FACULTY OF ENGINEERING
1973 HANDBOOK
EIGHTY CENTS

THE UNIVERSITY OF NEW SOUTH WALES
P.O. Box 1, Kensington, N.S.W. 2033
Phone: 663 0351
The University of New South Wales Library has catalogued this work as follows:

| UNIVERSITY OF NEW SOUTH WALES — | 378.94405 |
| Faculty of Engineering | NEW |

University of New South Wales —
Faculty of Engineering — Periodicals.
FOREWORD

This handbook is primarily for undergraduate students in the Faculty of Engineering and aims to provide information concerning the requirements for admission, enrolment and re-enrolment, conditions for the award of the different Bachelor degrees in the Faculty and the subject matter of the courses offered, including text and reference books. *It is important that each student in the Faculty becomes well acquainted with the information presented here.* In addition to this Handbook, pamphlets and brochures issued in conjunction with the enrolment period and Orientation Week are available. These should be consulted, together with the University Calendar, for further information on problems associated with courses.

At the same time, it is appreciated that a student’s choice in regard to course and other matters remains to be discussed with members of the academic staff. Many students will not make their final choice of degree course until well into their first year: some do not need to make their decision before the start of third year. Students should consult the Heads of Schools about this; where the Heads cannot be available, they have nominated colleagues to deal with enquiries.

All third and fourth year students, and some others also, will find their timetables free of formal classes at noon on Mondays. This period is reserved for *Faculty Hour*, a voluntary series of lectures and discussions on topics touching on the interaction of the engineer and society. Students are urged to use Faculty Hour to broaden their approach to their studies.

P. T. FINK,
Dean,
Faculty of Engineering

A1
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALENDAR OF DATES</td>
<td>A5</td>
</tr>
<tr>
<td>STAFF</td>
<td>A8</td>
</tr>
<tr>
<td>THE FACULTY:</td>
<td></td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td>A17</td>
</tr>
<tr>
<td>School of Electrical Engineering</td>
<td>A17</td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering</td>
<td>A18</td>
</tr>
<tr>
<td>School of Surveying</td>
<td>A18</td>
</tr>
<tr>
<td>School of Highway Engineering</td>
<td>A19</td>
</tr>
<tr>
<td>School of Nuclear Engineering</td>
<td>A19</td>
</tr>
<tr>
<td>School of Transportation and Traffic</td>
<td>A20</td>
</tr>
<tr>
<td>REQUIREMENTS FOR ADMISSION:</td>
<td></td>
</tr>
<tr>
<td>Matriculation Requirements</td>
<td>A22</td>
</tr>
<tr>
<td>ADMISSIONS AND ENROLMENT PROCEDURE:</td>
<td></td>
</tr>
<tr>
<td>Admissions Procedure</td>
<td>A27</td>
</tr>
<tr>
<td>Faculty of Engineering Enquiry Centre</td>
<td>A27</td>
</tr>
<tr>
<td>Admissions Office</td>
<td>A27</td>
</tr>
<tr>
<td>Enrolment Procedure</td>
<td>A28</td>
</tr>
<tr>
<td>University Union Card</td>
<td>A34</td>
</tr>
<tr>
<td>UNDERGRADUATE COURSE FEES:</td>
<td></td>
</tr>
<tr>
<td>Course Fees</td>
<td>A35</td>
</tr>
<tr>
<td>Other Fees</td>
<td>A35</td>
</tr>
<tr>
<td>Special Examination Fees</td>
<td>A36</td>
</tr>
<tr>
<td>Late Fees</td>
<td>A36</td>
</tr>
<tr>
<td>Withdrawal from Course</td>
<td>A37</td>
</tr>
<tr>
<td>Payment of Fees</td>
<td>A38</td>
</tr>
<tr>
<td>RULES RELATING TO STUDENTS:</td>
<td></td>
</tr>
<tr>
<td>General Conduct</td>
<td>A41</td>
</tr>
<tr>
<td>Attendance</td>
<td>A41</td>
</tr>
</tbody>
</table>
FACULTY OF ENGINEERING

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indebtedness to the University</td>
<td>A42</td>
</tr>
<tr>
<td>Course Transfers</td>
<td>A42</td>
</tr>
<tr>
<td>Admission With Advanced Standing</td>
<td>A42</td>
</tr>
<tr>
<td>Changes in Course Programmes</td>
<td>A43</td>
</tr>
<tr>
<td>Resumption of Courses</td>
<td>A43</td>
</tr>
<tr>
<td>Annual Examinations</td>
<td>A43</td>
</tr>
<tr>
<td>Examination Results</td>
<td>A46</td>
</tr>
<tr>
<td>Deferred Examinations</td>
<td>A46</td>
</tr>
<tr>
<td>Application for Admission to Degree or Diploma</td>
<td>A47</td>
</tr>
<tr>
<td>Restriction Upon Students Re-enrolling</td>
<td>A47</td>
</tr>
<tr>
<td>Re-admission after Exclusion</td>
<td>A51</td>
</tr>
<tr>
<td>Ownership of Students’ Work</td>
<td>A51</td>
</tr>
<tr>
<td>Change of Address</td>
<td>A51</td>
</tr>
<tr>
<td>Notices</td>
<td>A52</td>
</tr>
<tr>
<td>Lost Property</td>
<td>A52</td>
</tr>
<tr>
<td>Parking</td>
<td>A52</td>
</tr>
<tr>
<td>Application of Rules</td>
<td>A52</td>
</tr>
</tbody>
</table>

STUDENT SERVICES:

<table>
<thead>
<tr>
<th>Service</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Library</td>
<td>A53</td>
</tr>
<tr>
<td>The University Union</td>
<td>A53</td>
</tr>
<tr>
<td>Student Accommodation</td>
<td>A54</td>
</tr>
<tr>
<td>Student Amenities Unit</td>
<td>A55</td>
</tr>
<tr>
<td>Student Employment Unit</td>
<td>A56</td>
</tr>
<tr>
<td>Chaplaincy Service</td>
<td>A56</td>
</tr>
<tr>
<td>Student Health Unit</td>
<td>A57</td>
</tr>
<tr>
<td>Student Counselling and Research Unit</td>
<td>A57</td>
</tr>
<tr>
<td>Financial Assistance to Students</td>
<td>A57</td>
</tr>
<tr>
<td>Financial Assistance to Aboriginal Students</td>
<td>A58</td>
</tr>
<tr>
<td>Co-operative Bookshop</td>
<td>A58</td>
</tr>
<tr>
<td>Location of Laboratories</td>
<td>A59</td>
</tr>
</tbody>
</table>

STUDENT ACTIVITIES:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Students’ Union</td>
<td>A60</td>
</tr>
<tr>
<td>The Sports Association</td>
<td>A60</td>
</tr>
<tr>
<td>Physical Education and Recreation Centre</td>
<td>A61</td>
</tr>
<tr>
<td>Student Clubs and Societies</td>
<td>A61</td>
</tr>
<tr>
<td>The University Regiment</td>
<td>A61</td>
</tr>
<tr>
<td>The N.S.W. University Squadron</td>
<td>A61</td>
</tr>
<tr>
<td>Royal Australian Navy</td>
<td>A61</td>
</tr>
</tbody>
</table>
UNDERGRADUATE SCHOLARSHIPS AND PRIZES:

- Scholarships
- Prizes

UNDERGRADUATE COURSES:

- Common First Year
- Progression
- Full-time Courses
- General Studies Programme
- Industrial Training Requirements
- Part-time Courses
- Faculty of Applied Science

GRADUATE SCHOOL OF ENGINEERING:

- Higher Degrees
- Graduate Courses

OUTLINES OF UNDERGRADUATE COURSES:

- School of Civil Engineering
- School of Electrical Engineering
- School of Mechanical and Industrial Engineering
- School of Surveying

DESCRIPTION OF SUBJECTS: TEXT AND REFERENCE BOOKS:

- School of Mechanical and Industrial Engineering
- School of Electrical Engineering
- School of Civil Engineering
- Department of Industrial Engineering
- School of Surveying
- Non-Engineering Subjects
CALENDAR OF DATES FOR 1973

Session 1: March 5 to May 12
May Recess: May 13 to May 20
May 21 to June 16
Midyear Recess: June 17 to July 22

Session 2: July 23 to August 11
August Recess: August 12 to August 26
August 27 to November 10

JANUARY
Friday 12 Last date for application for review of results of annual examinations
Monday 15 Last day for acceptance of applications for admission to university degrees and diplomas
Friday 19 Last day for application for deferred examinations
Last day for acceptance of applications to enrol by new students and students repeating first year
Monady 29 Australia Day—Public Holiday
Tuesday 30 Deferred examinations begin

FEBRUARY
Saturday 10 Deferred examinations end
Monday 19 Enrolment period begins for new students and students repeating first year
Monday 26 Enrolment period begins for students re-enrolling (second and later years)

MARCH
Friday 2 Last date for application for review of deferred examination results
Monday 5 Session 1 commences
Friday 16 Last day for acceptance of enrolments by new students (late fee payable)
Friday 30 Last day for changes in course programmes
Last day for acceptance of enrolments by students re-enrolling (late fee payable)
APRIL

Friday 6 Last day for discontinuation without failure of subjects which extend over the first session only
Wednesday 11 Faculty of Engineering meeting, 2 p.m.
Thursday 19 Last day for acceptance of corrected enrolment details forms
Friday 20 to
Monday 23 Easter
Wednesday 25 Anzac Day—Public Holiday

MAY

Monday 7 Provisional timetable for June/July examinations published
Sunday 13 May Recess begins
Sunday 20 May Recess ends
Last date for discontinuation without failure of subjects which extend over the academic year

JUNE

Tuesday 5 Timetable for June/July examinations published
Monday 11 Queen's Birthday—Public Holiday
Friday 15 Faculty of Engineering meeting, 2 p.m.
Saturday 16 Session 1 ends
Sunday 17 Midyear Recess begins
Tuesday 19 Midyear examinations begin
Saturday 30 Last day for acceptance of applications for re-admission after exclusion under rules governing re-enrolment.

JULY

Tuesday 3 Midyear examinations end
Sunday 22 Midyear recess ends
Monday 23 Session 2 begins

AUGUST

Thursday 2 Foundation Day
Friday 10 Faculty of Engineering meeting, 2 p.m.
Sunday 12 August Recess begins
Wednesday 22 Last day for acceptance of corrected enrolment details forms
Friday 24 Last date for discontinuation without failure of subjects which extend over the second session only
Sunday 26 August Recess ends

SEPTEMBER

Monday 10 Provisional timetable for annual examinations published
OCTOBER
- **Monday 1**
- **Friday 19**
- **Tuesday 30**

Eight Hour Day—Public Holiday
Faculty of Engineering meeting, 2 p.m.
Timetable for annual examinations published

NOVEMBER
- **Saturday 10**
- **Tuesday 13**

Session 2 ends
Annual examinations begin

DECEMBER
- **Tuesday 4**
- **Tuesday 25**
- **Wednesday 26**

Annual examinations end
Christmas Day—Public Holiday
Boxing Day—Public Holiday

1974

Session 1: March 4 to May 19
- **May Recess**: May 20 to May 26
- **May 27 to June 16**
- **Midyear Recess**: June 17 to July 21

Session 2: July 22 to August 25
- **August Recess**: August 26 to September 1
- **September 2 to November 3**
- **Study Recess**: November 4 to November 10

JANUARY
- **Friday 11**
- **Monday 14**
- **Friday 18**
- **Tuesday 29 to Saturday 9**

Last date for application for review of results of annual examinations
Timetable for deferred examinations published
Last date for application for admission to university degrees and diplomas
Last date for application for deferred examinations
Deferred examinations

FEBRUARY
- **Monday 18**
- **Monday 25**

Enrolment period begins for new students and students repeating first year
Enrolment period begins for students re-enrolling (second and later years)
Results of deferred examinations available

THE ACADEMIC YEAR

The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of five weeks between the two sessions. In addition there are short recesses within the sessions—one week within Session 1 and two weeks within Session 2.

The first session commences on the first Monday of March.
FACULTY OF ENGINEERING

DEAN — Professor P. T. Fink
CHAIRMAN—Professor T. K. Hogan

SCHOOL OF CIVIL ENGINEERING

Professor of Civil Engineering, Head of School and of Department of Water Engineering
H. R. Vallentine, BE Syd., MS Iowa, ASTC, FIEAust, MASCE

Professor of Civil Engineering and Head of Department of Civil Engineering Materials
I. K. Lee, BCE MEngSc PhD Melb., MIEA, MASCE

Professor of Civil Engineering
A. S. Hall, BSc(Eng) Lond., DIC, FIEAust, MASCE

Professor of Civil Engineering
Vacant

Professor of Civil Engineering
Vacant

Professor of Engineering (on secondment)
T. K. Hogan, BE W.Aust., FIEAust., MAusIMM

Executive Assistant to Head of School
E. M. Kitchen, BE Syd., MIEAust

Administrative Officer
J. G. Lloyd, MA Pitt.

Honorary Associate
O. J. Ingles, BA MSc Tas., CEng, FRIC, AMInstF

Department of Water Engineering
(Including Civil Engineering Practice, Hydraulics, Hydrology, Public Health Engineering, Water Resources Engineering, and the Water Research Laboratory)

Associate Professors
B. W. Gould, BE Tas., ME N.S.W., MIEAust
R. T. Hattersley, ME N.S.W., ASTC, FIEAust, MASCE
D. H. Pilgrim, BE PhD N.S.W., MIEAust
K. K. Watson, BE Syd., ME PhD N.S.W., MIEAust
FACULTY OF ENGINEERING

Senior Lecturers
C. R. Dudgeon, ME N.S.W., MIEAust
T. R. Fietz, ME N.S.W., MIEAust
D. N. Foster, BE Syd., MIEAust
D. T. Howell, BE Syd., ME N.S.W., MIEAust, MAIAS
J. R. Learmonth, BE Syd., ME N.S.W.
L. V. O’Neill, BE Syd., MIEAust
C. J. Wiesner, BSc Adel., FRMetS

Lecturers
A. J. Askew, BSc Birm., MSc(Engin) Qu., PhD N.S.W., MASCE, MIEAust, MFIC
P. J. Bliss, BE N.S.W., MSc Lond., DIC, ASTC, MIEAust
I. Cordery, ME PhD N.S.W., MIEAust
B. S. Jenkins, BE N.S.W., ASTC, MIEAust
R. Nittim, BE MEngSc N.S.W., DipTCP Syd.
V. J. Summersby, BE MEngSc N.S.W., ASTC, MIEAust

Tutor
A. D. Gordon, BE N.S.W.

Teaching Fellow
S. T. Lee, BE MSc Yeungnam, DipHYD N’cle (U.K.), MKSCE (Korea)

Research Consultant in Public Health Engineering
D. K. B. Thistlethwayte, BSc Syd., ASTC, MIEAust, ARACI

Professional Officers
D. G. Doran, BE DipCompSc Qld.
F. A. J. Stein, ED, BE N.S.W., GradlEAust, AMASCE

Engineers
P. Huyakorn, BE N.S.W.
K. K. Lai, BCE Melb., ME N.S.W.
P. B. Stone, BE BSc Qld., DIC, MIEAust
W. H. C. Swan, BSc(Eng) N.S.W.
S. N. Webb, BE Cant.

Department of Civil Engineering Materials
(Including Soil Mechanics, Rock Mechanics, Concrete Technology, and Plastics and Timber)

Associate Professors
A. F. S. Nettleton, BSc BE Syd., ME N.S.W., DIC, MIEAust
G. B. Welch, BE Syd., ME N.S.W., CEng, MICE, FIEAust

Senior Lecturers
A. G. Douglas, ME N.S.W., PhD Mich. State, MIEAust
E. M. Kitchen, BE Syd., MIEAust
B. J. F. Patten, BE Syd., PhD N.S.W., DIC, MIEAust

Lecturers
D. J. Cook, BE W.Aust., MSc PhD Calg., AMASCE
P. B. Jones, BE Syd., MIEAust
A. W. Manton-Hall, BE MEngSc N.S.W., MIEAust
H. Taylor, BSc(Eng) Birm., DipNA & AC Syd.
Teaching Fellows
 M. N. Haque, BE W. Pak. Eng., MEng A.I.T.
 D. R. Morgan, BSc(Eng) Rand, MSc Calg.

Professional Officers
 D. E. Hattersley, MSc N.S.W., ASTC
 H. N. Lunsmann, BE N.S.W., ASTC, GradIEAust

Department of Structural Engineering
 Associate Professors
 H. J. Brettle, BE Syd., PhD N.S.W., DIC, ASTC, FIEAust
 R. A. Frisch-Fay, DiplEng Bud., ME N.S.W., MIEAust
 A. P. Kabaila, MEngSc PhD N.S.W., FRMTC, MIEAust, MASCE
 R. W. Traill-Nash, BE W. Aust., PhD Brist., MIEAust, AFTAeS
 R. F. Warner, ME N.S.W., PhD Lehigh, MIEAust

Senior Lecturers
 P. S. Balint, DiplEng Bud., ME N.S.W., MIEAust
 L. S. Edwards, BCE Melb., BEc Syd., MSc Lond., DIC, ARMTC, MIEAust
 K. A. Faulkes, ME N.S.W., MS Ill., MIEAust
 J. L. Jenkins, BE Syd., ME N.S.W., DIC, ASTC, MIEAust
 S. Valliappan, BE Annam., MS Northeastern, PhD Wales, AMIE
 (India), MASCE

Lecturers
 D. J. Fraser, MEngSc N.S.W., ASTC
 P. W. Kneen, BE Melb., PhD Wat.
 G. C. Lacey, BCE MEngSc Melb., PhD Texas, MIEAust
 V. A. Pulmano, BSCE Uni. of Philippines, MEng A.I.T. Bangkok, PhD
 Northwestern, AMASCE
 B. V. Rangan, BE Madr., PhD I.I.S.B'lore., MASCE, MACI
 J. J. Somervaille, BE N.S.W., ASTC

Teaching Fellows
 K. D. Below, BE Qld.
 Y. K. Chan, ME Auck.
 S. French, BE N.S.W.
 R. Lawther, BE PhD N.S.W.

Professional Officer
 C. G. Bowen-Thomas, BE Syd.

SCHOOL OF ELECTRICAL ENGINEERING

Professor of Electrical Engineering — Communications and Head of School
 A. E. Karbowiak, DSc(Eng) Lond., CEng, FIEEE, MIEEE

Professor of Computer Science
 M. W. Allen, BE Adel., PhD Syd., CEng, FIEEE, MIEEE, MIEEE

Professor of Electrical Engineering — Systems and Control
 N. W. Rees, BSc PhD Wales
Professor of Electrical Engineering
R. E. Vowels, ME Adel., SMIEEE, CEng, FIEAust, MIEE

Visiting Professor — Solid State Electronics
L. W. Davies, BSc Syd., DPhil Oxon., FInstP, FAIP, FIREE

Tyree Professor of Electrical Engineering
F. J. Evans, BSc BE Syd., CEng, FIEE, FIEAust

Senior Administrative Officer
H. G. Phillips

Administrative Assistant
S. Mo, B.A. N.S.W., MA Syd.

Department of Communications

Senior Lecturers
W. H. Holmes, BSc BE MEngSc Syd., PhD Camb., MIEEE, MIREE
G. J. Parker, BSc BE Syd., ME N.S.W., MIEAust, MIREE
T. B. Vu, BE PhD Adel.

Lecturers
P. T. Bason, ME N.S.W., MIEAust, MIEEE
E. H. Fooks, BSc PhD Lond., CEng, MIEE, MIEEE
T. L. Hooper, BSc Syd., MSc N.S.W., CEng, MIEE, MIEEE, MIREE
H. L. Humphries, BSc BE BEc Syd., MIEAust, MIREE
C. J. E. Phillips, BSc BE PhD Syd., AMIREE
R. A. Zakarevicius, BSc BE MEngSc PhD Syd., MIEAust, MIEEE
MIREE

Professional Officer
K. Poronnik, BE N.S.W., ASTC, MIREE

Department of Computer Science

Senior Lecturers
A. Dunworth, BSc PhD Man., GradInstP, FIREE, MIEAust, SMIEEE
G. B. McMahon, BSc Syd., PhD N.S.W.

Lecturers
L. C. Hill, BE N.S.W., MIEAust
J. Lions, BSc Syd., PhD Camb.
P. C. Maxwell, MSc Auck.
K. A. Robinson, BSc BE Syd.
Mrs. I. Pamela Sallaway, BSc Br.Col., MMath PhD Wat.

Professional Officer
K. W. Titmuss, BSc(Tech) N.S.W.

Department of Electric Power Engineering

Associate Professors
G. C. Dewsnap, MEE Melb., CEng, FIEE, MIEAust
G. W. Donaldson, BE Qld., BSc MA Oxon., CEng, MIEE, MIEAust
R. M. Huey, BSc BE Syd., FIEAust, FIREE, SMIEEE
G. J. Johnson, MSc Syd., CEng, MIEE, AInstP, SMIEEE, AAIP
Senior Lecturers
H. Harrison, BSc BE Syd., ME N.S.W., MIEAust
I. F. Morrison, BSc BE PhD Syd., MIEAust, MIEEE

Lecturers
D. B. Goudie, BSc BE Syd., MIEEE, GradIEAust
H. Yee, BSc BE PhD Syd.

Professional Officer
J. R. Kinard, BA Fla.S.U., MS Mass., MIEEE, MOSA

Department of Solid-State Electronics
Senior Lecturers
H. S. Blanks, BSc ME Syd., PhD N.S.W., CEng, MIEE, MIEI, MIREE
R. Vaughan, BSc BE PhD Syd.

Lecturers
M. W. Nield, BEng PhD Liv., MInstP
Mrs. Manjula B. Waldron, BSc Delhi, BE I.I.S.B'lore., MS PhD Stan., MIEEE

Professional Officer
R. Michael, BSc BE MEngSc Syd.

Tutors (School)
A. J. Peebles, BSc BE N.S.W.
G. N. Westley, BEng Liv.

Teaching Fellows (School)
O. L. Colombo, IngTel La Plata
W. J. Dewar, MSc Qu. Kingston
C. M. Gysland, BS Wash.
P. B. Kosel, BSc Syd.
G. Noti, BSc BE Syd.
R. Radzyner, BE Melb., MEngSc N.S.W.

Department of Systems and Control Engineering
Senior Lecturers
R. F. Brown, BE Liv., PhD N.S.W., CEng, MIEEE
J. B. Hiller, BE PhD N.S.W., FIREE, MIEEE
C. A. Stapleton, BSc BE Syd., CEng, MIEE, MIEEE, MIEAust
K. E. Tait, BE(Hons) BSc N.Z., PhD N.S.W., MIEAust

Lecturers
F. Lewin, BSc BE Syd.
D. H. Mee, BSc BE Syd., PhD Lond., DIC
B. P. Molinari, BE W.Aust., PhD Camb., MIEEE
O. Pawloff, DiplEng Berl., MIEAust, MIEEE

Professional Officers
K. J. Flynn, BE MEngSc N.S.W., ASTC
K. W. Ford, ASTC
J. H. Sieuwerts, BE N.S.W., ASTC
SCHOOL OF MECHANICAL AND INDUSTRIAL ENGINEERING

Nuffield Professor of Mechanical Engineering, Head of School and of Department of Fluid Mechanics/Thermodynamics
R. A. A. Bryant, ME N.S.W., ASTC, CEng, FIMechE, FIEAust, AFRAeS

Professor of Mechanical Engineering
P. T. Fink, BE Syd., CEng, FIMechE, FRAeS, MAIAA, AMRINA

Sir James Kirby Professor of Production Engineering, Head of Department of Industrial Engineering
P. L. B. Oxley, BSc PhD Leeds, CEng, FIProdE, MIMechE

Professor of Operations Research
G. Bennett, BA Syd., PhD N.S.W., ASTC, CEng, FIProdE

Professor of Mechanical Engineering, Head of Department of Applied Mechanics
N. L. Svensson, MMechE PhD Melb., CEng, FIMechE, FIEAust

Professor of Mechanical Engineering, Head of Department of Agricultural Engineering
A. H. Willis, DSc(Eng) Lond., CEng, FIMechE, MIEAust, MemASAE, WhSc

Executive Assistant to Head of School
J. Y. Harrison, BE Syd., PhD N.S.W., MIEAust

Administrative Officer
G. Dusan, BEc Syd.

Department of Applied Mechanics
Associate Professor
R. G. Robertson, MA Oxon., ME N.S.W., CEng, FIMechE, AFRAeS

Senior Lecturers
H. A. Borchartd, DiplIng E.T.H., Zurich, ME N.S.W., MIEAust
J. A. Cartmel, Msc CranI.T., PhD N.S.W., CEng, FIMechE, FIEAust, MASME, MIEE, MAIAA
J. Y. Harrison, BE Syd., PhD N.S.W., MIEAust
E. C. Hind, ME N.S.W., ASTC, MIEAust
C. Samonov, Dipling Dr techn T.H. Vienna, VDI, MIEAust

Lecturers
R. A. V. Byron, BE Syd., CEng, AFRAeS, MAIAA
A. E. Churches, BE PhD N.S.W., ASTC
H. E. Enahoro, BSc MSCTech Manco., PhD Sheff., CEng, FIMechE
E. J. Hahn, BE BSc PhD N.S.W.
V. Mason, BSc(Eng) PhD S'ton, MAAS
D. J. S. Mudge, BSc Lond., CEng, MIMechE, MIEAust, WhSc
B. Osman, BE Adel., FSASM, MIEAust
H. L. Stark, BSc PhD Strath.
K. J. Waldron, BE MEngSc Syd., PhD Stan., MIEAust
R. C. P. Walters, ASTC, MIEAust

Senior Tutor
K. Kjorrefjord, BSc Durh., CEng, AMRINA
Department of Fluid Mechanics and Thermodynamics
(Including Aeronautical Engineering and Naval Architecture)

Associate Professor
G. de Vahl Davis, BE Syd., PhD Camb., CEng, FIMechE, FIEAust, MASME

Senior Lecturers
R. D. Archer, BSc Melb., BE Syd., MS PhD Minn., FBIS, MIEAust, MAIAA, AFRAeS
A. J. Carroll, BE Syd., MIEAust
R. E. Corbett, DIC, ASTC, CEng, MIMachE, MIEAust
V. N. Holm, BE Syd., DPhil Oxon., ASTC, CEng, FIMechE, MIEAust
R. T. B. McKenzie, MS ME Purdue, ARSCT(Glas.), CEng, FIMechE
C. M. Sapsford, BSc(Eng) Lond., ME N.S.W., CEng, FIMechE, MIEAust
R. J. Tuft, ASTC, FRINA, MIEAust, MRINA

Lecturers
M. R. Davis, BSc(Eng) PhD Ston.
L. J. Doctors, BE MEngSc Syd., PhD Mich., AMCAS, AMSNAME, MIAIAA, MIEAust
O. F. Hughes, SB SM(NavArch) M.I.T., PhD N.S.W., MIEAust, MRINA, MSNAME
B. E. Milton, BE PhD N.S.W., BSc Birm., MIEAust
J. O. Muiznieks, DiplIng Latvia, DrIngAer Rome
J. A. Reizes, ME N.S.W., MIEAust

Department of Agricultural Engineering

Senior Lecturer
H. G. Bowditch, ME N.S.W., ASTC, MIEAust, MIAgrE, MemASAE

Department of Industrial Engineering
(Including Operations Research and Production Engineering)

Associate Professor
J. Taylor, BSc Nott., CEng, FIMechE

Senior Lecturers
J. F. C. Close, BSc BE Syd., ME N.S.W., MIEE, SIAEIIE, MIEAust
M. G. Stevenson, BSc(Tech) PhD N.S.W., ASTC, CEng, MIEAust, MIPRODE
R. A. Williams, BE PhD N.S.W., ASTC, CEng, MIPRODE, AMIEAust

Lecturers
L. E. Farmer, BE MEngSc PhD N.S.W.
D. Goodridge, DiplIngChim L'Aurore, Shanghai, DipIndEng N.S.W.
R. N. Roth, BE PhD N.S.W.
C. H. Scott, BSc Qld., PhD N.S.W.
G. Smith, BE MEngSc N.S.W., ASTC, MIEAust

Honorary Associate (School)
C. A. Gladman, BSc(Eng) Lond., ACGI, CEng, FIPRODE, MIMechE, MIED

Professional Officers (School)
E. A. Carter, BE MEngSc N.S.W., ASTC, GradIEAust
W. Dollar, ASTC
M. H. Fraser, BSc(Tech) N.S.W.
R. B. Frost, BE N.S.W."
FACULTY OF ENGINEERING

J. Y. M. Fung, BE MEngSc Syd., GradIEAust
W. F. Hastings, BSc(Tech) N.S.W.
B. C. Motson, BE N.S.W., ASTC, MIEAust
P. H. Siyver, BE N.S.W., MIEAust
C. B. Smith, BE N.S.W., ASTC, GradIEAust, MAIRAH
G. D. White, BSc(Eng) N.S.W.

