conceptions of Human Nature and Well-Being. How do our conceptions of human nature and well being influence both individual and social behaviour?
3. The Pursuit of Human Rationality. What are the prevailing conceptions of and challenges to human rationality?
4. The Use of Language, Images and Symbols. How do language, images and symbols function as means and media of communication
5. The Computer: Its Impact, Significance and Uses What is the impact of the computer on human society and culture?
6. Beliefs, Values and the Search for Meaning. Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth?

Category C: An Introduction to the design and responsible management of the human and planetary future: An introduction to the systems over which human beings exercise some influence and control. This category is required only of students in four-year professional and honours programs

The central question to be addressed by students in a systematic and formal way is: For what purpose or purposes will I use my intellectual skills, my expertise, or my technological prowess?

Will these abilities be used, for example:
- in a creative and innovative way?
- to widen the circle of human participation in the benefits they bring?
- to break down the barriers of exclusion and discrimination?
- to enhance the prospects for survival of the human species?
- to enhance the capacity of the planet earth to sustain life?

In the Faculty of Applied Science most undergraduates take a Faculty subject APSE0002 Social Issues in Applied Science in the Year 4 of their course as partial satisfaction of the Category C requirement. Completion of the Category C requirement differs across the Faculty and the details are shown under each School's handbook entry.

General Education Requirement for Combined Degrees

Students in BE BA programs are exempt from both Category A and Category B General Education requirements. Students in BE BSc programs are exempt from Category A General Education requirements only.

A student transferring from a combined degree course to a single degree course must satisfy the General Education requirements of the single degree course.

Students who transfer from a combined degree course to a single degree course are given credit for those General Education subjects that have been completed in the combined degree course.

Where a student enrols in a combined degree course and subsequently does not proceed in the program, the Centre for Liberal and General Studies has discretionary power to decided whether the student concerned has satisfied all or part of the General Education requirements. Application for exemption from General Education requirements should be made to the Centre.
The Faculty of Applied Science consists of the Schools of Applied Bioscience, Chemical Engineering and Industrial Chemistry, Fibre Science and Technology, Geography, Materials Science and Engineering, Mines and the Centre for Petroleum Engineering. These Schools offer full-time undergraduate courses leading to the degree of Bachelor of Science or Bachelor of Engineering, and some of the Schools also offer part-time courses leading to the award of the degree of Bachelor of Science (Technology).

Computing Requirements

A number of courses in the Faculty of Applied Science have certain computing requirements. To obtain details of these, each student should contact the appropriate School Office in the first weeks of first session.

Full-time Courses

Full-time courses of four years' duration leading to the award of the degree of Bachelor of Science are offered in Applied Geography, Applied Geology, Biotechnology, Food Science and Technology, Industrial Chemistry, Textile Technology, Textile Management and Wool and Pastoral Sciences. Four year courses leading to the award of the degree of Bachelor of Engineering are offered in Bioprocess Engineering, Ceramic Engineering, Chemical Engineering, Mining Engineering and Petroleum Engineering. A four-year course leading to the award of a Bachelor of Metallurgical Engineering is offered in Metallurgical Engineering and a Bachelor of Materials Engineering is offered in Materials Engineering.

Honours: In all courses the degree may be awarded with Honours. The award of Honours is determined by performance in subjects and in the final-year project. Honours are awarded in Class 1; Class 2 Division 1; and Class 2 Division 2.

Industrial Training Requirements: In the scientific and technological courses close association with industry is maintained on the practical aspects of the professions. This is achieved in most of the courses of the Faculty by expecting students to complete an approved industrial training program prior to graduation. This is normally carried out during the Summer Recess. In the case of Wool and Pastoral Sciences, students are required to complete twenty-four weeks' approved practical work. In Mining Engineering students will undertake a program of practical training of at least 100 days.

Combined Degree Courses

A five-year combined degree course is available in Civil Engineering and Mining Engineering 3146. Students initially enrol in Civil Engineering, and Mining Engineering subjects are taken in Year 4 and Year 5.

Because the first two years of the Petroleum Engineering course are identical to the first two years of the Chemical Engineering course, it is possible, upon completion of the Petroleum Engineering program, to obtain a double BE degree in Petroleum and Chemical Engineering 3046 with one additional year of study.

Part-time Courses

Six-year part-time courses leading to the award of the degree of Bachelor of Science (Technology) are offered by the Department of Food Science and Technology in the School of Applied Bioscience; in Industrial Chemistry by the School of Chemical Engineering and Industrial Chemistry; and in Metallurgy and Ceramics by the School of Materials Science and Engineering.

The BSc(Tech) degree courses are intended for students who are employed in relevant industries and who wish to prepare for a degree mainly by part-time attendance. As part of the requirements for the award of the BSc(Tech) degree, students are required to complete an approved program of industrial training of not less than one year prior to the award of the degree. Industrial training should normally be completed concurrently with attendance in the course, but with the approval of the Head of School, may be completed after completion of the prescribed course of study.

Students who qualify for the award of the BSc(Tech) degree in the Faculty of Applied Science and who wish to proceed to the award of a BSc or BE degree will normally be required to complete further work which will involve at least one year of full-time attendance.

Holders of the degree of BSc(Tech) or BSc(Eng) will be eligible to proceed to the award of the degree of Master of Science, Master of Engineering or Master of Applied Science, subject to the regulations relating to these degrees.

Transfer is also possible from full-time courses to the part-time BSc(Tech) degree course, but a period of approved industrial experience must be gained before graduation. This requirement will apply to students transferring from BSc and BE degree courses within the Faculty.
Enrolment Procedures

All students enrolling in graduate courses should obtain a copy of the free leaflet *ReEnrolling 1995 for Postgraduate Students* available from School Offices and the Admissions Office. This leaflet provides detailed information on enrolment procedures and fees, enrolment timetables by faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Graduate Study

The Faculty provides facilities for students to proceed to the award of the higher degrees of Doctor of Philosophy, Master of Engineering, Master of Science, Master of Applied Science, Master of Safety Science, Master of Engineering Science, and Master of Environmental Studies. Courses leading to the award of a Graduate Diploma are also offered. The degree of Doctor of Science is awarded for a contribution of distinguished merit in the fields of science, engineering or applied science.

The degrees of Doctor of Philosophy, Master of Engineering and Master of Science are all awarded for research and require the preparation and submission of a thesis embodying the results of an original investigation or design. Candidates for the Doctorate of Philosophy are normally involved in at least three years work. The work for the award of a Master's degree may be completed in a minimum of one year, but normally requires two years of study for full-time students, and equivalent time for part-time students.

The Faculty offers courses leading to the award of the degree of Master of Applied Science. The institution of this degree springs from the recognition of the considerable advance of knowledge in the fields of applied science and engineering which has marked recent years and the consequent increased scope for advanced formal instruction in these fields. Students are usually in attendance at the University for one year on a full-time basis or for two years part-time. Courses of study leading to the award of a Master of Applied Science degree may be undertaken in the Faculty as follows:

- Biotechnology 8042
- Biopharmaceuticals 8043
- Chemical Engineering and Industrial Chemistry 8015
- Corrosion Engineering 8052
- Engineering Materials 8065
- Environmental Management 8046
- Ergonomics 8075
- Food Engineering 8035
- Food Microbiology 8031
- Food Technology 8030
- Fuel Technology 8060
- Geographic Information Systems 8024
- Geology/Hydrogeology/Environmental Geology 8020
- Geological Data Processing 8094
- Groundwater Studies 8021
- Mining and Mineral Engineering 8055
- Occupational Health and Safety 8044
- Process Engineering 8016
- Rangeland Management 8025
- Remote Sensing 8026

The Faculty offers a course leading to the award of the degree of Master of Environmental Studies 8045. This is an interdisciplinary course designed to study the nature of environmental problems and the evaluation methodology. Students are usually in attendance at the University for one year on a full-time basis or for two years part-time.

The Master of Engineering Science course in Industrial Safety 8545 is flexible and designed for engineers who manage safety as part of their line management role or for specialist safety engineers who do not require the broad based MSafetySc course. Students are usually in attendance for one year full-time or for two years part-time.

The Master of Mining Management 8057 is designed to give mining personnel the opportunity to extend their career paths into management levels. Course work modules can be selected from Business Management and Science and Technology streams. Students are usually in attendance for two years on a part-time basis.

The Master of Safety Science course 8671 is a broad based course which gives a grounding in all the disciplines which are essential to safety, together with electives in specialist areas such as ergonomics, occupational hygiene, safety management or safety engineering. Students are required to study for a minimum of eighteen months full-time or three years part-time.

Courses are also offered at the graduate level leading to the award of a Graduate Diploma. Students are required to attend courses of study for one year full-time or two years part-time.

Courses of study leading to the award of a graduate diploma may be undertaken in the Faculty of Applied Science as follows:

- Biotechnology 5015
- Ergonomics 5485
Candidates may register for all the research degrees subject to adequate research facilities and satisfactory supervision being available in the candidate's particular field of study. Where special conditions can be met the Faculty may grant permission to a candidate to enrol for the degree of Doctor of Philosophy on a part-time basis.

The conditions governing the award of the various higher degrees and graduate diplomas are set out later in this handbook in Conditions for the Award of Higher Degrees.

Short, intensive graduate and special courses are provided throughout each year designed to keep practising scientists and technologists in touch with the latest developments in their various fields.

MBT Program
Graduate School of Engineering

The Graduate School in the Faculty of Engineering is a special unit set up to take study program initiatives on a non-subject oriented basis. The courses that run under its auspices are those that cannot properly be positioned within a particular School.

The two courses currently offered by the School through the MBT Program are the Master of Business and Technology and the Graduate Diploma in Industrial Management. Although the MBT Program is a joint initiative of the Faculties of Applied Science and Engineering, candidates enrol through the Faculty of Engineering.

These courses aim to provide professional engineers and other technical professionals with advanced technical management training. Principal amongst the aims and objectives of the MBT Program is a commitment to developing and enhancing links with industry and in so doing improve the quality and relevance of tertiary education and research services to the private and public sectors.

The skills and knowledge developed are directly related to candidates' roles within their organisations. It is, in effect, learning through working-organised study with the opportunity to draw on examples from leading experts. The program should become an integral component of training strategies used by organisations for preparing their professional technologists and other staff for middle management. It will ultimately be used to prepare outstanding personnel for the challenges of functional and general management. In addition to the traditional management training route of the MBA employers have highlighted the need for managers capable of integrating the technical, commercial and managerial skills appropriate to their businesses.

The MBT Program is strongly aligned to the open learning principles used in the Graduate Management Qualification (GMQ) developed by the Australian Graduate School of Management (AGSM) in order to maintain the University's unique standard of excellence in the professional development of managers.

Subjects from the Industrial Management Qualification (IMQ), the first in the series of articulated courses of the MBT Program, complement those of the GMQ so that it is possible to use subjects from both to qualify for the Master's award. Candidates successfully completing four MBT subjects will have the option of either being awarded an IMQ or proceeding to the second level, the Graduate Diploma in Industrial Management course. Those successfully completing the requirements for the Graduate Diploma may be eligible to transfer to the Master of Business and Technology course subject to approval by the Head, Graduate School of Engineering. In each case candidates electing to continue to the higher award will normally be required to pass at credit level assessment tasks already undertaken, and may be granted advanced standing in subjects not already taken for an award. It is anticipated that a candidate may require a minimum of three years to complete all three levels of the MBT Program.

However, the time taken will depend upon a candidate's starting qualifications and attainment in the program. Special arrangements can be made to vary the normal route of progression subject to the approval of the Head of the Graduate School of Engineering. In order to fulfill the aims of the program candidates are normally expected to already have substantial industry experience. The subjects in the program are full-fee paying.

Further information can be obtained from Professor C. Patterson, Head of the Graduate School of Engineering.
The School of Applied Bioscience was formed in 1986 and consists of the Departments of Biotechnology and Food Science and Technology. Previously these disciplines were separate Schools in the Faculties of Biological Sciences and Applied Science, respectively. The Department of Biotechnology retains membership of the Faculty of Biological and Behavioural Sciences. The academic relationship between biotechnology and food science and technology at UNSW is unique in Australia and offers opportunities for joint activities to further develop the food, beverage and pharmaceutical industries in this country.

Specialised centres exist in and are associated with each Department, and include the Bioengineering Centre, Food Industry Development Centre, Cooperative Research Centre for Biopharmaceutical Research and Cooperative Research Centre for Food Industry Innovation.

The School offers four undergraduate degrees and seven formal coursework postgraduate degrees or diplomas, as well as postgraduate MSc and PhD research degrees. Graduates of the School are keenly sought by industry and government employers. A number of Co-op Program, government and industry scholarships are available on a competitive basis for undergraduate and postgraduate studies.

The food and biotechnology industries have been targeted by government as key sectors for expansion with particular reference to exports and import replacement.

Department of Biotechnology

Head of Department
Professor P.P. Gray

Biotechnology can be defined as the use of various biological processes to make products and perform services. The essential feature of biotechnology therefore is the use of biological processes based on living cells and biochemical macromolecules such as proteins, DNA and RNA in a rapidly expanding range of activities of benefit to mankind. As such, biotechnology makes practical use of the recent scientific advances in areas such as molecular genetics.

The development of recombinant-DNA (r-DNA) technology has resulted in the ability to produce large quantities of any potentially useful product. Based on this technology, a new generation of biopharmaceuticals, including hormones, vaccines, anti-hypertensive and anti-inflammatory agents, are being developed which have the potential to revolutionise medicine. Microorganisms and viruses are being modified for use in controlling plant and animal diseases and pests. Diagnostic kits are being developed for use in forensic science and in product identification and quality control. In addition, genetic improvements in agriculture, plants and animals are becoming a reality, as is the control of inborn genetic disorders in humans.

Some aspects of biotechnology are traditional, having been used for centuries. The first makers of bread, cheese and fermented beverages over six thousand years ago were applying biotechnological principles in processing these goods. Without understanding the processes they were operating, they were in fact making use of catalysis mediated by microbial cells. Such processes are still in use today and scientific advances now allow for much greater control of the processes with resultant improvements in quality and economics of production. The number of such biological processes has also expanded and enzymes and/or microorganisms are used in the production of a wide
range of fermented foods (such as cheese, wine, beer, soy sauce, sauerkraut, yoghurt, kefir) and in the production of flavouring, colouring and sweetening agents.

Bioprocesses are also used in the extraction of minerals from low grade ores, and modified and novel bioprocesses are being developed for the treatment of waste and degradation of recalcitrant molecules, an area of vital importance in our increasingly polluted planet.

The future for expansion in all the above areas is immense, and an ability to cope with the problems of the 21st century will be heavily dependent on these advances.

The Department of Biotechnology offers undergraduate training in the BE Degree Course in Bioprocess Engineering, the BSc Degree Course in Biotechnology and in the BSc Degree Course through the Board of Studies in Science & Mathematics. The BE Course in Bioprocess Engineering is four years full-time and has been designed to meet the requirements for membership of the Institution of Engineers, Australia. The BSc (Biotechnology) Course is four years full-time and awarded with Honours to students who have distinguished themselves in coursework and in the final year project. The BSc Course through the BSSM is three years for a Pass degree during which the student can study aspects of biotechnology in combination with another major in a relevant discipline, preferably biochemistry, microbiology or chemistry. The fourth Honours Year of this BSc Course includes further formal training in biotechnology as well as an extensive research project. Details on both the Pass and Honours BSc Course majoring in biotechnology are given in the Faculty of Science Handbook.

General Education Electives

For details of the General Education requirements see Faculty Information.

Undergraduate Study

Course Outlines

3052
Biotechnology - Full-time Course

Bachelor of Science
BSc

This course in Biotechnology offers a comprehensive education in all aspects of modern applied biology. It leads to the award of a Bachelor of Science Degree over four years full-time study, with Honours for students who perform with merit.

Graduates in Biotechnology will be able to find employment in industries and other organisations involved with biopharmaceutical production and food processing, as well as in agricultural and environmental biotechnology.
Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT3011</td>
<td>Biotechnology A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOT3061</td>
<td>Monoclonal Antibody & Genetic Techniques in Biotechnology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>BIOT3121</td>
<td>Molecular Biology & Nucleic Acids</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOT3281</td>
<td>Recombinant-DNA Techniques & Eukaryotic Molecular Biology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MICR3041</td>
<td>Immunology 1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MICR3071</td>
<td>Environmental Microbiology</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

plus an additional 2 level 3 units to be selected from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC3111</td>
<td>Molecular Biology of Proteins</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOC3271</td>
<td>Cellular Biochemistry & Control</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MICR3051</td>
<td>Immunology 2</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

General Education Subject/s Category B 2 2

Totalling 26 26

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT3031</td>
<td>Microbial Genetics</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOT3021</td>
<td>Biotechnology B</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>BIOT4053</td>
<td>Research Project</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

General Education Subject/s Category C 2 2

Totalling 26 26

3055

Bioprocess Engineering - Full-time Course

Bachelor of Engineering BE

The first two years of the course are similar to the first two years of the Chemical Engineering degree course with the addition of basic training in Biology. The third year of the course contains basic training in Biochemistry, Microbiology as well as the Chemical Engineering units and an introduction to Bioprocess Engineering which will be further developed in the fourth year. The course has been designed so that graduates can find employment in the fermentation, food processing, pharmaceutical, agro-industrial and waste treatment industries.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1002</td>
<td>Chemistry 1</td>
<td>S1</td>
<td>6</td>
</tr>
<tr>
<td>CHEN1020</td>
<td>Engineering 1 CE*</td>
<td>S2</td>
<td>6</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics 1</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

General Education Subject/s Category A 2 2

Totalling 26 26

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS1011</td>
<td>Biology A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>CEIC2010</td>
<td>Instrumental Analysis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEIC2020</td>
<td>Computing</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CEIC2030</td>
<td>Applied Thermodynamics and Rate Processes</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>CEIC2040</td>
<td>Applied Electrochemical and Surface Properties</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>CHEN2010</td>
<td>Materials & Energy Balances</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEN2020</td>
<td>Flow of Fluids</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEN2030</td>
<td>Heat Transfer</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEN2040</td>
<td>Mass Transfer Fundamentals</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CHEN2051</td>
<td>Chemical Engineering Laboratory 1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH2021</td>
<td>Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATH2819</td>
<td>Statistics SA</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

General Education Subject/s Category B 2 2

Totalling 27 25

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT2101</td>
<td>Principles of Biochemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOT2201</td>
<td>Principles of Molecular Biology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>BIOT3100</td>
<td>Fermentation Processes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CEIC3010</td>
<td>Reaction Engineering</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEN3010</td>
<td>Engineering Thermodynamics</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CHEN3020</td>
<td>Numerical Methods</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEN3070</td>
<td>Process Control</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CHEN3030</td>
<td>Fluids II</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CHEN3040</td>
<td>Separation Processes</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEN3050</td>
<td>Particle Mechanics</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEN3060</td>
<td>Process Plant Engineering I</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CHEN3080</td>
<td>Chemical Engineering Laboratory II</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>MICR2201</td>
<td>Introductory Microbiology</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Totalling 25.5 26.5

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002</td>
<td>Social Issues in Applied Science*</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BIOT4063</td>
<td>Research Project</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>BIOT4093</td>
<td>Biological Process Engineering</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CHEN4070</td>
<td>Process Dynamics & Control</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CHEN4080</td>
<td>Process Plant Engineering II</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CHEN4030</td>
<td>Safety & Environment*</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CHEN4050</td>
<td>Process Plant Operation</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEN4040</td>
<td>Management</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEN4080</td>
<td>Design Project*</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>CIVL0616</td>
<td>Structures</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Totalling 25 27

*These subjects contribute to satisfaction of the Category C General Education Requirement.
Department of Food Science and Technology

Head of Department
Professor K.A. Buckle

Food Technology is the understanding and application of basic sciences to the management of foods from the time of production, through processing and distribution, until their use by the consumer. It is concerned with food quality and quantity, with nutritional status and safety, and with means of production, processing, preservation, distribution and utilization.

A study of food science and technology brings many scientific disciplines into focus. Its basis is in areas of chemistry, biochemistry and microbiology, and its borders merge with those of agriculture, engineering, nutrition, commerce, psychology and law. Biotechnology has a role of increasing importance in food science and technology.

The food technologist acquires new knowledge by laboratory and process research, and applies it to the development of acceptable foods, beverages and food ingredients by optimum processes and equipment. Foods are studied in terms of their basic constituents and the changes they undergo when subjected to modern processing and distribution. The technologist is equally concerned with the development and selection of raw materials from agricultural, horticultural, animal and marine sources.

The food and beverage processing industry is the largest sector of Australian manufacturing industry. Internationally, food production, food processing and food service are amongst the largest and most stable industries in the world. The challenges facing these industries include increasing the availability, variety, quality and quantity of foods in line with the needs and expectations of an ever-increasing world population. Thus, there is a demand at both national and international levels for professionally trained people who are prepared to accept responsibility for the quality and safety of human food.

The Department offers a four-year full-time course leading to the award of the degree of Bachelor of Science and six-year part-time course leading to the award of the degree of Bachelor of Science (Technology). Graduates of both courses qualify for membership of the Australian Institute of Food Science and Technology, the US Institute of Food Technologists and may qualify for membership of the Royal Australian Chemical Institute.

Graduate Diploma and Master of Applied Science courses in Food Technology of one year full-time or two years part-time are designed for graduates in science or agriculture wishing to familiarize themselves with the principles of food technology. Master of Applied Science courses in Food Microbiology and Food Engineering are also offered.

Undergraduate Study

Course Outlines

3060
Food Science and Technology - Full-time Course

Bachelor of Science
BSc

This course is designed to provide depth and breadth in the relevant physical and biological sciences on which food science and technology is based. Students completing the Year 1 requirements are eligible for selection for admission to Year 2 of the course. It is strongly recommended that students obtain, before the completion of the course and during recess periods, as much professionally oriented or industrial experience as possible.
Year 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC2101</td>
<td>Principles of Biochemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOC2201</td>
<td>Principles of Molecular Biology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CHEM2819</td>
<td>Physical Chemistry for Food and Fibre Science & Technology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CHEM2021</td>
<td>Organic Chemistry</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>CHEM2041</td>
<td>Chemical and Spectroscopic Analysis</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FOOD3210</td>
<td>Introductory Nutrition</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>FOOD4210</td>
<td>Introductory Food Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATH2819</td>
<td>Statistics SA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MICR2218</td>
<td>Microbiology</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Year 3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT3041</td>
<td>Principles of Biotechnology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CHEM3926</td>
<td>Instrumental Methods of Food Analysis</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM3929</td>
<td>Food Chemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>FOOD1310</td>
<td>Food Preservation</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>FOOD1320</td>
<td>Plant Food Science</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>FOOD1330</td>
<td>Animal Food Science</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>FOOD1340</td>
<td>Quality Evaluation and Control</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>FOOD1350</td>
<td>Food Technology Laboratory</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FOOD2310</td>
<td>Food Microbiology</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>FOOD3310</td>
<td>Nutrition</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FOOD4310</td>
<td>Food Process Engineering</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>FOOD4320</td>
<td>Computer Applications</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>General Education Subject/s Category A</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Year 4
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002</td>
<td>Social Issues in Applied Science*</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>FOOD1400</td>
<td>Project</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>FOOD1410</td>
<td>Field Excursions</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>FOOD1420</td>
<td>Food Legislation</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>FOOD1430</td>
<td>Food Industry Management*</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>General Education Subject/s Category B</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

*These subjects contribute to satisfaction of the Category C General Education requirement.

Plus three or more of the following electives to a total of not less than 8.5 hours per week (17 credits).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT3051</td>
<td>Biotechnology Laboratory</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM3021</td>
<td>Organic Chemistry</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FOOD1440</td>
<td>Food Quality and Product</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FOOD1450</td>
<td>Food Processing Wastes</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FOOD1460</td>
<td>Cereal Technology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FOOD1470</td>
<td>Postharvest Technology of Foods</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>FOOD2410</td>
<td>Advanced Food Microbiology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FOOD3410</td>
<td>Advanced Nutrition</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>FOOD4430</td>
<td>Advanced Food Engineering A</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>FOOD4420</td>
<td>Food Packaging</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>FOOD4440</td>
<td>Advanced Food Engineering B</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MANF0420</td>
<td>Production Management</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MARK2012</td>
<td>Marketing Fundamentals</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MARK2052</td>
<td>Marketing Research</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

or such other electives, to a total of not less than 8.5 hours per week, as approved by the Head of Department (17 credits). Year 4 totals at least 46 credits.

During Years 3 and 4 of the course excursions are made to various food industries. Detailed reports of some of these visits are required.

Detailed reports of the students' activities during their periods in industry are required.

3070

Food Science and Technology - Part-time Course

Bachelor of Science (Technology) BScTech

This course is designed for students who are employed in the food processing industries. It extends over six part-time years of study, and leads to the award of the degree of Bachelor of Science (Technology). Students are required to complete an approved program of industrial training of not less than twelve months prior to the award of the degree. Industrial training should normally be completed concurrently with attendance in the course, but with the approval of the Head of Department may be completed after completion of the prescribed course of study.

The course covers the same subject matter as the first three years of the full-time course. For the first two years students follow a common course in which general biology is taken, and thereafter specialize in the biological sciences, which are fundamental to the study of food science and technology. The subjects of Stages 4, 5 and 6 may be followed in a wide variety of ways, and lead to the award of the degree of Bachelor of Science by attending for one full-time year and completing the subjects listed in Year 4 of the full-time course. Students desiring to proceed to the award of a BSc degree must apply to the Head of the Department not later than 31 December of the year in which the sixth stage is completed.

HPW

Stages 1 and 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS1011</td>
<td>Biology A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOS1021</td>
<td>Biology B</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CHEM1002</td>
<td>Chemistry</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH111</td>
<td>General Mathematics 1B</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1021</td>
<td>General Mathematics 1C</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics 1 or</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PHYS1022</td>
<td>Introductory Physics 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Physics and Mathematics are usually taken as Stage 1, the other subjects as Stage 2.

Stage 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC2101</td>
<td>Principles of Biochemistry</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOC2201</td>
<td>Principles of Molecular Biology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CHEM2021</td>
<td>Organic Chemistry</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>CHEM2041</td>
<td>Chemical and Spectroscopic Analysis</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

COURSE OUTLINES ABIO 27
Graduate Study

The School of Applied Bioscience conducts formal courses leading to the award of Master of Applied Science degrees in Biotechnology, Biopharmaceuticals, Food Technology, Food Microbiology and Food Engineering and Graduate Diplomas in Biotechnology and Food Technology.

In addition, the School welcomes enquiries from graduates in Chemistry, Biochemistry, Microbiology, Applied Science, Chemical Engineering, Physiology, Nutrition and Agriculture who are interested in pursuing research in biotechnology or in food science and technology for the award of the degrees of Master of Science and Doctor of Philosophy.

The Head of School provides information on research scholarships, fellowships, grants-in-aid and School research activities. Graduates are advised to consult the Head of School or Departments before making a formal application for registration.

Course Outlines

Department of Biotechnology

5015 Biotechnology Graduate Diploma Course

Graduate Diploma
GradDip

The graduate diploma course provides the opportunity for graduates with no previous tuition in biotechnology to undertake training in this discipline.

A degree in a science-based course is required for admission. If the degree course has not included a biology component, the candidate is required to undertake some basic biology training as a prerequisite or corequisite.

Under normal circumstances, students whose previous training has included a substantial component of biotechnology will not be admitted to the course.

The course comprises study of undergraduate and graduate formal subjects, plus extensive laboratory training in biotechnology.

The diploma is awarded after one year’s full-time study, consisting of an average of 18 hours per week, or two years part-time study, consisting of an average of 9 hours per week. The program includes the listed obligatory subjects plus sufficient of the listed elective subjects to meet the hours of study required. The electives include subjects necessary for students without previous tuition in biochemistry and/or microbiology, as well as alternatives for those with previous tuition in these disciplines. The choice of electives in each individual case is subject to approval by the Head of School.

Compulsory Subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT3011</td>
<td>Biotechnology A</td>
<td>S1</td>
</tr>
<tr>
<td>BIOT3021</td>
<td>Biotechnology B</td>
<td>S2</td>
</tr>
<tr>
<td>BIOT5013</td>
<td>Practical Biotechnology</td>
<td></td>
</tr>
</tbody>
</table>
Elective Subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT3031</td>
<td>Microbial Genetics</td>
<td>S1 6 S2 0</td>
</tr>
<tr>
<td>BIOT3061</td>
<td>Monodonal Antibody and Genetic Techniques in Biotechnology</td>
<td>0 6</td>
</tr>
<tr>
<td>BIOT7100</td>
<td>Biological Principles</td>
<td>3 0</td>
</tr>
<tr>
<td>BIOT7110</td>
<td>Bioengineering Principles</td>
<td>3 0</td>
</tr>
<tr>
<td>BIOT8010</td>
<td>Graduate Seminars</td>
<td>2 2</td>
</tr>
<tr>
<td>MCR2011</td>
<td>Microbiology 1</td>
<td>0 6</td>
</tr>
</tbody>
</table>

Other suitable electives from the Department of Food Science and Technology and/or other Schools.

Master of Applied Science Degree Courses

The Department of Biotechnology offers two formal masters courses, the Master of Applied Science (Biotechnology) and the Master of Applied Science (Biopharmaceuticals)

8042
Master of Applied Science (Biotechnology) Graduate Course

MApSc(Biotech)

The Department offers a formal graduate course at the masters’ level in Biotechnology. The course includes advanced treatments of all areas of biotechnology. It is open to graduates with a four-year degree in biotechnology or a related discipline, or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Intending students are referred to Conditions for the Award of Graduate Degrees set out later in this handbook.

The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The minimum period of registration before the award of the degree is two sessions for full-time students and four sessions for part-time students.

An acceptable course would be a program of subjects involving a minimum of 18 hours per week for two sessions full-time or a minimum of 9 hours per week for four sessions part-time. Course details are as follows:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT7043</td>
<td>Biotechnology Project Major</td>
<td>S1 4 S2 12</td>
</tr>
<tr>
<td>BIOT7051</td>
<td>Applied Genetics</td>
<td>0 5</td>
</tr>
<tr>
<td>BIOT7061</td>
<td>Peptide and Protein Technology</td>
<td>0 5</td>
</tr>
<tr>
<td>BIOT7071</td>
<td>Biochemical Engineering</td>
<td>0 5</td>
</tr>
<tr>
<td>BIOT7081</td>
<td>Environmental Biotechnology</td>
<td>5 0</td>
</tr>
<tr>
<td>BIOT7091</td>
<td>Applied Cellular Physiology</td>
<td>5 0</td>
</tr>
<tr>
<td>BIOT7100</td>
<td>Biological Principles</td>
<td>3 0</td>
</tr>
<tr>
<td>BIOT7110</td>
<td>Bioengineering Principles</td>
<td>3 0</td>
</tr>
<tr>
<td>BIOT7123</td>
<td>Biotechnology Project Minor</td>
<td>4 4</td>
</tr>
</tbody>
</table>

8043
Master of Applied Science (Biopharmaceuticals) Graduate Course

MApSc(Biopharmaceuticals)

This is an interdisciplinary program designed for graduates with backgrounds in either pharmacology or biotechnology who wish to obtain advanced training in both areas in order to gain expertise necessary for the development and use of the new generation of biopharmaceuticals which have been developed by, or result from, the application of molecular biology. It is open to graduates with a four year degree in a related discipline or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Prior study of biochemistry is required for the course. The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The course is only available to full-time students, the minimum period of registration being two sessions.

An acceptable course would be a program of subjects involving a minimum of 18 hours per week for two sessions. Choice of units is dependent on the background of the student.

Principles of Pharmacology (PHPH5461) must be taken by students who have not completed an approved Pharmacology course, while Principles of Biotechnology (BIOT7040) must be taken by students who have not completed an approved Biotechnology course program.

All students must pass Advanced Pharmacology (PHPH5471) and Advanced Biotechnology (BIOT7030). Course details are as follows:
Department of Food Science and Technology

The Department conducts formal courses leading to the award of the Master of Applied Science degree and of the Graduate Diploma in food technology.

Master of Applied Science Degree Courses

The MAAppSc degree courses provide for a comprehensive study of theoretical and applied aspects of the science, technology and engineering of foods. The courses are elective in nature providing an opportunity for graduates to apply their basic skills in areas relevant to these fields of applied science in which the Department has developed special expertise. Intending candidates are invited to contact the Head of Department for advice and recommendation.

Graduate courses are available for Master of Applied Science degree programs in the following areas:
- Food Technology Course 8030
- Food Microbiology Course 8031
- Food Engineering Course 8035

Entry qualifications

A four-year Bachelor degree, honours degree or equivalent (e.g. three-year degree plus relevant employment experience) is the minimum requirement for admission to the courses.

Study programs

Students are required to complete a program of study totalling at least 36 credits (1 credit equals 1 hour of class contact per week for one session) made up of compulsory subjects, a compulsory project (either 6 or 12 or 18 credits) and elective subjects. Students who have previously studied compulsory subjects or their equivalent may be granted an exemption by the Head of Department but the equivalent number of credits must be completed by taking other approved subjects. The degree will comprise one year of full-time study (normally two sessions of at least 18 credits each) or two years of part-time study (normally four sessions of at least 9 credits each), and would comprise:

1. A major strand of related material comprising approximately 75% of the total program, including a project comprising not less than 15% nor more than 50% of the program.
2. A minor strand of broader based material comprising up to 25% of the total program.
3. Undergraduate material may be included in one or both strands but may not exceed 25% of the non-project component.
4. At least 60% of the non-project component must be taken in the School of Applied Bioscience unless otherwise approved by the Head of Department. The remainder,

Elective Components

If a minor project is selected, additional elective subject(s) may be selected from those offered by the Department of Biotechnology or the School of Physiology and Pharmacology, or from those offered by other Schools in the University subject to approval.

Each individual course must be approved by the Higher Degree Committee of the Faculty of Applied Science and would comprise: (i) a major strand of related material comprising approximately 75% of the total program including a project comprising not less than 15% of the program (ii) a minor strand of broader based material comprising up to 25% of the total program.

A recommended program for students with a Biotechnology background would then be:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT7030</td>
<td>Advanced Biotechnology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PHPH5461</td>
<td>Pharmacology Principles</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>BIOT7050</td>
<td>Biopharmaceuticals Project</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>or</td>
<td>PHPH5481 Pharmacology Project</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

A recommended program for students with a Pharmacology background would then be:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT7030</td>
<td>Advanced Biotechnology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOT7040</td>
<td>Biotechnology Principles</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>PHPH5471</td>
<td>Advanced Pharmacology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOT7050</td>
<td>Biopharmaceuticals Project</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>or</td>
<td>PHPH5481 Pharmacology Project</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>
subject to approval and availability, may be undertaken elsewhere in the University. Full details of all subjects are listed under Disciplines of the University in the Calendar.

8030
Food Technology Graduate Course

Master of Applied Science
MAppSc

The MAppSc course in Food Technology is particularly relevant to graduates in Agriculture, Applied Science and Science with principal interests in chemistry, biochemistry, microbiology, physiology, nutrition and engineering. This is a formal course consisting of core components (including a project), and an elective component that allows reasonable flexibility and a choice of subjects in food science and technology based on the candidate’s background, subject to the availability of staff and resources.

The course comprises:

Compulsory Subjects

- FOOD1527 Principles of Food Preservation 6
- FOOD1557 Food Technology Laboratory 6
- FOOD1707 Seminar 2

Compulsory Project

Either
- FOOD1717 Major Research Project 18
or
- FOOD2617 Major Research Project in Food Microbiology 18
or
- FOOD2607 Food Microbiology Research Project 12
or
- FOOD2547 Food Microbiology Project 6

Elective Subjects

Elective subjects making up the remainder of the credits, including undergraduate subjects, may be selected from those offered by the School of Applied Bioscience, or from those offered by other Schools in the University subject to approval by the Head of Department.

The work involved in the project must be embodied in a report and submitted in accordance with the requirements of the Faculty.

Depending on the candidate’s background, enrolment in some of the above subjects may be accompanied by enrolment in related undergraduate subjects as prerequisites or corequisites. A particular subject may not necessarily be conducted in any one year.

* These credits may be concentrated in one session.

8031
Food Microbiology Graduate Course

Master of Applied Science
MAppSc

The MAppSc course in Food Microbiology is a program of study designed for graduates in Food Science, Food Technology, Microbiology, Biochemistry, Biotechnology or related disciplines who have an interest in microorganisms associated with foods. The course provides advanced training in all aspects of food microbiology as well as fundamental aspects of food science and technology.

Entry qualifications

A four year Bachelor degree, honours degree or equivalent involving some basic training in microbiology and biochemistry is the minimum requirement for admission to the course.

The course comprises:

Compulsory Subjects

- FOOD2597 Food Microbiology Seminar 2
- FOOD2517 Food Microbiology 4
- FOOD2527 Microbiological Examination of Foods 6
- FOOD2537 Microbiological Quality Assurance 2

Compulsory Project

Either
- FOOD2617 Major Research Project in Food Microbiology 18
or
- FOOD2607 Food Microbiology Research Project 12
or
- FOOD2547 Food Microbiology Project 6

Elective Subjects

- FOOD1517 Chemistry, Biochemistry and Physics of Foods 3
- FOOD1527 Principles of Food Preservation 6
- FOOD2507 Introductory Microbiology 3
- FOOD2557 Microbial Spoilage of Foods 1
- FOOD2567 Foodborne Microorganisms of Public Health Significance 2
- FOOD2577 Food and Beverage Fermentations 2
- FOOD2587 Microorganisms as Food Processing Aids and Ingredients 1

or other subjects offered by the Departments of Food Science and Technology and of Biotechnology or other Schools subject to approval by the Head of Department.

* Credits may be concentrated in one session.

8035
Food Engineering Graduate Course

Master of Applied Science
MAppSc

The MAppSc course in Food Engineering is a formal course designed for graduates in Engineering or related disciplines and who have an interest in the processing of biological resources for human consumption. The formal components of the course provide professional training at an advanced level in food engineering and food science. The studies in food engineering are designed to strengthen and broaden the engineering background of candidates and emphasise the use of fundamental principles in solving problems associated with food processing. Problem solving skills in engineering are developed further in a research project devoted to an area of food engineering.

The course comprises:
Compulsory Subjects
FOOD1707 Seminar 2
FOOD4557 Food Engineering Laboratory 3
FOOD4567 Food Engineering Field Work 3
FOOD4587 Advanced Food Engineering A 4
FOOD4597 Advanced Food Engineering B 4
FOOD4607 Packaging and Production 4

Compulsory Project
Either
FOOD1717 Major Research Project 18
or
FOOD1727 Research Project 12
or
FOOD1737 Minor Project 6
* Credits may be concentrated in one session.

Elective components
The elective subjects making up the remainder of the credits, including undergraduate subjects, may be selected from those offered by the School of Applied Bioscience, or from those offered by other Schools in the University subject to approval by the Head of Department.

5020
Food Technology Graduate Diploma Course

Graduate Diploma
GradDip

The Graduate Diploma course is designed to provide professional training at an advanced level for graduates in Science, Applied Science or Engineering who have not had previous training in Food Technology.

Requirements are a first degree and, in some cases, the successful completion of assignments or examinations, as directed by the Head of Department.

The course is a blend of formal lectures and laboratory work at the undergraduate and graduate levels. The Graduate Diploma in Food Technology (GradDip) is awarded on the successful completion of one year of full-time study (at least 34 credits, 1 credit equals 1 hour of class contact per week for one session), or two years of part-time study (at least 17 credits/year). It involves the following program:

Compulsory Subjects
FOOD1527 Principles of Food Preservation 6
FOOD1537 Plant Food Products 2
FOOD1547 Animal Food Products 3
FOOD1557 Food Technology Laboratory 6
FOOD2517 Food Microbiology 4

Students who have previously studied compulsory subjects or their equivalent at an acceptable level may be granted an exemption by the Head of Department but the equivalent number of credits must be completed by taking other approved subjects.

* Credits may be concentrated in one session.

Elective Subjects
The elective subjects making up the remainder of the credits, including undergraduate subjects, may be selected from those offered by the School of Applied Bioscience, or from those offered by other Schools in the University subject to approval by the Head of Department. In all cases the hours devoted to graduate subjects constitute at least 50% of the total course hours.

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

Units are offered separately subject to specified prerequisites as well as the restrictions on those units designed as bridging materials.

APSE0002
Social Issues in Applied Science

Staff Contact: Faculty Office
S1 L1 T1

The subject covers social issues arising from future technological developments and the role that a professional applied scientist can play in influencing future directions. It will be taught by a combination of group activity, case studies and projects and seminars from visiting speakers, some of whom will be from disciplines other than the applied sciences.

BIOT3011
Biotechnology A

Staff Contact: Prof N Dunn
S1 L3 T3

Prerequisite: BIOC2101 and BIOC2201

The basic principles involved in the operation of microbial processes on an industrial scale. Includes: the selection, maintenance and improvement of microorganisms; the influence of physical and chemical factors on the microbial environment; the control of environmental factors; the effects of operational patterns on batch and continuous flow cultivation; aeration and agitation; scale-up of microbial processes; air and media sterilization; the harvesting, purification and standardization of products; the principles involved in microbial processes for chemical, pharmaceutical and food production, microbial waste treatment and environmental control. The laboratory component includes manipulation of microorganisms, laboratory-scale fermentor operation, microbial enzyme isolation, visits to industrial fermentation plants and industrial seminars.
BIOT3021
Biotechnology B
Staff Contact: Prof P Rogers
S2 L2 T4
Prerequisite: BIOT3011
Application of principles of biotechnology to the analysis and design of microbial processes of industrial relevance (antibiotics, microbial enzymes, single cell protein from carbohydrates and hydrocarbons, fermented foods and beverages, amino acids and vitamins, microbial polysaccharides, activated sludge and photosynthetic processes for waste treatment, microbial leaching of low-grade minerals). Emphasis on quantitative approach: mass and heat balance calculations, kinetic and thermodynamic analysis, detailed equipment design and specification, process design and layout, process simulation, plant location, application of optimization techniques. The economics of microbial processes are considered and comparison made with alternative modes of production or treatment. The economics of agroindustry in Australia using microbial processes. Marketing of fermentation products, clinical trials required, legal constraints, patent rights. Technical and economic feasibility studies, and a design project.

BIOT3031
Microbial Genetics
Staff Contact: Dr S Delaney
S1 L2 T4
Prerequisites: BIOS2011, BIOS2021, BIOC2101, BIOC2201 and MICR2011
Note/s: Excluded MICR3021.
This unit is suitable for students majoring in Microbiology, Biochemistry, Biotechnology or Genetics. It deals with major aspects of the genetics of bacteriophage, bacteria and yeast. Topics include plasmids and transposable genetic elements, gene transfer, mutagenesis and DNA repair, mutants, bacteriophage genetics, gene cloning (vectors, recombinant-DNA techniques) and genetics of nitrogen fixation.

BIOT3041
Principles of Biotechnology
Staff Contact: Prof N Dunn
S1 L3
Prerequisites: BIOC2101, BIOC2201 and MICR2218
Lecture component of BIOT3011 Biotechnology A

BIOT3051
Biotechnology Laboratory
Staff Contact: Prof N Dunn
S1 T3
Prerequisite: BIOT3041
Laboratory component of BIOT3011 Biotechnology A

BIOT3061
Monoclonal Antibody and Genetic Techniques in Biotechnology
Staff Contact: Dr S Mahler
S2 L2 T4
Prerequisite: BIOC2101 and BIOC2201
Recent developments in biotechnology have resulted in techniques which are widely applied in industrial, clinical, veterinary, agricultural and research laboratories. Many of these techniques have resulted from the development of monoclonal antibodies and the development of gene probes. The course includes: antibody structure; production of monoclonal antibodies, cell fusion, hybridoma selection, culture techniques, purification; analytical techniques employing monoclonal antibodies (RIA, ELISA); therapeutic application of antibodies, immunotoxins; gene probes; restriction fragment length polymorphisms (RFLP); gene probes for disease detection, identification of bacteria and viruses; forensic application of DNA fingerprinting. Tutorial and practical work to complement the lectures.

BIOT3100
Fermentation Processes
Staff Contact: Prof P Gray
SS T2
Factors governing the use of microorganisms in industrial processes, including the selection, maintenance and improvement of microorganisms, the control of environmental factors, batch and continuous flow operational patterns, product recovery, process optimization and waste disposal. Demonstrations of the operation and control of fermenter systems and of microbial process simulation.

BIOT4053
Research Project
Staff Contact: Dr S Delaney
F T18
The experimental investigation of some aspects of biotechnology.

BIOT4063
Research Project
Staff Contact: Prof P Rogers
S1 T2 S2 T10
The experimental investigation of some aspects of bioprocess engineering.

BIOT4073/BIOT4083
Biotechnology Honours
Staff Contact: Prof N Dunn
Advanced formal training in selected areas of biotechnology and participation in one of the school's research projects.

BIOT4093
Biological Process Engineering
Staff Contact: Dr C Marquis
F L2 T4
Prerequisite: MICR2201

BIOT5013
Practical Biotechnology
Staff Contact: Department Office
F T6
Illustration, demonstration and operation of laboratory-scale and pilot-scale equipment. Visits to appropriate industries. Experimental project or critical review.

BIOT7010
Reading List In Biotechnology (Microbiology)
Staff Contact: Prof N Dunn
S1 or S2 T3

BIOT7020
Reading List In Biotechnology (Biochemistry)
Staff Contact: Prof N Dunn
S1 or S2 T3

BIOT7030
Advanced Biotechnology
Staff Contact: Dr F Foong
F HPW3
Co-requisite: PHPH5471
This course will cover the production and characterisation of biopharmaceuticals. Production involving chemical and enzymatic peptide synthesis, recombinant production in E.coli, yeast, baculovirus and mammalian cells and associated purification processes will be covered. Regulatory considerations important in the validation of fermentation and recovery processes, the purity of final product, and the design of facilities will also be covered. Patent issues relevant to such products and other aspects of licensing business considerations will be addressed, as will case studies of current production processes.

BIOT7040
Biotechnology Principles
Staff Contact: Dr S Mahler
F HPW S1 6 S2 2
This course is designed to provide students who have not previously studied biotechnology with sufficient training in the field to complete the M.App.Sc. (Biopharmaceuticals). Aspects of the application of gene cloning techniques for the production of recombinant proteins from a range of host cells, growth, product formation and recovery of microbial products, bioreactor design and operation, monoclonal antibody and gene probe technology will be covered.

BIOT7043
Biotechnology Project (Major)
Staff Contact: Prof P Rogers
S1 T4 S2 T12
An experimental or technical investigation or design project in the field of biotechnology. As part of their project students must satisfactorily complete a training program in research techniques. Part-time students and students carrying out an approved project externally may substitute an appropriate, alternative teaching program.

BIOT7050
Biopharmaceuticals Project (Major)
Staff Contact: Dr S Mahler
F HPW 8
An experimental or technical investigation or design project in the general field of biotechnology.

BIOT7051
Applied Genetics
Staff Contact: Prof N Dunn
S2 L2 T3
Isolation of commercially useful microorganisms. Mutagenesis and the isolation of mutants of the following types: auxotrophs; catabolic mutants; feedback inhibition and repression resistance; constitutive; catabolite repression resistance; resistance to antimicrobial agents and to viruses; extended enzyme substrate specificity; altered enzyme properties; changes in promoter and attenuator activity.

Techniques of genetic exchange: transformation; conjugation; transduction; cell fusion; sexual and parasexual cycles. The use of these techniques in strain construction.

BIOT7060
Biopharmaceuticals Project (Minor)
Staff Contact: Dr S Mahler
F HPW 4
A small experimental or design project, or an extensive literature review and analysis of a selected topic in biotechnology.

BIOT7061
Peptide and Protein Technology
Staff Contact: Dr S Mahler
S2 L2 T3
Industrial scale production of enzymes, peptide hormones, antibodies including monoclonal antibodies, vaccines; regulation of synthesis by environmental control and genetic manipulation; recovery and downstream processing techniques; immobilization by entrapment and binding.

Applications of proteins in medical therapy and diagnosis and as analytical tools including ELISA and affinity chromatography; applications of enzymes in the food and beverage industries.

BIOT7071
Biochemical Engineering
Staff Contact: Prof P Gray
S2 L2 T3
Design of bioreactors; range of biocatalysts from free enzymes to immobilized cells; heat and mass transfer, scale-up, economic feasibility studies as applied to bioprocesses; design of equipment and facilities for sterile operation and to meet recDNA guidelines; downstream processing, design and operation; instrumentation and control; use of computer-linked systems; mathematical simulation.

BIOT7081
Environmental Biotechnology
Staff Contact: Dr J Madgwick
S1 L2 T3
Environmental Biotechnology examines the way microbes decompose chemically complex materials. Applications include the use of bacteria and fungi to detoxify wastes, converting them to usable substances. Prevention of biodeterioration of valuable materials is also an important area of study. Lectures cover biodegradation of minerals, metals, cellulosics, aromatics, hydrocarbons and wastewater treatment. Students present research reviews and conduct experimental projects.

BIOT7091
Applied Cellular Physiology
Staff Contact: Dr F Foong
S2 L2 T3
Elemental and molecular composition of cells; formulation of growth media; stoichiometry of growth processes and product formation; metabolic regulation; stringent response; mechanisms of metabolite uptake and product release; maintenance energy; thermodynamics of cellular growth and activities. Effect of mutation on cellular physiology; recombinant-DNA products. Fermentation processes: inoculum preparation, physiology of selected processes.

BIOT7100
Biological Principles
Staff Contact: Dr S Delaney
S1 L3

BIOT7110
Bioengineering Principles
Staff Contact: Prof P Rogers
S1 L3
A subject designed to provide an introductory course for students in the MAppSc Biotech program who have not previously undertaken any bioengineering studies. Steady state and differential balances as a basis for quantification of complex real systems. Concepts in rate processes and kinetic analysis with application to biological systems. Experimental determination of rate data. Correlation of simple lumped rate processes and simultaneous distributed processes and the concepts involved in dimensionless numbers.
Laminar and turbulent flow. The structure of homogeneous and boundary layer turbulence flow in pipes and channels. Mixing theory. Process vessel reactor models.
Fluid viscosity, Newtonian and non-Newtonian fluids, convective and molecular transport processes. Heat and mass transport, film coefficients. Film, boundary layer, penetration and surface renewal theories.
Quantification of complex systems. Empirical and mechanistic models in biological systems.

BIOT7123
Biotechnology Project (Minor)
Staff Contact: Department Office
F T4
A small experimental or design project, or an extensive literature review or analysis of a selected topic in biotechnology. As part of their project students must satisfactorily complete a training program in research techniques. Part-time students and students carrying out an approved project externally may substitute an appropriate, alternative training program.

BIOT8010
Graduate Seminars
Staff Contact: Department Office
F T2

FOOD1310
Food Preservation
Staff Contact: Prof K. A. Buckle
S1 L3 T3
Prerequisites: BIOC2312, CHEM2021, CHEM2041, CHEM2819, FOOD3210, FOOD4210, MICR2218
Introduction to food preservation; spoilage control by traditional and modern techniques. Technology of food preservation by heating, chilling and freezing, sun drying and dehydration. Use of salt, sugar, acid, chemical preservatives, ionizing radiations, modified atmospheres in food preservation. Chemical and microbial stability of foods. Packaging requirements for preserved foods. Water relations of foods. An integrated program of laboratory and pilot plant exercises designed to illustrate the principles and procedures presented in the lecture course.

FOOD1320
Plant Food Science
Staff Contact: Dr C.M.C. Yuen
S1 L2
Prerequisites: BIOC2312, CHEM2021, CHEM2041, CHEM2819, FOOD3210, FOOD4210, MICR2218
Cereals: Structure, composition, properties and uses of cereal grains with emphasis on wheat; processing and technology of wheat and rice. Sugars: Sources, types, properties of sugars in foods; sugar milling and refining. Fruit and vegetables: Nutrient composition; principles of post-harvest physiology, storage and handling. Lipids: Sources and composition of fats and oils, methods of extraction and processing. Non-microbial hazards in foods: Minerals, proteins, acids, goitrogens, cyanogens, carcinogens; spices and flavours. Plant protein: Sources, composition, extraction and uses in foods with emphasis on soybean. Tea, cocoa and coffee. Production, composition and processing.
FOOD1330
Animal Food Science
Staff Contact: Dr J.E. Paton
S1 L3
Prerequisites: BIOG2312, CHEM2021, CHEM2041, CHEM2819, FOOD3210, MICR2218

Nature and distribution of world animal food resources.
Meat: Muscle structure, function, slaughter, conversion of muscle to meat; chemical, biochemical factors in postmortem glycolysis; meat microbiology; chilling, freezing, curing, processing of meat and meat-derived products; processing equipment; meat marketing systems; nutritional and sensory properties of meats.
Milk and dairy products: Chemical, physical properties, microbiology of milk; technology of milk-derived products including cheese, fermented products, butter; frozen, chilled and dried milk-derived foods.
Marine products: Nature and distribution of world fishery resources; teleostean and elasmobranch species, spoilage mechanisms, quality assessment; preservation by chilling, freezing, salting, drying, smoking, marinading and fermentation; fish meal and fish protein concentrate.

Egg products: Structure and composition of the avian egg; changes during storage of whole eggs; egg quality assessment; functional properties of egg components; preservation of the intact egg; pulping, freezing and drying of whole egg pulp, yolk and albumen.

FOOD1340
Quality Evaluation and Control
Staff Contact: Dr M. Filadelfi-Keszi
S2 L1 T1
Prerequisites: FOOD1310, FOOD1320, FOOD1330, FOOD2310, MATH2819

An introduction to food quality, its nature, assessment and control during handling, processing and storage; the use of objective and sensory methods of assessment; an introduction to HACCP, TTT and PPP concepts.

FOOD1350
Food Technology Laboratory
Staff Contact: Dr J.E. Paton
S2 T6
Prerequisites: FOOD1310, FOOD1320, FOOD1330, FOOD2310

A program of exercises integrating elements of the chemical, physical, sensory and microbiological analysis of foods and the impact of processing on these factors. The program is designed to demonstrate the application of laboratory methods to food systems. Ability to carry out test methods and to interpret results will be a major component in student assessment.

FOOD1400
Project
Staff Contact: A/Prof G.H. Fleet
F T8
Prerequisite: Completion of Year 3 subjects

The student undertakes an individual project involving a literature survey, an experimental investigation, the preparation of a detailed report on a selected topic in food science and technology, and presentation of seminars on a literature review and experimental results.

FOOD1410
Field Excursions
Staff Contact: Prof K.A. Buckle
S1 T3
Prerequisite: Completion of Year 3 subjects

Inspection of food processing plants, growing areas and research stations in the Sydney metropolitan area, New South Wales and interstate.

FOOD1420
Food Legislation
Staff Contact: Prof K.A. Buckle
S1 L2
Prerequisite: Completion of Year 3 subjects

FOOD1430
Food Industry Management
Staff Contact: Prof K.A. Buckle
S1 L2
Prerequisite: Completion of Year 3 subjects

An introduction to food industry management, accounting, finance, marketing, industrial relations and communication skills.

FOOD1440
Food Quality and Product Development
Staff Contact: Dr M. Filadelfi-Keszi
S2 L2 T4
Prerequisite: Completion of Year 3 subjects

The steps involved in new product development; role of market research and advertising. Costing procedures, new product failure, case studies. Practical exercises in new food product development.

FOOD1450
Food Processing Wastes
Staff Contact: Prof K.A. Buckle
S2 L2 T1
Prerequisite: FOOD1350 or equivalent

Effects of waste discharges into the environment. Treatment of water for domestic and industrial applications; water reuse; process modifications for effluent reduction. Origin, composition, treatment, disposal and utilisation of wastes from food processing operations. Legal and economic aspects of waste disposal. Inspections of water and waste treatment plants.

FOOD1460
Cereal Technology
Staff Contact: Dr J. Arcot
S2 L2 T4
Prerequisite: FOOD1350

A treatment in greater depth of the following topics dealt with in FOOD1320. Production, storage, marketing and quality of cereal grains; current trends in these areas. Technology of bread, biscuit, noodle and cake manufacture. Chemical, physical and biochemical interactions in wheat flour doughs; flour milling and assessment of flour quality. Cereal protein analysis,

FOOD1470
Postharvest Technology of Foods
Staff Contact: Dr C.M.C. Yuen
S1 L2 T4
Prerequisite: FOOD1350

FOOD1507
Introductory Food Science
Staff Contact: Prof K.A. Buckle
C2 S1 L1 S2 T1

An introduction to the history of food preservation and human nutrition. Current world food patterns, organizations and trade. Food development programs, regional and international agencies and activities. Parameters of food quality; food choice and social behaviour, food and society. Students present a seminar on aspects of food science in Session 2.

FOOD1517
Chemistry, Biochemistry and Physics of Foods
Staff Contact: Prof K.A. Buckle
C3 S1 or S2 L2 T1

FOOD1527
Principles of Food Preservation
Staff Contact: Prof K.A. Buckle
C6 S1 L3 T3

Spoilage control by traditional and modern techniques. Technology of food preservation by heating, chilling and freezing, sun drying and dehydration, salt, sugar, acid, chemical preservatives, ionizing radiations, modified atmospheres. Chemical and microbial stability of foods. Packaging requirements for preserved foods. An integrated program of laboratory and pilot plant exercises designed to illustrate the principles and procedures presented in the lecture course.

FOOD1537
Plant Food Products
Staff Contact: Dr C.M.C. Yuen
C2 S1 L2

Cereals: structure, composition, properties and uses of cereal grains with emphasis on wheat; processing and technology of wheat and rice. **Sugars**: sources, types, properties of sugars in foods; sugar milling and refining. **Fruit and vegetables**: nutrient composition; principles of post-harvest physiology, storage and handling. **Lipids**: sources and composition of fats and oils, methods of extraction and processing. **Non-microbial hazards in foods**: minerals, proteins, acids, goitrogens, cyanogens, carcinogens; spices and flavours. **Plant protein**: sources, composition, extraction and uses in foods with emphasis on soybean. **Tea, cocoa and coffee**: production, composition and processing.

FOOD1547
Animal Food Products
Staff Contact: Dr J.E. Paton
C3 S1 L3

Nature and distribution of world animal food resources. **Meat**: muscle structure, function, slaughter, conversion of muscle to meat; chemical, biochemical factors in postmortem glycolysis; meat microbiology; chilling, freezing, curing, processing of meat and meat-derived products; processing equipment; meat marketing systems; nutritional and sensory properties of meats. **Milk and dairy products**: chemical, physical properties, microbiology of milk; technology of milk-derived products including cheese, fermented products, butter, frozen, chilled and dried milk-derived foods. **Marine products**: nature and distribution of world fishery resources; teleostean and elasmobranch species, spoilage mechanisms, quality assessment; preservation by chilling, freezing, salting, drying, smoking, marinating and fermentation; fish meal and fish protein concentrate. **Egg products**: structure and composition of the avian egg; changes during storage of whole eggs; egg quality assessment; functional properties of egg components; preservation of the intact egg; pulping, freezing and drying of whole egg pulp, yolk and albumen.

FOOD1557
Food Technology Laboratory
Staff Contact: Dr J.E. Paton
C6 S2 T6
Prerequisite: FOOD1527, FOOD1537, FOOD1547 or their equivalent

A program of laboratory and pilot plant exercises integrating elements of the chemical, physical, sensory and microbiological analysis of foods and the impact of processing on these factors. The program is designed to demonstrate the application of laboratory methods to food systems.

FOOD1567
Technology of Cereal Products
Staff Contact: Dr J. Arcot
C2 S2 L2
Prerequisite: FOOD1537 or equivalent

FOOD1637
Marine Products
Staff Contact: Prof K.A. Buckle
C2 S2 L2
Prerequisite: FOOD1547 or equivalent
Note/s: Not offered in 1995

FOOD1647
Food Additives and Toxicology
Staff Contact: A/Prof M. Wootton
C2 S1 L2
Functions, modes of action of food additives, consequences of use, ethical and legislative considerations. National, State and international attitudes and standards. Principles of toxicological testing, the evaluation of results.

FOOD1657
Postharvest Physiology and Handling of Fruit and Vegetables
Staff Contact: Dr C.M.C. Yuen
C6 S1 L1 T5
Pre or Corequisite: FOOD1537 or equivalent
Biochemistry and physiology of metabolism in fresh fruit and vegetables; respiration measurements as an index of metabolism, maturation and senescence; concept of climacteric and non-climacteric produce; physiological and metabolic changes occurring during ripening. Effect of temperature on metabolism; constraints of high and low temperatures; role of humidity control and water loss in quality maintenance; use of atmosphere control to delay senescence and ripening. Physiological disorders of stored produce; microorganisms of importance to post-harvest tissue; physical and chemical methods of control; post-harvest disinfestation and quarantine measures. Examination of current commercial storage and marketing operations.

FOOD1667
Postharvest Storage of Foods
Staff Contact: Dr C.M.C. Yuen
C6 S1 L2 T4
Prerequisite: FOOD1557 or equivalent
Pre-harvest considerations, post-harvest physiology and biochemistry, post-harvest factors affecting quality, methods of storage and handling, marketing strategies for selected food commodities.

FOOD1707
Seminar
Staff Contact: Dr C.M.C. Yuen
C2 F T1
Students present material arising from literature and/or laboratory assignments and/or plant investigations in the food and related industries. Critical assessments are made of the results of research in food science and technology.

FOOD1717
Major Research Project
Staff Contact: Prof K.A. Buckle
C18 F T9
A detailed investigation of a selected topic in food science and technology including submission of a project report.

FOOD1727
Research Project
Staff Contact: Prof K.A. Buckle
C12 F T6
An investigation of an aspect of food science and technology and submission of a project report.

FOOD1737
Minor Project
Staff Contact: Prof K.A. Buckle
C6 F T3
A study of an aspect of food science and technology and submission of a project report.

FOOD1747
Special Topics in Food Science and Technology
Staff Contact: Prof K.A. Buckle
C6 S1 or S2 T6
An individually supervised program of investigation in specialised aspects of food science and technology not otherwise offered. Embraces a literature review, laboratory work and/or industrial liaison as may be appropriate. Available only to appropriately qualified students.

FOOD1757
Special Topics in Food Science and Technology
Staff Contact: Prof K.A. Buckle
C3 S1 or S2 T3
A similar but shorter investigation to that outlined in FOOD1747.

FOOD1767
Reading Assignment
Staff Contact: Prof K.A. Buckle
C1 SS T1
A reading assignment in an area supporting candidates' major disciplines or commodity interests. Presentation of a seminar may be required.

FOOD2310
Food Microbiology
Staff Contact: A/Prof G.H. Fleet
S1 L2 T2
Prerequisite: MICR2218
A lecture and laboratory program on the ecology, biochemistry, isolation, enumeration and identification of bacteria, yeasts, fungi and viruses associated with foods and beverages. Food spoilage: specific food microorganism associations; taxonomy and biochemistry of major spoilage species; chemical and physical changes to food properties; control; spoilage of specific commodities. Foodborne microbial disease: foods as vectors of disease and food poisoning; statistics and epidemiology; ecology and taxonomy of food-borne pathogenic microorganisms; control and prevention by hygiene, microbiological standards and legislation. Food fermentation: microbial ecology and biochemistry of fermentations; fermentations of alcoholic beverages, bakery products, dairy products, meats, vegetables, cocoa beans, soy sauce; production of
food ingredients and processing aids by fermentation. Microbiological examination of foods: sample preparation and sampling plans; sub-lethal injury; standard methods for determination of total plate counts, indicator organisms, food-borne pathogenic species, principal spoilage species. Microbiological quality assurance: specifications and standards; decision criteria; hazard analysis and critical control point (HACCP) concept; cleaning and sanitation.

FOOD2410
Advanced Food Microbiology
Staff Contact: A/Prof G.H. Fleet
S2 L2 T4
Prerequisite: FOOD2310
An advanced theoretical and practical treatment of the ecology, taxonomy, biochemistry and analytical technology of bacteria, yeasts, fungi and viruses associated with food spoilage, food-borne disease and food fermentations. Emphasis on: new developments in food microbiology; economic consequences of microorganisms in foods; exploitation of microorganisms in novel processes for the production of food ingredients and processing aids; new technologies for the detection of microorganisms in foods, including enzyme immunoassay, DNA probes, bioluminescence, impedance, epifluorescent filtration methods; practical problems associated with the microbiological analysis of foods and interpretation of data.

FOOD2420
Yeast Technology
Staff Contact: A/Prof G.H. Fleet
S1 L2 T1
Prerequisite: FOOD2310
Note/s: Not offered in 1995

FOOD2507
Introductory Microbiology
Staff Contact: A/Prof G.H. Fleet
C3 S1 L2 T2
Note/s: Not offered in 1995
This subject is designed as a prerequisite to FOOD2517 for students with very limited or no background in basic microbiology. It covers the fundamentals of microbial taxonomy, ecology, cytology and biochemistry and the basic technologies of microbial culture, isolation, enumeration and identification.

FOOD2517
Food Microbiology
Staff Contact: A/Prof G.H. Fleet
C4 S1 L2 T2
Prerequisite: FOOD2507 or other introductory microbiology subject
A lecture and laboratory program on the ecology, biochemistry, isolation, enumeration and identification of bacteria, yeasts, fungi and viruses associated with foods and beverages. Food spoilage: specific food/microorganism associations; taxonomy and biochemistry of major spoilage species; chemical and physical changes to food properties; control of spoilage of specific commodities. Foodborne microbial disease: foods as vectors of disease and food poisoning; statistics and epidemiology; ecology and taxonomy of food-borne pathogenic microorganisms; control and prevention by hygiene, microbiological standards and legislation. Food fermentation: microbial ecology and biochemistry of fermentations; fermentation of alcoholic beverages, bakery products, dairy products, meats, vegetables, cocoa beans, soy sauce; production of food ingredients and processing aids by fermentation. Microbiological examination of foods: sample preparation and sampling plans; sub-lethal injury; standard methods for determination of total plate counts, indicator organisms, food-borne pathogenic species, principal spoilage species. Microbiological quality assurance: specifications and standards; decision criteria; hazard analysis and critical control point (HACCP) concept; cleaning and sanitation.

FOOD2527
Microbiological Examination of Foods
Staff Contact: A/Prof G.H. Fleet
C6 S2 L2 T4
Prerequisite: FOOD2517 or equivalent

FOOD2537
Microbiological Quality Assurance
Staff Contact: Dr B.A. Munce
C2 S1 L1 T1
Prerequisite: FOOD2507 or equivalent
Corequisite: FOOD2527
A theoretical and practical consideration of the management of microbiological quality assurance. HACCP. Cleaning and sanitation. Microbiological specifications and regulations. Local and international approaches to obtaining safe food. Management and quality assurance in the microbiology laboratory.

FOOD2547
Food Microbiology Project
Staff Contact: A/Prof G.H. Fleet
C6 F T3
Prerequisite: FOOD2517
A study of an aspect of food microbiology and submission of a project report.

FOOD2557
Microbial Spoilage of Foods
Staff Contact: Dr B.A. Munce
C1 S2 L1
Prerequisite: FOOD2517
Consideration of: major microbial groups responsible for spoilage - yeasts, moulds, lactic acid bacteria, acetic acid bacteria, psychrotrophs, lipolytics, proteolytics. Specific commodity groups - meat, dairy and fish products, fruits,
vegetables. Impact of processing technologies on food spoilage and extension of shelf-life; biochemical basis of spoilage defects, taints; predictive considerations.

FOOD2567
Foodborne Microorganisms of Public Health Significance
Staff Contact: Dr B.A. Munce
C2 S2 L2
Prerequisite: FOOD2517
Corequisite: FOOD2527
An advanced treatment of the ecology, epidemiology, properties, pathogenicity, methods of analysis, economic significance and control of pathogenic microorganisms in foods. Salmonella, Shigella, Escherichia coli, Vibrio sp., Staphylococcus aureus, Bacillus sp., Clostridium perfringens, Clostridium botulinum, Yersinia, Listeria, Campylobacter, Aeromonas, Klebsiella, viruses, fungi.

FOOD2577
Food and Beverage Fermentations
Staff Contact: A/Prof G.H. Fleet
C2 S2 L2
Prerequisite: FOOD2517
A detailed treatment of the microbial ecology, biochemistry, processing technology and quality parameters of fermented foods and beverages; cheese, yogurt, novel dairy products; meat sausages; bread, biscuit/cracker doughs; soybean products, soy sauce, tempe; traditional fermented products of Asia and Africa; vegetables; cocoa beans; alcoholic beverages, beer, wine, champagne, distilled spirit.

FOOD2587
Microorganisms as Food Processing Aids and Ingredients
Staff Contact: A/Prof G.H. Fleet
C1 S2 L1
Prerequisite: FOOD2517
This subject interfaces with biotechnology and considers the use of microorganisms as primary sources of processing aids and ingredients for food processing. The microbial production of vitamins, flavouring agents, amino acids, enzymes, pigments, thickening agents, fats and oils, modified proteins, organic acids. Use of microbial species as biocontrol agents to extend shelf-life, as agents to improve the nutritive and therapeutic value of foods, immobilized cell and cell reactor technologies for conducting food and beverage bioconversions.

FOOD2597
Food Microbiology Seminar
Staff Contact: Dr B.A. Munce
C2 S1 T1 S2 T1
Students present material arising from literature and/or laboratory assignments and/or plant investigations in the area of food microbiology. Critical assessments are made of the results of research in food microbiology.

FOOD2607
Food Microbiology Research Project
Staff Contact: A/Prof G.H. Fleet
C12 F T6
An investigation of an aspect of food microbiology including a literature survey, experimental work and submission of a project thesis.

FOOD2617
Major Research Project in Food Microbiology
Staff Contact: A/Prof G.H. Fleet
C18 F T9
A detailed investigation of a selected topic in food microbiology involving a literature survey, experimental work and submission of a project thesis.

FOOD3210
Introductory Nutrition
Staff Contact: A/Prof H. Greenfield
S1 L2 T1
Role of nutrients in human structure and function. Effects of diet on growth and body size. Food habits, beliefs and choice; dietary patterns. Assessment of nutritional status; anthropometry, dietary intake studies, use of dietary recommendations, food groups, tables of food composition.

FOOD3310
Nutrition
Staff Contact: A/Prof H. Greenfield
S2 L2 T1
Prerequisites: BIOL2312, FOOD3210
Nutritional needs of vulnerable groups: infants, pregnant and lactating women, the aged. Dietary intolerance, disorders related to the affluent diet including coronary heart disease, dental caries, diabetes, hypertension and cancer. Problems of under-nutrition including protein, energy, mineral and vitamin deficiencies. Physiological and nutritional aspects of dietary fibre, alcohol and food intolerance. Measurement of nutrient intake using computer systems, on individual and group basis.

FOOD3410
Advanced Nutrition
Staff Contact: A/Prof H. Greenfield
S1 L1 T5
Prerequisite: FOOD3310 or equivalent

FOOD3507
Introductory Nutrition
Staff Contact: A/Prof H. Greenfield
S1 L2 T1
Role of nutrients in human structure and function. Effects of diet on growth and body size. Food habits, beliefs and choice; dietary patterns. Assessment of nutritional status; anthropometry, dietary intake studies, use of dietary recommendations, food groups, tables of food composition.

FOOD3517
Nutrition
Staff Contact: A/Prof H. Greenfield
S2 L2 T1
Prerequisite: FOOD3507 or equivalent
Nutritional needs of vulnerable groups: infants, pregnant and lactating women, the aged. Dietary intolerance, disorders related to the affluent diet including coronary heart disease, dental caries, diabetes, hypertension and cancer. Problems of under-nutrition including protein, energy, mineral and vitamin deficiencies. Physiological and
FOOD3527
Advanced Nutrition
Staff Contact: A/Prof H. Greenfield
S1 L1 T5
Prerequisite: FOOD3517 or equivalent

FOOD4210
Introductory Food Engineering
Staff Contact: Ms J.L. Paterson
S2 L2 T2
Prerequisite: FOOD4210

FOOD4320
Computer Applications
Staff Contact: Dr R.H. Driscoll
S2 L1 T1
Prerequisite: MATH2819
Introduction to the DOS operating system and WINDOWS. The use of statistical, graphics and other program packages to solve problems in food science and technology.

FOOD4420
Food Packaging
Staff Contact: Dr R.H. Driscoll
S1 L2 T1
Pre or Corequisite: FOOD1310
Chemical and physical properties of packaging materials. Interaction between package and food, selection and evaluation of packaging materials and systems, design, printing, computers, modified atmosphere, smart films.

FOOD4440
Advanced Food Engineering B
Staff Contact: Dr R.H. Driscoll
C3 S2 L2 T1
Prerequisites: FOOD4210, FOOD4310
Mechanical and chemical separation, evaporation, distillation, psychrometry, drying, dryers, mass/energy balances, calculation of drying time, commercial equipment, current drying research.

FOOD4507
Food Engineering Principles
Staff Contact: Ms J.L. Paterson
C3 S2 L2 T1
Prerequisite: First year mathematics and physics or equivalents
Units and dimensions; system conversions; material, energy and momentum balance; steady state and transient heat transfer; insulation; heat exchangers; solid and fluid rheology; viscosity; pumps; mixing.

FOOD4517
Unit Operations In Food Engineering
Staff Contact: Dr R.H. Driscoll
C4 S2 L2 T2
Prerequisite: FOOD4507 or equivalent
Refrigeration; freezing; chilling and thawing; evaporation; dehydration; extraction; distillation; extrusion; comminution; filtration and separation; process control; packaging.

FOOD4537
Computing in Food Science
Staff Contact: Dr R.H. Driscoll
C2 S2 L1 T1
Prerequisite: An introductory statistics subject or equivalent
Introduction to the DOS operating system and WINDOWS. The use of statistical, graphics and other program packages to solve problems in food science and technology.

FOOD4557
Food Engineering Laboratory
Staff Contact: Ms J.L. Paterson
C3 S2 T3
Prerequisite: FOOD4587
Laboratory and pilot plant exercises illustrating the principles and procedures involved in food processing and food quality assessment.

FOOD4567
Food Engineering Field Work
Staff Contact: Dr R.H. Driscoll
C3 S3 T1.5
Inspection of food processing factories, agricultural and food research establishments and food producing areas.

FOOD4587
Advanced Food Engineering A
Staff Contact: Dr R.H. Driscoll
C4 S1 L3 T1
Corequisite: FOOD4517 or equivalent
Extrusion of food products, membrane technology, refrigeration, chilling, freezing, thawing, tempering, cold room design, process control, numerical techniques and modelling.
FOOD4597
Advanced Food Engineering B
Staff Contact: Dr R.H. Driscoll
C4 S2 L3 T1
Corequisite: FOOD4517 or equivalent
Mechanical and chemical separation, evaporation, distillation, psychrometry, drying, dryers, mass/energy balances, calculation of drying time, commercial equipment, current drying research.

FOOD4607
Packaging and Production
Staff Contact: Dr R.H. Driscoll
C4 S1 L3 T1
Chemical and physical properties of package materials; interaction between package and food; selection and evaluation of packaging materials and systems; package design criteria; printing; computers in packaging; modified atmospheres. Corrosion; scale-up; waste engineering; CIP systems; plant design.
Head of School
Professor D.L. Trimm

Administrative Officer
Ms K.M. Mason

The School contains the Departments of Chemical Engineering and Industrial Chemistry which service undergraduate degree courses, and the Departments of Fuel Technology and Polymer Science and the Centre for Minerals Engineering* which offer professional electives in these degree courses. A professional elective in Biological Process Engineering is also available from the Department of Biotechnology.

Chemical engineering is the application of the principles of the physical sciences, together with the principles of economics and human relations, to fields in which matter undergoes a change in state, energy content or composition. The chemical engineer is generally responsible for the design, construction and operation of plant and equipment used in the chemical processing industries.

Fuel engineering is primarily concerned with the practical and economic applications of scientific knowledge and engineering experience to the production, processing and utilization of fuels and energy.

Industrial Chemistry is the discipline in which the scientific work of the research chemist is translated into the activities of the chemical industry. The thermodynamic feasibility of a reaction in inorganic or organic chemistry, the conditions under which the reaction might proceed, the kinetics of the reaction and the means whereby the reaction might be controlled to produce the desired product are the fundamentals of the course.

For the award of Honours in the Chemical Engineering and Industrial Chemistry degree courses, students need to have distinguished themselves in the formal work, in other assignments as directed by the Head of the School, and in the final year project, for which a thesis is required.

It is compulsory that, before completion of the course, students in Chemical Engineering must obtain a minimum of twelve weeks' professionally oriented or industrial experience.

It is compulsory that, before graduation, students in the full-time courses in Industrial Chemistry obtain a minimum of twelve weeks' professionally oriented or industrial experience. Students in the part-time courses in Industrial Chemistry must complete an approved program of industrial experience of not less than twelve months prior to the award of the degree.

*In conjunction with the School of Mines and School of Materials Science and Engineering.
Undergraduate Study

Students are expected to possess a calculator having exponential capabilities (ln x and exp x or 'x to the y'); however, more advanced calculators and personal computers, will be found useful. In examinations, students may be required to use calculators supplied by the University, so that no student will have an unfair advantage over another. Further information may be obtained from the Head of the School.

Students of both Chemical Engineering and Industrial Chemistry are expected to have a copy of Perry J. H. ed. Chemical Engineers' Handbook 6th ed. McGraw-Hill. This book is used extensively for most subjects and units. Certain subjects and units do not have specified textbooks and in these cases reference books are used or printed notes supplied.

Course Outlines

3040
Chemical Engineering - Full-time Course

Bachelor of Engineering
BE

This course extends over four years and students study full-time during the day for twenty-eight weeks of each year (excluding examination and recess periods).

Successful completion of the BE degree course is accepted by the Institution of Chemical Engineers, the Institution of Engineers, Australia, and Royal Australian Chemical Institute as sufficient academic qualification for corporate membership.

Various course patterns involving full-time or part-time study may be approved by the Head of School.

With one additional year of study, it is possible, upon completion of the Petroleum Engineering program 3045, to obtain a double BE degree in Petroleum and Chemical Engineering 3046 because the first two years of the Petroleum Engineering course are identical to the first two years of the Chemical Engineering course.

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1002</td>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>CHEN1020</td>
<td>6</td>
<td>S2</td>
</tr>
<tr>
<td>MATH1131</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MATH1141</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MATH1231</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MATH1241</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PHYS1002</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>General Education Subject Category A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th></th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC2010</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CEIC2020</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CEIC2030</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>CEIC2040</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>CHEN2010</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CHEN2020</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEN2030</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEN2040</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CHEN2050</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ELEC0802</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>INDC2050</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATH2021</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATH2819</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Education Subject/s</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Totalling</td>
<td>1.5</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th></th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC3010</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CHEN3010</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CHEN3020</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEN3030</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CHEN3040</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEN3050</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CHEN3060</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CHEN3070</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CHEN3080</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>CHEN3090</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CIVL0616</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATH3021</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Education Subject</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Totalling</td>
<td>24.5</td>
<td>24.5</td>
</tr>
</tbody>
</table>
Minerals Engineering

Jointly by the School of Chemical Engineering and Industrial Chemistry and the School of Mines, the Minerals elective is offered to students who wish to obtain a basic training in preparation for a career in the mineral industry. The elective covers the areas of secondary treatment of mineral sources, from physical mineral processing to pyrometallurgy and hydrometallurgy. Topics include engineering principles and current plant practices in comminution, beneficiation, extraction, purification, product recovery and other pyrometallurgical operations currently used in the coal, heavy minerals, iron and steel, nonferrous, base and precious metal industries. Progress in mineral science and technology, mineral plant design and process evaluation are also parts of the elective. Students choosing this elective should take the required subjects listed in the table below for Years 3 and 4 in lieu of the following subjects: CHEN3090 Chemical Engineering Applications, CHEN4090 Research Project, CHEN4020 Advanced Reaction Engineering, CHEN4030 Safety and Environmental, CHEN4050 Process Plant Operation, CHEN4100 Professional Electives. This elective may qualify graduates for membership of the Australian Institute of Mining and Metallurgy.

Main Electives

Fuel and Energy Engineering

The Department of Fuel Technology offers a coherent professional elective in Fuel and Energy Engineering designed for those students interested in the application of fuel and energy technologies in industry, commerce, government, education or research and development. The Department is the only one of its kind in Australia and has a long history of teaching and research in the fuels and energy area. The elective covers the broad areas of properties, constitution, processing, conversion and utilization of fuels. Topics include combustion science and engineering; radiation and flames; design and performance evaluation of fuel using plant such as furnaces, boilers and heat recovery appliances; coal and oil conversion processes; energy management and conservation; and progress in fuel science and fuel processing.

Students choosing this professional elective should take FUEL3010 Fuel and Energy Engineering 1 in Year 3 and FUEL4010 Fuel and Energy Engineering 2 and FUEL4090 Fuel and Energy Engineering Project in Year 4. Part-time students should take these subjects at equivalent stages of the part-time degree. (See BE Chemical Engineering 3040 Degree structure for the subjects that the Fuel and Energy Engineering courses replace).

This elective may qualify graduates for membership of the Australian Institute of Energy and the Institute of Energy UK.

Electives

*Students taking the Fuel and Energy Engineering or Minerals Engineering Electives follow a modified Program described below under 'Main Electives'.

1) These subjects contribute towards satisfaction of the Category C General Education Requirement.

Course Outlines CEIC

Year 3

Subject Code	Subject Name	S1	S2
MINE0130	Principles of Mining	2	0
MINE3101	Mineral Process Engineering C	2	2
MINE4010	Hydrometallurgical Processes	0	2
GEOL5410	Mineralogy for Mineral Engineering	0	2
MATS9650	Pyrometallurgical Processes	0	2
MINP4020	Hydrometallurgical Practices	3	0
MINP4030	Hydrometallurgical Process Engineering	0	2
MINE4101	Mineral Processing Practices	2	0
MINE4401	Mine Waste Disposal & the Environment	0	2

Year 4

Subject Code	Subject Name	S1	S2
MATH1131	Mathematics 1A or	6	0
MATH1141	Higher Mathematics 1A	6	0
MATH1231	Mathematics 1B or	6	0
MATH1241	Higher Mathematics 1B	6	0
PHYS1002	Physics 1	6	6
	Totalling	12	12

Stage 2

Subject Code	Subject Name	S1	S2
CEIC1020	Engineering 1CE	6	6
CHEM1002	Chemistry 1	6	6
General Studies subject		2	0
	Totalling	14	12

3050 Chemical Engineering - Part-time Course

Bachelor of Science (Technology) BSc(Tech)

This course requires an approved program of twelve months of industrial training prior to the award of the degree.
Industrial Chemistry - Full-time Course

Bachelor of Science
BSc

Industrial Chemistry is a four-year professional (prescribed) science course that is concerned with the application of science and technology to the chemical industry.

Successful completion of the course is accepted by the Royal Australian Chemical Institute as sufficient academic qualification for full corporate membership.

Various course patterns involving full-time and part-time study may be approved by the Head of School.

*These subjects contribute towards satisfaction of the Category C General Education requirement.
Industrial Chemistry - Part-time Course

Bachelor of Science (Technology)
BSc (Tech)

This course requires an approved program of 12 months of industrial training prior to the award of the degree.

Stage 1 and 2*

HPW

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1002</td>
<td>Chemistry 1</td>
<td>6</td>
</tr>
<tr>
<td>INDC1020</td>
<td>Engineering 1 IC</td>
<td>6</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td>6</td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td>6</td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td>0</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics 1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>24</td>
</tr>
</tbody>
</table>

Stages 3 to 6

<table>
<thead>
<tr>
<th>Stage</th>
<th>Course Code</th>
<th>Course Title</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 4</td>
<td>CEIC2020</td>
<td>Computing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM2021</td>
<td>Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CHEM2031</td>
<td>Inorganic Chemistry</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>INDC2020</td>
<td>Introduction to Fluid Flow</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>INDC2010</td>
<td>Mass and Energy Balances</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>INDC2030</td>
<td>Heat Transfer and Temperature Measurement</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PHYS2920</td>
<td>Electronics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totalling</td>
<td>14</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC3010</td>
<td>Reaction Engineering</td>
<td>0</td>
</tr>
<tr>
<td>INDC3010</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>INDC3021</td>
<td>Numerical Methods</td>
<td>0</td>
</tr>
<tr>
<td>INDC3031</td>
<td>Experimental Design</td>
<td>2</td>
</tr>
<tr>
<td>INDC3041</td>
<td>Corrosion in the Chemical Industry</td>
<td>0</td>
</tr>
<tr>
<td>INDC3050</td>
<td>Chemistry of High Temperature Materials</td>
<td>2</td>
</tr>
<tr>
<td>INDC3060</td>
<td>Unit Operations</td>
<td>2</td>
</tr>
<tr>
<td>INDC3080</td>
<td>Instrumental Analysis 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General Education Subject/s Category B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>13</td>
</tr>
</tbody>
</table>

Stage 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3829</td>
<td>Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>INDC3070</td>
<td>Instrumentation and Process</td>
<td>0</td>
</tr>
<tr>
<td>INDC3090</td>
<td>Chemistry of Industrial Processes</td>
<td>3</td>
</tr>
<tr>
<td>POLY3010</td>
<td>Polymer Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>11</td>
</tr>
</tbody>
</table>

Graduate Study

Course Outlines

Formal courses in the School of Chemical Engineering and Industrial Chemistry lead to the award of the Master of Applied Science or the Graduate Diploma.

The following graduate courses are available to Master of Applied Science degree course candidates. Candidates may specialize in the following areas:

Chemical Engineering and Industrial Chemistry Course 8015
Fuel Technology Course 8060

Master of Applied Science Degree Courses

The MAppSc degree courses involve a project which must integrate and apply the principles treated in the course. It may take the form of a design feasibility study or an experimental investigation. Evidence of initiative and of a high level of ability and understanding is required in the student's approach, and the results must be embodied in a report and submitted in accordance with the University's requirements.
Chemistry, Mathematics and/or Physics. They are designed to allow the maximum flexibility consistent with the standing of the award.

Intending candidates are invited to submit proposed study programs to the Head of the School for advice and recommendation. Each individual course must be approved by the Higher Degree Committee of the Faculty of Applied Science. An acceptable course would be a program of formal study aggregating approximately 18 hours weekly for two sessions full-time or 9 hours weekly for four sessions part-time, and which could comprise:

1. A major strand of course material making up 75% of the total program. This includes a project constituting not less than 15% and not more than 30% of the program;
2. A minor strand of broader-based supporting material making up to 25% of the total program; and
3. Undergraduate material, which may be included in one or both strands but may not exceed 25% of the total program.

Approximately 60% of the program (including the project) must be undertaken in the School of Chemical Engineering and Industrial Chemistry. The remainder, subject to approval and availability, may be undertaken in other Schools within the University. Full details of all subjects are listed under Disciplines of the University in the Calendar.

Courses will be run in any year only if sufficient applications are received. A minimum number of 5 registrations is usually required.

8015
Chemical Engineering and Industrial Chemistry Graduate Course

Master of Applied Science MAppSc

This course is designed to allow students to select areas of specialization appropriate to their needs. The areas of specialization include Industrial Chemistry, Chemical Engineering and Industrial Pollution Control. Students are asked to consult the area supervisors in the School to develop a program of study which complies with regulations for the Master of Applied Science degree. Students may undertake a Major Project (CEIC5000) amounting to six hours per week for a year or take a Minor Project (CEIC5010) of three hours per week for a year and select an extra elective subject.

8016
Chemical Engineering and Industrial Chemistry Graduate Course

Master of Applied Science - Process Engineering MAppSc - Process Engineering

The course will involve full-time study at UNSW for overseas students for a period of one year. Australian citizens or permanent residents may elect to take the course in a series of modules over a somewhat longer period. The degree can be obtained by taking a combination of subjects to a minimum number of 30 credit points.

Students with a recognised 4 year BE or BSc degree OR students with a recognised 3 year BE or BSc plus satisfactory industrial experience OR students who submit satisfactory evidence of other academic or professional attainments will be permitted to enrol.

Whilst the program is aimed at maximum flexibility four subjects will be considered as core subjects. These are CEIC5310 Computing Studies in Process Industries, CEIC5311 Instrumental Analysis in Process Industries, CEIC5312 Safety and Communication in the Process Industries, and CEIC5313 Environmental Technologies in Process Industries. These core subjects could be substituted if a student can demonstrate skills in these areas. The core subjects will be offered at periods most convenient to the resource utilisation of the School. Nine (9) credit points (30% of the course) can be taken as electives which will be given as one week intensive courses. A Nine (9) credit point research project on relevant aspects of process industries, supervised by academic members of staff must be undertaken. Assessment of the project report will be undertaken by at least 2 staff members.

Each student program must be approved by the Head of School or Graduate Studies Coordinator.

The fee for the entire MAppSc program is $16000. Fees for Australian citizens or permanent residents will be initially set at $500 per credit point.

Core Subjects
CEIC5310 Computing Studies in the Process Industries
CEIC5311 Instrumental Analysis in the Process Industries
CEIC5312 Safety and Communications in the Process Industries
CEIC5313 Environmental Technologies
Project CEIC5320 Process Engineering Project
Electives - three to be chosen

CEIC5330 Process Engineering and the Petroleum Industry
CEIC5331 Process Engineering: natural Gas and Light
CEIC5332 Process Engineering in the Food Industry
CEIC5335 Advanced Computer Methods in the Process Industries
CEIC5336 Environmental Chemistry in the Process Industries
CEIC5337 Particle Characterisation in the Process Industries
CEIC5340 Polymer Synthesis: Fundamentals and Techniques
CEIC5341 Membrane Technology in the Process Industries

8060
Fuel Technology Graduate Course

Master of Applied Science
MAppSc

This is a formal course leading to the award of the degree of Master of Applied Science. It is a two-year part-time

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

Graduate subjects will only be offered if class numbers exceed 5 and some graduate subjects will only be offered every alternate year. Contact School for further details.

APSE0002
Social Issues in Applied Science
Staff Contact: School Office
S1

The subject covers social issues arising from future technological developments and the role that a professional applied scientist can play in influencing future directions. It will be taught by a combination of group activity, case studies and projects and seminars from visiting speakers, some of whom will be from disciplines other than the applied sciences.

CEIC0010
Mass Transfer and Material Balances
Staff Contact: A/Prof M. Brungs
F L1 T1
Prerequisites: CHEM1101, CHEM1201, CIVL2505
Note/s: servicing subject i.e. a subject taught within courses offered by other faculties.

CEIC0020
Fluid/Solid Separation
Staff Contact: A/Prof N. Foster
SS L1.5 T.5
Note/s: servicing subject i.e. a subject taught within courses offered by other faculties.

Applications of Fluid-Particle Systems: Sedimentation and thickening, elutriation, cyclones, filtration, constant pressure filtration, specific resistance, equipment, filter aids, centrifugal separations.

CEIC0030 Environmental Protection in the Process Industries
Staff Contact: Dr P. Crisp
SS L3 T3
Prerequisites: CEIC0010, INDC3070 INDC4120
Note/s: servicing subject i.e. a subject taught within courses offered by other faculties
Selection of 3 topics from:

Environmental Pollutants
The characteristics of pollutants in air and water. Consequences of pollutants by aqueous, gaseous and solid wastes; case histories. Standards and regulations; legislative aspects. Measurement, analysis and sampling - modern techniques of environmental chemical analysis.

Pollution Control Techniques

Water Pollution Control Engineering

Air Pollution Control

Laboratory for Environmental Analysis
14 hour laboratory unit developing techniques in modern environmental analysis.

Advanced Environmental Protection
This comprises a series of elective strands which build upon the core subject as follows:
1. Advanced treatment methods (water)
2. Advanced treatment methods (air)
3. Hazardous wastes
4. Computer-aided risk assessment
5. Advanced laboratory
6. Occupational Health Laboratory

CEIC2020 Computing
Staff Contact: Dr T. Pham
S1 L1 S2 L1 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, CHEM1002, PHYS1002, CHEN1020 or INDC1020
Computing for technical applications. Operating systems: VAX computers, the VMS operating system and the EDT editor. The FORTRAN language Elementary numerical methods; library subprograms; structures of program modules for technical calculations. The BASIC language.

CEIC2030 Applied Thermodynamics and Rate Processes
Staff Contact: Dr R. Chaplin
S1 L1.5 T1
Prerequisites: PHYS1002, CHEM1102 and CHEM1201, MATH1032 or MATH1231 or MATH1042 or MATH1241, CHEN1020 or INDC1020

CEIC2040 Applied Electrochemical and Surface Processes
Staff Contact: Dr R. Chaplin
S1 L1.5
Prerequisites: PHYS1002, CHEM1102 and CHEM1201, MATH1032 or MATH1231 or MATH1042 or MATH1241, CHEN1020 or INDC1020
for reaction in parallel and reactions in series, series-parallel reactions. Temperature effects: heat of reaction, equilibrium constants, optimum temperature progression, adiabatic and non-adiabatic operation, product distribution and temperature. Kinetics of rate processes: Significance of the rate laws and models for distributed and lumped parameter systems. Experimental measurement and correlation of process rates.

CEIC4010
Process Economics 1
Staff Contact: Dr T. Tran
S1 L1
Consists of the segment Process Economics CHEN3060
Process Plant Engineering 1

CEIC4020
Process Plant Economics 2
Staff Contact: Dr T. Tran
S2 L1
Consists of the segment Process Economics 2 from CHEN4060 Process Plant Engineering 2

CEIC4070
Laboratory Automation for Ceramic Engineers
Staff Contact: Dr H. Presig
S1 L1 T1
Note/s: Servicing subject i.e. a subject taught within courses offered by other faculties.

Application of microprocessors to laboratory automation. Basics of computing hardware and process interface hardware (A/D. D/A conversion, digital 1/0 etc.) Elements of real-time computing and software associated with the process interface. Real-time data acquisition, signal processing, discrete and sequential control of selected relevant example processes.

CEIC4200
Industrial Experience
Staff Contact: Dr C. Dixon

Students in the four-year courses must obtain a minimum of twelve weeks professionally oriented or industrial experience prior to the award of the degree.

CEIC4210
Industrial Experience
Staff Contact: Dr C. Dixon

Students in the BSc (Tech) course in Industrial Chemistry must complete an approved program of industrial experience of not less than twelve months prior to the award of the degree.

CEIC5010
Minor Project
Staff Contact: A/Prof G Sergeant (Dept of Fuel Technology)
Staff Contact: A/Prof R Burford (Dept of Polymer Science)

A minor investigation on some aspect of chemical engineering, industrial chemistry, polymer science, fuel technology or biological process engineering.

CEIC5310
Computing Studies in the Process Industries
Staff Contact: Dr T. Pham

CEIC5311
Instrumental Analysis in the Process Industries
Staff Contact: A/Prof. M. Brungs

The course will encompass both chemical and physical analysis of materials. The basic principles of laboratory and on-line instrumentation will be examined and this material will be reinforced by appropriate laboratory classes. Selected topics include: analyses of and for water, colour, density and viscosity, spectroscopic, electrochemical and chromatographic techniques. The course will also include aspects of sampling and Laboratory Information Management Systems (LIMS).

CEIC5312
Safety and Communications in the Process Industries
Staff Contact: Prof. D. Trimm

CEIC5313
Environmental Technologies
Staff Contact: Prof. A. Fane

This subject deals with conventional and advanced separation processes for pollution control, effluent treatment and waste minimisation in the Process Industries. Topic areas covered will be selected from: Gravity Separations, Filtration Processes, Sorption Processes, Extraction Processes, Membrane Technology, Biological Processes, Design, Control and Monitoring, Clean Production Technologies.

CEIC5320
Process Engineering Project
Staff Contact: Dr R. Chaplin

An investigation of a problem in any area related to process engineering which involves a significant research component. Such an investigation should be related to the research interests and expertise of staff in the School of Chemical Engineering and Industrial Chemistry.
CEIC5330
Process Engineering and the Petroleum Industry
Staff Contact: Dr A. Adesina

CEIC5331
Process Engineering: natural Gas and Light Hydrocarbons to Petrochemicals
Staff Contact: Dr A. Adesina

CEIC5332
Process Engineering in the Food Industry
Staff Contact: Dr T. Pham

This course covers the application of process engineering techniques in the food industry, with its particular emphasis on product sensory quality and hygiene. The topics considered will include evaporation and drying, separation, refrigeration, thermal processing, prediction of quality and microbiological changes, and computer techniques. The course will include lectures, assignments and one major design project.

CEIC5335
Advanced Computer Methods in the Process Industries
Staff Contact: Dr H. Preisig

Solution of Process Engineering problems, trouble-shooting and Process Design utilising advanced computer applications including flowsheeting, numerical methods, statistical design, CAD and process integration.

CEIC5336
Environmental Chemistry in the Process Industries
Staff Contact: Dr P. Crisp

Introduction to the chemical processes underlying major problems. The following topics will be covered: soil chemistry, acid rain, land degradation, urban air pollution, ozone depletion, global climatic change, radioactive contamination, alternative energy sources, chemical waste contamination, toxic elements, toxic organics, absorption processes and occupational diseases. The role of the chemical industry in causing and resolving the problems will be examined.

CEIC5337
Particle Characterisation in the Process Industries
Staff Contact: A/Prof. J. Raper

This course will cover theoretical principles and practical aspects of methods of characterising fine particulate materials. Characteristics investigated include: particle size and shape distribution, density, porosity, surface area, zeta potential and electrostatic charge, morphology and structure. Techniques covered include: sedimentation, optical techniques, electrozone sensing, image analysis, time of flight analysis, inertial impaction, mercury porosimetry, gas adsorption, helium pycnometry, morphological analysis. Practical examples of industrial applications will be given together with laboratory demonstrations using all the techniques.

CEIC5340
Polymer Synthesis: Fundamentals and Techniques
Staff Contact: Dr R. Chaplin

CEIC5341
Membrane Technology in the Process Industries
Staff Contact: Prof. A. Fane

Classification of membranes and membranes processes. Driving forces and mass transfer mechanisms. Characterisation for membranes. Control of concentration polarisation and fouling. Aspects of the design of membranes, membrane modules and membrane systems. Operating principles of major membrane processes include microfiltration, ultrafiltration, nanofiltration, reverse osmosis, dialysis, electrodialysis, membrane distillation, pervaporation, gas permeation, liquid membranes. Selected applications and economic aspects of membrane technology in the fields of biotechnology, biosensors (including bioreactors), controlled release, chemical and food processing, water and waste treatment.

CEIC5630
Industrial Water and Wastewater Engineering
Staff Contact: Prof A.G. Fane

C3 S2 L3

Environmental consequences of water pollution. Water quality criteria and regulations related to industrial use and disposal. Water sources and requirements of industry. Theoretical and practical aspects of treatment methods,
including screening, sedimentation, oil separation, coagulation and flocculation, filtration, biological treatment, adsorption, ion exchange, membrane processes. Strategies for industry including waste surveys, prevention at source, correction before discharge water reuse. Economic aspects. Seminars. Factory visits/laboratory.

CEIC5700
Process Principles
Staff Contact: School Office

CEIC5810
Advanced Process Dynamics
Staff Contact: School Office

CEIC5820
Process Optimization
Staff Contact: School Office
Multivariable analytical and numerical optimization in free and constrained parameter space. Optimization of functions of a continuous variable. Dynamic programming. Applications of these techniques to specific chemical engineering problems.

CEIC5840
System Simulation and Control
Staff Contact: School Office
This is a participatory course in which case studies, discussion of recent papers, development of digital simulation programs and analog computer laboratory work play an important part.
Topics are selected from the following areas:

Unit 1 System Simulation
Numerical methods for digital simulation; programming languages and packages for system modelling of distributed parameter systems; use of analog computers in systems simulation. Application of these techniques to the study of process plant and equipment, environmental systems, and similar areas.

Unit 2 Advanced Process Control
System identification and parameter estimation; control of multiloop systems; non-linear systems; digital control and data-logging, sequencing control.

CEIC5850
Interphase Mass Transfer
Staff Contact: School Office
Advanced theories of mass transfer. The effect of interfacial instability and methods for predicting its presence. Theoretical prediction of mass transfer in dispersed systems. Multi-component mass transfer.

CEIC5860
Fluid Particle Interactions
Staff Contact: School Office

CEIC5890
Graduate Colloquia
Staff Contact: School Office
Colloquia on research developments in the School of Chemical Engineering and Industrial Chemistry. Students are required to participate actively in the colloquia and give at least one dissertation based on their own investigations.

CEIC5900
Specialist Lectures
Staff Contact: School Office

CEIC5910
Advanced Thermodynamics
Staff Contact: School Office

CEIC5920
Computer-aided Design
Staff Contact: School Office
A workshop type of course with considerable time devoted to discussion, seminars, writing and running of programs. Programming: methods, conventions, and standards; program design, flow-charting, co-ordination and documentation. Design: individual plant units and components, flowsheets, optimization and economic analysis. Physical property estimation. Simulation: continuous change and discrete change systems.

CEIC5930
Safety in Laboratories
Staff Contact: Dr R. Chaplin
S1
CHEN1010
Introduction to Chemical Engineering
Staff Contact: Dr D. Wiley
F L1 T1

Introduction to the processing industry and chemical engineering practice. The role and responsibilities of the chemical engineer. Introduction to materials of construction for the processing industries. Application of process calculations in chemical process operations. Conventions in methods of analysis and measurement. The chemical equation and stoichiometry. Introduction to material balancing. Process calculations associated with gases, vapours and liquids.

CHEN1020
Engineering 1 CE
Staff Contact: Dr C. Dixon
S1 L2 T4 S2 L3 T3

This subject comprises CHEN1010 Introduction to Chemical Engineering, MECH0130 Engineering Drawing and Descriptive Geometry and MECH0330 Engineering Mechanics.

Each subject is described elsewhere in this handbook. Prospective students should note the following: It is not necessary to pass each of the three component subjects individually; however, for a student who does not pass all components separately the composite mark for the whole subject is not calculated by a simple averaging process. For a component subject in which a passing mark is not obtained, heavier weighting is applied; the lower the mark the heavier the weighting. The details of the calculation method are explained in the first week of the course. A student who is repeating the subject after failure must repeat all three components. No exemptions will be granted for components that were passed at an earlier attempt.

CHEN2010
Material and Energy Balances
Staff Contact: Dr E. Curry-Hyde
F L1 T1

Prerequisites: CHEM1020, CHEN1020, MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1002

CHEN2020
Flow of Fluids
Staff Contact: A/Prof J. Raper
F L1 T1

Prerequisites: PHYS1002, CHEN1020, CHEM1002, MATH1032 or MATH1231 or MATH1042 or MATH1241

CHEN2030
Heat Transfer
Staff Contact: Dr C. Jones
S2 L2 T1

Prerequisites: PHYS1002, CHEN1020, CHEM1002, MATH1032 or MATH1231 or MATH1042 or MATH1241

CHEN2040
Mass Transfer Fundamentals
Staff Contact: Dr A. Adesina
S2 L1 T1

Prerequisites: PHYS1002, CHEM1002, CHEN1020, MATH1032 or MATH1231 or MATH1042 or MATH1241

An introduction to the significance of mass transfer to the chemical engineer. Topics to be covered include: mechanisms of mass transfer, mass transfer driving forces, molecular diffusion, mass transfer models, phase equilibrium. Discussion of application of mass transfer in the chemical process industries.

CHEN2051
Chemical Engineering Laboratory I
Staff Contact: A/Prof N. Foster
S1 T3 S2 T2

Prerequisites: PHYS1002, CHEM1002, CHEN1020, MATH1032 or MATH1231 or MATH1042 or MATH1241

An introduction to laboratory work in chemical engineering including information retrieval techniques. Experiments designed to demonstrate physical processes in industrial situations.

CHEN3010
Engineering Thermodynamics
Staff Contact: Dr D. Wiley
S1 HPW4

Co or Prerequisites: CEIC2030, CEIC2040, CHEN2010, CHEN2020

CHEN3020
Numerical Methods

Staff Contact: Dr H. Preisig
S1 L1 S2 L1 T1

Prerequisites: CEIC2020, MATH2021, MATH2819

CHEN3030
Fluids 2

Staff Contact: Dr T. Pham
S1 H PW2

Prerequisites: CEIC2020, CHEN2020, MATH2021

CHEN3040
Separation Processes

Staff Contact: A/Prof N. Foster
F L1 T1

Prerequisites: CEIC2030, CEIC2040, CHEN2010, CHEN2020, CHEN2030, CHEN2040, CHEN2050

CHEN3050
Particle Mechanics

Staff Contact: A/Prof J. Raper
S2 L2 T1

Prerequisites: CEIC2020, CHEN2020, MATH2021, MATH2819

CHEN3060
Process Plant Engineering 1

Staff Contact: Mr A. Papagefis
F L3 T1

Prerequisites: CHEN2010, CHEN2020, CHEN2030, ELEC0802, MATH2021

Processing Engineering I: All activities required from the conception of the idea to produce a product through to the finalisation of the process flow diagram including process selection and evaluation, process design, process simulation, process representation, process acquisition and licensing. Project Engineering I: Outline of scope of a process plant including plant location and layout, processing facilities and off-sites including utility system design, statutory regulations, facilities for storage, processing and transport of materials within the plant including design of piping systems. Process Equipment Design: Materials of construction. Procedures for the selection, design, specification and representation of process equipment. Pressure vessel and heat exchanger design. Engineering standards and procedures. Materials and Containment: The use and selection of metals, plastics, refractories, ceramics and glass in construction of chemical plants. Corrosion, strength of materials, use of codes and standards. Process Economics I: Capital and operating costs of a process plant. Fixed and variable costs. Break-even analysis. Cost estimation methods.

CHEN3070
Process Control

Staff Contact: Dr C. Dixon
S2 L2

Prerequisites: CEIC2020, CEIC2020, MATH2021

CHEN3080
Chemical Engineering Laboratory 2

Staff Contact: A/Prof N. Foster
F T1.5

Prerequisites: CHEM2828, CHEM2011, CEIC2010, CEIC2020, CHEN2010, CHEN2020, CHEN2030, CHEN2040, CHEN2050, MATH2021, MATH2819

An integrated chemical engineering laboratory incorporating experiments in fluid flow, heat transfer, mass transfer, thermodynamics and kinetics, instrumentation and process dynamics and control. The objectives of this laboratory are: to demonstrate, reinforce and extend the principles of chemical engineering which are covered elsewhere in the course; to introduce various laboratory techniques which are used in the experimental investigation of chemical engineering problems; to develop an interest in experimentation, and to develop a proficiency in technical report writing.
CHEN3090
Chemical Engineering Applications
Staff Contact: Dr C. Dixon
F L2 T2
Prerequisites: CHEM2011, CEIC2020, CHEN2010, CHEN2020, CHEN2030, MATH2021, MATH2819
Application of chemical engineering principles to biochemical engineering, fuel engineering, solids handling, alumina and aluminium industries and polymer technology. Integrated problems illustrating skills in process analysis.

CHEN4010
Multi-component Separation Processes
Staff Contact: Dr R. Amal
S1 L1 T1
Prerequisites: CHEN3010, CHEN3020, CHEN3040, MATH3021

CHEN4020
Advanced Reaction Engineering
Staff Contact: Dr A. Adesina
S1 L1 T1
Prerequisites: CEIC3010, CHEN3020, CHEN3030, CHEN3040, MATH3021

CHEN4030
Safety and Environmental
Staff Contact: Prof A. Fane
S1 L2
Prerequisites: CHEN3030, CHEN3040, CHEN3050, CHEN3060

CHEN4040
Management
Staff Contact: Prof A. Fane
F L2
Prerequisite: CHEN3060
This course will consider (i) the management of operating plant and (ii) project management of process plant projects. (i) Plant Management: company types, structure and organization. Company financing and operation. Personnel management. Cost accounting. Company law, industrial relations and trade union practices. (ii) Project management: role and responsibilities of project management. Project organization. Planning and scheduling. Cost control. Project scheduling. Project trending and performance.

CHEN4050
Process Plant Operation
Staff Contact: A/Prof R. Wood
S2 L1 T2
Prerequisite: All Year 3 subjects
Practical studies of the operation of computer controlled chemical plant. Process diagnostics. Troubleshooting.

CHEN4060
Process Plant Engineering 2
Staff Contact: Dr T. Tran
S1 L2 T2
Prerequisites: CHEN3060, CHEN3070

CHEN4070
Process Dynamics and Control
Staff Contact: Dr C. Dixon
S1 L2 T1 S2 L1 T1
Prerequisites: CEIC3010, CHEN3020, CHEN3070, MATH3021
Common types of feedback controllers; translating control problems into block diagrams. Closed loop relationships and response; stability analysis for SISO systems; feedback controller tuning. Open and closed loop dynamic behaviour of systems of different order and how best to control these systems. Effect of dead time on control; introduction to dead time compensation. Introduction to cascade, feed forward and ratio control. Application of digital computers to real time control; interfacing computers with processes; distributed control systems; data acquisition and process monitoring; digital implementation of control algorithms. Introduction to multi-variable control.

CHEN4080
Design Project
Staff Contact: Prof A. Fane
S1 T1 S2 T4
Prerequisite: All Year 3 subjects
This project will cover the engineering of a small process plant or part thereof requiring the application of material covered within the undergraduate course. The minimum requirements of this project are as specified by the relevant engineering institution's accreditation standards.

CHEN4090
Research Project
Staff Contact: Dr D. Wiley
S1 T2 S2 T10
Prerequisites: All Year 3 subjects
The experimental investigation of some aspect of chemical engineering.
CHEN4100
Professional Electives
Staff Contact: Dr C. Dixon
F L2 T1
Prerequisite: All Year 3 subjects
To be chosen from offerings in:
Advances in Computer-Aided Process Engineering;
Polymer Engineering; Advanced Chemical Engineering Processes;
Environmental Management for Chemical Engineers;
Biochemical Engineering; Mineral Engineering and Advanced Process Control which will be offered by the relevant Schools or Departments.

INDC1010
Industrial Chemistry I
Staff Contact: Dr D. Wiley
F L1 T1
Prerequisites: PHYS1002, MATH1032 or MATH1231 or MATH1042 or MATH1241
Introduction to the chemical industry. The role of the industrial chemist in society. The ethical responsibility of the industrial chemist. Introduction to materials for the chemical industry. Information retrieval. Communication skills. Factory visits.

INDC1020
Engineering 1 IC
Staff Contact: Dr C. Dixon
S1 L2 T4 S2 L3 T3
This subject is comprised of: INDC1010 Industrial Chemistry 1, MECH0130 Engineering Drawing and Descriptive Geometry and MECH0330 Engineering Mechanics.
Each subject is described elsewhere in this handbook. Prospective students should note the following. It is not necessary to pass each of the three component subjects individually; however, for a student who does not pass all components separately the composite mark for the whole subject is not calculated by a simple averaging process. For a component subject in which a passing mark is not obtained, heavier weighting is applied; the lower the mark the heavier the weighting. The details of the calculation method are explained in the first week of the course. A student who is repeating the subject after failure must repeat all three components. No exemptions will be granted for components that were passed at an earlier attempt.

INDC2020
Introduction to Fluid Flow
Staff Contact: A/Prof J. Raper
S1 T2 S2 L1
Prerequisites: PHYS1002, MATH1032 or MATH1231 or MATH1042 or MATH1241, CHEM1002, INDC1020
Fundamental concepts of Fluids. Simplification of the Navier-Stokes Equation, continuity, Bernoulli's equation, momentum and energy equations. Flow in closed conduits, including laminar and turbulent flow, and losses due to friction. Measurement in Fluid Mechanics; viscosity, pressure, velocity, flowrate.

INDC2030
Heat Transfer and Temperature Measurement
Staff Contact: Dr C. Jones
S2 L1 T1
Prerequisites: PHYS1002, MATH1032 or MATH1231 or MATH1042 or MATH1241, CHEM1002, INDC1020
The course will deal with conduction, convection and radiation. Conduction will cover Fourier's Law and the thermal resistance concept. Convection will deal with passage of fluid over a surface and the importance of the Reynolds number in calculating the convection heat transfer coefficient. Radiation will deal with blackbody radiation and Stefan's Law. Applications to industrial heat transfer equipment will be discussed. Temperature measurement devices and circuits. Pyrometry.

INDC2050
Physical Processes Laboratory
Staff Contact: Dr P Crisp
S1 T2
Prerequisites: PHYS1002 (or CHEM1002), CHEM1201, MATH1032 or MATH1231 or MATH1042 or MATH1241, INDC1020
An integrated industrial chemistry laboratory incorporating a series of experiments designed to demonstrate the principles of physical processes and instrumentation in industrial situations.

INDC3010
Thermodynamics
Staff Contact: Dr D. Wiley
S1 L2 T1
Co or Prerequisites: CHEM2011, INDC2010
Review of first law of thermodynamics; thermochemistry; second law of thermodynamics. Auxiliary functions and conditions of equilibrium. Thermodynamic properties of fluids; thermodynamic properties of homogeneous mixtures. Chemical reaction equilibria; calculation of equilibrium compositions for single reactions. Phase equilibria; the phase rule, equilibrium.

systems; enthalpy data; heat capacity data; phase change. Application to varying composition systems; mixing; heat of solution; enthalpy concentration diagrams. Reactions. Heats of formation and combustion. Students not taking INDC1010 will be required to complete a 28 hour bridging course offered by the School early in Session 1.
INDC3021
Numerical Methods
Staff Contact: Dr H. Preisig
S2 L1 T1
Prerequisite: CEIC2020

INDC3031
Experimental Design
Staff Contact: Dr R. Chaplin
S1 L2 S2 T1
Prerequisite: MATH2819

INDC3041
Corrosion in the Chemical Industry
Staff Contact: A/Prof M. Brungs
S2 L2 T1
Prerequisite: CEIC2030, CEIC2040

INDC3050
Chemistry of High Temperature Materials
Staff Contact: Prof M. Skyllas-Kazacos
S2 L2
Prerequisite: CEIC2030, CEIC2040

Chemical aspects of high temperature materials; thermodynamics and kinetics of reactions in the solid state; phase equilibria in condensed systems; gas-solid and liquid-solid reactions.

INDC3060
Unit Operations
Staff Contact: Mr A. Papagelis
S1 L2
Prerequisites: INDC2010, CEIC2030, CEIC2040

This course will emphasise the qualitative aspects of major unit operations in the chemical process industries. Topics covered include gas absorption, liquid-liquid extraction, distillation, filtration, evaporation, centrifugation, drying and leaching operations, particle size reduction and enlargement.

INDC3070
Instrumentation and Process Control 1
Staff Contact: Dr C. Dixon
S2 L2 T1
Prerequisites: MATH2021, CEIC2010, CEIC2020

Analog Computation: theory and application of basic analog computing elements; magnitude and time scaling; solution of linear differential equations. Instrumentation: theory and application of transducers and transmitters for measurement of process variables. Process Dynamics: behaviour of linear, lumped parameter dynamics systems; first, second and higher order and integrating systems. Process Control: closed loop, block diagrams, controllers and controller tuning.

INDC3080
Instrumental Analysis 2
Staff Contact: Dr P. Crisp
S1 L2 T2
Prerequisite: CEIC2010

Theory and application of advanced instrumental techniques including: high performance liquid chromatography, infra-red spectroscopy, particle size analysis, surface area analysis, thermal analysis (TGA, DSC/DTA, DMA), ion chromatography, capillary gas chromatography.

INDC3090
Chemistry of Industrial Processes
Staff Contact: Dr T. Davis
F L1 T2
Prerequisite: CEIC 2030, CEIC 2040
Corequisites CHEM2021, CHEM2031

The production of inorganic industrial chemicals from the standpoint of the application of the basic principles of inorganic and physical chemistry (acid industries, alkali industries, industrial gases electric furnace products, superphosphates, aluminum and glass); a study of some sections of the organic industrial chemical industry cellulose, industrial alcohols, formaldehyde, urea, phenolic and urea resins, acetic acid, polymers based on ethylene and acetylene, elastomers. Students are required to attend factory inspections at local and country centres as required. Laboratory: A small research project designed to illustrate practical applications of the principles of Industrial Chemistry.

INDC3010
Applied Thermodynamics
Staff Contact: Dr R. Chaplin
S1 L1 T1
Prerequisites: INDC3010, INDC3050

INDC3020
Applied Kinetics
Staff Contact: Prof D. Trimm
S1 L1 T1
Prerequisites: INDC3020, CEIC3010

Adsorption theory, kinetics of catalytic and noncatalytic fluid-solid reactions, rates of surface reaction, kinetics of heterogenous reactions affected by diffusion, catalyst characterization.

INDC4040
Management
Staff Contact: A/Prof M. Brungs
S2 L2

A series of lectures designed to introduce the students to appropriate management techniques. Topics will include:
business strategies, leadership total quality management, safety management.

INDC4060
Process Design
Staff Contact: A/Prof M.P. Brungs
S1 L2 T1 S2 L1 T3
Prerequisite: INDC3010, INDC3060, CEIC3010
This course will encompass the complete process design of a given (small) chemical plant. Students will be required to produce a design report which will include an environmental impact statement, plant sizing, process flow sheet, equipment selection and costing and a financial evaluation of the whole process. The report will also discuss the relevant thermodynamic and kinetic aspects of the process.

INDC4070
Laboratory Automation Science
Staff Contact: Dr H. Preisig
S1 L1.5 T2.5
Prerequisite: INDC3070
The application of computers, e.g. microcomputers, to real-time data acquisition and process control in chemical laboratories and selected processes of interest to industrial chemists. Introduction to real-time digital operations and data manipulation. Organization of a process control computer. Hardware considerations. The process computer interface. Sequential and programmable logic control of batch processes. Data acquisition and process monitoring techniques. Digital process control PID controller tuning. Graphics in process monitoring and control. Direct Digital Control.

INDC4080
Seminar
Staff Contact: A/Prof R. Burford
F T2
Students are required to deliver two lecturers on selected topics, one related to some aspect of chemical technology, and the other to their research project. The intention is to develop skill in oral expression, as well as ability in critical evaluation and logical presentation. Opportunity is taken, where appropriate, to arrange for guest lecturers.

INDC4090
Project (Industrial Chemistry)
Staff Contact: A/Prof R. Burford
S1 T8 S2 T16
An experimental or technical investigation related to some aspect of industrial chemistry. Prerequisites and/or corequisites will be determined depending on the nature of the project.

INDC4100
Industrial Electrochemistry
Staff Contact: Prof M. Skyllas-Kazacos
S1 or S2 L2
Prerequisites: INDC3090, INDC3020
Fundamentals of electrodes, the Butler-Volmer equation, current/potential laws in relationship to reaction mechanism. Electrocatalysis, gas evolution and co-deposition. Technological aspects of electrochemistry; energy conversion systems, storage systems and plating. Industrial processes, cell design and side reactions, gas bubble effect, current distribution and mass transfer effects.

Developments in electrode technology, diaphragms and cell construction.

INDC4110
Water Chemistry
Staff Contact: A/Prof M. Brungs
C3 S1 or S2 L2
Prerequisite: CEIC2010

INDC4130
Environmental Chemistry of Industrial Processes
Staff Contact: Dr P. T. Crisp
S1 L2
Prerequisites: CHEM1101, CHEM1201

INDC5310
Catalysts and Applied Reaction Kinetics
Staff Contact: School Office
S1 or S2 L2 T4
Methods of catalyst preparation and characterization; adsorption theories; general mechanisms for gas-phase reactions catalyzed by solids; poisoning and catalyst decay; effectiveness factors; techniques in catalytic research; special topics in reaction kinetics including gas-solid non-catalytic reactions, polymer kinetics, electrochemical reaction kinetics and electrocatalysis; industrial catalytic processes; application of statistical methods to the solution of complex chemical data.

INDC5500
Instrumental Analysis for Industry
Staff Contact: School Office
F L1 T2
Role of analysis in process optimization. Accuracies of analytical methods compared to needs for equality control. Frequency of analysis in relationship to control and analytical costs. Importance of speed of analysis for information feedback. Case studies for selected processes in relation to selecting the analytical method.

INDC5610
Electrochemical Techniques for Control and Analysis
Staff Contact: School Office
S1 or S2 L2 T4
In-depth study of selected electroanalytical methods with respect to theoretical principles, instrumentation and practical utilization. The importance of adsorption and reaction mechanism on accuracies and application. Steady state and rapid scan voltammetry, stripping voltammetry, chronopotentiometry, chronocoulometry, classical coulometry and potentiometry. Instrument design and modification for specific needs.
FUEL0010
Fuel Engineering (Mining and Mineral Processing Engineers)
Staff Contact: A/Prof G. Sergeant
F L2 T1

FUEL0020
Fuels and Energy
Staff Contact: A/Prof G. Sergeant
S2 L3 T1
Note/s: Servicing subject i.e. a subject taught within courses offered by other faculties.
A servicing subject for students in Electrical Engineering which covers the topics, sources and properties of fuels and energy, energy use patterns, principles of combustion, combustion calculations, the technology of boilers and other fuel plant, thermodynamic cycles, new and emerging energy technologies, including solar, wind and nuclear energy.

FUEL0030
Fuel Science for Industrial Chemists
Staff Contact: A/Prof G. Sergeant
S1 or S2 L2
Combustion science, mechanisms of major oxidation reactions, flames, mechanism of formation of carbon, NOx and SOx. Measurements of gas flow, gas composition, temperature in flames and furnaces. H-t relationships and their application.

FUEL0040
Fuel Engineering for Ceramic Engineers
Staff Contact: A/Prof G. Sergeant
F L1
An introduction to combustion technology, combustion calculations, burner design, furnace, kiln and boiler thermal design.

FUEL0050
Fuel and Energy Engineering for Process Metallurgy
Staff Contact: A/Prof G. Sergeant
S1 L2 S2 L1
An introduction to combustion technology, fuel plant technology and fuel processing.

FUEL3010
Fuel and Energy Engineering 1
Staff Contact: A/Prof G. Sergeant
F L3 T1
Sources, properties and classification of fuels and energy sources. Introduction to combustion engineering and science, the thermal design of furnaces, boilers and other fuel using plant, radiation. Basic principles of fuel processing, oil refining, gasification, liquefaction, carbonisation etc. Laboratory work on the properties of petroleum products, coal and gaseous fuels.

FUEL4000
Fuel Energy Engineering 2
Staff Contact: A/Prof G. Sergeant
S1 L5 T4 S2 L2 T2
Combustion engineering. Furnace and fuel plant design. Energy management. Technologies for the efficient use of fuel. Properties and evaluation of fuels for their application. Laboratory work on burners, furnaces, combustion, efficiency, etc.

FUEL4090
Fuel Energy Research Project
Staff Contact: A/Prof G. Sergeant
S1 T2 S2 T10
Investigation of some aspect of fuel engineering.

FUEL5800
Fuel Seminar
Staff Contact: A/Prof G. Sergeant
Note/s: One Session Unit (SU) is equal to 1 hour per week for session of 14 weeks.
1 (SU) to be given in Session 2, compulsory in MAppSc degree course in Fuel Engineering. Content bias to choice of subjects.

FUEL5820
Fuel Constitution
Staff Contact: A/Prof G. Sergeant
Note/s: One Session Unit (SU) is equal to 1 hour per week for session of 14 weeks.
Unit 1 - 1 (SU) Coal constitution and pyrolytic behaviour.
Unit 2 - 1 (SU) Constitution and classification of oils.
Unit 3 - 2 (SU) Advanced fuel constitution.

FUEL5830
Fuel Processing
Staff Contact: A/Prof G. Sergeant
Note/s: One Session Unit (SU) is equal to 1 hour per week for session of 14 weeks.
Unit 1 - 2 (SU) Carbonization and gasification processes.
Unit 2 - 1 (SU) Liquid fuels from coals.
Unit 3 - 1 (SU) Chemicals from coals.

FUEL5840
Fuel Plant Engineering
Staff Contact: A/Prof G. Sergeant
Note/s: One Session Unit (SU) is equal to 1 hour per week for session of 14 weeks.
Unit 1 - 1 (SU) Furnace design and heat recovery.
Unit 2 - 1 (SU) Process heat transfer and efficient use of steam.
Unit 3 - 2 (SU) Furnaces and boiler control system.
Unit 4 - 2 (SU) Fuel plant heat transfer.

FUEL5850
Combustion and Energy Systems
Staff Contact: A/Prof G. Sergeant
Note/s: One Session Unit (SU) is equal to 1 hour per week for session of 14 weeks.
Unit 1 - 1 (SU) Combustion technology.
Unit 2 - 1 (SU) Fuel impurities, removal of and deposits from.
Unit 3 - 1 (SU) Efficiency in energy utilization.
Unit 4 - 1 (SU) Combined cycles and integrated systems.
FUEL5870
Fuel Technology Practice
Staff Contact: A/Prof G. Sergeant
Note/s: One Session Unit (SU) is equal to 1 hour per week for session of 14 weeks.
Compulsory in MAppSc (Fuel) (4 SU). Content bias towards choice of G subjects.

FUEL5880
Unit Operations in Wastewater, Sludge and Solid Waste Management
Staff Contact: A/Prof G. Sergeant
C3

FUEL5881
Unit Operations in Wastewater, Sludge and Solid Waste Management
Staff Contact: A/Prof G. Sergeant
C3
Syllabus as for FUEL5880. FUEL5881 is for external students in waste management courses.

FUEL5910
Atmospheric Pollution and Control (Theory)
Staff Contact: A/Prof G. Sergeant
C3 S1 or S2 L3
Causes, properties, dispersion, measurement and monitoring control and legislation of air pollution in ambient and industrial environments.

FUEL5911
Atmospheric Pollution and Control (Theory)
Staff Contact: A/Prof G. Sergeant
S1 or S2 L3
Note/s: For external students.
Causes, properties, dispersion, measurement and monitoring, control and legislation of air pollution in ambient and industrial environments.

MINP4010
Hydrometallurgical Process Engineering
Staff Contact: Dr T. Tran
S2 L2
Thermodynamic and kinetic principles in extraction, precipitation, adsorption. Thermodynamics and kinetics of electrochemical processes: cementation, hydrogen reduction, electrolysis. Design of reactors for hydrometallurgical and electrowinning processes.

POLY0010
Polymer Materials
Staff Contact: A/Prof R. Burford
S1 2 S2 4
Note/s: servicing subject i.e. a subject taught within courses offered by other faculties
The structure and synthesis of commercially important polymers including thermoplastics, fibres, rubbers and composites. The effect of chemical and molecular structure upon properties. Degradation. Mechanical properties including time dependent behaviour. Fabrication processes. Polymer selection for various applications.

POLY3010
Polymer Science
Staff Contact: A/Prof R. Burford
S1 L2 S2 4
Prerequisites: CHEM2011, CHEM2021, MATH2021, MATH2819
Co or Prerequisites: INDC3090

POLY4010
Advanced Polymer Science
Staff Contact: A/Prof R. Burford
S1 L2
Prerequisite: POLY3010
Selected topics from basic texts and the original literature covering polymer analysis: physics of glassy polymers, viscoelasticity, polymer rheology, polymer morphology fracture and environmental stress cracking, rubber elasticity, anionic cationic and Ziegler-Natta catalysis in polymer chemistry, emulsion polymerization, silicon polymers and polymers for high temperature service.

POLY5000
Polymer Science
Staff Contact: A/Prof R. Burford
F L3 T3
Polymer Processes: Classification of polymers, methods of polymerization; bulk, solution, emulsion, suspension, high pressure; processes; step growth, chain growth; the
chemistry and applications of polymer systems including polyesters, polyamides, phenolic condensation resins, vinyl polymers, synthetic elastomers. Natural polymers. Mechanism and Kinetics: Step growth polymerization, kinetics, structure effects; chain growth polymerization. Free radical polymerization, chemistry and properties of free radicals and initiators; kinetics of propagation and termination reactions; co-polymerization; monomer radical structure and reactivity. Cationic and anionic polymerization; stereoregular polymers. Polymer Characterization: Molecular weight; averages and distributions; thermodynamics of polymer solutions; theta temperature; fractionation methods; measurement of number-average molecular weight and weight-average molecular weight. Polymer Physics: Principles of operation of conventional polymer processing equipment; safety procedures; polymer compound design; stress strain behaviour of polymers in tension, compression, shear and flexure; elementary rheological behaviour of polymers; rubber elasticity; thermal characteristics of polymers.

POLY5100
Analytical Characterization of Polymers
Staff Contact: A/Prof R. Burford
S1 or S2 L3 T3
Composition of formulated polymeric material. Group reactions, specific and colour reactions. Instrumental characterization of polymers, and co-polymers and associated additives, e.g. plasticizers, anti-oxidants, etc by UV and IR spectrophotometry and pyrolysis gas chromatography. Analysis of films by transmission and reflectance spectrophotometric methods. Thermal analysis.

POLY5300
Polymer Engineering
Staff Contact: A/Prof R. Burford
S1 or S2 L4 T2

POLY5400
Polymer Physics
Staff Contact: A/Prof R. Burford
S1 or S2 L4 T2
The School of Fibre Science and Technology was established in 1986 to bring together the University's activities in Wool and Pastoral Sciences and Textile Technology. The objectives of the School include the provision of comprehensive education of undergraduate and postgraduate students in the science and technology of: (i) production and marketing of wool fibre and other ruminant animal products, with special emphasis on wool fibre; (ii) production and marketing of other textile fibres; (iii) processing of textile fibres and their manufacture into consumer and industrial products; and (iv) performance and properties of textile and related fibre products.

These objectives are achieved by providing an undergraduate course in Wool and Pastoral Sciences which emphasises the plant and animal sciences relevant to production in the sheep industry, as well as preparation of wool for market, specification of wool, marketing of wool and the relationship between wool production and wool processing; and by providing undergraduate courses in Textile Technology (in which there are options in Textile Chemistry, Textile Engineering and Textile Physics) and Textile Management.

While Wool and Pastoral Sciences mainly deals with wool and similar fibres such as cashmere and mohair produced by goats, as well as more general features of animal production, Textile Technology covers all fibres and all aspects of their utilisation in consumer and industrial products.

Rapidly advancing developments in the primary and secondary fibre industries make close collaboration between workers from the production and processing sides essential. Many of these developments have been stimulated by objective measurement of fibre properties; a special area of expertise of the Department of Wool and Animal Science; and the objective specification of textile products in which the Department of Textile Technology is a world leader. In the sheep industry these developments have major implications for systems of wool production particularly in areas such as nutrition, genetics, breeding and management. The School provides a unique opportunity for integration of educational and research efforts right through from production of fibres to finished textile products. The School provides a stimulating environment for students who wish to make careers in fibre based rural and manufacturing industries, both of which are critically important in the economy of Australia.

Textile Technology is concerned with the conversion of both natural and man-made fibres into an extremely wide variety of finished products. These range from fabrics for apparel, soft furnishings, floor coverings and industrial use to such specialised textiles as tyre cord, ropes, protective clothing, sailcloth, parachute fabrics, medical dressings, composite materials, and many others.

In Australia, the Textile Industry has developed mainly in the past seventy years and today it is one of our largest manufacturing groups. As in overseas countries, the impact of science and technology is bringing rapid changes to the Industry, and a consequence of this has been a strong demand for personnel skilled in Textile Technology and Management.
Department of Wool and Animal Science

Head of Department
Associate Professor J.P. Kennedy

Agricultural products, particularly wool, still contribute a significant share of Australia's export income. The pastoral industry has also played a major role in the development of the continent and the largest single form of land use still is grazing by sheep and cattle.

Farming has advanced technologically in recent years. However, innovations are continually being sought to increase productivity, raise quality and improve marketing of rural products within the framework of local and international economics. There is a continual need for the feeding and clothing of humans on a planet with finite mineral and fuel resources. This challenge must be balanced with the need for conservation and careful manipulation of a pool of renewable living resources. Wool and pastoral scientists are required to research, communicate and administer the changes which are occurring.

Undergraduate Study

Course Outlines

The School of Fibre Science and Technology participates in the Co-operative Education Program. The program applies to all three undergraduate courses taught in the School. Students in the program will complete their degree in four years, with several supervised terms of industry employment spread throughout the course. Students participating in the program will receive financial support of $9,800 per annum for each of the four years of the program. Selection into the program is based on high academic achievement and strong personal motivation for a successful career in the wool or textile manufacturing fields.