Teaching Fellows (School)
N. Gillies, GradDip ME N.S.W.
T. S. Lee, BE N.S.W.
B. T. Mah, BE N.S.W.
L. G. Nhan, BE N.S.W.
C. K. Wong, BSc N.T.U., MSc N.S.W.

SCHOOL OF SURVEYING

Professor of Surveying and Head of School
P. V. Angus-Leppan, BSc(Eng) Rand, PhD DipTP Natal, FISAust, MILS(Natal), MAIC

Associate Professors
G. G. Bennett, MSurv Melb., PhD N.S.W., LS (N.S.W.), FISAust
R. S. Mather, BSc Ceylon, PhD N.S.W., MISAust

Senior Lecturers
J. S. Alhnan, BSurv PhD N.S.W., MAIC, MISAust
J. G. Freislich, BSc(Eng) Rand, FISAust, AMINS(SA)

Lecturers
L. Berlin, BSc(L.S.) Cape T., BSc T.H. Delft
G. J. F. Holden, ARICS, Dip.Photo. Lond., FRGS, MISAust
A. J. Robinson, BSurv N.S.W., LS(N.S.W.), MISAust, AMAIC
A. Stolz, BSurv N.S.W., LS(N.S.W.)
J. C. Trinder, BSurv PhD N.S.W., MSc T.H. Delft, LS(N.S.W.), MISAust
A. P. H. Werner, DiplIng Bonn, FISAust

Senior Tutors
A. H. W. Kearsley, BSurv MSurvSc N.S.W., MAIC, MISAust
M. Maughan, BSc Lond., ARICS

Instructor
A. H. Campbell, BSurv MSurvSc N.S.W., LS(N.S.W.), AISAust

Professional Officer
C. E. Wardrop, BSc N.S.W.

SCHOOL OF HIGHWAY ENGINEERING

Professor of Highway Engineering and Head of School
D. F. Orchard, BSc PhD Lond., DIC, ACGI, FIEAust, FCIT, MICE, MIMunE, MStrucE

Senior Lecturers
W. H. Cogill, MSc Cape T. and Camb., PhD N.S.W., FIEAust, MICE
G. C. Y. Hu, BSc Kwangtung Kuomin, Canton, MSc PhD Birm., DipTP Lond., MIMunE, MIEAust, MASCE, AMTP
R. A. Jones, BE W.Aust., ME Auck., MSc Lond., DIC, MSINZ, MIEAust
T. ten Brummelaar, BE MEngSc N.S.W.
THE UNIVERSITY OF NEW SOUTH WALES

Lecturers
B. S. Shackle, BE Sheff., MEngSc N.S.W.
W. O. Yandell, ME PhD N.S.W., MIEAust

Teaching Fellow
R. L. Lynch, BSCE Kentucky, MSE Arizona, AMASCE

Professional Officer
C. E. Quinlan, GradDip N.S.W., ASTC, MIEAust

SCHOOL OF NUCLEAR ENGINEERING

Professor of Nuclear Engineering and Head of School
J. J. Thompson, BE PhD Syd.

Associate Professor
Z. J. Holy, DiplIng Prague, MSc Birm., MEngSc PhD N.S.W., MIEAust

Senior Lecturer
P. R. Barrett, MSc PhD Birm., MInstP

Lecturers
O O. C. A. Bils, DiplIng Berl., PhD N.S.W.
L. G. Kemeny, BE Syd., MIEAust

Teaching Fellow
M. N. Viswanathan BE Madr., MTech I.I.T. Madras

Professional Officer
P. Y. P. Chen, BSc MEngSc ME N.S.W., ASTC

SCHOOL OF TRANSPORTATION AND TRAFFIC

Professor of Traffic Engineering and Head of School
W. R. Blunden, BSc BE Syd., FCIT(Lond.), MITE(U.S.A.), MIEAust, MStatSocAust, MAustSocOpRes

Senior Lecturers
D. J. Buckley, BE Syd., MEngSc PhD N.S.W., MIEAust, MORSA, MStatSocAust
R. D. Munro, BSc W.Aust., BA Melb.
J. I. Tindall, BE Qld., ME N.S.W.
H. J. A. Turner, BSc Lond., ME N.S.W., MIEE, ARCS

Senior Project Scientists
A. J. Fisher, BSc Lond.
R. J. Keith, ME N.S.W., ASTC

Project Scientist
M. C. Dunne, BSc PhD Adel.

Professional Officers
R. R. Hall, BSc A.N.U.
I. H. Millard, BSc Wales
C. J. Wingrove, BSc N.S.W.
THE FACULTY

SCHOOL OF CIVIL ENGINEERING

The School of Civil Engineering consists of three departments, Water Engineering, Civil Engineering Materials and Structural Engineering. The School conducts both part-time and full-time undergraduate courses in Civil Engineering. In addition, all departments conduct graduate courses and carry out graduate research programmes in many fields.

The Department of Water Engineering encompasses the fields of Hydraulics, Hydrology, Public Health Engineering and Engineering Construction. The Public Health Engineering Laboratory is located at Kensington. The Hydrology research centre is also at Kensington, but a substantial amount of investigation is carried out in the field. The Water Research Laboratory is located at Manly Vale and is the centre for instruction and research in hydraulics.

The Department of Civil Engineering Materials includes the fields of Soil Mechanics, Rock Mechanics, Concrete Technology, Plastics and Timber. The Materials Laboratories are located at Kensington.

The Department of Structural Engineering covers the fields of Structures, Stress Analysis and Solid Mechanics. The Model Structures, Experimental Stress Analysis and Solid Mechanics Laboratories are at Kensington. The Heavy Structures Laboratory is at King Street, Randwick.

SCHOOL OF ELECTRICAL ENGINEERING

The School of Electrical Engineering comprises five departments — Communications, Computer Science, Electric Power Engineering, Solid State Electronics and Systems and Control Engineering.

Each department carries out research in its own field and offers lecture and laboratory courses at the undergraduate and postgraduate levels. Subjects of common interest are provided by the School as a whole.

Special laboratories are equipped for work in the areas of Integrated Circuit Design, Microwaves, Computer Control,
Machines and Acoustics. A Measurements Laboratory provides a calibrating service under certificate from the National Association of Testing Authorities.

SCHOOL OF MECHANICAL AND INDUSTRIAL ENGINEERING

Full-time undergraduate courses leading to the degree of Bachelor of Engineering are offered in Mechanical, Industrial, and Aeronautical Engineering, and in Naval Architecture. Part-time courses leading to the degree of Bachelor of Science (Engineering) are offered in the same four fields. Either degree may be taken out by a combination of full-time/part-time study, subject to approval by the Head of School.

The first two years of the full-time degree, and the first four stages of the part-time degree are common to all courses within the School. Thus a final decision on the discipline to be followed need not be made until the end of Year 2 for full-time and Stage 4 for part-time students.

Formal postgraduate courses of study are available, with a wide choice of subjects, leading to the degree of Master of Engineering Science in Mechanical Engineering. There are special Master of Engineering Science courses in Refrigeration and Air Conditioning, and in Industrial Engineering. The Department of Industrial Engineering within the School offers a course leading to a Graduate Diploma.

Graduates with a good first degree may register for the higher degrees of Master of Engineering and Doctor of Philosophy. Current research fields are as follows—Aerodynamics, Agricultural Engineering, Applied Plasticity, Automatic Control, Bio-mechanics, Dynamics, Gas Dynamics, Heat Transfer, Fluid Mechanics, Metal Cutting, Naval Hydrodynamics, Refrigeration and Air Conditioning, and Two-phase Flow.

Undergraduates who are interested in working for a research degree should consult the Head of School towards the end of their final year. Advice will be given to all students during their third year so that each can select the best possible combination of final year elective subjects.

SCHOOL OF SURVEYING

The School of Surveying offers a Bachelor of Surveying degree taken over four years of full-time study or seven years of part-time study. Subject to the approval of the Head of School,
combinations of full and part-time study are also permissible. The graduate courses offered are Master of Surveying Science, a two year part-time or one year full-time course; and the research degrees Master of Surveying and PhD.

The School is located in the Civil Engineering Building. Facilities include four Photogrammetry laboratories with plotting instruments of various types, an observing platform for Positional Astronomy and a comprehensive range of field equipment for Surveying and Geodesy. Computing facilities include programmable calculators and a library of programmes for use on the University's IBM 360/50 computer.

Current research is in the fields of physical geodesy, photogrammetry, geometrical geodesy, error theory, gyrotheodolite theory, computer applications and land systems studies.

SCHOOL OF HIGHWAY ENGINEERING

Postgraduate courses are offered, leading to the degree of Master of Engineering Science and to a Postgraduate Diploma, in which road location and geometrics, properties of road materials, construction techniques, bridge design and traffic engineering are studied.

The School has well-equipped laboratories for studying the properties of soils, road aggregates, bitumen and cement concrete, and active studies on these subjects are in progress. Members of the School use a 1620 IBM computer as part of their course, and studies are being made of its utilization in all phases of highway engineering. They also have access to a 360/50 computer.

SCHOOL OF NUCLEAR ENGINEERING

The School of Nuclear Engineering in the University of New South Wales was established in 1961. The School presently operates at the postgraduate level in the Faculty of Engineering. A fourth year undergraduate course in Nuclear Power Technology is provided as an elective for other Schools.

In addition to the supervision of programmes of advanced study and research for candidates for the research degrees of Master of Engineering and Doctor of Philosophy, the School offers a formal graduate course leading to the degree of Master of Engineering Science. This formal course aims specifically at
the education of engineers for the detailed understanding, analysis and assessment of nuclear reactors and nuclear power systems. Particular attention is given to the mathematical, numerical and computational techniques which are relevant to nuclear engineering.

Special research interests in the School include the general field of fluctuation phenomena and noise in nuclear reactors, the coupled thermomechanical, fluid dynamics and nuclear aspects of reactor fuel elements and coolant channels, and the subject of reactor utilization and reactor strategy.

The School is presently situated in the Electrical Engineering building at Kensington. Library, workshop, digital and analogue computing facilities are available. Special digital and analogue equipment for the analysis and recording of random signals has been acquired for experimental noise research. Through the Australian Institute of Nuclear Science and Engineering, the special facilities of the Australian Atomic Energy Commission's Research Establishment at Lucas Heights can be made available for research purposes. Close personal contact is maintained between members of the School and the Engineering Research Division at Lucas Heights.

SCHOOL OF TRANSPORTATION AND TRAFFIC

The School of Transportation and Traffic is located at Randwick, and is associated with the School of Highway Engineering.

The establishment of the School followed the endowment of a Chair by the Australian Automobile Association, which had long been concerned with the need for a centre for training traffic engineers and specialists. The School is assisting this object by conducting courses in traffic and transport planning and control, and offering opportunities for research into the technical problems created by the tremendous growth in the use of the motor vehicle on the street and highway system, and also into its impact on other forms of transport and on land use activity.

The research activities of the School cover a wide range of transport and traffic phenomena, viz.: traffic flow theory — queueing, traffic stream structure, saturation flow, transportation planning — land use and transport interaction, system parameters, synthetic models for growth, distribution and assignment of desire lines; public enterprise economics; and human factors and road
safety. Research in these fields can be undertaken for the ME, MSc, and PhD degrees. Formal courses, one year full-time and two years part-time, leading to the degree of Master of Engineering Science are also offered in Transport and Traffic. A part-time Transport Graduate course offered over six terms leads to a Graduate Diploma.

In addition to the academic research activities the School has an Applied Research Division which undertakes project research for national bodies and institutions. It has an active programme relating to freeway lighting, traffic flow and capacity of urban roads and arterials and traffic instruments.
REQUIREMENTS FOR ADMISSION

A person who seeks to become a candidate for any degree of Bachelor of the University must first have qualified for matriculation and have satisfied the requirements for admission to the particular Faculty, Course or Subject chosen.

In addition to complying with these conditions candidates must be selected before being permitted to enrol in a course. In 1973 it will be necessary for the University to limit the number of students enrolling in all undergraduate courses.

Special Assistance for Aboriginal Students

The University may admit suitably qualified persons of Aboriginal descent outside of any quota restrictions.

Upon receipt of an application under this provision, the University will assess the applicant’s potential to cope with University studies, and will make Student Counsellors available to discuss the choice of a course and subsequent career opportunities.

All enquiries relating to this scheme should be directed to the Registrar.

Matriculated Student

A candidate who has satisfied the conditions for matriculation and for admission to a course of study shall be classed as a “matriculated student” of the University, after enrolment.

A person who has satisfactorily met the conditions for admission may be provided with a statement to that effect on the payment of the prescribed fee.

MATRICULATION REQUIREMENTS

Section A

GENERAL MATRICULATION AND ADMISSION REQUIREMENTS

1. A candidate may qualify for matriculation by attaining in recognised matriculation subjects at one New South Wales Higher School Certificate Examination or at one University of Sydney Matriculation Examination a level of performance determined by the Professorial Board from time to time.
2. The level of performance required to qualify for matriculation shall be
(a) passes in at least five recognised matriculation subjects, one of which shall be English and three of which shall be at Level 2 or higher; and
(b) the attainment of an aggregate of marks, as specified by the Professorial Board, in not more than five recognised matriculation subjects, such marks being co-ordinated in a manner approved by the Board.

3. The following subjects, and such other subjects as may be approved by the Professorial Board from time to time, shall be recognised matriculation subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Subject</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Greek</td>
<td>Chinese</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Latin</td>
<td>Japanese</td>
</tr>
<tr>
<td>Science</td>
<td>French</td>
<td>Hebrew</td>
</tr>
<tr>
<td>Agriculture</td>
<td>German</td>
<td>Dutch</td>
</tr>
<tr>
<td>Modern History</td>
<td>Italian</td>
<td>Art</td>
</tr>
<tr>
<td>Ancient History</td>
<td>Bahasa Indonesia</td>
<td>Music</td>
</tr>
<tr>
<td>Geography</td>
<td>Spanish</td>
<td>Industrial Arts</td>
</tr>
<tr>
<td>Economics</td>
<td>Russian</td>
<td></td>
</tr>
</tbody>
</table>

4. A candidate who has qualified to matriculate in accordance with the provisions of Clauses 1, 2 and 3 may be admitted to a particular Faculty, course or subject provided that:
(a) his qualification includes a pass at the level indicated in the subject or subjects specified in Schedule A as Faculty, course or subject prerequisites; or
(b) the requirements regarding these particular Faculty, course or subject prerequisites, as specified in Schedule A, have been met at a separate Higher School Certificate or University of Sydney Matriculation Examination.

5. Notwithstanding any of the provisions of Clauses 1 to 4, the Professorial Board may grant matriculation status to any candidate at the Higher School Certificate or University of Sydney Matriculation Examination who has reached an acceptable standard and may admit him to any Faculty, course or subject.

NOTE
1. For the purposes of clause 2(a), Mathematics and Science BOTH PASSED at first level or second level full course shall together count as three subjects.
2. For the purposes of clause 2(b), Mathematics and Science, TAKEN either singly or together at first level or second level full course shall each count as one and one half subjects.
<table>
<thead>
<tr>
<th>FACULTY OR COURSE</th>
<th>FACULTY OR COURSE PREREQUISITES</th>
</tr>
</thead>
</table>
| Applied Science | (a) Science at Level 2S or higher
| (excl. Applied Geography and Wool
| and Pastoral Sciences courses) | AND
| Biological Sciences | (b) either Mathematics at Level 2F or higher
| Engineering | OR
| Industrial Arts Course | Mathematics at Level 2S, provided that the candidate's performance in this subject
| Medicine | and his general level of attainment are at standards acceptable to the Professorial
| Military Studies | Board. |
| (Engineering course and Applied | |
| Science course) | |
| Science | |
| Bachelor of Science (Education)| |
| | (a) Science at Level 2S or higher
| | AND
| Architecture | (b) Mathematics at Level 2S or higher
| Applied Geography and Wool and| English at Level 2 or higher
| Pastoral Sciences courses | (a) Mathematics at Level 2S or higher
| (Faculty of Applied Science) | AND
| Arts | (b) either English at Level 2 or higher
| Social Work Degree Course | OR
| | English at Level 3, provided that the candidate's performance in this subject and his
| | general level of attainment are at standards acceptable to the Professorial Board.
| Commerce | Nil
| | Nil
| | As for Arts
| | As for Commerce
| Law | English at Level 2 or higher OR English at Level 3, provided that the candidate's
| Combined Jurisprudence/Law | performance in this subject and his general level of attainment are at standards
| Combined Arts/Law | acceptable to the Professorial Board, and provided that a candidate so qualified shall
<p>| Combined Commerce/Law | not enrol in a course of English Literature. |</p>
<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>SUBJECT PREREQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.011—Higher Physics I 1.001—Physics I 1.041—Physics IC</td>
<td>As for Faculty of Science</td>
</tr>
<tr>
<td>2.001—Chemistry I 17.001—General and Human Biology 25.001—Geology I 25.111—Geoscience I</td>
<td>Science at Level 2S or higher</td>
</tr>
<tr>
<td>10.011—Higher Mathematics I</td>
<td>Mathematics at Level 2F or higher</td>
</tr>
<tr>
<td>10.001—Mathematics I</td>
<td>Either Mathematics at Level 2F or higher OR Mathematics at Level 2S, provided that the candidate’s performance in the subject and his general level of attainment are at standards acceptable to the Professorial Board.</td>
</tr>
<tr>
<td>10.021—Mathematics IT</td>
<td>Mathematics at Level 2S or higher</td>
</tr>
<tr>
<td>15.102—Economics II</td>
<td>As for Faculty of Commerce</td>
</tr>
<tr>
<td>50.111—English IA 51.111—History I 51.121—History IB</td>
<td>English at Level 2 or higher</td>
</tr>
<tr>
<td>56.111—French I</td>
<td>French at Level 2 or higher</td>
</tr>
<tr>
<td>59.111—Russian I</td>
<td>Russian at Level 2 or higher</td>
</tr>
<tr>
<td>64.111—German I</td>
<td>German at Level 2 or higher</td>
</tr>
<tr>
<td>65.111—Spanish I</td>
<td>Spanish at Level 2 or higher</td>
</tr>
<tr>
<td>59.001—Russian IZ 64.001—German IZ 65.001—Spanish IZ</td>
<td>A foreign language, other than that in which enrolment is sought, at Level 2 or higher.</td>
</tr>
</tbody>
</table>
Section B
SUPPLEMENTARY PROVISIONS FOR MATRICULATION

Notwithstanding the provisions of Section A above, candidates may be accepted as "matriculated students" of the University under the conditions which are listed in the University Calendar.
ADMISSIONS AND ENROLMENT PROCEDURE

ADMISSIONS PROCEDURE

Details of the procedure to be followed by students seeking entry to first year courses at the University may be obtained from the Admissions Office or the Metropolitan Universities Admissions Centre.

Persons seeking entry to first year courses in one or more of the three Universities in the Sydney Metropolitan Area (Macquarie University, the University of New South Wales and the University of Sydney) are required to lodge a single application form with the Metropolitan Universities Admissions Centre, Third Floor, 13-15 Wentworth Avenue, Sydney (near Liverpool Street). Postal address: Box 7049, G.P.O., Sydney, 2001. Telephone: 26-6301. On the application form provision is made for applicants to indicate preferences for courses available in any of the three Universities. Students are notified individually of the result of their applications and provided with information regarding the procedures to be followed in accepting the offer of a place at this University and completing their enrolment at the Enrolment Bureau, Unisearch House, 221 Anzac Parade, Kensington.

FACULTY OF ENGINEERING ENQUIRY CENTRE

The Faculty Enquiry Centre is situated in the undercroft of the School of Electrical Engineering Building, Kensington (the corner of Engineering and Library Roads). Members of Academic Staff will be available to advise students about careers in the various fields of engineering and about undertaking a course in engineering in this University. The Centre will be open from 9.30 a.m. to 4.30 p.m. (closed 1.00 p.m. to 2.00 p.m.) from Wednesday, 10th to Friday, 19th January, 1973. Telephone: 662-3386. Prospective students are advised to take advantage of this facility.

ADMISSIONS OFFICE

The Admissions Office which is located in the Chancellery on the upper campus provides intending students (both local and overseas) with information regarding courses, admission requirements, scholarships and enrolment. Office hours are from 9.00 a.m.
to 1.00 p.m. and 2.00 p.m. to 5.00 p.m. Monday to Friday and an evening service is provided during the enrolment period.

Applications for special admission, admission with advanced standing and from persons relying for admission on overseas qualifications should be lodged with the Admissions Office. The Office also receives applications from students who wish to transfer from one course to another, resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled. It is essential that the closing dates for lodgment of applications are adhered to, and, for further details the sections on “Rules Relating to Students” and “Enrolment Procedure for Undergraduate Courses” should be consulted.

Applications for admission to undergraduate courses from students who do not satisfy the requirements for admission (see section on “requirements for admission”), from students seeking admission with advanced standing, and from students who have had a record of failure at another University, are referred by the Admissions Office to the Admissions Committee of the Professorial Board.

Students seeking to register as higher degree candidates should discuss their proposals initially with the Head of the School in which they wish to register. An application is then lodged on a standard form and the Admissions Office, after obtaining a recommendation from the Head of the School, refers the application to the appropriate Faculty or Board of Studies Higher Degree Committee.

ENROLMENT PROCEDURE FOR UNDERGRADUATE COURSES

In 1973 it will be necessary for the University to impose quotas in each Faculty and Board of Studies.

The enrolment procedure for the different classes of undergraduate students is as follows:

First Enrolments

(a) New South Wales residents already qualified for admission and persons who are applying for enrolment on the basis of qualifications gained or about to be gained outside New South Wales must lodge an application for enrolment with the Metropolitan Universities Admissions Centre, 13-15 Wentworth Avenue, Sydney (P.O. Box 7049 G.P.O., Sydney) by 27th October, 1972.
(b) New South Wales residents qualifying for admission by the 1972 New South Wales Higher School Certificate Examination or the 1973 Sydney University Matriculation Examination and those who have attended a University in New South Wales in 1972 must apply for enrolment to the Metropolitan Universities Admissions Centre, 13-15 Wentworth Avenue, Sydney (P.O. Box 7049 G.P.O., Sydney) by 19th January, 1973.

Completion of Enrolment

Students whose applications for enrolment are accepted will be required to complete their enrolment at a specified appointment time before the start of Session 1. Fees must be paid on the day of the appointment. However, in special circumstances and provided class places are still available, students may be allowed to complete their enrolment after the prescribed week subject to the payment of a late fee.

Application forms for enrolment and details of the application procedures may be obtained on application to the Registrar, P.O. Box 1, Kensington 2033.

Failure in First Year

First year students who failed more than half their programme at the 1972 Annual Examinations and who were not granted any deferred examinations will NOT follow the above procedure. They are required to ‘show cause’ why they should be allowed to continue in the course, and should await instructions in writing from the Registrar as to the procedure.

Later Year Enrolments

All students enrolling other than for the first time and not included above should enrol through the appropriate School and bring with them their notification of examination results for the previous year. This enrolment must be effected before or during the week before the commencement of Session 1 in accordance with the special arrangements made by the individual Schools.

Preliminary Enrolment

Courses in Aeronautical, Industrial, Mechanical Engineering and Naval Architecture

Students in the above courses should have received a form requesting them to nominate their choice (choices) of general studies electives, and technical electives where applicable.

If any student has not received the above form he should obtain it from the School’s general office, complete it and return
it to the general office before the end of lectures in the second session.

Courses in Civil Engineering, Electrical Engineering and Surveying

Enrolment Timetable

SCHOOL OF CIVIL ENGINEERING

a. Full-time Courses

1. **Students progressing into a complete year as shown in this Handbook**

 Year 2
 Surnames A to M Wednesday 21st February 9.00 a.m. to 11.00 a.m.
 Surnames N to Z 11.00 a.m. to 1.00 p.m.

 Year 3
 Surnames A to M Thursday 22nd February 9.00 a.m. to 11.00 a.m.
 Surnames N to Z 11.00 a.m. to 1.00 p.m.

 Year 4
 Surnames A to M Friday 23rd February 9.00 a.m. to 11.00 a.m.
 Surnames N to Z 11.00 a.m. to 1.00 p.m.

2. **Students with “broken” programmes NOT progressing into a complete year, as shown in this Handbook**

 Year 2
 Surnames A to M Tuesday 27th February 9.00 a.m. to 11.00 a.m.
 Surnames N to Z 11.00 a.m. to 1.00 p.m.

 Year 3
 Surnames A to M Wednesday 28th February 9.00 a.m. to 11.00 a.m.
 Surnames N to Z 11.00 a.m. to 1.00 p.m.

 Year 4
 Surnames A to M Friday 2nd March 9.00 a.m. to 11.00 a.m.
 Surnames N to Z 11.00 a.m. to 1.00 p.m.

b. Part-time Courses

1. **Students progressing into a complete stage as shown in this Handbook**

 Stages 2, 3, and 4 Thursday 22nd February 6.00 p.m. to 8.00 p.m.