Graduates may be employed in quality control, technical management, research and development, international trade, production or general management. Within the textile industry graduates may, for example, enter any of the following areas: the manufacture of natural and or man-made fibres, yarns, fabrics, etc.; dyeing, printing and finishing of textiles; quality assurance; marketing and retailing, etc.

Department of Textile Technology

The Department of Textile Technology offers courses in Textile Technology and Textile Management. Both courses extend over four years full-time study and lead to the award of the degree of Bachelor of Science. For the award of Honours, students need to have distinguished themselves in formal studies, laboratory exercises, and in their final year project. Graduates of both courses qualify for membership of the Textile Institute.

Students in both courses must complete a minimum of 40 working days approved industrial training, of which at least 30 working days training must be taken at the end of the third year of study.

It is important to stress that the specialised nature of the training provided within the Department of Textile Technology does not mean a restricted range of job opportunities after graduation. Career possibilities extend through the textile industry, allied industries (such as the production of textile chemicals and surgical dressings), private consultants, government departments and authorities, teaching at secondary and tertiary levels, and pure or applied research in various organisations.

3170
Textile Technology - Full-time Course

Bachelor of Science
BSc

Textile Chemistry, Textile Physics, Textile Engineering Options

The conversion of textile raw materials into their finished products is simply a succession of, and an interaction between, a number of chemical, physical and engineering processes. It follows, therefore, that the disciplines involved in the study of textile technology, in addition to the technological aspects, includes a study in depth of one of the following: chemistry, engineering or physics.

Graduates will qualify for membership of one of the following professional bodies, depending upon which option of the course is taken: the Royal Australian Chemical Institute; the Institution of Engineers, Australia; or the Australian Institute of Physics.

All students take a common first year, and they need not choose the option they desire to follow until the end of that year.

In Year 2 and Year 3 students specialise in one of three options of the course, viz. Textile Chemistry, Textile
Physics, or Textile Engineering. In Year 4 all students take the same subjects.

<table>
<thead>
<tr>
<th>Textile Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2</td>
</tr>
<tr>
<td>FIBR2201</td>
</tr>
<tr>
<td>MATH2100</td>
</tr>
<tr>
<td>MATH2120</td>
</tr>
<tr>
<td>PHYS2001</td>
</tr>
<tr>
<td>PHYS2011</td>
</tr>
<tr>
<td>PHYS2021</td>
</tr>
<tr>
<td>TEXT2101</td>
</tr>
<tr>
<td>TEXT2201</td>
</tr>
<tr>
<td>TEXT2301</td>
</tr>
<tr>
<td>TEXT2401</td>
</tr>
<tr>
<td>General Education Subject/s Category A</td>
</tr>
<tr>
<td>Totalling</td>
</tr>
</tbody>
</table>

*Note: because of prerequisite requirements students wishing to take certain year 3 electives may substitute PHYS2031 Laboratory in year 2, and take PHYS2021 Quantum Physics and Relativity in year 3.

<table>
<thead>
<tr>
<th>Textile Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2</td>
</tr>
<tr>
<td>CEIC2010</td>
</tr>
<tr>
<td>CHEM2011</td>
</tr>
<tr>
<td>CHEM2021</td>
</tr>
<tr>
<td>FIBR2201</td>
</tr>
<tr>
<td>TEXT2101</td>
</tr>
<tr>
<td>TEXT2201</td>
</tr>
<tr>
<td>TEXT2301</td>
</tr>
<tr>
<td>TEXT2401</td>
</tr>
<tr>
<td>General Education Subject/s Category A</td>
</tr>
<tr>
<td>Totalling</td>
</tr>
</tbody>
</table>

| **Year 3** | **HPW** | **SI** |
| PHYS2031 | Laboratory* | 3 | 3 |
| Plus Physics electives averaging not less then 3 hours per session, selected from the following: |
PHYS3021	Statistical Mechanics and Solid State Physics	0	4
PHYS3060	Advanced Optics	0	2
PHYS3110	Experimental Physics B1	0	4
PHYS3120	Experimental Physics B2	0	4
PHYS3410	Biophysics	0	2
PHYS3710	Advanced Laser and Optical Applications (offered odd numbered years only)	2	0
or an alternative as approved by the Head of the School			
TEXT3101	Textile Structures 1	3	0
TEXT3301	Yarn Technology 2	0	6
TEXT3401	Fabric Technology 2	0	6
TEXT3501	Finishing Technology A	4	0
TEXT3601	Colour Science	3	0
TEXT3801	Textile Engineering	0	3
General Education Subject/s Category B	2	2	
Totalling		24	21

* See note for Year 2
Textile Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL0616</td>
<td>Structures</td>
<td>S1 3 S2 0</td>
</tr>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering</td>
<td>0 3</td>
</tr>
<tr>
<td>ELEC0805</td>
<td>Electronics for Measurement and Control</td>
<td>0 3</td>
</tr>
<tr>
<td>FIBR2201</td>
<td>Computing Applications</td>
<td>4 0</td>
</tr>
<tr>
<td>MATH2021</td>
<td>Mathematics</td>
<td>2 2</td>
</tr>
<tr>
<td>MECH1110</td>
<td>Graphical Analysis and Communication</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH1300</td>
<td>Engineering Mechanics 1</td>
<td>4 0</td>
</tr>
<tr>
<td>TEXT2101</td>
<td>Fibre Science 2</td>
<td>0 4</td>
</tr>
<tr>
<td>TEXT2201</td>
<td>Textile Statistics</td>
<td>0 2</td>
</tr>
<tr>
<td>TEXT2301</td>
<td>Yarn Technology 1</td>
<td>6 0</td>
</tr>
<tr>
<td>TEXT2401</td>
<td>Fabric Technology 1</td>
<td>0 6</td>
</tr>
<tr>
<td>General Education Subject/s Category A</td>
<td></td>
<td>4 0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>23 23</td>
</tr>
</tbody>
</table>

Year 3		
MECH2300	Engineering Mechanics 2A	3 0
MECH2310	Engineering Mechanics 2B	0 2
MECH2600	Fluid Mechanics 1	2 2
MECH2700	Thermodynamics 1	2 2
TEXT3101	Textile Structures 1	3 0
TEXT3301	Yarn Technology 2	0 6
TEXT3401	Fabric Technology 2	6 0
TEXT3501	Finishing Technology A	4 0
TEXT3601	Colour Science	3 0
TEXT3602	Colouration Technology	0 4
General Education Subject/s Category B		0 4
Total		23 20

Year 4 (All Options)		
TEXT4202	Textile Quality Control	0 2
TEXT4701	Textile Industry Studies†	3 0
TEXT4003	Project	5 9
TEXT4013	Seminar	2 2
TEXT4101	Textile Structures 2	0 3
TEXT4201	Processing Laboratory	3 0
TEXT4501	Finishing Technology B	0 4
MANF4420	Management of Manufacturing Systems, or	6 0
TEXT4702	Textile Management*	6 0
APSE0002	Social Issues in Applied Science†	2 0
Total		21 20

* Coop Program students only.
†These subjects contribute towards satisfaction of the Category C General Education requirement.

Textile Management - Full-time Course

Bachelor of Science BSc

The production and marketing of textile products involves a number of manufacturing processes, and requires an understanding of basic management principles. The Textile Management course provides a comprehensive knowledge of all the textile sciences and technologies. In addition the course includes studies in economics, accounting, marketing, management, and other areas of commerce.

The course is designed to meet the need for executives in the textile and allied industries. A wide choice of electives is available in the third year of the course. This allows students to either gain a broad knowledge of the various areas of commerce, or to specialise in one of the following areas: Applied Economics; Accounting and Financial Management; or Strategic Marketing Management.
The Department offers a full-time course of four years duration leading to the award of a Bachelor of Science degree at either Honours or Pass level. The course is the only one in Australia in which special emphasis is given to wool science. In addition, studies concentrate on the most important animal industries (sheep and cattle).

Students receive a thorough grounding in the appropriate basic scientific disciplines as well as the theory and application of principles which are relevant to all aspects of pastoral production, including production and utilization of pastures; reproduction, nutrition, health, genetic improvement, ecology and management of grazing animals and the production, preparation for sale and specification of wool and meat. The course also includes study of the design and interpretation of experimental investigations, economics and business management as well as elective options on crop production, rangeland management and rural communications. Relevant subjects offered by other schools may also be included. An important component is the final year project whereby students engage in an area of personal research on a theoretical or experimental topic on which they are required to submit a thesis.

The course provides students with a broad overview of the pastoral industries. It aims to produce generalists rather than specialists and, although there is some scope for studying topics of special interest, the course is designed so that certain core subjects must be undertaken. Because of the broad education received, graduates are equipped for a wide variety of careers in, and associated with, agricultural production; including research, advisory work, education, marketing, management and administration. Graduates are eligible for corporate membership of the Australian Institute of Agricultural Science.

Industrial Training Requirements

1. Students are required to obtain twenty-four weeks practical experience on commercial properties. At least twenty weeks of experience must be obtained concurrently with the course, while up to four weeks may be allowed for practical experience obtained immediately prior to the commencement of the course.

2. Students are encouraged to obtain experience in a diversity of pastoral enterprises, i.e. cattle, sheep and cropping, in different climatic zones.

3. A maximum of eight weeks shall be allowed for practical experience on any one property, including home properties. Up to eight weeks employment at research or teaching institutions is allowed towards the industrial training requirement.

4. In order to obtain recognition for practical work carried out, students shall, within six weeks of the commencement of the session immediately following the period of employment:

 (1) Submit written evidence from the owner or manager of the property or the director of the institution as to the length of employment.

 (2) Submit a written report along the guidelines which are available from the Department.

Department of Wool and Animal Science

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HSWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT3101 Textile Structures 1</td>
<td>S1</td>
</tr>
<tr>
<td>TEXT3301 Yarn Technology 2</td>
<td>S1</td>
</tr>
<tr>
<td>TEXT3401 Fabric Technology 2</td>
<td>S1</td>
</tr>
<tr>
<td>TEXT3501 Finishing Technology A</td>
<td>S1</td>
</tr>
<tr>
<td>TEXT3601 Colour Science</td>
<td>S1</td>
</tr>
<tr>
<td>TEXT3801 Textile Engineering</td>
<td>S1</td>
</tr>
<tr>
<td>TEXT3602 Colouration Technology</td>
<td>S1</td>
</tr>
<tr>
<td>Plus 2 Commerce electives selected from the following:</td>
<td></td>
</tr>
<tr>
<td>ECOH2301 Management and Business Development</td>
<td>S1</td>
</tr>
<tr>
<td>ECON2103 Business and Government</td>
<td>S1</td>
</tr>
<tr>
<td>ECON2104 Australian Macroeconomic Policy</td>
<td>S1</td>
</tr>
<tr>
<td>INFS1602 Computer Information Systems 1</td>
<td>S1</td>
</tr>
<tr>
<td>INFS2603 Computer Information Systems 2</td>
<td>S1</td>
</tr>
<tr>
<td>LEGT7711 Legal Environment of Commerce</td>
<td>S1</td>
</tr>
<tr>
<td>LEGT7731 Legal Regulation of Marketing and Distribution</td>
<td>S1</td>
</tr>
<tr>
<td>MARK3073 Brand Management</td>
<td>S1</td>
</tr>
<tr>
<td>MARK3083 Strategic Marketing Management</td>
<td>S1</td>
</tr>
<tr>
<td>General Education Subject/s Category B</td>
<td>S1</td>
</tr>
<tr>
<td>Total</td>
<td>S1</td>
</tr>
</tbody>
</table>

Year 4

MANF4420 Management of Manufacturing Systems, or	S1
TEXT4702 Textile Management†	S1
TEXT4701 Textile Industry Studies†	S1
TEXT4003 Project	S1
TEXT4013 Seminar	S1
TEXT4101 Textile Structures 2	S1
TEXT4201 Processing Laboratory	S1
TEXT4202 Textile Quality Control	S1
TEXT4501 Finishing Technology B	S1
APSE0002 Social Issues in Applied Science†	S1
Total	S1

*Coop Program students only
†These subjects contribute to satisfaction of the Category C General Education Requirement.
Wool and Pastoral Sciences - Full-time Course

Bachelor of Science

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS1011 Biology A</td>
<td>S1 S2</td>
</tr>
<tr>
<td>BIOS1021 Biology B</td>
<td>6</td>
</tr>
<tr>
<td>CHEM1002 Chemistry 1</td>
<td>6</td>
</tr>
<tr>
<td>FIBR1001 Natural Fibre Production</td>
<td>0</td>
</tr>
<tr>
<td>FIBR1101 Fibre Science 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH1131 Mathematics 1A or 1B</td>
<td>6</td>
</tr>
<tr>
<td>MATH1141 Higher Mathematics 1A or 1B</td>
<td>6</td>
</tr>
<tr>
<td>MATH1011 General Mathematics 1B</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231 Mathematics 1B or 1C</td>
<td>6</td>
</tr>
<tr>
<td>MATH1241 Higher Mathematics 1B or 1C</td>
<td>0</td>
</tr>
<tr>
<td>MATH1021 General Mathematics 1C</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>22</td>
</tr>
</tbody>
</table>

Available in alternate years

Year 2

<table>
<thead>
<tr>
<th></th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2929 Agricultural and Biological Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>FIBR2201 Computing Applications</td>
<td>4</td>
</tr>
<tr>
<td>WOOL2103 Livestock Production 1</td>
<td>2</td>
</tr>
<tr>
<td>WOOL2203 Agronomy</td>
<td>3</td>
</tr>
<tr>
<td>WOOL2303 Agricultural Economics and Management</td>
<td>3</td>
</tr>
<tr>
<td>WOOL2503 Wool Science 1</td>
<td>3</td>
</tr>
<tr>
<td>WOOL2601 Animal Physiology 1</td>
<td>0</td>
</tr>
<tr>
<td>MATH2819 Statistics SA</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL EDUCATION SUBJECTS CATEGORY A</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th></th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOOL3203 Pastoral Agronomy</td>
<td>4</td>
</tr>
<tr>
<td>WOOL3401 Animal Nutrition</td>
<td>0</td>
</tr>
<tr>
<td>WOOL3503 Wool Science 2</td>
<td>3</td>
</tr>
<tr>
<td>WOOL3701 Animal Health and Welfare</td>
<td>3</td>
</tr>
<tr>
<td>WOOL3803 Genetics 1</td>
<td>3</td>
</tr>
<tr>
<td>WOOL3801 Biostatistics 1</td>
<td>4</td>
</tr>
<tr>
<td>BIOC2101 Principles of Biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOC2201 Principles of Molecular Biology</td>
<td>0</td>
</tr>
<tr>
<td>GENERAL EDUCATION SUBJECTS CATEGORY B</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
</tr>
</tbody>
</table>

Optional subjects

Group A

- **WOOL3111** Livestock Production 2 | 3 |
- **WOOL3211** Crop Agronomy* | 0 |
- **WOOL3221** Range Management* | 0 |
- **WOOL3511** Wool Marketing | 3 |
- **WOOL3803** Genetics 2 | 4 |
- **WOOL4113** Biostatistics 2 | 0 |

Group B

- **BIOS3061** Plant Ecosystem Processes | 6 |
- **GEOG2021** Introduction to Remote Sensing | 0 |
- **GEOG3032** Remote Sensing Applications | 4 |
- **MARK2012** Marketing Fundamentals | 4 |
- **MARK2052** Marketing Research | 0 |
- **MICR2201** Introductory Microbiology | 6 |

Available in alternate years

Graduate Study

Course Outlines

Department of Textile Technology

The Department conducts a course which leads to the award of a Graduate Diploma in Textile Technology.

In addition, the Department welcomes inquiries from graduates in Science, Engineering and Applied Science who are interested in doing research leading to the award of the degrees of Master of Science or Doctor of Philosophy.
5090
Textile Technology Graduate Diploma Course

Graduate Diploma
GradDip

The course leading to the award of Graduate Diploma in Textile Technology is designed to prepare graduates for careers in the textile and allied industries. It also provides formal studies for graduates who are already employed in the textile industry. The normal requirement for admission to the course is a Bachelor degree or equivalent tertiary qualification.

The following program, which comprises both formal lectures and laboratory work, may be taken as a one year full-time course or two-year part-time course.

<table>
<thead>
<tr>
<th>HPW</th>
<th>TEXT5001</th>
<th>Textile Technology Dissertation</th>
<th>1.5</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT5003</td>
<td>Textile Technology</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>TEXT5101</td>
<td>Fibre Science A</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TEXT5102</td>
<td>Fibre Science B</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TEXT5201</td>
<td>Textile Quality Control</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Plus two electives per session (averaging not less than 9 hours per session), selected from the following:

TEXT5301	Yarn Technology A	5	0
TEXT5302	Yarn Technology B	0	5
TEXT5401	Fabric Technology A	0	5
TEXT5402	Fabric Technology B	5	0
TEXT5501	Finishing Technology A	5	0
TEXT5502	Finishing Technology B	0	5
TEXT5601	Colour Science	4	0
TEXT5602	Dyeing Technology	0	4

or an alternative as approved by the Head of School

Totaling 18 18

Candidates wishing to specialise in the theory and practice of yarn and fabric technology (engineering/physics orientation) should undertake the optional subjects TEXT5301, TEXT5302, TEXT5401 and TEXT5402. Candidates wishing to specialise in the science and technology of textile dyeing and finishing (chemistry orientation) should undertake the optional subjects TEXT5501, TEXT5502, TEXT5601 and TEXT5602.

Department of Wool and Animal Science

The Department conducts a course which leads to the award of a Graduate Diploma in Wool and Pastoral Sciences.

In addition, the Department welcomes inquiries from graduates in Science, Agriculture and Applied Science who are interested in doing research leading to the award of the degrees of Master of Science or Doctor of Philosophy.

5081
Wool and Pastoral Sciences Graduate Diploma Course

Graduate Diploma
GradDip

The course leading to the award of the Graduate Diploma in Wool and Pastoral Sciences is specially designed for graduate students preparing themselves for careers in the pastoral industry. One of the principal functions of the course is to provide a bridge from other disciplines such as Agriculture, Veterinary Science and Pure Science for graduates who wish to study and work in the field of Wool and Pastoral Sciences, which is of such overall importance to Australia.

The normal requirement for admission to the course is a degree in Agriculture, Applied Science, Veterinary Science or Science in an appropriate field. In addition, students may be required to take a qualifying examination. Such qualifying examination will be of a standard which will ensure that the student has sufficient knowledge of the subject and the principles involved to profit by the course.

The following program may be completed in one year on a full-time basis. Students are required to carry out full-time study to the extent of eighteen hours lecture and laboratory work per week for two sessions. Both graduate subjects and undergraduate subjects may be chosen to suit the requirements of the student subject to their availability and the approval of the Head of the School.

Full-time Course

18 hours per week of which at least 10 must be chosen:

<table>
<thead>
<tr>
<th>HPW</th>
<th>WOOL5113</th>
<th>Livestock Production</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOOL5213</td>
<td>Range Management</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>WOOL5513</td>
<td>Wool Science</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>WOOL5813</td>
<td>Animal Breeding</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>WOOL5913</td>
<td>Quantitative Methods</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

A maximum of 8 hours per week of study may be selected from approved undergraduate subjects.

Graduate Diploma students are expected to work at the level of honours students in the undergraduate courses and to carry out prescribed study of current research material in the appropriate field.

Graduate Programs in Rangeland Management

Programs are available leading to the award of Graduate Diploma in Rangeland Management (Course 5025) in the following areas of study:

Range Management

For course details see Graduate Study in the School of Geography section.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

Students should note that enrolment in all later year subjects taught by the School is subject to satisfactory course progression and approval of the Head of the School.

APSE0002
Social Issues in Applied Science
Staff Contact: Dr Jean Cross
S1 L1 T1
The subject covers social issues arising from future technological developments and the role that a professional applied scientist can play in influencing future directions. It will be taught by a combination of group activity, case studies and projects and seminars from visiting speakers, some of whom will be from disciplines other than the applied sciences.

FIBR1001
Natural Fibre Production
Staff Contact: A/Prof David Cottle
S2 L3 T3
Introduction to the world and Australian wool and cotton industries; fibre and skin biology; mechanisms of, and factors affecting, fibre growth and morphology; introduction to wool and cotton production, harvesting, preparation for sale; wool types and marketing.

FIBR1101
Fibre Science 1
Staff Contact: Dr Shantha David
S1 L2 T2

FIBR2201
Computing Applications
Staff Contact: A/Prof John James
S1 L2 T2
Introduction to hardware and software concepts; operating systems. Introduction to computer programming: simple algorithms and data organization. Computer applications in fibre science and technology: computer-aided design and manufacture CAD CAM; process monitoring and control, computer-integrated manufacture CIM; data acquisition; modelling and optimization techniques; databases, spreadsheets, text word processing.

TEXT1101
Science for Textiles
Staff Contact: Dr Shantha David
S2 L2
The atomic structure of matter; x-rays; optics and optical instruments; wave theory. Properties of elements and compounds; introductory organic chemistry.

TEXT1201
Introductory Textile Technology
Staff Contact: Prof Ross Griffith
S2 L3 T1
Sampling theory and practice for textile testing. Introductory statistics for data processing. Basic techniques for the measurement of fibre properties, including transverse dimensions and length. The application of engineering principles to textile machines and processes, including mechanics of solids, statics, mechanical transmission of power.

TEXT2101
Fibre Science 2
Staff Contact: Prof Ron Postle
S2 L2 T2
Prerequisite: FIBRE1101/TEXT1101

TEXT2201
Textile Statistics
Staff Contact: Dr Xungai Wang
S2 L2
Application of mathematical techniques to textile data processing and analysis. Probability theory, distribution functions, tests of significance. Analysis of variance, regression analysis. Introduction to computer statistical packages.

TEXT2301
Yarn Technology 1
Staff Contact: Dr Xungai Wang
S1 L3 T3
Prerequisite: TEXT1201
The preparation of staple fibres for yarns and non-woven fabrics: processes for tow conversion, opening, cleaning, blending, carding, drawing, and combing. Short-staple, worsted and woolen preparation systems. Computer blend selection; drafting theory; theory and measurement of irregularity; levelling of slivers.
TEXT2401
Fabric Technology 1
Staff Contact: Dr John Curiskis
S2 L3.5 T2.5
Prerequisite: TEXT1201

TEXT3101
Textile Structures 1
Staff Contact: Prof Ron Postle
S1 L1 T2
Prerequisite: FIBR1101/TEXT1101

TEXT3301
Yarn Technology 2
Staff Contact: Dr Xungai Wang
S2 L3 T3
Prerequisite: TEXT1201

TEXT3401
Fabric Technology 2
Staff Contact: Dr John Curiskis
S1 L3.5 T2.5
Prerequisite: TEXT1201

TEXT3501
Finishing Technology A
Staff Contact: Dr Shantha David
S1 L2 T2
Prerequisite: FIBR1101/TEXT1101
Objects of finishing and typical flow diagrams for wool and cotton. The principles and technology of textile finishing processes for protein and cellulose fabrics, including the removal of impurities and discoloration, the elimination or minimisation of deficiencies in properties, the development of specific properties. Properties of surfactant solutions, micelle formation, surfactants as emulsifiers and detergents, detergency.

TEXT3601
Colour Science
Staff Contact: Prof Mike Pailthorpe
S1 L2 T1

TEXT3602
Colouration Technology
Staff Contact: A/Prof Mike Pailthorpe
S2 L2 T2
Prerequisite: FIBR1101/TEXT1101

TEXT3801
Textile Engineering
Staff Contact: Prof Ross Griffith
S2 L2 T1
Prerequisite: TEXT1201

TEXT4003
Project
Staff Contact: Prof Ron Postle
F S1 T5 S2 T9
Students are required to carry out a research project and to submit a thesis describing their investigations. It is usual for students to be allocated projects in areas related to the particular course option they are studying.

TEXT4013
Seminar
Staff Contact: Prof Michael Pailthorpe
F T2
Students prepare and present a seminar before an audience consisting of staff of the Department, final year students, Graduate Diploma students, and any other
interested undergraduate or postgraduate students, on a subject of topical and specific interest in the field of textile science, technology or management, and subsequently submit the seminar in writing.

TEXT4101
Textile Structures 2
Staff Contact: Prof Ron Postle
S2 L1 T2
Prerequisite: FIBR1101/TEXT1101

TEXT4201
Processing Laboratory
Staff Contact: Dr John Curiskis
S1 T3

Students undertake a project involving the design, production and assessment of textile products. Such as: rib jacquard outer fabric, towelling, printed tea towels, woven furnishing fabric, raschel outer wear fabric, etc.

TEXT4202
Textile Quality Control
Staff Contact: Prof Mike Pailthorpe
S2 L1 T1
Prerequisite: TEXT2201

TEXT4501
Finishing Technology B
Staff Contact: Dr Shantha David
S2 L2 T2
Prerequisite: FIBR1101/TEXT1101

The production of specified dimensions in textile fabrics; heat, chemical and mechanical processes, surface finishes, protective finishes. The application of special finishes including flame-proof finishes, crease-resistant finishes, etc. Dimensional stability and its measurement. Recent developments in finishing technology.

TEXT5101
Fibre Science A
Staff Contact: Dr Shantha David
S1 L4 T2

TEXT5102
Fibre Science B
Staff Contact: Prof Ron Postle
S2 L2 T2

TEXT5201
Textile Industry Studies
Staff Contact: Prof Ross Griffith
S1 L T3

Econometrics of the textile and clothing industries. Models of production, import and export and consumption of textiles and clothing in Australia, and comparison with world data. Case studies in textile and clothing manufacture operations. Environmental considerations in relation to pollution from the textile industry. Waste water treatment methods.

TEXT54702
Textile Management
Staff Contact: Prof Ross Griffith
S1 T6

Selected readings in the Management of manufacturing systems with particular reference and examples from specific manufacturing enterprises.

TEXT55001
Textile Technology Dissertation
Staff Contact: Prof Michael Pailthorpe
F T1.5

Students review a particular aspect of textile technology, by conducting a literature survey and conferring with experts. The review is presented orally to the staff and students of the department, and submitted in written form.

TEXT55003
Textile Technology
Staff Contact: Prof Ross Griffith
F T1.5

Students gain an overview of textile technology by reviewing the technology relating to one or more textile products, through a series of tutorials and exercises.

TEXT55101
Fibre Science A
Staff Contact: Dr Shantha David
S1 L4 T2

TEXT55102
Fibre Science B
Staff Contact: Prof Ron Postle
S2 L2 T2

TEXT55201
Textile Quality Control
Staff Contact: Prof Mike Pailthorpe
S2 L1 T1

TEXT5301
Yarn Technology A
Staff Contact: Dr Xungai Wang
S1 L3 T3

TEXT5302
Yarn Technology B
Staff Contact: Dr Xungai Wang
S2 L3 T2

TEXT5401
Fabric Technology A
Staff Contact: Dr John Curiskis
S2 L3.5 T1.5

TEXT5402
Fabric Technology B
Staff Contact: Dr John Curiskis
S1 L3.5 T1.5

TEXT5501
Finishing Technology A
Staff Contact: Dr Shantha David
S1 L3 T2
Objects of finishing and typical flow diagrams for wool and cotton. The principles and technology of textile finishing processes for protein and cellulosic fabrics, including the removal of impurities and discolouration, the elimination or minimisation of deficiencies in properties, the development of specific properties. Properties of surfactant solutions, micelle formation, surfactants as emulsifiers and detergents, detergency.

TEXT5502
Finishing Technology B
Staff Contact: Dr Shantha David
S2 L2 T3
The production of specified dimensions in textile fabrics; heat, chemical and mechanical processes, surface finishes, protective finishes. The application of special finishes including flame-proof finishes, crease-resistant finishes, etc. Dimensional stability and its measurement. Recent developments in finishing technology.

TEXT5601
Colour Science
Staff Contact: Prof Mike Paitlthorpe
S1 L2 T1

TEXT5602
Dyeing Technology
Staff Contact: Prof Mike Paitlthorpe
S2 L2 T2

WOOL2103
Livestock Production 1
Staff Contact: A/Prof John Kennedy
C6 F L2
The sheep and beef cattle industries and their place in the economic life of Australia; levels of production and trends. The physical, biological, managerial and economic conditions influencing production. Sheep producing zones. Sheep breeds for wool production. Cross breeding, prime lamb production. Sheep and cattle management; nutrition, reproduction, survival. A field excursion of one week's duration is held in Session 1.

WOOL2203
Agronomy
Staff Contact: Dr Gordon King
S1 L2 T1 S2 L3 T3

WOOL2303
Agricultural Economics and Management 1
Staff Contact: Mr Steve Filan
F L2 T1
Farm planning methods. Budgeting, gross margins, simplified programming and introduction to linear
Course Codes: ECON 1101, ECON 1102, ECON 1103

1. Introductory microeconomics:
- Basic economic principles: supply and demand, market equilibrium, price determination.
- Understanding market structures: perfect competition, monopoly, oligopoly, monopolistic competition.
- Consumer behavior: demand and utility maximization.
- Producer behavior: supply and cost minimization.

2. Advanced microeconomics:
- Intermediate demand and supply analysis.
- Consumer surplus and producer surplus.
- Market failure and government intervention.
- International trade: comparative advantage, protectionism.

3. Macroeconomics:
- National income accounting: GDP, GNP, and related concepts.
- Aggregate demand and supply model.
- Fiscal and monetary policy: government spending, taxation, and monetary tools.

4. Economic growth and development:
- Economic growth: factors of production, capital accumulation, labor, and technological change.
- Development economics: economic growth, poverty, and inequality.
- International economic relations: global economic integration, trade agreements, and development assistance.

5. Environmental economics:
- Environmental issues and economic policies.
- Resource allocation and sustainability.
- Environmental taxation and economic incentives.

6. Behavioral economics:
- Behavioral biases and decision-making.
- Prospect theory and preferences.
- Social preferences and fairness.

7. Labor economics:
- Labor market dynamics: supply, demand, and wage determination.
- Labor market inequality: wage gaps, discrimination.
- Labor market policies: minimum wage, unemployment, labor market regulations.

8. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

9. International economics:
- International trade and finance.
- Exchange rates and monetary policy.
- International monetary systems and foreign exchange rates.

10. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

11. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

12. Environmental economics:
- Environmental policy and regulation.
- Environmental economics and sustainable development.
- Environmental economics and public policy.

13. International economics:
- International trade.
- International capital flows.
- International monetary systems.

14. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

15. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

16. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

17. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

18. Economic growth and development:
- Economic growth.
- Development economics.
- International economic relations.

19. Environmental economics:
- Environmental issues.
- Environmental policy.
- Environmental economics.

20. Behavioral economics:
- Behavioral biases.
- Decision-making.
- Social preferences.

21. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

22. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

23. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

24. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

25. Economic growth and development:
- Economic growth.
- Development economics.
- International economic relations.

26. Environmental economics:
- Environmental issues.
- Environmental policy.
- Environmental economics.

27. Behavioral economics:
- Behavioral biases.
- Decision-making.
- Social preferences.

28. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

29. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

30. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

31. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

32. Economic growth and development:
- Economic growth.
- Development economics.
- International economic relations.

33. Environmental economics:
- Environmental issues.
- Environmental policy.
- Environmental economics.

34. Behavioral economics:
- Behavioral biases.
- Decision-making.
- Social preferences.

35. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

36. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

37. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

38. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

39. Economic growth and development:
- Economic growth.
- Development economics.
- International economic relations.

40. Environmental economics:
- Environmental issues.
- Environmental policy.
- Environmental economics.

41. Behavioral economics:
- Behavioral biases.
- Decision-making.
- Social preferences.

42. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

43. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

44. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

45. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

46. Economic growth and development:
- Economic growth.
- Development economics.
- International economic relations.

47. Environmental economics:
- Environmental issues.
- Environmental policy.
- Environmental economics.

48. Behavioral economics:
- Behavioral biases.
- Decision-making.
- Social preferences.

49. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

50. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

51. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

52. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

53. Economic growth and development:
- Economic growth.
- Development economics.
- International economic relations.

54. Environmental economics:
- Environmental issues.
- Environmental policy.
- Environmental economics.

55. Behavioral economics:
- Behavioral biases.
- Decision-making.
- Social preferences.

56. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

57. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

58. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

59. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.

60. Economic growth and development:
- Economic growth.
- Development economics.
- International economic relations.

61. Environmental economics:
- Environmental issues.
- Environmental policy.
- Environmental economics.

62. Behavioral economics:
- Behavioral biases.
- Decision-making.
- Social preferences.

63. Labor economics:
- Labor market dynamics.
- Labor market inequality.
- Labor market policies.

64. Public economics:
- Public choice theory.
- Taxation and public goods.
- Fiscal federalism.

65. Financial economics:
- Financial markets and institutions.
- Investment and corporate finance.
- Risk and return in financial markets.

66. Industrial organization:
- Market structure and conduct.
- Economic strategies of firms.
- Market power and regulation.
WOOL3803
Genetics 1
Staff Contact: A/Prof John James
F L2 T1

WOOL3901
Biostatistics 1
Staff Contact: A/Prof John James
S1 L2 T2
Design and analysis of comparative experiments, for continuous and discrete random variables. Analysis of variance for fixed, mixed and random models. Linear regression and correlation. Multiple comparison methods.

WOOL4003
Project
Staff Contact: A/Prof John Kennedy
F T6
Students are required to conduct an experimental or theoretical investigation under supervision and to submit a thesis describing the results of their investigations. Throughout the year students are required to submit progress reports to their supervisors and to present seminars. The written reports of the project shall be submitted by the last day of Session 2.

WOOL4013
Seminar
Staff Contact: A/Prof John Kennedy
F T2
Seminars deal with research and or development work being undertaken or recently completed by students and staff of the Department of Wool and Animal Science, other University schools and research organisations. There are also seminars on communication in wool and pastoral sciences and on problems facing rural industries.

WOOL4113
Livestock Production 3
Staff Contact: A/Prof John Kennedy
C6 F L1 T2

WOOL4413
Ruminant Nutrition
Staff Contact: Dr Geoff Robards
S1 L2 T2
Prerequisite: WOOL3401
Utilization of metabolizable energy; protein digestion and utilization; digestion of complex carbohydrates; digestive upsets: bloat, acidosis, rumen stasis; techniques for measuring nutrient dynamics and body turnover rates; formulation of specialised rations for: feedlots, live sheep trade, Sharlea wool production, milk production.

WOOL4513
Wool Science 3
Staff Contact: A/Prof David Cottle
F L2 T2
(Advanced Technology) Sale by description; modelling wool production; development of metry techniques; the Australian wool processing industry; breeding for wool quality; woolen metrology; keratin fine structure; caprine and cameloid fibres; processed wool metrology; wool classification; lot building; current wool research and development.

WOOL4813
Genetics 2
Staff Contact: A/Prof John James
F L2 T2
Prerequisite: WOOL3803

WOOL4911
Biostatistics 2
Staff Contact: A/Prof John James
S2 L2 T2
Least squares methods, applied to multiple regression and experimental design models. Factorial experiments. Analysis of co-variance. Elements of multi-variate

WOOL5113
Livestock Production
Staff Contact: A/Prof J P Kennedy
C12 F L2 T4
Biology of reproduction and reproductive performance of sheep and cattle; growth and body composition; meat production and quality.

WOOL5213
Range Management
Staff Contact: Dr Gordon King
C3 F L1 T3

WOOL5223
Project In Range Management
Staff Contact: Dr Gordon King
C9 F T9
A theoretical and or experimental investigation of some aspect of management of rangelands.
WOOL5513
Wool Science
Staff Contact: A/Prof David Cottle
F L2 T4

WOOL5813
Animal Breeding
Staff Contact: A/Prof John James
F L2 T2
Corequisite: WOOL3803
Definition of breeding objectives; case studies of production recording and breed improvement programs for sheep and beef cattle. Development of performance recording systems: choice of traits to be recorded, recording and processing methods. Estimation of breeding value from performance records. Breed evaluation. Optimal design for breeding programs. The impact on genetic improvement of techniques for controlling reproduction.

WOOL5913
Quantitative Methods
Staff Contact: A/Prof John James
F L2 T2
Selected topics in: biostatistics, with emphasis on experimental design and on least squares procedures; mathematical programming methods for rural industries; data processing and computer programming; systems analysis and simulation methods.
School of Geography

Head of School
Associate Professor M.D. Fox

Administrative Assistant
Ms. C. Bilic

Geographers study the spatial relationships of the phenomena which form humans' physical and social environment, and aim to establish principles which govern those relationships. The geographer may concentrate on specific variables, as in systematic geography, or may deal with variables which affect a specific area, as in regional geography.

The cultural significance of geography lies in its contribution to an understanding of the total environment, but the geographer's skills also find practical application in the conservation and planned development of resources. Increasing numbers of geographers are employed as professionals in these applications. For instance, geomorphologists and biogeographers are undertaking resource inventory surveys and environmental assessment, and economic geographers are engaged as urban and regional planners and spatial analysts.

General Education Electives

For details of the General Education requirements see Faculty Information.

Students are advised to check notices displayed in the School of Geography ground floor foyer in case of any late changes in teaching arrangements.

Undergraduate Study

Course Outlines

The three vocationally-oriented Applied Geography programs 3010 in the Faculty of Applied Science provide an analytical approach to understanding and investigating some of society's most pressing problems, including the use and management of scarce resources, the interaction between people and environment, soil erosion and conservation, land use conflicts, and spatial inequalities in economic and social well-being. These courses provide elective specializations in physical geography (with special emphasis on either the biologic or geomorphic aspects), economic geography with emphasis on spatial analysis, and in human and physical resources (with emphasis on the integration of human and physical geography).

Geography is also available as a major sequence in the Arts course 3400, where the emphasis is on the study of where and how people live, and on their activities in relation to the environment.

Major sequences in Science and Mathematics course 3970, programs 2700 and 6581 study the relationships between people and the physical environment, combining geographical studies, particularly in physical geography, with those in related disciplines, notably the biological and earth sciences.

Geography may also be combined with Civil Engineering in course 3730, and with Law in course 4770.
Students may enrol through the School of Geography for higher research degrees, or for formal graduate courses such as the Master of Applied Science in Geographic Information Systems 8024; Masters and Diploma courses in Remote Sensing 8026 and 8056, or Masters and Diploma courses in Rangeland Management 8025 and 5025, Masters in Environmental Management 8046 and may undertake projects in the School as part of the Master of Environmental Studies degree 8045.

Applied Geography - Full-time Courses

Bachelor of Science

The School offers three four-year full-time courses leading to the award of the degree of Bachelor of Science, which aim to train professional geographers for entry into applied fields.

There are elective specializations in physical geography (with special emphasis on either the biologic or geomorphic aspects), economic geography (with emphasis on urban and regional analysis), and in human and physical resources with emphasis on the integration of physical and human geography). First year subjects involve systematic studies of the physical and economic bases of geography. There is progressive specialization in the following years, with heavy emphasis on field observation and data handling. For the award of the degree at Honours level students will be required to have distinguished themselves in coursework, in additional assignments as directed by the Head of the School, and in the final year project for which a Report will be required.

All students are encouraged to spend a period of four to six weeks with organizations concerned with the investigation and planned use of resources.

Several units in Geography include laboratory and project work involving the use of computer and quantitative techniques. It is required that students provide their own drawing materials such as tracing and graph paper. Details of exact requirements are given at the beginning of the relevant subjects. Compulsory fieldwork incurs personal expenditure and for some subjects notes and materials are available for a small charge.

As the program is currently under review some Year 2 and Year 3 subjects have not yet had their numbers changed.

Applied Physical Geography (3010.1000)

Year 2

- GEOG2000 Field Project 2 1.5 1.5
- GEOG2013 Geographic Data Analysis 4 0
- GEOG2021 Introduction to Remote Sensing 0 4
- GEOG2021 Biogeography 0 4
- GEOG3051 Soils and Landforms 4 0
- GEOG3122 Geographic Information Systems 0 4
- GEOG3211 Australian Environments and Natural Resources 4 0

and either

- GEOL2011 Mineralogy and Igneous Petrology 6 0
- GEOL2022 Petrology and Structural Geology 0 6

or any two of the following

- BIOS2011 Evolutionary and Physiological Ecology 6 0
- BIOS2021 Introductory Genetics 0 6
- BIOS2031 Biology of Invertebrates 0 6
- BIOS2051 Flowering Plants 0 6
- BIOS2061 Vertebrate Zoology 6 0

and for all students

General Education Subject/s (Category A) 2 2

Totalling 21.5 21.5

3010.1000/2000/3000

Applied Geography - Full-time Course

Bachelor of Science

BSc

Applied Physical Geography, Applied Economic Geography and Human and Physical Resources
Applied Economic Geography (3010.2000)

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON2103</td>
<td>Business and Government</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECON2104</td>
<td>Australian Macroeconomic Policy</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>GEOG2000</td>
<td>Field Project 2</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>GEOG2013</td>
<td>Geographical Data Analysis</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG2052</td>
<td>Project in Spatial Analysis</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG2061</td>
<td>Regional Theory</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG2071</td>
<td>Transport and Land Use</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG2092</td>
<td>Australian Social and Economic Landscapes</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Geographic Information Systems</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG3122</td>
<td>and General Education Subject/s (Category A)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG2041</td>
<td>Mathematical Methods for Spatial Analysis*</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG3000</td>
<td>Field Project 3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>GEOG3082</td>
<td>Project Design and Formulation</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEOG3101</td>
<td>Sample Surveys and Questionnaire Design</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG3172</td>
<td>Spatial Population Analysis</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG2021</td>
<td>Introduction to Remote Sensing</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG3142</td>
<td>Geographic Information Systems Applications</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG3192</td>
<td>Urban and Regional Development</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG3181</td>
<td>Urban Activity Systems</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG3333</td>
<td>Special Topic</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GEOG3334</td>
<td>Special Research Methods</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17.5</td>
<td>17.5</td>
</tr>
</tbody>
</table>

*One subject may be substituted for those listed with permission of Head of School.

The following subjects may be substituted:

- ECON2111 The Economics of Global Interdependence 0 3
- ECON2115 Japanese International Economic Relations 0 3
- ECON2116 Japanese Economic Policy 3 0

Human and Physical Resources (3010.3000)

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG2092</td>
<td>Australian Social and Economic Landscapes</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>GEOG2000</td>
<td>Field Project 2</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>GEOG2013</td>
<td>Geographical Data Analysis</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG3122</td>
<td>Geographic Information Systems</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG3021</td>
<td>Biogeography</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOG3051</td>
<td>Soils and Landforms or</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOG2061</td>
<td>Regional Theory</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEO2103</td>
<td>Business and Government</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEO2104</td>
<td>Australian Macroeconomic Policy</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>GEO2052</td>
<td>Project in Spatial Analysis</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEO2011</td>
<td>Mineralogy and Igneous</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>GEO2022</td>
<td>Petrology and Structural Geology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17.5</td>
<td>17.5</td>
</tr>
</tbody>
</table>

or two of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS2011</td>
<td>Evolutionary and Physiological Ecology</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BIOS2031</td>
<td>Biology of Invertebrates</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>BIOS2051</td>
<td>Flowering Plants</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>BIOS2061</td>
<td>Vertebrate Zoology</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>

plus three of the following:

- ECON2108 Industry Economics and Australian Industrial Policy 0 3
- ECON2109 Economics of Natural Resources 3 0
- ECON2117 Economics of Tourism 3 0
- ECON2127 Environmental Resources and Cost Benefit Analysis 0 3
- ECON3115 Economics of Developing Countries 3 0

and General Education Subject/s (Category A) 2 2

Totaling 14.5 15.5 /22.5 /23.5

*One subject may be substituted for those listed with permission of Head of School.

The following subjects may be substituted:

- ECON2111 The Economics of Global Interdependence 0 3
- ECON2115 Japanese International Economic Relations 0 3
- ECON2116 Japanese Economic Policy 3 0
Graduate Study

Course Outlines

8024 Graduate Program in Geographic Information Systems

Master of Applied Science
MAppSc

The Masters degree program in Geographic Information Systems is offered in both Geography and Geology within the Faculty of Applied Science. Entry into either discipline depends on the background of the applicant and the orientation of the proposed program.

Entry qualifications. Four-year Honours degree of appropriate standard in Geography, Geology, Surveying, or a relevant environmental science.

Course requirements. Candidates are required to complete a course totalling 30 credits made up of compulsory subjects, elective subjects and a project. The degree will normally comprise one year of full-time study or two years of part-time study.

Graduate Study

Applied Physical Geography,
Applied Economic Geography and
Human and Physical Resources.

Compulsory Subjects
GEOG9240 Principles of Geographic Information Systems 3
GEOG9241 Advanced Geographic Information Systems 3
GEOG9280 Applications and Management of GIS 3
GEOG9512 Project 12
GMAT9604 Land Information Systems 3

Elective Subjects
COMP9311 Data Base Systems 3
GEOG9150 Remote Sensing Applications 3
GEOG9210 Computer Mapping and Data Display 3
GEOG9250 Special Topic 3
GEOG9290 Image Analysis in Remote Sensing 3
GMAT9530 Analytical Photogrammetry 3
GMAT9532 Data Acquisition and Terrain Modelling 3
GMAT9600 Principles of Remote Sensing 3
KCME1110 Geographical Information Systems in Applied Geology 3
Graduate Programs in Rangeland Management

General

The University has considerable experience of research and teaching relating to the management of arid zone rangelands, gained over many years by several of its schools. This experience is now used in the provision of these graduate programs based at the University campus in Kensington, Sydney, but also providing for the use of its field station resources including Fowlers Gap Arid Zone Research Station in western New South Wales.

Programs by coursework are available leading to the award of:

Master of Applied Science in Rangeland Management Course 8025
Graduate Diploma in Rangeland Management Course 5025

Entry qualifications. Masters degree course - Four-year degree at an appropriate standard in an appropriate discipline. Graduate Diploma course - Three-year degree from an approved university or qualifications deemed appropriate by the Faculty of Applied Science.

Course requirements. Candidates are required to complete a program totalling 30 credits for the Masters degree or 24 credits for the Graduate Diploma during one year of full-time study or two years of part-time study. Students will be expected to devote an additional 15 hours per week outside lectures to independent study, fieldwork and completion of assignments.

Course structure. All students are required to complete the core of compulsory subjects which for the Masters degree includes a 9 credit Project. Students then complete the requirements for their Course by selecting the appropriate number of credits from the list of available subjects. Additional subjects may be selected with the permission of the Course Coordinator. In this way students have the flexibility to tailor the course to suit their individual needs.

8025
Rangeland Management Graduate Course

Master of Applied Science
MAppSc

Compulsory Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOOL5213</td>
<td>Range Management</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9320</td>
<td>Soil degradation and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9509</td>
<td>Project or</td>
<td>9</td>
</tr>
<tr>
<td>WOOL5223</td>
<td>Project</td>
<td>9</td>
</tr>
</tbody>
</table>

Optional Subjects

Choose subjects totalling 15 credits from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS3014</td>
<td>Ecological Studies in Arid Lands Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9842</td>
<td>Groundwater Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9875</td>
<td>Hydrological Processes</td>
<td>3</td>
</tr>
<tr>
<td>ECON2109</td>
<td>Economics of Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9130</td>
<td>Soil Studies for Arid Lands Management</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9150</td>
<td>Remote Sensing Applications</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9240</td>
<td>Principles of Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9300</td>
<td>Vegetation Management</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9310</td>
<td>River Management</td>
<td>3</td>
</tr>
<tr>
<td>WOOL5113</td>
<td>Livestock Production</td>
<td>12</td>
</tr>
</tbody>
</table>

Additional subjects may be substituted with the permission of the Course Coordinator.

5025
Rangeland Management Graduate Diploma Course

Graduate Diploma
GradDip

Compulsory Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG9320</td>
<td>Soil Degradation and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>WOOL5213</td>
<td>Range Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Optional Subjects

Choose subjects totalling 18 credits, to include at least 9 credits of graduate level subjects.
Graduate Programs in Remote Sensing

Programs are available leading to the award of:
Master of Applied Science in Remote Sensing Course 8026
Graduate Diploma in Remote Sensing Course 5026

8026 Remote Sensing Graduate Course

Master of Applied Science MAppSc

The masters degree program in Remote Sensing is offered in both the Faculty of Applied Science and the Faculty of Engineering. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.

Entry qualifications. Four-year degree of appropriate standard in engineering, geography, geology, surveying, or in a relevant environmental biological or agricultural science.

Course requirements. Candidates are required to complete a course totalling 30 credits, with no less than 18 credits in Remote Sensing. Compulsory subjects are not offered in a particular year may be substituted by an equivalent subject, approved by an appropriate Course Coordinator. The degree will normally comprise one year of full-time study or two years of part-time study.

Compulsory Subjects
- GEOG9150 Remote Sensing Applications 3
- GEOG9290 Image Analysis in Remote Sensing 3
- GEOG9512 Project or 12
- GEOL0114 Project 12
- GMAT9600 Principles of Remote Sensing 3
- GMAT9606 Microwave Remote Sensing 3

Elective Subjects
- GEOG9210 Computer Mapping and Data Display 3
- GEOG9240 Principles of Geographical Information Systems 3
- GEOG9241 Advanced Geographical Information Systems 3
- GEOG9250 Special Topic 3
- GEOG9280 Applications and Management of GIS 3
- GEOL0110 Geological Remote Sensing* 3
- GEOL0310 Image Processing of Spatial Data Sets 3
- GEOL0360 Remote Sensing Applications in Geoscience 3
- GMAT9530 Analytical Photogrammetry 3
- GMAT9532 Data Acquisitions and Terrain Modelling 3

* Students who take GEOL0110 are precluded from taking GEOL0310 and GEOL0360.

Note: Other subjects may be substituted for those listed with permission of the Course Coordinator to suit the specific needs of individual students.

5026 Remote Sensing Graduate Diploma Course

Graduate Diploma GradDip

The Graduate Diploma Program in Remote Sensing is offered in both the Faculty of Applied Science and the Faculty of Engineering. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.

Entry qualifications. Three-year degree from an approved university and or qualifications deemed appropriate by the relevant faculty.

Course requirements. Candidates are required to complete a program totalling 24 credits or equivalent to 12 hours per week for two sessions of full-time study, made up of compulsory subjects (12 credits) and elective subjects (12 credits). Compulsory subjects not offered in a particular year may be substituted by an equivalent subject. The course will normally comprise one year of full-time study or two years part-time study. One-third of the credits for elective subjects may be from approved undergraduate subjects.

Compulsory Subjects
- GEOG9150 Remote Sensing Applications 3
- GEOG9290 Image Analysis in Remote Sensing 3
- GMAT9600 Principles of Remote Sensing 3
- GMAT9605 Ground Investigations for Remote Sensing 3
- GMAT 9606 Microwave Remote Sensing 3

Elective Subjects
From the following (or as approved by the relevant Faculty):
Graduate Programs in Environmental Studies

8045 Environmental Studies

Master of Environmental Studies MEnvStudies

This is an interdisciplinary course designed to study the nature of environmental problems and the methodology of evaluation. Emphasis is placed on the development of relevant skills in environmental analysis, management and planning.

Entry qualifications. Four-year Honours degree, or equivalent, in a field relevant to environmental studies.

Course requirements. Candidates are required to complete a course totalling 30 credits made up of compulsory subjects, elective subjects and a project. The degree will normally comprise one year of full-time study or two years of part-time study. Students will be expected to devote an additional 15 hours per week outside lectures and practical classes to independent study, fieldwork, and completion of assignments.

Compulsory subjects
- GEOG9300 Vegetation Management 3
- GEOG9310 River Management 3
- GEOG9320 Soil Degradation and Conservation 3
- GEOG9509 Project 9

Elective Subjects*
- GEOG9150 Remote Sensing Applications 3
- GEOG9240 Principles of Geographic Information Systems 3
- GEOG9241 Advanced Geographic Information Systems 3
- GEOG9250 Special Topic 3
- GMAT9600 Principles of Remote Sensing 3
- SAFE9273 Environment and the Law 3

* Alternative subjects may be substituted approved by the Course Coordinator.

8046 Environmental Management

Master of Applied Science MAppSc

The Masters degree program in environmental management provides an opportunity to focus on the management of key natural resources, particularly soils, rivers, and vegetation. Emphasis is also placed on the application of information technology for planning and decision making.

Entry qualifications. Four year degree of appropriate standard in geography, environmental science, engineering, or in a relevant biological or agricultural science.

Course requirements. Candidates are required to complete a course of study totalling 30 credits made up of compulsory subjects (9 credits), a project (9 credits), and elective subjects (12 credits). Compulsory subjects not available in a particular year may be substituted by an equivalent subject, approved by the Course Coordinator. The degree will normally comprise one year of full-time study or two years of part-time study. Students will be expected to devote an additional 15 hours per week outside lectures and practical classes to independent study, fieldwork, and completion of assignments.

Compulsory subjects
- GEOG9300 Vegetation Management 3
- GEOG9310 River Management 3
- GEOG9320 Soil Degradation and Conservation 3
- GEOG9509 Project 9

Elective Subjects*
- GEOG9150 Remote Sensing Applications 3
- GEOG9240 Principles of Geographic Information Systems 3
- GEOG9241 Advanced Geographic Information Systems 3
- GEOG9250 Special Topic 3
- GMAT9600 Principles of Remote Sensing 3
- SAFE9273 Environment and the Law 3

* Alternative subjects may be substituted approved by the Course Coordinator.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. Note that due to on-going course changes some subjects offered in Year 2 have 3000 numbers and vice versa. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

GEOG1000
Field Project 1
Staff Contact: Drs B. Parolin, I. Prosser
S1 T4
A five days field project normally undertaken during the mid-year recess, designed to support teaching in Year 1 subjects and to develop basic field methods and skills. Students will incur some personal expenses in connection with this subject, which is a compulsory part of the course.

GEOG1022
Locational Processes
Staff Contact: Dr B. Parolin
S2 L2 T2
Basic theoretical constructs for explaining the location of human activity. Concepts of optimal location and spatial competition, geographical variations in the factors of production, economies of scale and agglomeration, transaction costs and locational decision making under conditions of uncertainty. Practical study links theory and problem solving in economic geography.

GEOG1031
Environmental Processes
Staff Contact: Dr I. Prosser
S2 L3 T1
Note/s: Excluded GEOG1073.
The subject is an introduction to physical geography outlining the processes and history of physical and biological components of the environment. This knowledge is then used to improve our understanding of global environmental problems. Aspects of the environment considered include the Earth’s energy balance, atmospheric systems, ecosystems, soils and erosion processes.

GEOG1043
Data Processing Systems
Staff Contact: Mr S. Filan
S1 L2 T2
Measurement, management, analysis and display of general and spatial data. Basic use of VAX computers; operating systems and file management. EDT editor. Use of software (SPSS®) for management, processing, analysis and display of data.

GEOG1044
Data Display Systems
Staff Contact: Prof B. Garner
S2 L2 T2
Prerequisite: GEOG1043

GEOG1062
Australia and Global Development
Staff Contact: A/Prof I. Burnley, Dr M. Sant
S1 L2 T1
The main concern is the progressive integration of Australia into global capitalism and the developmental and environmental consequences of this process in Australia and Pacific Rim countries and adjacent territories. Topics covered include colonial and dependent development in Australia and resource use; applications of development theory as applied to core periphery relationships between world financial centres and Australia, and between Australia and Pacific Island territories; transnational organisations and technology transfer and investment in Australia and Pacific countries; the relationship between changing trade patterns, production and development in Australia and Pacific Rim countries; Australia in a future world.

GEOG1073
Environmental Processes and Analysis
Staff Contact: Dr I. Prosser
S2 L3 T3
Note/s: Excluded GEOG1031.
This subject has the same content as GEOG1031 but with an additional 2 hour laboratory introducing methods of analysis of climates, soils, hyrology, landforms and vegetation.

GEOG2000
Field Project 2
Staff Contact: A/Prof J. Dodson & A/Prof M. Fox (Physical)
Dr M. Sant & Mr S. Filan (Economic)
F T3
Note/s: Students will incur personal costs.
A five days field project normally undertaken during a recess designed to support teaching in Year 2 subjects in physical and economic geography and to develop more advanced skills in data collection, observation and field methods. Students will incur some personal expenses in connection with this subject, which is a compulsory part of the course.

GEOG2013
Geographical Data Analysis
Staff Contact: A/Prof J. Dodson
S1 L1 T3
Prerequisite: Either GEOG1073 or both GEOG1031 and GEOG1062
Inferential statistics and hypothesis testing in the analysis of spatial data. Methods of sampling, comparing populations and of identifying relationships through correlation, association, regression, time series and classification. Topics covered are applicable to physical and economic geography.
GEOG2021
Introduction to Remote Sensing
Staff Contact: Mr A. Evans
S2 L2 T2
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts or equivalent as approved by the Head of School.

Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airphoto interpretation techniques relevant to environmental assessment. Introduction to principles of the electromagnetic spectrum, photometry and radiometry. Sensor types, image formation and end products associated with selected satellite programs, including Landsat. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement.

GEOG2032
Geomorphology
Staff Contact: Drs W. Erskine, I. Prosser
S2 L2 T2
Prerequisites: GEOG3051

Drainage basin processes including: weathering, the production of runoff and sediment, sediment tracing, sediment budgets and denudation histories. The processes of river channel changes including sediment transport, hydraulic, hydrology, hydraulic geometry and channel patterns. There will be an emphasis on the application of geomorphic principles to land management.

GEOG2041
Mathematical Methods for Spatial Analysis
Staff Contact: Mr S. Filan
S1 L2 T2
Prerequisite: MATH1021 or MATH1032 or MATH1231 or MATH1042 or MATH1241 and GEOG1043 or FIBR2201
Note/s: Subject to the availability of staff.

Selected mathematical methods for the analysis of spatial problems, including applications of calculus in constrained and unconstrained optimization; mathematical programming methods; network models; input-output analysis; in facility location and allocation problems.

GEOG2052
Project In Spatial Analysis
Staff Contact: Dr M. Sant & Mr S. Filan
S2 L1 T3
Prerequisite: GEOG2041

Supervised application of quantitative methods in selected projects involving the analysis of spatial data and requires integrated applications of skills in data processing, geographic data analysis, and mathematical methods.

GEOG2061
Regional Theory
Staff Contact: Dr M. Sant
S1 L2 T2

Regional theory and analytical methods with a particular focus on the explanation of the Richardson growth model and the practical application of its components, using Australian data. Capital formation and mobility, labour supply and technological change, assessments of recent changes in the Australian regional economic system. Practical work deals with the measurement and analysis of structural change, accessibility and economic interaction and regional economic welfare.

GEOG2071
Transport and Land Use
Staff Contact: Dr B. Parolin
S2 L2 T2

The relationships between transport and land use, mobility, accessibility, and activity systems in urban and rural environments. Emphasis on policy issues and case studies from Australia. Introduction to simple transport-land use models.

GEOG2092
Australian Social and Economic Landscapes
Staff Contact: A/Prof L. Burnley
S1 L2 T2
Prerequisite: GEOG1062

Analysis of the principal factors and forces shaping the contemporary social and economic landscapes of Australia and the problems arising. Themes include Australia's changing population profile and distribution, the changing face of Australian cities, regional disparities in social and economic well-being, changing patterns of employment and industrial location, and the declining fortunes of rural Australia. Planning and policy responses to the problems of spatial change and re-organization are emphasised and future scenarios addressed.

GEOG3000
Field Project 3
Staff Contact: A/Prof M. Melville (Physical), Prof B. Garner & Dr B. Parolin (Economic)
F T1.5
Prerequisite: One of GEOG3011, GEOG3021, GEOG2032. This prerequisite does not apply to students registered in course 3010
Note/s: Students will incur personal costs.

A five day field project normally undertaken during a recess, designed to support teaching in Year 3 Level III subjects in physical and economic geography and to demonstrate the application of field methods in problem solving and research projects. Students will incur some personal expenses in connection with this subject, which is a compulsory part of the course.

GEOG3011
Pedology
Staff Contact: A/Prof M. Melville
S1 L2 T2
Prerequisites: GEOG1073 and one of CHEM1101 or CHEM1401 or both GEOL1101 and GEOL1201 or both BIOS1011 and BIOS1021

Methodology of pedogenic studies and the application of these studies to the understanding of soil and form relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data...
and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology.

GEOG3021
Biogeography
Staff Contact: A/Prof J. Dodson & A/Prof M. Fox
S1 L2 T2
Prerequisites: GEOG1073 and both BIOS1011 and BIOS1021

GEOG3032
Remote Sensing Applications
Staff Contact: Mr A. Evans
S1 L2 T2
Prerequisite: GEOG2021 or GMAT8711

Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multi-temporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

GEOG3042
Environmental Impact Assessment
Staff Contact: Prof B. Garner & Dr W. Erskine
S2 L2 T2
Prerequisites: GEOG1031 or GEOG1073 or by permission from Head of School

Rationale and basic objectives; history and legislative framework: standardized types of environmental impact assessment EIA, including matrix approach, adopted methods of EIA in Australia. Techniques of impact evaluation in terms of socio-economic criteria. Environmental decision making and planning under conditions of uncertainty. Case studies exemplifying procedures, techniques and issues. Trends, changes and possible future developments in EIA. Practical exercises representing components of typical EIAs.

GEOG3051
Soils and Landforms
Staff Contact: Drs W. Erskine, I. Prosser
S1 L2 T2
Prerequisite: GEOG1031 or GEOG1073

An introduction to soil classification schemes with particular emphasis on the soils and landforms of flood-plains and the Riverine Plain, NSW. Long term development of landscapes with emphasis on the evolution of mountain ranges. Arid zone and coastal landforms emphasising current processes and Quaternary history.

GEOG3062
Environmental Change
Staff Contact: A/Prof J. Dodson
S1 L2 T2
Prerequisite: Successful completion of a Year 2 Programme in Applied Science, Science, or Arts or equivalent as approved by the Head of School

GEOG3082
Project Design and Formulation
Staff Contact: Dr B. Parolin
S2 L2 T2

Stages in the design of a research project. Undertaking a literature review relating to the project. Identification and formulation of working hypotheses. Writing up a research proposal. Timetables and planning strategies for project execution and completion.

GEOG3101
Sample Surveys and Analysis
Staff Contact: Dr B. Parolin
S1 L2 T2

An introduction to sample survey data collection methods and techniques for the analysis of survey data. Topics include research design methods, questionnaire design and implementation and the analysis of categorical survey data using log-linear, logit and regression approaches.

GEOG3112
Geographic Information Systems
Staff Contact: Prof B.J. Garner & Mr S. Filan
S2 L2 T2
Prerequisite: GEOG3161 or by permission from the Head of School This prerequisite does not apply to students enrolled in course 3010.

An introduction to information systems of particular relevance for geographers with special reference to computer-based systems for resource evaluation. Case study evaluation, application of the MAP and other GIS software.

GEOG3142
Geographic Information Systems Applications
Staff Contact: Dr Q. Zhou
S1 L2 T2
Prerequisite: GEOG3122

Examples of applications of geographical information systems in resources and environmental management and urban and regional analysis. Case studies include the monitoring of land degradation, management of biological and physical resources, environmental conflict resolution, administration of land records, provision of health services, transport and land use planning, marketing and territory assignment. Visits to inspect facilities and activities of key government agencies are included.
AUSTRALIAN ENVIRONMENT AND NATURAL RESOURCES

GEOG3161
Computer Mapping and Data Display
Staff Contact: Prof B.J. Garner
S1 L1 T3
Prerequisites: Successful completion of a Year 1 program in Science or Arts or equivalent as approved by Head of School
Note/s: Not offered in 1995
Introduction to theoretical and practical problems in displaying data graphically and constructing thematic maps by computer using the GIMMS mapping package. The emphasis is on developing skills in automated cartography through hands-on experience culminating in the preparation of a folio of maps of selected census data. No previous computing expertise is required.

GEOG3172
Spatial Population Analysis
Staff Contact: A/Prof I. Burnley
S2 L2 T2
Prerequisite: GEOG2092
Population growth and structure in an international urban and regional context. The components and processes of population change; fertility, mortality and migration set within the framework of demographic transition and development theory. Theories of migration and mobility and of optimal populations. Demographic and social indicators for urban and regional analysis and their implications for inequalities in living conditions, at local, regional, and international scales. The adjustment of immigrant and migrant populations to the urban environment.

GEOG3181
Urban Activity Systems
Staff Contact: Dr B. Parolin
S1 L2 T2
Prerequisite: GEOG2092
Focus is on trip making, movement, and activity patterns in urban areas. Topics include: the activity concept, travel behaviour and urban spatial structure; constraints to individual travel behaviour and activity pattern linkages; the urban transport disadvantaged; public transport problems and issues in Australian capital cities; travel and activity consequences of transport infrastructure developments.

GEOG3192
Urban and Regional Development
Staff Contact: Dr M. Sant
S2 L2 T2
Focus is on the growing importance of recreation and tourism in urban and regional systems. Emphasis is on problems of land use and resource allocation and implications for planning in Australia. Theoretical and practical studies of leisure environments, open space provision, recreational demand, methods of forecasting, management of supply, resort development, economic and environmental impact assessment.

GEOG3211
Australian Environment and Natural Resources
Staff Contact: A/Prof M. Fox and Dr I. Prosser
S1 L2 T2
Prerequisite: GEOG1073 or GEOG1031
The characteristics of Australia's physical and biotic environment: geology, climate, geomorphology, soils, vegetation and fauna. The problems of exploiting Australia's water and land resources including the degradation of land by erosion, salinisation and soil fertility decline; and habitat loss and fragmentation.

GEOG3333
Special Topic
Staff Contact: A/Prof J. Dodson
F T4
Admission by permission to suitable students with good Passes in at least four subjects at Upper Level. A course of individually supervised reading and assignments as an approved topic in Geography not otherwise offered.

GEOG3334
Special Research Methods
Staff Contact: A/Prof J. Burnley
F T2
Prerequisite: A graded pass average in at least four upper level geography subjects
Note/s: Excluded GEOG3333
A course of individually supervised readings leading towards an advanced understanding of theoretical and analytical developments in one area of geography.

GEOG4010
Field Project 4
Staff Contact: Dr W. Erskine
S2 T8
Develop skills in problem formulation and team-based fieldwork. Preparation and presentation of professional quality reports of applied geographical analysis. Define problem, plan strategy for appropriate investigation. Conduct field studies, and report results of investigation. Field work of five days is compulsory. Students will incur some personal expenses in connection with this subject.

GEOG4031
Project
Staff Contact: Dr B. Parolin
S1 T16
Prerequisite: GEOG3082
Implementation of the research proposal in Applied Geography prepared for GEOG3082 Project Design and Formulation under the direction of a supervisor; preparation of a project report.

GEOG4100/GEOG4050
Honours Geography
Staff Contact: A/Prof I. Burnley (Arts) & Mr A. Evans (Science)
F
Prerequisites: Arts students must satisfy Faculty requirements for entry to the Honours Level program and must have obtained at least 54 credit points in Geography subjects, including 12 Level 1 credit points. A minimum cumulative average at Credit level is required for all Upper Level subjects taken which must include GEOG3221.
Details of Honours Geography for science students are available from the School of Geography office.
Students are required: 1. To undertake an original piece of work extending throughout the year and to submit a thesis based upon it. 2. To participate in seminars and fieldwork as notified by the School of Geography.
GEOG4042
Practical Applications In Geography
Staff Contact: Prof B.J. Gamer
S1 T3
Seminars with practitioners in the fields of urban and regional analysis and environmental studies, including environmental impact statements; research proposals; report writing; the roles of government agencies and consultants; and budgeting for research projects; applying for positions and personal skills development.

GEOG4052
Advanced Spatial Analysis
S2 L2 T2
Note/s: Subject to availability of staff.
Selected topics in economic and physical geography chosen to illustrate developments at the frontiers of research in spatial analysis.

GEOG4062
Advanced Environmental Analysis
Staff Contact: A/Prof M. Melville
S2 L2 T2
Selected topics in the study of human and physical environments, chosen to illustrate contemporary frontiers of research and development in environmental studies.

GEOG9130
Soil Studies for Arid Lands Management
Staff Contact: A/Prof M. Melville
C3 S1 L2 T1
Soil forming processes in arid regions. Physical, mineralogical and chemical characteristics of arid soils, with emphasis on properties significant for land capability. Chemical and physical properties of saline and alkaline soils. Soil response to irrigation, secondary salinization and alkalinization. Classifications and distribution of arid zone soils and their environmental relationships. Field methods and soils survey techniques, statistical analysis of soil data and its application to mapping. Laboratory analyses of physical and chemical characteristics of soils, with emphasis on properties significant for land capability.

Based on GEOG3011 Pedology, with additional reading, tutorials, seminars and practical classes to stress the features of arid zone soils.

The formal component of the above teaching is completed at Kensington. However, a number of tutorial and laboratory hours are devoted to a field-based soil mapping project based at Fowlers Gap Research Station.

GEOG9150
Remote Sensing Applications
Staff Contact: Drs A. Skidmore, Q. Zhou & Mr A. Evans
C3 S1 L1 T2
The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials; multi-temporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in the coastal zone.

Use of remote sensing in environmental management and in environmental impact assessment.

GEOG9160
Directed Problems in Remote Sensing
Staff Contact: Dr A. Skidmore
C3 S2 T3
A detailed investigation of a particular aspect of remote sensing technology or an area of applications relevant to candidates interests and background.

GEOG9180
Environmental Planning and Evaluation
Staff Contact: Dr M. Sant
C2 S1
Note/s: Subject to availability of staff.
Seminars on environmental problems, socio-economic assessment of policies and proposed developments, resource management.

GEOG9210
Computer Mapping and Data Display
Staff Contact: Prof B. Garner
C3 S1 L2 T2
Note/s: Not offered in 1995
Introduction to automated cartography and thematic mapping; theoretical and practical problems in displaying and mapping data by computer; review and application of selected computer mapping packages. INFO is used for database management, and ARCINFO and GIMMS for cartographic manipulation and output.

GEOG9230
Population, Health and Environment
Staff Contact: A/Prof I. Burnley
C3 S2 L2
Relationship between environmental factors and disease morbidity and mortality is examined by consideration of the epidemiological transition in different countries, and the spatial and occupational-specific variation in disease incidence in Australia. Methodology for standardising, testing for significance and data quality.

GEOG9240
Principles of Geographic Information Systems
Staff Contact: Dr Q. Zhou
C3 S1 L1 T2
Study of selected geographic information systems; problems of data capture and display, data storage and manipulation, system design and development; cartographic displays and computer mapping. INFO is used for database management, and ARCINFO and MAP for spatial data manipulation and display.

GEOG9241
Advanced Geographical Information Systems
Staff Contact: Dr A. Skidmore
C3 S2 L1 T2
Prerequisite: GEOG9240
Advanced topics and concepts in GIS research and development. Focus is primarily on vector-based systems. Topics include data models, structures and capture; vector editing and algorithms; errors and data accuracy. Practical exercises based on ARCINFO; INFO is used for data base management.
GEOG9250
Special Topic
Staff Contact: Dr M. Sant
C3 S1 or S2 T3
Selected topics may be pursued in the forum of individually supervised readings and assignments linked to studies in postgraduate programs offered through the School of Geography.

GEOG9280
Application and Management of Geographical Information Systems
Staff Contact: Dr A. Skidmore
C3 S1 L2 T1
The process and issues involved in an organization acquiring, implementing and managing a GIS will be considered using real examples. Applications using GIS in the management of natural resources (forest, park, soil etc), utilities and cadastra at the local, national and global scale will be critically reviewed. The course will involve the practical use of project management tools and the application of GIS to solve a management problem using ARCINFO or MAPINFO. INFO is used for database management.

GEOG9290
Image Analysis of Remote Sensing
Staff Contact: Drs A. Skidmore & Mr A. Evans
C3 S2 L1 T1
Techniques for extracting information from satellite imagery including image enhancement techniques, classification and feature recognition, statistical methods, and related procedures. Emphasis is on applications relating to vegetation cover and natural resource management. Practical work will be undertaken using the ERDAS image processing software.

GEOG9300
Vegetation management
Staff Contact: A/Prof J. Dodson, A/Prof M. Fox & Dr A. Skidmore
C3 S1 L2 T1
Note/s: Fieldwork forms a compulsory part of this subject and students will incur personal costs.

The subject provides a background in theory and practice in vegetation management, particularly under Australian conditions. It covers the description and measurement of vegetation, vegetation dynamics, vegetation response to perturbation and human impacts, theories, and modelling of vegetation change. A third of the subject is devoted to management strategies of selected vegetation types.

GEOG9310
River management
Staff Contact: Dr W. Erksine
C3 S2 L2 T1
Note/s: Fieldwork forms a compulsory part of this subject and students will incur personal costs.

The principles of river management including total or integrated catchment management, environmental impact assessment, in-stream uses and hydrogeomorphic behaviour. Issues covered include regulated rivers, inter-basin diversions, extractive industries, urbanisation, river engineering, legislative controls and institutional responsibilities. The course develops an understanding of how and why rivers respond to human activities and ways of ameliorating negative impacts. Field work is an essential part of the subject and the Nepean River will be used as a case study of management problems.

GEOG9320
Soil Degradation and Conservation
Staff Contact: A/Prof M. Melville and Dr W. Erksine
C3 S2 L2 T1
Note/s: Fieldwork forms a compulsory part of this subject and students will incur personal costs.

Identification, assessment and analysis of the main processes of soil degradation, including the role of climate, vegetation, geomorphology and pedology in controlling the processes. Discussions of appropriate management strategies for reducing degradation and for reclaiming degraded landscapes. Topics include: surface wash, gully erosion, wind erosion, soil acidification, soil structure decline, salinisation, accumulation of toxins and desertification.

GEOG9509
Project
Staff Contact: A/Prof M. Melville
C9 S2 T9
A practical application or investigation in environmental studies or in land classification as a basis for land management or land use planning: or an investigation of soil degradation in relation to soil-vegetation characteristics and land use; or a comparative review of existing approaches to land evaluation. Requires additional fieldwork at Fowlers Gap Research Station or in another part of arid or semi-arid Australia. Tutorial hours are equivalent contact hours, but also involve fieldwork out of session.

GEOG9512
Project
Staff Contact: Drs M. Sant and A. Skidmore
C12
An investigation of a problem in remote sensing or geographical information systems which involves an identifiable research component. Such an investigation should be related to the research interests of particular Schools within the Faculty of Applied Science.
The field of Materials Science and Engineering offers unlimited possibilities for innovation and development. Attention is being focussed on developing and processing metals, ceramics, polymers and composites with improved properties. The activities of the materials engineer range from materials production, including their extraction from ores and their refining, to the design, development, processing and recycling of materials for use in aerospace, transportation, electronics, energy conversion, and biomedical systems. Advanced materials can provide a major competitive advantage in virtually every part of a country's manufacturing industry. Because Australia is a country rich in minerals, materials science has been designated as a priority area for research and development. Examples of recent and significant developments include the emergence of environmentally friendly and economical metal processing methods; advanced surface coatings; electrical ceramics; engineering polymers, and advanced composites.

The School of Materials Science and Engineering provides education and training for students to prepare them for a significant and important career in the materials industry.

The School of Materials Science and Engineering is in a good position to provide the increased numbers of graduates necessary for development of these new initiatives in materials. It is the only school in Australia which offers professional courses in ceramic engineering, metallurgical engineering, and materials engineering as well as providing postgraduate specialization in these fields. The School is extremely well equipped with a wide range of advanced computing, thermal analysis, mechanical testing, X-ray, optical and electron microscopy facilities.

The School comprises three departments, ceramic, materials, and metallurgical engineering which offer the above-mentioned undergraduate courses.

Ceramic Engineering and Ceramics

The ceramic industry produces an enormous volume and variety of products used in engineering applications, building construction and in our everyday life. As well as the traditional bricks, roof tiles, sheet and container glass and tableware, ceramics have been found essential as abrasives, refractories, enamels and in electrical and electronic applications and nuclear fuels. In many of these cases, ceramic articles make possible the manufacture of other products either by being a key component, such as an electronic or magnetic part, or by forming the material of construction of, for example, a blast furnace or an abrasive wheel. Modern ceramics comprise such a varied and complex group of materials that a high level of training is required to control their manufacture with the required precision and to supervise their proper use. Ceramic engineers are needed in increasing numbers both in Australia and overseas countries and the School offers the only degree course in Ceramic Engineering in Australasia. The Ceramic Engineering course trains students in the relation between the structure and the properties of ceramic materials, the engineering and process chemistry of their manufacture and the design principles of their use. Careers open to graduates fall into three broad categories. Some go initially into activities associated directly with production, i.e. the design and layout of plants, supervision of their construction and control of their operations. Others move into research and development in industrial laboratories or research institutions. The final group enters fields outside of Ceramic Engineering directly, where the graduate's background in materials and engineering is utilised. In all
cases, graduates with organizing ability frequently move into management if they have an interest in this side of the industry.

In Australia, a number of government research organizations are active in ceramic research, e.g., the Australian Nuclear Science and Technology Organization, and the Divisions of Materials Science and Building Research of the CSIRO. Investigations with more immediate applications are carried out in industrial laboratories. Even when the basic principles of a process have been worked out in the laboratory, its successful transfer to an industrial scale requires a great deal of effort and expertise. This is an area which offers great scope for further development in Australia.

Graduates in Ceramic Engineering are eligible for membership of the Institution of Engineers, Australia, the Institute of Ceramics, Great Britain, the Royal Australian Chemical Institute and the National Institute of Ceramic Engineers, USA.

It is compulsory that, before completion of the course, students in Ceramic Engineering must obtain a minimum of twelve weeks' professionally oriented or industrial experience.

Metallurgical Engineering

The metallurgical profession has developed in importance in keeping with growth of Australian metal and mineral industries. These industries are recognized as being important to the Australian economy and there is a strong demand for professional metallurgists in all sectors of these industries, as well as manufacturing industry.

Graduate metallurgists have a wide choice of type of employment and location. They may work in production, technical control or development, in metal or mineral producing plants in locations such as Newcastle, Port Kembla, Broken Hill, Mt Isa, Townsville, Gladstone, Port Pirie, Whyalla, Kwinana, Kalgoorlie or Pilbara; or in manufacturing plants, including the automobile, aircraft, and construction industries located mainly in the population centres. In the metal industry, opportunities for a career in management are excellent, since it is a tradition in this industry that management should be in the hands of technical people. If graduates are inclined towards research and development, they will find considerable scope in various government, university, and industrial research laboratories.

The undergraduate courses in metallurgical engineering and metallurgy are broadly-based on engineering and physical sciences and have been designed to prepare graduates for employment in any field of metallurgy within the metal and manufacturing industries or in research institutions.

Graduates in Metallurgical Engineering are eligible for membership of the Institution of Engineers, Australia, the Australasian Institute of Mining and Metallurgy and the Institution of Metals and Materials Australasia.

Students are required to have gained at least twelve weeks of approved industrial experience before graduation. Industrial experience is usually obtained during the long recess periods.

Materials Engineering

Materials Engineering is a new and broad-ranging discipline which applies the principles of science and engineering to the design and development of metallic, ceramic and plastic materials and, to their manufacture into goods and their subsequent performance in service. It is founded on the relationship between structure and properties, an understanding of which, permits materials to be engineered to specific end use requirements. Virtually every man-made material is now the subject of study of the Materials Engineer.

Due to an increasing demand for optimized materials, graduates in Materials Engineering are presented with an outstanding range of job opportunities. Many graduates pursue an industrial career either in the materials producing industries, the utilities, or manufacturing sector. Materials and process development and selection, supervision of manufacturing and production processes, technical trouble shooting and testing, are areas in which Materials Engineers are commonly engaged. Alternatively, graduates may pursue a research career, working in laboratories run by materials producing companies, and statutory commonwealth and state government departments. Graduates with an organizing ability frequently move into management both in industry and research. Since materials engineering is a broadly-based scientific/engineering discipline, there is considerable flexibility in career selection.

Graduates in Materials Engineering are eligible for membership of the Institution of Engineers, Australia.

Students are required to have gained at least twelve weeks of professionally oriented or industrial experience in an area of industrial setting involving processing, production, characterisation, analysis, testing etc.
COURSE OUTLINES MATS 93

Undergraduate Study

Course Outlines

Ceramic Engineering and Ceramics

A four-year full-time course in Ceramic Engineering leading to the award of the BE degree, and a six-year part-time course in Ceramics leading to the award of the BSc (Tech) degree, are offered within the School.

3025
Ceramic Engineering - Full-time Course

Bachelor of Engineering
BE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1101 Chemistry 1A</td>
<td>C1 6</td>
</tr>
<tr>
<td>CHEM1201 Chemistry 1B</td>
<td>C2 6</td>
</tr>
<tr>
<td>MATH1131 Mathematics 1A or 1B</td>
<td>6 0</td>
</tr>
<tr>
<td>MATH1141 Higher Mathematics 1A</td>
<td>6 0</td>
</tr>
<tr>
<td>MATH1231 Mathematics 1B or 1C</td>
<td>6 0</td>
</tr>
<tr>
<td>MATH1241 Higher Mathematics 1B or 1C</td>
<td>0 6</td>
</tr>
<tr>
<td>MATH1251 Introduction to Materials Engineering 1A</td>
<td>0 2</td>
</tr>
<tr>
<td>MATH1261 Introduction to Materials Engineering 1B</td>
<td>1 0</td>
</tr>
<tr>
<td>MATH1271 Introduction to Computing</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH0130 Engineering Drawing and Descriptive Geometry</td>
<td>4 0</td>
</tr>
<tr>
<td>MECH0440 Engineering Statics</td>
<td>0 3</td>
</tr>
<tr>
<td>PHYS1002 Physics 1</td>
<td>6 6</td>
</tr>
<tr>
<td>Totalling</td>
<td>25 23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2818 Physical Chemistry</td>
<td>5 0</td>
</tr>
<tr>
<td>MATH2021 Mathematics</td>
<td>2 2</td>
</tr>
<tr>
<td>MATH1002 Microstructural Analysis</td>
<td>0 3</td>
</tr>
<tr>
<td>MATH1022 Materials Process Principles</td>
<td>0 1</td>
</tr>
<tr>
<td>MATH1032 Materials Engineering 1A</td>
<td>3 0</td>
</tr>
<tr>
<td>MATH1042 Crystallography & X-Ray Diffraction</td>
<td>4 0</td>
</tr>
<tr>
<td>MATH1052 Materials Engineering 1B</td>
<td>0 3</td>
</tr>
<tr>
<td>MATH1062 Mechanical Properties of Materials</td>
<td>4 0</td>
</tr>
<tr>
<td>MATH1072 Physics of Materials</td>
<td>3 0</td>
</tr>
<tr>
<td>MATH1082 Thermodynamics of Materials 1</td>
<td>0 3</td>
</tr>
<tr>
<td>MATH1092 Materials and Design 1</td>
<td>0 2</td>
</tr>
<tr>
<td>MATH1102 Numerical Methods</td>
<td>1 2</td>
</tr>
<tr>
<td>MATH1112 Phase Equilibria</td>
<td>0 2</td>
</tr>
<tr>
<td>General Education (Category A)</td>
<td>0 4</td>
</tr>
<tr>
<td>Totalling</td>
<td>22 22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUEL0040 Fuel Engineering for Ceramic Engineers</td>
<td>1 1</td>
</tr>
<tr>
<td>INDC3070 Instrumentation and Process Control</td>
<td>0 3</td>
</tr>
<tr>
<td>MATH2869 Statistics SC</td>
<td>2 0</td>
</tr>
<tr>
<td>MATH1093 Thermodynamics of Materials 2</td>
<td>2 0</td>
</tr>
<tr>
<td>MATH1113 Ceramic Process Principles 1</td>
<td>2 0</td>
</tr>
<tr>
<td>MATH1243 Management 1</td>
<td>3 0</td>
</tr>
<tr>
<td>MATH1163 Chemistry of the Solid State</td>
<td>2 0</td>
</tr>
<tr>
<td>MATH2123 Ceramic Process Principles 2</td>
<td>0 2</td>
</tr>
<tr>
<td>MATH2133 Ceramic Raw Materials</td>
<td>2 0</td>
</tr>
<tr>
<td>MATH2143 Ceramic Equipment</td>
<td>0 2</td>
</tr>
<tr>
<td>MATH2153 Ceramic Processing Laboratory</td>
<td>0 4</td>
</tr>
<tr>
<td>MATH2183 Refractories</td>
<td>0 2</td>
</tr>
<tr>
<td>MATH2203 Physico Chemical Ceramics Laboratory</td>
<td>4 0</td>
</tr>
<tr>
<td>MATHS2133 Diffusion</td>
<td>2 0</td>
</tr>
<tr>
<td>MATHS2273 Chemistry of Ceramic Processes</td>
<td>0 2</td>
</tr>
<tr>
<td>MINE7341 Mineral Process Engineering</td>
<td>2 0</td>
</tr>
<tr>
<td>General Education (Category B)</td>
<td>0 4</td>
</tr>
<tr>
<td>Totalling</td>
<td>22 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002 Social Issues in Applied Science</td>
<td>2 0</td>
</tr>
<tr>
<td>CEIC4010 Process Economics 1</td>
<td>1 0</td>
</tr>
<tr>
<td>CEIC4020 Process Economics 2</td>
<td>0 1</td>
</tr>
<tr>
<td>INDC4070 Laboratory Automation for Ceramic Engineers</td>
<td>2 0</td>
</tr>
<tr>
<td>MATHS1244 Management 2</td>
<td>4 0</td>
</tr>
<tr>
<td>MATHS1254 Design Project</td>
<td>2 2</td>
</tr>
<tr>
<td>MATHS1294 Electrical Ceramics</td>
<td>0 3</td>
</tr>
<tr>
<td>MATHS1464 Materials Seminar</td>
<td>2 2</td>
</tr>
<tr>
<td>MATHS1534 Design with Brittle Materials</td>
<td>3 0</td>
</tr>
<tr>
<td>MATHS2244 Ceramic Process Engineering</td>
<td>2 0</td>
</tr>
<tr>
<td>MATHS2254 Ceramic Engineering Design</td>
<td>0 2</td>
</tr>
<tr>
<td>MATHS2264 Sintering of Ceramics</td>
<td>2 0</td>
</tr>
<tr>
<td>MATHS2274 Mechanical Properties of Ceramics</td>
<td>0 2</td>
</tr>
<tr>
<td>MATHS2284 Thermal Properties of Ceramics</td>
<td>0 2</td>
</tr>
<tr>
<td>MATHS2304 Project (Ceramic Engineering)</td>
<td>6 6</td>
</tr>
<tr>
<td>MATHS2324 Materials and Design 3 (Unit 1)</td>
<td>0 2</td>
</tr>
<tr>
<td>Totalling</td>
<td>26 22</td>
</tr>
</tbody>
</table>

+This subject and others in the professional program, contribute towards satisfaction of the Category C General Education requirement.
3030
Ceramic Engineering - Part-time Course

Bachelor of Science Technology
BScTech

<table>
<thead>
<tr>
<th>Stage</th>
<th>Course</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>Stage 1</td>
<td>MATH1131 Mathematics 1A or</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MATH1141 Higher Mathematics 1A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH1231 Mathematics 1B or</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH1241 Higher Mathematics 1B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS1002 Physics 1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>12</td>
</tr>
<tr>
<td>Stage 2</td>
<td>CHEM1101 Chemistry 1A</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CHEM1201 Chemistry 1B</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1001 Introduction to Materials Industry</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS1011 Introduction to Materials Engineering</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1021 Introduction to Computing</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MECH0130 Engineering Drawing and Description Geometry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MECH0440 Engineering Statics</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>12</td>
</tr>
<tr>
<td>Stage 3</td>
<td>CHEM2818 Physical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MATH2021 Mathematics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS1072 Physics of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATS1082 Thermodynamics of Materials 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1092 Materials and Design 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1102 Numerical Methods</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General Education (Category A)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>11</td>
</tr>
<tr>
<td>Stage 4</td>
<td>MATS1002 Microstructural Analysis</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1022 Materials Processes Principles</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1032 Materials Engineering 1A</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>MATS1042 Crystallography & X-ray Diffraction</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATS1052 Materials Engineering 1B</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1062 Mechanical Properties of Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATS1112 Phase Equilibria</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>General Education (Category A)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>11</td>
</tr>
<tr>
<td>Stage 5</td>
<td>FUEL0040 Fuel Engineering for Ceramic Engineers</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH2869 Statistics SC</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS1113 Ceramic Process Principles 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS2123 Ceramic Process Principles 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS2133 Ceramic Raw Materials</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS2143 Ceramic Equipment</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS2153 Ceramic Processing Laboratory</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS2203 Physico Chemical Ceramics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td>11</td>
</tr>
</tbody>
</table>

Stage 6

<table>
<thead>
<tr>
<th>Course</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDIC3070 Instrumentation and Process</td>
<td>S1</td>
</tr>
<tr>
<td>MATH1093 Thermodynamics of Materials 2</td>
<td>0</td>
</tr>
<tr>
<td>MATH1163 Chemistry of the Solid State</td>
<td>2</td>
</tr>
<tr>
<td>MATH1243 Management 1</td>
<td>3</td>
</tr>
<tr>
<td>MATS2183 Refractories</td>
<td>0</td>
</tr>
<tr>
<td>MATS2213 Diffusion</td>
<td>2</td>
</tr>
<tr>
<td>MATS2273 Chemistry of Ceramic Processes</td>
<td>0</td>
</tr>
<tr>
<td>MINE7341 Mineral Process Engineering</td>
<td>2</td>
</tr>
<tr>
<td>General Education (Category B)</td>
<td>0</td>
</tr>
<tr>
<td>Totalling</td>
<td>11</td>
</tr>
</tbody>
</table>

Metallurgical Engineering

A four-year full-time course in metallurgical engineering leading to the award of the BMetE degree (Physical Metallurgy or Process Metallurgy Major) and a six-year part-time course in metallurgy leading to the award of the BSc(Tech) degree are offered within the School.

3125
Metallurgical Engineering - Full-time Course

Bachelor of Metallurgical Engineering
BMetE

Students entering the Bachelor Metallurgical Engineering program may elect to major in either Process Metallurgy or Physical Metallurgy. Selection of these alternative study programs may be deferred until the end of the second year of full-time study.

The Process Metallurgy option is designed to produce graduates with training appropriate to the primary metallurgy industry while the Physical Metallurgy option provides a training more suited to the manufacturing industry.

Year 1 of the course consists of physics, chemistry, mathematics and engineering subjects and is essentially the same as that for a number of other engineering and science courses offered in the Faculty of Applied Science. Year 2 introduces Materials Science and Materials Engineering subjects supported by chemistry and mathematics and is common with Year 2 in the full-time Ceramic Engineering and Materials Engineering Courses. Physical Metallurgy and Metallurgical Engineering are introduced in Years 3 and 4. In Year 3 the major strands are supported by other engineering subjects and in Year 4 by a thesis project, seminar and professional electives.

Students are required to have gained at least sixteen weeks of approved industrial experience before graduation, and to have submitted satisfactory reports on such work. Industrial experience is usually obtained during the long recess periods at the ends of Years 2 and 3. During the course, visits are made to various metallurgical works, and students are required to submit reports on some of these. Students
may complete the first one or two years of their degree at their local university engineering school, and then transfer with advanced standing to UNSW.

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1101</td>
<td>Chemistry 1A</td>
<td>S1</td>
</tr>
<tr>
<td>CHEM1201</td>
<td>Chemistry 1B</td>
<td>S2</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td></td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A or</td>
<td></td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
</tr>
<tr>
<td>MATS1001</td>
<td>Introduction to Materials Industry</td>
<td></td>
</tr>
<tr>
<td>MATS1011</td>
<td>Introduction to Materials Engineering</td>
<td></td>
</tr>
<tr>
<td>MATS1021</td>
<td>Introduction to Computing</td>
<td></td>
</tr>
<tr>
<td>MECH0440</td>
<td>Engineering Static</td>
<td></td>
</tr>
<tr>
<td>MECH0530</td>
<td>Engineering Drawing and Descriptive Geometry</td>
<td></td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics 1</td>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2818</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>MATH2021</td>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATS1002</td>
<td>Microstructural Analysis</td>
<td></td>
</tr>
<tr>
<td>MATS1022</td>
<td>Materials Process Principles</td>
<td></td>
</tr>
<tr>
<td>MATS1032</td>
<td>Materials Engineering 1A</td>
<td></td>
</tr>
<tr>
<td>MATS1042</td>
<td>Crystallography and X-ray Diffraction</td>
<td></td>
</tr>
<tr>
<td>MATS1052</td>
<td>Materials Engineering 1B</td>
<td></td>
</tr>
<tr>
<td>MATS1062</td>
<td>Mechanical Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>MATS1072</td>
<td>Physics of Materials</td>
<td></td>
</tr>
<tr>
<td>MATS1082</td>
<td>Thermodynamics of Materials 1</td>
<td></td>
</tr>
<tr>
<td>MATS1092</td>
<td>Materials and Design 1</td>
<td></td>
</tr>
<tr>
<td>MATS1102</td>
<td>Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>MATS1112</td>
<td>Phase Equilibria</td>
<td></td>
</tr>
<tr>
<td>General Education (Category A)*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 3 (Physical Metallurgy Major)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2869</td>
<td>Statistics SC</td>
<td></td>
</tr>
<tr>
<td>MATS1093</td>
<td>Thermodynamics of Materials 2</td>
<td></td>
</tr>
<tr>
<td>MATS1183</td>
<td>Non-Ferrous Physical Metallurgy</td>
<td></td>
</tr>
<tr>
<td>MATS1203</td>
<td>Materials and Design 2</td>
<td></td>
</tr>
<tr>
<td>MATS1243</td>
<td>Management 1</td>
<td></td>
</tr>
<tr>
<td>MATS1273</td>
<td>Ferrous Physical Metallurgy A</td>
<td></td>
</tr>
<tr>
<td>MATS2213</td>
<td>Diffusion</td>
<td></td>
</tr>
<tr>
<td>MATS2223</td>
<td>Phase Transformations</td>
<td></td>
</tr>
<tr>
<td>MATS4333</td>
<td>Fracture Mechanics</td>
<td></td>
</tr>
<tr>
<td>MATS4513</td>
<td>Deformation of Metals</td>
<td></td>
</tr>
<tr>
<td>MATS4523</td>
<td>Strengthening Mechanisms in Metals</td>
<td></td>
</tr>
<tr>
<td>MATS4533</td>
<td>Metal Forming</td>
<td></td>
</tr>
<tr>
<td>MATS4543</td>
<td>Fractographic Analysis</td>
<td></td>
</tr>
<tr>
<td>MATS4553</td>
<td>Non-Destructive Testing</td>
<td></td>
</tr>
<tr>
<td>MATS4560</td>
<td>Pyrometallurgical Processes</td>
<td></td>
</tr>
<tr>
<td>General Education (Category B)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 4 (Physical Metallurgy Major)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002</td>
<td>Social Issues in Applied Science†</td>
<td></td>
</tr>
<tr>
<td>MATS1154</td>
<td>Advanced Materials</td>
<td></td>
</tr>
<tr>
<td>MATS1164</td>
<td>Welding Science and Technology</td>
<td></td>
</tr>
<tr>
<td>MATS1244</td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>MATS1254</td>
<td>Design Project</td>
<td></td>
</tr>
<tr>
<td>MATS1464</td>
<td>Materials Seminar</td>
<td></td>
</tr>
<tr>
<td>MATS4104</td>
<td>Metallurgy Project</td>
<td></td>
</tr>
<tr>
<td>MATS4144</td>
<td>Mechanical and Thermal Processing of Materials</td>
<td></td>
</tr>
<tr>
<td>MATS4324</td>
<td>Materials and Design 3</td>
<td></td>
</tr>
<tr>
<td>MATS1203</td>
<td>Materials and Design 2</td>
<td></td>
</tr>
<tr>
<td>MATS1254</td>
<td>Mechanical Behaviour of Materials</td>
<td></td>
</tr>
<tr>
<td>MATS1283</td>
<td>Metallurgical Engineering Project</td>
<td></td>
</tr>
<tr>
<td>MATS4224</td>
<td>Mechanical Behaviour of Materials</td>
<td></td>
</tr>
<tr>
<td>MATS4253</td>
<td>Metallurgical Reaction</td>
<td></td>
</tr>
<tr>
<td>MATS324</td>
<td>Modelling Metallurgical Processes</td>
<td></td>
</tr>
<tr>
<td>MATS384</td>
<td>Air Pollution Control in the Metallurgical Industry</td>
<td></td>
</tr>
</tbody>
</table>

Year 3 (Process Metallurgy Major)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUEL0050</td>
<td>Fuel Engineering</td>
<td></td>
</tr>
<tr>
<td>INDC3070</td>
<td>Instrumentation & Process Control</td>
<td></td>
</tr>
<tr>
<td>MATH2869</td>
<td>Statistics SC</td>
<td></td>
</tr>
<tr>
<td>MATS1043</td>
<td>Heat, Fluid and Mass Flow in Materials Processing</td>
<td></td>
</tr>
<tr>
<td>MATS1093</td>
<td>Thermodynamics of Materials 2</td>
<td></td>
</tr>
<tr>
<td>MATS1183</td>
<td>Non-Ferrous Physical Metallurgy</td>
<td></td>
</tr>
<tr>
<td>MATS1203</td>
<td>Materials and Design 2</td>
<td></td>
</tr>
<tr>
<td>MATS1243</td>
<td>Management 1</td>
<td></td>
</tr>
<tr>
<td>MATS1283</td>
<td>Ferrous Physical Metallurgy B</td>
<td></td>
</tr>
<tr>
<td>MATS2183</td>
<td>Refractories</td>
<td></td>
</tr>
<tr>
<td>MATS5213</td>
<td>Metallurgical Plant Practice</td>
<td></td>
</tr>
<tr>
<td>MATS5263</td>
<td>Extractive Metallurgy</td>
<td></td>
</tr>
<tr>
<td>MATS5314</td>
<td>Kinetics and Mass Transfer in Metallurgical Processes</td>
<td></td>
</tr>
<tr>
<td>MINE7341</td>
<td>Mineral Process Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Year 4 (Process Metallurgy Major)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002</td>
<td>Social Issues in Applied Science†</td>
<td></td>
</tr>
<tr>
<td>MATS1154</td>
<td>Advanced Materials</td>
<td></td>
</tr>
<tr>
<td>MATS1164</td>
<td>Welding Science and Technology</td>
<td></td>
</tr>
<tr>
<td>MATS1244</td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>MATS1254</td>
<td>Design Project</td>
<td></td>
</tr>
<tr>
<td>MATS1464</td>
<td>Materials Seminar</td>
<td></td>
</tr>
<tr>
<td>MATS4104</td>
<td>Metallurgical Engineering Project</td>
<td></td>
</tr>
<tr>
<td>MATS4224</td>
<td>Mechanical Behaviour of Materials</td>
<td></td>
</tr>
<tr>
<td>MATS4253</td>
<td>Metallurgical Reaction</td>
<td></td>
</tr>
<tr>
<td>MATS324</td>
<td>Modelling Metallurgical Processes</td>
<td></td>
</tr>
<tr>
<td>MATS384</td>
<td>Air Pollution Control in the Metallurgical Industry</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- **Students who have completed two years’ study at an approved tertiary institution are exempted from Category A.**
- **A list of Professional Electives will be made available at the end of the Year 3 program and choices for the following year arrived at.**
- **This subject and others in the professional program contribute towards satisfaction of the Category C General Education requirement.**
3130 Metallurgy - Part-time Course

Bachelor of Science (Technology)

BSc(Tech)

This course is designed for students who are employed in the metallurgical and manufacturing industries and extends over six part-time years of study. Some of the subjects of stages 3, 4, 5 and 6 may be available only in day-time classes, and up to one day of release from industry per week may be required. The course essentially covers the same subject matter as the first three years and part of Year 4 of the full-time Metallurgical Engineering course and involves the same major strands of study in Physical Metallurgy and Metallurgical Engineering. The course has recently been revised. In the later stages of the course, there is less emphasis on primary metallurgy than in the full-time course and there is more emphasis on secondary Metallurgical Engineering which is developed to Year 4 level, while Physical Metallurgy is taken to Year 3 level. Students are required to complete an approved program of industrial training of not less than twelve months prior to the award of the degree. Industrial training should normally be completed concurrently with attendance in the course, but with approval of the Head of School may be completed after completion of the prescribed course of study.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PHYS1002</td>
<td>Physics 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td></td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Stage 2</td>
<td>CHEM1101</td>
<td>Chemistry 1A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CHEM1201</td>
<td>Chemistry 1B</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1001</td>
<td>Introduction to Materials Industry</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1011</td>
<td>Introduction to Materials Engineering</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1021</td>
<td>Introduction to Computing</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MECH0440</td>
<td>Engineering Statics</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH0130</td>
<td>Engineering Drawing and Description Geometry</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td></td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Stage 3</td>
<td>CHEM2818</td>
<td>Physical Chemistry</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH2021</td>
<td>Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS1072</td>
<td>Physics of Materials</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1082</td>
<td>Thermodynamics of Materials 1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATS1092</td>
<td>Materials and Design 1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS1102</td>
<td>Numerical Methods</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General Education (Category A)</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td></td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Stage 4</td>
<td>MATS1002</td>
<td>Microstructural Analysis</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATS1022</td>
<td>Materials Process Principles</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATS1032</td>
<td>Materials Engineering 1A</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1042</td>
<td>Crystallography and X-ray Diffraction</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1052</td>
<td>Materials Engineering 1B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1062</td>
<td>Mechanical Properties of Materials</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1112</td>
<td>Phase Equilibria</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General Education (Category A)</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td></td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Stage 5</td>
<td>MATS1183</td>
<td>Non-Ferrous Physical Metallurgy</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS1273</td>
<td>Ferrous Physical Metallurgy A</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATS2213</td>
<td>Diffusion</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS2223</td>
<td>Phase Transformations</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATS4513</td>
<td>Deformation of Metals</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS4523</td>
<td>Strengthening Mechanisms</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS4533</td>
<td>Metal Forming</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATS4543</td>
<td>Fractographic Analysis</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Education (Category A)</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td></td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Stage 6</td>
<td>MATS1164</td>
<td>Welding Science and Technology</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATS1203</td>
<td>Materials and Design 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS1464</td>
<td>Materials Seminar</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS4144</td>
<td>Mechanical and Thermal Processing of Materials</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATS4204</td>
<td>Industrial Metallurgy Project</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Education (Category B)</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totalling</td>
<td></td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Materials Engineering

A four-year full-time course in materials engineering leading to the award of the BMatE degree is offered within the School.
3615
Materials Engineering - Full-time Course

Bachelor of Materials Engineering
BMatE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1101 Chemistry 1A</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>CHEM1201 Chemistry 1B</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1131 Mathematics 1A</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1141 Higher Mathematics 1A</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231 Mathematics 1B or</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1241 Higher Mathematics 1B</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATS1001 Introduction to the Materials Industry</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS1011 Introduction to Materials Engineering</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MATS1021 Introduction to Computing</td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH0130 Engineering Drawing and Descriptive Geometry</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH0440 Engineering Statics</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS1002 Physics 1</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>25</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2818 Physical Chemistry</td>
<td></td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>MATH2021 Mathematics</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATS1022 Materials Process Principles</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MATS1002 Microstructural Analysis</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATS1032 Materials Engineering 1A</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATS1042 Crystallography & X-ray Diffraction</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MATS1052 Materials Engineering 1B</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATS1062 Mechanical Properties of Materials</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MATS1072 Physics of Materials</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATS1082 Thermodynamics of Materials 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATS1092 Materials and Design 1</td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATS1102 Numerical Methods</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MATS1112 Phase Equilibria</td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2869 Statistics SC</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS1093 Thermodynamics of Materials 2</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS1113 Ceramic Process Principles 1</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS1163 Chemistry of the Solid State</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS1203 Materials and Design 2 (Unit 1 Design for Corrosion Ctrl)</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS1243 Management 1</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATS1283 Ferrous Physical Metallurgy B</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATS2213 Diffusion</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS2223 Phase Transformations</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATS3443 Polymer Science and Engineering</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATS4333 Fracture Mechanics</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS4513 Dislocations</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATS4523 Deformation and Strengthening Mechanisms</td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MINE7341 Mineral Process Engineering</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>General Education (Category B)</td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS1183 Non-Ferrous Physical Metallurgy</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATS1244 Management 2</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MATS1254 Design Project</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATS1464 Materials Seminar</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATS4324 Materials and Design 3</td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATS3484 Welding Science and Technology (Unit 1)</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MATS3524 Materials Engineering Project</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MATS3544 Polymer Engineering</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Professional Electives</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>APSE0002 Social Issues in Applied Science†</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

†This subject and others in the professional program contribute towards the satisfaction of the Category C General Education requirement.
Course Outlines

The School welcomes enquiries from graduates in Science, Engineering and Applied Science who are interested in doing research leading to the award of the degrees of Master of Science, or Doctor of Philosophy in materials, metallurgy or ceramic engineering or who are interested in programs involving formal course work and research leading to the award of Master of Applied Science in Engineering Materials or Master of Applied Science in Corrosion Engineering.

Information about research scholarships, fellowships and grants in aid is available from the Postgraduate Coordinator and graduates are advised to consult him before making a formal application for registration.

8065 Engineering Materials

Master of Applied Science MAppSc

The MAppSc course in Engineering Materials provides a comprehensive study of the full range of materials. The program is designed for graduates wishing to acquire expertise in the selection, use and design capabilities of modern materials. It is particularly appropriate to graduates in other branches of engineering, and to honours graduates in science. A specialist course of study of Corrosion Technology is available as part of the degree, if desired.

The program consists of one year’s full-time study. This is made up of a formal time allocation of 18 hours per week, and will normally be supplemented by additional project work during the summer break. The balance between formal lecture courses and project work will be varied to suit individual students’ needs.

Compulsory Core

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS6475</td>
<td>Materials Science and Engineering</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATS6485</td>
<td>Materials Technology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATS6405</td>
<td>Graduate Materials Seminar</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Project</td>
<td>Minor Graduate Materials Project</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td>Major Graduate Materials Project</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Elective Subjects

Additional subjects are chosen from those offered by the School of Materials Science and Engineering, or from those offered by other Schools in the University subject to approval by the Head of School. Full details of all subjects are listed in the University calendar and handbooks.

Depending on the candidate’s background, enrolment in a limited number of unmodified undergraduate subjects may be appropriate, but may not exceed 15% of the non-project component. In all cases, the total of the compulsory core, project and elective subjects will be a minimum of 18 hours per week.

8052 Corrosion Engineering

Master of Applied Science MAppSc (Corr Eng)

The Master of Applied Science Course in Corrosion Engineering is open to graduates in Engineering, Applied Science or Science who wish to undertake formal studies to promote their careers in industry. The course is designed for those professionals in industry who are faced with the problem of combating corrosion. Its aim is to develop an appreciation of the fundamentals, principles of corrosion and of the available methods whereby it may be overcome.

The program consists of one year’s full-time study (2 sessions) or two years’ part-time study (4 Sessions). This is made up of a formal time allocation of 18 hours per week and will normally be supplemented by additional project work during the summer break. The balance between formal lecture courses and project work will be varied to suit individual student’s needs.

Compulsory Core

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS6475</td>
<td>Materials Science and Engineering</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATS6495</td>
<td>Corrosion Materials</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MATS6545</td>
<td>Corrosion Technology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATS1092</td>
<td>Materials and Design 1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATS6203</td>
<td>Design for Corrosion Control</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATS6535</td>
<td>Industrial Coatings for Corrosion</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATS6005</td>
<td>Corrosion Project</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

*UNSW graduates who have done MATS9542 (4.952, 5.4222), CIVL2402 (8.240), MATS9530 (4.913), and/or CIVL4403 (8.440) must substitute other appropriate subjects approved by the postgraduate coordinator in the School of Materials Science and Engineering.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

APSE0002
Social Issues in Applied Science
Staff Contact: A/Prof C.C. Sorrell
S1 L/T2
The subject covers social issues arising from future technological developments and the role that a professional applied scientist can play in influencing future directions. It will be taught by a combination of group activity, case studies and projects and seminars from visiting speakers, some of whom will be from disciplines other than the applied sciences.

MATS1001
Introduction to the Materials Industry
Staff Contact: A/Prof C.C. Sorrell
S1 L1 T1
The role of materials science and engineering in industry. Engineering materials. Information retrieval. Communication skills. Plant visits. Introductory materials science. Structure and properties of main types of engineering materials with emphasis on the ways in which properties may be controlled by controlling structure.

MATS1002
Microstructural Analysis
Staff Contact: Dr P. Krauklis
S1 L1 T2

MATS1011
Introduction to Materials Engineering
Staff Contact: Dr A. G. Crosky
S1 L1
Metals, ceramics, polymers and composites, their structure, chemical, physical and mechanical properties, engineering applications and production with particular reference to Australian industries.

MATS1022
Materials Process Principles
Staff Contact: Dr P. Wong
S2 L0.5 T0.5
Introduction to engineering calculations. Material balances. Techniques for solving problems, including selection of a basis for calculations, use of tie elements and recycle calculations. General energy balances. Steady-state material and energy balances. Examples are drawn from ceramic, materials and metallurgical engineering practices.

MATS1032
Materials Engineering 1A
Staff Contact: Dr V. Sahajwalla
S1 L2 T1
Fluid flow in materials processing. Application of the principles of fluid flow in the production and application of ceramic and metallic materials. Subject examples are drawn from ceramic, materials and metallurgical engineering practice in the broadest sense.

MATS1042
Crystallography and X-Ray Diffraction
Staff Contact: Dr A. Hellier
S1 L2 T1

MATS1043
Heat, Fluid and Mass Flow in Materials Processing
Staff Contact: Dr V. Sahajwalla
S1 L2
In-depth understanding of fundamental principles dictating transport phenomena in materials processing. Development of governing equations related to the transfer of fluid, energy and mass and their inter-dependence based upon fundamentals to analyse and solve problems encountered in current metallurgical operating environments. Application of the understanding developed to the emerging new technologies for metals processing such as direct reduction and smelting for iron-making, near net shape casting.

MATS1052
Materials Engineering 1B
Staff Contact: Dr P. Wong
S2 L1 T2
Heat applications of principles of steady and unsteady heat transfer in the production and application of materials. Course examples are drawn from materials engineering practice in the broadest sense. Heat flow in materials processing involving high temperature solid, liquid and gaseous phases. Thermal properties of dense and porous materials. Heat treatment, casting, sintering, corrosion, etc. Computer programs for calculating heat flow in materials.
MATS1062
Mechanical Properties of Materials
Staff Contact: Dr P. Krauklis
S1 L2 T2
Prerequisite: MECH0130
Mechanical properties of solids. Nature and significance of mechanical properties. Mechanical testing; the tension test, hardness testing and impact testing. Stress-strain-time relationships. Analysis of stress and strain, stress and strain transformation relationships, Mohr’s circle, elastic stress-strain relationships, application to various types of loading and metal working processes. Failure and yielding criteria. Influence of stress state, temperature, strain rate and environment on mechanical behaviour.

MATS1072
Physics of Materials
Staff Contact: Dr A.K. Hellier
S1 L2 T1
Prerequisite: PHYS1002
Interatomic bonding in solid materials. Types of interatomic bonds, metallic, covalent, ionic. Introductory quantum mechanics in one dimension, free electron theory, effects of periodic potential, density of states curves. Effect of electron to atom ratio on conductivity and crystal structure; semiconductors; intrinsic, extrinsic. Exchange energy; ferromagnetism, anti-ferromagnetism. Elementary perturbation theory, covalent bond; crystal structures, properties. Ionic bond, force.

MATS1082
Thermodynamics of Materials 1
Staff Contact: Dr O. Ostrovski
S2 L2 T1

MATS1092
Materials and Design 1
Staff Contact: Dr A. G. Crosky
S2 L1 T1
An appreciation of the relationships between the properties of materials, component design, manufacturing and product performance. Materials selection as an integral part of successful design. Long-term potential for materials improvement and substitution. Plant visits to selected materials processing plants.

MATS1093
Thermodynamics of Materials 2
Staff Contact: Dr O. Ostrovski
S1 L2

MATS1102
Numerical Methods
Staff Contact: Dr A. K. Hellier
F L1 T.5
Prerequisite: MATS1021
Finite difference and finite element techniques and their application to materials phenomena involving heat transfer, elasticity and plasticity.

MATS1112
Phase Equilibria
Staff Contact: Dr B. Gleeson
S2 L1 T1

MATS1113
Ceramic Process Principles 1
Staff Contact: Mr S. Prokopovich
S1 L2
The nature of ceramics. The scope of the ceramic industry, and principal unit operations. Particle packing: two, three and multi-component systems. Principal unit operations used in the ceramic industry. Drying and firing of ceramics. Glass and other melt forming processes. Hot forming and miscellaneous forming methods.

MATS1154
Advanced Materials Unit 1 Magnetic Materials
Staff Contact: School Office
S1 or S2 L1

Unit 2 Heat Resisting Alloys
Staff Contact: Prof D.J. Young
S1 or S2 L1

Unit 3 Fibre Reinforced Composites
Staff Contact: Dr A. G. Crosky
S1 or S2 L.5
Fibre composites, fibre and matrix materials, fabrication. Design with fibre composites. Mechanical properties and environmental effects, corrosion, fatigue, creep and damage tolerance.
Unit 4 Titanium alloys
Staff Contact: School Office
S1 or S2 L5

MATS1163
Chemistry of the Solid State
Staff Contact: A/Prof C.C. Sorrell
S1 L2
Crystal chemistry; nature of bonding in solids, ionic, and silicate structures; and structure-composition relationships. Glass and glass-ceramics. Reaction with solids, grain boundary and interfacial effects, ceramic reactions and polymorphic transformations (oxides, non-oxides, alumino-silicates).

MATS1164
Welding Science and Technology
Unit 1 Welding Technology
Staff Contact: Dr A.G. Crosky
S1 or S2 L1
Fusion welding and allied processed. Capabilities, advantages and limitations.

Unit 2 Welding Metallurgy
Staff Contact: Dr A.G. Crosky
S1 or S2 L1 T1
Metallurgical aspects of fusion welding and allied processes. Cause of welding defects and weldability of carbon and alloy steels, stainless steels, aluminium and other common nonferrous alloys. Assessment of welds by mechanical testing and non-destructive methods.

MATS1183
Non-Ferrous Physical Metallurgy
Staff Contact: Dr P Krauklis
S1 L1 T1
Constitution, microstructure, processing and properties of non-ferrous alloys. Cast and wrought alloys based on aluminium, copper, magnesium, lead, tin and zinc.

MATS1203
Materials and Design 2
Unit 1 Design for Corrosion Control
Staff Contact: Prof D.J. Young
S1 L1 T1

Unit 2 Surface Treatment and Wear
Staff Contact: Dr P. Krauklis
S2 L1 T1

MATS1243
Management 1
Staff Contact: School Office
S1 L3

Operations management: systems, strategies and benefits. Quality assurance, and quality management systems. The elements of total quality management, TQM.

MATS1244
Management 2
Staff Contact: Dr P. Krauklis
S1 or S2 L4
The major issues, research findings and management strategies relating to the human side of enterprise. Topics include management and power, leadership and innovation, managerial decision-making, stress at work, group dynamics and inter-group conflict, organisational design, goal setting and performance appraisal, approaches to personal and organisational development. Marketing and sales; marketing research, marketing strategies, customer relations, total product package. Project management: project planning and scheduling, contract planning and control, recent developments.

MATS1254
Design Project
Staff Contact: Dr A.Crosky
F L0.25 T1.75
This project will cover the design of a selected piece of processing equipment or an engineering component. It will involve selection and specification of materials and other relevant aspects covered within the undergraduate course.

MATS1273
Ferrous Physical Metallurgy A
Staff Contact: Dr P. Krauklis
S2 L2 T2

MATS1283
Ferrous Physical Metallurgy B
Staff Contact: Dr P. Krauklis
S2 L2 T1
Binary and ternary iron-carbon equilibria. Carbon steel, phase transformation, microstructures, heat treatment and mechanical properties. Modification of carbon steel characteristics by alloying elements. Alloy engineering steels, tool and die steels, corrosion and oxidation resistant steels, high strength low-alloy steels. Microstructure and
properties of grey, white, malleable, ductile and alloy cast irons.

MATS1294
Electrical Ceramics
Staff Contact: School Office
S1 or S2 L1 T2

MATS1464
Materials Seminar
Staff Contact: A/Prof C.C. Sorrell
F T2

Demonstration of public speaking skills and techniques. Preparation of visual aids. Library usage. Preparation and standards of written material. Chairpersonship. Each student is required to make two oral presentations based on the honours project.

MATS1534
Design with Brittle Materials
Staff Contact: School Office
S1 L1.5 T1.5

MATS2123
Ceramic Process Principles 2
Staff Contact: Mr S.A. Prokopovich
S2 L2

MATS2133
Ceramic Raw Materials
Staff Contact: Mr S.A. Prokopovich
S1 L2

The geological origin of ceramic raw materials. The minerals, mineralogical composition, properties and uses of commercial clays. The sources, physical properties and uses of non-clay raw materials.

MATS2143
Ceramic Equipment
Staff Contact: Mr S.A. Prokopovich
S2 L2

The principles of operation, construction and fields of application of equipment used in the ceramic industry in the following areas: Preparation of raw materials and auxiliary processing operations; forming, drying and firing of ceramic products.

MATS2153
Ceramic Processing Laboratory
Staff Contact: Mr S.A. Prokopovich
S2 T4

Laboratory programme illustrating processing and engineering aspects of ceramic technology. Students are required to take part in a series of factory inspections.

MATS2183
Refractories
Staff Contact: A/Prof C.C. Sorrell
S2 L2

Classification of refractories. Chemical and physical properties of refractories. Introduction to raw materials and manufacturing technology. A detailed study of chemical reactions occurring between refractories and solid, liquid and gas phases in ferrous and nonferrous metal industry. Review of phase equilibria.

MATS2203
PhysicoChemical Ceramics Laboratory
Staff Contact: A/Prof C.C. Sorrell
S1 T4

Laboratory programme illustrating the physical and chemical properties associated with the processing and performance of ceramic materials. Students are required to take part in a series of factory inspections.

MATS2213
Diffusion
Staff Contact: Dr A.K. Hellier
S1 L1 T1

MATS2223
Phase Transformation
Staff Contact: Dr B. Gleeson
S2 L2 T1

MATS2244
Ceramic Process Engineering
Staff Contact: Mr S.A. Prokopovich
S1 L2

MATS2254
Ceramic Engineering Design
Staff Contact: Mr S.A. Prokopovich
S2 L2
Engineering aspects of ceramic processing. Ceramic engineering design including design of dryers, kilns and glass tanks. Case studies. Pollution control equipment.

MATS2264
Sintering of Ceramics
Staff Contact: A/Prof C.C. Sorrell
S1 L1.5 T.5

MATS2273
Chemistry of Ceramic Processes
Staff Contact: A/Prof C.C. Sorrell
S2 L2
High-temperature reactions involving clays, silicates, oxides, and nonoxides. Processing effects of calcining, chemical reaction and vitreous and crystalline bond formation. Chemical and physical aspects of production of whitewares, porcelain, heavy clay products, glass, cements, cermets, and advanced high-purity ceramics.

MATS2274
Mechanical Properties of Ceramics
Staff Contact: School Office
S2 L2

MATS2284
Thermal Properties of Ceramics
Staff Contact: A/Prof C.C. Sorrell
S2 L2

MATS2304
Project (Ceramic Engineering)
Staff Contact: School Office
F T6
An experimental or technical investigation or design related to some aspects of ceramic engineering.

MATS2324
Materials and Design 3
Unit 1 Fracture Mechanics
Staff Contact: Dr A.K. Hellier
S1 or S2 L1 T1

MATS3443
Polymer Science and Engineering
Staff Contact: Dr S. Bandypadhyay
S2 L4 T2

MATS3484
Welding Science and Technology
Unit 1 Welding Technology
Staff Contact: Dr A.G. Crosky
S1 or S2 L1
Fusion welding and allied processes. Capabilities, advantages and limitations.

MATS3524
Materials Engineering Project
Staff Contact: Dr B. Gleeson
F6
An experimental or technical investigation or design related to some aspects of materials engineering.

MATS3544
Polymer Engineering
Staff Contact: Dr S. Bandypadhyay
F L2 T1
MATS4104
Metallurgy Project/Metallurgical Engineering Project
Staff Contact: Dr B. Gleeson
F6
An experimental investigation of some aspects of metallurgy or metallurgical engineering.

MATS4144
Mechanical and Thermal Processing of Materials
Unit 1 Deformation and Forming of Sheet Metal
Staff Contact: Dr A.G. Crosky
S1 or S2 L1

Unit 2 Powder Metallurgy
Staff Contact: School Office
S1 or S2 L1

MATS4174
Staff Contact: Dr S. Bandyopadhyay
S1 or S2 L5 T.5
Metal Matrix Composites (MMC) - their advantages and scope. Potential applications, limitations. Various systems of MMC's: role of interfaces. Fabrication techniques. Mechanical and Fracture Properties. Effect of volume fraction and size, size distributions and shape of reinforcement. Other properties such as creep, fatigue, corrosion, machinability.

MATS4204
Industrial Metallurgy Project
Staff Contact: School Office
F3
An experimental investigation of some aspect of industrial metallurgy.

MATS4324
Materials and Design 3
Unit 1 Fracture Mechanics
Staff Contact: Dr A. K. Hellier
S1 or S2 L1 T1

Unit 3 Design for Welding
Staff Contact: Dr A.G. Crosky
S1 or S2 L1 T1
Design of welded fabrications to reduce distortion and the risk of failure by fatigue, brittle fracture, etc. Welding application codes, weld quality requirements and quality assurance with welded fabrication.

MATS4333
Fracture Mechanics
Staff Contact: Dr A. Hellier
S1 L1 T1

MATS4513
Deformation of Metals
Staff Contact: School Office
S1 L2
Atomic and molecular description of deformation. Introduction to dislocation theory and its application to mechanical properties.

MATS4523
Strengthening Mechanisms in Metals
Staff Contact: Dr B. Gleeson
S2 L1 T1
Strengthening mechanisms, creep, fracture, grain size dependence of strength. Introduction to generation of deformation and recrystallization textures. Measurements of age-hardening, activation energy of strain ageing.

MATS4533
Metal Forming Processes
Staff Contact: Dr A.G. Crosky
S1 L2

MATS4543
Fractographic Analysis
Staff Contact: Dr A.G. Crosky
S2 L1 T2
Classification of macroscopic and microscopic fracture mechanisms. Initiation and propagation of ductile, brittle, fatigue, stress corrosion, and corrosion fatigue fractures. Effect of material defects, design deficiencies and incorrect processing on the origin and cause of fracture. Analysis of various modes of fracture using fractographic techniques involving optical microscopy and scanning and transmission electron microscopy.

MATS4553
Non-Destructive Testing
Staff Contact: Dr A.G. Crosky
S2 L1
MATS5213
Metallurgical Plant Practice
Staff Contact: Dr O. Ostrovski
S1 or S2 T1

Up to 3 days of metallurgical plant inspections and case studies equivalent to 35 tutorial hours are associated with this subject. Ferrous and non-ferrous plant practice.

MATS523
Metallurgical Reaction Engineering
Staff Contact: Dr O. Ostrovski
S1 or S2 L2

MATS5263
Extractive Metallurgy
Staff Contact: Dr O. Ostrovski
S1 L3 S2 L2 T2

Application of principles of aqueous thermodynamics, electrochemistry, chemical and electrochemical kinetics to hydrometallurgical processes: leaching of mineral and concentrates, solution purification, precipitation and other separation processes, ion-exchange and liquid-liquid extraction, electrowinning and electorefining.

MATS5314
Kinetics and Mass Transfer In Metallurgical Processes
Staff Contact: Dr A. Yu
S1 L1 S2 L2 T1

MATS5324
Modelling Metallurgical Processes
Staff Contact: Dr P. Wong
S2 L4

The mathematical and physical modelling of primary and secondary metals processing operations. Ladle metallurgy operations, entrainment of gases by molten metals, electromagnetically driven flows, dispersion of alloying additions, coalescence of inclusions, modelling metal flow and solidification, blast furnace drainage.

MATS5384
Air Pollution Control in the Metallurgical Industry
Staff Contact: Dr V. Shajwalla
S1 or S2 L1

Air pollutants from the different metallurgical industries. Technical principles and equipment to control the emission of pollutants. Examples from the primary and secondary metallurgical industries.

MATS6005
Corrosion Project
Staff Contact: School Office
F HPW6

A substantial project on some aspect of corrosion science or technology.

MATS6203
Materials and Design 2
Unit 1 Design for Corrosion Control (Unit 1 of MATS1203)
Staff Contact: Prof D.J. Young
S1 L1 T1

MATS6405
Graduate Materials Seminar
Staff Contact: School Office
F HPW2

Instruction in written and oral presentation of technical and scientific material at an advanced level which involves a presentation by the candidate of a lecture on a selected topic.

MATS6475
Materials Science and Engineering
Staff Contact: School Office
F L2 T1

MATS6485
Materials Technology
Staff Contact: School Office
F L1.5 T1.5

Material properties and their effect on component design, manufacturing and product performance. Materials selection as an integral part of successful design. Long-term potential for materials improvement and

MATS6495
Corrosion Materials
Staff Contact: School Office
F L2 T1
Properties and efficient selection of materials for corrosion resistance. Applications in manufacturing, mining and process industries, in transportation equipment and in structures. Materials selection for service in particular environments.

MATS6535
Industrial Coatings for Corrosion Protection
Staff Contact: School Office
S1 L2
Special topics on heavy-duty organic, inorganic and metallic coatings used in atmospheric, marine and industrial environments.

MATS6545
Corrosion Technology
Staff Contact: School Office
F L3
Environmental fracture; corrosion in specific environments; corrosion of specific equipment types; principles of materials selection and design; surface preparation and maintenance coatings; polymeric materials and linings, inhibitors and electrochemical tests methods; cathodic protection.

MATS6555
Minor Graduate Materials Project
Staff Contact: School Office
F HPW3
A small technical investigation or a design project, including a written report.

MATS6565
Major Graduate Materials Project
Staff Contact: School Office
F HPW9
A substantial experimental or theoretical investigation, or design project, including a written thesis.

MATS7134
Structure and Properties of Metallurgical Phases Unit 1 Structure and Properties of Solids
Staff Contact: Dr O. Ostrovskie
S1 or S2 L1 T1
Application of defect solid state chemistry to materials preparation and reactivity. Non-stoichiometric and stoichiometric-dependent physical and chemical properties of metal compounds.

Unit 2 Structure and Properties of Melts
Staff Contact: School Office
S1 or S2 L1
The atomistic and microscopic approach to melts in process metallurgy, liquid metals, mattes, molten salts and slags. Relationships between melt structure, mechanism and reaction kinetics in smelting and refining operations.

MATS7144
Mechanical and Thermal Processing of Materials Unit 2 Powder Metallurgy
Staff Contact: School Office
S1 or S2 L1

MATS7154
Advanced Materials
Unit 1 Magnetic Materials
Staff Contact: School Office
S1 or S2 L1

Unit 2 Heat Resisting Alloys
Staff Contact: Prof D.J. Young
S1 or S2 L1

MATS7164
Welding Science and Technology Unit Welding Metallurgy
Staff Contact: Dr A.G. Crosky
S1 or S2 L1 T1
Metallurgical aspects of fusion welding and allied processes. Causes of welding defects and weldability of carbon and alloy steels, stainless steels, aluminium and other common non-ferrous alloys. Assessment of welds by mechanical testing and non-destructive methods.

MATS7244
Advanced Electron Optics
Staff Contact: School Office
S1 or S2 L1 T1
See School for details.

MATS7470
Polymer Processing and Fabrication
Staff Contact: Dr S. Bandyopadhyay
S1 L2 T2
Factors affecting quality and efficiency of extrusion, injection moulding and other fabrication techniques. Polymer viscous flow; viscometry; fluid flow and heat transfer in melt processing. Effect of polymer chemical structure, temperature and molecular weight upon flow
properties. Computer simulation of polymer flow during processing.

MATS7480
Polymer Product Design
Staff Contact: School Office
S2 L2

MATS7490
High Temperature Techniques
Staff Contact: School Office
S1 or S2 L1
Experimental methods for the determination of thermophysical and thermochemical properties at elevated temperatures.

MATS7500
Mathematical Plasticity
Staff Contact: Dr A.K. Hellier
S1 or S2 L1
Mathematical approaches to macroscopic plastic deformation; slip line field analysis, upper and lower bound techniques, finite element techniques. Application to estimation of loads and stresses developed during industrial deformation processes: rolling, drawing, bending.

MATS9420
Materials for Mining Engineers
Staff Contact: Dr P. Krauklis
F L2 T1

MATS9520
Engineering Materials
Staff Contact: Dr A.G. Crosky
S1 L2 T1
Microstructure and structure-property relationships of the main types of engineering materials (Metals, Ceramics, Polymers and Composites). Micromechanisms of elastic and plastic deformation. Fracture mechanisms for ductile, brittle, creep and fatigue modes of failure in service; corrosion. Metal forming by casting and wrought processes. Phase Equilibria of alloys; microstructural control by thermomechanical processing and application to commercial engineering materials. Laboratory and tutorial work includes experiments on cast and recrystallized structures, ferrous and non-ferrous microstructures and fracture and failure analysis.

MATS9530
Materials Engineering
Staff Contact: A/Prof C.C. Sorrell
S1 or S2 L2 T1
Prerequisite: MATS9520
Materials used in Mechanical Engineering and related fields (Manufacturing Engineering Management, Aerospace Engineering, Naval Architecture) are discussed with emphasis on the dependence of properties and performance on microstructure. Aspects of materials selection during the design of engineering components which affect the service performance in applications where failure can occur by brittle fracture, corrosion, creep or fatigue, will also be discussed.

MATS9640
Materials Science and Engineering for Electrical Engineers
Staff Contact: School Office
S2 L3 T1
Metallic, ceramic, organic, polymeric and composite materials and their technology for electrical engineering applications. Structures and structure property relations, phase equilibria and their effect on mechanical, electrical, magnetic, thermal and chemical properties. The shaping, treating and joining of materials. Aqueous and gaseous corrosion. Metallic glasses, superconductors, fast ion conductors. The role of materials science in the development of electrical energy systems.

MATS9650
Pyrometallurgical Processes
Staff Contact: Dr O. Ostrovski
S1 L2
Principles and development of pyrometallurgical processes and a review of the unit operations, roasting, sintering, smelting and refining for the treatment of ferrous and non-ferrous minerals.

MATS9712
Materials and Techniques in Design Craft 1
Staff Contact: A/Prof C.C. Sorrell
S1 L2 T1
An introduction to the science and technology of materials, emphasizing relationships between structure, composition and properties. Introduction to processing of metallic, ceramic and fibrous materials. Materials recognition and design possibilities are discussed.

MATS9722
Materials and Techniques in Design Craft 2B
Staff Contact: A/Prof C.C. Sorrell
S2 L1.5 T1.5
Casting, working and surface finishing of metals and alloys. Soldering, brazing and welding. Joining metals to glasses, ceramics and gemstones.

MATS9732
Materials and Techniques in Design Craft 2C
Staff Contact: A/Prof C.C. Sorrell
S2 L1.5 T1.5
Structures and properties of clays, non-clays, cements, porcelains, glazes, glasses and other ceramics. Optical properties and colours of glasses, glazes and gemstones. Forming and firing of ceramic bodies, reactions during firing. Kilns and oxidation/reduction effects.
The School of Mines, which was formed in 1986, consists of two Departments and two Centres corresponding to the main professions on which the mining and minerals industry of Australia depends. These are the Departments of Applied Geology and Mining Engineering, and the Centre for Minerals Engineering (in conjunction with the School of Chemical Engineering) and the Key Centre for Mines.

Prior to the formation of the School of Mines, Applied Geology and Mining Engineering were separate Schools and Mineral Processing and Extractive Metallurgy (referred to as Mineral Engineering) was spread among several other Schools in the Faculty. Bringing the three together into the School of Mines is an important development in mining industry education in Australia.

Geologists, Mining Engineers and Minerals Engineers work closely together in the mining industry. The Geologist is responsible for discovering new mineral resources and for defining the size, value and condition of the deposit. The Mining Engineer decides if the deposit is worth mining, designs the mine and thereafter manages it throughout its life. The Minerals Engineer deals with these resources after they have been mined, and designs and manages the large plants needed to turn the crude ore into metal or the raw coal into saleable fuel.