 Stages 5 and 6 Friday 23rd February 6.00 p.m. to 8.00 p.m.
2. **Students with “broken” programmes NOT progressing into a complete stage as shown in this Handbook**

<table>
<thead>
<tr>
<th>Stages</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3, and 4</td>
<td>Wednesday 28th February</td>
<td>2.00 p.m. to 5.00 p.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.00 p.m. to 8.30 p.m.</td>
</tr>
<tr>
<td>5 and 6</td>
<td>Thursday 1st March</td>
<td>2.00 p.m. to 5.00 p.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.00 p.m. to 8.30 p.m.</td>
</tr>
</tbody>
</table>

c. **New Students with Advanced Standing**

<table>
<thead>
<tr>
<th>Enrolment Centre</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time</td>
<td>Friday 2nd March</td>
<td>9.00 a.m. to 12.30 p.m.</td>
</tr>
<tr>
<td>Part-time</td>
<td>Wednesday 28th February</td>
<td>6.00 p.m. to 8.30 p.m.</td>
</tr>
</tbody>
</table>

School of Civil Engineering

- **Enrolment Centre**
 - Room 109
 - School of Civil Engineering

SCHOOL OF ELECTRICAL ENGINEERING

a. **Full-time Courses**

Year 1 repeats and Year 2 students	Tuesday 27th February	9.30 a.m. to 12.30 p.m.
Year 3	Wednesday 28th February	9.30 a.m. to 12.30 p.m.
Year 4	Monday 26th February	9.30 a.m. to 12.30 p.m.

b. **Part-time Courses**

| Students re-enrolling at all stages | Monday 26th February | 2.00 p.m. to 5.00 p.m. |
| | | 6.00 p.m. to 8.30 p.m. |
c. New Students with Advanced Standing

Friday 2nd March
9.30 a.m. to 12.30 p.m.

Enrolment Centre
Re-enrolling students
Unisearch House
221 Anzac Parade
(across from Main Campus)

New students with advanced standing
Room G1
Electrical Engineering Building

SCHOOL OF MECHANICAL AND INDUSTRIAL ENGINEERING

Unless otherwise indicated students enrolling in the courses offered by the School are required to attend Room 106 in the School’s Building in accordance with the following timetable:

a. Full-time Courses

Year 2 and Year 1 repeats
Monday 26th February
2.00 p.m. to 6.00 p.m.

Year 3
Tuesday 27th February
9.00 a.m. to 12 noon

Year 4
Monday 26th February
9.00 a.m. to 12 noon

b. Part-time Courses

Stages 2, 3 and Stage 1 repeats
Monday 26th February
2.00 p.m. to 6.00 p.m.

Stages 4, 5 and 6
Tuesday 27th February
2.00 p.m. to 5.00 p.m.
6.00 p.m. to 8.30 p.m.

c. New Students with Advanced Standing

Friday 1st March
2.00 p.m. to 5.00 p.m.

Enrolment Centre
Room 106
School of Mechanical and Industrial Engineering Building
SCHOOL OF SURVEYING

a. Full-time Courses
 Year 2
 Tuesday 27th February
 9.30 a.m. to 12.30 p.m.
 Years 3 and 4
 Friday 2nd March
 9.30 a.m. to 12.30 p.m.

b. Part-time Courses
 Students re-enrolling at all Stages
 Wednesday 28th February
 2.00 p.m. to 6.00 p.m.

c. New Students with Advanced Standing
 Full-time
 Friday 2nd March
 9.30 a.m. to 12.30 p.m.
 Part-time
 Wednesday 28th February
 2.00 p.m. to 6.00 p.m.

Enrolment Centre
Unisearch House, 221 Anzac Parade
(across from Main Campus)

Miscellaneous Subjects (students not proceeding to a degree or diploma)

Students may be accepted for enrolment in miscellaneous subjects provided the University considers that the subject/s will be of benefit to the student and there is accommodation available. Only in exceptional circumstances will subjects taken in this way count towards a degree or diploma.

Students seeking to enrol in miscellaneous subjects should obtain a letter of approval from the Head of the appropriate School or his representative permitting them to enrol in the subject concerned. The letter should be given to the enrolling officer at the time of enrolment. Where a student is under exclusion he may not be enrolled in any miscellaneous subjects unless given approval by the Professorial Board.

Unless otherwise instructed, students who have obtained permission to enrol should attend the enrolment centre

Unisearch House on 221 Anzac Parade
(across from Main Campus) Friday 2nd March
2.00 p.m. to 4.30 p.m.
6.00 p.m. to 7.30 p.m.
Students who have completed the final examinations but have a thesis still outstanding are required to enrol for the period necessary to complete the thesis and to pay the requisite fees.

Course details must be completed during the prescribed Enrolment Week. For details of fee requirements, including late fee provisions, see under Fees.

Final Dates for Completion of Enrolment. No enrolments will be accepted from new students after the end of the second week of Session 1 (16th March, 1973) except with the express approval of the Registrar and the Head of the School concerned; no later year enrolments will be accepted after 31st March without the express approval of the Registrar which will be given in exceptional circumstances only.

UNIVERSITY UNION CARD

All students other than miscellaneous students are issued with a University Union membership card. This card must be carried during attendance at the University and shown on request.

The number appearing on the front of the card above the student’s name is the student registration number used in the University’s records. This number should be quoted in all correspondence.

The card must be presented when borrowing from the University libraries, when applying for travel concessions and when notifying a change of address. It must also be presented when paying fees on re-enrolment each year when it will be made valid for the year and returned. Failure to present the card could result in some inconvenience in completing re-enrolment.

A student who loses a Union card must notify the University Union as soon as possible.

New students will be issued with University Union cards at the University Union Enquiry Desk as soon as practicable after payment of fees. In the meantime, fees receipt form should be carried during attendance at the University and shown on request. A period of at least three weeks should be allowed to elapse after payment of fees before making application for the card. Cards will not be posted under any circumstances.
UNDERGRADUATE COURSE FEES*

COURSE FEES

Where course fees are assessed on the basis of session hours of attendance the hours for each subject for purposes of fee assessment shall be those prescribed in the Calendar, irrespective of any variation from the prescribed hours which may be necessary in conducting the subject.

Fee determination for courses in the Faculty of Engineering is on a session basis. There are two sessions in each year. A full-time course fee will be charged for any session where more than 15 hours' per week instruction, etc., is involved.

(i) Full-time Course Fee (more than 15 hours' attendance per week)—$270 per session.
(ii) Part-time Course Fee—over 6 hours and up to 15 hours' attendance per week—$135 per session.
(iii) Part-time Course Fee—6 hours' or less attendance per week—$67.50 per session.
(iv) Course Continuation Fee—A fee of $39 per annum (no session payment) is payable by:

Category (a) students who have once been enrolled for a thesis and have only that requirement outstanding, or
Category (b) students given special permission to take annual examinations without attendance at the University.
(Students in this category are not required to pay the subscriptions to the University Union, the Students' Union, the Sports Association and the Library fee.)

OTHER FEES

In addition to the course fees set out above all registered undergraduates will be required to pay:

Matriculation Fee — $11 — payable at the beginning of first year.
Library Fee — annual fee — $20.
University Union — $20 — entrance fee.

*Fees quoted are current at time of publication. The Council reserves the right to alter them at any time.
Student Activities Fees:

- University Union* — $30 — annual subscription.
- Sports Association* — $4 — annual subscription.
- Students’ Union* — $7 — annual subscription.
- Miscellaneous — $17 — annual fee.

Graduation Fee — $11 — payable at the completion of the course.

Depending on the course being taken, students may also be required to pay:

- Psychology Kit Hiring Charge — $2 per kit. Additional payment for breakages and losses in excess of $1.
- Biochemistry Kit Hiring Charge — $4 per kit. Additional charge for breakages and losses in excess of $1 may be required.
- Chemistry Kit Hiring Charge — $4 per kit. Additional charge for breakages and losses in excess of $1 may be required.
- Excursion Fee — $2 per subject (plant morphology, plant taxonomy, environmental botany).
- Anatomy Dissection Manual and Histology Slides deposit — $10 (refundable on return in satisfactory condition).
- Pathology Instrument Kit — $10 (refundable on return in satisfactory condition).

SPECIAL EXAMINATION FEES

- Deferred examination — $8 for each subject.
- Examinations conducted under special circumstances — $11 for each subject.
- Review of examination result — $11 for each subject.

LATE FEES

Session 1—First Enrolments

- Fees paid at the late enrolment session and before the commencement of Session 1 — $10
- Fees paid during the 1st and 2nd weeks of Session 1 — $20
- Fees paid after the commencement of the 3rd week of Session 1 with the express approval of the Registrar and Head of the School concerned — $40

* Life members of these bodies are exempt from the appropriate fee or fees.
Session 1—Re-Enrolments

Failure to attend enrolment centre during enrolment week $10
Fees paid after the commencement of the 3rd week of Session 1 to 31st March $20
Fees paid after 31st March where accepted with the express approval of the Registrar $40

Session 2—All Enrolments

Fees paid in 3rd and 4th weeks of Session 2 $20
Fees paid thereafter $40

Late lodgement of corrected enrolment details forms (late applications will be accepted for three weeks only after the prescribed dates) $8

WITHDRAWAL FROM COURSE

1. Students withdrawing from a course are required to notify the Registrar in writing. Fees for the course accrue until a written notification is received.

2. Where notice of withdrawal from a course is received by the Registrar before the first day of Session 1 a refund of all fees paid other than the matriculation fee will be made.

3. Where a student terminates for acceptable reasons a course of study within 30 days of the commencement of Session 1 a refund of fees paid, less a sum of $39, may be made in respect of all fees except the University Union Entrance and membership fees, the University of New South Wales Students' Union fee and the University of New South Wales Sports Association fee, in regard to which fees refunds may be made as shown hereunder.

4. Where a student terminates for acceptable reasons a course of study: (1) after a lapse of 30 days and before the lapse of half Session 1, one half of each of the course fee, the library fee and the miscellaneous student activities fee may be refunded; (2) before the lapse of half Session 2 one half of the session's course fee may be refunded.

5. Where a student terminates a course of study after half a session has elapsed, no refund may be made in respect of that session's fees.
6. No portion of the matriculation fee is refundable on withdrawal.

7. On notice of withdrawal a partial refund of the University Union Entrance Fee is made on the following basis; any person who has paid the entrance fee in any year and who withdraws from membership of the University Union after the commencement of Session 1 in the same year, or who does not renew his membership in the immediately succeeding year may on written application to the Warden receive a refund of half the entrance fee paid.

8. On notice of withdrawal a partial refund of the Student Activities Fees is made on the following basis:
 - University Union—$7.50 in respect of each half session.
 - University of New South Wales Students' Union — where notice is given prior to the end of the fifth week of Session 1, $3.50, thereafter no refund.
 - University of New South Wales Sports Association — where notice is given prior to 30th April a full refund is made thereafter no refund.

9. Where initial registration is made at commencement of Session 2 in any year and the student subsequently withdraws, a refund of fees based on the above rules may be made.

PAYMENT OF FEES

Completion of Enrolment

All students are required to attend the appropriate enrolment centre during the prescribed enrolment period* for authorization of course programme. Failure to do so will incur a late fee of $10.

First year students (including students repeating first year) must complete enrolment (including fee payment) before they are issued with class timetables or permitted to attend classes. A first year student who has been offered a place in a course to which entry is restricted and fails to complete enrolment (including fee payment) at the appointed time may lose the place allocated.

Fees should be paid during the prescribed enrolment period but will be accepted during the first two weeks of Session 1. (For late fees see earlier). No student is regarded as having completed an enrolment until fees have been paid. Fees will not be accepted

*The enrolment periods for Sydney students are prescribed annually in the leaflet on enrolment procedure.
(i.e., enrolment cannot be completed) from new students after the end of the second week of Session 1 (i.e., 16th March, 1973), and after 31st March from students who are re-enrolling, except with the express approval of the Registrar, which will be given in exceptional circumstances only.

Payment of Fees by Session

Students who are unable to pay their fees by the year may pay by the session, in which case they are required to pay the first session's course fees and other fees for the year, within the first two weeks of Session 1. Students paying under this arrangement will receive accounts from the University for Session 2 fees. These fees must be paid within the first two weeks of Session 2.

Assisted Students

Scholarship holders or Sponsored Students who have not received an enrolment voucher or appropriate letter of authority from their sponsor at the time when they are enrolling should complete their enrolment paying their own fees. A refund of fees will be made when the enrolment voucher or letter of authority is subsequently lodged with the Cashier.

Extension of Time

Any student who is unable to pay fees by the due date may apply in writing to the Deputy Registrar (Student Services) for an extension of time. Such application must give year or stage, whether full-time or part-time, and the course in which the applicant wishes to enrol, state clearly and fully the reasons why payment cannot be made and the extension sought, and must be lodged before the date on which a late fee becomes payable. Normally the maximum extension of time for the payment of fees is one month for fees due in Session 1 and for one month from the date on which a late fee becomes payable in Session 2.

Where an extension of time is granted to a first year student in Session 1, such student may only attend classes on the written authority of the Registrar, but such authority will not normally be given in relation to any course where enrolments are restricted.

Failure to Pay Fees

Any student who is indebted to the University and who fails to make a satisfactory settlement of his indebtedness upon receipt of due notice ceases to be entitled to membership and privileges of the University. Such a student is not permitted to register for
a further session, to attend classes or examinations, or to be granted any official credentials.

No student is eligible to attend the annual examinations in any subject where any portion of his course fees for the year is outstanding after the end of the fourth week of Session 2 (17th August, 1973).

In very special cases the Registrar may grant exemption from the disqualification referred to in the two preceding paragraphs upon receipt of a written statement setting out all relevant circumstances.

Cashier's Hours

The cashier's office is open for the payment of fees from 9.30 a.m. to 1.00 p.m., and from 2.00 p.m. to 4.30 p.m. Monday to Friday. It is open for additional periods during the first four weeks of Session 1 and three weeks of Session 2. Students are advised to consult noticeboards for details.
RULES RELATING TO STUDENTS

GENERAL CONDUCT

Acceptance as a member of the University implies an undertaking on the part of the student to observe the regulations, by-laws and other requirements of the University, in accordance with the declaration signed at the time of the enrolment.

In addition, students are expected to conduct themselves at all times in a seemly fashion. Smoking is not permitted during lectures, in examination rooms or in the University Library. Gambling is also forbidden.

Members of the academic staff of the University, senior administrative officers, and other persons authorised for the purpose, have authority, and it is their duty, to check and report on disorderly or improper conduct or any breach of regulations occurring in the University.

ATTENDANCE AT CLASSES

Students are expected to be regular and punctual in attendance at all classes in the course or subject in which they are enrolled. All applications for exemption from attendance at lectures or practical classes must be made in writing to the Registrar.

In the case of illness or of absence for some other unavoidable cause a student may be excused by the Registrar from non-attendance at classes for a period of not more than one month, or on the recommendation of the Dean of the appropriate Faculty for any longer period.

Applications to the Registrar for exemption from re-attendance at classes, either for lectures or practical work, may only be granted on the recommendation of the Head of the appropriate School. The granting of an exemption from attendance does not carry with it exemption from payment of fees.

Where a student has failed a subject at the annual examinations in any year and re-enrols in the same course in the following year, he must include in his programme of studies for that year the subject in which he has failed. This requirement will not be applicable if the subject is not offered the following year; is not a compulsory component of a particular course; or if there is
some other cause, which is acceptable to the Professorial Board, for not immediately repeating the failed subject.

Where a student has attended less than eighty per cent of the possible classes, he may be refused permission to sit for the examination in that subject.

INDEBTEDNESS TO THE UNIVERSITY

Any student who is indebted to the University and who fails to make a satisfactory settlement of his indebtedness upon receipt of due notice ceases to be entitled to membership and privileges of the University. Such a student is not permitted to register for a further session, to attend classes or examinations, or to be granted any official credentials.

In very special cases the Registrar may grant exemption from the disqualification referred to in the preceding paragraph upon receipt of a written statement setting out all relevant circumstances.

COURSE TRANSFERS

Students wishing to transfer from one course to another must apply on an application form obtainable from the Admissions Office, Chancellery, by Friday 19th January. As quotas will operate on entry to all Faculties and the Board of Vocational Studies, failure to apply by 19th January 1973 will probably result in the application for transfer being unsuccessful.

Students whose applications to transfer are successful are required to comply with the enrolment procedures for the year/stage of the new course in which they expect to enrol. Unless otherwise instructed they must present the letter granting approval of the transfer to the enrolling officer.

Students who have not received advice regarding their application to transfer before the date on which they are required to enrol should check with the Admissions Office.

Students should also advise the Enrolling Officer of the School in which they are enrolled of their intention to transfer.

ADMISSION WITH ADVANCED STANDING

Any person who makes application to register as a candidate for any degree or other award granted by the University may be admitted to the course of study leading to such degree or award with such standing on the basis of previous attainments as may be determined by the Professorial Board.

Students should consult the University Calendar for complete details regarding "Admission with Advanced Standing".
CHANGES IN COURSE PROGRAMMES AND WITHDRAWAL FROM SUBJECTS

Students seeking approval to substitute one subject for another, add one or more subjects to their programme or discontinue part or all of their programme must make application to the Registrar through the Head of the School responsible for the course on forms available from School offices. The Registrar will inform students of the decision. Application to enrol in additional subjects must be submitted by 31st March.

Approval of withdrawal from subjects is not automatic, each application being determined after considering the circumstances advanced as justifying withdrawal.

It is emphasized that:
1. withdrawal from a subject, tuition in which extends over the academic year, at any time after the May recess;
2. withdrawal from a subject, tuition in which extends over only one session, at any time after one month from the commencement of the subject; or
3. failure to sit for the examinations in any subject in which the student has enrolled, shall be regarded as failure to satisfy the examiners in the subject, unless written approval to withdraw without failure has been obtained from the Registrar.

STUDENT RECORDS

All students will receive enrolment details forms by 4th April and 7th August. It is not necessary to return the forms unless any information recorded thereon is incorrect. Amended forms must be returned to the Examinations and Student Records Section by 19th April and 22nd August respectively. Amendments notified after the closing date will not be accepted unless exceptional circumstances exist and approval is obtained from the Registrar. Where a late amendment is accepted, a late fee of $8 will be payable. Amended forms returned to the Registrar will be acknowledged in writing within fourteen days.

RESUMPTION OF COURSES

Students wishing to resume their studies after an absence of twelve months or more are required to apply to the Admissions Office for permission to re-enrol by 21st January, 1972. Students re-enrolling in this way will normally be required to satisfy conditions pertaining to the course at the time of re-enrolment. This
condition applies also to students who have been re-admitted to a course after exclusion under the rules restricting students re-enrolling.

ANNUAL EXAMINATIONS

Most annual examinations are held in November-December and examinations in many subjects are also held during the mid-year recess. Timetables indicating the dates and times of examinations and notices of the location of examinations are posted on the central notice boards in the Wallace Wurth Medical School, Biological Sciences Building, the Chancellery, Central Lecture Theatre Block, Dalton (Chemistry) School, Main Building (Mining and Physics), outside the Science Theatre and in the Western Grounds Area.

Misreading of the timetable is not an acceptable excuse for failure to attend an examination.

A student suffering from a physical disability which puts him at a disadvantage in written examinations should apply to the Registrar in writing, as early as possible, for special provisions to be made for him to take examinations. The request should be supported by medical or other evidence.

Examinations are conducted in accordance with the following rules and procedure:

(a) Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.

(b) Candidates are required to be in their places in the examination room not less than ten minutes before the time for commencement.

(c) No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.

(d) No candidate shall be admitted to an examination after thirty minutes from the time of commencement of the examination.

(e) No candidate shall be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.

(f) No candidate shall be re-admitted to the examination room after he has left it unless during the full period of his absence he has been under approved supervision.
(g) A candidate shall not by any improper means obtain, or endeavour to obtain, assistance in his work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.

(h) Smoking is not permitted during the course of examinations.

(i) All answers must be in English unless otherwise directed. Foreign students who have the written approval of the Officer-in-Charge of Examinations may use standard translation dictionaries.

(j) A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room and to such further penalty as may be determined in accordance with the By-Laws.

A student who through serious illness or other cause outside his control is unable to attend an examination is required to bring the circumstances (supported by a medical certificate or other evidence) to the notice of the Registrar not later than seven days after the date of the examination, and may be required to submit to medical examination. A student who attempts an examination yet claims that his performance is prejudiced by sickness on the day of the examination, must notify the Registrar or Examination Supervisor, before, during or immediately after the examination and may be required to submit to medical examination.

A student who believes that his performance at an examination has been affected by serious illness during the year or by other cause outside his control and who desires these circumstances to be taken into consideration in determining his standing is required to bring the evidence (supported by medical certificates or other evidence) to the notice of the Registrar not later than seven days after the date of the examination.

In the assessment of a student's progress, consideration is given to work in laboratory and class exercises and to any term or other tests given throughout the year, as well as to the results of written examinations.

Examination results are posted to the term addresses of students and it is therefore essential that any change of address be advised to the Examination and Student Records Section. Results are also posted on School notice boards. No examination results will be given by telephone.

Examination results may be reviewed for a fee of $9.00 a subject, which is refundable in the event of an error being
discovered. Such a review will consist primarily in ensuring that all questions attempted by candidates have been marked and that the total of all marks awarded are correct. Applications for review must be submitted on the appropriate form to the Examinations and Student Records Section, together with the necessary fee by the date indicated on the notification of results.

EXAMINATION RESULTS

Graded Passes

Passes will be graded as follows:

High Distinction (indicates a quite superior performance).
Distinction (indicates a superior performance).
Credit (indicates a good but not superior performance).
Pass (indicates the achievement of an acceptable minimum level of competence in relation to the course objectives).

Pass Conceded

A pass conceded may be granted to students where the mark in the subject is slightly below the required standard and whose overall performance warrants it.

Terminating Pass

A terminating pass may be granted where the mark for the subject is below the required standard. A terminating pass will not permit a student to progress further in the subject or to enrol in any other subject for which a pass in the subject is a co-requisite or prerequisite. A student granted a terminating pass may attempt a deferred examination, if available, to improve his performance, but if the student fails the deferred examination, the terminating pass will stand.

DEFERRED EXAMINATIONS

Deferred examinations may be granted in the following cases:

(i) When a student through illness or some other acceptable circumstance has been prevented from taking the annual examination or has been placed at a serious disadvantage during the annual examinations. Applications for deferred examinations in the first category must be lodged with the Registrar with appropriate evidence of the circumstances (e.g., medical certificate) not later than seven days after the examination concerned. All such applications shall be reported to the Head of the School responsible for the
subject. Before a deferred examination is granted on medical grounds, regard shall be paid to the student’s class and assignment work in the subject, to his general performance in the year, and to the significance of the annual examination in compiling the composite mark.

(ii) To help resolve a doubt as to whether a student has reached the required standard in a subject.

(iii) To allow a student by further study to reach the required standard in a subject. The granting of a deferred examination in such cases will be based on the general quality of the student’s performance.

(iv) Where a student’s standing at the annual examinations is such that his progression or graduation could depend on his failure in one subject only, then his position in that subject shall be again reviewed with a view to determining whether a deferred examination may be granted notwithstanding his failure otherwise to qualify for such concession.

Deferred examinations must be taken at the centre in which the student is enrolled, unless he has been sent on compulsory industrial training to remote country centres or interstate. An application to take an examination away from the centre in which enrolled must be lodged with the Registrar immediately examination results are received. Normally, the student will be directed to the nearest University for the conduct of the deferred examination.

A student eligible to sit for a deferred examination must lodge with the Accountant an application, accompanied by the fee of $8 per subject, by the date indicated on the notification of results.

APPLICATION FOR ADMISSION TO DEGREE OR DIPLOMA

Applications for admission to a degree or diploma of the University must be made on the appropriate form by 15th January. Applicants should ensure that they have completed all requirements for the degree or diploma, including industrial training where necessary.

RESTRICTION UPON STUDENTS RE-ENROLLING

The University Council has adopted the following rules governing re-enrolment with the object of requiring students with a record of failure to show cause why they should be allowed to re-enrol and retain valuable class places. These rules apply retrospectively from 1st January, 1971.
1. (i) A student shall show cause why he should be allowed to repeat a subject in which he has failed more than once. (Failure in a deferred examination as well as in the annual examination counts, for the purpose of this regulation, as one failure.) Where such subject is prescribed as a part of the student's course he shall be required to show cause why he should be allowed to continue the course. Notwithstanding the provisions of Clause 1(i)

(ii) A student enrolled in the first year or first stage of any course, other than the medical course, who has failed in more than half the programme in which he is enrolled for that year or stage shall be required to show cause why he should be allowed to continue in the course.

(iii) A student enrolled in the first year of the Medical course who has failed in more than one subject of that year shall be required to show cause why he should be allowed to continue in the Medical course.

(iv) The provisions of sections (ii) and (iii) of this rule shall be deemed to apply to any student on transfer from another course or institution whose programme of studies in the first year of enrolment immediately following transfer is comprised of subjects so chosen that half or more of such subjects are listed in the University Calendar as first year subjects.

2. Notwithstanding the provisions of Clause 1, a student shall be required to show cause why he should be allowed to continue a course which he will not be able to complete in the time set down in the following schedule:

<table>
<thead>
<tr>
<th>Number of years in course</th>
<th>Total time allowed from first enrolment to completion (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

3. No full-time student shall, without showing cause, be permitted to continue a course unless all subjects of the first year of his course are completed by the end of his second year of attendance. No student in the Faculty of Arts shall,
without showing cause, be permitted to continue a course unless he completes four subjects by the end of his second year of attendance. No full-time student in the Bachelor of Social Work course shall without showing cause be permitted to continue with the course unless he completes the equivalent of four full subjects by the end of his second year of attendance.

No part-time student in a course in which progression is by stage shall without showing cause be permitted to continue a course in which he will not be able to complete all subjects of the first two stages by the end of his fourth year of attendance and all subjects of the third year and fourth stages of his course by the end of his seventh year of attendance.

No part-time student in the Science course shall without showing cause be permitted to continue a course in which he will not be able to complete level one Mathematics and six other level one units by the end of his fourth year of attendance and fourteen units inclusive of at least three at level two of his course by the end of his seventh year of attendance.

No student in the Faculty of Medicine shall, without showing cause, be permitted to continue with the medical course unless he completes the second year of the course by the end of his third year of attendance, and the third year of the course by the end of his fourth year of attendance.

4. A student who has a record of failure in a course at another University shall be required to show cause why he should be admitted to this University. A student admitted to a course at this University following a record of failure at another University shall be required to show cause, notwithstanding any other provisions in these rules, why he should be permitted to continue in that course if he is unsuccessful in the annual examinations in his first year of attendance at this University.

5. Any student excluded under any of the Clauses 1-3 may apply for re-admission after two academic years and such application shall be considered in the light of any evidence submitted by him.

6. A student wishing "to show cause" under these provisions shall do so in writing to the Registrar. Any such application shall be considered by a committee, hereinafter referred to as the Re-enrolment Committee, appointed by the Professorial Board, which shall determine whether the cause shown is
adequate to justify his being permitted to continue his course or re-enrol as the case may be.

7. The Vice-Chancellor may on the recommendation of the Re-enrolment Committee exclude from attendance in a course or courses any student who has been excluded from attendance in any other course under the rules governing re-enrolment and whose record at the University demonstrates, in the opinion of the Re-enrolment Committee and the Vice-Chancellor, the student’s lack of fitness to pursue the course nominated.

8. A student who has failed, under the provisions of Clause 6 of these rules, to show cause acceptable to the Re-enrolment Committee why he should be permitted to continue in his course, and who has subsequently been permitted to re-enrol in that course or to transfer to another course, shall also be required to show cause, notwithstanding any other provisions in these rules, why he should be permitted to continue in that course if he is unsuccessful in the annual examinations immediately following the first year of resumption or transfer of enrolment as the case may be.

9. Any student who is excluded from attendance in any course or subject under the provisions of these rules may appeal to an Appeal Committee constituted by Council for this purpose. The decision of the Appeal Committee shall be final.

10. The notification to any student of a decision by the Re-enrolment Committee to exclude the student from attendance in any course or subject shall indicate that the student may appeal against the decision to an Appeal Committee. In lodging such application the student shall ensure that a complete statement is furnished of all grounds on which the application is based and shall indicate whether or not the student wishes to appear in person before the Appeal Committee.

In considering an appeal the Appeal Committee, on the basis of the student’s academic record and the stated grounds for review, shall decide:

(i) whether there are grounds which justify the Committee seeing the student in person, or

(ii) whether there is sufficient information available to the Committee to allow decision without seeing the student in person

and so proceed to determine the application accordingly.
Applications for re-admission must be made on the standard form and lodged with the Registrar not later than 30th June of the year prior to that for which re-admission is sought. An application should include evidence of appropriate study in the subjects (or equivalents) on account of which the applicant was excluded. In addition, evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity should be furnished. An applicant may be required to take the annual examinations in the relevant subjects as qualifying examinations in which case re-admission does not imply exemption from the subject.

Late applications cannot be considered where, in the opinion of the University, insufficient time will be available for the student to prepare himself for any qualifying examinations which may be required.

It should be noted that a person under exclusion may not be enrolled in miscellaneous subjects unless he has received the approval of the Professorial Board on the recommendation of the Admissions Committee.

Persons who intend applying for re-admission to the University at a future date may seek advice as to ways in which they may enhance their prospects of qualifying for re-admission. Enquiries should be made on a form obtainable from the Examinations Branch, and lodged with the Registrar.

The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, thesis or other work executed by students as part of their courses, or submitted for any award or competition conducted by the University.

Students are requested to notify the Student Records Section of the Registrar’s Division of any change in their address, as soon as possible. Failure to do this could lead to important correspondence not reaching students. The University cannot accept responsibility if official communications fail to reach students who have not notified their change of address. A Change of Address Advice form is available at Faculty and School offices and at the Enquiry Counters on the Ground Floor of the Chancellery Building.
NOTICES

Official University notices are displayed on the notice boards and students are expected to be acquainted with the contents of those announcements which concern them.

LOST PROPERTY

All enquiries concerning lost property should be made to the Superintendent on Extension 2503 or to the Lost Property Office at the Union.

PARKING WITHIN THE UNIVERSITY GROUNDS

Because of the limited amount of parking space available, only the following categories of students may apply for a permit; motor cycle owners (annual fee $3.90); higher degree students (limited issue, annual fee $7.80); postgraduate, and senior undergraduate students who have completed three years of a full-time or part-time course (annual fee $3.90). A permit will allow access to the campus between 5 p.m. and 11 p.m. on weekdays and during library hours on Saturdays, Sundays and public holidays. Enquiries should be made to the Property Section, Room 240, The Chancellery Building, or phone 663 0351, extension 2920. It should be noted that increasing demand for parking space may require the imposition of further restrictions.

APPLICATION OF RULES

General

Any student who requires information on the application of these rules or any service which the University offers may make inquiries from the Admissions Office, the Student Counselling Centre or the Registrar.

Appeals

Section 5(c) of Chapter III of the By-laws provides that "Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action by the Vice-Chancellor, whether on appeal or otherwise, to the Council".
STUDENT SERVICES

THE LIBRARY

The University library is on the upper campus and adjacent to the Chancellery, and the Arts and Commerce Buildings. The Bio-Medical Library is in the Biological Sciences Building with a branch at Prince Henry Hospital (Phone: 661-0111). The Law Library is temporarily housed on the 4th Floor of the Science Building on the upper campus.

The Library’s Undergraduate Collection covers the teaching and research interests of the Faculty, and students are expected to read widely and critically from it.

It is recommended that students attend the Introduction to the Library which is held at advertised times during Orientation Week and the first week of Session 1. The Introduction uses audio-visual aids to describe the physical layout of the undergraduate library and the services available to readers.

Copies of the booklet Guide to the Library are available on request.

Students who are interested in a subject approach to information may attend a course which outlines methods of searching for information in libraries. This course runs for eight hours over a period of one week.

Individual assistance for readers with specific library problems is provided by the Reader Assistance Unit which is located in the foyer.

Staff and students must use a machine readable identification card to borrow from the main University Library. Personal identification is required in the other libraries listed. For students a current union card is acceptable. Staff must apply to the Library for a library card.

THE UNIVERSITY UNION

The University Union, housed in the circular building and joined by a courtyard to an adjacent rectangular building, is located near the entrance to the Kensington campus from Anzac Parade. The third building in the Union complex was completed in 1971. Membership of the Union is compulsory for all
registered students of the University and is also open to all members of staff and graduates of the University.

The full range of facilities provided by the Union includes a cafeteria service and other dining facilities, a large shopping centre, cloak room, banking and hairdressing facilities, showers, a women's lounge, common, games, reading, meeting, music, practice, craft and dark rooms. Photocopying, sign printing, and stencil cutting services are also available.

The Union also sponsors and conducts courses in many facets of the arts including weaving, photography, creative dance and yoga.

STUDENT ACCOMMODATION

Residential Colleges

The Kensington Colleges

Accommodation for students is provided within the group of The Kensington Colleges which comprise Basser College, Goldstein College and Philip Baxter College. The group houses 450 men and women students, as well as staff members. Tutors in residence provide tutorial assistance in a wide range of subjects.

Board and residence fees, which are payable on a session basis, amount to $308 per session. Intending students should apply in writing to the Master, Box 24, Post Office, Kensington, N.S.W. 2033, from whom further information is available.

International House

International House accommodates over 110 students of whom half are Australian; the remaining half is made up of students from some 20 different countries. First-year students who have come to the University straight from school are not eligible for residence because preference is given to mature undergraduates and postgraduate students. Fees are $23.50 per week.

Students should apply as soon as possible if they wish to reside at International House at a later date. They should write to the Warden, International House, P.O. Box 88, Kensington, N.S.W. 2033 for information.

New College

This Church of England College is the first of the independent Colleges on the Campus of the University. There are no religious
tests, and accommodation is available for 210 men in single study-bedrooms. Fees are $25 per week.

Enquiries should be addressed to the Master, New College, Anzac Parade, Kensington, N.S.W. 2033.

Warrane College
This College, an affiliated Roman Catholic residential college, was completed in 1970, and provides accommodation for 200 students and fourteen resident tutors.

Basic fees are $24 per week for board and residence, payable on a session basis, and a registration fee of $20. Intending students should write to The Master, Warrane College, Box 123, P.O., Kensington, N.S.W. 2033.

The Jewish College
The Jewish College will provide accommodation for 86 men and women students when it is ready for occupation in 1973. The basic fee for residents will be $28 a week. Non-resident membership will be available to students who wish to avail themselves of the Kosher dining room and tutorial facilities.

Applications for residence and further information should be addressed to The Master, The Jewish College, The University of New South Wales, Box 1, P.O., Kensington, N.S.W. 2033.

Other Accommodation
Students requiring other than Residential College accommodation may make personal application to the Housing Officer (Ext. 3260) at the Student Amenities Unit. Current lists are kept of accommodation available at recognized boarding houses, private homes, and in serviced and unserviced apartments.

STUDENT AMENITIES UNIT
The Amenities Unit is concerned with student welfare and its activities are associated with sport and recreation, travel and student accommodation. It works in close liaison with the Sports Association, assisting the various clubs, and administers sporting facilities for both grade and social competitions. The Unit also has the added responsibility of the Physical Education and Research Centre where attractive recreational programmes for students and staff are provided. Concessional application forms for all types of travel may also be obtained at the Enquiry Desk
in the Chancellery or at the Student Amenities Unit. A Housing Officer is also available to assist students with any off-campus accommodation problems.

Location: The Student Amenities Unit is located in Hut B at the foot of Basser Steps.

Phone: 663 0351, Extension 2235 Sports Association
 3271 Physical Education and Recreation Centre
 3261 Travel
 3260 Accommodation

STUDENT EMPLOYMENT UNIT

The Student Employment Unit offers assistance with career employment for final year students and graduates of the University. This service includes the mailing of regular job vacancy notices to registered students and a campus interview programme for final year students. Careers advice and assistance is also available to undergraduates. Assistance is offered in finding vacation employment which gives either course related experience or industrial training experience where this is a course requirement. Information and advice regarding cadetships, undergraduate and postgraduate scholarships is also available.

The Service is located in the Chancellery on the ground floor.
Telephone: 663 0351 ext. 3259 for employment and careers advice, or
663 0351 ext. 2086 for cadetships and industrial training information.

CHAPLAINCY SERVICE

This service is provided for the benefit of students and staff by five Christian Churches and by the Jewish congregation. Chaplains are in attendance at the University at regular times. A Chapel is also available for use by all denominations.

The University Chapel and full-time chaplains are located in Hut F near the Chemistry Building. They may be contacted by phone at the following extensions: Anglican, 2684; Jewish, 3273; Roman Catholic, 2379; Churches of Christ, Methodist and Seventh Day Adventist, 2683.
STUDENT HEALTH UNIT
A student health and first aid centre is situated within the University. It is staffed by two qualified medical practitioners, assisted by a nursing sister and secretary.

The medical service, although therapeutic, is not intended to replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected, the student is referred to a private practitioner or to an appropriate hospital for specialist opinion and/or treatment. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.

The service is available to all enrolled students by appointment, free of charge between 9 a.m. and 5 p.m. Mondays to Fridays, and additionally to part-time students from 6 p.m. to 8 p.m. on Tuesdays and Thursdays during session. For staff members, immunizations are available, and first-aid service in the case of injury or illness on the campus.

The centre is located in Hut E on the northern side of the campus in College Road.

Appointments may be made by calling at the centre or by telephoning extension 2679 or 3275 during the above hours.

STUDENT COUNSELLING AND RESEARCH UNIT
The Student Counselling and Research Unit offers a free, confidential counselling service to help students, individually or in groups, to deal with problems, and to make plans and decisions associated with their personal, academic, and vocational progress.

Interviews and group programmes are available between 9 a.m. and 8 p.m. each week-day. Appointments may be made at the Unit, which is located at the foot of Basser Steps, or by ringing 663-0351, extensions 2600-2605 between 9 a.m. and 5 p.m.

FINANCIAL ASSISTANCE TO STUDENTS
The Students' Union and the University have co-operated to provide assistance to students who are in financial difficulties which are considered likely to prejudice their progress with their studies.

Three main forms of assistance are available:

1. **Deferment of Payment of Fees**
 Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided
the deferment is requested prior to the due date for fee payments.
In exceptional circumstances the University may consider granting deferments for up to twelve months or even longer. In cases where payment is deferred to 31st December, examination results will not be published or made available until such time as the outstanding fees are paid. Where deferments are granted to a date beyond 31st December, the University may require the student to enter into a formal agreement to repay the fees.

2. **Short Terms Cash Loans**
Donations from the Students’ Union, the University Union and other sources have made funds available for urgent cash loans not exceeding $100.00. These loans are normally repayable within one month.

3. **Long Term Cash Loans**
An amount of up to $300.00 is available from this fund, repayable usually after twelve months or within twelve months of graduation or upon withdrawal from the course. This scheme is funded jointly by the University and the Students’ Union. Students are required to enter into a formal agreement with the University to repay such a loan.

In all cases assistance is limited to students with reasonable academic records and whose financial circumstances warrant loans.
Applications may be made personally to the Deputy Registrar (Student Services).

FINANCIAL ASSISTANCE TO ABORIGINAL STUDENTS
Financial assistance is available from a number of sources to help Aboriginal students. Apart from Open Entrance Commonwealth University Scholarships, there is also a Commonwealth Aborigina! Study Grant Scheme. Furthermore, the University may assist Aboriginal students with some essential living expenses or the waiving of course fees in exceptional circumstances.
All enquiries relating to this scheme should be directed to The Deputy Registrar (Student Services).

UNIVERSITY CO-OPERATIVE BOOKSHOP LTD.
Membership is open to all students, on payment of a fee of $5, refundable when membership is terminated. Members receive an annual rebate on purchases of books.
Randwick

The Schools of Highway and Traffic Engineering and the Structures Laboratory of the School of Civil Engineering occupy new buildings on the site of the old Tramway Depot at King Street, Randwick.

Manly Vale

The Water Research Laboratory of the School of Civil Engineering.
THE STUDENTS’ UNION

The Students’ Union was formed in 1952 as an organization, duly recognised by the University Council, to represent the student body and to provide a central organisation for the administration of student activities. In the words of its constitution, “The Union is formed for the purpose of advancing the interests of University men and women, facilitating their general scientific and technical education, and fostering a University spirit among them”.

The Union affords a recognised means of communication between the student body and the University authorities, and represents its members in all matters affecting their interests. It aims to promote the cultural, educational and recreational life of the University and to encourage a permanent interest among graduates in the life and progress of the University.

Membership of the Union is compulsory for all registered students of the University and is open to graduates of the University and to members of its academic staff. The annual subscription is $7.

The Union is governed by a Council consisting of student representatives from the various faculties of the University, representatives of Life Members, overseas students, and of the University and the Sports Association. The Council is elected annually.

THE SPORTS ASSOCIATION

The Sports Association is a student organization within the University, and it caters for a variety of competitive sports for both men and women.

In December 1952 the University Council approved the establishment of the Sports Association which consisted of five clubs. As the University has grown, the Association has expanded, and today includes over thirty clubs.

The controlling body of the Association is the General Committee which consists of a President, Secretary, Treasurer, eight
Vice-Presidents and two delegates from each of the affiliated clubs.

Membership of the Association is compulsory for all registered students, and the annual subscription is $4.

PHYSICAL EDUCATION AND RECREATION CENTRE
The Physical Education and Recreation Centre consists of eight squash courts and a main building. The latter has a large gymnasium and ancillary practice rooms for fencing, table tennis, judo and weightlifting. The Supervisor of Physical Recreation is responsible for this Centre and provides a recreational programme for both students and staff. Those who desire to participate in the recreational programmes should contact the Supervisor on Extension 3271.

STUDENT CLUBS AND SOCIETIES
Students have the opportunity of joining a wide range of clubs and societies. Affiliated with the Students’ Union are the School and Faculty associations, and the numerous religious, social and cultural clubs. There are also many sporting clubs (33) affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students’ Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

THE UNIVERSITY REGIMENT
Enquiries should be made to the Adjutant at the Regimental Depot in Day Avenue just west of Anzac Parade.

THE NSW UNIVERSITY SQUADRON
Enquiries should be made to the Commanding Officer at Squadron Headquarters at the corner of City and Darlington Streets, Darlington 2008.

ROYAL AUSTRALIAN NAVY
Enquiries should be made to the Royal Australian Naval Liaison Officer, Professor J. S. Ratcliffe, Commander, R.A.N.V.R., at the School of Chemical Engineering. Phone 663 0351, ext. 2406.
UNDERGRADUATE SCHOLARSHIPS AND PRIZES

SCHOLARSHIPS

Students undertaking courses in the Faculty of Engineering are eligible to apply for the following scholarships. Not all scholarships are offered each year. During the first week of January prospective applicants should enquire from the Student Employment and Scholarships Unit which scholarships are available.

Except where otherwise specified, applications on the forms obtainable from the Admissions Office (phone: 663-0351, ext. 2485) must be lodged with the Registrar, the University of New South Wales, P.O. Box 1, Kensington 2033, within seven days of the publication of the award of Commonwealth University Undergraduate Scholarships. A separate application must be lodged for each category of scholarship.

In addition to those scholarships made available by the University and other bodies as set out below, cadetships or traineeships are offered by the Commonwealth Service, the New South Wales Public Service Board, the Electricity Commission of N.S.W., the Department of Main Roads, the Metropolitan Water Sewerage and Drainage Board, the Department of Railways and a number of private industrial organizations. Cadets generally have their University fees paid by the employer, and are employed at cadet rates of pay during their course.

University Undergraduate Scholarships

The University annually awards up to fifteen scholarships tenable in degree courses to students who have matriculated at the Higher School Certificate Examination; ten scholarships to students who have completed certificate courses (Department of Technical Education); ten scholarships to students who have completed Trade Courses (Department of Technical Education); and ten scholarships to part-time students who have taken the Diploma Entrance course of the Department of Technical Education. The scholarships exempt the holder from payment of course fees during the currency of the scholarship. Scholarships will be awarded
Commonwealth University Scholarships

There are three types, and all may be applied to full-time, part-time and external courses, and for pass and honours courses:—

Open Entrance Scholarships, which are granted on the results of the Higher School Certificate examination to students who are under thirty years of age on 1st January of the year in which they are first awarded the scholarship, and who with their parents are permanent residents of Australia; Second or Later Year Scholarships, which are awarded on the results obtained in approved university courses, are available to students who have completed the equivalent of one year of a full-time course (age and residential requirements are the same as for Open Entrance); and Mature Age Scholarships, which are available to students who are over thirty on 1st January of the year in which they are first awarded a scholarship. Applicants should be permanent residents of Australia.

Benefits include payment of all tuition fees and other compulsory fees and living allowances (these latter being subject to a means test) up to $700 per annum or $1,100 per annum if living away from home. The closing date for applications is 30th September in the year immediately preceding that for which the scholarship is desired. Full particulars and application forms may be obtained from the Officer-in-Charge, Sydney Office, Department of Education and Science, La Salle Building, 70 Castlereagh Street, Sydney, 2000 (Telephone 20323).

Bursaries

A number of Bursaries tenable at the University are awarded to candidates of merit at the Higher School Certificate Examination whose family income falls within certain limits prescribed by the Bursary Endowment Board. Applications should be made to the Secretary, Bursary Endowment Board, Box 7077, G.P.O., Sydney 2001.

The Fell Scholarship (University Residential Colleges)

The Fell Scholarship is available to any undergraduate who is or will be in residence at one of the Colleges under the administration of Kensington Colleges Ltd. during the year of the award. The annual value of the Scholarship is $100. It may be held concurrently with Commonwealth and other scholarships.
In awarding the scholarship the academic merit and financial need of the applicant will be taken into consideration.

Applications must be made on the appropriate form and lodged with the Master, Kensington Colleges Ltd., Box 24, P.O., Kensington 2033 (Telephone 663-0651).

Joint Coal Board Scholarships

The Joint Coal Board is offering scholarships in full-time courses in Mining Engineering and Applied Geology. The value of these scholarships ranges from $700 to $1,200 per annum (including allowance for books and instruments). These scholarships are awarded on the understanding that students will normally hold a Commonwealth University Scholarship which covers the cost of University fees. However, applicants without Commonwealth University Scholarships may be given consideration. While scholarship holders are not under bond, it is expected that they will obtain employment in coal mining or a related industry on graduation. Applications on forms obtainable from principals or from the Secretary, Joint Coal Board, Box 3842, G.P.O., Sydney, must be lodged with the Board’s Secretary not later than seven days after the publication of the Higher School Certificate results.

The Tyree Electrical Company Scholarship in Electrical Engineering

The Tyree Electrical Company Pty. Ltd., has undertaken to provide scholarships for students enrolling in the full-time courses in Electrical Engineering. The value of the scholarships is between $500 and $1,500 per annum, payable in fortnightly instalments as a living allowance to students. They will normally be tenable for four years but may be extended to a fifth year when the holder intends to qualify for the two degrees, Bachelor of Science and Bachelor of Engineering. They may be held concurrently with any other scholarship.

The Fox Memorial Manufacturing Company Scholarship

The Company offers annually a scholarship to students in the first and later years of the full-time course in Mechanical Engineering.

Regent Scholarship in Engineering for Women Undergraduates

Mrs. G. O’Riordan and Mrs. J. Kouvelis provide annually a $200 scholarship for a female student enrolled in a full-time engineering course, and is normally tenable for four years. The award of the scholarship is based on the applicant’s scholastic merit and financial need.
The Institute of Industrial Engineers Scholarships

The Institute of Industrial Engineers offers two scholarships annually to students entering the full-time course in Industrial Engineering leading to the BE degree. The scholarships are valued at $100 per annum and are tenable for four years.
<table>
<thead>
<tr>
<th>School/Department</th>
<th>Donor/Name of Prize</th>
<th>Value</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>The Dean's Faculty Hour</td>
<td>25.00</td>
<td>Best essay on a topic discussed in Faculty Hour, Faculty of Engineering, by a graduating student.</td>
</tr>
<tr>
<td></td>
<td>The Dean's Faculty Hour</td>
<td>25.00</td>
<td>Best essay on a topic discussed in Faculty Hour, Faculty of Engineering, by a non-graduating student.</td>
</tr>
<tr>
<td></td>
<td>Sydney Technical College Union Award</td>
<td>50.00</td>
<td>Leadership in the development of student affairs and academic proficiency throughout the course.</td>
</tr>
<tr>
<td></td>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit—students in their final or graduating year.</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td>George Wright</td>
<td>10.50</td>
<td>2.001 Chemistry I — Full-time students only.</td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td>Board of Surveyors Medal</td>
<td>Medal</td>
<td>Surveying, full-time, Year IV or Surveying, part-time, Stage 7.</td>
</tr>
<tr>
<td></td>
<td>Chamber of Manufactures of New South Wales</td>
<td>10.00</td>
<td>Civil Engineering — subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Dunlop Australia Ltd.</td>
<td>52.50</td>
<td>Civil Engineering, Year III.</td>
</tr>
<tr>
<td></td>
<td>The Association of Consulting Structural Engineers of New South Wales</td>
<td>(1) 20.00 and books to the value of 30.00 (2) 20.00 and books to the value of 30.00</td>
<td>General proficiency—Structures (full-time students).</td>
</tr>
<tr>
<td></td>
<td>Water Board Gold Medal</td>
<td>Medal</td>
<td>General proficiency — Structures (part-time students).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Public Health Engineering.</td>
</tr>
<tr>
<td>School of Electrical Engineering</td>
<td>Austral Bronze Crane Copper Ltd.</td>
<td>80.00</td>
<td>Electrical Engineering, Year III. Power Apparatus and Systems Option or Utilization and Control Option.</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Chamber of Manufactures of New South Wales</td>
<td>10.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>F.P.E. (Aust.) Pty. Ltd.</td>
<td>Books</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>J. Douglas Maclurcan</td>
<td>10.50</td>
<td>Control Systems.</td>
</tr>
<tr>
<td></td>
<td>Standard Telephones & Cables Pty. Ltd.</td>
<td>30.00</td>
<td>Excellence in Electronics or Communications in BE or BSc(Eng) course.</td>
</tr>
<tr>
<td></td>
<td>The Wilfred Holmes Memorial Award</td>
<td>100.00</td>
<td>A student eligible to enter the final year of the course and who is deemed to be in necessitous circumstances.</td>
</tr>
<tr>
<td>Department of Industrial Engineering</td>
<td>Austral Bronze Crane Copper Ltd.</td>
<td>150.00</td>
<td>Industrial Engineering, Year III.</td>
</tr>
<tr>
<td></td>
<td>Chamber of Manufactures of New South Wales</td>
<td>10.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>T.R.W. Australia Ltd.</td>
<td>10.50</td>
<td>Industrial Engineering, Stage 6.</td>
</tr>
<tr>
<td></td>
<td>Industrial Engineering Prize</td>
<td>25.00</td>
<td>Industrial Engineering degree course, final year.</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>School of Mathematics</td>
<td>25.00</td>
<td>Higher Mathematics I</td>
</tr>
</tbody>
</table>

(Continued overleaf)
PRIZES (continued)

<table>
<thead>
<tr>
<th>School/Department</th>
<th>Donor/Name of Prize</th>
<th>Value</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Mechanical Engineering</td>
<td>Babcock & Wilcox Aust. Ltd.</td>
<td>$21.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Chamber of Manufactures of New South Wales</td>
<td>10.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Cockatoo Docks & Engineering Co. Pty. Ltd.</td>
<td>4.20</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Colonial Sugar Refining Co. Ltd.</td>
<td>21.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Dunlop Australia Ltd.</td>
<td>52.50</td>
<td>Mechanical Engineering, Year III.</td>
</tr>
<tr>
<td></td>
<td>Ford Motor Co. of Aust. Ltd.</td>
<td>20.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Harbin Polytechnical Alumni Association</td>
<td>50.00</td>
<td>5.113 Mechanical Engineering Design (full-time).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>5.113 Mechanical Engineering Design (part-time).</td>
</tr>
<tr>
<td></td>
<td>Jeremy Hirschhorn</td>
<td>20.00</td>
<td>Theory of Machines.</td>
</tr>
<tr>
<td></td>
<td>Royal Institute of Naval Architects</td>
<td>20.00</td>
<td>Naval Architecture—final year or stage.</td>
</tr>
<tr>
<td></td>
<td>Staedtler-Sovereign Pty. Ltd.</td>
<td>50.00 (order)</td>
<td>General proficiency—Mechanical Engineering Year II.</td>
</tr>
<tr>
<td>School of Physics</td>
<td>School Prize for Physics II</td>
<td>40.00</td>
<td>Physics II.</td>
</tr>
</tbody>
</table>
UNDERGRADUATE COURSES

The Faculty of Engineering consists of seven Schools—Civil, Electrical, Mechanical and Industrial, Highway, Nuclear, Transportation and Traffic, and Surveying. The Schools of Civil, Electrical, and Mechanical and Industrial offer full-time courses leading to the degree of Bachelor of Engineering, and part-time courses leading to the degree of Bachelor of Science (Engineering). The School of Surveying offers a full-time and part-time course leading to the degree of Bachelor of Surveying. The Schools of Highway Engineering, Nuclear Engineering and Transportation and Traffic Engineering offer graduate courses only.

All the postgraduate activities of the Faculty are co-ordinated under the Graduate School of Engineering. For full details of such activities please see the Graduate School of Engineering Handbook and the University Calendar, or contact the appropriate school.

Common First Year

The Schools of Civil, and Mechanical and Industrial Engineering have similar first year courses in physics, mathematics and chemistry, facilitating the transfer of students from one Bachelor of Engineering course to another within these schools at the end of their first year without loss of standing.

The first year in Electrical Engineering is similar to the first year of courses in Science and Applied Science and transfers to or from these Faculties can usually be arranged at the end of first year without loss of standing. Also notwithstanding the fact that first year courses in the three Engineering schools are not identical, sympathetic consideration will be given to requests by students who have completed first year to transfer to an allied course without loss of standing. When such transfer is desired an application must be made to the Registrar.

Progression

Progression in all undergraduate courses in the Faculty of Engineering is now permitted by subject. However:

(1) Course programmes will continue to be stated and time-tabled by Year or Stage and it cannot be guaranteed that non-standard programmes can be completed in the minimum number of years.
(2) Students must satisfy the rules governing re-enrolment: in particular, these require all subjects of the first year to be completed by the end of two years of full-time (or four years of part-time) study.