Each is an expert in her or his own field, but each also needs to have a good appreciation of the work of the other two. Professional roles in the mining industry are not always clear cut and it is a distinct advantage for geologists, mining engineers and minerals engineers to study and interact together while at University, in preparation for their necessarily close involvement with each other during their professional careers.

Separate degree courses are available in each discipline, as described below. Students enrol in the course of their own choice and many activities are departmentally centred, but others are School-based to provide a corporate identity with the mining and allied industries.
Department of Applied Geology

Head of Department
Associate Professor C.R. Ward

Geology is 'the science of the earth', and as such covers a broad spectrum of knowledge on the constitution and evolution of our planet. Applied Geology involves a specific interest in the use of earth science for the benefit of humanity, including, for example, the search for and evaluation of metallic ore-bodies and accumulations of fossil fuels, or the application of geological knowledge to a range of engineering and environmental problems.

General Education Electives
For details of General Education requirements see Faculty Information.

Department of Mining Engineering

Head of Department
Professor J.M. Galvin

Mining Engineering is concerned with the design, development and management of mines for the extraction of the earth's mineral and energy resources. Mining production whether underground, at the surface, offshore or on the sea floor is a technically advanced engineering activity and the mining engineering course caters for the present day and future requirements of the industry. The mining engineer is a front line executive in control of all phases of a mining project from evaluation of a coal or an ore deposit, the planning and development of its extraction, its processing on site, the safe disposal of waste products and the restoration of the environment during and after mining.

Most mining engineers are trained for careers in mine production and management and their engineering and managerial roles necessitate liaison with a range of experts, from those engaged in exploration geology, to those in end-product development and marketing. The mining engineering course involves a strong grounding in basic sciences, engineering principles and management as a foundation to training for production and mine management functions. The course also provides a good appreciation of the science of geology, the technology of mineral processing and the economics of resources so that the mining engineer can effectively work in any section of the mining industry from evaluation of ore reserves to marketing and finance.

The mining engineer's training has an appeal to many other industries in that it combines excellence in a broad range of disciplines from science and engineering to economics of management of human resources. With such a background, mining engineers can easily adapt to work in almost any industry either on graduation or at a later stage in their career.

After graduation, mining engineers who choose to develop careers in production management, will be required to gain further practical experience before obtaining a Mine Manager's Certificate of Competency, in either Coal or Metalliferous Mining. These statutory certificates of competency are issued by the State Department of Industrial Relations, which in the case of New South Wales coal mining comes under the Coal Mines Regulation Act No. 67, 1982, and for metalliferous mining under the Mines Inspection Act No. 75, 1901, as amended. Arrangements have been made with the Universities of Newcastle and Tasmania for students who have completed a specified program at these institutions to be admitted with advanced standing to Year 3 of the Mining Engineering degree course at the University of New South Wales.

Centre for Minerals Engineering

Director
Dr T. Tran

Students wishing to specialise in Minerals Engineering enrol in the BE course in Chemical Engineering in years 1 and 2, and undertake studies in Minerals Engineering in years 3 and 4 as professional electives in this degree.

For details of subjects offered, please see the course outline for Course 3040 in the Chemical Engineering section.

General Education Electives
For details of General Education requirements see Faculty Information.

Key Centre for Mines

Director: Associate Professor G.R. Taylor

The Key Centre is a joint initiative of the Universities of New South Wales and Wollongong. Funded by the Department of Employment, Education and Training. The purpose of the Key Centre for Mines is to provide a full range of educational and research services to the minerals industries.

Particular emphasis is being placed on continuing education, distance learning and industry based research and development. The industry sector being addressed by the Key Centre for Mines covers the exploration, extraction, and primary processing of mineral resources.
The Applied Geology course provides a comprehensive education in all aspects of earth science. It leads to the award of a Bachelor of Science (BSc) degree over four years full-time study, with honours for students who perform with merit throughout the course program.

Students learn the fundamental principles of geology through lectures, laboratory work, projects and field tutorials. At the same time they gain the practical skill and knowledge of geological applications necessary for employment in research, industry or government. Graduates are prepared by the course to enter any branch of the geological profession, or to undertake further studies leading to a Higher degree. They are also well equipped to change their field of employment as different opportunities arise.

No previous knowledge of geology is required to enter this course but a sound background in mathematics together with at least one other science subject is essential. Students who have not undertaken chemistry at HSC level should take chemistry at the introductory level (CHEM1401 and CHEM1101) in Year 1, and CHEM1201 in the summer session before commencing Year 2. Students, who have reached a satisfactory standard in HSC Geology may be offered an alternative program in Year 1.

Reciprocal courses are offered through the Board of Studies in Science and Mathematics in Geology (double major), Geophysics, Earth and Environmental Science and courses that combine a single major in Geology with Physics, Chemistry, Mathematics or Botany and Zoology. These courses are all of three years full-time duration leading to a BSc at Pass level. An optional fourth year leading to Honours is available for students achieving a good academic standing.

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHEM1401</td>
<td>Introductory Chemistry 1A and 60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CHEM1501</td>
<td>Introductory Chemistry 1B 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CHEM1101</td>
<td>Chemistry 1A and 60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CHEM1201</td>
<td>Chemistry 1B 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GEOL1101</td>
<td>Geological Processes and 60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GEOL1201</td>
<td>Geological Environments 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MATH1011</td>
<td>General Mathematics 1B 60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MATH1131</td>
<td>Mathematics 1A 60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MATH1141</td>
<td>Higher Mathematics 1A 60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MATH1021</td>
<td>General Mathematics 1C 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MATH1231</td>
<td>Mathematics 1B 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MATH1241</td>
<td>Higher Mathematics 1B 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PHYS1002</td>
<td>Physics 1 or 6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PHYS1022</td>
<td>Introductory Physics or 6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BIOS1011</td>
<td>Biology A 60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BIOS1021</td>
<td>Biology B or 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GEOG1051</td>
<td>Global Environmental Problems 3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GEOG1031</td>
<td>Environmental Processes 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Education Subject/s (Category A) 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Totalling</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2011</td>
<td>Mineralogy and Igneous Petrolgy 5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Field</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2031</td>
<td>Sedimentology and Palaeontology 5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Field</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2022</td>
<td>Petrology and Structural Geology 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Field</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2041</td>
<td>Geological Computing 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2042</td>
<td>Geological Statistics 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2051</td>
<td>Introductory Geophysics 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2062</td>
<td>Geological Mapping 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2072</td>
<td>Environmental Geology 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GEOL2092</td>
<td>Geochemistry 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>General Education Subject/s (Category A) 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Totalling</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Department of Mining Engineering

The Department offers a 4 year full-time course in Mining Engineering leading to the award of the degree of Bachelor of Engineering at Pass or Honours level.

A five-year combined degree course is also available in Civil Engineering and Mining Engineering.

3140 Bachelor of Engineering

BE

Year 1 of the course is similar to that of several other Engineering courses and Year 2 includes those subjects which are of common relevance to the Engineering disciplines. Year 3 is largely devoted to basic mining subjects and Year 4 provides advanced instruction in subjects essential to all mining engineers. In addition, the fourth year offers a wide range of elective subjects, allowing students, if they so wish, to concentrate their studies on a particular sector of the industry, such as coal mining or metalliferous mining. An important fourth year requirement is for students to undertake personal research or a study project in mining or minerals engineering on which they are required to submit a thesis for examination.

For the award of Honours at the conclusion of the full-time course, students will need to have distinguished themselves in the formal work, in other assignments as directed by the Head of Department, and in the final year project.

In the undergraduate course it is compulsory for students to gain practical experience in the mining industry during successive long recesses. The minimum requirement is 100 days which must be completed before graduation. The School assists students as much as possible in securing suitable vacation employment. Students are required to submit for assessment an Industrial training report on the vacation and other relevant experience acquired.

3000

Applied Geology - Part-time

Bachelor of Science
BSc

Part-time study is only available in Year 4

Year 4 (P/T)

<table>
<thead>
<tr>
<th>Course</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002 Social Issues in Applied Science</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>GEOL4131 Special Topics in Applied Geology*</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>GEOL4213 Field Project (P/T)</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Totalling</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Year 5 (P/T)

<table>
<thead>
<tr>
<th>Course</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL4111 Advanced Geological Techniques</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>GEOL4121 Professional Practice*</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>GEOL4213 Field Project (P/T)</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Totalling</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

*These subjects contribute towards the satisfaction of the Category C General Education requirement.
<table>
<thead>
<tr>
<th>Year 2</th>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering</td>
<td>0 3</td>
<td></td>
</tr>
<tr>
<td>GEOL5211</td>
<td>Geology for Mining Engineers 1</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>GMAT0441</td>
<td>Surveying for Engineers</td>
<td>0 4.5</td>
<td></td>
</tr>
<tr>
<td>MATH2009</td>
<td>Engineering Mathematics 2</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>MATH2819</td>
<td>Statistics SA</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>MATS9421</td>
<td>Materials for Mining Engineers</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>MINE0120</td>
<td>Stress Analysis</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>MINE1320</td>
<td>Fluid Mechanics and Thermodynamics</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>MINE1321</td>
<td>Mine Water and Drainage</td>
<td>0 1</td>
<td></td>
</tr>
<tr>
<td>MINE1420</td>
<td>Elements of Mining</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>PHYS2920</td>
<td>Electronics</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>General Education Subject/s (Category A)</td>
<td>2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>22 21.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL5311</td>
<td>Geology for Mining Engineers 2</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>GMAT0580</td>
<td>Mining Surveying</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>MINE1131</td>
<td>Mining of Metalliferous Deposits</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>MINE1132</td>
<td>Mining of Coal Deposits</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>MINE1231</td>
<td>Rock Mechanics</td>
<td>0 4</td>
<td></td>
</tr>
<tr>
<td>MINE1232</td>
<td>Soil Mechanics</td>
<td>0 2</td>
<td></td>
</tr>
<tr>
<td>MINE1330</td>
<td>Bulk Materials Handling & Transport</td>
<td>0 2</td>
<td></td>
</tr>
<tr>
<td>MINE1530</td>
<td>Power Supply in Mines</td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td>MINE1630</td>
<td>Excavation Engineering (Blasting)*</td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td>MINE1631</td>
<td>Excavation Engineering (Machine Mining)</td>
<td>0 1</td>
<td></td>
</tr>
<tr>
<td>MINE1830</td>
<td>Mine Ventilation and Environment</td>
<td>0 4</td>
<td></td>
</tr>
<tr>
<td>MINE1930</td>
<td>Industrial training</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>MINE7342</td>
<td>Minerals Engineering Processes</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>General Education Subject/s (Category B)</td>
<td>2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>20 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002</td>
<td>Social Issues in Applied Science*</td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td>MINE1140</td>
<td>Geotechnical Engineering</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>MINE1740</td>
<td>Mining Legislation</td>
<td>0 2</td>
<td></td>
</tr>
<tr>
<td>MINE2141</td>
<td>Mine Economics</td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td>MINE2142</td>
<td>Mine Planning and Design</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>MINE2240</td>
<td>Mining Management</td>
<td>0 3</td>
<td></td>
</tr>
<tr>
<td>MINE3040</td>
<td>Mine Safety Engineering</td>
<td>0 3</td>
<td></td>
</tr>
<tr>
<td>MINE3041</td>
<td>Hazard and Risk in Mining</td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td>MINE4140</td>
<td>Minerals Industry Project</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>MINE4240</td>
<td>Industrial and Research Seminars</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>MINE4540</td>
<td>The Mining Engineering Profession in Society*</td>
<td>0 2</td>
<td></td>
</tr>
</tbody>
</table>

Together with an approved group of two advanced elective subjects selected from the following:

Advanced Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINE1940</td>
<td>Tunnel Engineering and Shaft Sinking</td>
<td>2 0</td>
</tr>
<tr>
<td>MINE7440</td>
<td>Mineral Process Technology</td>
<td>2 0</td>
</tr>
<tr>
<td>MINE3140</td>
<td>Computational Methods in Geomechanics</td>
<td>2 0</td>
</tr>
<tr>
<td>MINE3240</td>
<td>Operations Research</td>
<td>2 0</td>
</tr>
<tr>
<td>Totalling</td>
<td>20 20</td>
<td></td>
</tr>
</tbody>
</table>

*These subjects contribute towards the satisfaction of the Category C General Education requirement.

3146 BE(Civil) BE(Mining) in Civil Engineering and Mining Engineering - Full-time Course

Students enrol in the Bachelor of Engineering in Civil Engineering Course 3620 which is administered by the School of Civil Engineering. The first three years of the combined degree course are therefore identical to course 3620. At the end of Year 3, students may apply to enter the Bachelor of Engineering in Mining Engineering Course 3146 which is administered by the School of Mines in the Faculty of Applied Science.

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4006, CIVL4203, CIVL4306, CIVL4502, CIVL4605, CIVL4704, CIVL4822, CIVL4906</td>
<td>GEOL5311</td>
</tr>
<tr>
<td>MINE1320, MINE1231, MINE1420, MINE1630, GMAT0580</td>
<td></td>
</tr>
</tbody>
</table>

Year 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC0802</td>
<td>MINE1330, MINE1113, MINE1132, MINE1140, MINE1530, MINE1740, MINE1830, MINE1940, MINE2141, MINE3040, MINE7342, MINE7440</td>
</tr>
<tr>
<td>PHYS2920</td>
<td></td>
</tr>
</tbody>
</table>
Department of Applied Geology

Master of Applied Science courses are designed to give advanced training in developing specialisations within geology and are structured specifically for candidates from industry to take on a part-time basis.

Courses currently offered are in the fields of Engineering Geology, Hydrogeology, Environmental Geology, and Geological Data Processing.

Elective Subjects (3 credit points)
- CIVL9790 Stability of Slopes
- GEOL0110 Geological Remote Sensing
- GEOL9031 Engineering Geology of Surficial Deposits
- GEOL9032 Soil and Rock Construction Materials
- GEOL9033 Terrain Evaluation
- GEOL9070 Engineering Geophysics

An additional requirement for the award of the MAppSc Engineering Geology is the satisfactory completion of laboratory and field practical sessions, attendance on field excursions, and contributions to tutorials and seminars.

8020 Engineering Geology/Hydrogeology/Environmental Geology Course

Master of Applied Science

MAppSci

The course consists of a Project (Group A) and from five to eight subjects chosen from Group B, of which five are core subjects of the course. The total credit point requirement of the course is 30, of which the project could account for 6, 9 or 15 credit points. The 6 and 9 credit point project is aimed at those students who prefer a higher content of teaching in their MAppSci course, or who find that their interests are not fully covered within the core subjects.

The five core subjects are all taught in the first session. Up to three additional subjects, completed by full-time attendance during the second session, or part-time, or as an external student, may be credited towards the degree, with a consequent reduction in the project requirements. The project normally consists of field and laboratory work, and is related to the students major interests. Students must consult the Course Director for approval of the project topic. Students undertaking fieldwork may incur personal costs.

Group A

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL9444</td>
<td>Project (Engineering Geology)</td>
<td>6</td>
</tr>
<tr>
<td>GEOL9454</td>
<td>Project (Engineering Geology)</td>
<td>9</td>
</tr>
<tr>
<td>GEOL9464</td>
<td>Project (Engineering Geology)</td>
<td>15</td>
</tr>
</tbody>
</table>

Group B

Core Subjects (3 credit points)
- CIVL9788 Site Investigation
- GEOL9011 Hydrogeology G
- GEOL9030 Geological Engineering
- GEOL9040 Fundamentals of Geomechanics
- GEOL9060 Environmental Geology

Elective Subjects

Between 9 and 15 credits of elective subjects may be selected to make a total of 30 credits.

8094 Geological Data Processing

Master of Applied Science

MAppSci

This program is intended for industry-based geologists who wish to enhance their skills in the computer processing of geological data. It is delivered as a series of separate academic subjects, each consisting of a one week residential short course with additional assignment material and an industry-based project. The short courses are scheduled to allow the degree program to be completed on a part-time basis over two years. The program allows an emphasis to be placed on data processing in mineral exploration, exploration geochemistry, ore reserve estimation, image processing and remote sensing, exploration geophysics or fossil fuel deposits. Optional subjects are also available to provide complimentary training in topics such as mine and environmental management and project evaluation.

Candidates are required to complete a course of 30 credits including either a 6 or 12 credit project. Alternative subjects may be substituted in the published program at the discretion of the Head of the Department.

Core Subjects

These subjects are compulsory:
- GEOL0300 Computing and Statistics for Geologists*
- GEOL0310 Image Processing of Spatial Data Sets
- GEOL0320 Geostatistical Ore Reserve Estimation

Totalling 9 credit points

and either
- GEOL0304 Data Processing Project 1 6 credit points
- GEOL0314 Data Processing Project 2 12 credit points

Elective Subjects

Between 9 and 15 credits of elective subjects may be selected to make a total of 30 credits.
Technical (3 credit points)

GEOLO330 Conceptual Models for Exploration Geology
GEOLO340 Geochemical Exploration Techniques
GEOLO350 Exploration Geochemical Data Processing
GEOLO360 Remote Sensing Applications in Geoscience
GEOLO370 Fundamentals of Exploration Geophysics
GEOLO380 Electrical Methods in Geophysical Exploration
GEOLO390 Data Processing for Fossil Fuel Resources
KCME1106 Soil and Rock Construction Materials
KCME1108 Applied Structural Geology
KCME1109 Geophysics for Mine Development
KCME1110 Geographical Information Systems in Applied Geology
KCME4133 An Introduction to Environmental Geology
KCME4302 Environmental Assessment

Business Management (3 credit points)

KCME4201 Export Marketing for the Mining Industry
KCME4202 Mine Evaluation and Project Assessment
KCME4203 Mine Management
KCME4204 Exploration Project Management
KCME4301 Environmental Management for the Mining Industry

or such other subjects as the course authority may deem to be appropriate and equivalent.

* For students with an adequate background in computing and statistics this subject may be replaced by an additional elective subject. The approval of the course authority is required.

1000 Doctor of Philosophy (PhD) and

2000 Master of Science (MSc)

Research may be undertaken in fundamental or applied aspects of Geology. Collaborative programs with industry and government are encouraged. The following lists should not be considered as limiting the possible scope of any research project.

Mineral and Energy Resources

Exploration Geochemistry
Exploration Geophysics
Mineral Exploration
Ore Forming Processes
Resource Economics
Remote Sensing in Exploration
Image Processing
Petroleum and Coal Geology
Non metallic Mineral Resources
Marine Geophysics
Mathematical Geology
Sedimentary Basin Analysis
Geological Data Processing

Engineering and Environmental Studies

Environmental Geology
Engineering Geology
Geomechanics
Clays and Aggregates
Coastal and Estuarine Geology

Hydrogeology and Waste Management

Hydrogeology
Contaminant Hydrogeology
Groundwater Geophysics
Groundwater Studies and Modelling
Waste and Landfill Disposal
Groundwater Contaminant Transport

Fundamental Geological Studies

Palaeontology
Micro palaeontology
Petrology
Stratigraphy
Sedimentology
Structural Geology
Antarctic Geology
Marine Science

UNSW Groundwater Centre

The Groundwater Centre was established in 1987 as a Federal National Centre (Centre for Groundwater Management and Hydrogeology). In 1992, the Centre was reorganised as a joint initiative of the Faculties of Engineering and Applied Science with the general objectives of improving and continuing teaching and research in groundwater studies.

The Centre offers specialised graduate courses in Groundwater Studies and carries out general teaching in Hydrogeology to Applied Science and Engineering postgraduate students.

8021 Groundwater Studies Graduate Course

Master of Applied Science MAappSc

For the Master of Applied Science in Groundwater Management candidates are required to complete 30 credits, made up of the four core subjects, elective subjects and a project. The degree may be taken internally on a full-time (normally 2 sessions) or a part-time (normally 4 sessions) basis. The course of study must be approved by the Head of School or the Head's nominee.

Core Subjects (3 credit points)

CIVL9875 Hydrological Processes
CIVL9890 Groundwater Contamination and Remediation
GEOL9010 Groundwater Environments
GEOL9051 Hydrogeochemistry
Elective Subjects (3 credit points)
- CIVL9799 Environmental Geomechanics
- CIVL9880 Groundwater Modelling
- CIVL9891 Decision Support Systems in Hydrology
- GEOL9052 Advanced Hydrogeochemistry
- GEOL9070 Engineering Geophysics
- GEOL9100 Remote Sensing of Groundwater Resources
- KCME1110 Geographic Information Systems in Applied Geology

Project
- GEOL9124 Groundwater Project (9 credit points)
- GEOL9144 Groundwater Research Project (12 credit points)

Alternative Graduate Programs

Alternative Graduate Programs in association with the Department of Applied Geology are available in the following areas:

School of Geography
- 5026 Graduate Diploma in Remote Sensing (GradDip)
- 8026 Remote Sensing Graduate Course (MAppSc)
- 8045 Environmental Studies Graduate Course (MEvStudies)

Faculty of Engineering
- 5496 Graduate Diploma in Remote Sensing (GradDip)
- 8641 Remote Sensing Graduate Course (MEngSc)

Department of Mining Engineering

8055
Mining and Mineral Engineering Graduate Course

Master of Applied Science MAppSc

This course is offered to provide postgraduate training in subjects appropriate to the mining industry. There is a core of professional subjects, and the electives needed to complete the course be taken to suit a graduates previous experience or a chosen career path.

The MAppSc course is linked with the Mining Management Graduate and Graduate Diploma Courses offered through the Key Centre for Mines, and transfer between these programs will be possible with appropriate credit for subjects completed.

The Master of Applied Science program has been designed for completion of its 36 credit points in one year full time. The teaching components should be completed in two sessions. The subjects which are listed below may be offered in two formats dependent on class sizes and student skills, and in general should be completed within one session.

A full teaching session subject will comprise approximately fourteen weeks of lectures, tutorials, and any associated laboratory work. Alternatively, the lecture material may be offered as a one week short course module in conjunction with the Key Centre equivalent course. The module would be preceded and followed by appropriate reading and tutorials. Assessment will consist of a combination of assignments and examinations complement the lecture mode.

Due to the varied entry routes there will be a difference of skills among candidates. Consequently there are two prescribed core courses, one for non-mining entrants, and the other for qualified mining graduates and entrants from the Graduate Diploma course. Exemptions may be given from one or more core subjects to appropriate candidates but a full complement of 36 credit points must still be attained.

Entry for Four Year Graduates - Non-Mining

Core Subjects
- MINE0130 Principles of Mining 2
- MINE1224 Mining Engineering Technology 6
- MINE1524 Mining Conservation 3
- MINE3114 Mineral Beneficiation 3
and one of
- MINE5064 Minor Project 6
- MINE5124 Project 12
- MINE5184 Major Project 18

Entry for Graduates In Mining Engineering or from Course 5040

Core Subjects
- MINE5324 Principles of Mining Engineering (2) 6
- MINE1524 Mining Conservation (1) 3
and either
- MINE3224 Mineral Beneficiation Technology or
- MINE4424 Mineral Industry Analysis 6
and one of
- MINE5064 Minor Project 6
- MINE5124 Project 12
- MINE5184 Major Project 18
- MINE3654 Minerals Engineering Project 9

Notes:
(1) or equivalent subject from Key Centre for Mines
(2) Minerals Engineering candidates may be permitted to substitute electives if they have a mining industry background.
(3) The choice of project is subject to approval from the Head of School.
Elective subjects for all candidates

(2 credit points)

MINE5655 Rock Slope Stability
MINE5755 Subsidence Engineering
MINE9174 Fire and Explosion

(3 credit points)

GEOLO300 Computing and Statistics for Geologists
GEOLO330 Geostatistical Ore Reserve Estimations
GEOLO390 Conceptual Models for Exploration Geology
MINE0014 Exploration Drilling
MINE1514 Ground Control and Excavation Engineering
MINE1534 Environmental Conditions in Mines
MINE1544 Rock Excavation and Transportation
MINE3514 Mineral Beneficiation Plant Design
MINE3634 Minerals Engineering Laboratory
MINE4424 Minerals Industry Analysis
MINE4055 Numerical Methods in Geomechanics
MINE4155 Stability of Slopes
MINE5155 Rock Mechanics Measurements
MINE5255 Strata Control Engineering
MINE5355 Mine Fill Technology
MINE5455 Advanced Rock Cutting Technology
MINE5555 Blasting Technology
MINE9364 Equilibrium Concepts in Water Systems
MINE9374 Hydrogeochemistry
MINE9415 Advanced Rock Mechanics

(6 credit points)

MINE3224 Mineral Beneficiation Technology
MINE3614 Minerals Engineering 1
MINE3624 Minerals Engineering 2
MINE3644 Minerals Engineering 3

Notes:
(1) Any Key Centre module may also be taken, subject to
(2).
(2) Electives must be chosen on enrolment and approved
by the Course Director; some electives are mutually
exclusive.
(3) Attention is also drawn to subjects available from the for
Department of Safety Science, the Centre for Waste
Management and the School of Chemical Engineering.
Subjects to timetables and minimum class sizes in various
departments, electives may be chosen from those and
other course authorities.
(4) Not all electives in the above list will be offered each
year.

5040
Mining and Mineral Engineering Graduate Diploma Course

Graduate Diploma
GradDip

The Graduate Diploma course in Mining and Mineral Engineering serves two purposes. It can provide a professional introduction to the mining industry for graduates in Science, Applied Science or Engineering and it is a qualifying course for entry to the Master of Applied Science and Master by Research programs.

The Graduate Diploma will be awarded after successful completion of one year full-time or two years part-time study. The course is a blend of lecture and laboratory work and an appropriate choice of the laboratory work and project can lead to some specialization in either mining engineering or minerals engineering. When appropriate, some sections of the course may be offered as a unit over a short period to permit mineral industry personnel to attend on a part-time basis.

The level of the Graduate Diploma is designed to be equivalent to a four-year honours degree and on that basis up to 9 credit points of undergraduate subjects may be substituted for the topics shown where appropriate to the skills of the student concerned.

Full-time Program

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINE0130</td>
<td>Principles of Mining</td>
<td>2</td>
</tr>
<tr>
<td>MINE1114</td>
<td>Mining Engineering</td>
<td>6</td>
</tr>
<tr>
<td>MINE1224</td>
<td>Mining Engineering Technology</td>
<td>6</td>
</tr>
<tr>
<td>or MINE3324</td>
<td>Mineral Beneficiation Technology</td>
<td>6</td>
</tr>
<tr>
<td>or MINE1324</td>
<td>Mining Laboratory and Project</td>
<td>8</td>
</tr>
<tr>
<td>or MINE3324</td>
<td>Mineral Engineering Laboratory and Project</td>
<td>8</td>
</tr>
<tr>
<td>MINE2340</td>
<td>Mineral Economics</td>
<td></td>
</tr>
<tr>
<td>MINE3114</td>
<td>Mineral Beneficiation</td>
<td></td>
</tr>
<tr>
<td>MINE7140</td>
<td>Mineralogical Assessment</td>
<td>1</td>
</tr>
<tr>
<td>MINE7341</td>
<td>Mineral Process Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Totalling</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Part-time Program

This should be discussed with the Head of Department. In principle, the part-time program should be completed in two years by taking approximately 15 credit points in each year. MINE1224 and MINE1324, or MINE3224 and MINE3324 would be taken in the second year.

Electives

Subjects with a value of up to 6 credit points taken from
within the School of Mines may be substituted for those
listed above, subject to approval by the Course Director.
Subjects from other courses in the University may also be
chosen by agreement with the appropriate Head of School.

Key Centre for Mines

The Key Centre is a joint initiative of the Universities of New South Wales and Wollongong, funded by the Department of Employment, Education and Training. The purpose of the Key Centre for Mines is to provide a full range of educational and research services to the minerals industries.

Particular emphasis is being placed on continuing education, distance learning and industry based research and development.

The industry sector being addressed by the Key Centre for Mines covers the exploration, extraction, and primary processing of mineral resources.
The courses are designed to give mining personnel the opportunity to extend their career paths into management levels. Candidates will be able to select course work modules from Business Management and Science and Technology Streams. The delivery of the course work modules has been designed to enable the participation of professional staff in the minerals industries no matter how remote the location of their particular operation. This delivery will either be in the form of one week short courses, with follow-up assignments, or by correspondence only. Each module is of 3 credits value. In normal circumstances no more than two modules may be undertaken by correspondence.

It is anticipated that candidates will come from a wide range of educational and training backgrounds. The normal entry qualification for the Graduate Diploma is a relevant three-year degree or equivalent. This may be demonstrated by equivalent experience and/or the holding of a position of appropriate responsibility. The normal entry qualification for the Masters Degree is a relevant four-year degree or equivalent. This may be demonstrated by equivalent experience and/or the holding of a position of appropriate responsibility. A preliminary program is available for candidates who do not fully meet the normal requirements.

A 9 credit point industry-based project and five modules are required for the GradDipMinMgmt with a minimum of two from either the Business Management or the Science and Technology Streams. For the Master of Mining Management it is necessary to complete eight modules, with a minimum of three from either stream. The Master's program also includes an industry-based project equivalent to one third of the course. The courses will be structured in a way that allows movement between the two programs in some circumstances; a graduate of the GradDipMinMgmt course may be able to continue to a MMinMgmt by completing a further three modules and the larger industry-based project.

Assessment is by assignment for most modules but may be by formal examination. Examination of the correspondence components of the course is undertaken at a number of regional centres.

Science and Technology Modules (3 credit points)
- KCME1102 Mine Safety Management*
- KCME1103 Drilling and Blasting
- KCME1105 Slope Stability for Surface Mining
- KCME1106 Soil and Rock Construction Materials
- KCME1107 Introductory Computing for Geologists and Mining Engineers
- KCME1108 Applied Structural Geology
- KCME1302 Mine Ventilation and Environment
- KCME2101 Strata Control
- KCME2104 Application of Computers in the Mining Industry
- KCME2105 Geostatistics and Ore Body Modelling
- KCME2107 Mine Water Origin, Inflow, Prediction and Control
- KCME3101 Coal Preparation
- KCME4102 Placer Technology
- KCME4133 An Introduction to Environmental Geology
- KCME4301 Environmental Management for the Mining Industry
- KCME4302 Environmental Assessments

Business Management Modules (3 credit points)
- KCME1102 Mine Safety Management*
- KCME3201 Financial Management**
- KCME3203 Management Perspectives**
- KCME3203 Economic Decision Making**
- KCME3204 Management of Innovation**
- KCME3205 Strategic Planning**
- KCME3206 Mining Law
- KCME4201 Export Marketing for the Minerals Industry
- KCME4202 Mine and Project Evaluation
- KCME4203 Mine Management
- KCME4204 Mineral Exploration Project Management
- KCME4301 Environmental Management for the Mining Industry*

*May be taken as either a Science and Technology or a Business Management module

** May be offered by correspondence

Industry-Based Projects
- KCME1300 Mining Management Project 12 credit points (6057 only)
- KCME1400 Mining Management Project 9 credit point (5057 only)

Unless otherwise stated all modules are of 3 credit value. Equivalent or additional courses can be added at the discretion of the Head of the School of Mines.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organisational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

APSE0002
Social Issues In Applied Science
Staff Contact:
Department of Applied Geology - School Office
Department of Mining Engineering - Dr A.K.Bhattacharyya
S1 L1 T1

Social Issues and the Applied Sciences The subject covers social issues arising from future technological developments and the role that a professional applied scientist can play in influencing future directions. It will be taught by a combination of group activity, case studies and projects from visiting speakers, some of whom will be from disciplines other than the applied sciences.

GEOL0004
Special Program Applied Geology
Staff Contact: Dr A.C. Dunlop / Mr G. McNally
Note/s: For programs 8020, 8021 and 8094

GEOL0005
Research Thesis Applied Geology Full-time
Staff Contact: Dr A.C. Dunlop
Note/s: For programs 1000 and 2000

GEOL0006
Research Thesis Applied Geology Part-time
Staff Contact: Dr A.C. Dunlop
Note/s: For programs 1000 and 2000

GEOL0110
Geological Remote Sensing
Staff Contact: A/Prof G.R. Taylor
C3 S1 L4 HPW3

The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; Infrared remote sensing techniques; side looking airborne radar; theory and applications of Landsat imagery; enhancement techniques for satellite imagery; interpretation of Landsat photographic products and application to several case history areas. Integration of remote sensing information with the overall data base as applied to exploration.

GEOL0114
Project In Geological Remote Sensing
Staff Contact: A/Prof G. R. Taylor
Note/s: Restricted to program 8026

GEOL0300
Computing and Statistics for Geologists
Staff Contact: Dr D.R. Cohen
C3 SS L2 T1

Introduction to the use of PC's, operating systems, communications and networks, common software packages. An introduction to programming, spreadsheets, graphics software and the SYSTAT package.

Fundamentals of statistics including types of data, population characterisation, tests of significance, analysis of variance and basic geostatistical methods.

GEOL0304
Data Processing Project 1
Staff Contact: A/Prof G.R. Taylor
C6 SS

A minor project equivalent to 6HPW study for one session which will require the student to carry out detailed processing and analysis of a comprehensive data set for an exploration project that may relate to the student's field of employment.

GEOL0310
Image Processing of Spatial Data Sets
Staff Contact: A/Prof G.R. Taylor
C3 SS L2 T1

Data sources and formats, remotely sensed, geophysical, geochemical and topographic. Image display systems; data pre-processing, image rectification, spatial filtering and enhancement techniques. Statistical analysis, classification and image display as a tool for data integration.

GEOL0314
Data Processing Project 2
Staff Contact: A/Prof G.R. Taylor
C12 SS

A research project equivalent to 12 HPW study for one session which requires the student to carry out detailed processing, analysis and integration of a multi-attribute data set for an exploration project that may relate to the student’s field of employment.

GEOL0320
Geostatistical Ore Reserve Estimation
Staff Contact: Ms S. Border
C3

When to apply geostatistics; brief review of univariate statistics; bivariate statistics and correlation; exploratory data analysis; measures of spatial correlation: the variogram, the covariance; variogram calculation and how to obtain a good variogram; random function models and stationarity; desirable properties of estimators; estimation of variance; dispersion variance and uses; optimal weighted average estimator, ordinary kriging; recoverable reserve estimation, problems and solutions; application examples, coal, copper, gold; blasthole kriging for ore-waste selection; geotechnics and the environment.

GEOL0330
Conceptual Models for Exploration Geology
Staff Contact: Dr A.C. Dunlop
C3 SS L2 T1

The development and use of ore deposit models as a guide for exploration. Examples drawn from the major categories of deposit such as epithermal gold, greenstone associated gold, vein-type uranium, porphyry coppers, volcanogenic massive sulphides, carbonate and shale-hosted lead-zinc and ultramafic hosted nickel sulphides. Exploration strategies and tactics; risk analysis and prospect evaluation.
GEOL0340
Geochemical Exploration Techniques
Staff Contact: Key Centre for Mines
C3 SS L2 T1

GEOL0350
Exploration Geochemical Data Processing
Staff Contact: Dr D.R. Cohen/Dr A.C. Dunlop
C3 SS L2 T1

GEOL0360
Remote Sensing Applications In Geoscience
Staff Contact: A/Prof G.R. Taylor
C3 SS L2 T1
The physics of various remote sensing techniques. Consideration of various sources of imagery; Landsat, TM, SPOT, aircraft scanners etc. Spectral properties of rocks, soils and vegetation. Geological applications of visible, infrared, thermal and multi-parameter microwave imagery in resource exploration, tectonic studies, geological hazard recognition and environmental monitoring. Mapping and data integration methodologies.

GEOL0370
Fundamentals of Exploration Geophysics
Staff Contact: Mr D. Palmer
C3 SS L2 T1
An introduction to the theory and application of geophysical methods to engineering, environmental, and groundwater studies. The methods covered include gravity, magnetic, seismic refraction, shallow seismic reflection, DC electrical resistivity, electromagnetic, transient electromagnetics, radar, and geophysical well logging. Each method is described in terms of the fundamental physical principles, data acquisition and field techniques, data processing and presentation, and quantitative interpretation.

GEOL0380
Electrical Methods In Geophysical Exploration
Staff Contact: Mr D. Palmer
C3 SS L2 T1
The relationships between geology and electrical geophysical properties; basic theory of resistivity, induced polarisation and electromagnetic methods. Evaluation of applications, survey design, instrumentation, data acquisition, interpretation and productivity. Computer methods of interpretation are emphasised by the extensive use of hands-on microcomputer tutorials. An introduction to recent advances in electrical geophysics: inversion, multi-electrode array resistivity, spectral induced polarisation, transient electromagnetics and ground probing radar.

GEOL0390
Data Processing for Fossil Fuel Resources
Staff Contact: A/Prof C. R. Ward
C3 SS L2 T1
Sedimentary basin analysis with special emphasis on the geology of coal deposits; coal deposit evaluation, data acquisition, computer processing, analysis and display.

GEOL1101
Geological Processes
Staff Contact: Dr M.D. Buck
S1 L3 T2
Prerequisites: HSC Exam Score Range Required - 2 unit Mathematics 55-100, 2 and 3 unit Mathematics 100-150, or 3 and 4 unit Mathematics 100-200, and 2 unit Science (Physics) 53-100, or 2 unit Science (Chemistry) 53-100, or 2 unit Science (Geology) 53-100, or 2 unit Science (Biology) 53-100, or 4 unit Science 1-50, or 3 unit Science 90-150
Note/s: Up to 2 days of fieldwork is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

Stream 1

or

Stream 2
Available only with permission of the Head of School. A program of projects and independent study of selected aspects of geology. Assessment includes practical and theory examinations.

GEOL1201
Geological Environments
Staff Contact: Dr M.D. Buck
S2 L3 T2
Prerequisites: GEOL1101
Note/s: Up to 4 days of fieldwork is a compulsory part of this subject and may be held in the last week of the mid-year recess. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL2011
Mineralogy & Igneous Petrology
Staff Contact: Dr P.C. Rickwood/ A/Prof B.J. Hensen
S1 L2 T3
Prerequisite: GEOL1201
Note/s: Fieldwork of up to 4 days is a compulsory part of this subject and may be held in the last week of the mid-year recess. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL2022
Petroleum & Structural Geology
Staff Contact: Dr M.D. Buck/A/Prof B.J. Hensen/Dr P.G. Lennox
S2 L3 T2
Prerequisite: GEOL211
Note/s: Fieldwork of up to 4 days, is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL2031
Sedimentology and Palaeontology
Staff Contact: A/Prof C.R. Ward/A/Prof A.D. Alban/Dr J. Jankowski
S1 L3 T2
Prerequisite: GEOL1201
Note/s: Fieldwork of up to 5 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL2041
Geological Computing
Staff Contact: Dr D.R. Cohen
S1 L2 T1
Prerequisite: GEOL1101
Introduction to the use of PC, network and VAX computer systems with emphasis on geological software. Introduction to programming in FORTRAN with statistical applications pertinent to geoscience.

GEOL2042
Geological Statistics
Staff Contact: Dr D.R. Cohen
S2 L2 T1
Prerequisite: GEOL2041
Introduction to geostatistics, population characterisation and splitting. ANOVA methods, regression analysis, EDA, Markov chains, analysis of orientated data and processing of spatial geological data.

GEOL2051
Introductory Geophysics
Staff Contact: Mr D. Palmer
S1 L2 T1
Prerequisite: GEOL1101
Note/s: Fieldwork of up to 5 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

Principles of gravity, geomagnetism, palaeomagnetism, geothermy and seismology and their relation to shape, internal constitution and dynamic processes of the earth. Introduction to radiometric, gravity and magnetic exploration methods.

GEOL2062
Geological Mapping
Staff Contact: A/Prof A.D. Albanii/Mr G. McNally
S2 L2 T2
Prerequisite: GEOL1101 or GEOL1201
Note/s: Fieldwork of up to 5 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of this subject.

GEOL2072
Environmental Geology
Staff Contact: Prof G. Hocking/A/Prof A.D. Albanii/Dr J. Jankowski
S2 L2 T1

GEOL2092
Geochemistry
Staff Contact: Dr P.C. Rickwood/Mr P. Atherden
S2 L2 T1
Prerequisite: GEOL1201

GEOL3011
Mineralogical Techniques
Staff Contact: Dr P.C. Rickwood
S1 L2 T1
Prerequisite: GEOL1201

GEOL3021
Igneous and Metamorphic Processes
Staff Contact: A/Prof B.J. Hensen
S1 L2 T1.5
Prerequisite: GEOL2010 and GEOL2022
Note/s: Fieldwork of up to 3 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL3031
Stratigraphy & Basin Analysis
Staff Contact: Prof J. Roberts
S1 L2 T2
Prerequisite: GEOL1201
Note/s: Fieldwork of up to 8 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL3052
Exploration Geophysics
Staff Contact: Mr D. Palmer
S2 L2 T1
Prerequisite: GEOL1201
Note/s: Fieldwork of up to 3 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

An introduction to the theory and application of geophysical methods to mineral, petroleum, coal, groundwater, and geotechnical studies. The methods covered include gravity, magnetic seismic refraction, shallow seismic reflection, DC electrical resistivity, induced polarization, electromagnetic, transient electromagnetic, radar, and geophysical well logging. Each method is described in terms of the fundamental physical principles, data acquisition and field techniques, data processing and presentation, and quantitative interpretation.

GEOL3072
Engineering Geology
Staff Contact: Prof G. Hocking/Mr G. McNally
S2 L2 T1
Note/s: Fieldwork of up to 2 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL3082
Structural Geology
Staff Contact: Dr P.G. Lennox
S2 L2 T1
Prerequisite: GEOL2022
Note/s: Fieldwork of up to 5 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

Structural Geology. Structural analysis at the microscopic, mesoscopic and macroscopic scales. Structural analysis using Bermagui, Cooma and Broken Hill Terrains. Folds, faults and foliation development. Strain analysis, deformation mechanisms and the relationship between deformation and metamorphism.
GEOL3092
Exploration Geochemistry

Staff Contact: Dr A.C. Dunlop/ Prof G.J.S. Govett/
Dr D.R. Cohen

Prerequisites: GEOL2092 and GEOL3101

Principles and techniques of soil drainage and rock geochemistry as applied to mineral exploration.

GEOL3101
Ore Deposits

Staff Contact: Dr A.C. Dunlop

Prerequisite: GEOL2022 and GEOL2092

Note/s: Fieldwork of up to 4 days is a compulsory part of this subject and will be held in the last week of the mid-year recess. Students will incur personal costs. Details will be provided during the first week of the subject.

Geological setting, characteristics and genesis of the major categories of ore deposits. Laboratory study of hand specimens, thin sections and polished sections from these ore deposit categories.

GEOL3102
Fossil Fuels & Non-metallic Resources

Staff Contact: A/Prof C.R. Ward

Prerequisites: GEOL1201

Note/s: Fieldwork of up to 2 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

GEOL4111
Advanced Geological Techniques

Staff Contact: Dr P.C. Rickwood/ Dr D.R. Cohen/
A/Prof G.R. Taylor/A/Prof B.J. Hensen

Note/s: Fieldwork of up to 7 days is a compulsory part of this subject. Students will incur personal costs. Details will be provided during the first week of the subject.

Geological Techniques. Sampling strategy and methodology; preparation of samples for analysis. Practical usage of modern destructive and non-destructive methods of rock and mineral analysis including AAS, ICP, DCP, and XRF. Geological Data Processing. Application of probability graphs to exploration data. Processing and interpretation of geological data using selected univariate and multivariate statistics; typical case studies in mathematical geology exemplifying these techniques. Practical work based on microcomputer operating systems, word processing, statistical and graphical packages.

Remote Sensing. Principles of various remote sensing techniques including Landsat and side-looking airborne radar. Techniques of image enhancement and digital processing. Applications of remote sensing in lithological mapping and tectonic analysis. Integration of remotely sensed data with conventional data sources. Practical work with the interactive computer on image analysis with particular reference to student field study areas. Field Work: A compulsory tutorial of up to seven days duration providing training in advanced mapping techniques and in the integrated use of multiple sources of field data.

GEOL4121
Professional Practice

Staff Contact: Prof J. Roberts/ Dr A.C. Dunlop

Note/s: Formal classes are scheduled for 13 weeks only to accommodate the field tutorial of GEOL4111.

Project Management: Organisation and costing of geological field programs; land tenure, exploration and mining titles; design of drilling, sampling and analysis programs; use of geological database and modelling systems; estimation of resources and reserves; reporting requirements, liability and ethics in geological practice. Research and communication: Writing and illustration of scientific reports, theses and papers. Short written reports for editing in class; major report encompassing literature search and description of the thesis topic. Preparation of maps and other illustrations. Presentation of technical material in verbal form.

GEOL4131
Special Topics In Applied Geology

Staff Contact: Dr P.G.Lennox

Instruction by lectures, tutorials and assignments in advanced aspects of a chosen area of geological specialization. Programs are offered in a number of specialised fields including Mineral Exploration and Mining Geology, Sedimentary Basin Studies, Geophysics and Engineering Geology, Environmental Geology, Geochemistry, Hydrogeology. Details of these programs are available from the Director of Fourth Year studies. The Special Topics program would normally be related to the topic of the chosen Field Project (GEOL4203, DEOL4213, GEOL4303 and GEOL4343) and is designed to be a preparation for a future career. Variation from the standard programs may be allowed subject to approval from the Head of Department.

GEOL4203
Field Project

Staff Contact: Dr P.G.Lennox

Note/s: Students will incur personal costs.

A major field/laboratory project, which generally includes geological mapping, on some aspect of mineral or sedimentary basin resources, engineering or environmental geology or resource geophysics.
GEOL4213
Field Project (P/T)
Staff Contact: Dr P.G. Lennox
S2 HPW10 (Year 1) S2 HPW 10 (Year 2)
Note/s: Students will incur personal costs.
A major field/laboratory project, which generally includes geological mapping, on some aspect of mineral or sedimentary basin resources, engineering or environmental geology or resource geophysics.

GEOL4303
Geology Honours
Staff Contact: Dr P.G. Lennox
Prerequisites: Completion of programs 2500 or 2503 including 8 Level III units.
Note/s: Restricted to programs 3970/2500, 2503
This is a servicing subject taught within courses offered by other schools or faculties.
Students with a double major in geology will follow the program set for Year 4 students in the Faculty of Applied Science course Applied Geology (3000).

GEOL4313
Earth and Environmental Science (Honours)
Staff Contact: A/Prof A.D. Albani
Prerequisites: Completion of program 2527 including 8 Level III Units
Note/s: Restricted to program 3970/2527. An extensive field project is a compulsory part of this subject. Students will incur personal costs.
This is a servicing subject taught within courses offered by other schools or faculties.

GEOL4333
Earth and Environmental Science Honours (P/T)
Staff Contact: Applied Geology Office
U10F
Prerequisites: Completion of program 2527 including 8 Level III units
Note/s: Restricted to program 3970/2527
This is a servicing subject taught within courses offered by other schools or faculties.
Extensive field work is a compulsory part of this subject and students will incur personal expenses.
Students will follow a course of advanced study which extends over 4 sessions and includes geological subjects that are approved by the Head of School.
The Category C General Education requirements are met through compulsory coursework during the Honours program.

GEOL4343
Geology Honours (P/T)
Staff Contact: Applied Geology Office
U10F
Prerequisites: Completion of programs 2500 or 2503 including 8 Level III units
Note/s: Restricted to program 3970/2500, 2503
This is a servicing subject taught within courses offered by other schools or faculties.
Extensive field work is a compulsory part of this subject and students will incur personal expenses.

Students with a double major in geology will follow the program set for Year 4 students in the Faculty of Applied Science course 3000 Applied Geology but over 4 sessions in a prescribed sequence. Students with a single major in geology will follow a course of advanced study which extends over 4 sessions and includes geological subjects that are approved by the Head of School.
The Category C General Education requirements are met through compulsory coursework during the Honours program.

GEOL5100
Geology for Civil and Environmental Engineers
Staff Contact: Dr P.G. Lennox
S1 L2 T1
Note/s: Fieldwork of up to 2 days is a compulsory part of this subject. Students will incur personal costs.
This is a servicing subject taught within courses offered by other schools or faculties.
Only offered in S2 in 1995.
An introduction to mineralogy, petrology, structural geology, stratigraphy and geomorphology. Weathering of rocks and development of soils. The role of the geologist in civil and environmental engineering.

GEOL5110
Geology for Landscape Architecture
Staff Contact: A/Prof A.D. Albani
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.
Only offered in S2 in 1995.
Minerals and rocks. Igneous, sedimentary and metamorphic rocks; their origin and their relationship with the landscape. Geological structures and their graphic representation. Interpretation of geological maps and sections.

GEOL5211
Geology for Mining Engineers 1
Staff Contact: Dr M.B. Katz
F L1 T1
Note/s: Fieldwork of up to 1.5 days is a compulsory part of this subject. Students will incur personal costs.
Main branches of geology and their application to mining. Introduction to mineralogy, petrology, stratigraphy and geomorphology. Rock weathering; Structural geology; faults, folds, joints and foliation. Plate tectonics. The use of geological maps.

GEOL5301
Introduction to Petroleum Geology
Staff Contact: A/Prof C.R. Ward
S1 L1.5 T.5
Note/s: Fieldwork of up to 2 days is a compulsory part of this subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.
Introduction to earth science, nature and properties of rocks and minerals; sedimentation, sedimentary structures and sedimentary environments; stratigraphy and the geological time scale, geologic maps and structures; introduction to plate tectonics. Minerals under the microscope. Microscopic features of sandstone and limestone. Nature and identification of clay minerals. Coal and Petroleum formation; development of sedimentary basins.
Fracture analysis as applied to mining operations. Origin formation. Exploration methods.

Fleldwork of up to 1 day is a compulsory part of this subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

Structural Geology including stereographic projection and fracture analysis as applied to mining operations. Origin and properties of coal, oil, oil shale and natural gas. Principles of hydrogeology including the significance of groundwater in mining operations. Mineralogy of important metallic and non-metallic resources, processes of ore formation. Exploration methods.

GEOL5312
Petroleum Geology and Geophysics
Staff Contact: A/Prof C.R. Ward/Mr D. Palmer
S2 L2 T1
Prerequisite: GEOL5301
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

Petroleum Geology: Petroleum generation, including kerogen types and maturation migration, entrapment and degradation; Sedimentary features of reservoir sequences; Structural traps, diapirs and fractured-rock reservoirs, including coal-bed methane; primary and secondary porosity development; exploration techniques and resource evaluation; case studies of selected petroleum fields. Petroleum Geophysics: Fundamentals of seismic wave propagation, seismic data acquisition, seismic data processing, seismic interpretation, three dimensional seismic methods, case studies, vertical seismic profiling.

GEOL5401
Petroleum Production Geology and Geophysics
Staff Contact: Dr P.G.Lennox/Mr D. Palmer
S1 L1.5 T.5
Prerequisite: GEOL5312
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

Petroleum exploration and development programs; sub-surface maps and sections; geologic characteristics of selected reservoir types: porosity characteristics and recovery effects; estimation of petroleum resources. Interpretation and application of 2D and 3D seismic reflection data. Structural maps, amplitude seismic velocities, amplitude versus offset and frequency effects. Estimation of petroleum resources.

GEOL5410
Geology for Mineral Engineers
Staff Contact: A/Prof C.R. Ward/Dr M.B. Katz
S2 L2
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

Nature and properties of coal; methods of testing and analysis; introduction to coal petrology; geological factors in coal preparation and use. Chemical and physical properties of rock forming and economic minerals.

GEOL6201
Marine Geology 1
Staff Contact: A/Prof A.D. Albani
F L1 T2
Prerequisite: GEOL1101 and GEOL1201
Note/s: Field work of 5 days is a compulsory part of the subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

Sedimentology. Flow regimes and bedding forms, sedimentary structures. Modern and ancient sedimentary environments of deposition, alluvial, near-shore, shelf and deep sea, in both terrigenous clastic and carbonate/evaporite domains. The facies concept; lateral and vertical relationships between depositional environments and associated lithofacies within developing sediment wedges. Mineralogy and Petrology. Igneous and sedimentary rock types of the ocean floor and their significance.

GEOL6221
Introductory Geophysics
Staff Contact: Mr D. Palmer
S1 L2 T1
Note/s: Excluded GEOL2051. Fieldwork of up to 5 days is a compulsory part of this subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

Principles of gravity, geomagnetism, palaeomagnetism, geothermy and seismology and their relation to shape, internal constitution and dynamic processes of the earth. Introduction to radiometric, gravity and magnetic exploration methods.

GEOL6231
Coastal Monitoring Techniques
Staff Contact: A/Prof A.D. Albani
S1 L1 T2
Note/s: Field work of up to 4 days is a compulsory part of the subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

It is only offered in S2 in 1995.

General principles of surveying. Optical and electronic methods of distance and elevation measuring. Coastal position fixing. Coordinate systems and their application to coastal mapping. Map projections. Long and short term monitoring of coastal changes. Tides, their measurement and determination of tidal planes. Soundings and bathymetric surveys. Shallow water investigations for seabed and bedrock morphologies. Through its intensive practical approach, the course is designed to give each student an understanding of coastal surveying applicable to a large variety of small scale investigations, from beach to estuarine monitoring.

GEOL6311
Marine Geology 2
Staff Contact: A/Prof A.D. Albani
F L1 T2
Prerequisite: GEOL6201
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

Structure and properties of the clay mineral groups including the kaolinites, illites, smectites, chlorites, mixed layered and fibrous clay minerals. Techniques for

GEOL6321

Coastal Environmental Assessment
Staff Contact: A/Prof A.D. Albani

Note/s: Field work of up to 3 days is a compulsory part of the subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

The physical nature of the various coastal environments: their morphology and the relationship between water masses and the sedimentary characteristics of the benthos. Sampling techniques, analytical methodology and statistical data evaluation. Environmental assessment of Australia and overseas areas. An important aspect of the course is its practical approach: from data gathering, data evaluation and environmental assessment report writing. Practical work in the course involves each student as an active member of a project team.

GEOL6330

Exploration Geophysics
Staff Contact: Mr D. Palmer

Note/s: Excluded GEOL3052. Field work of up to 3 days is a compulsory part of the subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

An introduction to the theory and application of geophysical methods to mineral, petroleum, coal, groundwater, and geotechnical studies. The methods covered include gravity, magnetic, seismic refraction, shallow seismic reflection, DC electrical resistivity, induced polarization, electromagnetic, transient electromagnetic, radar, and geophysical well logging. Each method is described in terms of the fundamental physical principles, data acquisition and field techniques, data processing and presentation, and quantitative interpretation.

GEOL6331

Geochemistry
Staff Contact: Dr P.C. Rickwood/Mr P. R. Atherden

Prerequisite: GEOL1201
Note/s: Excluded GEOL2092. This is a servicing subject taught within courses offered by other schools or faculties.

GEOL7223

Surficial Constituents
Staff Contact: A/Prof C.R. Ward/Dr M.D.Buck/Dr P.C. Rickwood

F L3 T2
Prerequisite: GEOL1101 or GEOL1201
Exclusions: GEOL2011, GEOL2022, GEOL3102
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

GEOL7233

Processes In Environmental Geology
Staff Contact: A/Prof A.D. Albani

F L2 T1
Prerequisites: GEOL1101 or GEOL1201
Exclusions: GEOL2031 and GEOL2072
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

GEOL7321

Geology for Geomorphologists and Pedologists
Staff Contact: A/Prof C.R. Ward/A/Prof A.D. Albani

S1 L1 T1 S2 L2 T2
Prerequisites: GEOL1201
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

SUBJECT DESCRIPTIONS

GEOL7323
Environmental Techniques
Staff Contact: Dr P.C. Rickwood/Mr P.R. Atherden
F L2 T1
Prerequisite: GEOL7223
Exclusions: GEOL2092, GEOL3011
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.

GEOL7333
Environmental Statistical Methods
Staff Contact: Dr D.R. Cohen
F L2 T1
Prerequisites: GEOL1101 or GEOL1201
Exclusions: GEOL2041, GEOL2042
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.
Introduction to the use of PC, network and VAX computer systems with emphasis on geological software. Introduction to programming in FORTRAN with statistical applications. Elementary geostatistics, population characterisation and splitting, ANOVA methods, regression analysis, EDA, Markov chains. Analysis of oriented data and processing of spatial geochemical data.

GEOL7401
Earth Environments Honours
Staff Contact: A/Prof A.D. Alban
U10F
Prerequisites: Completion of three years of program 6866 including 6 Level III units.
Note/s: Field work is a compulsory part of this subject and students will incur personal expenses. This is a servicing subject taught within courses offered by other schools or faculties.
Students will undertake a project that involves the writing of a thesis.

GEOL7403
Earth Environments Honours
Staff Contact: A/Prof A.D. Alban
U10F
Prerequisites: Completion of three years of program 6866 including 6 Level III units.
Note/s: Field work is a compulsory part of this subject and students will incur personal expenses. This is a servicing subject taught within courses offered by other schools or faculties.
Students will follow a course of advanced study that has to be approved by the program advisor. It extends over 2 sessions and included both geological subjects and a project that involves the writing of a thesis.

GEOL7404
Earth Environments Thesis
Staff Contact: A/Prof A.D. Alban
U5 S1 or S2
Prerequisites: Completion of three years of program 6866 including 6 Level III units.
Note/s: Field work is a compulsory part of this subject and students will incur personal expenses. This is a servicing subject taught within courses offered by other schools or faculties.
Subject to the approval of the program advisor, student will undertake a project that involves the writing of a thesis.

GEOL8220
Sedimentology
Staff Contact: A/Prof C.R. Ward
S1 L1 T1
Prerequisite: GEOL1201
Note/s: Excluded GEOL2031. This is a servicing subject taught within courses offered by other schools or faculties. Field work of up to 5 days is a compulsory part of this subject. Students will incur personal costs.
Sedimentology. Flow regimes and bedding forms, sedimentary structures. Modern and ancient sedimentary environments of deposition: alluvial, near-shore, shelf and deep-sea, in both terrigenous clastic and carbonate/evaporite domains. The facies concept: lateral and vertical relationships between depositional environments and associated lithofacies within developing sediment wedges.

GEOL8320
Gravity and Magnetic Methods
Staff Contact: Mr D. Palmer
S1 L2 T1
Prerequisites: PHYS1002 and MATH1032 or MATH1231
Note/s: Available only in program 2503. Field work of one day is a compulsory part of the subject. Students will incur personal costs. It is desirable that students taking this subject have a background to geology. This is a servicing subject taught within courses offered by other schools or faculties.
Fundamental principles. Field procedures and instruments. Reduction of field data. Regional and residual effects of sources of simple geometrical shapes and generalised two and three-dimensional distributions.
GEOL8330
Seismic Methods
Staff Contact: Mr D. Palmer
S1 L2 T1
Prerequisites: PHYS1002 and MATH1032 or MATH1231
Note/s: Available only in program 2503. It is desirable that students taking this unit have a background in geology. Field work of one day is a compulsory part of the subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

GEOL8340
Electrical Methods
Staff Contact: Mr D. Palmer
S1 L2 T1
Prerequisites: PHYS1002 and MATH1032 or MATH1231
Note/s: Available only in program 2503. It is desirable that students taking this unit have a background in geology. Field work of one day is a compulsory part of the subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

GEOL8350
Geological Applications
Staff Contact: Dr M.B. Katz
S1 L1 T1
Prerequisite: GEOL1201
Note/s: A subject of ten weeks duration. Available only in program 2503. Field work of one day is a compulsory part of the subject. Students will incur personal costs. This is a servicing subject taught within courses offered by other schools or faculties.

GEOL8360
Geophysical and Geological Applications
Staff Contact: Mr D. Palmer/Dr M.B. Katz
S2 L1 T2
Prerequisite: GEOL1201
Note/s: Excluded GEOL6330. Available only in program 2503. This is a servicing subject taught within courses offered by other schools or faculties.

GEOL9010
Groundwater Environments
Staff Contact: Dr J. Jankowski
C3 S1
Physical properties of groundwater. Darcy flow; hydraulic conductivity - field and laboratory methods; storage and transmissivity; flow nets - local and regional flow systems. Drilling methods; well design and completion; well development; pumping tests and interpretation. Study of the detailed occurrence, methods of development and environmental problems associated with groundwater in aquifer systems of importance to Australia. Environments will include fractured rock systems (upland salinity); the Murray-Darling Basin; The Great Artesian Basin; Oceanic Islands and coastal aquifers and karstic aquifer systems.

GEOL9030
Geological Engineering
Staff Contact: Mr G. McNally
C3 S1 L.1 T.1
Geomechanical properties of intact rock, discontinuities and rock masses. Weathering processes and geotechnical consequences. Mechanical excavation and blasting. Rock support for shallow underground structures. Dam engineering, dam site geology, embankment zoning, foundation treatment and grouting, materials selection and specification, dispersive soils and filter design. Foundation engineering.

GEOL9031
Engineering Geology of Surficial Materials
Staff Contact: Mr G. McNally
C3 S2
Geotechnical characteristics of alluvial, colluvial, eolian, coastal and residual soils; duricrusted and deep water weathering; problem soils (expansive, dispersive, collapsing, compressible and saline); stabilisation and improvement of inferior materials; influence of Cainozoic climatic changes and geological history of regolith in Australia and adjacent areas.

GEOL9032
Soil and Rock Construction Materials
Staff Contact: Mr G. McNally
C3 S2
Location and assessment of sand, gravel, hard rock, brick clay, building stone and limestone; specification and testing of aggregate, ballast and roadbase; concrete and asphaltic materials; blasting, crushing and benefication; environmental considerations, blast monitoring and quarry reclamation; waste and synthetic materials.

GEOL9033
Terrain Evaluation
Staff Contact: Mr G. McNally
C3 S2
Introduction to photogeology and image interpretation, with emphasis on geotechnical applications; interpretation of geological structure, lithology and surficial deposits; terrain evaluation for engineering purposes, with Australian examples. Course content includes lectures, supervised practical work and individual assignments. Intended to complement GEOL0110 (Geological Remote Sensing), emphasising airphotos as a data source.
GEOL9040
Fundamentals of Geomechanics
Staff Contact: Prof G. Hocking
C3 S1 L1.5 T1.5
Engineering mechanics, limit equilibrium, equilibrium of multiple bodies, stress and strain in two and three dimensions, equations of equilibrium and compatibility. Isotropic and anisotropic elasticity, plastic and viscous yield criteria and potential surfaces. Stereographic projection methods for rock mechanics. Geomechanical properties and classification of soils and rocks. Laboratory and field testing techniques for soils and rocks. Deformability and strength properties of rocks and shear strength of rock discontinuities. Stresses about rock openings and beneath point loads. Stress measurement in rocks.

GEOL9051
Hydrogeochemistry
Staff Contact: Dr J. Jankowski
C3 S1
Chemical composition of natural and contaminated groundwaters; inorganic parameters in natural waters; methods of expressing concentration and representation of hydrochemical data; interpretation of chemical analyses, chemical types of waters; aqueous geochemistry, chemical thermodynamics, activities of ionic species, equilibrium reactions, non-equilibrium approaches, the carbonate system and pH control; chemical weathering, water-rock interactions; clay minerals and ion exchange, silicate equilibria, mass balance, oxidation and reduction, redox equilibria, redox processes and reactions. Application of physical chemistry to groundwater systems. Geochemical evolution of groundwater. Introduction to hydrochemical modelling. Introduction to isotope studies; case studies in natural and polluted environments.

GEOL9052
Advanced Hydrogeochemistry
Staff Contact: Dr J. Jankowski
C3 S2
Environmental isotopes; radioactive decay; stable and radioactive isotopes and their application to groundwater studies; bacteriology: basic principles of bacteriology and microbiology of polluted environments; biochemistry, advanced thermodynamics and kinetics; mass transport and mass balance studies in groundwater systems; computer methods in geochemical modelling including forward and inverse methods and geochemical modelling codes; case studies and application of computer codes in groundwater modelling; practical field measurement and use of field hydrochemical equipment; laboratory analysis and the use of the chemical laboratory equipment.

GEOL9060
Environmental Geology
Staff Contact: Mr G. McNally
C3 S1 L3
Geology and urban planning; geological input to Environmental Impact Statements; soil and rock construction materials; ground subsidence due to mining and groundwater pumping; geological hazards; land degradation and problem soils; contaminant movement in geological media; design and construction of tailings dams.

GEOL9070
Engineering Geophysics
Staff Contact: Mr D. Palmer
C3 S1 L2 T1
Note/s: Short field tutorials are included as part of this subject. Students will incur personal costs.
An introduction to the theory and application of geophysical methods to engineering, environmental, and groundwater studies. The methods covered include gravity, magnetic and electromagnetic, radar, and geophysical well logging. Each method is described in terms of the fundamental physical principles, data acquisition and field techniques, data-processing and presentation, quantitative interpretation, and case histories.

GEOL9100
Remote Sensing of Groundwater Resources
Staff Contact: Applied Geology Office
C3 S1 L1.5 T1.5
The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; infrared remote sensing techniques; sideling airborne radar; theory and applications of Landsat imagery; enhancement techniques for satellite imagery; interpretation of Landsat photographic products and application to several case history areas. Integration of remote sensing information with the overall database as applied to exploration. Remote sensing for hydrogeological mapping, recognition of aquifers and recharge, discharge zones, salinity mapping. Application of Landsat, TM, SPOT, RADAR and integrated information systems.

GEOL9110
Hydro and Environmental Geology
Staff Contact: Dr J. Jankowski
S2 L2 T1
Prerequisite: GEOL5WO
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.
Hydrogeology: determination of intrinsic permeability in field and laboratory, tracer tests, finite difference modelling methods applied to groundwater flow, drilling methods for unconsolidate and consolidated deposits, piezometer design and installation, remote sensing methods for contaminated groundwater investigations, sampling methods.
Hydrogeochemistry: Chemical composition of natural and contaminated groundwater, inorganic parameters in groundwaters, chemical types of groundwaters, chemical reactions and processes, chemical evolution and chemical classification of groundwaters, chemical equilibrium, disequilibrium, acid-base chemistry, the carbonate system and pH control, oxidation and reduction.