(3) Before enrolling in any subject a student must have satisfied the relevant prerequisite and co-requisite requirements. This will usually necessitate a student completing or attempting all subjects of a particular Year or Stage before proceeding to a subject in the next part of a course. Further details are available from the appropriate School.

(4) Only in exceptional circumstances will a student be permitted to enrol in subjects extending over more than two years of the course or for more than twenty-eight hours of course work per week if a full-time student or fourteen hours per week if a part-time student.

Students repeating subjects are required to choose a programme which limits their hours of course work to twenty-two per week if a full-time student, and to eleven per week if a part-time student, unless they have the express permission of the Head of School to exceed these hours.

(5) Notwithstanding the above, before a student can enrol in any non-standard programme, such programme must meet with the approval of the Head of School. A non-standard programme is one which involves enrolment in subjects from more than one Year or Stage, or comprises subjects which do not normally constitute a particular year's course work.

FULL-TIME COURSES

Full-time courses of four-years' duration are offered in Civil, Electrical, Mechanical, Industrial, and Aeronautical Engineering, and in Naval Architecture: all of these lead to the degree of Bachelor of Engineering. A four-year full-time course in Surveying is offered by the School of Surveying leading to the degree of Bachelor of Surveying.

The award of the degree of Bachelor of Engineering is recognized by the Institution of Engineers, Australia, as giving complete exemption from the examinations required for admission to the grade of Member. In nearly all cases substantial or complete recognition is accorded to these courses by overseas engineering institutions.

General Studies Programme

All undergraduates in Faculties other than Arts and Law are required to complete a General Studies programme. The general
pattern and course outlines in the Faculty of Engineering are listed in the Department of General Studies Handbook which is available, free of cost, to all students.

Industrial Training Requirements

All full-time engineering courses incorporate industrial training and reference should be made to the entries under each School heading for details of the arrangements applicable. All students are strongly recommended to gain further industrial experience in those long vacations where such training is not already prescribed.

The staff of the University will, where possible, assist students to obtain this employment, but it is emphasized that the primary responsibility for obtaining suitable industrial experience rests with each student. Progression to succeeding years of the course and the award of the degree are dependent on the completion of the requisite periods of industrial employment of a standard approved by the University.

PART-TIME COURSES

Since 1961 the Schools of the Faculty have offered six-year part-time courses in a variety of engineering fields leading to the degree of Bachelor of Science (Technology). From 1971 the name of this degree became Bachelor of Science (Engineering) but is not awarded retrospectively. Courses for the BSc(Eng) degree are offered in Civil, Electrical, Industrial and Mechanical Engineering and in Naval Architecture and Aeronautical Engineering (these last two being offered by the School of Mechanical and Industrial Engineering).

The General Studies programme is the same for part-time as for full-time students, except that part-time students do not do an Advanced Elective.

The award of the degree of BSc(Eng) is recognized at present by the Institution of Engineers, Australia, as giving complete exemption from the examinations required for admission to the grade of Member.

Recognition by overseas engineering institutions varies in the different branches of engineering, and particular enquiries on this matter should be addressed to the head of the appropriate School.

A student completing the BSc(Eng) degree course and wishing to qualify for the corresponding BE degree may, on the recommendation of the Head of the School, transfer to the corresponding full-time BE course provided he does not take out the BSc
(Eng) degree. Further, provided he continues as a registered student on transfer from one course to the other, he may retain any concession granted in the BSc(Eng) degree course.

Holders of the BSc(Eng) award are eligible to proceed to the degree of Master of Engineering, Master of Engineering Science or Master of Surveying Science subject to the conditions for the award of these degrees set out in Section C of the University Calendar.

Courses leading to the BSc(Eng) award are basically part-time and the prescribed industrial experience should be gained concurrently with the course of study (a minimum of three years of suitable engineering experience is required). Students transferring from full-time courses must, therefore, also satisfy these industrial experience requirements before being admitted to the degree of BSc(Eng).

The BSc(Eng) degree programme may in some cases be accelerated by a student attending for one or more years fulltime. For example, in all courses of the Faculty it is possible to take the equivalent of the first two part-time years in the full-time first year.

The School of Surveying offers a part-time course of seven years' duration for the degree of Bachelor of Surveying.

FACULTY OF APPLIED SCIENCE

The Faculty of Applied Science offers courses to students desiring a career in a specialized technology with an engineering element. These courses are as follows:

<table>
<thead>
<tr>
<th>Full-time</th>
<th>Part-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering</td>
<td>BE</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>BSc</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>BSc</td>
</tr>
<tr>
<td>Mining Engineering</td>
<td>BE</td>
</tr>
<tr>
<td>Textile Engineering</td>
<td>BSc</td>
</tr>
</tbody>
</table>

Entrance to these courses, which are of four years' duration full-time (pass or honours) and six years' duration part-time, is conditional upon completion of the full subject Chemistry I. Except in the case of Mining Engineering, transfer should be made at the end of first year to achieve maximum standing. Full-time Engineering students may enter the Mining Engineering course after the

*A part-time course is also available at Wollongong.
†A part-time course leading to the award of the BSc(Tech) degree is available at Wollongong, and leading to the award of the degree of BSc(Eng) at Broken Hill.
second year of courses in Mechanical, Electrical or Civil Engineering without loss in standing of subjects completed.

Part-time engineering students may enter the courses offered by the Schools of Chemical Engineering, Chemical Technology and Metallurgy after the second stage part-time or the full-time first year. They may enter the Mining Engineering course after the fourth stage. In all cases the requirements for the degree of BSc(Tech) demand three years approved concurrent industrial training.

Holders of the degrees of BE (pass or honours) and BSc(Tech) in Chemical Engineering and in Mining Engineering are recognized by the Institution of Engineers of Australia as being eligible for Corporate Membership without further examination.

Ceramic Engineering

Ceramics are inorganic, non-metallic materials which usually require the use of high temperatures in their processing. Products of the industry include glass, refractories, bricks, tiles, pipes, abrasives, cement, plaster, nuclear ceramics, whitewares, enamels and electric insulators, dielectrics and magnetic materials. The ceramic engineer is concerned with the relationship between the atomic and crystal structure of materials and their chemical, physical and engineering properties, as well as the methods of their manufacture and fabrication into useful shapes.

Graduates in Ceramic Engineering take positions in the fields of research and development, production control, product evaluation and technical service.

Chemical Engineering

Chemical Engineering is the application of the principles of the physical sciences, together with principles of economics and human relations to fields in which matter undergoes a change in state, energy content or composition. The chemical engineer is generally responsible for the design, construction and operation of plant and equipment used in the chemical processing industries.

Metallurgy

Metallurgy deals with the nature, production, properties and uses of metals. Its importance today is associated with the demands for better materials for aircraft, rockets, and nuclear reactors, as well as the more conventional engineering structures, machines and appliances. Metallurgists are also closely involved with the development of new and more efficient processes for extracting metals from their ores and contributing to mineral production.
The School of Metallurgy is located at Kensington, and also has a department in Wollongong. It has excellent facilities for teaching and research. Emphasis in these courses is on the application of science to technological problems and in this respect there is a close relationship between metallurgy and engineering. Information on the Metallurgy courses and on opportunities for postgraduate work for engineering graduates in the School of Metallurgy may be obtained from the University Calendar, or from Professor Hugh Muir at the School of Metallurgy.

Mining Engineering

The aim of the training is to give students a thorough foundation in Mining Engineering and so permit them to enter coal mining, metalliferous mining or the petroleum industry, and to be employed in any of the phases of these industries ranging from exploration to production.

During the undergraduate course, students will spend portion of the long vacations obtaining practical experience in mining. Mining companies prepare programmes so that the students obtain a comprehensive experience in many aspects of the profession. This experience is important and it is related to the academic training received in the School. Practical experience in mining, gained as a student, can contribute to the experience record of mining engineers when making application for a statutory certificate of competency from one of the Australian State Government Departments of Mines.

The School of Mining Engineering offers part-time courses in Mining Engineering and Mineral Processing at Broken Hill, the former leading to the degree of Bachelor of Science (Engineering), and the latter course leading to the degree of Bachelor of Science (Technology).

Textile Engineering

The textile industry, being a manufacturing one, depends on many types of machinery and engineering services to produce its products. In order to cope with technological problems in production, quality control and research, a competent textile engineer must have a good understanding of the fundamental sciences and extensive theoretical and practical knowledge of the applied textile and engineering sciences.

There are many challenging positions for textile engineers in industry and research.

Full details of the above courses may be obtained from the University Calendar or the Faculty of Applied Science Handbook.
GRADUATE SCHOOL OF ENGINEERING

HIGHER DEGREES

Research Degrees

The higher degrees of Master of Engineering, Master of Surveying, and of Doctor of Philosophy are awarded on the presentation of a thesis, satisfactory to the examiners, which embodies the results of an original investigation or design. Candidates for these degrees must possess a bachelor’s degree in an appropriate field and meet the conditions governing the award of these degrees. The full conditions are set out in the University Calendar and in the Handbook of the Graduate School of Engineering.

The degree of Doctor of Science is also awarded for a contribution of distinguished merit in the field of engineering.

GRADUATE COURSES

Courses of Study for Graduate Awards

In addition to the research degrees listed above, the Faculty offers courses of instruction at the graduate level leading to the award of the degree of Master of Engineering Science, Master of Surveying Science or to a graduate diploma.

Courses for the Degrees of Master of Engineering Science and Master of Surveying Science

These degrees may be gained by —

(i) formal course work;

(ii) a combination of formal course work and the completion of a report on a project or a research thesis; or

(iii) completion of a research thesis.

Candidates proceeding to the degree of Master of Engineering Science and Master of Surveying Science are encouraged to develop interdisciplinary attitudes and with the approval of the Head of School may take subjects from other schools of the Faculty, other Faculties of the University and other universities.
or institutions. By means of this system, a student, with the approval of the Head of School, is able to select a programme of studies best suited to his needs.

Courses for Graduate Diplomas

Highway Engineering, Human Communication, Industrial Engineering and Transport.

Full details of all these courses are given in the section on postgraduate study in the University Calendar, in the Handbooks of the appropriate Schools, and in the Handbook of the Graduate School of Engineering or may be obtained from the Dean of the Faculty of Engineering.

The Faculty of Engineering also supervises the Graduate Diploma course in Human Communications, offered by the Division of Postgraduate Extension Studies.

Special Courses

Short, intensive graduate and special courses are provided throughout each year designed to keep practising engineers in touch with the latest developments in their various fields. The programmes of such courses for this year are published separately.
OUTLINES OF UNDERGRADUATE COURSES

SCHOOL OF CIVIL ENGINEERING

The School of Civil Engineering offers two courses in Civil Engineering: a four year full-time or equivalent part-time course leading to the degree of Bachelor of Engineering (BE) and a six year part-time course leading to the degree of Bachelor of Science (Engineering) (BSc(Eng)). In the full-time course, a period of forty working days of industrial training must be completed between Years 3 and 4 and it is strongly recommended that further industrial experience be gained in the long vacation between Years 2 and 3. Part-time students are required to gain a minimum of three years of suitable engineering experience concurrently with the University course. Students enrolled in the final year of either course may be required to present a seminar and attend a prescribed number of seminar sessions as part of their programme.

A student who has completed the requirements for the award of the BSc(Eng) degree in Civil Engineering but has not taken out the degree by formal graduation may apply to the Head of School for enrolment on a part-time basis in the BE degree course. It is anticipated that, in normal cases, the additional requirements for the BE degree may be completed in one year of part-time study.

The degree of Bachelor of Engineering may be conferred as a Pass degree or as an Honours degree. There are two classes of Honours, Class 1, and Class 2 in two divisions, and the award and grade of Honours are made in recognition of superior performance throughout the course. The degree of Bachelor of Science (Engineering) may be awarded with Merit in recognition of superior performance throughout the course.
362. CIVIL ENGINEERING—FULL-TIME COURSE
Bachelor of Engineering

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SESSION 1</td>
</tr>
<tr>
<td>1.051 Physics IE</td>
<td>3</td>
</tr>
<tr>
<td>2.021 Chemistry IE</td>
<td>3</td>
</tr>
<tr>
<td>5.021 Engineering IB</td>
<td>4</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>4</td>
</tr>
<tr>
<td>10.011 Higher Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SESSION 1</td>
</tr>
<tr>
<td>5.711 Thermodynamics†</td>
<td>0</td>
</tr>
<tr>
<td>6.801 Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>8.151 Mechanics of Solids</td>
<td>2</td>
</tr>
<tr>
<td>8.280 Civil Engineering Materials I</td>
<td>2</td>
</tr>
<tr>
<td>8.510 Hydraulics†</td>
<td>2</td>
</tr>
<tr>
<td>8.621 Engineering Construction</td>
<td>1½</td>
</tr>
<tr>
<td>10.022 Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>25.101 Geology for Engineers*†</td>
<td>0</td>
</tr>
<tr>
<td>29.441 Engineering Surveying</td>
<td>1½</td>
</tr>
<tr>
<td>29.491 Survey Camp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

*Two one-day Geology excursions are an essential part of this subject.
†Normally offered in both sessions as a complete course. At enrolment students are grouped into the appropriate session.

<table>
<thead>
<tr>
<th>YEAR 3</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SESSION 1</td>
</tr>
<tr>
<td>8.010 Projects</td>
<td>0</td>
</tr>
<tr>
<td>8.152 Structures</td>
<td>3</td>
</tr>
<tr>
<td>8.161 Engineering Mathematics</td>
<td>1½</td>
</tr>
<tr>
<td>8.252 Civil Engineering Materials</td>
<td>1½</td>
</tr>
<tr>
<td>8.301 Systems Engineering</td>
<td>1</td>
</tr>
<tr>
<td>8.531 Water Engineering</td>
<td>2½</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11½</td>
</tr>
</tbody>
</table>
YEAR 4

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Electives†</td>
<td>Lab.</td>
<td>Lab.</td>
</tr>
<tr>
<td>Lec.</td>
<td>Tut.</td>
<td>Tut.</td>
</tr>
<tr>
<td>8.153 Structures</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.253 Civil Engineering Materials</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.532 Water Engineering</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>8.631 Civil Engineering</td>
<td>3</td>
<td>½</td>
</tr>
<tr>
<td>*Two General Studies Electives</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14½</td>
<td>9</td>
</tr>
</tbody>
</table>

*One elective must be advanced; as an alternative to it, students may take the Sociology IIIA (53.113) option “Science, Technology and Society.”

†The approved electives are: 8.011 Project, 8.012 Architecture, 8.013 Bridge Engineering, 8.014 Computer Applications in Civil Engineering, 8.015 Road Engineering, 8.016 Hydraulics, 8.017 Transportation Engineering, 8.018 Construction and Administration, 8.019 Railway Engineering, 8.020 Hydrology, 8.021 Environmental Aspects of Civil Engineering, 8.022 Elasticity and Plasticity in Soil and Rock Mechanics, 8.023 Flow in Porous Media, 8.024 Foundation Engineering, 8.025 Structural Concrete, 8.026 Systems Methods in Civil Engineering, 8.027 Timber, Plastics and Composite Engineering.

363. CIVIL ENGINEERING—PART-TIME COURSE

Bachelor of Science (Engineering)

STAGE 1

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab.</td>
<td>Lab.</td>
<td>Lab.</td>
</tr>
<tr>
<td>Lec.</td>
<td>Tut.</td>
<td>Tut.</td>
</tr>
<tr>
<td>1.051 Physics IE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.011 Higher Mathematics*</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

There will be no evening lectures in this subject in 1973.

STAGE 2

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab.</td>
<td>Lab.</td>
<td>Lab.</td>
</tr>
<tr>
<td>Lec.</td>
<td>Tut.</td>
<td>Tut.</td>
</tr>
<tr>
<td>2.021 Chemistry IE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.021 Engineering IB</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>5½</td>
</tr>
</tbody>
</table>

Bachelor of Science (Engineering)
STAGE 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lec.</th>
<th>Tut.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.151</td>
<td>Mechanics of Solids</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.280</td>
<td>Civil Engineering Materials I</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.022</td>
<td>Mathematics</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>29.441</td>
<td>Engineering Surveying*</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>29.491</td>
<td>Survey Camp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*42 hours of Saturday fieldwork is an essential part of this subject.

STAGE 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lec.</th>
<th>Tut.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.711</td>
<td>Thermodynamics†</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6.801</td>
<td>Electrical Engineering</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8.510</td>
<td>Hydraulics†</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.621</td>
<td>Engineering Construction</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>25.101</td>
<td>Geology for Engineers* †</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

*Two one-day Geology excursions are an essential part of the course.

†Normally offered in both sessions as a complete course. At enrolment students are grouped into the appropriate session.

STAGE 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lec.</th>
<th>Tut.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.152</td>
<td>Structures</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8.161</td>
<td>Engineering Mathematics</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8.301</td>
<td>Systems Engineering</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8.531</td>
<td>Water Engineering</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

STAGE 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lec.</th>
<th>Tut.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.154</td>
<td>Structures</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.252</td>
<td>Civil Engineering Materials</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.254</td>
<td>Civil Engineering Materials</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8.632</td>
<td>Civil Engineering</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

*42 hours of Saturday fieldwork is an essential part of this subject.
SCHOOL OF ELECTRICAL ENGINEERING

The School consists of the Departments of Communications, Computer Science, Electric Power Engineering, Solid State Electronics and Systems and Control Engineering and offers undergraduate and postgraduate training in all branches of the profession of electrical engineering. The School’s teaching and research programmes are constantly under review to meet the ever changing challenges of present and future needs.

The School offers a full-time course of four years’ duration leading to the degree of Bachelor of Engineering, and a six-year part-time course for the degree of Bachelor of Science (Engineering). The courses may also be completed by a combination of part-time and full-time study. Graduate courses are described elsewhere.

The degrees of Bachelor of Engineering and Bachelor of Science (Engineering) are recognized by the Institution of Engineers, Australia, the Institution of Radio and Electronics Engineers, Australia, and the Institution of Electrical Engineers, London, as giving complete exemption from the examinations required for admission to Graduate or Corporate membership.

Electrical engineering, perhaps more than most other branches of engineering, is closely linked with the pure sciences, and requires a scientific outlook and approach for a proper understanding of its problems.

In the early years of the electrical engineering courses, students concentrate on acquiring knowledge of the basic sciences, particularly mathematics and physics, with an engineering component which increases progressively to the final year, when students elect, with the approval of the Head of the School, to study in specialized fields of electrical engineering. At the same time they take subjects common to all students in electrical engineering. A list of available electives (which may vary from year to year) is given in the course description. Students in doubt as to which programme patterns are desirable or permissible should consult the Head of the School.

Each student in the BE course is required to work on an individual or group project under the guidance of members of the lecturing staff. Generally, the project will involve the design and construction of experimental apparatus together with laboratory tests. Where possible the projects will be related to the research programme of the School and chosen to develop the student’s initiative. Each student is required to lead a seminar and to prepare a thesis or take part in the preparation of a group thesis based on the results of the project work.
In the Bachelor of Engineering course the same formal programme is offered to both pass students and to those aiming at honours. Honours will be awarded for meritorious performance over the course: special attention is paid to a candidate's performance in the final year thesis project. A student with a creditable performance in the Bachelor of Science (Engineering) course may be awarded a degree with Merit.

364. ELECTRICAL ENGINEERING—FULL-TIME COURSE

Bachelor of Engineering

The full-time course is of four years’ duration and leads to the degree of Bachelor of Engineering (pass or honours). Each of the four years of the course requires full-time day attendance at the University for twenty-eight weeks. All students are strongly recommended to complete two periods of industrial training, one of forty-five working days between Years 2 and 3, and the other of forty-five working days between Years 3 and 4. They are also advised to obtain practical experience during the long vacation between Years 1 and 2.

Hours per week for 2 sessions

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1.001 Physics I</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.001 Chemistry I</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.001 Engineering I</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>*10.001 Mathematics I</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1.112A Electromagnetism (Session 2)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* 1.112B Modern Physics (Session 1)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* 1.112C Waves in Continuous Media and Thermodynamics</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6.021 Electrical Engineering II</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8.111 Civil Engineering</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*10.111A Pure Mathematics II (Algebra)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*10.111B Pure Mathematics II (Analysis)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*10.211A Applied Mathematics II (Mathematical Methods)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

One General Studies subject

| | 15+ | 9+ |

* Students who have achieved a certain standard may attempt similar material at a higher level.
FACULTY OF ENGINEERING

Hours per week for 2 sessions

<table>
<thead>
<tr>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

YEAR 4

Electrical Engineering IV (6 units)

- 6.911 Thesis or
- 6.931 Group Thesis

One General Studies subject†

†At least one General Studies advanced elective is required.

Electrical Engineering IV

A number of general topics are offered and each Department offers specialized electives. Approximately half of each programme is common to all students. Not all electives will be offered every year nor will the compulsory subjects remain the same. Students will be advised each year which electives are available and which units are compulsory.

In 1973, four units are taken in Session 1 and two (6.041 and 6.042) in Session 2.

The list of units is:

<table>
<thead>
<tr>
<th>Hours per week for 1 session. Lec./Lab./Tut.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.041 Fields and Measurements</td>
<td>3</td>
</tr>
<tr>
<td>6.042 Circuits, Signals and Information Theory</td>
<td>3</td>
</tr>
<tr>
<td>6.044 Electrical Product Design and Reliability</td>
<td>3</td>
</tr>
<tr>
<td>6.202 Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>6.212 Machines</td>
<td>3</td>
</tr>
<tr>
<td>6.303 Communication Electronics</td>
<td>3</td>
</tr>
<tr>
<td>6.313 Wave Radiation and Guidance</td>
<td>3</td>
</tr>
<tr>
<td>6.322 Electronics</td>
<td>3</td>
</tr>
<tr>
<td>6.333 Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>6.383 Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>6.412 Automatic Control</td>
<td>3</td>
</tr>
<tr>
<td>6.422 Computer Control</td>
<td>3</td>
</tr>
<tr>
<td>6.512 Advanced Semiconductor Device Theory</td>
<td>3</td>
</tr>
<tr>
<td>6.522 Transistor and Integrated Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>6.612 Computer Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>6.622 Computer Application and Software</td>
<td>3</td>
</tr>
</tbody>
</table>
The programme selected by each student must be approved by the Head of School.

Thesis or Group Thesis

This year, in Session 1 two hours per week and in Session 2 three clear days per week are devoted to directed laboratory and research work on an approved subject with special reading and study associated with the presentation of a seminar and the preparation of a thesis. The thesis must be submitted by the last Monday in November.

365. ELECTRICAL ENGINEERING—PART-TIME COURSE

Bachelor of Science (Engineering)

The six-year part-time course in Electrical Engineering leads to the degree of Bachelor of Science (Engineering).

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Hours per week for 2 sessions</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGE 1</td>
<td></td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2.001</td>
<td>Chemistry I</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th></th>
<th>7</th>
<th>5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5.001</td>
<td>Engineering I</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 3</th>
<th></th>
<th>8</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.112C</td>
<td>Waves in Continuous Media and</td>
<td>2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Thermodynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.021</td>
<td>Electrical Engineering II</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10.111B</td>
<td>Pure Mathematics II (Analysis)</td>
<td>1½</td>
<td></td>
<td>½</td>
</tr>
<tr>
<td>10.211A</td>
<td>Applied Mathematics II (Mathematical Methods)</td>
<td>1½</td>
<td></td>
<td>½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 4</th>
<th></th>
<th>7½</th>
<th>6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.112A</td>
<td>Electromagnetism (Session 2)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.112B</td>
<td>Modern Physics (Session 1)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6.031</td>
<td>Electrical Engineering III</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Unit A: Systems and Circuit Theory</td>
<td>1½</td>
<td></td>
<td>½</td>
</tr>
<tr>
<td>10.111A</td>
<td>Pure Mathematics II (Algebra)</td>
<td>1</td>
<td></td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>One General Studies subject</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Faculty of Engineering

Hours per week for 2 sessions

<table>
<thead>
<tr>
<th>STAGE 5*</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.921 Materials Science</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6.043 Measurements</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Two General Studies subjects</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Communications Option

6.031 Electrical Engineering III	2	2	
Unit C: Electronic Circuits and Signal Processing			
Unit E: Electron Physics and Devices	2	0	

Power and Control Option

6.031 Electrical Engineering III	2	2	
Unit B: Machines and Transformers	1	1	
Unit D: Computing			
Two Communications Electives*	3	3	

| 5.661 Mechanical Engineering | 2 | 1 |
| Two Power and Control Electives* | 3 | 3 |

*In Stage 5 students take either the Communications or the Power and Control Option. Whichever option is chosen must be continued in Stage 6, where Power and Control Students choose different electives and substitute 5.661 Mechanical Engineering for 6.031 Unit E (Electron Physics and Devices).

Stage 6

Communications Option

6.031 Electrical Engineering III	2	2	
Unit B: Machines and Transformers	1	1	
Unit D: Computing			
Two Communications Electives*	3	3	

| 6 | 6 |

Power and Control Option

6.031 Electrical Engineering III	2	2	
Unit C: Electronic Circuits and Signal Processing			
5.661 Mechanical Engineering	2	1	
Two Power and Control Electives*	3	3	

| 7 | 6 |

The list of electives to be offered will largely correspond to those in the Electrical Engineering IV list (see the BE programme) but will be offered as 28-week courses. The full range of electives will not be offered in the BSc(Eng) course; students who can arrange day attendance may substitute Electrical Engineering IV electives.
THE UNIVERSITY OF NEW SOUTH WALES

ELECTRICAL ENGINEERING—
COMBINED FULL-TIME/PART-TIME COURSES

The subjects of the BSc(Eng) course are generally identical with a subject of the BE programme and the requirements of these subjects can be completed by either day or evening study in most cases. Timetables will be arranged to suit the preferred yearly programmes given above. Provided prerequisites are met and the programme can be timetabled, a student in either course may, with the approval of the Head of the School, complete the requirements by a combination of full-time and part-time study.

ELECTRICAL ENGINEERING—
SUBSTITUTION OF SUBJECTS

To suit the special abilities or needs of individual students a limited amount of substitution is permitted within each course. Any such substitution must have prior approval of the Head of School who will ensure that:

1. The replacement subject is at least of the same length and level as the prescribed subject it replaces; and
2. The resulting overall programme of study is suited to the award of either the BE or BSc(Eng) as applicable.

It is not envisaged that such substitutions will be commonplace but examples are:

(a) Replacement of two General Studies subjects by an approved Arts subject;
(b) Replacement of one or two General Studies subjects by an approved (by the Head of the Department of General Studies) subject from areas such as:
 - Life Sciences;
 - Earth Sciences;
 - Accounting and Business Administration;
 - Law;
 - Economics;
 - Industrial Management.
(c) In the case of students proposing to attempt the BSc BE pattern, if they include additional Applied Mathematics in their Second Year Electrical Engineering Programme they open up a wider choice of subjects in their Science Third Year. This can be substituted for 8.111 or the General Studies courses. If the BSc programme is completed these
courses could be put back into the student’s Third Year of Electrical Engineering;

(d) The normal Fourth Year of the BE programme includes 6 units of Electrical Engineering IV. Students may substitute for ONE of these units, a subject of suitable level and difficulty from an area outside the School of Electrical Engineering.

DOUBLE DEGREE OF BSC BE IN ELECTRICAL ENGINEERING

Students in Electrical Engineering may qualify for this double degree in five years of full-time study. Having completed the first and second years of the Electrical Engineering course, students transfer to Science (this is subject to the recommendation of the Head of the School of Electrical Engineering and the approval of the Deans of the Faculties of Engineering and Science) and do the appropriate General Studies subjects and four level III units chosen from related disciplines and no less than four other units of either level II or level III chosen in accordance with the Science Course regulations. In their fourth year the students revert to the Faculty of Engineering. Depending on the programme followed in their year in Science they will have already completed parts of the normal third year programme of the Electrical Engineering course, and they will be required to omit these from their programme and to include an equivalent amount of other courses chosen with the approval of the Head of School. In their fifth year they will complete the fourth year of the Electrical Engineering course.

DOUBLE DEGREE BA BE IN ELECTRICAL ENGINEERING

The double degree BA BE in Electrical Engineering may be gained by a five-year course of combined study. Students wishing to enrol for this double degree may do so.

(i) by initially enrolling as a student proceeding to the double degree, or

(ii) by transferring to the BA BE programme with advanced standing after partially completing the requirements of either degree, provided that suitable courses have been studied.

Any student wishing to enrol in or to transfer into the double degree course BA BE shall have complied with all the requirements
for prerequisite study and academic attainment of both the Faculties concerned. Students wishing to enrol in or to transfer into the double degree course may do so only after receiving the approval of the respective Deans of the Faculties of Arts and Engineering. Guidance should be sought from the School of Electrical Engineering, the relevant schools in the Faculty of Arts and the Arts Faculty Office.

1. Initial Enrolment for BA BE

A student enrolling initially for the double degree shall pursue a programme for four years in which he studies at least nine courses in accordance with the regulations of the Faculty of Arts, provided that they include:

(i) the subjects in Table A below, and

(ii) a major sequence of courses available within the Faculty of Arts (see Schedule A of that Faculty's regulations) in addition to his studies in the School of Mathematics.

In addition he shall also study concurrently subjects selected from Table B in accordance with an acceptable programme loading. Upon completion of this four year programme he may then complete his studies by satisfying the remaining requirements of a normal BE programme in Electrical Engineering

(a) less the General Studies subjects, and

(b) less the equivalent of ONE non-electrical engineering subject of the BE course, and

(c) less either strand B or strand E of Electrical Engineering III, and

(d) less one of the six units of Electrical Engineering IV.

Table A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>or</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td></td>
<td>10.011</td>
<td>Higher Mathematics I</td>
</tr>
<tr>
<td>10.911</td>
<td>Mathematics II</td>
<td></td>
<td>10.921</td>
<td>Higher Mathematics II</td>
</tr>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td></td>
<td>1.011</td>
<td>Higher Physics I</td>
</tr>
<tr>
<td>1.112</td>
<td>Physics II</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.001</td>
<td>Chemistry I</td>
</tr>
<tr>
<td>5.001</td>
<td>Engineering I</td>
</tr>
<tr>
<td>*5.661</td>
<td>Mechanical Engineering III</td>
</tr>
<tr>
<td>6.021</td>
<td>Electrical Engineering II</td>
</tr>
<tr>
<td>*6.031</td>
<td>Electrical Engineering III</td>
</tr>
<tr>
<td>*8.111</td>
<td>Civil Engineering</td>
</tr>
</tbody>
</table>
| 10.033 | Mathematics | (If these or equivalent units not already selected as an approved subject)
| 10.361 | Statistics |

*Permission may be given for some portion of the subjects marked with an asterisk to be deferred until after the completion of the four year programme.
Notes:

(i) The substitution rule for the BE in Electrical Engineering if invoked (see Electrical Engineering—Substitution of Subjects) may modify the requirements set out in Table B.

(ii) In addition it may be possible to defer strand B or strand D of 6.031 Electrical Engineering III into the fifth year of the combined programme, provided that the student does not wish to major in the relevant strand, i.e. strand B Machines or strand D Computing. Such re-arrangements are to be regarded as special cases and prior approval of the School of Electrical Engineering must be sought and received.

(iii) The requirements of the appropriate Schools in respect to pre-requisites, sequencing or substitutions shall be adhered to.

2. Subsequent Transfer to BA BE Course

Students wishing to pursue this route shall at the time of transfer and subsequently comply with the requirements for students initially enrolling in the double degree BA BE.

3. Honours degree in Arts

Students wishing to gain an Honours degree in Arts as part result of their combined BA BE double degree programme shall meet all the relevant requirements of the Faculty of Arts and of the appropriate Schools. Such students may enrol for the Honours year in Arts only after receiving the approval of the respective Deans of the Faculties of Arts and Engineering.

SCHOOL OF MECHANICAL AND INDUSTRIAL ENGINEERING

The courses in this School are planned to provide the appropriate academic training for the professional engineer in the fields of aeronautical, industrial and mechanical engineering, and for the naval architect.

The study of the basic sciences—Mathematics, Physics and Chemistry—together with an introduction to Engineering, comprises the first year. In the second year further mathematical studies are undertaken together with a study of the Engineering Sciences—Thermodynamics, Fluid Mechanics, Engineering Mechanics, Mechanics of Solids and their application in the field of Design.

The full-time courses of Mechanical, Industrial and Aeronautical Engineering and of Naval Architecture have common subjects for the first two years. The third and fourth years contain a number of common core subjects together with specific departmental requirements. In the fourth and final year, in addition to core subjects and departmental requirements, provision is made
for a limited degree of specialization in one or more elective subjects. Each full-time student is required to present a thesis at the end of his final year and to deliver a short paper on the subject of his thesis. General studies form a regular part of all courses. In certain instances and with permission from the Head of the School students may substitute an Arts subject in lieu of two General Studies subjects.

Industrial experience is an integral part of the full-time courses. All students enrolled in the School must complete forty working days of approved industrial training between Years 3 and 4, and, irrespective of their specialization, are strongly recommended to gain as much industrial training as possible between Years 1 and 2.

The full-time courses in Aeronautical, Industrial and Mechanical Engineering and in Naval Architecture are of four years' duration and lead to the degree of Bachelor of Engineering (BE).

All students will be considered for the award of Honours which will be granted for meritorious performance in the course with particular emphasis on the later years. With the approval of the Head of School, students may proceed to the BE degree via a combination of full-time and part-time study.

Part-time courses of six years' duration leading to the degree of Bachelor of Science (Engineering) are offered in the same four fields as the full-time courses.

Part-time courses may also be completed by a combination of part-time and of full-time study.

A student who has successfully completed the first two stages of any of the Bachelor of Science (Engineering) courses mentioned above may transfer to the second year of any of the full-time BE courses offered by the School. A part-time student will be able to transfer at the end of Stage 4 of his course to the third year of the corresponding BE course. The BSc(Eng) degree may be awarded 'With Merit' to students whose performance in the course is superior.

The award of the degree BE or BSc(Eng) in Mechanical Engineering is recognized by the Institution of Mechanical Engineers, London, as giving exemption from Parts I and II of the examinations required for admission to the grade of Member.

The award of the degree of BE or BSc(Eng) in Industrial Engineering is similarly recognized by the Institution of Production Engineers, London.

The Institution of Engineers, Australia, grants full exemption from examinations for admission to the grade of Member to holders of the degree of BE or BSc(Eng) in any of the undergraduate courses offered by the School.
368. MECHANICAL ENGINEERING—FULL-TIME COURSE

Bachelor of Engineering

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lab.</td>
<td>Lab.</td>
</tr>
<tr>
<td>YEAR 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.051 Physics IE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.021 Chemistry IE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.011 Engineering IA</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.011 Higher Mathematics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

YEAR 2				
5.032 Experimental Engineering II	1	1	1	1
5.061 Technical Orientation	½	0	½	0
5.111 Mechanical Engineering Design I	2	2	2	2
5.311 Engineering Mechanics*	0	0	1½	1
5.611 Fluid Mechanics/Thermodynamics I	2	2	2	2
6.801 Electrical Engineering	1	2	1	2
8.151 Mechanics of Solids	2	1	2	1
8.259 Properties of Materials	2	1	2	1
10.022 Mathematics	2	2	2	2
General Studies Elective	1	¾	1	¾
Total	13½	11¾	15	12¾

*Students who have completed 5.001 Engineering I should take in addition 5.301 Engineering Mechanics, which will be offered in Session 1 (1 – 1).

YEAR 3				
5.033 Experimental Engineering III	1	½	1	½
5.071 Engineering Analysis	2½	1	2½	1
5.112 Mechanical Engineering Design II	1½	1⅔	1½	1¾
5.331 Dynamics of Machines I	1⅔	½	1⅔	¾
5.412 Mechanics of Solids I	1½	½	1½	¾
5.612 Fluid Mechanics/Thermodynamics II	2½	1	2½	1
6.802 Electrical Engineering*	2	1	2	1
18.011 Industrial Engineering IA or	1	1	1½	¾
18.021 Industrial Engineering IB	1½	½	1½	¾
General Studies Elective	2	1	2	1

*One session only. Students will take this subject in either Session 1 or Session 2.
YEAR 4

5.051 Thesis
5.062 Communications
5.324 Automatic Control Engineering
General Studies Elective

Plus 12 hours from the following Technical Electives:

4.913 Materials Science
5.113 Mechanical Engineering Design III
5.332 Dynamics of Machines II
5.413 Mechanics of Solids II
5.613 Fluid Mechanics/Thermodynamics III
18.012 Industrial Engineering IIA
18.022 Industrial Engineering IIB
18.431 Design for Production
18.551 Operations Research
23.057 Nuclear Power Technology

369. MECHANICAL ENGINEERING—PART-TIME COURSE

Bachelor of Science (Engineering)

This course is of six years’ duration, and leads to the degree of Bachelor of Science (Engineering).

STAGE 1

1.051 Physics IE
10.001 Mathematics I or
10.011 Higher Mathematics I*

*There will be no evening lectures in this subject in 1973.

STAGE 2

2.021 Chemistry IE
5.011 Engineering IA

*There will be no evening lectures in this subject in 1973.
FACULTY OF ENGINEERING

STAGE 3

<table>
<thead>
<tr>
<th>Course</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.311 Engineering Mechanics*</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8.151 Mechanics of Solids</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.259 Properties of Materials</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.022 Mathematics</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

*Students who have completed 5.001 Engineering I should take in addition 5.301 Engineering Mechanics, which will be offered in Session 1 (1 — 1).

STAGE 4

<table>
<thead>
<tr>
<th>Course</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.032 Experimental Engineering II</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5.111 Mechanical Engineering Design I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.611 Fluid Mechanics/Thermodynamics I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6.801 Electrical Engineering</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>6½</td>
</tr>
</tbody>
</table>

STAGE 5

<table>
<thead>
<tr>
<th>Course</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.071 Engineering Analysis</td>
<td>2½</td>
<td>2½</td>
</tr>
<tr>
<td>5.112 Mechanical Engineering Design II</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>5.331 Dynamics of Machines I</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids I</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>5.612 Fluid Mechanics/Thermodynamics II</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

STAGE 6

<table>
<thead>
<tr>
<th>Course</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.324 Automatic Control Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

*Plus 9 hours from Mechanical Engineering Electives:

<table>
<thead>
<tr>
<th>Course</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.913 Materials Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.113 Mechanical Engineering Design III</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>5.332 Dynamics of Machines II</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.413 Mechanics of Solids II</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.613 Fluid Mechanics/Thermodynamics III</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
A94 THE UNIVERSITY OF NEW SOUTH WALES

361. AERONAUTICAL ENGINEERING—
FULL-TIME COURSE

Bachelor of Engineering

The first and second years of this course are identical with the first two years of the full-time course in Mechanical Engineering.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.033 Experimental Engineering III</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5.071 Engineering Analysis</td>
<td>2½</td>
<td>1</td>
<td></td>
<td>2½</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.303 Mechanical Vibrations</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5.412 Mechanics of Solids I</td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5.800 Aircraft Design</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.811 Aerodynamics I</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.822 Analysis of Aerospace Structures I</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6.802 Electrical Engineering*</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.011 Industrial Engineering IA or IA</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18.021 Industrial Engineering IB</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*One session only. Students will take this subject in either Session 1 or Session 2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.051 Thesis</td>
<td>0</td>
<td>6</td>
<td></td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.062 Communications</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.801 Aircraft Design</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5.812 Aerodynamics II</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.823 Analysis of Aerospace Structures II</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5.831 Aircraft Propulsion</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Plus one technical elective from:

4.913 Materials Science
5.324 Automatic Control Engineering
18.022 Industrial Engineering IIB
18.551 Operations Research

| 11 | 12½ | 11 | 12½ |
This course is of six years' duration and leads to the degree of Bachelor of Science (Engineering). The first four stages are identical with the Mechanical Engineering part-time course.

<table>
<thead>
<tr>
<th>STAGE 5</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.071 Engineering Analysis</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>5.303 Mechanical Vibrations</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids I</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>5.811 Aerodynamics I</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.822 Analysis of Aerospace Structures I</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAGE 6</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.801 Aircraft Design</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.812 Aerodynamics II</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.823 Analysis of Aerospace Structures II</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>5.831 Aircraft Propulsion</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.5</td>
</tr>
</tbody>
</table>
370. NAVAL ARCHITECTURE—FULL-TIME COURSE

The first and second years of this course are identical with the first two years of the full-time course in Mechanical Engineering. Subject to the Head of the School of Mechanical and Industrial Engineering being satisfied that the present extent of equivalences is maintained, and on his recommendation, Faculty has approved an arrangement by which students who satisfy the requirements of the first two years of the Mechanical Engineering degree course at any other Australian university may be admitted to a two-year full-time programme leading to the Bachelor of Engineering degree in Naval Architecture.

YEAR 3		SESSION 1		SESSION 2	
5.033	Experimental Engineering III	1	½	1	½
5.071	Engineering Analysis	2½	1	2½	1
5.303	Mechanical Vibrations	1	½	0	0
5.412	Mechanics of Solids I	1½	½	1½	½
5.911	Naval Architecture	2½	1½	2½	1½
5.921	Ship Structures	1½	½	1½	½
5.931	Principles of Ship Design IA	1	½	0	0
5.932	Principles of Ship Design IB	0	0	1	½
5.951	Hydrodynamics	1	½	0	0
18.021	Industrial Engineering IB	2	1	2	1
	General Studies Elective				
		14	6½	15	6½

YEAR 4		SESSION 1		SESSION 2	
5.051	Thesis	0	6	0	6
5.062	Communications	1	1	1	1
5.922	Ship Structures	1½	½	1½	½
5.933	Principles of Ship Design	2	1	2	1
5.934	Ship Design Project	0	3	0	3
5.941	Ship Propulsion and Systems	2½	1½	2½	1½
	General Studies Elective	1	½	1	½
	Plus one elective from:—				
4.913	Materials Science				
18.022	Industrial Engineering IIB	2	1		
18.551	Operations Research				
	10	14½		10	14½
371. NAVAL ARCHITECTURE—PART-TIME COURSE

Bachelor of Science (Engineering)

This course is of six years' duration and leads to the degree of Bachelor of Science (Engineering). The first four stages are identical with the Mechanical Engineering part-time course.

<table>
<thead>
<tr>
<th>STAGE 5</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.071 Engineering Analysis</td>
<td>2½</td>
<td>1</td>
</tr>
<tr>
<td>5.303 Mechanical Vibrations</td>
<td>1</td>
<td>½</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids I</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>5.911 Naval Architecture</td>
<td>2½</td>
<td>½</td>
</tr>
<tr>
<td>5.921 Ship Structures</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>5.932 Principles of Ship Design IB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAGE 6</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.922 Ship Structures</td>
<td>1½</td>
<td>½</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>5.933 Principles of Ship Design</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.934 Ship Design Project</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.941 Ship Propulsion and Systems</td>
<td>2½</td>
<td>½</td>
<td>2½</td>
<td>½</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1</td>
<td>½</td>
<td>1</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6½</td>
<td>7</td>
<td>6½</td>
</tr>
</tbody>
</table>
The Department of Industrial Engineering offers a full-time and a part-time course in industrial engineering leading to the degree of Bachelor of Engineering and Bachelor of Science (Engineering) respectively. These courses are designed for students with engineering ability whose interests lie in the planning, developing and control of manufacturing operations.

The first two years of the full-time course and the first four years of the part-time course provide the student with a sound foundation in the basic science and engineering subjects, and this knowledge is used and extended in the later years in the study of the industrial subjects. Finally, the problems associated with the practical economics of manufacturing operations are studied. These three fields of study provide the student with the training necessary to carry out an industrial job and to examine it critically in the light of economic efficiency.

Traditional engineering courses do not embrace the problems which are characteristic of industrial engineering. These problems include the analysis of a product to ensure satisfactory functioning with regard to methods and sequence of manufacturing operations; the disposition of buildings and of equipment in relation to buildings to permit efficient handling of materials; the avoidance or elimination of bottlenecks; the related problems of quality and cost control, testing and inspection; labour and personnel relations; and, finally, the problem of distribution and sales.

The financial and economic aspects are studied as the problem in manufacturing has not been solved until the final translation of the product into money has been accomplished successfully. While it is not intended to develop an expert in accounting practice or economics, it is intended to produce an engineer with an appreciation of the problems of cost and one who can apply considerations of ultimate economy to all industrial problems.

All full-time students must obtain industrial training for two periods, each of forty working days, the first between Years 2 and 3 and the second between Years 3 and 4. They are also strongly advised to obtain further experience during the long vacation between Years 1 and 2.
The Work of the Industrial Engineer

The industrial engineer may initially be employed in any of the following major areas of industrial activity:

(a) Industrial Economic Analysis

One of the principal functions of industrial engineering is to analyse a product, project or process from the economic point of view to ensure that an adequate profit can be obtained from it. A general working knowledge of economics and management skill has to be directed towards the making of decisions on how to operate an enterprise most efficiently. The basis for such decisions is furnished largely by the logical application of mathematics and statistics.

(b) Planning and Control of Production

Manufacturing processes and operations must be planned in detail throughout an enterprise to ensure that they proceed smoothly and economically. Functions in this field include the establishment of production standards, the setting of production targets and, finally, control of quality.

The ultimate responsibility of those in charge of the planning and control of production is to ensure that the goods, as originally specified, perform satisfactorily and are produced when required at an optimum cost. Modern electronic computers may be called upon to help achieve this.

(c) Product and Process Design

The design interest of the industrial engineer goes beyond normal mechanical design to develop a product that will not only function effectively but also have a pleasing appearance.

Further, the product has to be adapted to suit existing manufacturing equipment, or a manufacturing process has to be developed by means of which an existing product can be manufactured at the right price and of the right quality. The design work of the industrial engineer incorporates also problems of equipment selection and application for both economy and performance.

Fundamental scientific studies of manufacturing processes such as metal machining, forming and casting are continually being made to improve their efficiency.

(d) Methods Engineering

Methods engineering is particularly concerned with the co-ordination of men, materials and machines, so that an enterprise will run at maximum efficiency. A considerable knowledge of
engineering in general, as well as an understanding of human factors and materials science, is necessary for methods engineering work. Time and motion study is part of methods engineering. In many cases the methods engineer works in close co-operation with the design department and executives engaged in industrial economic analysis.

(e) Operations Research

This is the attack of modern science on complex problems arising in the direction and management of large systems of men, machines, materials and money in industry, business, government, and defence. The distinctive approach is to develop a scientific model of the system, incorporating measurements of factors such as chance and risk, with which to predict and compare the outcomes of alternative decisions, strategies or controls. The purpose is to help management determine its policy and actions scientifically.

Employment in any of these fields may well lead to a position of responsibility in industrial management if the engineer is so inclined.

366. INDUSTRIAL ENGINEERING—FULL-TIME COURSE

Bachelor of Engineering

The first and second years of this course are identical with the first two years of the full-time course in Mechanical Engineering.

<table>
<thead>
<tr>
<th>YEAR 3</th>
<th>SESSION 1</th>
<th>SESSION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lec.</td>
<td>Lab.</td>
</tr>
<tr>
<td>5.033</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5.071</td>
<td>2½</td>
<td>1</td>
</tr>
<tr>
<td>5.112</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>5.331</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>5.412</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>14.001</td>
<td>0</td>
<td>1½</td>
</tr>
<tr>
<td>18.011</td>
<td>1</td>
<td>1½</td>
</tr>
<tr>
<td>18.021</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6½</td>
</tr>
</tbody>
</table>
Year 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Lec</th>
<th>Tut</th>
<th>Lec</th>
<th>Tut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Communications</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Automatic Control Engineering</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Engineering IIA</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Engineering IIB</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Operations Research</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1</td>
<td>§</td>
<td>1</td>
<td>§</td>
</tr>
<tr>
<td>Plus one elective from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamics of Machines II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanics of Solids II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design for Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.913 Materials Science</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

| Hours per week | | | | |
| SESSION 1 | 12 | 12½ | 12 | 12½ |

367. INDUSTRIAL ENGINEERING—PART-TIME COURSE

Bachelor of Science (Engineering)

This course is of six years’ duration and leads to the degree of Bachelor of Science (Engineering).

For outline of the first four stages see the Mechanical Engineering part-time course.

Stage 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Lec</th>
<th>Tut</th>
<th>Lec</th>
<th>Tut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Analysis</td>
<td>2½</td>
<td>1</td>
<td>2½</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical Engineering Design II</td>
<td>1½</td>
<td>½</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>Dynamics of Machines I</td>
<td>1¼</td>
<td>½</td>
<td>1¼</td>
<td>½</td>
</tr>
<tr>
<td>Introduction to Accounting</td>
<td>1¼</td>
<td>0</td>
<td>1¼</td>
<td>0</td>
</tr>
<tr>
<td>Industrial Engineering IA</td>
<td>1</td>
<td>1</td>
<td>1½</td>
<td>½</td>
</tr>
<tr>
<td>Industrial Engineering IB</td>
<td>1½</td>
<td>½</td>
<td>1½</td>
<td>½</td>
</tr>
</tbody>
</table>

| Hours per week | | | | |
| STAGE 5 | 9½ | 4 | 10 | 3½ |

Stage 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Lec</th>
<th>Tut</th>
<th>Lec</th>
<th>Tut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Engineering IIA</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Engineering IIB</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Design for Production</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Operations Research</td>
<td>1</td>
<td>§</td>
<td>1</td>
<td>§</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Hours per week | | | | |
| STAGE 6 | 9 | 4½ | 9 | 4½ |
The School of Surveying offers a four year full-time course and a seven year part-time course both leading to the degree of Bachelor of Surveying. The degree can also be attained through a combination of part-time and full-time study.

The course is designed to provide the appropriate academic training for a professional surveyor working in any of the many branches of surveying. Since these branches cover a wide range, the course is broad in its scope. First and second years are concerned mainly with the basic sciences, but the basic surveying subjects are also included. In the third year the major surveying subjects appear: geodesy, photogrammetry, astronomy and land studies. With the addition of some elective courses these are continued into fourth year. The graduate can take up cadastral or property surveying, engineering surveying, geodetic surveying, photogrammetry, cartography or hydrographic surveying. The course is also an appropriate first qualification for those wishing to specialize in astronomy, satellite geodesy, geodynamics, computing and systems analysis, town and regional planning, land and resources development or environmental sciences.

The full-time and part-time courses have undergone comprehensive revision and 1973 is the transition year in the implementation of the new courses. In the full-time course, in 1973, Years 1 to 3 of the revised course and Year 4 of the old course are available, and in the part-time course, Stages 1 to 5 of the revised course and Stages 6 and 7 of the old course are available.

Features of the revisions include: decreased lecture time to allow use of teaching methods which involve more student participation; an extended period of professional experience in the final year; Land Studies, a group of subjects designed to provide a broad understanding of the ecology of land and its development; and a survey camp of six weeks in the final year. Throughout the course the theoretical studies are complemented by practical exercises in the field and the laboratory. Students make use of the most modern measuring instruments and computing equipment.

The Bachelor of Surveying degree may be awarded as a Pass degree, Honours Class I, or Honours Class II in two divisions. Honours are awarded in recognition of superior performance throughout the course.

Students wishing to become Registered Surveyors after graduation are advised to gain practical experience under a Registered Surveyor. Some reduction in the period of practical experience
required before registration may be granted because of practical experience gained during the University course, provided the New South Wales Surveyors’ Board has been informed in the prescribed manner. Details are obtainable from the Registrar, Surveyors’ Board, Department of Lands, Bridge Street, Sydney 2000.

The degree of Bachelor of Surveying confers exemption from all written examinations of the Surveyors’ Board.

374. SURVEYING—FULL-TIME COURSE

Bachelor of Surveying

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>Lab.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1—SESSIONS 1 AND 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.041 Physics IC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.001 Engineering I</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.001 Mathematics</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>29.101 Surveying I</td>
<td>1½</td>
<td>3</td>
</tr>
<tr>
<td>29.181 Cartography</td>
<td>0</td>
<td>1½</td>
</tr>
<tr>
<td>Total</td>
<td>11½</td>
<td>12½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2—SESSION 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.022 Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>29.102 Surveying II</td>
<td>4½</td>
<td>4½</td>
</tr>
<tr>
<td>29.151 Survey Computations I</td>
<td>3½</td>
<td>2½</td>
</tr>
<tr>
<td>31.212 Geometrical Optics</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>Total</td>
<td>11½</td>
<td>10½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2—SESSION 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.822 Electronics</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>8.711 Engineering for Surveyors</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>10.022 Mathematics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.341 Statistics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>29.192 Survey Camp*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.611 Land Studies †</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15½</td>
<td>6½</td>
</tr>
</tbody>
</table>

*Students must attend a two-week survey camp, held in October.
†A one-day field tutorial is an essential part of this course.
YEAR 3—SESSION 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.712</td>
<td>Engineering for Surveyors</td>
<td></td>
</tr>
<tr>
<td>29.103</td>
<td>Surveying III</td>
<td></td>
</tr>
<tr>
<td>29.152</td>
<td>Survey Computations</td>
<td></td>
</tr>
<tr>
<td>29.612</td>
<td>Land Studies II†</td>
<td></td>
</tr>
<tr>
<td>36.411</td>
<td>Town Planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td></td>
</tr>
</tbody>
</table>

†A one-day field tutorial is an essential part of this course.