GEOL9120
Groundwater Contaminant Transport
Staff Contact: Dr J. Jankowski
S1 L2 T1
Prerequisites: GEOL9110
Note/s: This is a servicing subject taught within courses offered by other schools or faculties.
Weathering reactions and geochemical processes, ion exchange, salt sieving and brine development, dryland salinity, fresh water - saline water interaction, application of stable and radioactive isotopes in groundwater studies,
groundwater microbiology, corrosion and incrustation in groundwater bores, practical field and laboratory measurements, monitoring and sampling of contaminants in groundwater, sources and types of contaminants, groundwater quality and environmental standards, contaminant mass transport in groundwater - chemical dispersion, chemical diffusion and retardation, Kd - test, hydrogeochemical modelling, physical and empirical models, modelling of subsurface transport, trace metals in groundwater - speciation and transport, restoration and clean-up.

GEOL9124
Groundwater Project
Staff Contact: Dr J. Jankowski
C9 S2
Study of similar content to GEOL9144 but at a smaller scale.

GEOL9144
Groundwater Research Project
Staff Contact: Dr J. Jankowski
C12 S2
Note/s: Students undertaking field work may incur personal costs.

Research investigation consisting of one or more of; modelling, laboratory experiments, field work related to groundwater studies.

GEOL9444
Project In Engineering Geology
Staff Contact: Mr G. McNally
C6
Study of similar content to GEOL9464 but at a much smaller scale.

GEOL9454
Project In Engineering Geology
Staff Contact: Mr G. McNally
C9
Study of similar content to GEOL9464 but at a smaller scale.

GEOL9464
Project In Engineering Geology
Staff Contact: Mr G. McNally
C15
Note/s: Students undertaking field work may incur personal costs.

The project is a research investigation of field and laboratory work in any of the disciplines; Engineering Geology, Environmental Geology or Hydrogeology.

KCME1102
Mine Safety Management
Staff Contact: Prof J. Cross
C3
Note/s: Offered by correspondence

The course includes the following: safety management; hazard and risk analyses, safety hazard identification, management techniques (MORT STEP), safety audits; statistics: HAZOP management and maintenance of change risk analysis; cost benefit analysis; attitudes to safety in mining; safety and personal problems; effective training; accident and injury report/recovery; ergonomics and safety engineering; prevention of traumatic injury; work stress; environmental factors; monitoring and protection; personal protective equipment; safety policies and programs; action plans.

KCME1103
Drilling and Blasting
Staff Contact: Dr G. Sen
C3
Drilling methods, types of drills, types of bits and other accessories, drilling economics, maintenance schedules for drills and accessories; history and theory of explosives, explosive types; new developments and applications; blast design and secondary blasting; controlling ground vibration; airblast and flyrock; blasting economics; controlled blasting; precautions against extraneous electricity; misfires and deteriorated explosives safety and legislation for storage; transportation and handling of explosives.

KCME1105
Slope Stability for Surface Mining
Staff Contact: Key Centre for Mines
C3
This comprehensive course will deal with the major topics of engineering geology and groundwater controls, in the form of discontinuities, variable materials and pore pressures. Effect of excavation method and scheduling in pit stability. The fundamental basis of stability analysis, advantages and disadvantages of a range of mathematical models, remedial measures that can be taken to stabilise slopes. Pit slope design in the context of overall mine planning. In addition to dealing with the underlying principles, the subject may involve workshops and field inspections so that the participants gain hands-on experience of practical cases.

KCME1106
Soil and Rock Construction Materials
Staff Contact: Mr G. McNally
C3
This course provides an introduction to the location, assessment, mining and processing of soil and rock construction materials and to the environmental problems associated with their extraction. The main themes explored include the maximum use of existing quarries, the use of upgraded marginal materials and the reclamation of quarried lands. The materials covered include aggregates, ballast, armour-stone and prepared road base, sand, gravel and natural pavement materials, artificial aggregates and stabilised road base, brick clay, limestone and cementitious materials.

KCME1107
Introductory Computing and Statistics for Geologists and Mining Engineers
Staff Contact: Dr D. Cohen
C3
Introduction to the use of PC's, operating systems, communications and networks, common software packages. An introduction to programming, spreadsheets, graphics software and the SYSTAT package. Fundamentals of statistics including types of data, population characterisation, tests of significance, analysis of variance and basic geostatistical methods.
The course includes the following topics: ventilation network analysis and simulation; fan selection; role of booster fans; ventilation of long headings; recirculation; gases from diesel engines and their control; methane and its control in underground coal mines; dust in mine air and its control; mine climate and its control; ventilation planning. Subject to be delivered as a short course consisting of 35 hours of class contact and additional tutorials equivalent to a further 7 hours of class contact.

KCME1108
Applied Structural Geology
Staff Contact: Dr P.G. Lennox
C3

KCME1110
Geographical Information Systems In Applied Geology
Staff Contact: A/Prof G.R. Taylor
C3

Introduction to GIS; raster versus vector systems; overview of GIS in geology and geological applications of GIS. Introduction to raster systems; spatial associations and analysis tools; digital terrain modelling; spatial modelling - site and route selection. Introduction to vector systems; vector data models and data base systems. Input of spatial data into vector based GIS; building a vector geographical data base. Managing attribute data; data analysis and modelling using a vector based GIS. Cartographic output and data display; TIN and network. Spatial data analysis methods in geology; geological case studies; integration of GIS and Remote Sensing GIS hardware, GIS organizational and management issues.

KCME1300
Mining Management Project
Staff Contact: A/Prof G.R. Taylor
C12

A study of either an administrative or technical nature with relevance to the management of a mining or mineral processing operation. This may be based on simulated or actual situations but projects of relevance to the candidate’s employment will be encouraged. As far as possible, projects will be designed in consultation with the mining industry.

KCME1302
Mine Ventilation and Environment
Staff Contact: Mr V.S. Vutukuri
C3

The course includes the following topics: ventilation network analysis and simulation; fan selection; role of booster fans; ventilation of long headings; recirculation; gases from diesel engines and their control; methane and its control in underground coal mines; dust in mine air and its control; mine climate and its control; ventilation planning.

KCME1400
Mining Management Project
Staff Contact: A/Prof G.R. Taylor
C9

A study of either an administrative or technical nature with relevance to the management of a mining or mineral processing operation. This may be based on simulated or actual situations but projects of relevance to the candidate’s employment will be encouraged. As far as possible, projects will be designed in consultation with the mining industry.

KCME2101
Strata Control
Staff Contact: Prof R. Singh
C3

This course presents to the practising engineer the latest developments in the field of strata mechanics and develops a sound design background to enable the carrying out of efficient mining operations for increased productivity consistent with safety. The course covers the fundamentals of strata mechanics together with advanced topics including engineering technology and rock mechanics aspects of coal mining strata control. Emphasis will be given to the various design aspects of mine structures, such as mine pillars, gate roads and long wall mining. The role played by instrumentation in providing for the safe design of the mine opening will be addressed. Special sessions will be devoted to rock and cable bolting techniques and powered support design.

KCME2104
Application of Computers in the Mineral Industry
Staff Contact: Dr E. Baafi
C3

Geostatistical ore reserve estimation on a personal computer; computerised open pit design and planning; mine system simulation using GPSS/PC. An expert system for the mineral industry. Mine ventilation planning on a personal computer, using Lotus 123 spreadsheet to solve mining problems.

KCME2105
Geostatistics and Ore Body Modelling
Staff Contact: Ms S. Border
C3

When to apply geostatistics; brief review of univariate statistics; bivariate statistics and correlation; exploratory data analysis; measures of spatial correlation; the variogram, the covariance; variogram calculation and how to obtain a good variogram; random function models and stationarity; desirable properties of estimators; estimation of variance; dispersion variance and uses; optimal weighted average estimator, ordinary kriging; recoverable reserve estimation, problems and solutions; application examples, coal, copper, gold; blasthole kriging for ore/waste selection; geotechnics and the environment.

KCME2107
Mine Water Origin, Inflow, Prediction and Control
Staff Contact: Prof R. Singh
C3

Note/s: This is a short course subject and can be done by correspondence.

This course investigates the origin of mine water, and hydrological and hydrogeological factors affecting mine...
drainage. The method of predicting mine water inflow and techniques of mine water control will be considered. Pumping tests, surface stability, inflow and calculations of water inflow in open cut operations are studied. Underground mine dewatering techniques, pumps, and pumping systems, mine inundation as well as methods for mine water pollution control and treatment are compared.

KCME3101
Coal Preparation
Staff Contact: Dr A.C. Partridge
C3
Coal characterisation, principles of separation, materials handling, sampling - theory, sampling - equipment and practice, screening and comminution, cleaning of coarse and small coal, water based separation, dense medium separation, cleaning of fine coal, solid liquid separation theory, cyclones, vacuum and pressure filtration, centrifuges(product and tailing), clarification/thickening practice, pumping, piping, valving, plant design, layout and upgrading, maintenance, control concepts (basic process control), on-stream analysis, overall plant control and optimization.

KCME3201
Financial Management
Staff Contact: Centre Office
C3
Note/s: Offered by correspondence.
The course covers the following topics: financial management, an overview; accounting concepts and the accounting process; financial statements; public sector accounting; corporate accounting; the interpretation of financial statements; the recording of costs; management cost information (1); management cost information (2); the budgeting process.

KCME3202
Management Perspectives
Staff Contact: Centre Office
C3
Note/s: Offered by correspondence.
The course covers the following topics: what is management?; managing individuals; managing groups; managing organisations; managing information; managing operations; managing decision making.

KCME3203
Economic Decision Making
Staff Contact: Centre Office
C3
Note/s: Offered by correspondence.
The course covers the following topics: introduction to economic concepts demand; supply and the market consumers; firms and market structures; welfare economics and government intervention; international economics; macroeconomics and national income analysis; national economic policy benefit cost analysis and expenditure decisions; business finance.

KCME3204
Management of Innovation
Staff Contact: Centre Office
C3
Note/s: Offered by correspondence.
The course covers the following topics: innovation and innovators; technology and innovation; opportunity analysis; marketing and innovation; the business plan; management of innovation; innovations in corporations; maintaining innovations.

KCME3205
Strategic Planning
Staff Contact: Centre Office
C3
Note/s: Offered by correspondence.
The course covers the following topics: the nature and scope of strategic management; the practice of strategic management; the mission of the organization; analysing organizational resources; formulating strategic objectives; generating strategic alternatives; evaluating strategic alternatives; strategic implementation; assessing strategic performance.

KCME3206
Mining Law
Staff Contact: Centre Office
C3
Topics to be covered with course include: definitions of 'minerals'; common law; ownership; Aboriginal land rights; miners' rights and claims; exploration titles; production titles; private land/Crown land; administrative processes; environmental protection and royalties. These topics will be illustrated by reference to a number of case histories.

KCME4102
Placer Technology
Staff Contact: Centre Office
C2
Sources of placer minerals; natural processes producing concentration of placer minerals; nature of placer deposits; trends in placer exploration; placer sampling; reserves calculations; mining methods; processing methods; project evaluation; environmental implications and pollution control technology.

KCME4133
An Introduction to Environmental Geology
Staff Contact: Centre Office
C3
KCME4201
Export Marketing for the Mining Industry
Staff Contact: Ms J. Morgan

C3

KCME4202
Mine and Project Evaluation
Staff Contact: Mr E.J. Malone

C3
Topics to be covered in the course include: introduction to accounting, understanding financial statements, financial theory in relation to project evaluation, evaluation techniques, project financing, cost of capital, revenue assumptions, cost assumptions, risk analysis and responses to uncertainty, project optimization, feasibility studies, institutional and corporate perspectives on project evaluation, introduction to financial modelling, review of cases for financial modelling, practical exercises in financial modelling, intra-project evaluation, comprehensive financial model case study, valuation reports and published assessments. Coal Industry topics: coal qualities, marketing and economics. Mineral Industry topics: significance of technical inputs; preliminary investigations and asset determinations, and underground base metal development study.

KCME4203
Mine Management
Staff Contact: Mr S. Gemell

C3
The subject covers general management functions, planning, organization, control, communication, command, coordination, production functions, marketing, financial aspects, personnel, purchasing, public relations, environmental matters, contracts and stock market requirements and implications.

KCME4204
Mineral Exploration Project Management
Staff Contact: Mr E.J. Malone

C3
This course stresses the need to define the exploration target in order to design appropriate exploration programs and establish criteria for monitoring the effectiveness of the programs. Exploration techniques are reviewed with emphasis on the applicability of specific techniques in particular circumstances, their limitations and the use of orientation work to establish performance criteria. Specific topics include: introduction to program design; review of available techniques; remote sensing techniques; geochemical techniques; airborne geophysical surveys; ground geophysical surveys; data interpretation; reporting and supervision; sequential exploration; definition of drill targets; budgeting and budget management.

KCME4301
Environmental Management for the Mining Industry
Staff Contact: Mr D. O'Neill

C3
Note/s: May be taken as either a Science and Technology or a Business Management Module.

Topics addressed are: environmental regulation as a constraint on business operations; environmental planning and management as a component of overall business planning; financial costs and benefits of environmental management and their timing; environmental risks and uncertainty; integrated design strategies; emission control technologies; formal environmental impact assessment procedures, including public submissions and hearings; lease and licence conditions; compliance with planning and pollution control legislation; developing and using environmental operations manuals; in-house environmental training programmes; corporate environmental audit procedures; liaison with public and community groups; particular EPM applications in mining, oil, manufacturing, petrochemical, civil engineering and infrastructure, building and construction; coastal management and other industries; EPM issues and concerns in Asia-Pacific nations and the region as a whole. Subject to be delivered as a short course consisting of 35 hours of class contact and additional tutorials equivalent to a further 7 hours of class contact.

KCME 4302
Environmental Assessments
Staff Contact: Dr D. R. Cohen

C3
This course is an introduction to methods for assessing existing and potential contamination of industrial sites and mining operations. The course includes elements such as the policy and legal framework of environmental assessments; sources of information on a range of chemical contaminants and recommended exposure limits; the role of the assessor (or auditor). Selected environmental assessment case studies will be considered.

MINE0010
Applied Mechanics
Staff Contact: Dr J.O. Watson

S1 L2 T1
Statics: definition of force; free body diagrams; static equilibrium of rigid body; statical equivalence of systems of forces; centre of mass, centroid, centre of pressure; friction: clutch, screwjack, belt drive. Kinematics: rectilinear and angular motion; motion in a plane; relative displacement, velocity and acceleration; gear trains and linkages. Dynamics: equations of motion for particle and rigid body; work and energy; impulse, momentum and impact.

MINE0014
Exploration Drilling
Staff Contact: School Office

C3 S1 or S2 HPW3
MINE0110
Stress Analysis 1
Staff Contact: Dr J.O. Watson
S2 L2 T1
Structures: forces and stresses in pin jointed frames; bending moment, shear force in beams; stress due to bending of beams; deflection of beams; buckling of struts; stress due to torsion of shafts; combined axial and bending stress; stress in thin walled pressure vessels. Stress and strain: definition of stress in three dimensions; stress transformation in two dimensions; principal stresses in two dimensions; Mohr’s circle of stress; definition of strain in three dimensions; strain-displacement relations in two dimensions; Mohr’s circle of strain; principal strains in two dimensions; electrical and mechanical methods for measurement of strain; isotopic elasticity.

MINE0120
Stress Analysis 2
Staff Contact: Dr J.O. Watson
S1 L2 T1
Prerequisite: MINE0110
Structures: shear stresses in beams; bending moment and shear force in continuous beams; slope-deflection equations and fixed end moments; stiffness matrix and generalised nodal force vector; computer programs for analysis of continuous beams. Stress and strain: stress transformation and principal stresses in three dimensions; strain-displacement relations in three dimensions; strain transformation and principal strains in three dimensions; equations of equilibrium in terms of stress; boundary conditions; Navier equations; strain compatibility and the Airy stress function; stress in thick walled tubes under pressure; stresses around circular tunnel; anisotropic elasticity; the equivalent continuum; yield criteria; the stress space; strain hardening and softening; flow rules; viscoplasticity.

MINE0130
Principles of Mining
Staff Contact: Dr A. K. Bhattacharyya
C2 S1 L2

MINE0210
Introduction to Mining Engineering
Staff Contact: Professor F.F. Roxborough
S2 L1
Note/s: Visits to mines and related undertakings are a requirement of this subject.

MINE0410
Technical Communication
Staff Contact: Dr C.R. Daly
S2 L1 T1

MINE0710
Computing 1
Staff Contact: Dr C.R. Daly
S2 L1 T1
Introduction to hardware and operating systems; application software: word processing, spreadsheets, databases. Programming languages. Use of microcomputers for control, monitoring and data acquisition.

MINE1114
Mining Engineering
Staff Contact: Dr V.S. Vutukuri
C6 F HPW3

MINE1131
Mining of Metalliferous Deposits
Staff Contact: Mr D Panich
S1 L3
Prerequisites: MINE0210, MINE1420, GEOL5211

MINE1132
Mining of Coal Deposits
Staff Contact: Dr A.K. Bhattacharyya
S1 L3
Prerequisites: MINE0210, MINE1420, GEOL5211
MINE1140
Geotechnical Engineering
Staff Contact: Dr A.K. Bhattacharyya
F L1 T1
Prerequisites: MINE1231, MINE1232

MINE1224
Mining Engineering Technology
Staff Contact: Dr V.S. Vutukuri
C6 F HPW3

MINE1231
Rock Mechanics
Staff Contact: Dr V.S. Vutukuri
S2 L2 T2
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, MINE0120

MINE1232
Soil Mechanics
Staff Contact: Dr A.K Bhattacharyya
S2 L1 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, MINE0120
Soil description and classification; engineering behaviour of soils; basic definitions in soil mechanics, effective stress concept; shear strength of soils, soil permeability, flow of water in soils, consolidation, stresses in soil from external loading; design of shallow foundations, compaction, compaction control, pavement and haul-road design, lateral earth pressures, soil slope stability, expansive and dispersive soils, filter design.

MINE1320
Fluid Mechanics and Thermodynamics
Staff Contact: Dr A.C. Partridge
F L1 T5
Prerequisites: MINE0010, MINE0110, PHYS1002, MATH1032 or MATH1231 or MATH1042 or MATH1241
Corequisite: MATH2001

MINE1321
Mine Water and Drainage
Staff Contact: Dr V.S. Vutukuri
S2 L1
Corequisite: MINE1320
Engineering hydrology, sources of mine water, forecasting water inflows, drainage.

MINE1324
Mining Engineering Laboratory
Staff Contact: Dr V.S. Vutukuri
C6 F HPW4
A selection of advanced laboratory investigations in sampling and valuation, mine support, temporary or long term; mine design and plant related to extraction and servicing functions; rock properties; programming of mining methods and transport; non-entry mining; petroleum engineering; gasification; solvent processes.

MINE1330
Bulk Materials Handling and Transport
Staff Contact: A/Prof G.C. Sen
S2 L1.5 T5
Transport systems for minerals, waste and supplies. Descriptions and power requirements for: conveyors (belt and chain), rope haulage systems, free steered vehicles and locomotive haulage systems. Descriptions and pressure loss calculations for hydraulic and pneumatic transport systems. Mine winding systems for shafts: mechanics for hoisting; winding cycle diagrams; power requirements. Safety aspects and maintenance programs for haulage and winding systems.
MINE1420
Elements of Mining
Staff Contact: Mr D. Panich
S1 L1
Prerequisite: MINE0210
Note/s: Visits to mines and related undertakings are a requirement of this subject.
Exploration. Development of mines, infrastructure requirements; environmental assessment. Ore body parameters for surface and underground mines; stratified and non-stratified deposits; mine layout for surface and underground operations; underground access; introduction of techniques of rock breakage and support for coal and metal mines; processing of minerals; disposal of overburden and rejects rehabilitation.

MINE1514
Ground Control and Excavation Engineering
Staff Contact: Dr V.S. Vutukuri
C3 FHPW3

MINE1524
Mining Conservation
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 L2 T2
The reclamation of excavated land; integration with operational stages of mining. Mining cycles of alluvial, strip, and open cuts, land clearing, stabilizing the mined area, socio-economic aspects of mining, rehabilitation costs, government regulations. Examination and evaluation of a current operation.

MINE1530
Power Supply in Mines
Staff Contact: Dr C.R. Daly
S1 L1 TI
Prerequisites: MINE0310, MINE1320, PHYS2920, ELEC0802

MINE1534
Environmental Conditions in Mines
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 HPW3
The energy equation applied to ventilation, sources of heat in mines, geothermal gradients, thermodynamics, pressure-volume diagrams. Practical aspects of high air temperatures and the control of atmospheric conditions in deep underground mines. Fan design, installation and testing. Psychrometry, ventilation planning. Computer applications. Selected laboratory experiments and network designs.

MINE1544
Rock Excavation and Transportation
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 HPW3
Rock fragmentation drilling, blasting large rounds. Loading techniques, shovels, draglines, bucket wheel excavators, dredges, front-end loaders, tractor scrapers. Operating factors, selection procedures, cost estimating. Materials handling, continuous, semi continuous, batch systems, cost analysis. and dewatering, pumps and pumping.

MINE1630
Excavation Engineering (Blasting)
Staff Contact: A/Prof G.C. Sen
S1 L2

MINE1631
Excavation Engineering (Machine Mining)
Staff Contact: Prof F.F Roxborough
S2 L1

MINE1740
Mining Legislation
Staff Contact: Dr C.R. Daly
S2 L2
An appreciation of the laws relating to coal and metal mining practice and to safety and health in mines.

MINE1830
Mine Ventilation and Environment
Staff Contact: Dr V.S. Vutukuri
S2 L2 T2
Prerequisites: MINE0210, MINE1420, MINE1320
Mine ventilation: practice in mines, forces causing airflow, resistance of workings and distribution of mine air, network analysis, fans and their operation, auxiliary ventilation, economic size of airways; ventilation surveys. Mine environment: mine gases; hazards, occurrence, detection, monitoring and control, airborne dust; physiological effects, sampling, measurement and analysis, sources and control,mine climate; physiological effects, air cooling power, factors affecting mine climate and control. Ventilation planning: airflow requirements based on pollutant gas, airborne dust and heat.
MINE1930
Industrial Training
Staff Contact: Dr A.C. Partridge
S0 L0 T0

Students are required to gain practical experience totalling no less than 100 days during successive long recesses and are required to submit for assessment a suitably presented report on their experience gained during the recess prior to their final year of study. Reports are to include a review of the operations of the company providing the experience and full details of the work carried out by the student. After appraisal by a staff member and any required amendments, a copy is provided for the mine manager or other responsible person at the place of employment.

MINE1940
Tunnel Engineering and Shaft Sinking
Staff Contact: A/Prof G.C. Sen
S1 L2

MINE2141
Mineral Economics
Staff Contact: Mr D. Panich
S1 L2

Prerequisites: MINE1131, MINE1132

MINE2142
Mine Planning and Design
Staff Contact: Mr D. Panich
F L1 T2

Prerequisites: MINE1131, MINE1132
Corequisite: MINE2141

MINE2240
Mining Management
Staff Contact: Dr C.R. Daly
S2 L2 T1

MINE3040
Mine Safety Engineering
Staff Contact: Dr V.S. Vutukuri
S2 L1.5 T1.5
Prerequisites: MINE 0210, MINE1420

MINE3041
Hazard and Risk in Mining
Staff Contact: Prof J. Cross
S1 L2

MINE3101
Mineral Process Engineering C
Staff Contact: Dr A.C. Partridge
F L1 T1

MINE3114
Mineral Beneficiation
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 HPW3
Prerequisite: MINE7341 or equivalent

Processes of agglomeration. Physical separation methods, electronic sorting, electrostatic and magnetic separation.

MINE3140
Computational Methods in Geomechanics
Staff Contact: Dr J.O Watson
S1 L2
Prerequisites: MINE1231, MINE1232

Boundary value problems: review of strategies for solution, and limitations of analytical methods; finite differences. Finite elements: variational principle and finite elements for Poisson's equations; global and elemental stiffness matrices and equivalent nodal force vectors; matrix assembly and equation solution; variational principle and finite elements for elasticity; constant strain triangular element, isoparametric elements; design of meshes, error estimates; adaptive mesh refinement; computer program for elastic analysis of plain strain; elastoplasticity, elastoviscoelasticity. Boundary elements: fundamental solution and integral equations for Poisson's equation; isoparametric boundary elements; construction and solution of discrete systems of equations; direct boundary element method for elasticity; design of meshes; computer programs for elastic analysis of strain.

MINE3224
Mineral Engineering Laboratory
Staff Contact: School Office
C6 S1 or S2 HPW3
Prerequisite: MINE3114 or equivalent

Laboratory investigations may be selected from the following according to availability and specialization: metalliferous ore concentration; coal preparation; beneficiation of non-metallics; processing of mineral fluids.

MINE3514
Mineral Beneficiation Plant Design
Staff Contact: Dr A.C. Partridge
C3 S1 or S2 HPW3
Prerequisite: MINE7342 or MINE3114 or their equivalent

Process design based upon mineral properties; extraction processes and environmental conditions. Selection of technology to be adopted. Basis of feasibility studies. Special considerations for coal preparation and treatment of industrial minerals. Flowsheet planning, solid and fluid flows, auxiliary units, materials handling, product disposal. Experimental techniques used in testing. Scale up procedures. Plant control, automation, use of computers. Management of mineral processing operations.

MINE3614
Minerals Engineering 1
Staff Contact: Dr V.S. Vutukuri
C6 S1 L3 T4

MINE3624
Minerals Engineering 2
Staff Contact: Dr A.C. Partridge
C6 S1 L4 T4

MINE3634
Minerals Engineering Laboratory
Staff Contact: Dr A.C. Partridge
C3 S1 T3
A series of laboratory investigations relating to material covered in subjects MINE3614 and MINE3624

MINE3644
Minerals Engineering 3
Staff Contact: Dr A.C. Partridge
C6 S2 L4 T4

MINE3654
Minerals Engineering Project
Staff Contact: Dr A.C. Partridge
C9 F HPW4.5
Laboratory work to evaluate information necessary for the design of a process for the beneficiation of ore from a metalliferous deposit, preparation of coal or treatment of industrial minerals. Candidate's report to include a process flowsheet, an equipment and materials flowsheet and a plant design layout.

MINE4055
Numerical Methods in Geomechanics
Staff Contact: Dr J.D. Watson
C3 S1 or S2 HPW3

MINE4101
Mineral Processing Practices
Staff Contact: Dr A.C. Partridge
S1 L2
Prerequisites: MINE3101

MINE4140
Minerals Industry Project
Staff Contact: Dr A.C. Partridge
F T4
Candidates are required to submit a dissertation or thesis on a mining, minerals engineering or other topic approved by the Head of Department. The work may take the form of an engineering analysis, experimental investigation, theoretical study or design project. Candidates may be required to present themselves for oral examination on the subject of their submission.

MINE4155
Stability of Slopes
Staff Contact: Dr A.K. Bhattacharyya
C3 S1 or S2 HPW3

MINE4240
Industrial and Research Seminars
Staff Contact: Mr D. Panich
F L1
A series of seminars presented by invited speakers from within the university, other research establishments and selected industrial operations, covering special topics of current interest.
MINE4401
Mine Waste Disposal and Environment
Staff Contact: Dr A.C. Partridge
S2 L2

MINE4424
Mineral Industry Analysis
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 L2 T2
Aspects of micro and macroeconomics. Type of companies, private, public, non-liability, State ownership and participation. Financing of mining ventures. Contracts and project assessment. Obsolescence and replacement. Operations research control networks, decision analysis, linear programming, queueing theory, simulation, improvisation. Grade control, estimation of cutoff grades. Includes advanced work in the technical and economic analysis of mining or mineral operators. Cases are selected for examination and analysis; critical review.

MINE4540
The Mining Engineering Profession In Society
Staff Contact: Dr J.O. Watson
S2 L1 T1
Prerequisite: APSE0002
The numerous sections of society with which mining engineers may interact and their diverse expectations; the potential for divided loyalty, mistrust and conflict. The consequences of mining engineers being employed as professionals; codes of ethics and their effectiveness; scepticism about the attitude of ‘limited responsibility’. Possible future controls of the profession and industry. One of the following: (a) The potential impact of an international policy of sustainable development on the mineral industry and how it may be implemented; or (b) a systematic process of decision making, illustrated by assessment procedures for major projects and raising the issue of who would be involved; or (c) how responsible people outside the mineral industry see key problems associated with the industry in Australia. The subject will be taught via tutorials and a mini-project.

MINE4555
Mining Geomechanics Project
Staff Contact: Dr J.O. Watson
C12 F HPW6
Individual project on an investigation related to an actual mining geomechanics problem, the topic to be chosen after consultation with a staff member. A report is required.

MINE5064
Minor Project
Staff Contact: Dr V.S. Vutukuri
C6 F HPW3
This subject will comprise a literature-based review and a thesis presentation requiring interpretative skills. Experimental work is preferable but not essential. Projects may be based on mining, geology, mineral processing or engineering aspects of industrial processes.

MINE5124
Project
Staff Contact: Dr V.S. Vutukuri
C12 F HPW6
A critical literature review and an experimental program or laboratory work to prove an hypothesis or produce a technical report at a professional level. The report must either be a conventional bound thesis or a combination of covered report, program disks and drawing suitable for permanent library storage. Projects may be based on mining, geology, mineral processing or engineering aspects of industrial processes.

MINE5155
Rock Mechanics Measurements
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 HPW3

MINE5184
Major Project
Staff Contact: Dr V.S. Vutukuri
C18 F HPW9
As for MINE5124 Project, but this will comprise a critical literature review accompanied by a comprehensive experimental program of a substantial nature and an interpretative thesis. The candidate is encouraged to seek industrial support for the practical work.

MINE5255
Strata Control Engineering
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 HPW3

MINE5324
Principles of Mining Engineering
Staff Contact: Dr V.S. Vutukuri
C8 F L2 T1
Office, workshop, stores and materials handling layout for mines. Layout of shafts, declines and main drives for optimum mineral recovery. Review of underground mining techniques for coal and metalliferous mines with emphasis on cost control and efficient operation. Surface mining techniques, design and layout of haul roads and striping benches. Dragline and shovel operation. Effect of ventilation requirements and drainage on mine layouts. Scheduling for equipment transfer, maintenance and installation (e.g. longwall face transfers, underground crusher stations, dragline overhaul). Computer software for mine and plant maintenance and management.
MINE5355
Mine Fill Technology
Staff Contact: A/Prof E.G. Thomas
C3 S1 or S2 HPW3

MINE5455
Advanced Rock Cutting Technology
Staff Contact: Prof F. Roxborough
C3 S1 or S2 HPW3

MINE5555
Blasting Technology
Staff Contact: A/Prof G.C. Sen
C3 S1 or S2 HPW3

MINE5655
Rock Slope Stability
Staff Contact: Dr A.K. Bhattacharyya
C2 S1 or S2 HPW2

MINE5755
Subsidence Engineering
Staff Contact: Dr A.K. Bhattacharyya
C2 F HPW2
Trough subsidence resulting from the extraction of bedded mineral deposits. Parameters influencing subsidence. Subsidence-related phenomena causing damage to structures at or below the surface. Measurement and empirical prediction. Theories and modelling of subsidence. Control of subsidence.

MINE7342
Minerals Engineering Processes
Staff Contact: Dr A.C. Partridge
F L1 T1

MINE7440
Mineral Process Technology
Staff Contact: Dr A.C. Partridge
S1 L1.5 T.5

MINE9174
Fire and Explosion
Staff Contact: Dr V.S. Vutukuri
C2 S1 or S2 L2
Chemistry and physics of combustion reactions; types of flames; deflagration and detonation; ignition; fire point; flammable limits. Industrial fuel-fired appliances; fire risks in buildings; fire fighting equipment; flame proofing; fire and explosive risks in chemical process industries; case studies. Use of appropriate standards and legislation. Fire research; insurance.

MINE9364
Equilibrium Concepts in Water Systems
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 HPW3
The application and limitations of chemical thermodynamics in water systems. Aqueous inorganic process systems including water treatment and minerals processing. The effects and control of pollution. Thermodynamic diagrams such as InE pH, potential pH, temperature pH and concentration pH are developed as an aid to assessing system energetics. Sources and estimation of thermodynamic data. Kinetics and mechanism in relation to aqueous system energetics. Analysis of kinetic data.

MINE9415
Advanced Rock Mechanics
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 HPW3
Safety Science is a multidisciplinary activity concerned with the application of engineering principles and behavioural and health sciences knowledge to improve the health and safety of people at work and in their other activities. Safety Science considers the interface between people and technology and incorporates areas of study such as ergonomics, biomechanics, occupational disease, toxicology, educational psychology and engineering safety. The Department offers postgraduate courses leading to the award of the degrees of Master of Applied Science (Occupational Health Safety) 8044, Master of Environmental Studies, 8045, Master of Applied Science (Ergonomics) 8075, Master of Engineering Science (Industrial Safety), 8545, Master of Safety Science, 8671, Graduate Diploma in Safety Science, 5480, and Graduate Diploma in Ergonomics, 5485. There is also a qualifying course 6347, which allows non-graduates with extensive appropriate work experience to enter the courses leading to a graduate diploma. There are no undergraduate courses in Safety Science but undergraduate students may take individual subjects from the graduate diploma and masters courses where these are appropriate to their undergraduate course or career. The Department is active in research in the areas of ergonomics, biomechanics, safety engineering, safety management, and occupational toxicology. Opportunities are available for graduate research leading to the degrees of Master of Science, 2775, Master of Engineering, 2695, and Doctor of Philosophy, 1665.

Graduate Study

Course Outlines

8044
Master of Applied Science (Occupational Health and Safety)

MAppSc (OHS)

The Master of Applied Science in Occupational Health and Safety is an interdisciplinary rather than multidisciplinary course, and is designed to accept students from a range of backgrounds.

Admission to the Master of Applied Science in Occupational Health and Safety is available to candidates with a relevant degree of bachelor for four full-time years duration (or part-time equivalent) from the University of New South Wales or a qualification considered to be equivalent from another university or tertiary institution. Candidates with a three year degree may be admitted to the Masters program if they are able to demonstrate at least two years experience in a relevant area or may be admitted first to the Graduate Diploma in Safety Science but can upgrade to the Master of Applied Science in Occupational Health and Safety on satisfactory performance. Other candidates with extensive experience in a relevant area may also be admitted at the discretion of the Head of School.

The course will be offered to students of the University of New South Wales either as internally registered students (by
take some preliminary subjects. Most students with a health sciences background may be required to take SAFE9011 while those with an engineering background may be required to take ANAT6151. A knowledge of statistics is also a prerequisite for all students.

Candidates are required to complete a total of 36 credit points, made up of 12 credit points of core subjects, 12 credit points of elective subjects and a 12 credit points research project.

Preliminary subjects
Students may be required to demonstrate either a satisfactory standard of understanding of all these preliminary subjects or to pass them in addition to the 36 credit points required to fulfill the requirements of the course.

ANAT6151 Introductory Functional Anatomy
SAFE9011 Physical Principles of Safety
SAFE9012 Statistics for Health & Safety Scientists

Core subjects
There are twelve core subjects required. Three core subjects are required to be taken by all students, the fourth core subject is dependent on subsequent areas of study.

SAFE9211 Introduction to Safety Engineering
SAFE9242 Effective Behaviour in Organisations
SAFE9260 Introduction to Occupational Health and
SAFE9261 Occupational Hygiene or
SAFE9262 Occupational Medicine or
SAFE9263 Chemical Safety and Toxicology or
SAFE9224 Principles of Ergonomics

Students leaving the course should have knowledge and competencies in a number of areas which are reflected in the choice of core subjects.

• occupational health and safety principles
• occupational health and safety legislation and standards
• the interaction between people, hazards, risks and behaviour
• ability to undertake simple workplace surveys in their chosen fields of expertise.

Elective Subjects
There are twelve credits of elective subjects required. Students may structure their program so that they receive training as an occupational health and safety generalist, or they are able to specialize, taking electives in one of a number of strands, such as occupational hygiene, safety engineering, chemical safety, occupational medicine, ergonomics or safety management.

Subjects offered by the Department of Safety Science
Not all elective subjects are offered every year. Examples of such electives (most of three credit points) include:

SAFE9142 Organizational Communication for Safety
SAFE9224 Principles of Ergonomics
SAFE9232 Introduction to Occupational Health and Safety Law
SAFE9261 Occupational Hygiene
SAFE9262 Occupational Medicine
SAFE9263 Chemical Safety & Toxicology
SAFE9264 Assessment of the Workplace Environment
SAFE9265 Occupational Health Practice
SAFE9267 Research Methods in Laboratory Science
SAFE9272 Environment and Medicine
SAFE9273 Environment and Law
SAFE9342 Management for Safety
SAFE9343 Innovation, Productivity and Safety
SAFE9352 Hazard & Risk Analysis
SAFE9424 Applied Ergonomics
SAFE9425 Physical Ergonomics
SAFE9426 Ergonomics and New Technology
SAFE9523 Machines & Structures Safety
SAFE9531 Industrial and Environmental Noise
SAFE9533 Electrical Safety
SAFE9543 Management of Dangerous Materials
SAFE9544 Traffic Safety
SAFE9551 Experimental Biomechanics
SAFE9553 Radiation Protection
SAFE9573 Fire and Explosion

Subjects offered by other Departments
Students may also choose to take subjects offered by other Departments, subject to the approval of both the School concerned and the Course Coordinator. Examples of acceptable subjects in a study program in occupational health and safety include:

BIOM9541 Mechanics of the Human Body
CEIC5930 Safety in Laboratories
CHEM7325 Toxicology, Occupational and Public Health
CIVL9872 Solid Waste Management
CIVL9881 Hazardous Waste Management
CMED9600 Disability
CMED9604 Alcohol and Drug Related Problems
CMED9609 Health and Illness Behaviour
GEOG9230 Population, Health and the Environment
HEAL9411 Epidemiology
HEAL9421 Public Health
IROB5701 Industrial Relations A
LAW5020 Industrial Safety and Health Law
MANF9400 Industrial Management
MANF9410 Total Quality Management
MEED9108 Program Evaluation and Planned Change
MEED9125 Planning, Conducting and Evaluating Educational Workshops

Project
Project students are required to undertake an investigative project and to present a satisfactory report. The project will normally be of 12 credits value (SAFE9612). In special circumstances, for example when a student enters the course with substantial prior knowledge in the coursework, a superior Project Report of 18 credits value (SAFE9618) may be permitted. Projects may be based on studies carried out at a student’s place of work or in the laboratories of the Department or at any other place by arrangement with the Head of the Department. A range of instrumentation is available in the Department and liaison can be arranged with industry if students do not have a suitable project at their place of work. Each student is required to present a
progress report at regular seminars which all project students are expected to attend. Generally there are at least three such seminars in each session.

Other report/research project subjects are offered by the Department. Some of these may be available to students (for example, to make up the requisite number of credits).

SAFE9601 Report (1 credit)
SAFE9602 Report (2 credits)
SAFE9603 Report (3 credits)
SAFE9606 Special Report (6 credits)

8045
Master of Environmental Studies

MEnvStudies

This is a faculty-wide, interdisciplinary course administered by the Department of Safety Science. The course draws from schools, departments and centres throughout the University.

The overall objective of the course is to provide opportunities for students to increase their skills in environmental management by extending their knowledge of environmental systems and processes. The course is one that has practical value which will help the careers of graduates.

The course is designed to study the nature of environmental problems and the methodology of evaluation. Emphasis is placed on the development of relevant skills in environmental analysis and planning.

Entry qualifications. Four-year Honours degree, or equivalent, in a field relevant to environmental studies. Applicants may also be admitted if they have a three-year degree plus another qualification at an acceptable level, or have other professional or academic attainments.

Course requirements. Candidates are required to complete a course totalling 30 credits made up of compulsory core subjects (6 credits), elective subjects (12 credits) and a project (12 credits). The structure of the course allows students to pursue special interests through the electives and the project, or to develop new areas of expertise.

Some subjects have prerequisites or assumed knowledge which are determined to be necessary for suitable progress through the subject. Students should seek advice from subject co-ordinators if they are in doubt as to whether they are qualified to take a subject.

There are a wide range of subjects offered by Schools across the entire University which are suitable for inclusion in the MEnvStudies program.

Students may choose to take electives that:
• reinforce their own areas of expertise; or
• extend their knowledge and skills into new areas.

By carefully combining the choice of subjects, it is possible to create programs which are tailored to the needs of individual students. Examples of such tailored programs include:
• land degradation and rehabilitation;
• environmental information systems;
• water resource management;
• urban environment quality;
• waste water treatment;
• environmental safety.

Other tailored programs can be organised, depending on student needs.

The elective subjects are not exhaustive and students may choose elective studies from all graduate programs available in the Faculty of Applied Science, provided that they meet or can satisfy any necessary prerequisites to enrol. These programs include: Earth Sciences, Planning and Assessment, Pollution, Ecology, Remote Sensing, Water Management, Conservation and Land Management, Urban and Social Environments and Safety Science.

The elective subjects listed below are listed under various themes; other subjects are available within these (and other) themes.

Core Subjects
GEOG9180 Environmental Planning and Evaluation
SAFE9272 Environment and Medicine
SAFE9273 Environment and Law Project
SAFE9612 12 credit Research Project in Environmental Studies

Elective Subjects
Pollution
CHEM3311 Environmental Chemistry
FUEL5880 Unit Operations in Waste Management
FUEL5910 Atmospheric Pollution Control Theory
FUEL5920 Practical Aspects of Air Pollution Measurement and Control

Health
SAFE9263 Chemical Safety and Toxicology
CIVL9851 Unit Operations in Public Health Engineering
CIVL9868 Public Health Science
GEOG9230 Population, Health and Environment
SAFE9260 Introduction to Occupational Health
SAFE9352 Hazard and Risk Analysis
SAFE9531 Community Noise Control
SAFE9553 Radiation Protection

Earth Science
GEOG3011 Pedology
GEOG3020 Soil Degradation and Conservation
GEOL3072 Engineering Geology

Biological Systems
BIOS3061 Plant Ecosystem Processes
BIOS3071 Conservation Biology and Biodiversity
BIOT7081 Environmental Biotechnology
GEOG3021 Biogeography
GEOG9300 Vegetation Management

Water Management
CEIC5630 Industrial Water and Waste Water Engineering
CIVL9847 Water Resources Policy
CIVL9858 Water Quality Management
INDC4110 Water Chemistry
GEOG9310 River Management
Conservation and Land Management
LAND9010 Environmental Heritage Studies
LAND9111 Landscape Planning
LAND9212 Landscape Planning Methods
LAND9213 Land Systems and Management
LAND9214 Visual Landscape Assessment
Safety Science
SAFE9523 Machines and Structures Safety
SAFE9533 Electrical Safety
SAFE9543 Management of Dangerous Materials
SAFE9544 Traffic Safety
Urban and Social Environments
GEOG3192 Urban and Regional Development
GEOG9120 Settlement in Australia
SAFE9242 Effective Behaviour in Organizations
Information Systems
GEOG9150 Remote Sensing Applications
GEOG9160 Directed Problems in Remote Sensing
GEOG9210 Computer Mapping and Data Display
GEOG9240 Principles of Geographic Information Systems
Planning and Assessment
CIVL9888 Environmental Management and Economics
GEOG3042 Environmental Impact Assessment
PLAN0911 The Organisation of Town Planning
Other
GEOG9250 Special Topic
SAFE9603 Special Report in Safety Science
SAFE9606 Special Report in Safety Science
*Other subjects may be added on approval of Course Coordinator

All students must undertake an investigative project of 12 credit points. This project is expected to be completed within one University session (that is, six months). Students will require an academic supervisor for the duration of the project.

Projects normally require original research in the collection and analysis of data, leading to the preparation of a report of about 10,000 words. The project can be based in studies carried out at the student’s place of work, or at some other suitable location.

The objective of the project is for the student to demonstrate skills in research design, data acquisition and analysis, critical synthesis and presentation of findings.

8075
Master of Applied Science (Ergonomics)

MAAppSc
The Master of Applied Science degree in Ergonomics is multi-disciplinary and is designed to accept students from a range of backgrounds. To provide for a common base of knowledge some students are required to study some preliminary subjects which depend on their background.
Candidates are required to complete a total of 36 credit points, made up of 15 credit points of compulsory core subjects, 9 credit points of elective subjects and a 12 credit point Project. For candidates with previous ergonomics qualifications an 18 credit point Project may be undertaken in place of 6 credit points of subjects.

Preliminary Subjects
Students are required to demonstrate either a satisfactory standard of understanding of all these preliminary subjects, or to pass all of them in addition to the 36 credit points required to fulfil the requirements of the Course.

ANAT6151 Introductory Functional Anatomy
SAFE9011 Principles of Engineering Mechanic
SAFE9012 Statistics for Health & Safety Scientists

Core Subjects
SAFE9224 Principles of Ergonomics
SAFE9242 Effective Behaviour in Organisations
SAFE9424 Applied Ergonomics
SAFE9425 Physical Ergonomics
SAFE9426 Ergonomics and New Technology

Electives
BIOM9541 Mechanics of the Human Body
SAFE9211 Introduction to Safety Engineering
SAFE9232 Introduction to Occupational Health & Safety Law
SAFE9260 Introduction to Occupational Health
SAFE9264 Assessment of the Workplace Environment
SAFE9342 Management for Safety
SAFE9343 Innovation, Productivity and Safety
SAFE9352 Hazard & Risk Analysis
SAFE9523 Machines & Structures Safety
SAFE9544 Traffic Safety
SAFE9551 Experimental Biomechanics

Note: Other graduate subjects offered by other Schools may be taken subject to the approval of both the School concerned and the Ergonomics Course Coordinator. Not all elective subjects are offered every year.

Project
Students are required to undertake an investigative project and to present a written report according to guidelines established by the Department. The project will normally be of 12 Credit points value (SAFE9612) although in special cases, for example when a student enters the course with substantial background in the core material, a superior Project of 18 Credit points value (SAFE9618) may be taken.

Projects may be based on studies carried out at the student's workplace, in the Department's laboratories or at any other appropriate place with the agreement of the Ergonomics Course Coordinator.

Each student is required to present progress reports at regular seminars which all Project students are expected to attend. Generally there are at least three seminars in each Session.

8545
Master of Engineering Science (Industrial Safety)

MEngSc
The Master of Engineering Science degree is obtained by satisfactory completion of 30 credits points of study, 12 of
which represent a project. The degree is normally completed by one year of full-time study or two years of part-time study. Part time students may undertake the project at their place of work. Candidates may undertake interdisciplinary studies and, subject to approval, are able to take subjects from any school in the Faculty, other Faculties of the University and other universities or institutions. By means of this system, programs of studies best suited to the needs of the candidates may be selected. Before enrolment an applicant should submit an intended program for approval by the school or division offering the majority of the credits to ensure that the prerequisite background held is adequate for all subjects including those taken in other schools or institutions.

Entry to the Master of Engineering Science course requires a degree at Honours level, or at Pass level to a superior standard in a four-year course in Engineering or other approved discipline. This is defined as an average of 65% over the last two years of a full-time course (or last three stages of a part-time course) taken in minimum time. If the degree concerned is not in an acceptable discipline, or was of less than four years full-time study, a bridging or qualifying program is required. This is normally arranged by enrolment in the appropriate graduate diploma with the possibility of transferring to the Masters program after completion of requirements prescribed by the Faculty.

Students undertake 9 credits points of compulsory subjects, and 9 credit points of electives. The electives may be taken from any School in the Faculties of Applied Science or Engineering, subject to the agreement of the Head of School concerned and the Head of the Department of Safety Science. This enables students to extend their specialist knowledge in their own discipline, to undertake additional general management subjects or to extend their studies into the broader area of occupational health, safety and management.

Core Subjects
(3 credit points)
SAFE9213 Introduction to Safety Engineering (M)
SAFE9242 Effective Behaviour in Organisations
SAFE9352 Hazard and Risk Analysis

Electives
Students may choose postgraduate electives either from the Master of Safety Science course or from other schools in the University. A full list of subjects can be obtained from the various faculty handbooks. The subjects listed below are a selection of subjects related to safety from other schools.

Elective Subjects from other Schools:
(2 credit points)
MECH9325 Fundamentals of Noise
MECH9326 Advanced Noise
MNGT0373 Organizational Design

(3 credit points)
CIVL9726 Construction Law and Professional Practice
ELEC9410 Robotics Automation and Productive Technique
IROB5701 Industrial Relations
MANF9400 Industrial Management
MANF9410 Inspection and Quality Control
MECH9400 Mechanics of Fracture and Fatigue
MINE1224 Mining Engineering Technology
MINE1534 Environmental Conditions in Mines
MINE9164 Atmospheric Pollution and Control (Theory)

Other Subjects from AGSM by arrangement

8671
Master of Safety Science

MSafetySc

Candidates are required to complete a program totalling 45 credit points made up of 18 credit points of compulsory subjects, 15 credit points of electives and a 12 credit point project. Students are also required to demonstrate either a satisfactory standard of understanding of all the preliminary subjects listed below, or to pass those subjects in addition to the 45 credit programme. This enables students from a wide range of disciplines (such as engineering, science, medicine, physiotherapy and education) to reach an adequate standard of comprehension for studying the compulsory subjects.

Preliminary Subjects
(3 credit points)
ANAT6151 Introductory Functional Anatomy
SAFE9011 Physical Principles of Safety
SAFE9012 Statistics for Health and Safety Scientists

Core Subjects
Core subjects, totalling 18 credits, represent the central theme of Safety Science and are compulsory.

(3 credit points)
SAFE9260 Introduction to Occupational Health
SAFE9211 Introduction to Safety Engineering
SAFE9224 Principles of Ergonomics
SAFE9232 Introduction to Occupational Health and Safety Law
SAFE9242 Effective Behaviour in Organisations
SAFE9352 Hazard and Risk Analysis

Electives
Students are required to take at least 15 credit points from the list of electives for the Master of Applied Science (OHS) 8044.

Students may select as electives up to two graduate subjects offered by other Schools in the University, subject to the approval of the School concerned and the Head of the Department. A selection of approved subjects is shown
In the list of electives for the Master of Applied Science (OHS) 8044.

Project
Project Students are required to undertake an investigative project and to present a satisfactory report. The project will normally be of 12 credits value (SAFE9612). In special circumstances, for example when a student enters the course with substantial prior knowledge in the coursework, a superior Project Report of 18 credits value (SAFE9618) may be permitted. Projects may be based on studies carried out at a student's place of work, or in the laboratories of the Department, or at any other place by arrangement with the Head of the Department. A range of instrumentation is available in the Department and liaison can be arranged with industry if students do not have a suitable project at their place of work. Each student is required to present a progress report at regular seminars which all project students are expected to attend. Generally there are at least three such seminars in each Session.

5485
Graduate Diploma in Ergonomics

GradDip
The Graduate Diploma in Ergonomics is a multidisciplinary course and is designed to accept students from a range of backgrounds. Candidates are required to complete a total of 24 credits made up of 15 credit points of compulsory core subjects and 9 credit points of elective subjects. Some subjects must be taken in a prescribed sequence. Prerequisite subjects are shown below; equivalent prerequisites may be acceptable.

Preliminary Subjects
Preliminary subjects are chosen according to the student's first degree. Most health professionals would need to study Physical Principles of Safety but not Introductory Functional Anatomy, while engineers and physicists would study Introductory Functional Anatomy but not Physical Principles of Safety. Statistics for Health and Safety Scientists would be taken only by students who have not completed a suitable statistics subject in their first degree. Selection of these subjects depends on entry qualifications, and is subject to approval by the Ergonomics Course Coordinator.

(3 credit points)
ANAT6151 Introductory Functional Anatomy
SAFE9011 Physical Principles of Safety
SAFE9012 Statistics for Health & Safety Scientists

Core Subjects
Core subjects, totalling 15 Credits, represent the central theme of ergonomics, and are compulsory.

(3 credit points)
SAFE9224 Principles of Ergonomics
SAFE9245 Physical Ergonomics
SAFE9246 Ergonomics and New Technology

Elective Subjects
To complete the requisite total of 24 credit points, students are required to select one or more subjects from the list of Electives or Core Subjects presented for the MAPSc (Ergonomics) programme. In special cases a 3 credit point Report in Safety Science SAFE9603 may be taken.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

SAFE9011
Physical Principles of Safety
Staff Contact: Prof Jean Cross
C3

SAFE9012
Statistics for Health and Safety Scientists
Staff Contact: Ms Dianne Gardner
C3
The subject is designed to provide an introduction to the theory of statistics and to those statistical techniques which are relevant to planning and management of health and safety services. The subject covers statistical methods which are a prerequisite to the study of epidemiology, risk management, ergonomics and behavioural studies. Topics include analysis of frequency distributions elementary probability theory, Binomial, Normal and Poisson distributions, elementary sampling theory, statistical decision theory and Hypothesis testing, t test, Chi-square test and elementary correlation theory. Illustrative data is drawn from statistics relevant to health and safety.

SAFE9142
Organizational Communication for Safety
Staff Contact: Dr Ronald Rosen
C3

SAFE9211
Introduction to Safety Engineering
Staff Contact: Dr Ronald Rosen
C3
Assumed knowledge: SAFE9011 or PHYS1022
Note/s: Students with an engineering or physics background may take SAFE9213 which covers similar material.

The engineering improvement of potentially hazardous workplace situations with reference to the following: safety management, safety audits, management of dangerous materials; fire and explosion; ventilation; noise control; radiation protection; electrical safety; biosafety; machine dangers and machine guarding; construction safety; transport safety; environmental safety; plant safety issues in different industries.

SAFE9213
Introduction to Safety Engineering M
Staff Contact: Dr Ronald Rosen
C3
Assumed knowledge: SAFE9011 or PHYS1022
The treatment of the following topics covers similar material as SAFE9211, but assumes a basic knowledge of differential calculus. The following workplace topics are considered; safety management, ergonomics, equipment design and task consideration, machine guarding, electrical safety, fire and explosion, management of dangerous materials, ventilation, radiation protection, noise and vibration control, environmental safety, transport safety, safety issues in different industries.

SAFE9224
Principles of Ergonomics
Staff Contact: Mr Roger Hall
C3
Assumed knowledge: Basic statistics
The subject will give an introduction to ergonomics, emphasizing the principles of designing user-centred, human-machine-environment systems. Topics include: definition of and justification for ergonomics, design and human error, human capabilities and limitations, controls and displays, design of human-machine-environment systems, job design and work organization, introduction to anthropometry, design of workplaces, introduction to manual handling and the physical environment, and, introduction to product design and human-computer interaction.

SAFE9232
Introduction to Occupational Health and Safety Law
Staff Contact: Head of School
C3

SAFE9242
Effective Behaviour in Organisations
Staff Contact: Ms Dianne Gardner
C3
SAFE9260
Introduction to Occupational Health
Staff Contact: Dr Chris Winder
C3
This subject provides an outline of the inter-relationships between the roles of some of the occupational health and safety disciplines (notably occupational hygiene, occupational medicine, epidemiology and toxicology) as well as studies of some common occupational hazards, their outcomes on health and possible options for workplace control.

SAFE9261
Occupational Hygiene
Staff Contact: Dr Chris Winder
C3
Assumed knowledge: SAFE9260
This subject deals with practical considerations of recognising, evaluating and controlling workplace hazards. Topics include the role of the occupational hygienist; types of workplace hazards (such as particulates, gases and vapours, chemicals, noise, radiation, temperature, biohazards); workplace assessment and monitoring; and methods for the control of hazards (such as ventilation and personal protection).

SAFE9262
Occupational Medicine
Staff Contact: Dr Chris Winder
C3
Assumed knowledge: SAFE9260
This subject provides sessions on significant occupational diseases of the respiratory system, skin, eye, musculo-skeletal system and reproductive system, as well as occupational cancer and infectious diseases. The subject also covers other occupational medicine principles and activities, including assessing risks to worker health, health surveillance, health promotion and rehabilitation.

SAFE9263
Chemical Safety and Toxicology
Staff Contact: Dr Chris Winder
C3
Assumed knowledge: SAFE9260
This subject provides an outline of the toxicological, occupational hygiene and environmental aspects of chemical hazards and exposures.

SAFE9264
Assessment of the Workplace Environment
Staff Contact: Dr Kamal Kothiyal
C3
Assumed knowledge: SAFE9261
An experimental and workplace assessment based subject, where students will be required to assess physical and chemical hazards encountered in the occupational environment.

SAFE9265
Occupational Health Practice
Staff Contact: Dr Chris Winder
C3
Assumed knowledge: SAFE9262
A workplace assessment based subject, where students will be required to report on occupational health problems following visits to a number of diverse industrial sites.

SAFE9267
Research Methods in Laboratory Science
Staff Contact: Dr Boban Markovic
C3
Assumed knowledge: SAFE9263
A laboratory based subject which will provide the basic requirements of laboratory based research, especially in chemical safety and applied toxicology. The subject covers literature review, methodology, experimental design, data collection and analysis, discussion and presentation skills. Assessment will be made through preparation of a major project report.

SAFE9272
Environment and Medicine
Staff Contact: Dr Chris Winder
C2
Aspects of medicine bearing upon physiological consequences of pollutants. Metabolic mechanisms; chemical interactions, synergism and antagonism; photosynthesis and phytotoxicity. Ozone depletion and greenhouse effects. Morbidity and mortality surveys. Studies of particular pollutants and environmental contaminants.

SAFE9273
Environment and Law
Staff Contact: Dr Chris Winder
C2
Resources in law for the preservation of the environment. Types of legislation: local government, town planning, environmental and common law; administrative infrastructure, problems and actions. The North American experience. Economic and sociological factors.

SAFE9342
Management for Safety
Staff Contact: Ms Dianne Gardner
C3
Assumed knowledge: SAFE9242
Management models and structure The structure and responsibilities of a safety manager. Integrating safety into the organization and management systems; cost effectiveness of safety programs. Selection and training of personnel. Comparison and evaluation of occupational health and safety 'off the shelf data management systems. The safety practitioner as change agent.

SAFE9343
Innovation, Productivity and Safety
Staff Contact: Ms Dianne Gardner
C3
Behaviour of people in organization, Individuals, groups and organisations: Planning for innovation and change; Dealing with human problems, including resistance to change; Human capabilities and limitations in the physical, perceptual and cognitive reactions with the operating system. The cost benefit of failsafe design (in relation to human operators) vs post design training. Operator efficiency and operator safety. The human barriers to designing and operating the system with these joint priorities. Recent advances in defining and controlling human error and their implications for equipment design and for management and training systems.
SAFE9352
Hazard and Risk Analysis
Staff Contact: Prof Jean Cross
C3
Assumed knowledge: SAFE9012 (Introductory Statistics)
Causes of accidents and defensive strategies; energy storage and transfer; epidemiology of accidents; reduction of loss from accidental injury; human factors; the environment and accidents. Introduction to risk management; quantification of risk; risk benefit concepts. System reliability and fault tree analysis in the study and control of accidents; Hazan, Hazop and Mort. Study of some major accidents; accident investigation and analysis; case studies in transport, industry, recreation and the home.

SAFE9424
Applied Ergonomics
Staff Contact: Mr Roger Hall
C3
Prerequisite: SAFE9224 or equivalent
Decision making, vigilance, effects of workload and stress, applications to screen-based equipment. Human error in relation to human/system interaction. Work systems: the systems approach, practical evaluation and redesign of work systems. Experimental methodology, experimental design in ergonomics, critical evaluation of the literature.

SAFE9425
Physical Ergonomics
Staff Contact: Dr Kamal Kothiyal
C3
Assumed knowledge: Principles of ergonomics and basic engineering mechanics and statistics.
The focus of this subject is on the physical capabilities of humans at work and the effect of the physical environment on human performance. Measurement of relevant physical parameters and design and evaluation by computer. Topics include; applied anthropometry, workspace and workstation design, biomechanical models, emg measurement, manual materials handling, work physiology, fatigue, the visual, auditory and thermal environments, and the effect of vibration.

SAFE9426
Ergonomics and New Technology
Staff Contact: Mr Roger Hall
C3
Assumed knowledge: Principles of ergonomics
The focus of this subject is on ergonomic issues related to the design and implementation of new technology. Cognitive aspects of human-computer interaction, human error and software design, usability and its assessment, user interface design, evaluation techniques, guidelines and standards, and the introduction of new systems into organizations.

SAFE9523
Machines and Structures Safety
Staff Contact: Dr Kamal Kothiyal
C3
Assumed knowledge: SAFE9011 or PHYS1022
Strength of materials, materials failure. Machinery contact dangers; machine guarding; safety during maintenance. Materials handling safety; cranes, slings, forklift trucks, conveyors. Construction safety; ladders, scaffolds, formwork, excavations. Structural failures, fracture, pressure vessels, non-destructive testing.

SAFE9531
Industrial & Environmental Noise
Staff Contact: Head of School
C3

SAFE9533
Electrical Safety
Staff Contact: Prof Jean Cross
C3
Effects of current flow and electric and magnetic fields; elementary circuit representation, typical supply situations; likely dangerous conditions; static electricity; hazardous locations; standards and codes of practice; treatment of electric shock. Electrical causes of fire and explosion; prevention of electrical accidents.

SAFE9543
Management of Dangerous Materials
Staff Contact: Dr Chris Winder
C3
Assumed knowledge: 1st year Chemistry
This subject covers chemicals legislation, regulatory assessment of chemicals, chemical information (labels/MSDS), workplace management of chemical safety (Workplace assessment, exposure control, storage of chemicals, personal protection, monitoring), emergency preparedness, pollution, management of hazardous wastes and disposal.

SAFE9544
Traffic Safety
Staff Contact: Dr Kamal Kothiyal
C3
This subject aims to provide students with an introduction to nature and scope of road safety and provide an understanding of the interdisciplinary and integrated approach required to implement improvements in roads and traffic safety. Subject areas include identification of road safety problems, strategic planning, road and road environment safety, ergonomics, signals, signs, lighting, road user safety, knowledge, attitudes, compliance and practices, vehicle and equipment safety, road safety school education, road safety campaigns and program evaluation.
SAFE9551
Experimental Biomechanics
Staff Contact: Prof Noel Svensson
C3
Objectives and ethics of biomechanical experimentation, statistical evaluation of results. Experimentation involving movement analysis, exercise physiology, muscular activity, mechanical properties of skeletal materials, anthropometric surrogates.

SAFE9553
Radiation Protection
Staff Contact: Dr Ronald Rosen
C3
Assumed knowledge: SAFE9211 or SAFE9213
Principles and practices of radiation protection for both ionising and non-ionising radiation. Radiation physics, detection and measurement; background radiation; biological effects of radiation; dose limits; technical controls for radioactive sources and irradiating apparatus. Codes of safe practice; radiological monitoring and personal dosimetry; storage, transport and disposal of sources; environmental impact; administrative controls; emergency procedures; control of non-ionising radiation. Practical work and site visit.

SAFE9573
Fire and Explosion
Staff Contact: Head of School
C3
Assumed knowledge: SAFE9211 or SAFE9213
Properties of explosive and flammable materials; chemistry and physics of combustion reactions; explosion, detonation and blast waves; fire and smoke behaviour.

SAFE9583
Ventilation
Staff Contact: Head of School
C3
Assumed knowledge: Maths Physics & Engineering Mechanics

SAFE9601
Report in Safety Science
Staff Contact: Course Coordinator
A one credit report on a topic in safety science.

SAFE9602
Report in Safety Science
Staff Contact: Course Coordinator
A two credit report on a topic in safety science.

SAFE9603
Special Report in Safety Science
Staff Contact: Course Coordinator
C3
Only for students enrolled in the Graduate Diploma courses.

SAFE9606
Special Report in Safety Science or Environmental Studies
Staff Contact: Course Coordinator
C6

SAFE9609
Project
Staff Contact: Dr Ronald Rosen
C9

SAFE9612
12 Credit Project in Safety Science or Environmental Studies
Staff Contact: Dr Ronald Rosen (Safety Science)
Staff Contact: Dr Chris Winder (Environmental Studies)
Staff Contact: Mr Roger Hall (Ergonomics)
C12

SAFE9618
Project Report
Staff Contact: Dr Ronald Rosen
C18
The University has established Centres to encourage research and teaching in areas not readily covered by the established programs in Schools and Faculties. Most Centres have concentrated on multidisciplinary fields and have focussed on new initiatives in the expansion of teaching, research and professional services in specialised areas. The majority of Centres are formed within a School or Faculty or groups thereof although some operate as autonomous units.

The Faculty of Applied Science has ten Centres either located within relevant Schools or in association with other Faculties.

Bioengineering Centre
Centre for Membrane and Separation Technology
Centre for Minerals Engineering
Centre for Particle and Catalyst Technologies
Centre for Petroleum Engineering Studies
Centre for Remote Sensing and Geographic Information Systems
Energy Research, Development and Information Centre (ERDIC)
Food Industry Development Centre
Key Centre for Mines
UNSW Groundwater Centre

Three Centres offer programs which have their own subject identifier. They are the Centre for Minerals Engineering (MINP), the Centre for Petroleum Engineering Studies (PRTL), and the Key Centre for Mines (KCM). The subjects for the Centre for Minerals Engineering are located with the subjects for the School of Chemical Engineering and Industrial Chemistry, those for the Key Centre for Mines are located with the School of Mines. The Centre for Petroleum Engineering Studies has a separate entry in this handbook at the end of this section.

In addition the Faculty of Applied Science is actively involved with seven Co-operative Research Centres (CRCs) established under the Commonwealth Government’s program of CRCs announced in 1991. These are:

- Australian Maritime Engineering CRC
- CRC for Aerospace Structures in which the School of Materials Science and Engineering has a strong involvement.
- CRC for Biopharmaceutical Research in which the Department of Biotechnology has a leading role.
- Australian Petroleum CRC in which the Centre for Petroleum Engineering Studies has a leading role.
- CRC for Waste Management and Pollution Control in which the School of Chemical Engineering and Industrial Chemistry has a major supporting role. The Department of Biotechnology is also involved in the Centre’s projects.
- CRC for Food Industry Innovation in which the Departments of Biotechnology and Food Science and Technology have leading roles.
- Premium Quality Wool CRC in which the School of Wool and Animal Sciences is one of the core partners. The School’s principal involvement is in the education program of the CRC.
Bioengineering Centre

Director:
Professor P. Gray

The Bioengineering Centre is located in the Department of Biotechnology within the School of Applied Bioscience. Its aim is to provide a focus for the application of recombinant DNA and bioengineering techniques to research related to the development of useful products and processes. The Centre brings together expertise in molecular biology, cloning and expression, growth and product recovery from recombinant cells and characterisation and computer modelling of protein structure.