YEAR 3—SESSION 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.211</td>
<td>Geodesy I</td>
<td>4</td>
</tr>
<tr>
<td>29.311</td>
<td>Astronomy I</td>
<td>2</td>
</tr>
<tr>
<td>29.511</td>
<td>Photogrammetry I</td>
<td>3</td>
</tr>
<tr>
<td>29.613</td>
<td>Land Studies III</td>
<td>2</td>
</tr>
<tr>
<td>29.614</td>
<td>Land Studies Project</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td></td>
</tr>
</tbody>
</table>

YEAR 4*—SESSION 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.193</td>
<td>Professional Training</td>
<td>5</td>
</tr>
<tr>
<td>29.194</td>
<td>Survey Camp</td>
<td></td>
</tr>
</tbody>
</table>

YEAR 4*—SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.212</td>
<td>Geodesy II</td>
<td>2</td>
</tr>
<tr>
<td>29.312</td>
<td>Astronomy II</td>
<td>2</td>
</tr>
<tr>
<td>29.512</td>
<td>Photogrammetry II</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td>Business Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two Electives†</td>
<td></td>
</tr>
</tbody>
</table>

†Electives chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.213</td>
<td>Geodesy III</td>
<td></td>
</tr>
<tr>
<td>29.313</td>
<td>Astronomy III</td>
<td></td>
</tr>
<tr>
<td>29.513</td>
<td>Photogrammetry III</td>
<td></td>
</tr>
<tr>
<td>29.615</td>
<td>Land Studies</td>
<td></td>
</tr>
<tr>
<td>29.173</td>
<td>Project</td>
<td></td>
</tr>
</tbody>
</table>
FACULTY OF ENGINEERING

YEAR 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.811</td>
<td>Electronic Instrumentation for Surveyors</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25.303</td>
<td>Geophysics for Surveyors*</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29.081</td>
<td>Thesis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
| 29.822 | Geodesy II | 2 | 1

SESSION 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
</tr>
</thead>
</table>
| 29.832 | Astronomy II | 1 | 3

SESSION 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
</tr>
</thead>
</table>
| 29.852 | Photogrammetry II | 1 | 1

374. SURVEYING—PART-TIME COURSE

Bachelor of Surveying

<table>
<thead>
<tr>
<th>STAGE 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STAGE 2</td>
</tr>
<tr>
<td></td>
<td>STAGE 3</td>
</tr>
<tr>
<td>1.041</td>
<td>Physics IC</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics</td>
</tr>
<tr>
<td>5.001</td>
<td>Engineering</td>
</tr>
</tbody>
</table>
| 29.101 | Surveying | 1

SESSION 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
</tr>
</thead>
</table>
| 29.102 | Surveying II | 2 | 2

SESSION 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.151</td>
<td>Survey Computations I</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*A one-day Geophysical field tutorial is an essential part of this subject (Session I only).

†In 1973 only.
STAGE 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.822</td>
<td>Electronics (Session 2)</td>
<td></td>
</tr>
<tr>
<td>8.711</td>
<td>Engineering for Surveyors</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>10.341</td>
<td>Statistics</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>29.192</td>
<td>Survey Camp*</td>
<td>2</td>
</tr>
<tr>
<td>29.611</td>
<td>Land Studies I†</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>31.212</td>
<td>Geometrical Optics (Session 1)</td>
<td>1(\frac{1}{2})</td>
</tr>
</tbody>
</table>

Students must attend a two-week survey camp, held in October.

A one-day field tutorial is an essential part of this course.

STAGE 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.712</td>
<td>Engineering for Surveyors</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>29.103</td>
<td>Surveying III</td>
<td>2</td>
</tr>
<tr>
<td>29.152</td>
<td>Survey Computations II (Session 2)</td>
<td>1</td>
</tr>
<tr>
<td>29.612</td>
<td>Land Studies II†</td>
<td>2</td>
</tr>
<tr>
<td>36.411</td>
<td>Town Planning (Session 1)</td>
<td>1(\frac{1}{2})</td>
</tr>
</tbody>
</table>

A one-day field tutorial is an essential part of this course.

STAGE 6*

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.211</td>
<td>Geodesy I</td>
<td>2</td>
</tr>
<tr>
<td>29.311</td>
<td>Astronomy I</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>29.511</td>
<td>Photogrammetry I</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>29.613</td>
<td>Land Studies III</td>
<td>1</td>
</tr>
<tr>
<td>29.614</td>
<td>Land Studies Project</td>
<td>1</td>
</tr>
</tbody>
</table>

Two General Studies Electives

STAGE 7*

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.212</td>
<td>Geodesy II</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>29.313</td>
<td>Astronomy II</td>
<td>1</td>
</tr>
<tr>
<td>29.512</td>
<td>Photogrammetry II</td>
<td>1(\frac{1}{2})</td>
</tr>
</tbody>
</table>

Business Management
Two Electives

Survey Camp†

6 Weeks

†Academic subjects are arranged to avoid survey camp.

NOTE: In addition, the academic requirements of 29.193 Professional Training must be fulfilled prior to Stage 7.
DESCRIPTIONS OF SUBJECTS

TEXT AND REFERENCE BOOKS

(For General Studies subjects see the Department of General Studies Handbook.)

SCHOOL OF MECHANICAL AND INDUSTRIAL ENGINEERING

5.001 Engineering I

Prerequisite: None.

A. Introduction to Engineering

(ii) Computers — Introduction and Concepts: Introduction to computers to follow the computer work in Mathematics I. To develop:—(a) familiarity with algorithms; (b) the use of procedure oriented languages; and (c) an introduction to computing equipment.

(iii) Introduction to Engineering Design: Engineering method, problem identification, creative thinking, mathematical modelling, computer aided design, materials and processes, communication of ideas, the place of engineering in society.

TEXTBOOKS

Harrisberger, L. Engineersmanship. Wadsworth.

or

Krick, E. V. Introduction to Engineering and Engineering Design. Wiley.

Karbowiak, A. E. & Huey, R. M. eds. Information Computers, Machines and Humans. N.S.W. U.P.

REFERENCE BOOKS

or

Gilchrist, J. D. Extractive Metallurgy. Pergamon.

or

Newton, J. Extractive Metallurgy. Wiley.

B2 THE UNIVERSITY OF NEW SOUTH WALES

Roget's Thesaurus.

TEXTBOOK
Meriam, J. L. Statics. Wiley.

REFERENCE BOOKS
Meriam, J. L. Dynamics. Wiley.

C. Engineering Drawing: Fundamental concepts of descriptive geometry, including reference systems, representation of point, line and plane; fundamental problems of position and of measurement. Application of descriptive geometry to certain problems arising in engineering practice. Special emphasis on ability to visualize problems and processes involved in their solution. Instruction in the correct use of drawing instruments and the application of drawing standards. Measurements and dimensioning. Orthographic and isometric projections.

TEXTBOOKS
Robertson, R. G. Descriptive Geometry. Pitman.

5.011 Engineering IA

Prerequisite: None.

A. Introduction to Engineering

 (b) Manufacture. Description and appraisal of the processes classified as: forming from liquid or solid, material removal, material joining. Machines. Analysis of the primary functions of the machine tools and an appraisal of their limitations. Principles of operation of common machine tools and illustration of their use.

 (ii) Engineering Design: Engineering method, problem identification, creative thinking, mathematical modelling, computer aided design, materials and processes, communication of ideas, engineering in society.

 (iii) As for 5.001 Engineering I, Part A, (ii).
TEXTBOOKS
- For 5.001, together with:

REFERENCE BOOKS
- As for 5.001, together with:
 Ryder, F. L. Creative Engineering Analysis. Prentice-Hall.

B. 2. Engineering Mechanics

TEXTBOOKS
- Meriam, I. L. Dynamics. Wiley.

C. Descriptive Geometry: Fundamental concepts of descriptive geometry, including reference systems, representation of point, line and plane; fundamental problems of position and of measurement. Application of descriptive geometry to certain problems arising in engineering practice. Special emphasis on ability to visualize problems and processes involved in their solution.

TEXTBOOK
- Robertson, R. G. Descriptive Geometry. Pitman.

5.021 Engineering IB
Prerequisite: None.

A. Introduction to Engineering
 (ii) Engineering Design: As for 5.001 Engineering IA, Part A(ii).
TEXTBOOKS
Krick, E. V. *Introduction to Engineering and Engineering Design*. Wiley.

REFERENCE BOOKS

TEXTBOOKS
Meriam, J. L. *Dynamics*. Wiley.
Meriam, J. L. *Statics*. Wiley.

C. *Descriptive Geometry*: As for 5.011 Engineering IA, Part C.

5.032 Experimental Engineering II
A series of lectures, demonstrations and experiments designed to show the theory and techniques of instrumentation in Mechanical Engineering.

5.033 Experimental Engineering III
Prerequisite: 5.032. Co- or prerequisite: 5.071.

A series of experiments and associated lectures to illustrate some common problems in experimental work.

5.051 Thesis
Prerequisite: All subjects in Years 1, 2 and 3. Co- or prerequisite: 5.324.

For students in the full-time courses in the School of Mechanical and Industrial Engineering.

5.061 Technical Orientation
Designed to inform students of the art and technique of technical communication, the forms of engineering professional work and the nature of the courses of instruction. A major objective is to bring staff and students together in an atmosphere of discussion and enquiry. May include one or two visits to special establishments.

TEXTBOOK
Cooper, B. M. *Writing Technical Reports*. Pelican.

REFERENCE BOOKS
Roget's Thesaurus.
The Concise Oxford Dictionary.
5.062 Communications

The mathematical theory of communication, followed by the basic techniques of communication by various media, as required by the professional man. Drawings as a means of communication, pictorial sketches and drawings as illustrations, instructions and visual aids. Basic photographic techniques, the grammar of cine film and of television. Library searching, collation of information, preparation of a seminar and relevant visual aids. Techniques of public speaking and chairmanship. Preparation of a technical paper and its illustrations including graphs, charts and tables of data. The work of an editor. Methods of reproducing information. Copyright and fair copying. Computerized data storage.

Production of a short cine film, videotape and slide sequence; pictorial illustrations. Participation in a seminar and writing of a thesis.

TEXTBOOK

REFERENCE BOOKS
McLuhan, M. Understanding Media. Sphere.

5.071 Engineering Analysis

Prerequisite: 10.022.

TEXTBOOKS
Freund, J. E. Mathematical Statistics. Prentice-Hall.
Statistical Tables.

REFERENCE BOOKS
Derman, C. & Klein, M. Probability and Statistical Inference for Engineers. O.U.P.
Freeman, H. Introduction to Statistical Inferences. Addison-Wesley.
Hald, A. Statistical Theory with Engineering Applications. Wiley.
5.111 Mechanical Engineering Design I

Prerequisite: 5.011. Co- or prerequisites: 5.311, 5.611, 8.151, 8.259.

Introductory lectures illustrating the interdependence of design and technology. Mechanical technology. Interpretation of engineering drawing practice. Philosophy and technique of design. Simple creative design assignments. Basic engineering elements.

TEXTBOOKS

REFERENCE BOOKS

ISO. Limits and Fits. 4500/1969.
Harrisberger, L. Engineersmanship. Wadsworth.
Krick, E. V. Introduction to Engineering & Engineering Design. Wiley.
Matousek, R. Engineering Design. Blackie.
Parker, S. Drawing and Dimensions. Pitman.
Ryder, F. L. Creative Engineering Analysis. Prentice-Hall.

5.112 Mechanical Engineering Design II

Prerequisites: 5.111, 5.311, 8.151, 8.259. Co- or prerequisites: 5.331, 5.412, 5.612.

Design for Production — Principles of tolerance specification, standard procedures for gauging, dimensioning and surface finish specification. Design of Machine Elements — Application of fundamental principles to the design of common machine elements, such as shafts, springs, bearings, power transmission devices.

Text and Reference Books as for 5.111, together with:

TEXTBOOKS

Matousek, R. Engineering Design. Blackie.

REFERENCE BOOKS

5.113 Mechanical Engineering Design III
Prerequisites: 5.112, 5.331, 5.412. Co- or prerequisite: 5.612.

Design Theory and Technique — Fundamental concepts of the design process, decision theory. Process and technique of optimization. Principles of material selection. Special analytical and experimental techniques of engineering design. Design Practice — Minor and major creative design projects, application of sophisticated design techniques in major fields of mechanical engineering.

TEXTBOOKS
As for 5.112, together with:
Asimow, M. Introduction to Design. Prentice-Hall.

REFERENCE BOOKS
As for 5.112, together with:
Levens, A. S. Graphical Methods in Research. Wiley.
Spotts, M. F. Mechanical Design Analysis. Prentice-Hall.
Thoma, J. Hydraulic Power Transmissions. Trade & Tech.

5.301 Engineering Mechanics
Prerequisites: 1.051, 5.001. Co- or prerequisite: 10.001.

Kinematics and kinetics of the plane motion of particles. Rectilinear, curvilinear and relative translational motion; work and energy; impulse and momentum.

TEXTBOOK
Meriam, J. L. Dynamics. Wiley.

REFERENCE BOOK

5.303 Mechanical Vibrations
Prerequisites: 5.311, 10.022.

REFERENCE BOOKS
Church, A. H. Mechanical Vibrations. Wiley.
5.311 Engineering Mechanics

Prerequisites: 1.051, 5.011. Co- or prerequisite: 10.001.

Kinematics and kinetics of the plane motion of rigid bodies. Absolute motion, relative translational motion and relative angular motion; dynamic equilibrium; work and energy; impulse and momentum.

TEXTBOOK
Meriam, J. L. Dynamics. Wiley.

REFERENCE BOOK

5.324 Automatic Control Engineering

Prerequisite: 10.022.

TEXTBOOK

REFERENCE BOOKS

5.331 Dynamics of Machines I

Prerequisites: 5.311, 10.022.

Mechanical Vibrations: Simple harmonic motion. One degree of freedom systems, free and forced vibrations, transmissibility and motion isolation. Whirling of shafts. Laplace transform methods and transfer functions.

TEXTBOOKS
Hirschhorn, J. Dynamics of Machinery. Nelson.

REFERENCE BOOKS
Church, A. H. Mechanical Vibrations. Wiley.
5.332 Dynamics of Machines II
Prerequisite: 5.331.

Dynamic Response: Vibration of multiple degree of freedom systems. Time domain analysis of single and multiple degree of freedom systems.

Rigid Body Dynamics: Dynamic effects in machinery. Angular momentum and inertia properties in spatial systems. Equations of motion of spatial systems.

Kinematic Analysis and Synthesis: Analysis of complex mechanisms and an introduction to the synthesis of planar mechanisms.

REFERENCE BOOKS
Burton, R. Vibrations and Impact. Addison-Wesley.
Church, A. H. Mechanical Vibrations. Wiley.
Holowenko, A. R. Dynamics of Machinery. Wiley.

5.412 Mechanics of Solids I
Prerequisites: 8.151, 8.259, 10.022.

Experimental stress analysis, photoclasticity, strain gauges.

TEXTBOOK

REFERENCE BOOKS
5.413 Mechanics of Solids II

Prerequisite: 5.412.

- **Elasticity:** Continuum Mechanics: Equilibrium and compatibility. Plates and shells, rotating discs. Contact stresses. Thermal stresses.
- **Stress Analysis:** Experimental stress analysis. Numerical stress analysis.

TEXTBOOK

REFERENCE BOOKS
- Johnson, W. J. & Mellor, R. S. *Plasticity for Mechanical Engineers*. Van Nostrand.
- Smith, S. O. & Sidebottom, O. M. *Inelastic Behaviour of Load Carrying Members*. Wiley.

5.611 Fluid Mechanics/Thermodynamics I

Prerequisites: 1.051, 5.011, 10.001. Co- or prerequisites: 5.311, 10.022.

TEXTBOOKS
- or
- or

5.612 Fluid Mechanics/Thermodynamics II

Prerequisites: 5.311, 5.611, 10.022.

TEXTBOOKS

REFERENCE BOOKS

5.613 Fluid Mechanics/Thermodynamics III
Prerequisite: 5.612.

REFERENCE BOOKS

5.661 Mechanical Engineering III
Prerequisites: 1.001, 5.001, 10.211A.

TEXTBOOK

REFERENCE BOOKS
5.711 Thermodynamics
Prerequisites: 1.051, 5.011, 10.001.

TEXTBOOK
Van Wylen, G. J. *Thermodynamics*. Wiley.

5.800 Aircraft Design
Prerequisites: 5.111, 5.311, 8.151, 8.259. Co- or prerequisite: 5.412.

Aircraft types and development, overall design process, wing load, shear force, bending moment and torque distributions. Detailed stressing of lugs, sockets, pins, bearings, fittings, hinges, gears, rivetted, welded and bonded joints. Design and drawing of small fittings such as hinge assembly, spar for tailplane, control stick or landing gear component.

5.801 Aircraft Design
Prerequisites: 5.303, 5.412 (Part-time only), 5.811, 5.822. Co- or prerequisite: 5.823.

(b) Design of Aircraft Structures — Significance of design requirements: proof and ultimate load, load and safety factors, interpretation of V-g diagram, Stresses cases. Detailed structural and mechanical design of airframe, controls, joints; choice of materials; use of structures data sheets. Practical design of a simple aircraft structural component.

TEXTBOOKS

REFERENCE BOOKS
Australian Department of Civil Aviation. *Air Navigation Orders, Sections 100, 101. D.C.A.*
Royal Aeronautical Society. *Data Sheets*. R.Ae.S.
U.K. Air Registration Board. *British Civil Airworthiness Requirements. Sections D, K. A.R.B.*
5.811 Aerodynamics I

Prerequisites: 5.311, 5.611, 10.022.

Navier-Stokes equations; elementary boundary layer theory; turbulence, convection, friction and form drag; airfoil characteristics. Vorticity and circulation; Prandtl wing theory, induced drag, spanwise lift distribution, wing characteristics. Static longitudinal stability and control. Manoeuvrability. Standard atmosphere, performance calculations. One-dimensional gas dynamics, isentropic, adiabatic and nozzle flow; rocket equation.

TEXTBOOK

REFERENCE BOOKS
Glauert, H. The Elements of Aerofoil & Airscrew Theory. C.U.P.

5.812 Aerodynamics II

Prerequisites: 5.811, 5.303.

TEXTBOOKS

REFERENCE BOOKS
Royal Aeronautical Society. Aerodynamics and Performance Data Sheets. R.Ae.S.

5.822 Analysis of Aerospace Structures I

Prerequisites: 5.311, 8.151, 8.259, 10.022. Co- or prerequisites 5.412.

Equilibrium of forces, plane frames, space frames; inertia forces, load factors; beams: two-moment equation, shear and bending-stress distribution in various thin-webbed beams, tapered beams, beams with variable flange areas. Semi-monocoque structures. Deflection of structures: Maxwell's and
Castigliano's theorems, virtual work method. Statically indeterminate structures: beams, trusses, stiff-jointed frames; methods of superposition, energy, moment distribution, elastic centre; shear distribution in two-cell beam. Aircraft materials, physical properties and their measurement. Dimensionless stress-strain data.

TEXTBOOK
Peery, D. J. *Aircraft Structures*. McGraw-Hill.

REFERENCE BOOK

5.823 Analysis of Aerospace Structures II

Prerequisites: 5.412, 5.822.

TEXTBOOK

REFERENCE BOOKS
Hendry, A. W. *Elements of Experimental Stress Analysis*. Pergamon.

5.831 Aircraft Propulsion

Prerequisite: 5.811.

TEXTBOOK

REFERENCE BOOKS
Zucrow, M. J. *Principles of Jet Propulsion and Gas Turbines*. Wiley, N.Y.
5.911 Naval Architecture

Prerequisite: 5.311. Co- or prerequisite: 5.951.

TEXTBOOK

REFERENCE BOOKS

5.921 Ship Structures I

Prerequisites: 8.151, 8.259, 10.022. Co- or prerequisite: 5.412.

TEXTBOOK

REFERENCE BOOKS
Lloyd’s Register of Shipping. Rules and Regulations for the Construction and Classification of Steel Ships. Published Annually.

5.922 Ship Structures II

Prerequisites: 5.071, 5.412, 5.921.

TEXT AND REFERENCE BOOKS
As for 5.921.
5.931 Principles of Ship Design IA

Modern ship types and developments. The overall design process. Ship structural arrangements.

TEXTBOOKS

5.932 Principles of Ship Design IB

Co-requisite: 5.911 (5.931 Full-time only).

REFERENCE BOOKS
Board of Trade. Instructions as to the Tonnage Measurement of Ships. H.M.S.O.
Board of Trade. Measurements of Vessels for the Panama Canal. H.M.S.O.

5.933 Principles of Ship Design II

Prerequisite: 5.932.

TEXTBOOKS

REFERENCE BOOKS
Arnott, D. Design and Construction of Steel Merchant Ships. Soc. of Naval Architects & Marine Engineers.
Board of Trade. Instructions as to the Survey of Passenger Steamships. Vols. I & II. H.M.S.O.
Board of Trade. Instructions as to the Tonnage Measurement of Ships. H.M.S.O.
Board of Trade. Measurements of Vessels for the Panama Canal. H.M.S.O.
5.934 Ship Design Project
Prerequisites: All subjects in Years 1, 2 and 3. Co- or prerequisite: 5.922, 5.933, 5.941.
Design of a vessel to provide characteristics of hull form, preliminary general arrangement, lines plan, hydrostatic curves, investigation of stability and trim, structural profile and midship section, capacity, freeboard, tonnage, floodable length (if applicable), power requirements, propeller design and final general arrangement.

TEXT AND REFERENCE BOOKS
As for 5.933.

5.941 Ship Propulsion and Systems
Prerequisites: 5.071, 5.951.

TEXTBOOK

REFERENCE BOOKS
Todd, F. H. Ship Hull Vibration. Arnold.

5.951 Hydrodynamics
Prerequisites: 5.311, 5.611, 10.022. Co- or prerequisite: 5.071.
Kinematics of fluids: stream function, velocity potential and application. Elementary treatment of equations of motion and examples in hydrodynamics.

REFERENCE BOOKS
Glaueert, H. Aerofoil and Airscrew Theory. C.U.P.
6.021 Electrical Engineering II

A unified introduction to electrical engineering:

TEXTBOOK
Del Toro, V. Electrical Engineering Fundamentals. Prentice-Hall.

REFERENCE BOOKS
Smith, R. J. Circuits, Devices and Systems. Wiley.

6.031 Electrical Engineering III

TEXTBOOKS

REFERENCE BOOKS

B. Machines and Transformers: The principles of steady state operation and an introduction to the transient operation of transformers and rotating machines used for the conversion of energy. Single and three phase transformers, synchronous and asynchronous machines, direct current machines and metadynes.
REFERENCE BOOKS

Say, M. G. Design and Performance of A.C. Machines. Pitman.

REFERENCES BOOKS

Numerical analysis, errors, interpolation, quadrature linear and non-linear equation, differential equations. Logical organization of computers in functional units.

REFERENCES BOOKS

REFERENCES BOOKS

Marcus, M. P. Switching Circuits for Engineers. Prentice-Hall.

6.041 Fields and Measurements

Fields: Applications of field theory not elsewhere treated in the course, selected from: elements of incompressible fluid magnetohydrodynamics; some engineering applications of magnetostatics; analogies between the telegraphist's equations and a variety of potential theory problems, particularly non-electrical; superconductivity.

TEXTBOOK
To be advised.

REFERENCE BOOKS

Measurements: Principles of electrical measurements of moderate precision using direct currents and alternating currents of frequency such that lumped circuit techniques are satisfactory.

TEXTBOOK
Stout, M. B. *Basic Electrical Measurements.* Prentice-Hall.

REFERENCE BOOKS
Harris, F. K. *Electrical Measurements.* Wiley.

6.042 Circuits, Signals and Information Theory

Circuit theory and network synthesis. *Signal Analysis* and transmission through networks, including theory of noise and stochastic signals. Includes time frequency and mixed domain presentation; transients and other signals; correlation, convolution, etc.; statistical properties of signals; applications. *Information Theory* of discrete systems including coding and encoding of patterns. Information theory of continuous systems. Mathematical theory of signal detection, including an introduction to decision theory. Signal and system analysis in the light of information theory.

TEXTBOOK

REFERENCE BOOKS

6.043 Electrical Measurements
Measurements section of 6.041 Fields and Measurements.

TEXTBOOK
Stout, M. B. Basic Electrical Measurements. Prentice-Hall.

REFERENCE BOOKS
Harris, F. K. Electrical Measurements. Wiley.

6.044 Electrical Product Design and Reliability
The design and development of reliable, high-quality hardware, from components to systems: product and procurement specifications; factors in choice of system configuration, materials, components, processes; prediction of reliability, availability, system effectiveness; cost-of-ownership optimization; maintainability; thermal design; mechanical design; electromagnetic compatibility; redundancy; ergonomics; design of integrated circuits; interconnection and assembly methods; design reviews; fault-tree analysis; Monte Carlo simulation; worst-case and statistical design; sensitivity analysis and marginal testing; component screening; product development; life testing, environmental testing, non-destructive testing; quality control, attribute sampling.

TEXTBOOK

REFERENCE BOOKS
Proceedings of Annual Symposia on Reliability. IEEE.

Standards, published by Australian Dept. of Defence:

6.202 Power Systems
Transmission line parameters, symmetrical components, transformers, steady state system calculations for balanced and fault conductions. Lightning and switching voltage transients, circuit interruption. Load and frequency control of a single machine, steady state and transient stability. Load and frequency control of a system, economic transmission line loading, introduction to digital computer system calculations. Protection.
6.212 Machines

General Theory of Machines: power invariant transformations; transient performance; small disturbances and oscillations. *Commutator Machines*: d.c. and a.c. operation; cross field machines; d.c. machines in control systems; thyristors and thyristor speed control. *Induction Machines*: polyphase and single phase; unbalanced operation; speed control. *Synchronous Machines*: cylindrical and salient pole; locus diagrams; transients and faults; motor pull-in, hunting. *Machine Design*: windings; machine inductances; harmonics.

6.303 Communication Electronics

6.313 Wave Radiation and Guidance

A selection from the following topics:

TEXTBOOK
No set text.

REFERENCE BOOKS
6.322 Electronics

Topics in this course include: An introduction to modern filter theory; pulse spectra. Amplifiers: wide band, compensation; direct coupled, operational amplifiers, regulators. Pulse and Digital circuits: semiconductor switches; emitter coupled multivibrators; blocking oscillators. Integrated Circuits: non-linear and linear; use in systems. Power Converters: polyphase rectifiers, controlled rectifiers; high voltage converters, inverters. Semiconductor controls: motor controls, firing circuits, etc. Reliability Engineering: calculation of MTBF; statistical and worst case design; environmental and operating stresses.

TEXTBOOK
No set text.

REFERENCE BOOKS

6.333 Communication Systems

TEXTBOOKS

REFERENCE BOOKS
6.383 Biomedical Engineering

A course designed to introduce electrical engineering students to the practice of engineering techniques applied to the biological and medical fields. The lectures are supplemented by demonstrations and experimental work, and deal with the basic physiology of cells, tissues, organs and organisms, instrumentation and measurement techniques and modelling of various types of biological systems.

TEXTBOOK
No set text.

REFERENCE BOOKS
To be advised in class.

6.412 Automatic Control

Principles and techniques applicable to the analysis and design of feedback control systems encountered in industrial processes. Frequency transform and state space methods for compensation and stability analysis of single-input single-output linear systems. Extension to include some common nonlinearities. Optimum design including identification of process parameters by both on- and off-line methods.

(i) **Fourteen-week Course (Full-time)**

TEXTBOOK
Class notes may be purchased.

REFERENCE BOOKS

(ii) **Twenty-eight-week Course (Part-time)**

TEXTBOOK

REFERENCE BOOKS

Supplementary notes may be purchased.
6.422 Computer Control

TEXTBOOK

REFERENCE BOOKS

6.512 Advanced Semiconductor Device Theory

Characteristics and limitations of semiconductor devices as functions of operating point and environment. Devices include high-frequency and power transistors, FETs, thyristors and negative resistance devices.