Additional activities of the Centre include continuing education programs and extensive collaborations with local and overseas organisations with similar interests.

Centre for Membrane and Separation Technology

Directors:
Professor H.G.L. Coster (Biophysics Group)
Professor A.G. Fane (Chemical Engineering Group)

The Centre for Membrane and Separation Technology is one of the Australian Government's Commonwealth Special Research Centres established to carry out intensive research into membrane technology. The research programs of the Centre are twofold: to determine the factors underlying the fouling of membranes, particularly ultrafiltration and microfiltration membranes; and to develop biomimetic membranes by implanting biospecies on synthetic membranes.

The Centre is a joint enterprise between the Department of Biophysics in the Faculty of Science and the School of Chemical Engineering and Industrial Chemistry in the Faculty of Applied Science.

Centre for Petroleum Engineering Studies

Director:
Professor W.V. Pinczewski

This Centre is an autonomous unit within the Faculty of Applied Science.

Petroleum Engineering is a specialised engineering discipline which prepares graduates for a career in the oil and natural gas industries and its related operations. Petroleum engineers apply physical, mathematical and engineering principles to identify and solve problems associated with exploration, exploitation, drilling, production, processing, transportation and all the related economic and management problems associated with recovery of hydrocarbons from deep beneath the earth's surface.

The Centre has a four-year course leading to the award of a Bachelor of Engineering in Petroleum Engineering. Entry is normally into Year 1 of the program. The first two years of the Petroleum Engineering Course are identical to the first two years of the Chemical Engineering Course. The only exception is that Petroleum Engineering students take the whole of Category A General Education subjects in the first year and the whole of Category B General Education subjects in the second year. The University has approved an arrangement whereby, upon recommendation of the Head of School, students who satisfy the requirements of the first two years of the Chemical Engineering, Mechanical Engineering, Civil Engineering or Mining Engineering degree courses at the University may be admitted into the final two years of the BE degree course in Petroleum Engineering. Such students would complete an...
appropriately modified Year 3 program as approved by the Head of School.

The University has also approved an arrangement whereby, upon the recommendation of the Head of School, students who satisfy the requirements of the first two years of the Chemical, Mechanical, Civil or Mining Engineering full-time degree courses at any other Australian tertiary institution may be admitted to the final two years of the Petroleum Engineering course. Such students will be required to undertake an appropriately modified Year 3 program as approved by the Head of School. Acceptance into the course will be on the basis of academic merit. This applies equally to students from accredited tertiary institutions in other countries.

For the award of Honours in Petroleum Engineering degree courses, students need to have distinguished themselves in the formal work, in other assignments as directed by the Director of the Centre, and in the final year project, for which a thesis is required.

Because the first two years of the Petroleum Engineering course are identical to the first two years of the Chemical Engineering course, it is possible, upon completion of the Petroleum Engineering program, to obtain a double BE degree in Petroleum and Chemical Engineering with one additional year of study.

Undergraduate Study: Course Outline

3045 Petroleum Engineering - Full-time Course

Bachelor of Engineering

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSE0002 Social Issues in Applied Science*</td>
<td>2</td>
</tr>
<tr>
<td>CHEN3040 Separation Processes</td>
<td>2</td>
</tr>
<tr>
<td>CHEN3061 Process Plant Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL0616 Structures</td>
<td>3</td>
</tr>
<tr>
<td>GEOL5301 Introduction to Petroleum Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL5312 Petroleum Geology & Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>INDC3070 Instrumentation and Process</td>
<td>3</td>
</tr>
<tr>
<td>MATH3021 Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>PTRL3001 Reservoir Rock Properties and Fluid Flow in Porous Media</td>
<td>2</td>
</tr>
<tr>
<td>PTRL3002 Rock and Fluid Properties Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PTRL3003 Petroleum Thermodynamics</td>
<td>2</td>
</tr>
<tr>
<td>PTRL3004 Drilling and Production Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PTRL3006 Drilling Fluids and Cementing</td>
<td>3</td>
</tr>
<tr>
<td>PTRL3007 Reservoir Engineering 1</td>
<td>0</td>
</tr>
<tr>
<td>PTRL3009 Fundamentals of Drilling Engineering</td>
<td>2</td>
</tr>
<tr>
<td>PTRL3106 Introduction to Formation Evaluation</td>
<td>1</td>
</tr>
<tr>
<td>PTRL3107 Formation Evaluation I</td>
<td>0</td>
</tr>
<tr>
<td>Totalling</td>
<td>25 25</td>
</tr>
</tbody>
</table>

*These subjects contribute towards satisfaction of the Category C General Education requirement.

The Centre also offers courses that cover the areas of Reservoir Engineering, Drilling Engineering, Production Engineering and Formation Evaluation. Suggested course outlines are available from the Director of the Centre.

Graduate Study: Course Outline

5031 Petroleum Engineering Graduate Diploma Course

Graduate Diploma in Engineering (Petroleum) GradDip

The oil industry has, in the past, employed personnel who, although working as Petroleum Engineers, have no formal qualifications in petroleum engineering. The Diploma Program in Petroleum Engineering is designed to provide these people with a means of obtaining formal qualifications in a short, intensive, full-time study program over one academic year.

The course work, carried out under the guidance and supervision of academic staff of the Centre, and in close co-operation with the oil industry, will incorporate a significant percentage of practical work in major areas of petroleum engineering. Candidates for the program must hold a Bachelors Engineering or Science Degree and some relevant field experience in the industry. Acceptance into the program is at the discretion of the Director of the Centre for Petroleum Engineering.

The one year (two session) program course consists of the following subjects:
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

APSE0002
Social Issues in Applied Science
Staff Contact: School Office
S1 L2
The subject covers social issues arising from future technological developments and the role that a professional applied scientist can play in influencing future directions. It will be taught by a combination of group activity, case studies, projects and seminars from visiting speakers, some of whom will be from disciplines other than the applied sciences.

PTRL3001
Reservoir Rock Properties and Fluid Flow in Porous Media
Staff Contact: Dr H.A. Salisch
S1 L2
Prerequisites: CHEN2020, MATH2021

PTRL3002
Rock and Fluid Properties Laboratory
Staff Contact: Dr H.A. Salisch
S1 T3
Prerequisites: CHEN2010, CHEN2020
An integrated reservoir engineering and formation evaluation laboratory incorporating experiments in porosity, permeability, capillary pressure and resistivity of reservoir rocks and PVT properties of crude oil.

PTRL3003
Petroleum Thermodynamics
Staff Contact: Dr H.A. Salisch
S1 L2
Prerequisite: CEIC2030

PTRL3004
Drilling and Production Laboratory
Staff Contact: Dr S.S. Rahman
S2 T3
Prerequisites: CHEN2010, CHEN2020
The program includes measurement and control of the basic properties of drilling fluids (density, viscosity, filtration, lubricity and electrochemical properties) and cement slurries (density, viscosity, filtration, thickening time and mechanical properties). The program also includes a workshop on log interpretation.
PTRL3006
Drilling Fluids and Cementing
Staff Contact: Dr S. S. Rahman
S2 L3
Prerequisites: PTRL3001, PTRL3009
Introduction to the basic functions and properties of drilling fluids and cement slurries. Composition and related properties of drilling fluids and cement slurries. Types of equipment and methods used in cementing operations. Drilling fluid displacement and replacement of cement slurries. Drilling hydraulics.

PTRL3007
Reservoir Engineering 1
Staff Contact: Prof. A.K. Khurana
S2 L2
Prerequisite: PTRL3001

PTRL3009
Fundamentals of Drilling Engineering
Staff Contact: Dr S.S. Rahman
S1 L2

PTRL3106
Introduction to Formation Evaluation
Staff Contact: Dr H.A. Salisch
S1 L1

PTRL3107
Formation Evaluation 1
Staff Contact: Dr H.A. Salisch
S2 L3
Prerequisites: PTRL3106, GEOL5301

PTRL4001
Reservoir Simulation
Staff Contact: Prof. A.K. Khurana
S2 L2
Prerequisites: PTRL3007, MATH3021

PTRL4002
Advanced Recovery Methods
Staff Contact: Dr H.A. Salisch
S2 L2
Prerequisite: PTRL3007

PTRL4003
Well Pressure Testing
Staff Contact: Dr H.A. Salisch
S1 L2
Prerequisites: PTRL3007, MATH3021

PTRL4004
Advanced Drilling Engineering
Staff Contact: Dr S.S. Rahman
S1 L3
Prerequisites: PTRL3004, PTRL3006, PTRL3009

PTRL4007
Reservoir Engineering 2
Staff Contact: Prof. A.K. Khurana
S2 L2
Prerequisites: PTRL3002, PTRL3003, PTRL3007

PTRL4016
Well Completions and Stimulation
Staff Contact: Dr S. S. Rahman
S2 L2
Prerequisites: PTRL3002, PTRL3004, PTRL3009
PTRL4026
Petroleum Production Engineering
Staff Contact: Dr S. S. Rahman
S2 L2
Prerequisites: PTRL3002, PTRL3004, PRL3006, PTRL3009
Introduction to multiphase flow in tubing. Design of sucker rod pumping systems. Design of gas lift and other lifting techniques. Design and operation of surface facilities associated with the primary processing of well head fluids: gathering systems, water separation, oil metering, gas dehydration and stripping. Compression. Pumping and pipeline facilities. Surface facilities associated with artificial lift.

PTRL4018
Petroleum Economics 1
Staff Contact: Mr W.G. Allinson
S1 L2
Basic elements of profitability analysis. Depreciation, financial statements, interest, time value of money. The financial plan, outside share, planning and scheduling, pricing and costs. Profitability. Criteria, applications of present value profiles, risk and risk adjustment.

PTRL4028
Petroleum Economics 2
Staff Contact: Mr W.G. Allinson
S2 L1
Prerequisite: PTRL4018

PTRL4105
Formation Evaluation 2
Staff Contact: Dr H.A. Salisch
F L2
Prerequisites: PTRL3001, PTRL3107

PTRL4109
Petroleum Engineering Project
Staff Contact: Dr H.A. Salisch
S1 T4 S2 T2
A major design or research project on a problem relevant to petroleum engineering and concluding in the submission of an individual thesis. Projects of relevance to the research efforts in the School plus approved topics of particular interest to industry.

PTRL4010
Communication Skills for Engineers
Staff Contact: Dr H.A. Salisch
S2 L1
Interviews: preparation, appearance and attitude. Assessing and meeting company needs. Role of a junior engineer in a team environment. Impromptu and prepared presentation skills. Oil companies’ expectations of engineering reports.

PTRL5001
Reservoir Rock Properties and Fluid Flow in Porous Media
Staff Contact: Dr H.A. Salisch
S1 L2

PTRL5002
Rock and Fluid Properties Laboratory
Staff Contact: Dr H.A. Salisch
S1 L3
An integrated reservoir engineering and formation evaluation laboratory incorporating experiments in porosity, permeability, capillary pressure and resistivity of reservoir rocks and PVT properties of crude oil.

PTRL5003
Well Pressure Testing
Staff Contact: Dr H.A. Salisch
S1 L2

PTRL5004
Reservoir Simulation Fundamentals
Staff Contact: Prof A.K. Khurana
S2 L2

PTRL5005
Petroleum Thermodynamics
Staff Contact: Dr H.A. Salisch
S1 L2
PTRL5016
Well Completion and Stimulation
Staff Contact: Dr S.S. Rahman
S2 L2

PTRL5007
Reservoir Engineering
Staff Contact: Prof A.K. Khurana
S2 L2

PTRL5008
Petroleum Production Economics
Staff Contact: Mr W.G. Allinson
S1 L2

PTRL5009
Fundamentals of Drilling Engineering
Staff Contact: Dr S.S. Rahman
S1 L2
Rotary drilling rig components. Drilling fluid circulating system. Bottom-hole assemblies, well control and blowout prevention equipment and methods. Special marine equipment and drilling cost analysis.

PTRL5012
Drilling Fluids and Cementing
Staff Contact: Dr S.S. Rahman
S2 L3
Introduction to the basic functions and properties of drilling fluids and cement slurries. Composition and related properties of drilling fluids and cement slurries. Types of equipment and methods used in cementing operations. Drilling fluid displacement and replacement of cement slurries. Drilling hydraulics.

PTRL5016
Introduction to Formation Evaluation
Staff Contact: Dr H.A. Salisch
S1 L1

PTRL5017
Formation Evaluation
Staff Contact: Dr H.A. Salisch
S2 L3

PTRL5109
Petroleum Engineering Project
S1 L2 S2 L2
A literature survey of a topic of relevance to the research effort of the Centre and of practical interest to the oil industry. To be submitted as an individual thesis. Topic must be approved by the Director of the Centre.

Centre for Remote Sensing and Geographic Information Systems

Director:
Dr E.G. Masters
The Centre for Remote Sensing and Geographic Information Systems is a joint multidisciplinary enterprise of the Faculty of Applied Science and the Faculty of Engineering.

Graduate Programs in Geographic Information Systems

Master of Applied Science in Geographic Information Systems Course 8024
The Masters degree program in Geographic Information Systems is offered in both Geography and Geology within the Faculty of Applied Science. Entry into either discipline depends on the background of the applicant and the orientation of the proposed program. Detailed information on this course is listed under the School of Geography section in this handbook.

The Masters degree program is also offered in the Faculty of Engineering as a Master of Engineering Science Course 8652. This course has a stronger engineering bias.

Graduate Programs in Remote Sensing
The graduate programs in Remote Sensing are offered in both the Faculty of Applied Science and the Faculty of Engineering. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.

Programs are available leading to the award of:
Master of Applied Science in Remote Sensing Course 8026
Graduate Diploma in Remote Sensing Course 5026
Detailed information on these courses is listed under the School of Geography and the School of Geology Sections in this handbook.

CRC for Biopharmaceuticals

University Contact:
Professor Peter P Gray
The Cooperative Research Centre for Biopharmaceutical Research was incorporated in 1992. The partners in the Centre include UNSW's Department of Biotechnology,
School of Physiology and Pharmacology, and Biomedical Mass Spectrophotometry Unit; the Garvan Institute of Medical Research, St Vincent's Hospital, Sydney; the Biomolecular Research Institute, Peptide Technology Ltd; CSL Ltd; and Johnson & Johnson Research Pty Ltd.

The primary aim of the Biopharmaceutical Research CRC is to provide a coordinated research base to aid the development of the Australian biopharmaceutical industry. To achieve this goal, the Centre functions as a national centre for both the development of new internationally competitive biopharmaceutical products, and the education of researchers in the combination of biopharmaceutical research techniques and their integration with the industrial goals necessary to develop products for the world market. The partners of the Cooperative Research Centre have all the necessary expertise for the discovery, design and development of novel biopharmaceutical products resulting from the recent rapid advances in the fields of genetic engineering and biotechnology.

The specific biopharmaceuticals initially targeted for research fall into two major related areas - biosynthetic therapeutic agents and 'receptor-based' drug development.

Initial projects include the development of biopharmaceuticals for use in the treatment of leukemia, breast cancer and a new class of anti-hypertensive agent.

The CRC provides a fertile environment for postgraduate study, as students can see the results of their research being developed into useful products.

Energy Research, Development and Information Centre (ERDIC)

Director: Associate Professor G. D. Sergeant

ERDIC provides a contact point for energy researchers at UNSW and acts as a focus for enquiries and consultations on energy technologies. The Centre organises seminars, workshops and meetings and has brought multidisciplinary teams together to work on energy projects. ERDIC has put together a twelve unit subject on Energy Management which is offered as a subject in the Master of Business and Technology.

Food Industry Development Centre

Director: Dr P. Cranston

This is a Commonwealth Key Centre for teaching and research located in the Department of Food Science and Technology within the School of Applied Bioscience. The Centre focusses on research and training and most importantly liaison with the Australian food industry.

Key Centre for Mines

Director: Associate Professor G.R.Taylor

The Key Centre is a joint initiative of the Universities of New South Wales and Wollongong, funded by the Department of Employment, Education and Training. The purpose of the Key Centre for Mines is to provide a full range of educational and research services to the minerals industries. Particular emphasis is being placed on continuing education, distance learning and industry based research and development.

The industry sector being addressed by the Key Centre for Mines covers the exploration, extraction, and primary processing of mineral resources.

Information on the Centre's courses is detailed under the School of Mines section in this handbook.
UNSW Groundwater Centre

Director:
Dr R. I. Acworth

The Groundwater Centre was established in 1987 as a Federal National Centre (Centre for Groundwater Management and Hydrogeology). In 1992, the Centre was reorganised as a joint initiative of the Department of Applied Geology in the Faculty of Applied Science and the School of Civil Engineering in the Faculty of Engineering with the general objectives of improving and continuing teaching and research in groundwater studies.

The Centre offers specialised graduate courses in Groundwater Studies and carries out general teaching in Hydrogeology to Applied Science and Engineering postgraduate students.

Information on the Centre's courses is detailed under the Department of Applied Geology, School of Mines, section in this handbook.
Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

The following subjects are offered by other Faculties at UNSW, and contribute as either part of courses contained in this handbook, or as electives.

ACCT1501
Accounting and Financial Management 1A
Staff Contact: School of Accounting Office
S1 or S2 L2 T2

This is the first unit in a sequence of subjects dealing with the profession and practice of accounting and the literature associated with it. It illustrates the analysis and design of a financial accounting system which processes financial data and produces financial reports geared to the information needs of interested parties. It introduces students to the design of accounting systems based on double-entry book-keeping and incorporating other internal controls; also, to the problems of accounting for cash, debtors, inventories and property plant and equipment. It also provides a critical introduction to the ideas underlying accounting practice and to issues associated with the uses and limitations of traditional financial reports. In so doing it introduces students to the practice of literature evaluation.

ACCT1511
Accounting and Financial Management 1B
Staff Contact: School of Accounting Office
S1 or S2 L2 T2
Prerequisite ACCT1501

This is the second unit in a sequence of accounting subjects including an examination of the regulatory environment of financial reporting: the definition and recognition of assets, liabilities, revenues and expenses; accounting for partnerships and corporations. Financing decisions and financial management including financial statement and cash flow analysis, an examination of cost/volume/profit relationships in a single product firm, and short term budgeting. Lotus 123 spreadsheet applications have been integrated with these topics.

ACCT2522
Accounting and Financial Management 2A
Staff Contact: School of Accounting Office
S1 L2 T2
Prerequisites: ACCT1511
Note/s: Excluded ACCT2532.

This subject examines management accounting, directed towards the effective use of organizational resources. Organizations create value through the use of resources, and can enhance such value by focusing and reconfiguring their internal processes in various ways; that is, by changing the ways in which they conduct business and perform work. It is argued that, in world class organizations, the management of time, flexibility, quality, integration, variability and interdependencies is critical to sustained value generation. This course explains how management accounting supports such value generation, within changing organizational processes.

ACCT2542
Accounting and Financial Management 2B
Staff Contact: School of Accounting Office
S2 L2 T2
Prerequisite ACCT1511
Note/s: Excluded ACCT2552.

This intermediate financial accounting subject builds on the foundation laid in ACCT1501 and ACCT1511. It is intended for students who will be involved in the preparation or use of financial statements whether as accountants, financial executives, auditors, financial analysts or legal advisors. The effort to establish an agreed conceptual framework. The contracting cost framework for the analysis of financial reporting. Accounting for capital instruments. Profit reporting. More advanced aspects of the definition, recognition and measurement of assets and liabilities. Lease accounting. Issues in accounting for company income tax including the effects of timing differences, dividend imputation, and revaluations. Published financial reports including more advanced cash flow statement preparation and analysis. Accounting for the extractive industries and for superannuation plans.
ACCT5930
Financial Accounting
(formerly ACCT5940 Accounting and Financial Management A)
Staff Contact: School of Accounting Office
Prerequisite: Nil
The fundamentals of financial accounting. The users of general purpose financial reports and their information needs. Financial information recording processes, systems design and internal control. Preparation of statements of financial position, operating statements and classified cash flow statements. Recognition and measurement of specific financial statement elements. Reading and analysing published financial statements.

ACCT5956
Management Planning and Control
Staff Contact: School of Accounting Office
Prerequisite: Nil
Planning and control processes in organizations, and the involvement of management and management support personnel with them. Topics include: 'formal' and 'organizational' perspectives on management planning and control; planning and decision-making in organizations - some alternative perspectives and descriptions; planning and budgeting - theoretical perspectives and organizational descriptions; organization structures and structuration; control processes in organizations - some alternative perspectives; participation as a mode of organizational control; accounting control systems - some alternative perspectives; designing management accounting systems - prescription or organizational choice; categorizing and evaluating the literatures on management planning and control.

ACCT9001
Introduction to Accounting A
Staff Contact: School of Accounting Office
Note/s: Architecture - 2 credit points compulsory for BBuild degree course students.
This subject introduces non-commerce students to the nature, purpose and conceptual foundation of accounting: information systems including accounting applications, and analysis and use of accounting reports.

ACCT9002
Introduction to Accounting B
Staff Contact: School of Accounting Office
Prerequisite: ACCT9001
Note/s: Architecture - 2 credit points; compulsory for BBuild degree course students.
This subject introduces non-commerce students to managerial accounting: long-range planning, budgeting and responsibility accounting; cost determination, cost control and relevant cost analyses.

ANAT6151
Introductory Functional Anatomy
Staff Contact: Dr E. Tancred
An overview of basic human anatomy and physiology with an emphasis on structures and systems which are most vulnerable to chemical and physical trauma under industrial conditions, such as the eye, ear and skin. Other systems studied include the musculo-skeletal system, central and peripheral nervous systems, circulatory, respiratory, gastrointestinal, endocrine and urogenital systems.

BIOC2201
Principles of Molecular Biology
Staff contact: Dr T. Stewart & Mr. H. Shoory
U1 S2 HPW6
Prerequisite: BIOC2101
Note/s: Excluded BIOC2312, BIOC2372
Enrolment in this unit may be subject to quota restrictions. Such restrictions will only apply to students taking this unit as an elective part of their program.
This unit provides an introduction to modern molecular biology and covers the molecular mechanisms of gene expression and the fundamental aspects of recombinant DNA technology. The major topics to be covered include: The structure and function of DNA and RNA. The replication and transcription of DNA. Translation of the genetic code into an amino acid sequence during protein synthesis. Regulation of gene expression. Manipulation of DNA including fragmentation by restriction enzymes, cloning of DNA fragments into vectors, hybridization analysis and principles of DNA sequencing. Protein structure and function, protein engineering and site-directed mutagenesis. Amplification of DNA by the polymerase chain reaction (PCR). Practical work to complement the lectures.

BIOC3121
Molecular Biology of Nucleic Acids
Staff Contact: A/Prof A. Mackinlay
U1 S1 HPW6
Prerequisites: BIOC2312 or BIOC2372 or BIOC2101 and BIOC2201, CHEM2021 or CHEM2041
Note/s: Excluded 41.102, 41.102A.
Detailed analysis of gene structure and function including: structure and properties of polynucleotides such as DNA and RNA; structure of chromatin; mechanisms and regulation of gene replication, transcription and translation; recombinant DNA technology, nucleic acid sequencing, DNA-DNA and DNA-RNA hybridisation as important tools of modern molecular biology; protein production using recombinant DNA systems. Practical work illustrates and complements the lectures and provides experience with contemporary biochemical techniques.

BIOC3281
Recombinant DNA Techniques and Eukaryotic Molecular Biology
Staff Contact: A/Prof. A. Mackinlay
U1 S2 HPW6
Prerequisite: BIOC3121
Note/s: Excluded 41.132, 41.102E.
The organisation of the genomes of higher organisms derived mainly from the application of recombinant DNA technology and related techniques. Methods used for the isolation, identification and characterisation of eukaryotic genomes in terms of the organisation of single copy and repeated sequences and of coding and non-coding sequences and of several gene clusters, eg the alpha and beta globin gene cluster. Mechanisms known to operate in the control of eukaryotic gene expression, both at the DNA level and at the level of RNA processing. Review of several specialised genetic systems in plants and animals such as
mitochondria, chloroplasts and RNA and DNA tumour viruses. Practical work provides training in the use of sterile techniques and in working with polynucleotides under nuclease-free conditions, using basic techniques such as hybridisation and DNA sequencing.

BIOM9541
Mechanics of the Human Body
Staff Contact: Prof N.L. Svensson
C3 SS L2 T1
Prerequisites: BIOM9510 and ANAT2111

Statics and dynamics of the musculoskeletal system: mathematical modelling and computer simulation, analysis of pathological situations.

BIOS1011, 1021, 2011, 2021, 2031, 2051, 2061, 3014, 3061, 3071
Biological Science Registration Centre
(for courses in Botany and Zoology)
This will be held in Biology Lab A (room G20, Biological Science building) as follows:

- 6-10 Feb 10.00-17.00
- 13-17 Feb 10.00-17.00
- 20-24 Feb 10.00-17.00

Students must obtain practical slots at that time for: BIOS 2011 Evolutionary and Physiological Ecology
BIOS 2021 Introductory Genetics
BIOS 2051 Flowering Plants
BIOS 2061 Vertebrate Zoology
BIOS 3071 Conservation Biology and Biodiversity

Pre-enrolment in another faculty does NOT automatically entitle you to a place in your chosen practical time. You must obtain a seat from the Biological Science Registration Centre.

Students enrolling in other subjects do not need to sign on at the Biological Science Registration Centre but only need to attend the first lecture of the relevant course for practical assignments and further details. The location and timetable of lectures and practicals for all subjects in the School of Biological Science (Botany and Zoology) can be obtained from the Biological Science Registration Centre or from the notice boards on the fifth floor of the Biological Sciences Building.

Note: Some subjects that appear in this section may be restricted to students for whom the subject comprises a compulsory part of their program.
BIOS1021
Biology B
Staff Contact: Dr M.L. Augee
U1 S2 HPW6
Prerequisites: BIOS1011 (however, students without this prerequisite may seek the permission of the Director to enrol)
The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes, which include dissection of a toad and a rat.

Biological Science Level II

BIOS2011
Evolutionary and Physiological Ecology
Staff Contact: Dr P. Steinberg
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS1021
Note/s: Students must enrol at the Biological Science Registration Centre, Room G20, Biological Sciences Building. For further details, see Faculty timetable.

Introduction to functional relationships between living organisms and environments in which they live. Emphasis on interactions within and between populations, ecological energies, ecophysiology, and the theory of evolution by natural selection. Plants, animals and microbes are covered. Also serves content as an introduction to the process of scientific enquiry.

BIOS2021
Introductory Genetics
Staff Contact: Dr W. Sherwin, Dr A. Wilton
U1 S2 HPW6
Prerequisites: BIOS1011 and BIOS1021
Corequisite: BIOC2201
Note/s: Enrolment in this unit may be subject to quota restrictions. Such restrictions will only apply to students taking this unit as an elective part of their program. Students must enrol at the Biological Science Registration Centre, Room G20, Biological Sciences Building. For further details, see Faculty timetable.

BIOS2031
Biology of Invertebrates
Staff Contact: A/Prof P. Greenaway
U1 S2 HPW6
Prerequisites: BIOS1011 and BIOS1021
Note/s: Enrolment in this unit may be subject to quota restrictions. Such restrictions will only apply to students taking this unit as an elective part of their program.

A comparative study of morphology, taxonomy, functional biology and evolutionary relationships of invertebrates.

Emphasis on major phyla and marine forms. Practical work includes anatomy of living and preserved specimens (including dissections) and a compulsory fieldcamp. Personal expenses will be incurred.

BIOS2051
Flowering Plants
Staff Contact: A/Prof A. Ashford
U1 S2 HPW6
Prerequisites: BIOS1011 and BIOS102
Note/s: Enrolment in this unit may be subject to quota restrictions. Such restrictions will only apply to students taking this unit as an elective part of their program. Students must enrol at the Biological Science Registration Centre, Room G20, Biological Sciences Building. For further details, see Faculty timetable.

Basic plant biology including cell structure, plant morphology and anatomy, water and sugar transport, seed structure and physiology, plant growth and development, arborescence, leaves and photosynthesis, roots, microorganisms and nutrition, evolution of land plants and plant taxonomy. Practical work: plant anatomy and light microscopy; collection of numerical data and a statistical analysis, plant identification.

BIOS2061
Vertebrate Zoology
Staff Contact: Dr M. Augee
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS1021
Note/s: Excluded 45.301, 17.732. Practical class allocations must be obtained during re-enrolment week from room G20, Biological Science Building. Enrolment in this unit may be subject to quota restrictions. Such restrictions will only apply to students taking this unit as an elective part of their program.

Comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement lectures. 1

The course includes projects or field excursions. Field excursions may incur personal expenses.

BIOS3014
Ecological Studies in Arid Lands Management
Staff Contact: Dr D Croft
S2 L2 T4
Techniques in ecological studies of animal communities. Adaptations to an arid environment, environmental and social determinants. Behaviour, diet and condition of native and feral animals. Competition between native and introduced herbivores. Strategies in the management of arid zone wildlife. Concurrent studies in relevant units in the School of Biological Science are prescribed to cover aspects of vegetation description and plant environment interactions.

BIOS3061
Plant Ecosystem Processes
Staff Contact: Dr R. McMurtrie
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS102 and any 2 Level II Science subjects

Interactions of plants with their soil and atmospheric environments. Plant growth and decomposition processes.

BIOS3071
Conservation Biology and Biodiversity
Staff Contact: Dr W. Sherwin
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS1021, plus any 2 Level II Biological Science subjects
Note/s: Students must enrol at the Biological Science Registration Centre, Room G20, Biological Sciences Building. For further details, see Faculty timetable.
Applications of community biology, population ecology and genetics to management of environmental problems in nature and artificial ecosystems, including Australian examples. Nature and importance of global diversity. Management and design of programs for the conservation of species and ecosystems, including reserves, off site conservation, and computer simulations. Field excursions compulsory.

CHEM1101
Chemistry 1A
Staff Contact: Dr P. Chia
U1 S1 or S2 HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 60-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Chemistry 53-100, or 3 unit Science 90-150, or 4 unit Science 1-200, or 2 unit Physics 53-100

CHEM1201
Chemistry 1B
Staff Contact: Dr P. Chia
U1 S2 or Summer Session HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 60-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Chemistry 53-100, or 3 unit Science 90-150, or 4 unit Science 1-200, or 2 unit Physics 53-100

CHEM1401
Introductory Chemistry A
Staff Contact: Dr P. Chia
U1 S1 HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 60-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100. Note/s: This subject is only for students who do not have the prerequisite for CHEM1101.

CHEM1807
Chemistry 1ME
Staff Contact: Dr P. Chia
U1 S1 HPW6
Note/s: excluded CHEM1101, CHEM1201, CHEM1002
Restricted to Course 3681

CHEM2011
Physical Chemistry
Staff Contact: Prof R. F. Howe
U1 S1 or S2 HPW6
Prerequisites: CHEM1002, MATH1032 or MATH1231 or MATH1042 or MATH1241 or MATH1021

CHEM2021
Organic Chemistry
Staff Contact: Dr R. Read
U1 F or S2 HPW6
Prerequisite: CHEM1002
Discussion of the major types of organic reaction mechanisms, eg addition, substitution, elimination, free radical, molecular rearrangement within context of important functional groups. Introduction to the application of spectroscopic methods to structure determination.

CHEM2031
Inorganic Chemistry and Structure
Staff Contact: Dr N. Duffy
U1 S1 or S2 HPW6
Prerequisite: CHEM1002

CHEM2041
Chemical and Spectroscopic Analysis
Staff Contact: Dr G. Moran
U1 S1 or S2 HPW6
Prerequisites: CHEM1002, MATH1032 or MATH1231 or MATH1042 or MATH1241 or MATH1021
CHEM2818
Physical Chemistry for Materials Science and Engineering
Staff Contact: Prof R. F. Howe
Prerequisites: CHEM1002 or CHEM1101 and CHEM1201 and MATH1042 or MATH1241 or MATH1032 or MATH1231 or MATH1021
Note/s: Excluded 02.022A

CHEM2819
Physical Chemistry for Food and Fibre Science and Technology
Staff Contact: Prof R. F. Rowe
Prerequisites: CHEM1002 or CHEM1101 and CHEM1201 and MATH1042 or MATH1241 or MATH1032 or MATH1231 or MATH1021
Note/s: Excluded 02.002A

CHEM2828
Organic and Inorganic Chemistry for Chemical Engineers
Staff Contact: Dr. D. Phillips
Discussion of selected types of organic reactions to provide a broad cover of the chemistry of aliphatic and aromatic compounds. Survey of the structures, energetics, bonding, reactions and physical properties, and applications, of selected compounds of main group elements and of lanthanide and dblock transition elements.

CHEM2929
Fundamentals of Biological and Agricultural Chemistry
Staff Contact: Dr P. Southwell-Keely

CHEM3829
Organic Chemistry
Staff Contact: Prof D. Black
The spectroscopic identification of organic compounds, free radical chemistry and electroorganic processes, various aspects of the organic industrial processes such as industrial synthesis based on petrochemicals, and organometallic reactions of industrial interest. Selected topics from the dyestuff, pharmaceutical and agricultural industries.

CHEM3021
Organic Chemistry
Staff Contact: A/Prof M. Gallagher
Prerequisite: CHEM2021

CHEM3121
Synthetic Organic Chemistry
Staff Contact: Prof M Paddon-Row
Prerequisite: CHEM3021

CHEM3311
Environmental Chemistry
Staff Contact: Prof. R. Howe
Prerequisites: CHEM2011, CHEM2041

CHEM3321
Applied Organic Chemistry
Staff Contact: A/Prof N. Cheetham
Corequisite: CHEM3Q2-
Polymerisation processes and synthetic polymers; initiators, chain transfer agents, retarders. Pigments and dyestuffs; Basis of colour in organic compounds. Oxidation and reduction processes; theory and industrial importance.

CHEM3829
Organic Chemistry
Staff Contact: Prof D. Black
The spectroscopic identification of organic compounds, free radical chemistry and electroorganic processes, various aspects of the organic industrial processes such as industrial synthesis based on petrochemicals, and organometallic reactions of industrial interest. Selected topics from the dyestuff, pharmaceutical and agricultural industries.

CHEM3926
Instrumental Methods of Food Analysis
Staff Contact: A/Prof G. Crank
Treatment of theory and practice of modern instrumental methods of analysis, with strong emphasis on the analysis of food constituents. Variety of spectroscopic and chromatographic techniques.
CIVL3902
Structural Engineering
Staff Contact: Dr F. Barzegar
S1 L3 T1
Prerequisites: CIVL3203, CIVL3303

Slab design: two-way edge-supported slabs and flat slab design; idealised frame and simplified design methods, punching shear, moment transfer at column connections, serviceability approach, detailing. Design of reinforced concrete footings and retaining walls. Plastic analysis and design of steel frames. Approximate analysis and structural form. Variational theorems. Brief discussions of cable structures, arches, plates and shells.

CIVL4306
Engineering and the Environment
Staff Contact: Dr A.C. Heaney
S1 L2 T2
Prerequisite: CIVL3601

CIVL4502
Geotechnical Engineering 2
Staff Contact: Mr G. R. Mostyn
S1 L2 T1
Prerequisite: CIVL3402

Theoretical and presumptive bearing capacity of shallow foundations. Allowable settlement and foundations on sand and rock. Lateral earth pressures and retaining wall design. Single axially and laterally loaded piles, pile groups. Reactive soils, residential slabs and footings.

CIVL4605
Water Supply and Wastewater Disposal
Staff Contact: Mr P.J. Bliss
S1 L2 T1
Prerequisite: CIVL2505

CIVL4704
Highway and Pavement Engineering
Staff Contact: A/Prof B. Shackel
S1 L2 T1
Prerequisites: CIVL3402, CIVL3804

CIVL4906

Project/Thesis
Staff Contact: Dr N. Gowripalan
S1 S2 S3
Prerequisites: All third year subjects
Corequisite: The appropriate major

Directed laboratory, investigatory, design, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.

CIVL9726

Legal Studies and Professional Practice
Staff Contact: Prof D.G. Carmichael
C3 S3
Note/s: Not offered in 1995

Nature and sources of law, court procedures, interpretation of documents, evidence, technical opinions, expert witness; company law; duties of an engineer; tort, professional liability; trade practices and consumer legislation; ethics.

CIVL9788

Site Investigations
Staff Contact: Prof R. Fell
C3 S1

CIVL9790

Stability of Slopes
Staff Contact: Prof R. Fell
C3 S2

Stability of natural and constructed slopes in civil and mining engineering. Stability analysis; stabilization methods and design; monitoring. Design of slopes in soft ground, soil and rock, and in partially saturated slopes; design of open cut mines. Probabilistic methods.

CIVL9799

Environmental Geomechanics
Staff Contact: Mr G.E. Swarbrick
C3 S2

Dispersive soils, hydrological cycle, partly saturated flow through soils, advective-dispersive transport, acid mine drainage, leachate plumes, design and construction of waste dump covers and liners, site remediation and leachate collection and treatment.

CIVL9847

Water Resources Policy
Staff Contact: Dr J.E. Ball
C3 S3
Note/s: Not offered in 1995

Resource economics, water supply, water demand, multiple objective planning, multiple purpose projects, water law, water administration, case studies.

CIVL9849

Environmental Hydrology
Staff Contact: A/Prof I. Cordery
C3 S1

Total catchment management; water policy; low flows and interaction between hydrology and water quality; land use effects; erosion processes; introduction to pollutant loading estimation (sources); quality models; rainfall impacts on water quality, accuracy of data; introduction to water quality treatment processes.

CIVL9851

Unit Operations in Public Health Engineering
Staff Contact: Mr P.J. Bliss
C3 S1

Theory of physical, chemical, biological, and hydraulic processes used in both water and wastewater treatment. Applications where these are common to both water and wastewater treatment.

CIVL9858

Water Quality Management
Staff Contact: Ms P.A. FitzGerald
C3 S3
Note/s: Not offered in 1995

Fundamental concepts; systems approach to quality aspects of water resource systems; quality interchange systems; quality changes in estuarine, surface, and ground water. Quality management by engineered systems. Economic criteria relating to water use and reuse systems.

CIVL9861

Environmental and Engineering Geophysics
Staff Contact: Dr R.I. Acworth
C3 S1

Introduction to available geophysical techniques. Electrical properties of water, soils, rocks and contaminants over the frequency range 1 Hz to GHz. Electrical conductivity profiling methods resistivity and electromagnetic; electrical resistivity soundings; 2D electrical resistivity field methods and FD modelling. Time domain electromagnetic methods; borehole logging using electrical, electromagnetic, nuclear, caliper and fluid logs. Use of ground probing radar; gravity methods; seismic refraction field techniques and the generalised reciprocal interpretation methods; time domain reflectometry and nuclear methods for soil moisture determination and contaminant investigation. Case studies from groundwater resource, salinity, engineering and contamination fields.

CIVL9868

Public Health Science
Staff Contact: Ms P.A. FitzGerald
C3 S3
Note/s: Not offered in 1995

Impact of water and wastewater treatment on disease transmission. Monitoring methods used for pathogens and
indicator organisms, structure and degradation of large molecules, biochemical pathways of anabolism and catabolism and the characterization of microorganisms.

CIVL9872
Solid Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Characterization of municipal solid waste; collection; transfer stations; waste minimization and recycling; waste treatment, including size reduction, composting, incineration, emerging technologies; landfill disposal, including preparation of landfill management plans and operational aspects; introduction to planning of waste management systems.

CIVL9875
Hydrological Processes
Staff Contact: A/Prof I. Cordery
C3 S1
Introduction to hydrological cycle and energy balance: meteorology; precipitation processes, interception and infiltration, storm runoff processes, groundwater flow, ET.

CIVL9880
Groundwater Modelling
Staff Contact: Dr R.I. Acworth
C3 S1
Groundwater modelling of porous media, fractured rock and low permeability materials. Analogue, numerical analytical models. Matrix structure and inverse methods, stochastic modelling and characterization of variability, modelling multiphase fluids and regional groundwater flow. Applications to borefield management, salt water intrusion, mine dewatering, geotechnical problems.

CIVL9881
Hazardous Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Waste audits and characterization of hazardous wastes in regions and industries; control of generation and transport of hazardous waste, manifest systems; waste minimisation; on-site treatment methods; integrated off-site treatment facilities; management of residues from treatment facilities; introduction to planning of regional hazardous waste management systems. Characteristics of individual waste types (dioxins, PCBs, pesticides, heavy metal, etc.) and waste management in individual industries (steel, pulp and paper, petro-chemical, food processing, etc.).

CMED9600
Disability
Staff Contact: Dr H. Dickson
C2
Epidemiology of disabling physical and mental conditions; the nature of disability and handicap (including developmental disability); perceptions of handicap; disabled persons' consumer movement and organization; sociology of disability; social inequality and disability; rehabilitation; community and specialist rehabilitation services; relevant legislation, government services, special needs of disabled persons health accommodation and the physical environment, transport, work, income support, legal rights and public policy.

CMED9604
Alcohol and Drug Related Problems
Staff Contact: A/Prof R. Richmond
C2
Concepts of drug dependence, including pharmacological aspects; management of these problems in primary care; rehabilitation programs, smoking cessation; weight control; social and psychological factors and their impact on the family; drug problems and their impact on the community; public health aspects; population indices and surveillance; control programs; legislation; law enforcement; medical and legal aspects of drug dependence.

CMED9609
Community Genetics
Staff Contact: Dr L. Lai
C2
Brief discussion of essentials of human genetics and new development; role of genetics in community health; individuals at risk; genetic disorders including congenital, chromosomal and single-gene defects; their causes and distribution in different populations; health services comprising genetic counselling, screening, carrier detection, pre-symptomatic diagnosis, prenatal diagnosis, and laboratory investigation, and their planning and funding; support groups as related to types of genetic disorder; basic training of genetics in medicine; education and prevention; social, moral and ethical issues involved in the provision of genetic services.

COMP9311
Data Base Systems
Staff Contact: Prof J. Hiller
C3 S1 or S2 HPW3
Prerequisites: Assumed knowledge, familiarity with storage structures
Note/s: Excluded 6.659G, 55.823G
A first subject on data base management systems to be presented at a level appropriate for a graduate subject. The material to be covered will include a selection from: the relational, hierarchic/network, and inverted file data models; normalisation and the problems of redundancies; views and their updates; high level query languages; distributed systems; deductive data bases; data definitions; application generators.
This subject focuses on the origins, evolution, and attributes of modern business enterprise in Australia, Europe, America, and Japan; strategy, structure, and corporate performance; the economics of organization and the organization of work; theory and analysis of multinationals; integration, diversification, and the marketing function; managerial hierarchies; decision management and decision control; entrepreneurship; public policy, social responsibility and the external business environment.

This subject introduces economics as a social science: scarcity, resource allocation, and opportunity cost; an introductory analysis of consumer behaviour; the economics of firms and markets; production and costs; the classification and analysis of markets; efficiency concepts and market failure; the gains from international trade and the impact of trade restrictions; economic growth and structural change.

This subject provides an introduction to the analysis of aggregate output, employment and economic growth and their relationship to the policy issues of unemployment, inflation, and the balance of payments. Other topics include: social accounting and aggregate income and expenditure analysis; macroeconomic models of income determination; consumption and investment functions; the role of money and financial institutions; interactions between goods and money markets in equilibrium and disequilibrium situations; and an analysis of recent Australian macroeconomic experience.

This subject introduces economics as a social science: scarcity, resource allocation, and opportunity cost; consumer and producer behaviour as the basis for supply and demand analysis; introduction to marginal analysis; applications of supply and demand analysis; efficiency concepts and market forces.

This subject provides introduction to the analysis of aggregate output, employment, and economic growth and their relationship to the policy issues of unemployment, inflation, and the balance of payments. Also covered are models of the determination of equilibrium income; an analysis of the role of financial institutions; and an introduction to the analysis of macroeconomic policy.

This subject examines how government affects the business environment at the microeconomic level. The case for intervention and the benefits of deregulation and privatisation are analysed, with reference to particular industries. The effects of government instrumentality such as the Industries Commission, Prices Surveillance Authority, Trade Practices Commission and Foreign Investment Review Board are examined. Issues relating to microeconomic reform, economic rationalism, market failure and government business enterprises are explored.

This subject examines economic growth and fluctuations and the effect this has on the business environment and the community. It explains the main macroeconomic tools and techniques used by governments and the Reserve Bank to implement fiscal, monetary and incomes policies. The implications for inflation, unemployment, interest rates and exchange rates, and foreign debt are discussed.

This subject introduces economics as a social science: scarcity, resource allocation, and opportunity cost; consumer and producer behaviour as the basis for supply and demand analysis; introduction to marginal analysis; applications of supply and demand analysis; efficiency concepts and market forces.

This subject examines economic growth and fluctuations and the effect this has on the business environment and the community. It explains the main macroeconomic tools and techniques used by governments and the Reserve Bank to implement fiscal, monetary and incomes policies. The implications for inflation, unemployment, interest rates and exchange rates, and foreign debt are discussed.

This subject introduces economics as a social science: scarcity, resource allocation, and opportunity cost; consumer and producer behaviour as the basis for supply and demand analysis; introduction to marginal analysis; applications of supply and demand analysis; efficiency concepts and market forces.

This subject examines economic growth and fluctuations and the effect this has on the business environment and the community. It explains the main macroeconomic tools and techniques used by governments and the Reserve Bank to implement fiscal, monetary and incomes policies. The implications for inflation, unemployment, interest rates and exchange rates, and foreign debt are discussed.
affecting size, structure and performance such as economies of scale, barriers to entry, vertical integration, diversification and mergers, patents, the development and transmission of technology; industrial policy in Australia with special reference to competition policy, foreign investment and mergers, and some specific industry policies e.g. on motor vehicles, electronics, steel, petroleum.

ECON2109
Economics of Natural Resources
Staff Contact: Dr G. Waugh
S1 HPW3
Prerequisite: ECON2101 or ECON2103
This subject provides an introduction to the exploitation of natural resource systems examined within an economic framework, particularly forestry, fisheries, water, oil and other minerals. It also looks at policies required to ensure improved management without overexploitation of these renewable and non-renewable resources under different property-right regimes.

ECON2111
The Economics of Global Interdependence
Staff Contact: Dr J. Lodewijks
C6 S2 HPW3
Prerequisite: ECON1102 or ECON1104

ECON2115
Japanese International Economic Relations
Staff Contact: Dr K. Fox
C6 S2 HPW3
Prerequisite: ECON1102 or ECON1104
Japan’s international trade, investment and balance of payments policies, globalisation of Japanese economic interests, problems relating to external economic policies including alternative strategies for international economic relations, impact of yen appreciation, trade friction, bilateral relations with focus on Australia, USA, China and South East Asia.

ECON2116
Japanese Economic Policy
Staff Contact: Dr K. Fox
C6 S1 HPW3
Prerequisite: ECON1102 or ECON1104
Analysis and evaluation of postwar economic policy issues relating to policy determination including role of institutions and interest groups, critical examination of ‘Japan Inc’ model, industrial policy and role of genkyoku system, Japanese long term economic planning, nature of principle economic policies such as agricultural, monetary and fiscal, anti-trust and competition policies.

ECON2117
Economics of Tourism
Staff Contact: Dr G. Waugh
S1 HPW3
Prerequisites: ECON1102 or ECON1104
Topics include: macro and micro economic environments; factors affecting international and domestic tourism; tourism forecasting models; economic analysis of projects; Cost/benefit and related procedures; and the implications of tourism developments for the community in general.

ECON2127
Environmental Economics and Cost-Benefit Analysis
Staff Contact: Dr G. Waugh
S2 HPW3
Prerequisite: ECON1101 or ECON1103
This subject considers the main elements of environmental economics and cost benefit analysis as it relates to the assessment of environmental issues. Topics include: pollution and pollution policy; environmental cost-benefit analysis and economic methods for measuring costs and benefits; species extinction and irreversibility: environmental ethics and discounting; the environment and developing countries; and the sustainable economy.

ECON3112
The Newly Industrializing Economies of East Asia
Staff Contact: Mr J. Zerby
C6 S2 HPW3
Prerequisite: ECON1102 or ECON1104
Principal economic characteristics of the newly industrializing economies of East Asia: South Korea, Taiwan and Hong Kong. Comparisons of internal and external policies and their contribution to the achievement of socio-economic objectives.

ECON3113
Economic Development in ASEAN Countries
Staff Contact: Mr J. Zerby
C6 S1 HPW3
Prerequisite: ECON1102 or ECON1104
Analysis of principal economic characteristics of the Association of South East Asian Nations: Indonesia, Malaysia, Philippines, Singapore and Thailand. Causes and consequences of economic development policies. Theoretical issues related to formation of customs unions and free trade areas, and their application to ASEAN.

ECON3115
Economics of Developing Countries
Staff Contact: Dr J. Lodewijks
S1 HPW3
Prerequisite: ECON1102 or ECON1104
Note/s: Not offered in 1995.

ELEC0802
Electrical Power Engineering
Staff Contact: Dr B. Farah
S2 HPW3
Prerequisite: PHYS1002 or equivalent (PHYS2920 for students in Course 3140)

The course deals with the principles and practice of electrical power apparatus, particularly the transformer, the dc motor and the ac motor. It also covers some of the electronic power converters for power supplies and for control of electrical machinery. The course commences
with the basic circuit theory and phasor algebra relevant to the analysis of the above systems and then proceeds to the consideration of distribution of electrical power. It then covers the operation, analyses and characteristics of transformers, dc motors, ac motors and a few semiconductor power converter circuits. Rating and thermal considerations of electrical apparatus are also treated.

ELEC0805

Electronics for Measurement and Control

Staff Contact: Dr. B. Farah

S2 L2 T1

The use of electronics in mechanical systems and the processing of signals by analog and digital techniques. Revision of basic circuit theory, operational amplifier circuits and filtering. Digital logic using integrated circuits. Microcomputers and Microprocessors. Techniques for A/D and D/A conversion, measurement system interfacing to microprocessors.

ELEC9410

Robotics, Automation and Productivity Technology

Staff Contact: A/Prof K.E. Tait

C3

Principles of Robotics relevant to trends in automating the manufacturing process. Such aspects as arm configurations, dynamics and control with relevant sensing methods; assembly and control together with trends in artificial intelligence for Robotics are discussed.

FINS2613

Business Finance

Staff Contact: School of Banking and Finance Office

S1 or S2 L2 T1

Prerequisites: FINS2612 or any two of ACCT1511, ECON1102 and ECON1203

This subject looks at the essential aspects of financial decision-making in business including: factors influencing capital expenditure decisions; alternative approaches to valuation; factors affecting the formulation of the capital structure; and influence of the capital market environment.

FINS5517

Portfolio Analysis and Management

Staff Contact: School of Banking and Finance Office

S1 or S2 L3

Prerequisites: ECON5103 and ECON5203 and FINS5513 or co-requisite

Management of equity and fixed interest portfolios using modern market-based methods of risk control. Derivative instruments: forwards; futures; options; swaps; FRA's etc. Equity investments: valuation; diversification; portfolio insurance; program trading; international diversification and hedging; performance measurement. Fixed interest portfolios: term structure; duration; convexity; gap analysis; hedging. Alternative assets.

GMAT0580

Mining Surveying

Staff Contact: School Geomatic Engineering Office

S1 L2 T1

Prerequisite: GMAT0441

Note/s: This is a servicing subject taught within courses offered by other schools and faculties.

Revision of traverse, set out and levelling (14 hours field work).

GMAT9211

Introduction to Geodesy

Staff Contact: School Geomatic Engineering Office

C3 S1 L2 T1

Geodesy in the service of mankind. The earth's gravity field. The earth's motion in space. Coordinate and time systems used in geodesy. Horizontal and vertical control networks.

GMAT9213

Physical Meteorology

Staff Contact: School Geomatic Engineering Office

C3 S2 L2 T1

Electromagnetic wave propagation, geometrical optics approximation, emission and transfer of radiation. Structure of the earth's atmospheric envelope, surface layer and boundary layer meteorology, structure of the ionosphere, atmospheric turbulence, meteorological measurements.

Interaction and propagation of electromagnetic radiation.

Refraction, scattering, absorption, dispersion, reflection. Description, models and solutions of geodetic refraction effects. Atmospheric effects on remote sensing (visible, infrared and microwaves). Remote sensing of atmospheric parameters.

GMAT9532

Data Acquisition and Terrain Modelling

Staff Contact: School Geomatic Engineering Office

C3 S5 L2 T1

GMAT9600

Principles of Remote Sensing

Staff Contact: School Geomatic Engineering Office

C3 S1 L2 T1

considerations and the reduction of atmospheric effects. Sensor concepts including film and electrooptical sensors. An introduction to data processing and enhancement, including image interpretation procedures.

GMAT9602
Remote Sensing Procedures
Staff Contact: School Geomatic Engineering Office
C3 S2 L2 T1
Review of atmospheric correction procedures and application to multitemporal Landsat MSS data. Review of image registration, enhancement and classification procedures with particular reference to multisource remote sensing data sets. Analysis of techniques over a varied land use area. Land use change project and analysis using multisource and multitemporal remotely sensed imagery, including Landsat MSS, TM, SPOT and SAR.

GMAT9604
Land Information Systems
Staff Contact: School Geomatic Engineering Office
C3 SS L2 T1

GMAT9605
Field Data Collection and Integration
Staff Contact: School Geomatic Engineering Office
C3 S1 HPW3
The spectral, temporal and spatial characteristics of various surfaces, and the available sensors to effect maximum differentiation. Ground and image comparisons. Instruments available for field measurements. Field investigation procedures including positioning and sampling considerations.

GMAT9606
Microwave Remote Sensing
Staff Contact: School Geomatic Engineering Office
C3 S1 HPW3
Use of passive and active (radar) microwave techniques in remote sensing of earth resources. Topics include: real and synthetic aperture radar systems; passive microwave radiometry; energysurface interactions; interpretation of microwave image data: applications in agriculture, geology, oceanography and hydrology; issues in signal and image processing; characteristics of airborne and spaceborne microwave sensors.

GMAT9608
Cadastral Systems
Staff Contact: School Geomatic Engineering Office
C3 SS L2 T1

HEAL9411
Epidemiology for Health Administrators & Planners
Staff Contact: Dr Mary-Louise McLaws
S1 L2
Principles and methods of epidemiologic investigation of both communicable and noncommunicable diseases including descriptive, analytic and experimental epidemiology. The epidemiology of acute chronic diseases, demography, determination of health status of a defined population, measurement of disease rates & interpretation. The uses of epidemiology in planning, operation and evaluation of interventions. Epidemiology of staff, hotel services, diagnostic & treatment services.

HEAL9421
Public Health
Staff Contact: Prof James Lawson
S1 L2
Distribution patterns and determinants of disease and disability with particular reference to diseases of major Australian concern. Preventive, treatment and rehabilitation strategies. The uses of epidemiology in the planning, operation and evaluation of health services.

INFS1602
Computer Information Systems 1
Staff Contact: School of Information Systems Office
S1 or S2 HPW 4
Prerequisite: Nil
This subject develops an understanding of the content of information systems, the types of information systems and the position of information systems in society; information systems at an organizational level, typical commercial applications, the systems life cycle, design concepts, data analysis and models and an introduction to data communications.

INFS2603
Computer Information Systems 2
Staff Contact: School Information Systems Office
S2 HPW 4
Prerequisites: INFS1602 and INFS1603
This subject examines system analysis and design: requirements analysis and specification; logical and physical design of business systems; specification and updating of files; interactive dialogue procedures; and students compare design methodologies, set within the framework of an actual case study.

INFS5957
Information and Decision Technology
Staff Contact: School Information Systems Office
S1 HPW4
The role of information and models in managerial decision making and prediction. The role of information systems in decision making. Assessing the value of information systems and the contribution of information in decision making under uncertainty. The role of information in managerial prediction and forecasting. The development of computer based models to support tactical management.
IROB1701
Industrial Relations 1A
(Australian Industrial Relations)
Staff Contact: Dr B. Ellem
S1 or S2 L2 T1.5
Prerequisite: HSC minimum mark required - 2 unit
Contemporary English (60-100), or 2 unit General English
(60-100) or 2 unit English (53-100), or 3 unit English (1-50)
This subject provides a multi-disciplinary introduction to a
range of important concepts and issues in Australian
industrial relations. Topics include: political, social,
economic, legal, historical and psychological aspects of the
evolution and operation of modern industrial relations; the
nature and implications of strikes, lockouts and other forms
of industrial conflict and alienation; the structure and
policies of State and Federal trade unions, the State labor
councils and such peak organizations as the Australian
Council of Trade Unions; the employer industrial relations
function, management strategies and the structure and
policies of employer associations; processes of work rule
determination, such as collective bargaining, mediation,
conciliation and compulsory arbitration; labour movements;
and the role of the various arbitration tribunals and
government instrumentalities with respect to industrial
relations.

IROB2718
Human Resource Management
Staff Contact: School of Industrial Relations and
Organizational Behaviour Office
S2 L2 T1
Prerequisite: IROB1701
This subject looks at the context of working in Australia. It
covers contemporary management thinking; issues in
managing people - problem solving, leadership, power,
communications and managing in an organization - group
dynamics and supervision, setting goals and performance
appraisal, developing individual and organizational
resources, career planning.

IROB5701
Australian Industrial Relations
Staff Contact: A/Prof B. Dabscheck
S1 L3
Concepts and issues in Australian industrial relations at the
macro or systems level, with overseas comparisons where
appropriate. Labour movements and the evolution of
employee-employer relations in the context of
industrialization and change; origins and operations of
industrial tribunals at the national and state levels; their
instrumentalities; nature of industrial conflict and
procedures for conflict resolution such as arbitration and
bargaining; national wage policy.

IROB5901
Organizational Behaviour
Staff Contact: Mr J. Holt
S1 or S2 L3
Note/s: Excluded IROB5906, PSYC7100.
This subject seeks to explain human behaviour within
organizations. It draws predominantly from the behavioural
science disciplines of psychology and social psychology. Its
foci are the individual, the group, and the behavioural
processes involved in organization integration, change and
development. Topics covered include personality, attitudes
and values, motivation and learning, interpersonal
behaviour, group dynamics, leadership and teamwork,
decision-making, power and control.

LAND9010
Environmental Heritage Studies
Staff Contact: Ms H. Armstrong
C3
An investigation of the concepts of environmental heritage
concerning aspects of landscape architecture and
conservation issues. The application of environmental
heritage in the fields of planning and design. Investigation
of case studies of the natural and cultural environment.
Projects to investigate problems of planning and managing
heritage environments. Methods of conservation analysis
with an emphasis on Australian environments and their
history.

LAND9111
Landscape Planning
Staff Contact: Mr D. Crawford
C3 S1 L2 T1
Introduction to the discipline of landscape planning.
Explores a range of basic methods and techniques for the
collection, analysis, and valuation of landscape resource
data. Application of this knowledge in the development of
simple landscape planning models. Participation in a
planning exercise applying these skills and knowledge
using simple computing techniques.

LAND9212
Landscape Planning Methods
Staff Contact: Mr D. Crawford
C3 S2 L2 T1
Examination and comparison of a range of landscape
planning methods using examples from Australia and
overseas. Students conduct research relating to the
physical parameters of models for land use evaluation and
environmental impact assessment. Participation in
planning exercises involving the application of these
models using advanced computing techniques.

LAND9213
Land Systems and Management
Staff Contact: Ms A. Todd
C3 S2 L1 T2
An investigation of resources and their management in
relation to a range of land use types with an emphasis on
an ecological approach. Subject material includes
consideration of management of cultural as well as natural
landscapes. Studies of specific examples relating to the
effects of human impacts are included. Methods of
conservation and rehabilitation are considered. Field
excursions are included.

LAND9214
Visual Landscape Assessment
Staff Contact: A/Prof F. Thorvaldson
C3 S2 L2 T1
Examination of visual analysis, assessment and evaluation
techniques and their incorporation into landscape planning
models. Research and study of recent Australian and
overseas examples of visual resource management
programs. Students will undertake visual planning
exercises using relevant computer software.
LAWS5020
Occupational Health and Safety Law
Staff Contact: Prof Adrian Brooks
C3 SS HPW4
The law relating to compensation for work-related injuries and disabilities and to the regulation of safety standards in workplaces. Topics include: the employer's common law duty of care; the common law duty of care of manufacturers of products for use at work; the development and application of workers' compensation schemes; existing protective legislation in Australia; individual rights under protective legislation.

LEGT7711
Legal Environment of Commerce
Staff Contact: School of Legal Studies and Taxation Office
S1 or S2 L2 T1
Prerequisite: HSC minimum mark required - 2 unit Contemporary English (60-100), or 2 unit General English (60-100), or 2 unit English (53-100), or 3 unit English (1-50)
This subject examines the nature and role of law; the Australian legal system; Commonwealth/State relations; Parliament and statute law; the courts and case law; the executive and administrative law; the legal process and its alternatives. This subject also introduces areas of substantive law relevant to commerce with particular reference to property including intellectual property, crime, torts with particular reference to negligent misstatement, employment, commercial entities and transactions, competition and consumer protection.

LEGT7731
Marketing and Distribution Law (formerly Legal Regulation of Marketing and Distribution)
Staff Contact: School Legal Studies and Taxation Office
S2 L2 T1
Prerequisite: Nil
This subject examines the legal framework of marketing and distribution; restrictive trade practices implications of distribution with special reference to collusive activity, exclusive dealing, resale price maintenance and abuse of market power; consumer protection and fair trading implications of sales promotion with particular reference to misleading or deceptive conduct and other unfair practices; advertising self regulation; product liability; protection of intellectual property; franchising, licensing and character merchandising.

LIBS0815
Economics of Information Systems
Staff Contact: A/Prof Carmel Maguire
S1 HPW2
Information as a resource. Effects of information technology on work and the distribution of wealth. Copyright, patents, licences and other systems aimed at ensuring appropriability of economic benefits from information. Market research and the pricing and distribution of information products and services.

LIBS0817
Information Storage and Retrieval Systems
Staff Contact: Mrs Connie Wilson
S2 HPW3
Automatic indexing; Automatic thesaurus construction and maintenance; Online searching and information retrieval; Database construction and database software evaluation; Advanced information retrieval techniques; systems analysis, design and costing; advanced technologies for information storage and retrieval.

MANF0420
Production Management
Staff Contact: Dr K. Hoang
S1 HPW6

MANF4420
Management of Manufacturing Systems
Staff Contact: Dr K. Hoang
S1 HPW6 S2 HPW2
Prerequisites: MANF3400, MANF3410, MANF3600
Note/s: Excluded MANF0400, MANF4429, MANF9020.
Manufacturing industry dynamics. Porters Model; bases for competition; meaning of waste; value adding management; dynamics of materials flow; hierarchical planning; MRP, OPT, JIT, maintenance management; manufacturing performance monitoring; use of a production planning and control system in a simulated production company.

MANF9400
Industrial Management
Staff Contact: Dr B. Kayis
C3 SS HPW3
Evolution of management thought, the planning process; nature of managerial decision making, organizational structures; managing organizational change, motivation, performance, satisfaction, interpersonal and organizational communication, use of management information systems.

MANF9410
Total Quality Management
Staff Contact: Dr B. Kayis
C3 SS HPW3
Note/s: Excluded MANF4429.
Quality control systems, quality assurance, planning for quality, total quality management (TQM) philosophy, implementation of TQM in service and manufacturing industries, national and international standards.

MARK2012
Marketing Fundamentals
Staff Contact: School of Marketing Office
S1 L2 T2
Prerequisites: ACCT1511, ECON1102, ECON1203
Corequisite: MARK2032
This subject provides a conceptual framework for developing and understanding of marketing including the marketing process, marketing environment and marketing planning. It covers product, service, consumer, industrial, global and social aspects of marketing and introduces the marketing mix, market segmentation, positioning and product differentiation.
MARK2052
Marketing Research
Staff Contact: School of Marketing Office
S2 L2 T2
Prerequisite: MARK2012, MARK2032

This subject examines the sources and types of marketing information relevant to marketing management. Topics include: problem definition and research design; questionnaire design; sampling; data collection; interpretation and reporting; management control of research including briefing, evaluation of proposals and distinction between research results and marketing implications; the use of continuous research; and new developments in market research.

MARK3073
Brand Management
Staff Contact: School of Marketing Office
S1 L2 T2
Prerequisite: MARK2012, MARK2042

This subject provides an overview of marketing planning for products and services with a focus on planning at the brand level. Marketing concepts such as segmentation, differentiation, positioning and product lifecycle will be re-examined from a strategic perspective. The marketing mix will be expanded to address strategies of new product development, pricing, distribution and promotions management. Case analysis will be introduced to develop strategic thinking.

MARK3083
Strategic Marketing Management
Staff Contact: School of Marketing Office
S2 L2 T2
Prerequisite: MARK3073

Concepts introduced in previous subjects will be broadened to address issues at the business unit level. Corporate mission, competitive stance of the organization, pricing policies, trade relations, internal marketing and logistics will be addressed. The management of organizational resources such as financial and human resources are considered using, for example, portfolio analysis. Decision support systems are also examined.

MATH1011
General Mathematics 1B
Staff Contact: School of Mathematics First Year Office
U1 S1 HPW6
Prerequisites: HSC exam score range required: 2 unit Mathematics (60-100) or 2 and 3 unit Mathematics (1-150) or 3 and 4 unit Mathematics (1-200) or MATH1011 (these ranges may vary from year to year). 2 unit Mathematics in this instance refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject. It does not refer to the subjects Mathematics in Society or Mathematics in Practice.
Note/s: Excluded MATH1032, MATH1042, MATH1131, MATH1141, ECON2200, ECON2201, ECON2202

Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the binomial theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra.

MATH1021
General Mathematics 1C
Staff Contact: School of Mathematics First Year Office
U1 S2 HPW6
Prerequisite: MATH1011 or MATH1131 or MATH1141
Note/s: Excluded MATH1032, MATH1042, MATH1231, MATH1241, ECON2200, ECON2201, ECON2202

Techniques for integration, improper integrals; Taylor's theorem; first order differential equations and applications; introduction to multivariable calculus; conics; finite sets; probability; vectors, matrices and linear equations.
of ordinary differential equations, sequences, series, applications of integration.

MATH1241
Higher Mathematics 1B
Staff Contact: School of Mathematics First Year Office
U6 S2 HPW6
Prerequisite: MATH1131 or MATH1141, each with a mark of at least 70
Note/s: Excluded MATH1021, MATH1032, MATH1042, MATH1231, ECON2200, ECON2201, ECON2202
As for MATH1231 but in greater depth.

MATH2009
Engineering Mathematics 2
Staff Contact: School of Mathematics Office
U2 HPW4
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.

MATH2021
Mathematics 2
Staff Contact: School of Mathematics Office
U1 F HPW2
Prerequisite: MATH1021 (CR) or MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Mathematics MATH2021 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics or Applied Mathematics are taken, MATH2021 Mathematics is not counted. Taught by the Keller plan self-paced learning method.
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods

MATH2100
Vector Calculus
Staff Contact: School of Mathematics Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2110
Properties of vectors and vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss and Stokes' theorems. Curvilinear coordinates.

MATH2120
Mathematical Methods for Differential Equations
Staff Contact: School of Mathematics Office
U.S S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2130
Introduction to qualitative and quantitative methods for ordinary and partial differential equations. The following topics are treated by example. Ordinary differential equations: linear with constant coefficients, first-order systems, singularities, boundary-value problems, eigenfunctions, Fourier series. Bessel's equation and Legendre's equation. Partial differential equations: characteristics, classification, wave equation, heat equation, Laplace's equation, separation of variables methods, applications of Bessel functions and Legendre polynomials.

MATH2819
Statistics SA
Staff Contact: School of Mathematics Office
U1 F HPW2
Prerequisite: MATH1021 or MATH1032 or MATH1231 or MATH1042 or MATH1241
Probability, random variables, independence. Binomial, Poisson and normal distributions, transformations to normality, estimation of mean and variance, confidence intervals, tests of hypotheses, contingency tables, two sample tests of location, simple and multiple linear regression, analysis of variance for simple models.

MATH3021
Mathematics 3
Staff Contact: School of Mathematics Office
U1 F HPW2
Prerequisite: MATH2021
Note/s: Excluded any other Level III subject in Pure Mathematics or Applied Mathematics except for MATH3261. Taught by the Keller plan self-paced learning method.
Vector calculus; special functions; convolution theorem and applications; complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.

MECH0130
Engineering Drawing and Descriptive Geometry
Staff Contact: Dr R.A. Platfoot
SS LI T3
Note/s: This is a servicing subject taught within courses offered by other schools and faculties.
MECH0330
Engineering Mechanics
Staff Contact: A/Prof R.A.J. Ford
SS L2 T2
Prerequisites: As for MECH1300 Engineering Mechanics 1
Note/s: Excluded MECH0360, MECH1300. This is a servicing subject taught within courses offered by other schools and faculties.

MECH0440
Engineering Statics
Staff Contact: A/Prof R.A.J. Ford
SS L2 T1
Prerequisites: As for MECH1300 Engineering Mechanics 1
Note/s: Excluded MECH0330, MECH0360, MECH1300.

MECH1110
Graphical Analysis and Communication
Staff Contact: Mr A.J. Barratt
S2 L1 T2
Note/s: Excluded MECH0130, MECH0160.
Freehand sketching of machine components, standard drawing methods, orthogonal projections and sections for analysis and communication, dimensions, tolerances and conventional symbols. Computer graphics modelling of components, assembly and production of detail drawings.

MECH1300
Engineering Mechanics 1
Staff Contact: Dr K. Zarrabi
S1 or S2 L2 T2
Prerequisite: HSC Exam Score Range Required Either 2 unit Science (Physics) 53100, or 3 unit Science 90150, or 4 unit Science multistrand 150 or 2 unit Industrial Arts (Engineering Science) 53100, or 3 unit Industrial Arts (Engineering Science) 150
Note/s: Excluded MECH0330, MECH0360. Students who wish to enrol in this subject in courses other than the fulltime courses in Aerospace Engineering, Electrical Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of the first year.

MECH2300
Engineering Mechanics 2A
Staff Contact: Dr S.S. Leong
S1 or S2 L2 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, MECH1300 or MECH0360
Kinetics of systems of particles; plane steady mass flow. Plane kinematics and kinetics of rigid bodies: moment of inertia; motion relative to translating and rotating frames of reference; equations of motion; work and energy, impulse and momentum. Virtual work for static and dynamic systems. Kinematics and kinetics of simple mechanisms.

MECH2310
Engineering Mechanics 2B
Staff Contact: Prof K.P. Byrne
S1 or S2 HPW2
Corequisite: MECH2300

MECH2600
Fluid Mechanics 1
Staff Contact: Prof G.L. Morrison
FL1 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1919

MECH2700
Thermodynamics 1
Staff Contact: A/Prof E. Leonardi
FL1 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1919

MECH9323
Environmental Noise
Staff Contact: Prof K.P. Byrne
C3 SS HPW3
Prerequisite: MECH4321 or equivalent
MECH9325
Fundamentals of Noise
Staff Contact: Dr J.M Challen
C3 SS HPW3
Note/s: Excluded MECH4321, MECH9321

MECH9326
Advanced Noise
Staff Contact: Dr J.M Challen
C3 SS HPW3
Prerequisite: MECH4321 or MECH9321 or MECH9325
Note/s: Excluded MECH4322, MECH9322

Development of the three dimensional acoustic wave equation. Applications of the three dimensional form of the acoustic wave equation in rectangular coordinates, including transmission of plane waves at oblique incidence between media, waves in rectangular ducts, standing waves in enclosures. Applications of the three dimensional wave equation in cylindrical and spherical coordinates. Basic structural-acoustic interaction.

MECH9400
Mechanics of Fracture and Fatigue
Staff Contact: Dr K. Zarrabi
C3 SS HPW3
Note/s: Excluded MECH4400

MEED9102
Educational Process in Small Groups
Staff Contact: Prof A. Rotem
C2 S1 HPW2

How people operate as members and leaders of groups; conditions underlying effective group work in educational planning, teaching and learning, and the provision of health care; basic concepts of group structure. Stress on experiential learning, observation of group process, improving skills in facilitating group learning and designing appropriate learning activities.

MEED9108
Program Evaluation and Planned Change
Staff Contact: Prof A. Rotem
C2 S2 HPW2

Designed to help participants develop skills in planning, conduct and evaluation of educational programs. Includes: preparation of a detailed proposal for evaluation of a program; various decisions and activities undertaken in program evaluation; processes of innovation and change.

MEED9125
Planning, Conducting and Evaluating Educational Workshops
Staff Contact: A/Prof R. Bandaranayake
C2 S1 HPW2

In an attempt to develop their skills in all aspects of conducting workshops, participants are guided to formulate a plan for a workshop for their colleagues in an important educational area, with opportunity to practise various techniques for enhancing active participation, and subsequently to conduct the workshop, evaluate its process and outcomes, and report on it.

MICR2201
Introductory Microbiology
Staff Contact: Dr L. Cooperwhite
U1 S1 HPW6

This introduction to microbiology is offered as a single unit elective. However, the subject is mandatory for students wishing to major in program 4400 Microbiology and Immunology. Students with no previous knowledge of biology can do this subject. A brief bridging course is available for students in this category.

MICR2218
Microbiology
Solely for students enrolled in the Food Technology BSc courses 3060 and 3070 in the Faculty of Applied Science.

MICR3041
Immunology I
Staff Contact: Prof G. Jackson
U1 S1 HPW6
Prerequisite: BI0C2312

Basic immunology and immunological techniques. Topics include innate and adaptive immunity, development of the immune system, induction and expression of the immune response, structure and function of antibodies, antigen-antibody reactions, the major histocompatibility complex, aspects of immunology in disease. ANAT2211 Histology I at Level II is strongly recommended for students doing Immunology I.

MICR3051
Immunology 2
Staff Contact: Dr A. Collins
U1 S2 HPW6
Prerequisite: MICR3041

Advanced immunology. Major topics include antigen epitope analysis, processing and presentation, lymphocyte biology, immunogenetics of the molecules of recognition, cytokines, immune regulation, the mucosal immune system, immunity to infectious diseases, vaccine development and clinical immunology.

MICR3071
Environmental Microbiology
Staff Contact: Prof. S. Kjeiieberg
U1 S2 HPW6
Prerequisite: MICR2011

Major topics include water quality, the complexity of natural habitats, interaction of micro-organisms with their environment with an emphasis on evolution and adaptation, biogeo-chemical cycling, environmental monitoring in aquatic and soil habitats, manipulation of microbial populations in natural habitats including problems
with the release of genetically engineered micro-organisms, and environmental biotechnology.

MNGT0204
Macroeconomics for Managers
Recommended: MNGT0200 or MNGT0206 or consent of instructor

Macroeconomics studies the behaviour of aggregate economic activity relating to output, employment and prices in periods of boom and slump. Special emphasis is placed on the performance of the Australian economy. The course is not designed to make you a professional macro-economist but rather to equip you as a manager with sufficient knowledge to cope with major fluctuations in the economy. Examples drawn from several countries.

MNGT0373
Organizational Design
Prerequisite: MNGT0270 or consent of instructor

Extends the structural analysis of organizations introduced in MNGT0270 or equivalent. Topics include power, informal organization, management-by-objectives, entrepreneurship, compliance systems and structural change dynamics. Situational factors considered include the product life cycle and technology. Problems discussed include oligarchy, difficulties flowing from large size and from capital intensive, vertical integration.

MNGT0385
Business-Government Relations

The relationship between business and government in Australia in historic and comparative contexts. Covers the emerging business-government issue agenda, developments in the institutions mediating business-government relations, industry policy and Australian political 'futures'.

PHPH5481
Advanced Pharmacology - Project Major
Staff Contact: Dr M. Fryer

A laboratory or industry based project in the area of drug development.

PHPH5491
Advanced Pharmacology - Project Minor
Staff Contact: Dr M. Fryer

A small laboratory or industry based project or an extensive literature review or extensive data analysis in the area of drug development.

PHYS1002
Physics 1
Staff Contact: First Year Director School of Physics

U2 F HPW6

Prerequisites, corequisites and syllabus: identical to PHYS1002, S2

U1 Summer Session HPW9

*Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics (90-100), or 2 and 3 unit Mathematics (100-150), or 3 and 4 unit Mathematics (100-200) or (for PHYS1002 only) MATH1011, and 2 unit Science (Physics) 57-100, or 2 unit Science (Chemistry) 60-100, or 3 unit Science 90-150, or 4 unit Science 1-50 or PHYS1022 (2 unit Mathematics in this instance refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject, and does not refer to the subjects Mathematics in Society or Mathematics in Practice).

Corequisite: MATH1021 or MATH1032 or MATH1131 and MATH1231.

Motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Force, inertial mass, energy, momentum, charge, potential, fields. Conservation principles applied to problems involving charge, energy and momentum. Application of Kirchoff's laws to AC and DC circuits. Uniform circular motion, Kepler's laws and rotational mechanics. Properties of matter: solids, liquids, gases. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarisation.

Mid-year Start

Students who fail Session 1 of PHYS1002 are strongly advised to discontinue the subject and enrol in Session 2 in PHYS1011 Physics I (FT1). This subject covers the Session 1 material of PHYS1002 during Session 2. Then PHYS1021 covers the rest of the syllabus over the Summer Session.

Note: The Session 2 syllabus of PHYS1002 is not repeated in Session 1 of the next year.

PHYS1011
Physics 1 (FT1)
Staff contact: First Year Director School of Physics

U1 S2 HPW6

Prerequisites, corequisites and syllabus: identical to PHYS1002, S1.

PHYS1021
Physics 1 (FT2)
Staff contact: First Year Director School of Physics

U1 Summer Session HPW9

Prerequisite: PHYS1011

Syllabus identical to PHYS1002, S2
PHYS1969
Physics 1 (Electrical Engineering)
Staff Contact: First Year Director School of Physics

Electrostatics, magnetostatics in vacuum, ferromagnetism, electromagnetic induction. Vectors, kinematics, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, rotational kinematics and dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics, kinetic theory of gases. Waves in elastic media, sound waves, interference, diffraction, grating and spectra, polarisation. Relativity, quantum physics, wave nature of matter.

Mid-Year Start

Students who fail Session 1 of PHYS1969 are strongly advised to discontinue the subject and enrol in Session 2 in PHYS1949 Physics I (EE, FT1). This subject covers the Session 1 material of PHYS1969 during Session 2. Then PHYS1959 covers the rest of the syllabus over the Summer Session.

Note: The Session 2 syllabus of PHYS1969 is not repeated in Session 1 of the next year.

PHYS1949
Physics 1 (EE, FT1)
Staff contact: First Year Director School of Physics
U1 S2 HPW6
Prerequisites, corequisites and syllabus: identical to PHYS1969, S1.

PHYS1959
Physics 1 (EE, FT2)
Staff contact: First Year Director School of Physics
U1 Summer Session HPW9
Prerequisites: PHYS1949

Syllabus identical to PHYS1969, S2.

PHYS1022
Physics 1 For Health and Life Scientists
Staff Contact: First Year Director School of Physics
U2 F HPW6
Corequisites: MATH1021 or MATH1032 or MATH1131.

Principally for students majoring in the life and health sciences disciplines. Topics at an introductory level.

The methods of physics, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electromagnetic induction, alternating current, atomic nature of matter, X-rays, the nucleus and radioactivity, geometrical optics, optical instruments, wave optics, microscopes and their uses.

PHYS1939
Physics 1 (Building and Industrial Design)
Staff Contact: First Year Director School of Physics
Note/s: Not re-run in Summer Session

Energy transfer: concepts of temperature and heat; calorimetry; gas laws; phase changes and humidity; heat transmission; refrigeration. Electrostatics and electromagnetism: electric and magnetic fields; DC circuits; electromagnetic induction. Sound: wave properties; absorption of sound. Properties of matter: atomic bond types and their relation to elasticity, plasticity and fracture; pressure in stationary and moving fluids.

PHYS2001
Mechanics, and Computational Physics
Staff Contact: Executive Assistant School of Physics
U1 S1 HPW4
Prerequisites: PHYS1002, MATH1032 or MATH1231.
Corequisite: MATH2100
Note/s: Excluded PHYS2999.

Harmonic motion, systems of particles, central force problems, Lagrange's equations, coupled oscillations, travelling waves, pulses, energy and momentum transfer, computer operating systems, introduction to FORTRAN, libraries and software packages, use of computers to solve problems in physics.

PHYS2011
Electromagnetism and Thermal Physics
Staff Contact: Executive Assistant School of Physics
U1 S2 HPW4
Prerequisites: PHYS1002, MATH1032 or MATH1231
Corequisite: MATH2100
Note/s: Excluded PHYS2999.

Electric field strength and potential, Gauss' law, Poisson's and Laplace's equations, capacitance, dielectrics and polarisation, magnetism, electromagnetic induction, Maxwell's equations, electromagnetic waves. Laws of thermodynamics, kinetic theory, microscopic processes, entropy, solid state defects, Helmholtz and Gibbs functions, Maxwell's relations, phase diagrams, chemical and electrochemical potential.

PHYS2021
Quantum Physics and Relativity
Staff Contact: Executive Assistant School of Physics
U1 F HPW2
Prerequisites: PHYS1002, MATH1032 or MATH1231
Note/s: Excluded PHYS2999.

PHYS2031
Laboratory
Staff Contact: Executive Assistant School of Physics
U1 F HPW3
Prerequisites: PHYS1002, MATH1032 or MATH1231
Note/s: Excluded PHYS2920.

Experimental investigations in a range of areas: x-ray diffraction, work function, semiconductor bandgap, Hall effect, carrier lifetimes, nuclear magnetic resonance, magnetic properties and electrostatics. Electronics bench experiments and tutorials on diodes, transistors, operational amplifiers, power supplies and digital electronics.
PHYS2920
Electronics (Applied Science)
Staff Contact: Executive Assistant School of Physics
U.5 S1 HPW3
Prerequisite: PHYS1022 or PHYS1002
Note/s: Excluded PHYS2031, PHYS2630.
The application of electronics to other disciplines. Includes
principles of circuit theory; amplifiers, their specification and
application, transducers; electronic instrumentation;
industrial data acquisition.

PHYS3021
Statistical Mechanics and Solid State Physics
Staff Contact: Executive Assistant School of Physics
U1 S1 HPW4
Prerequisites: MATH2120, PHYS2011, PHYS2021
Canonical distribution, paramagnetism, Einstein solid, ideal
gas, equipartition, grand canonical ensemble, chemical
potential, phase equilibria, Fermi and Bose statistics, Bose
condensation, blackbody radiation. Crystal structure,
bonding, lattice dynamics, phonons, free-electron models
of metals, band theory, point defects, dislocations.

PHYS3060
Advanced Optics
Staff Contact: Executive Assistant School of Physics
U.5 S2 HPW2
Prerequisite: PHYS1002
Corequisite: MATH2120
Review of geometrical optics, including ray tracing,
aberrations and optical instruments: physical optics,
including Fresnel and Fraunhofer diffraction, transfer
functions, coherence, and auto and cross correlation:
applications of optics, including fibre optics, lasers and
holography.

PHYS3110
Experimental Physics B1
Staff Contact: Executive Assistant School of Physics
U.5 S1 HPW4
Prerequisite: PHYS2031
Selected experiments and projects. Advanced
experimental techniques and open ended projects in the
areas covered in PHYS3041 Experimental Physics A
together with projects involving electron and nuclear
magnetic resonances, low temperature physics and
super-conductivity. Fourier optics, holography.

PHYS3120
Experimental Physics B2
Staff Contact: Executive Assistant School of Physics
U.5 S2 HPW4
Prerequisite: PHYS2031
As for PHYS3110 Experimental Physics B1.

PHYS3410
Biophysics
Staff Contact: Executive Assistant School of Physics
U.5 S2 HPW2
Prerequisites: PHYS2011, PHYS2410
Physics of self-assembling systems, cellular ultrastructure.
Thermodynamics of irreversible processes, application to
life processes. Thermodynamical description of ecological
associations. Structure of proteins and other
macromolecules. Physics of nerve and muscle.

PHYS3710
Lasers and Applications
Staff Contact: Executive Assistant School of Physics
U.5 S1 HPW2
Note/s: Offered in odd-numbered years only.
The interaction between light and matter, fundamental
properties of laser amplifiers and oscillators, giant pulse
generation, mode locking and Q switching, specific laser
systems including gas lasers and semiconductor lasers,
applications of lasers.

PSYC7104
Applied Cognitive Psychology
Staff Contact: Dr H Stanislaw
S1 HPW2
Cognitive factors that limit our ability to process information,
methods used to cope with these limitations, and the
implications for such practical areas as training and artificial
intelligence. Topics include memory, reasoning and
problem solving, and performance on motor tasks.

PSYC7110
Advanced Ergonomics
Staff Contact: Mr R Hall (Dept. of Safety Science)
S2 HPW3
Application of ergonomic principles and methods to the
design and analysis of work tasks involving a high cognitive
component, such as those involving humancomputer
interaction.
Conditions for the Award of Degrees

First Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the full list of undergraduate courses and degrees offered see Table of Courses by Faculty (Undergraduate Study) in the Calendar.

The following is the list of higher degrees, graduate diplomas and graduate certificates of the University, together with the publication in which the conditions for the award appear.

Higher Degrees

For details of graduate degrees by research and course work, arranged in faculty order, see UNSW Courses (by faculty) in the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Education</td>
<td>EdD</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Medicine</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Art</td>
<td>MArt</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Administration</td>
<td>MArtAdmin</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Education</td>
<td>MArtEd</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Education (Honours)</td>
<td>MArtEd(Hons)</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Arts (Honours)</td>
<td>MA(Hons)</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Art Theory</td>
<td>MArtTh</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEnv</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td>MBEnv</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Business Administration (Executive)</td>
<td>MBA(Exec)</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Business and Technology</td>
<td>MBT</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Clinical Education</td>
<td>MClinEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Cognitive Science</td>
<td>MCogSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Master of Community Health</td>
<td>MCH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Computational Science</td>
<td>MComputationalSc</td>
<td>Science</td>
</tr>
<tr>
<td>Master of Computer Science</td>
<td>MCompSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Construction Management</td>
<td>MConstMgt</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Couple and Family Therapy</td>
<td>MCFT</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Defence Studies</td>
<td>MDefStud</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Design(Honours)</td>
<td>MDes(Hons)</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Education</td>
<td>ME</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Education in Creative Arts</td>
<td>MEDCA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Education in Teaching</td>
<td>MEDTeach</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEDAdmin</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>ME</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science (Honours)</td>
<td>MEngSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Environmental Engineering Science</td>
<td>MEnvEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Equity and Social Administration</td>
<td>MEqSocAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Fine Arts</td>
<td>MFA</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Higher Education</td>
<td>MHEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Information Management</td>
<td>MIM</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Information Science</td>
<td>MInfSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of International Social Development</td>
<td>MIntSocDev</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of International Social Development</td>
<td>MIntSocDev</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Medicine</td>
<td>MMed</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Landscape Planning</td>
<td>MLP</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Management Economics</td>
<td>MMgtEc</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Medicine</td>
<td>MMed</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Mining Management</td>
<td>MMinMgmt</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Music (Honours)</td>
<td>MMus(Hons)</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Music Education (Honours)</td>
<td>MMusEd(Hons)</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Policy Studies</td>
<td>MPS</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Project Management</td>
<td>MProjMgt</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Master of Public Health</td>
<td>MPH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychological Medicine</td>
<td>MPM</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychology (Applied)</td>
<td>MPsychol</td>
<td>Science†</td>
</tr>
<tr>
<td>Master of Psychology (Clinical)</td>
<td>MPsychol</td>
<td>Science†</td>
</tr>
<tr>
<td>Master of Real Estate</td>
<td>MRE</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Real Property</td>
<td>MRProp</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Built Environment Engineering</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Sports Science</td>
<td>MSpsSc</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Sports Medicine</td>
<td>MSpsMed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Taxation</td>
<td>MTax</td>
<td>ATAX</td>
</tr>
<tr>
<td>Master of Town Planning</td>
<td>MTP</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Urban Development and Design</td>
<td>MUDD</td>
<td>Built Environment</td>
</tr>
</tbody>
</table>

Graduate Diplomas

<table>
<thead>
<tr>
<th>Graduate Diploma</th>
<th>GradDip</th>
<th>AGSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Applied Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science*†</td>
</tr>
<tr>
<td>GradDipC/F Therapy</td>
<td>GradDipC/F Therapy</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>GradDipClinEd</td>
<td>GradDipClinEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>GradDipEq&SocAdmin</td>
<td>GradDipEq&SocAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>GradDipHEd</td>
<td>GradDipHEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>GradDipHEd</td>
<td>GradDipHEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>GradDipIndMgt</td>
<td>GradDipIndMgt</td>
<td>Engineering</td>
</tr>
<tr>
<td>GradDiplntSocDev</td>
<td>GradDiplntSocDev</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>GradDipPaed</td>
<td>GradDipPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>GradDipSpMed</td>
<td>GradDipSpMed</td>
<td>Medicine</td>
</tr>
<tr>
<td>DipEd</td>
<td>DipEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>GradDiplM-Archiv/Rec</td>
<td>GradDiplM-Archiv/Rec</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>GradDiplM-Lib</td>
<td>GradDiplM-Lib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>DipFDA</td>
<td>DipFDA</td>
<td>Science*</td>
</tr>
</tbody>
</table>

Graduate Certificates

GradCertHealthAdmin	GradCertHealthAdmin	Professional Studies
GradCertHEd	GradCertHEd	Professional Studies
GradCertPhilT	GradCertPhilT	Arts and Social Sciences

*Faculty of Science.
†Faculty of Biological and Behavioural Sciences.
1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

Enrolment

3. (1) An application to enrol as a candidate for the degree shall be lodged with the Registrar at least one month prior to the date at which enrolment is to begin.

(2) In every case before making the offer of a place the Committee shall be satisfied that initial agreement has been reached between the School and the applicant on the topic area, supervision arrangements, provision of adequate facilities and any coursework to be prescribed and that these are in accordance with the provisions of the guidelines for promoting postgraduate study within the University.

(3) The candidate shall be enrolled either as a full-time or a part-time student.

(4) A full-time candidate will present the thesis for examination no earlier than three years and no later than five years from the date of enrolment and a part-time candidate will present the thesis for examination no earlier than four years and no later than six years from the date of enrolment, except with the approval of the Committee.

(5) The candidate may undertake the research as an internal student i.e. at a campus, teaching hospital, or other research facility with which the University is associated, or as an external student not in attendance at the University except for periods as may be prescribed by the Committee.

(6) An internal candidate will normally carry out the research on a campus or at a teaching or research facility of the University except that the Committee may permit a candidate to spend a period in the field, within another institution or elsewhere away from the University provided that the work can be supervised in a manner satisfactory to the Committee. In such instances the Committee shall be satisfied that the location and period of time away from the University are necessary to the research program.

(7) The research shall be supervised by a supervisor and where possible a cosupervisor who are members of the academic staff of the School or under other appropriate supervision arrangements approved by the Committee. Normally an external candidate within another organisation or institution will have a cosupervisor at that institution.

Progression

4. The progress of the candidate shall be considered by the Committee following report from the School in accordance with the procedures established within the School and previously noted by the Committee.

(i) The research proposal will be reviewed as soon as feasible after enrolment. For a full-time student this will normally be during the first year of study, or immediately following a period of prescribed coursework. This review will focus on the viability of the research proposal.
(ii) Progress in the course will be reviewed within twelve months of the first review. As a result of either review the Committee may cancel enrolment or take such other action as it considers appropriate. Thereafter, the progress of the candidate will be reviewed annually.

Thesis

5. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall comply with the following requirements:

(a) it must be an original and significant contribution to knowledge of the subject;

(b) the greater proportion of the work described must have been completed subsequent to enrolment for the degree;

(c) it must be written in English except that a candidate in the Faculty of Arts and Social Sciences may be required by the Committee to write a thesis in an appropriate foreign language;

(d) it must reach a satisfactory standard of expression and presentation;

(e) it must consist of an account of the candidate's own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

6. (1) There shall be not fewer than three examiners of the thesis, appointed by the Committee, at least two of whom shall be external to the University.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that one of the following:

(a) The thesis merits the award of the degree.

(b) The thesis merits the award of the degree subject to minor corrections as listed being made to the satisfaction of the head of school.

(c) The thesis requires further work on matters detailed in my report. Should performance in this further work be to the satisfaction of the higher degree Committee, the thesis would merit the award of the degree.

(d) The thesis does not merit the award of the degree in its present form and further work as described in my report is required. The revised thesis should be subject to reexamination.

(e) The thesis does not merit the award of the degree and does not demonstrate that resubmission would be likely to achieve that merit.

(3) If the performance at the further work recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to represent the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further work, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

Fees

7. A candidate shall pay such fees as may be determined from time to time by the Council.
Master of Applied Science (MAppSc) and Master of Environmental Studies (MEnvStudies)

1. The degree of Master of Applied Science or Master of Environmental Studies by formal course work may be awarded by the Council to a candidate who has satisfactorily complete a program of advanced study.

Qualifications

2. (1) A candidate of the degree shall:
 (a) have been awarded an appropriate degree of Bachelor of four full-time years duration (or the part-time equivalent) from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Applied Science (hereinafter referred to as the Committee), or
 (b)(i) have been awarded an appropriate degree of Bachelor of three full-time years duration (or the part-time equivalent) from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee and
 (ii) have undertaken appropriate postgraduate studies of the full-time year’s duration (or the part-time equivalent) at the University of New South Wales or studies considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

 (2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the degree.

 (3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

 (2) A candidate for the degree shall be required to undertake such formal subjects including the submission of a report on a project, and pass such assessment as prescribed. The project shall be under the supervision of an academic staff member and shall be assessed by two examiners (for a major project).

 (3) The progress of a candidate shall be reviewed at least once a year by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

 (4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate and four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate, eight sessions for a part-time candidate, and ten sessions for an external candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering (ME) and Master of Science (MSc)

1. The degree of Master of Engineering or Master of Science by research may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who as demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.
Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the degree.

(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work as the Committee may prescribe.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

(2) In every case, before permitting a candidate to enrol, the head of the school in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:

(a) Full-time attendance at the University;
(b) Part-time attendance at the University;
(c) external not in regular attendance at the University and using research facilities external to the University

(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

(5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school (or department) in which the candidate is enrolled and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

(2) The candidate shall give in writing two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

Note: *Or department where a department is not within a school, or schools or departments where the research is being undertaken in more than one school or department.
(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school (or department); or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to represent the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering (ME), Master of Science (MSc) and Master of Surveying (MSurv) without supervision

1. The degree of Master of Engineering or Master of Science or Master of Surveying without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

Qualifications

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

Enrolment and Progression

3. An application to enrol as a candidate for the degree without supervision shall be made on the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should in his or her own interest, seek at an early stage the advice of the appropriate head of school (or department) with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available.
Thesis

4. (a) A candidate shall submit a thesis embodying the results of the investigation.
(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.
(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.
(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.
(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.
(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.
(2) Before the thesis is submitted to the examiners the head of the school (or department) in which the candidate is enrolled shall certify that it is prima facie worthy of examination.
(3) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:
(a) the candidate be awarded the degree without further examination; or
(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school (or department); or
(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.
(4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to represent the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.
(5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering Science (MEngSc)

1. The degree of Master of Engineering Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.
Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:

(a) undertake such formal subjects and pass such assessment as prescribed, or

(b) demonstrate ability to undertake research by the submission of a thesis embodying the results of an original investigation of an approved topic, or

(c) undertake an approved combination of the above in which case the thesis component shall be referred to as a project report.

(3) The program of advanced study shall total a minimum of 30 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school.

(4) A candidate's proposed program shall be approved by the appropriate head of school prior to enrolment. For the purposes of this requirement the appropriate head of school shall normally be the head of the school providing the major field of study.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

18 Credit Project Report

4. (1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic under the direction of a supervisor appointed from the full-time academic members of the University staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report or thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.
Examination of 18 Credit Project Report

5. (1) There shall be not fewer than two examiners of the project report, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or
(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or
(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Environmental Studies (MEnvStudies)

See Master of Applied Science above.

Master of Safety Science (MSafetySc)

1. The degree of Master of Safety Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed. The program of advanced study shall total a minimum of 45 credits. The number of credits allocate for each subject shall be determined by the Committee on the recommendation of the Course Director (hereinafter referred to as the head of the school).
(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and ten sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

18 Credit Project Report

4. (1) The program of advanced study may include an 18 credit project on an approved topic.
(2) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.
(3) The candidate shall give in writing to the Registrar two months notice of intention to submit a report on the project.
(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports for higher degrees.
(5) It shall be understood that the University retains the three copies of the project report submitted for examination and is free to allow the project report to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report in whole or in part, in microfilm or other copying medium.

Examination of 18 Credit Project Report

5. (1) There shall be not fewer than two examiners of the project report, appointed by the Committee.
(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project and shall recommend to the Committee that:
(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or
(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or
(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.
(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subject, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Science (MSc)

See Master of Engineering above.

Master of Science (MSc) without supervision

See Master of Engineering without supervision above.
Graduate Diploma (GradDip)

1. A Graduate Diploma may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2. (1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).
(2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the diploma.
(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribed, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.
(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.
(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.
(4) No candidate shall be awarded the diploma until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and six sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.
The scholarships and prizes listed below are available to students whose courses are listed in this book. Each faculty handbook contains in its Scholarships and Prizes section the scholarships and prizes available with that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University. Applicants should note that the awards and conditions are subject to review.

Key:
V Value
T Year/s of Tenure
C Condition

Scholarships

Undergraduate Scholarships

Listed below is an outline in summary form of undergraduate scholarships available to students. Full information may be obtained from the Student Centre located on the Lower Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be submitted to the Scholarships Unit (c/- Student Centre) by 31 January each year. Please note that not all of these awards are available every year.

General

ANSETT Travel Awards

V A limited number of return tickets for travel within Australia on ANSETT Australia or to an international destination serviced by ANSETT International (currently Hong Kong, Indonesia and Japan) will be provided by the award.

C Applicants must be permanent residents or Citizens of Australia. The scholarship may be awarded to a student(s) undertaking full-time study in a 4th year honours program. The scholarship will be awarded on the basis of a number of factors including academic performance and the relevance and merit of the proposed travel. Applications close 31 October with the Scholarships Unit.

Australian Development Co-operation Scholarship (ADCOS)

V Tuition fees. Some students may be eligible for airfares and a stipend.

T Determined by normal course duration

C This award is for international students from selected countries only. Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country. The closing date is normally early in the year before the year of study.

Sam Cracknell Memorial

V Up to $1500 pa payable in fortnightly instalments

T 1 year

C Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need. Applications close 7 March.
Girls Realm Guild

V Up to $1500 pa
T 1 year with the prospect of renewal subject to satisfactory progress and continued demonstration of need
C Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need

University Honours Year Scholarships

V $1000
T 1 year
C 25 scholarships will be awarded on the basis of academic merit for students entering an ‘add-on’ honours year, that is the honours year in a degree course which is normally a pass degree but which has the option of a further year of study at Honours level. Applications close with the Scholarships Unit on 28 October.

W.S. and L.B. Robinson

V Up to $6500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology, electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science. Applications close 30 September each year. Apply directly to PO Box 460, Broken Hill, NSW 2880.

Alumni Association

V Up to $1500 pa
T 1 year with the possibility of renewal
C Available to students enrolled in any year of a full-time course. Candidates must be the children or grandchildren of Alumni of the University of New South Wales and may be either permanent residents of Australia or international students. Applications close 13 January.

Sporting Scholarships

V $2000 pa
T 1 year with possibility of renewal
C Available to students who are accepted into a course of at least two years duration. Prospective applicants should have an outstanding ability in a particular sport and are expected to be an active member of a UNSW Sports Club. Apply directly to Sport and Recreation Section, UNSW, Sydney 2052 (tel: (02) 385 4878).

General Accident Australian Bicentennial St Andrews Scholarship

V £Stg4840
T Approximately 12 months
C Applicants should be Australian citizens who are proceeding to Honours in Economics, History, Philosophy, Economic and Social History or Social Anthropology. The awards are for study at St Andrews, United Kingdom. Applications close 12 November.

Applied Science

Malcolm Chalkin Foundation Scholarship

V Up to $8000 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia. Scholarship is available to students entering the first year of any course in the Faculty of Applied Science leading to the award of the degree of Bachelor of Science or Engineering. Applications close 13 January.

Applied Bioscience

Food Science and Technology

Coca-Cola South Pacific Export Corporation

V Up to $1500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia. Not more than 22 years of age on 1 December preceding the year in which the award commences and eligibility for admission to Year 1 of the full-time degree course in Food Technology.

Petroleum Engineering

Society of Petroleum Engineers Pty Ltd

V Up to $2500
C Permanent residence in Australia living in specified state and must have completed the first two years of any accredited engineering program normally in that state
Materials Science and Engineering

Ceramic Engineering

Australasian Ceramic Society
V Up to $400 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to Year 1 of the full-time degree course in Ceramic Engineering

Caroma Industries Ltd
V Up to $1000 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to Year 1 of the full-time degree course in Ceramic Engineering

Monier PGH Limited
V Up to $1000 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to Year 1 of the full-time degree course in Ceramic Engineering

Clay Brick Association
V Up to $2500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to Year 1 of the full-time degree course in Ceramic Engineering

The Thomson Family
V Up to $1000 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to Year 1 of the full-time degree course in Ceramic Engineering

Zacuba Pty Ltd
V Up to $1,000 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to Year 1 of the full-time degree course in Ceramic Engineering

Metallurgy

Sir Rupert Myers
V Up to $2500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Open to students whose parents are permanent residents of Australia or who are themselves permanent residents and who are eligible for admission to Year 1 of the full-time degree course in Metallurgy or Metallurgical Engineering

Comalco Research Award
V Up to $2000
C Eligibility for admission to Year 1 of the full-time degree course in Metallurgy or Metallurgical Process Engineering

Mines

The Charles Warman Scholarship
V $4000 pa
T 1 year renewable subject to satisfactory progress
C Permanent residence in Australia and entering Year of the full-time degree course in Mineral Engineering (BE or BE/BSc). Applications close 7 March.

Minproc Engineering Limited Scholarship
V $6500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Available to a student entering either Year 3 or 4 of the Bachelor of Engineering Science course with subject content in the fields of Engineering or Mineral Chemistry, or a Bachelor of Engineering with majors in the fields of Chemical, Metallurgical or Mechanical Engineering, or related courses. Applications close 7 March.

The UNSW Co-op Program

The University of New South Wales has industry-linked education scholarships to the value of $9800 per annum in the following areas: Accounting (and Economics or Finance; Business Information Technology; Aerospace, Bioprocess, Ceramic, Chemical, Civil, Electrical, Environmental, Materials, Mechanical, Metallurgical, Mineral, Mining and Petroleum Engineering; Food Science and Technology, Industrial Chemistry, Manufacturing Management, Textile Management, Textile Technology, and Wool and Pastoral Science.
Graduate Scholarships

Listed below is an outline in summary form of Graduate Scholarships available to students. Application forms and further information are available from the Scholarships Unit and Student Centre, located on the Ground Floor of the Chancellery, unless an alternative contact address is provided. Normally applications become available four to six weeks before the closing date.

The following publications may also be of assistance: 1. Awards for Postgraduate Study in Australia, 2. Awards for Postgraduate Study Overseas, 3. Directory of Postgraduate Study, published by the Graduate Careers Council of Australia, PO Box 28, Parkville, Victoria 3052;* 4. Study Abroad, published by UNESCO.*

Details of overseas awards and exchanges administered by the Department of Employment, Education and Training can be obtained from: Awards and Exchanges Section, Department of Employment, Education and Training, PO Box 826, Woden, ACT 2606.

Where possible, the scholarships are listed in order of faculty. Applicants should note that the awards and conditions are subject to review.

*Available for reference in the University Library.

General

ANSETT International Travel Awards

V A limited number of tickets for travel with ANSETT International (currently services Hong Kong, Indonesia and Japan)

C The scholarship is only available to international students. Students living in Hong Kong, Indonesia or Japan and proposing to commence study at the University may apply for a single ticket at the start of their course. Students currently in Australia may apply for a return ticket. The scholarship will be awarded on the basis of a number of factors including academic performance and the relevance and merit of the proposed travel. Applications close with the Scholarships Unit on 31 October.

ANSETT Travel Awards

V A limited number of return tickets for travel within Australia on ANSETT Australia or to an international destination serviced by ANSETT International (currently Hong Kong, Indonesia and Japan) will be provided by the award.

C Applicants must be permanent residents or Citizens of Australia. The scholarship may be awarded to a student(s) undertaking full-time study in a postgraduate course (Postgraduate Diploma, Masters by Coursework or Research or PhD). The scholarship will be awarded on the basis of a number of factors including academic performance and the relevance and merit of the proposed travel. Applications close with the Scholarships Unit on 31 October.

Australian Awards for Research in Asia (AARA)

T 3-12 months

C The awards are for postgraduate study or fieldwork in Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Sri Lanka, Taiwan, Thailand and Vietnam. Applicants must be Australian citizens, or have Permanent Resident status, and have lived in Australia for the 12 months prior to the close of applications on 17 June.

Caltex National Scholarship for Women

V $50,000 over two years

T Up to 2 years

C Applicants must be Australian citizens or have resided continuously in Australia for 5 years and have completed, or will complete, in 1994 an award from an Australian institution. Applicants may be proposing to undertake study in any discipline overseas. Application to the Honorary Secretary, Caltex National Scholarship, University by 16 September.

Kobe Steel Scholarship for Postgraduate Study at St Catherine's College, Oxford University

V £14,520

T Up to 2 years

C Applicants must be Australian nationals. Students should have a past or future interest in Japan. Applications close on 31 October with Kobe Steel Australia P/L, Level 32 Gateway, 1 Macquarie Place, Sydney, 2000.

Australian Postgraduate Awards

V $11,687 to $18,679 (1993 rates). Other allowances may also be paid. Tax free.

T 1-2 years for a Masters and 3-4 years for a PhD degree

C Applicants must be honours graduates or equivalent or scholars who will graduate in current academic year, and who are domiciled in Australia. Applications to Registrar by 31 October.

Australian Development Co-operation Scholarship (ADCOS)

V Tuition fees. Some students may be eligible for air fares and a stipend.

T Determined by normal course duration

C This award is for international students from selected countries only. Information should be obtained from Australian Diplomatic Posts in the home country. Conditions and entitlements vary depending on the home country.
Overseas Postgraduate Research Scholarships
V Tuition fees only
T 2 years for a Masters and 3 years for a PhD degree
C Eligibility is confined to postgraduate research students who are citizens of countries other than Australia or New Zealand. Applications to the Registrar by 30 September.

Australian American Educational Foundation Fulbright Award
V $11,500 pa and travel expenses
T 1 year, renewable
C Applicants must be graduates who are domiciled in Australia and wish to undertake research or study for a higher degree in America. Applications close 30 September with The Secretary, DEET, AAEF Travel Grants, PO Box 826, Woden, ACT 2606. Application forms are available from the Associate Registrar, University of Sydney, NSW 2006 (tel: (02) 692 2222).

Australian Federation of University Women
V Amount varies, depending on award
T Up to 1 year
C Applicants must be female graduates who are members of the Australian Federation of University Women. Further enquiries may be directed to the Secretary of the Federation, tel: (02) 232 5629.

Commonwealth Scholarship and Fellowship Plan
V Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.
T Usually 2 years, sometimes 3
C Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Tenable in Commonwealth countries other than Australia. Applications close with the Registrar in early October.

The English-Speaking Union (NSW Branch)
V $8000
T 1 year
C Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April with The Secretary, Ground Floor, School of Arts, 275c Pitt Street, Sydney, NSW 2000.

Frank Knox Memorial Stipend of Fellowships
V SUS11,500 pa plus tuition fees
T Up to 2 years tenable at Harvard University
C Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with the Academic Registrar mid-October.

Robert Gordon Menzies Scholarship to Harvard
V Up to $US 25,000
T 1 year
C Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra, ACT 2601.

Gowrie Scholarship Trust Fund
V $6000 pa. Under special circumstances this may be increased.
T 2 years
C Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with the Academic Registrar by 31 October.

Harkness Fellowships of the Commonwealth Fund of New York
V Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA
T 12-21 months
C Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 35 years of age. Applications close 30 September with the Academic Registrar. Forms available from Mr J. Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra, ACT 2601.

The Packer, Shell and Barclays Scholarships to Cambridge University
V Living and travel allowances, tuition expenses
T 1-3 years
C Applicants must be Australian citizens who are honours graduates or equivalent and under 26 years of age. Applications are available from The Secretary, Cambridge Commonwealth Trust, PO Box 252, Cambridge CB2 ITZ, England. The scholarship closes on 15 October.

The Rhodes Scholarship to Oxford University
V Approximately $15,000 pa and fees
T 2 years, may be extended for a third year
C Unmarried Australian citizens aged between 19 and 25 who have an honours degree or equivalent. Applications close in September each year with The Secretary, University of Sydney, NSW 2006.
Applied Science

Dairy Research and Development Corporation (DRDC) Postgraduate Education Scholarships

V Between $16,000 and $23,000 pa depending on the applicants level of academic achievement
C Applicants must be Australian citizens or Permanent Residents. All applicants must be intending to remain in Australia after completing their studies. Applications close with the DRDC in October. Contact the DRDC, tel: (03) 8890577, for more information.

Energy Research and Development Corporation (ERDC) Postgraduate Awards

V $20,000 pa, tax free
T Up to 3 years
C ERDC awards are based on academic excellence or a proven track record of excellence in research which indicates potential to contribute to the energy industry. Contact ERDC Postgraduate Award, tel: (06) 2744804, for an application. Applications close 30 September.

Meat Research Corporation (MRC) Studentship

V $14,260 for study in Australia or $US17,500 for study overseas. A dependants allowance may be payable.
T Up to 3 years
C Applicants must be Permanent Residents or citizens of Australia. Applicants should be proposing to undertake research in areas of practical value to the Australian beef, sheepmeat, goatmeat and buffalo industries. Applications close 30 September.

Pig Research and Development Corporation Study/Training Awards

There are a number of awards available. The closing dates vary depending on the award. Applications should be submitted to the Pig Research and Development Corporation, PO Box 4804, Kingston, ACT 2604 (tel: (06) 2725139).

Sugar Research and Development Corporation (SRDC) Postgraduate Scholarships

V $22,000 pa
T 3 years
C Applications and information are available from the SRDC, PO Box 12050, Elizabeth St, Brisbane, Q4002. Applications close 30 September.

Wool Research and Development Corporation (WRDC) Postgraduate Scholarships

V $21,362 pa (taxable)
T Up to 4 years subject to satisfactory progress
C Tenable in Australian tertiary institutions or overseas in exceptional circumstances. Enquiries to the School of Fibre Science and Technology. Applications close early September with the WRDC, GPO Box 5343BB, Melbourne, Vic 3001 (tel: (03) 3419184).

Land and Water Resources Research and Development Corporation (LWRRDC)

V $20,000 pa
T 2 years for a Masters 3 years for a PhD degree
C The scholarships are available for research that will lead to better management, sustainable use and conservation of land, water and vegetation resources in Australia. Applications close with the LWRRDC on 30 July. Applications should be forwarded to the LWRRDC, GPO Box 2182, Canberra, ACT (tel: (06) 2573379).

Rural Industries Research and Development Corporation (RIRDC) Postgraduate Scholarships

V $21,000 pa plus allowances
T Up to 3 years
Prizes

Undergraduate University Prizes

The following information summarizes undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded. Law prizes are awarded only for students enrolled in the LLB or Jurisprudence courses.

Information regarding the establishment of new prizes may be obtained from the Enrolments and Assessment Section located on the Ground Floor of the Chancellery.

General

The Sydney Technical College Union Award

V $400.00 and Bronze Medal
C Leadership in student affairs combined with marked academic proficiency by a graduand

The University of New South Wales Alumni Association Prize

V Statuette
C Achievement for community benefit by a student in the final or graduating year

School of Applied Bioscience

Food Science and Technology

The Cottee's Foods Prize

V $500.00
C The best performance in FOOD1420 Food Legislation in the Bachelor of Science in Food Technology degree course

The Nestlé Australia Limited Prize

V $200.00
C The best performance in FOOD1400 Project in the Bachelor of Science in Food Science and Technology degree course

Biotechnology

The Wilfred B.S. Bishop Prize

V $75.00
C The best overall performance in the Bachelor of Science Degree in Food Science and Technology by a student who has made a significant contribution to staff and student activities

The Amersham Modern Techniques in Biotechnology Prize

V $250.00
C The best performance in BIOT3061 Modern Techniques in Biotechnology

The Burns Philp Food Prize

V $175.00
C The best performance in BIOT3100 Fermentation Processes in the Bachelor of Science degree course

The Burns Philp Food Prize

V $175.00
C The best performance in one of the Level 3 Biotechnology subjects:
- BIOT3011 Biotechnology A
- BIOT3021 Biotechnology B
- BIOT3031 Microbial Genetics
- BIOT3061 Modern Techniques in Biotechnology
by a student in the Bachelor of Science degree course

School of Chemical Engineering and Industrial Chemistry

The Abbott Laboratories Pty Ltd Prize

V $200.00
C The best performance in Year 4 of the Bachelor of Engineering degree course in Chemical Engineering
The AKZO Chemicals Prize
V $500.00
C The best performance in INDC3090 Chemistry of Industrial Processes

The Australasian Corrosion Association (NSW Branch) Award
V $150.00 and one years membership of the Association
C The best performance in INDC3041 Corrosion in the Chemical Industry

The Australian Institute of Energy Prize
V $50.00
C The best performance in FUEL3010 Fuel and Energy Engineering 1

The Australian Paper Manufacturers Ltd Prize
V $200.00
C The best performance in CHEN3070 Process Control in the Chemical Engineering degree course

The Australian Paper Manufacturers Ltd Prize
V $200.00
C The best performance in INDC3070 Instrumentation and Process Control 1 in the Industrial Chemistry degree course

The Fuel Technology Staff Prize
V $200.00
C The best performance in a subject selected by the Head of School

The Johnson Matthey Prize
V $200.00
C The best performance in the Industrial Chemistry degree course

The National Starch & Chemical Prize
V $500.00
C The best performance in POLY3010 Polymer Science

The Shell Prize
V $100.00
C The best performance by a student in Year 4 or equivalent part-time stage of the Chemical Engineering or Industrial Chemistry courses including sporting and student activities

The Shell Prize
V $100.00
C The best performance by a student in Year 3 or equivalent part-time stage of the Chemical Engineering or Industrial Chemistry courses including sporting and student activities

The Shell Prize
V $100.00
C For a student who has, in the opinion of the Head of School, performed some meritorious activity of note either inside or outside the University

The Shell Prize
V $200.00
C The best performance in CHEN4090 Project (Fuel Topic)

The Simon-Carves Australia Prize
V $100.00
C The best performance in CHEN3010 Engineering Thermodynamics or INDC3010 Thermodynamics

The Western Mining Corporation Ltd Prize
V $150.00
C The best performance in CHEN2051 Chemical Engineering Laboratory 1

The Western Mining Corporation Ltd Prize
V $150.00
C The best performance in CHEN3080 Chemical Engineering Laboratory 2

School of Fibre Science and Technology

Textile Technology

The J.B. Speakman Prize
V $50.00
C The best undergraduate thesis in the final year of the Bachelor of Science degree course in Textile Technology or Textile Management
The R.J. Webster Prize
V $250.00
C The best performance throughout the Bachelor of Science degree course in Textile Technology or Textile Management

The Textile Institute Prize
V Two years free membership of the Textile Institute
C The best performance in textile technology subjects by a student in the Bachelor of Science degree course in Textile Technology or Textile Management

Wool and Animal Science

The Bayer Animal Health Prize
V $120.00
C The best performance in Years 2 and Year 3 of a degree course in Wool and Pastoral Science

The C.R. Luckock Prize
V Book or $60.00 voucher drawn on University Co-op Bookshop
C The best performance in Meat Science in the Bachelor of Science degree course in Wool and Animal Sciences

The National Farmers' Federation Prize
V $150.00
C Excellent academic attainment by a graduating student in the Bachelor of Science degree course in Wool and Pastoral Sciences

The Parkes Wool Promotion Committee Prize
V A shield held in the Department of Wool and Animal Science on which the name of the successful student is engraved each year
C The best performance in Practical Wool Studies in the Bachelor of Science degree course in Wool and Animal Sciences

The P.R. McMahon Memorial Prize
V $100.00
C Excellence in Wool Science in the Bachelor of Science degree course in Wool and Pastoral Sciences

School of Geography

The Jack Mabbutt Medal
V Medal
C The best performance in the Year 4 Project in Applied Geography by a student in the Bachelor of Science degree course

The Jack Mabbutt Prize
V $150.00
C Best performance by a Year 3 student proceeding to the award of honours in Geography

School of Materials Science and Engineering

The ACI Glass Packaging Prize
V $200.00
C Outstanding quality in an honours thesis in one of the areas of glass, glazes or glass-ceramics in the Bachelor of Engineering in Ceramic Engineering course

The ANSTO Prize
V $100.00
C The best performance in year four in the Bachelor of Engineering in Ceramic Engineering course

The Alcan Australia Ltd Prize
V $200.00
C The best performance in Year 2 in the Bachelor of Metallurgical Engineering degree course

The Austral Bricks Prize
V $100.00
C The best performance in year three in the Bachelor of Engineering in Ceramic Engineering course

The Australasian Corrosion Association (NSW)
V $150.00
C The best performance in MATS1203 Materials & Design 2 by a student in the Bachelor of Metallurgical Engineering degree course

The Australasian Ceramic Society Prize
V $100.00
C The highest overall course aggregate by a student completing the final year of the Bachelor of Engineering degree course in Ceramic Engineering

The Boral Bricks Prize
V $500.00
C The best performance in MATS2273 Chemistry of Ceramic Processing, Unit 2, Technical and Non-Technical Ceramics in the Bachelor of Engineering in Ceramic Engineering course
The Broken Hill Proprietary Company Prize
V $1000.00
C The best performance in the Metallurgical Engineering degree course by a graduating student

The Caroma Industries Limited Prize
V $400.00
C The best performance in MATS1464 Materials Seminar and MATS2304 Project (Ceramic Engineering) (with each subject receiving one half of the weighting for the average) in the Bachelor of Engineering in Ceramic Engineering course

The Commercial Minerals Limited Prize
V $200.00
C The best performance in MATS2133 Ceramic Raw Materials in the Bachelor of Engineering in Ceramic Engineering course

The Cookson Plibrico Prize
V $350.00
C The best performance in MATS2183 Chemistry of Ceramic Processing, Unit 1, Refractories in the Bachelor of Engineering in Ceramic Engineering course

The Ferro Corporation (Australia) Prize
V $250.00
C The best performance in MATS2123 Ceramic Process Principles 2 in the Bachelor of Engineering in Ceramic Engineering degree course

The Hugh Mulr Prize
V $275.00
C The best performance in MATS1042 X-Ray Diffraction and Electron Microscopy

The ICI Advanced Ceramics Prize
V $100.00
C The best overall academic performance by a student in the second year of the Bachelor of Engineering in Ceramic Engineering degree course

The Institute of Metals and Materials Australasia Prize
V $200.00 and one year's membership of the Institute
C The best performance in year 3 of the Bachelor of Engineering in Ceramic Engineering degree course

The Laporte Minerals Prize
V $250.00
C The most aptitude and technique shown in the combined laboratory subjects MATS2153 Ceramic Processing Laboratory and MATS2203 Physio-Chemical Ceramics Laboratory with each subject receiving one half of the weighting for the average, by a student in the Bachelor of Engineering in Ceramic Engineering degree course

The Max Hatherly Prize
V $275.00
C The best performance in MATS1042 X-Ray Diffraction and Electron Microscopy

The Monier PGH Prize
V $1000.00
C The best performance by a graduating student in the Bachelor of Engineering in Ceramic Engineering degree course

The Morganite Ceramic Fibres Pty Ltd Prize
V $200.00
C The best performance in MATS2254 Ceramic Engineering Design by a student in the Bachelor of Engineering in Ceramic Engineering degree course

The Sialon Ceramics Prize
V $100.00
C The best performance in an honours thesis that reflects an advancement in the technology and development of advanced ceramics by a student proceeding to the degree of Bachelor of Engineering in Ceramic Engineering

The Taylor Ceramic Engineering Prize
V $150.00 and plaque
C The greatest overall amount of ingenuity shown in professional activities by a graduating student in the Bachelor of Engineering in Ceramic Engineering course

The Wallarah Minerals Prize
V $100.00
C The best performance in an honours thesis by a student in the Bachelor of Engineering degree course in Ceramic Engineering

The Welding Technology Institute of Australia Prize
V Books to the value of $100.00 from WTIA + 1 year's Membership of the Institute
C The best performance in MATS3484/MATS1164 Welding Science and Technology

The Western Mining Corporation Ltd Prize
V $150.00
C The best overall performance in Year 3 full-time (or its part-time equivalent) by a student in the Bachelor of
Engineering or Bachelor of Science (Technology) courses in Materials Science and Technology

The Western Mining Corporation Ltd Prize
V $150.00
C The best overall performance in Year 4 full-time (or its part-time equivalent) by a student in the Bachelor of Metallurgical Engineering in Process Metallurgy or Bachelor of Science (Technology) in Metallurgy

School of Mines

The Western Mining Corporation Ltd Melbourne Prize
V $200.00
C The best overall performance by a student in the Bachelor of Engineering degree course in Mining Engineering

The Western Mining Corporation Ltd Perth Prize
V $150.00
C The best overall performance by a student in the final year of the Bachelor of Engineering degree course in Mining Engineering

Applied Geology

The Crae Mapping Prize in Applied Geology
V $250.00

C The best performance in GEOL3121 Earth Environments 2 - Geological Field Mapping Tutorial by a student in the Bachelor of Science degree course

The CRAE Ore Deposits Prize
V $200.00
C The best performance in a subject selected by the Head of School

The F.C. Loughnan Prize For First Year Geology
V $100.00
C The best performance in year 1 of the Geology component of the Bachelor of Science degree course

The F.C. Loughnan Prize in Applied Geology
V $340.00
C The best performance in Year 3 of the Geology component of the Bachelor of Science degree course

The Lorant Eötvös Prize in Geology
V $300.00 and Bronze Medal
C The best performance in GEOL4111 Advanced Geological Techniques by a final year student in the Bachelor of Science in Applied Geology course or Bachelor of Science with Honours in Applied Geology course

The Prospectors Supplies Prize
V Brunton Compass
C Meritorious performance in the field work associated with the Second Year of course 3000 - Applied Geology or course 2500 - Geology

The Stan Sawyer Memorial Prize
V $400.00
C The best performance in an honours thesis on a topic relating to coal mining by a student in the Bachelor of Engineering in Mining Engineering degree course
Graduate University Prizes

The following information summarizes graduate prizes awarded by the University.

Faculty of Applied Science

Safety Science

The Ergonomics Society of Australia (NSW) Prize
V $100 and membership of the Society
C The best performance in all prescribed core subjects in the final year of the Master of Applied Science (Ergonomics) or the Graduate Diploma course in Ergonomics

The Manufacturers Mutual Insurance Prize for Ergonomic Principles
V $200.00
C The best performance in SAFE9224 Principles of Ergonomics by a student proceeding either to the award of the degree of Master of Safety Science or to the Graduate Diploma in Safety Science or to the Graduate Diploma in Ergonomics

The Manufacturers Mutual Insurance Prize for Occupational Disease
V $150.00
C The best performance in CMED9701 Occupational Disease by a student proceeding either to the award of the degree of Master of Safety Science or to the Graduate Diploma in Safety Science or to the Graduate Diploma in Ergonomics

The Manufacturers Mutual Insurance Prize for Occupational Health and Hygiene
V $150.00
V The best performance in SAFE9261 Occupational Health and Hygiene by a student enrolled in the Masters degree or Graduate Diploma courses in Safety Science

The National Safety Council Prize
V $100.00
C The best performance in SAFE9211 Introduction to Safety Engineering in the Masters degree or Graduate Diploma courses in Safety Science

The National Starch and Chemical Prize
V $200.00
C The best performance in SAFE9543 Management of Dangerous Materials by a student enrolled in a Diploma

Faculty of Commerce and Economics

The Universities Credit Union Prize
V $200.00
C The best performance by a full-time student in Year 1 of the Master of Commerce degree course

The Universities Credit Union Prize
V $200.00
C The best performance by a part-time student in Year 1 of the Master of Commerce degree course

The Neil Adams Ergonomics Prize
V $250.00
C The best performance in the preceding calendar year by a student enrolled in the Graduate Diploma in Ergonomics, considering the students best three subjects during that year, providing at least one of the three subjects was an Ergonomics subject

The Safety Institute of Australia (NSW Division) Bill Lessels' Memorial Prize for Master of Safety Science
V Books to the value of $200.00
C The best overall performance by a student in the Master of Safety Science degree course

The Safety Institute of Australia (NSW Division) Bill Lessels' Memorial Prize for Graduate Diploma in Safety Science
V Books to the value of $200.00
C The best overall performance by a student in the Graduate Diploma course in Safety Science

The Whiteley Chemicals Prize
V $200.00
C The best performance in SAFE9262 Chemical Safety and Toxicology by a student proceeding to a Diploma or Masters degree in any postgraduate teaching programme offered by the Department of Safety Science
School of Applied Bioscience

Biotechnology

The Burns Philp Foods Prize
V $175.00
C The best overall performance in the Master of Applied Science degree course in Biotechnology

Food Science and Technology

The Spruson & Ferguson Patent & Trade Mark Prize
V $250.00
C The best performance in the Seminar presentation by a student proceeding to the degrees of Master of Science or Doctor of Philosophy in the Department of Food Science and Technology

School of Chemical Engineering and Industrial Chemistry

The Clean Air Society of Australia and New Zealand Prize in Atmospheric Pollution Control
V $100.00
C The highest aggregate in FUEL9810 Atmospheric Pollution Control and FUEL5920 Practical Aspects of Pollution Measurement and Control in a postgraduate course in the School of Chemical Engineering and Industrial Chemistry

School of Fibre Science and Technology

Textile Technology

The Malcolm Chalkin Prize
V $200.00 and Bronze Medal
C An outstanding PhD thesis in the Department of Textile Technology

School of Mines

Applied Geology

The Laric V. Hawkins Prize
V $500.00
C The best written account of research work in the area of Geophysics in a graduate degree or diploma course
The University of New South Wales • Kensington Campus

Theatres
Biomedical Theatres E27
Central Lecture Block E19
Chemistry Theatres
(Dwyer, Mallor, Murphy, Nyholm, Smith) E12
Classroom Block (Western Grounds) H3
Fig Tree Theatre B14
Io Myers Studio D9
Keith Burrows Theatre J14
MacAuley Theatre E15
Mathews Theatres D23
Parade Theatre E3
Physics Theatre K14
Quadrangle Theatre E15
Rex Vowels Theatre F17
Science Theatre F13
Sir John Clancy Auditorium C24
Webster Theatre G15

Pavilions E24
Philip Saxer College (Kensington) D14
Quadangle E15
Sam Cracknell Pavilion H8
Samuels Building F26
Shalom College N9
Webster, Sir Robert G14
Unisearch House L5
University Regiment J2
University Union (Roundhouse) E6
University Union (Blockhouse) G6
University Union (Squarehouse) E4
Wallace Wurm School of Medicine C27
Warrane College M7

General
Aboriginal Resource & Research Centre E20
Aboriginal Student Centre A29
Accommodation (Housing Office) E15
Accounting E15
Admissions C22
Adviser for Prospective Students C22
Alumni Relations: Pindari, 76 Wentworth St, Randwick
Anatomy C27
Applied Bioscience D26
Applied Economic Research Centre F20
Applied Geology F10
Applied Science (Faculty Office) F10
Archives, University E21
Arts and Social Sciences (Faculty Office) C20
Audio Visual Unit F20
Australian Graduate School of Management G27
Banking and Finance E15
Biochemistry and Molecular Genetics D26
Biomedical and Behavioural Sciences (Faculty Office) D26
Biomedical Engineering F25
Biomedical Library F23
Biotechnology F25
Built Environment (Faculty Office) H14
Campus Services C22
Cashier’s Office C22
Centre for Membrane Science & Technology F10, K14
Chaplains E4
Chemical Engineering and Industrial Chemistry F10
Chemistry E12
Civil Engineering H20
Co-op Bookshop E15

Commerce and Economics (Faculty Office) F20
Communications Law Centre C15
Community Medicine D26
Computer Science and Engineering G17
Cornea and Contact Lens Research Unit
22-32 King St, Randwick
Economics F20
Education Studies G2
Educational Testing Centre E4
Electrical Engineering G17
Energy Research, Development & Information Centre F10
Engineering (Faculty Office) K17
English C20
Equal Employment Opportunity: 30 Botany Street
Randwick
Examinations C22
Facilities Department C22, B14A
Fees Office C22
Fibre Science and Technology G14
Food Science and Technology B8
French C20
Geography K17
Geomatic Engineering K17
German and Russian Studies C20
Graduate School of the Built Environment H14
Groundwater Management and Hydrogeology F10
Health Service, University E15
Health Services Management C22
History C20
Human Resources C22
Industrial Design G14
Industrial Relations and Organizational Behaviour F20
Information, Library & Archives Studies F23
Information Systems E15
Information Technology Unit F25
International Student Centre F9
IPACE Institute F23
Japanese Economic and Management Studies E15
Landscape Architecture K15
Law (Faculty Office) F21
Law Library F21
Legal Studies & Taxation F20
Liberal and General Studies C20
Library Law D21
Lost Property C22
Marine Science D26
Marketing F20

Buildings
Applied Science F10
Arcade D24
Architecture H14
Barker Street Gatehouse N11
Basser College (Kensington) C18
Central Store B13
Chancellery C22
Dalton (Chemistry) F12
Goldstein College (Kensington) D16
Goll House A27
Gymnasium B5
Heffron, Robert (Chemistry) E12
International House C6
John Goodsell (Commerce and Economics) F20
Kensington Colleges (Office) C17
Library (University) E21
Link B6
Main, Old K15
Maintenance Workshop B13
Mathews F23
Menzies Library E21
Morwen Brown (Arts) C20
New College L6
Newton J12
NIDA D2
Parking Station H25
Parking Station N18

Materials Science and Engineering E8
Mathematics F23
Mechanical and Manufacturing Engineering J17
Media Liaison C22
Medical Education C27
Medicine (Faculty Office) B27
Microbiology and Immunology D26
Michael Birt Gardens C24
Minis K15
Music and Music Education B11
News Service C22
Optometry J12
Pathology C27
Performing Arts B10
Petroleum Engineering D12
Philosophy C20
Physics K15
Physiology and Pharmacology C27
Political Science C20
Printing Section C22
Professional Development Centre E15
Professional Studies (Faculty Office) G2
Psychology F23
Publications Section C22
Remote Sensing K17
Research Office: 34-36 Botany Street Randwick
Safety Science B11a
Science (Faculty Office) E12
Science and Technology Studies C20
Science and Social Policy C20
Social Policy Research Centre F25
Social Work G2
Sociology C20
Spanish and Latin American Studies C20
Sport and Recreation Centre B6
Squash Courts B7
Student Centre (off Library Lawn) C22
Student Services:
Careers, Loans, Housing etc. E15
Counselling E15
Students’ Guild E15
Swimming Pool B4
Textile Technology G14
Theatre and Film Studies B10
Town Planning K15
WHO Regional Training Centre C27
Wool and Animal Sciences G14
Works and Maintenance B14A
The University of New South Wales, Kensington Campus
This Handbook has been specifically designed as a source of detailed reference information for first year and re-enrolling undergraduate and postgraduate students. Separate handbooks are published for Applied Science, Arts and Social Sciences, Built Environment, Commerce and Economics, Engineering, Law, Medicine, Professional Studies, Science, the Australian Graduate School of Management, Australian Taxation Studies Program (ATAX), College of Fine Arts, University College (ADFA) and the Centre for Liberal and General Studies.

For fuller details about the University – its organization, staff members, description of disciplines, scholarships and prizes and so on, consult the University Calendar (Summary Volume). For further information on student matters consult the University Student Guide.