TEXTBOOK

REFERENCE BOOKS
Gentry, F. et al. Semiconductor Controlled Rectifiers. Prentice-Hall.

6.522 Transistor and Integrated Circuit Design

Development of theory of transistor operation including high injection level effects and three dimensional geometry effects. Kinetics of epigrowth, diffusion and oxide growth as far as these are required to permit the student to specify process cycles. Design of transistor in terms of desired diffusion profiles, oxide growth thicknesses, and the specification of process cycles. Extension of the above to passive components as used in integrated circuits. Design aspects of integrated circuits, covering aspects peculiar to integrated circuits such as distributed parameters, parasitic couplings, correlated component tolerances and variations, special D.C. biasing methods.

TEXTBOOKS

REFERENCE BOOKS
To be advised in class.
6.612 Computer Systems Engineering

Switching circuits, memory systems, control and sequencing methods, digital to analogue and analogue to digital converters, input output and display devices. Data representation in machines, system architecture, multiprocessor systems. Fundamentals of software systems and languages. Analogue and hybrid computing; or advanced machine organization and construction.

TEXTBOOK

or

REFERENCE BOOKS

6.622 Computer Application and Software

Topics chosen from the following: simulation, heuristics, numerical analysis, mathematical optimization, data structures, machine organization, high-level languages, compilers and operating systems.

REFERENCE BOOK

6.801 Electrical Engineering

Presentation of principles of circuit theory and elementary electronics, transformers, electrical machines and instrumentation.

TEXTBOOK
Smith, R. J. *Circuits Devices and Systems*. 2nd ed. Wiley.

REFERENCE BOOKS
Del Toro, V. *Electrical Engineering Fundamentals*. Prentice-Hall.
(Earlier version published as *Principles of Electrical Engineering*. Prentice-Hall.)
6.802 Electrical Engineering
Study of electrical and electronic equipment, with emphasis on analogue and digital techniques applicable to the electrical measurement of non-electrical quantities. Open-loop and closed-loop control systems and some of their applications to instrumentation.

TEXT AND REFERENCE BOOKS
To be advised in class.

6.811 Electronic Instrumentation for Surveyors
Measurement of time, frequency and distance. Propagation of electromagnetic waves affecting the accuracy of tellurometry, time measurement, position finding and navigational aids.

TEXTBOOK
No set text.

REFERENCE BOOKS
To be advised in class.

6.822 Electronics
Conduction in solids; electron emission, vacuum tubes and applications; solid state diodes, transistors, thyristors, unijunction transistors, amplifiers, feed back; block diagrams of complete systems.

TEXTBOOK

REFERENCE BOOKS

6.841 Electronic Instrumentation
Fundamentals of electronic instrumentation, in particular the operation and use of equipment at audio and sub-audio frequencies for the measurement and recording of small signals in the presence of noise. The laboratory course comprises mainly demonstration experiments. Up to four weeks of field instruction will be included in the course.

TEXT AND REFERENCE BOOKS
To be advised in class.

6.911 Thesis
For students in the fourth year of the BE course.

6.931 Group Thesis
For students in the fourth year of the BE course.
8.010 Project
Assignments in civil engineering topics.

Hydraulic Engineering

8.011 Project

8.012 Architecture
Introduction concerning the influence of structural technique in the past on architectural styles. Effect of modern structural engineering systems on architecture. Responsibilities of the structural engineer as a consultant.

8.013 Bridge Engineering
Not compatible with 8.019 Railway Engineering.
Pre-or corequisite: 8.153.

8.014 Computer Applications in Civil Engineering
Pre-or corequisite: 8.153/8.532.
Programming, revision of Fortran, introduction to PL1. Some numerical techniques used in computing. Applications of computers to problems in structural analysis, systems engineering, water engineering, and engineering practice.

8.015 Road Engineering
Pre-or corequisite: 8.631.
Planning, location and design of roads in urban and rural areas. Properties of bitumen and pavement design. Computer applications and the use of aerial photographs in road design.

8.016 Hydraulics
Pre-or corequisite: 8.532.
Use of hydraulic models for rivers and coastal works. Further studies in open channel flow and estuarine hydraulics.

8.017 Transportation Engineering
8.018 Construction and Administration
Pre-or corequisite: 8.631.
Advanced construction methods and techniques. Practical construction organization and management.

8.019 Railway Engineering
Not compatible with 8.013 Bridge Engineering.
Pre-or corequisite: 8.631.
First half of subject consists of the Session 1 lectures and tutorials of the Bridge Engineering elective, the second half is devoted to railway engineering. It includes railway geometry, track rails, traffic, railway development.

8.020 Hydrology
Pre-or corequisite: 8.532.
Hydrological aspects of flood forecasting. The course will comprise lectures and colloquia; students will derive an operational flood forecasting system for a stream.

8.021 Environmental Aspects of Civil Engineering
An interdisciplinary study of the possible aesthetic and ecological effects of Civil Engineering activities on the environment.

8.022 Elasticity and Plasticity in Soil and Rock Mechanics
Pre-or corequisite: 8.153.
Aspects of the elasticity and plasticity theories to solution of stress distribution and stability problems (underground openings, slopes, foundations).

8.023 Flow in Porous Media
Pre-or corequisite: 8.532.
Analysis of flow in saturated and unsaturated porous media systems. Application of analytical results to relevant problems in Civil Engineering practice.

8.024 Foundation Engineering
Pre-or corequisite: 8.253.
In depth study of selected topics in foundation.

8.025 Structural Concrete
Pre-or corequisite: 8.253.
Study of the application of concrete technology to engineering practice.

8.026 Systems Methods in Civil Engineering
Theory and applications of operations research and systems analysis in decision making, optimization, networks, stochastic processes, or system modelling.
8.027 Timber, Plastics and Composite Engineering

Pre-or corequisite: 8.253.

Properties and applications of timber and developing materials.

8.111 Civil Engineering

TEXTBOOK

REFERENCE BOOKS

8.112 Materials and Structures

Properties of Materials — Mechanical behaviour of materials; response to static and dynamic loads. Laboratory techniques. Analysis and presentation of experimental results. Use of material properties in analysis and design.

REFERENCE BOOKS

8.151 Mechanics of Solids

TEXTBOOK

REFERENCE BOOKS

8.152 Structures

Introduction to structural design; design loads, safety factors and load factors; Codes of Practice. Design of metal structures; members in tension, compression and bending, connections; framed structures. Reinforced concrete design; beams and short columns; simple slabs. Structural analysis; principle of virtual work; force and displacement methods; deflections in structures; solution of statically indeterminate structures; introduction to moment distribution; influence lines; introduction to structural dynamics.

TEXTBOOKS
A.S. Code CA1 — 1968.

REFERENCE BOOKS
ACI Standard 318-71 and Commentary.
Bresler, B. & Lin, T. Y. Design of Steel Structures. Wiley.
Cowan, H. J. & Smith, P. R. Design of Reinforced Concrete. A. & R.
Ferguson, P. M. Reinforced Concrete Fundamentals. Wiley.
McGuire, W. Steel Structures. Prentice-Hall.
FACULTY OF ENGINEERING

8.153 Structures

Analysis. Introduction to three-dimensional theory of elasticity. Stress, strain, Hooke's Law, strain compatibility. Three-dimensional principle of virtual displacements. Forces and displacements in statically determinate and indeterminate pinjointed structures; matrix formulation. Forces and displacements in rigid jointed structures; matrix formulation. Introduction to elastic stability dynamic behaviour of structures.

Extension of earlier work on steel design to include continuous structures; design of a single storey continuous gable-framed structure using permissible stress method, with emphasis on design of welded joints for continuity. Introduction to plastic method of design of steel structures. Load factor. Principle of redistribution of moments. Simple application such as design of continuous beams.

Timber design. Emphasis on special properties of timber affecting design of timber structures.

Earth retaining structures.

REFERENCE BOOKS

Analysis

Design

Beedle, L. S. *Plastic Design of Steel Frames*. Wiley.
Ferguson, P. M. *Reinforced Concrete Fundamentals*. Wiley.
Lin, T. Y. *Design of Prestressed Concrete Structures*. Wiley.

8.154 Structures

Analysis. Revision of force method of solving statically indeterminate pinjointed structures, and rigid framed structures. Further examples of the use of force method including rigid frames in which axial and shear deformations as well as flexural deformations are significant. Treatment of members of variable cross-section. Extension of earlier work on moment distribution method to include the problem of sidesway. Derivation of the slope-deflection equations—their use in solving simple frame problems. The matrix formulation of the stiffness method of analysis. Introduction to elastic stability of structures.

Design of Structures. Syllabus as for 8.153.

REFERENCE BOOKS

As for 8.153.
8.161 Engineering Mathematics

REFERENCE BOOKS

8.241 Geomechanics

TEXTBOOKS

REFERENCE BOOKS

8.243 Soil Mechanics

TEXTBOOKS
8.250 Properties of Materials

TEXTBOOK

REFERENCE BOOKS
Mann, J. Y. Fatigue of Materials. M.U.P.

8.252 Civil Engineering Materials

TEXTBOOKS

REFERENCE BOOKS
Ackroyd, T. N. W. Concrete Properties and Manufacture.
BSI Specification (current editions) B.S12 Portland Cement (Ordinary and Rapid Hardening); B.S812 Sample and Testing of Mineral Aggregates, Sands and Fillers; B.3882 Concrete Aggregates from Mineral Sources; B.S1881 Methods of Testing Concrete. Br. Stand. Instit. London.
Design, Control and Characteristics of Concrete. Cement & Concrete Association of Australia.
8.253 Civil Engineering Materials

Laboratory. Examination of concrete properties and concrete-making materials; proportioning methods; analysis, manufacture and testing of reinforced concrete members.

REFERENCE BOOKS
A.C.I. Manual of Concrete Practice. 3 vols. 1968.
Murdock, L. J., & Blackledge, G. F. Concrete Materials and Practice. 4th ed. Arnold.
S.A.A. Specifications (current editions) A64 Ready Mixed Concrete; A77 Aggregates for Concrete; A100-A111 Methods of Testing Portland Cement Concrete. Stand. Assoc. of Aust.
Part II — Soil Engineering

Foundation engineering; bearing capacity theory; allowable settlement, shallow and deep foundations; rafts; pile groups; site investigation as applicable to foundation design. Earth and rockfill dams, types, materials, stability analysis and design, construction problems. True shear strength of saturated soils, modern failure theories, yield criteria and yield surface theories applied to soil behaviour. Non-saturation; mechanics of unsaturated flow, soil suction, shear strength of unsaturated soils, drainage process.

Laboratory. Consolidation and shear strength testing of cohesive and granular soils. Evaluation of simple earth pressure, foundation engineering and earth dam theory.

TEXTBOOKS

REFERENCE BOOKS

8.254 Civil Engineering Materials

Laboratory. Examination of concrete and concrete materials; aggregate testing, mix design, mechanical properties of concrete.

Part II — Soil Engineering

Foundation engineering; bearing capacity theory; allowable settlement, shallow and deep foundations; rafts; pile groups; site investigation as applicable to foundation design. Earth and rockfill dams, types, materials, stability analysis and design, construction problems.

Laboratory. Consolidation and shear strength testing of cohesive and granular soils. Evaluation of simple earth pressure, foundation engineering and earth dam theory.

TEXT AND REFERENCE BOOKS

As for 8.253.

8.259 Properties of Materials

8.250—Properties of Materials, plus the structure and properties of binary alloys; control of structure and properties, commercial alloys, materials selection.
8.261 Geotechnics

Introduction to aspects of engineering geology and rock and soil characteristics to provide a basis of subsequent work in Soil Mechanics, Concrete Technology and Road Materials. Main topics covered are structural geology; groundwater; petrology; clay mineralogy; soil properties; testing of coarse aggregates. Some previous study of geology is assumed.

TEXTBOOK

REFERENCE BOOK
Soil Mechanics for Road Engineers. H.M.S.O.

8.280 Civil Engineering Materials I

Laboratory: Approximately 51 hours of laboratory/tutorial studies with emphasis on the study of structure and the relationship of structure to mechanical properties of a range of materials.

TEXTBOOKS

REFERENCE BOOKS
Mann J. Y. Fatigue of Materials. M.U.P.

8.301 Systems Engineering

TEXTBOOK
8.510 Hydraulics

Fluid properties; hydrostatics, stability of floating bodies; fluid acceleration; flow patterns, continuity; Euler, Bernoulli, energy and momentum equations. Laboratory experiments.

TEXTBOOKS

REFERENCE BOOK

8.531 Water Engineering

Hydrology — The hydrologic cycle, the runoff cycle, water balance, energy balance, circulation of atmosphere, dynamic cooling, condensation and precipitation, probability analysis of precipitation and floods, infiltration, soil water and groundwater hydrology, streamgaging, hydrograph analysis, flood estimation, yield and storage determination, evaporation, evapotranspiration.

Public Health Engineering — Elements of organic chemistry, elements of biology, process of decomposition and decay, colloids and colloidal solutions, adsorption, ionic theory and dissociation, chemical and biochemical measurement of degree of pollution, rate of biochemical oxidation, principles of water treatment, principles of sewage treatment.

TEXTBOOKS

REFERENCE BOOKS
8.532 Water Engineering

Part II — Applied Water Engineering: water resources problems and solutions, the systems approach. General principles of regulation and utilisation of water; reservoirs and storage, distribution and transmission, treatment, collection and disposal. Examples of applied water engineering selected from the following fields: water supply, sewerage, irrigation, land drainage, urban drainage, flood control, hydro-electric generation, multi-purpose projects, river channel control, coastal engineering.

TEXTBOOK

REFERENCE BOOKS
Robertson, J. M. Hydrodynamics. Prentice-Hall.
government and local government authorities. An introduction to construction planning and scheduling; cost control and cost accounting; tenders and the preparation of estimates; scheduling of operations; linear programming, critical path and PERT techniques; contracts and specifications.

TEXTBOOKS

REFERENCE BOOKS

Antill, J. M. *Civil Engineering Management*. A. & R.

8.631 Civil Engineering

Part II: Transport Planning and Operations. Definition of a land use/transport system — land use potential, traffic generation, intensity of traffic generation, transport system capacity. Stability and steady state performance — output, specific output. Land use, generation, desire line and assignment models. The transport planning process — systems versus programming approach. Evaluation of operational performance of transport systems — travel time and flow relationships (the queueing model), level of service, network characteristics, transfer terminals. Economic evaluation of transport schemes and plans — criteria, benefits, costs, time streams, discounting, present worth, rates of return, benefit/cost and cost/effectiveness ratios.

Part III: Road Engineering. Route analysis and road location in the rural and urban environment including the location of bridges. Road geometrics and design, its influence on the behaviour of drivers. Landscape aspects of road design. Some examples of road design policies and their application. Types of roads and expressways and their applications, advantages and disadvantages. Types of intersections and interchanges, and some problems in their design. Pavement requirements, thickness design, pavement materials, gravels, stabilisation, cement and bituminous concrete. Function of wearing courses. Road drainage requirements and examples of design, road construction methods and plant. Uses of electronic computation in Highway Engineering.

Part IV: Project Planning and Evaluation. Management principles: historical development; scientific management; the managerial process, communication and control. Management practice: the role of design, research
and development; management functions. Organisation: span control, divisionalisation, responsibility, authority and accountability. Engineering economics: interest, rates of return, minimum attractive rate of return, comparison, benefit-cost ratio. Project planning: organisational pattern, cost control, procurement, personnel management, resources scheduling and planning, critical path, project evaluation and review. Project evaluation: cost estimation, benefit estimation, economic comparison.

8.632 Civil Engineering

Comprises Parts I and III, being respectively Regional and Urban Planning and Road Engineering of 8.631 Civil Engineering.

8.711 Engineering for Surveyors I

TEXTBOOK

REFERENCE BOOKS
Stormwater Standards Committee. *Australian Rainfall and Runoff*. Inst. of Engineers, Australia.

8.712 Engineering for Surveyors II

Municipal Engineering. Soil Mechanics: Soil forming processes; pedological classification; engineering classification of soils; pavement design based on engineering classification; effective stress concept for saturated and unsaturated soils, shear strength, flow of water through soils; consolidation; slope stability and earth pressures. Public Utilities: Relationship between urban development and each of water supply, wastewater and stormwater drainage, transport.

TEXTBOOKS

REFERENCE BOOKS
18.011 Industrial Engineering IA

Prerequisite: 10.022. Co- or prerequisites: 5.071, 5.111.

TEXTBOOK

REFERENCE BOOKS

18.012 Industrial Engineering IIA

Prerequisites: 5.112, 18.011.

Technology of Manufacturing: Basic plasticity theory. Theories of deformation processes, extrusion, tube making, forming and deep drawing. Design for Production: Interchangeable manufacture; standardisation; design communication; pre-production planning; introduction to design analysis. Metrology: Principles of measurement and measuring systems; basic design concepts of mechanical, optical, pneumatic and electrical systems, linear and angular measurements; straightness and flatness; screw thread measurements; machine tool testing.

TEXTBOOKS
REFERENCE BOOKS

18.021 Industrial Engineering IB
Prerequisite: 10.022. Co- or prerequisite: 5.071.
Engineering Economics — The structure of the Australian economy. The theory of the firm. The selection and replacement of processes and equipment. Construction and optimisation of particular economic models e.g. inventory. Industrial Applications of Probability — Tutorial problems from the fields of sampling inspection, quality control, control charts — simple economic models, e.g. newsboy problem, length of steel bars.

TEXTBOOKS

REFERENCE BOOKS

18.022 Industrial Engineering IIB
Prerequisites: 5.071, 18.021.
Design of manufacturing facilities — Product and objectives, equipment selection. Charting and systematic improvement of methods, workplace layout, the factory environment.
The use of human and physical resources — Motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection, predetermined motion-time systems.
Production Control — The detailed mechanics of control of jobbing production, and its extension to batch and continuous production. Manufacturing organisations, functions, inter-relationships and information flow. Application of data processing and control systems.

TEXTBOOKS

REFERENCE BOOKS
18.121 Production Management

Prerequisites: 10.031, 10.331.

The Use of Human and Physical Resources—Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout.

Production and Quality Control—Control of jobbing, repetitive batch and continuous production. Manufacturing organizations, functions, interrelationships and information flow. Sampling techniques in quality control, control charts.

Introduction to Operations Research—The formation and optimization of mathematical models of industrial processes. The development of decision rules. Some techniques of operational research and applications, e.g. mathematical programming, queueing theory, inventory models, simulation.

TEXTBOOKS

REFERENCE BOOKS

18.431 Design for Production

Prerequisite: 18.011. Co- or prerequisite: 18.012.

Interchangeable manufacture; standardisation; unit and selective assembly; preferred sizes. Presentation and interpretation of geometric tolerances; grouping: analysis of non-linear loop equations, economic allocation of tolerances; application of probability theory to tolerance allocation. Gauge design: effect of gauge tolerances on interchangeability.

TEXTBOOKS

REFERENCE BOOK
18.551 Operations Research

Prerequisites: 5.071, 18.021 or 10.031, 10.331, 18.121.

The formulating and optimisation of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queueing theory, inventory models, replacement and reliability models, and simulation will be introduced. These techniques will be applied to situations drawn from industrial fields, e.g. production planning and inventory control. Practical problems of data collection, problem formulation and analysis will be included.

TEXTBOOK

REFERENCE BOOKS
29.081 Thesis

29.101 Surveying I

Introduction to surveying instruments. The theory and use of optical square, clinometer, cloth tape, steel tape, plane table, level and theodolite. Theory and practice of data reduction.

TEXTBOOKS

Seven Figure Mathematical Tables. Full ed. Chambers, 1958.

REFERENCE BOOKS

29.102 Surveying II

Control Surveys: plane triangulation with ten second theodolites, precise traversing, contour surveys including optical distance measurement, calculation of areas, volumes, calculating and setting out curves.

Barometric and trigonometrical levelling. Hydrographic surveying. Introduction to use of one second theodolites.

TEXTBOOKS

REFERENCE BOOKS

29.103 Surveying III

Electronic distance measurement, gyrotheodolites, compensators in levels and theodolites. Optical plumbing, deflection and settlement measurements, survey methods in industry, mine surveying. Gauss collimation technique.

TEXTBOOKS

REFERENCE BOOKS

29.151 Survey Computations I

TEXTBOOKS
Seven Figure Mathematical Tables. Chambers, 1958.
Tables of Natural Sines, Tangents, etc. to every Ten Seconds. D.M.R., 1949, or

REFERENCE BOOKS

29.152 Survey Computations II

Revision of basic error theory. Adjustment by least squares (a) parametric method; (b) method of correlatives. Solution of Normal Equations by elimination methods (a) Gauss-Doolittle; (b) Cholesky. Error ellipse calculations.
TEXTBOOKS
As for 29.151 Survey Computations I.

REFERENCE BOOKS
Shortrede, R. Logarithms of Sines and Tangents for Every Second. Layton.
Vega, G. Seven Figure Logarithmic Tables. Hafner Pub. Co., N.Y.

29.181 Cartography
Cartographic drawing, plotting and plan drawing. Applications in boundary and engineering surveys.

TEXTBOOK

29.192 Survey Camp
A two-week field camp, including the preparation of a report and plans.

29.193 Professional Training
A five-month period of practical experience including the submission of a report.

29.194 Survey Camp
A six-week field camp including the preparation of a comprehensive report.

29.211 Geodesy I
Historical development of geodesy. Differential geometry, the spheroid; curves on the spheroid, Legendres Theorem, computation of geographical coordinates. Geodetic surveying (types of horizontal control surveys). Procedures for angular observation. Surveyors projections. Applications to integrated surveys.

TEXTBOOK
Mather, R. S. The Theory and Geodetic Use of some Common Projections. School of Surveying, U.N.S.W.

REFERENCE BOOKS
Geodetic Triangulation. USC & GS. Special Publication.

29.212 Geodesy II
A. Adjustment of control surveys using the condition and parametric methods of least square adjustment for measured angular and linear quantities. Variance/covariance matrix; variance factor; weight coefficient
matrix. Elementary statistical testing of observations and adjusted values. High precision levelling.

B. Relationship between geoid and ellipsoid; astro geodetic levelling; ellipsoidal elevations; mean sea level and the geoid. Methods for establishing a world geodetic system. Gravity and its use in geodesy.

REFERENCE BOOKS
Mather, R. S. *The Theory and Geodetic Use of some Common Projections*. School of Surveying, U.N.S.W.

29.213 Geodesy III

REFERENCE BOOKS
As for 29.212 Geodesy II.

29.311 Astronomy I

TEXTBOOKS
or
Star Almanac for Land Surveyors for Current Year. H.M.S.O.

29.312 Astronomy II
Azimuth by circum-elongation, circum-polar and sun observations. Optimum position of observation, balancing of observations. Position line methods.

TEXTBOOK
Star Almanac for Land Surveyors for Current Year. H.M.S.O.
REFERENCE BOOKS

29.313 Astronomy III
A study of topics selected from the following: Corrections to observations and calculations; star coordinates; meridian methods; equal altitude methods; precise timing.

TEXT AND REFERENCE BOOKS
As for 29.312 Astronomy II.

29.411 Surveying for Architects

REFERENCE BOOKS

29.431 Surveying and Cartography

29.441 Engineering Surveying

Part B. Levelling (other methods). Linear measurement (electronic). Applications of survey techniques: control surveys, provision of information for design, setting out engineering works, etc. Outline of photogrammetry.

TEXTBOOKS
Seven Figure Mathematical Tables. Chambers, 1958.

REFERENCE BOOKS

29.491 Survey Camp

A one-week field camp for students studying 29.441 Engineering Surveying.

29.511 Photogrammetry I

Stereoscopic vision. Geometry of single air photograph and stereoscopic pairs. Fundamental mathematical relationships. Radial triangulation. Inner, relative and absolute orientation with respect to direct optical projection. Cameras, physical properties of photographs.

TEXTBOOK

REFERENCE BOOKS

29.512 Photogrammetry II

TEXTBOOK

REFERENCE BOOKS

29.513 Photogrammetry III

TEXT AND REFERENCE BOOKS

As for 29.512 Photogrammetry II.

29.611 Land Studies I

of land classification with special reference to work in Australia. Classification for land potential. Laboratory classes will support the study of physical factors determining land character, and will also illustrate the use of air-photos in the identification and mapping of land types. There will be a one-day field tutorial in the Sydney region.

B. Economics: Fundamentals of economic theory; national income and its distribution; employment, housing, economics of location. Financial planning and budgeting; cost benefit analysis of planning; compensation and betterment; investment criteria. Economics of transition from rural to urban land use.

TEXTBOOKS

Corbett, J. R. *The Living Soil.* Martindale.

CSIRO. *The Australian Environment.* M.U.P.

REFERENCE BOOKS

Griffiths, J. F. *Applied Climatology.* O.U.P.

29.612 Land Studies II

B. Land Utilization: A broad study of biological, political, social and economic factors establishing a concept of ecological relationships and the place of man therein. Primary industries and urbanization. Conservation of resources.

C. Introducing Property Law: The legal system, forms and sources of law; land tenure and property law.

TEXTBOOKS

or

29.613 Land Studies III

Land Titles and Survey Law: General study of land title systems; land tenure and title; the law of boundaries and of easements and other estates. The N.S.W. Real Property Act and other acts regulating the conduct of surveys and recording; field records, plans, title searches; surveyor's powers and duties. Cadastral Survey Systems. The N.S.W. Integrated Survey System.

TEXTBOOK
Willis, R. W. *Survey Investigation.* Registrar-General's Dept.

REFERENCE BOOK

29.614 Land Studies Project

A project involving the preliminary survey, analysis and all aspects of design for a development.

29.615 Land Studies

Advanced studies in residential and industrial subdivisional design and presentation. Conflict of demand for land use; environmental control. Integrated survey applications. Data banks.

Management

Introduction to management and principles. Administrative and contract law; specifications and contracts; accounting principles and taxation; business and office management; personnel relationships, labour awards, public relations, professional practice.

29.821 Geodesy I

Figure of the earth, geoid, ellipsoid. Differential geometry: Euler's Theorem, Clairaut's Theorem, properties of geodesics, curvatures on the spheroid. Legendre's Theorem, calculations for short and medium lines on the spheroid. Outline of surveyor's projections. Technique of observation, estimates and tests of internal precision of angle, direction and distance measurements. Adjustment of control surveys, precision of adjusted values, testing of results. Approximate adjustments, braced quadrilateral.

TEXTBOOK

REFERENCE BOOKS
Peters, J. *Eight Place Table of Trigonometric Functions*. Edward Bros., 1943.

Seven Figure Mathematical Tables. Chambers, 1958.

Vega, G. *Seven Figure Logarithmic Tables*. Hafner Pub. Co., N.Y.

29.822 Geodesy II

Calculations on the ellipsoid; longitude, latitude and reverse azimuth. Major horizontal control surveys, plumb line deviations and Laplace stations. Base lines, precise traversing, trilateration, high precision levelling. Geophysical applications in geodesy.

REFERENCE BOOKS

Mather, R. S. *The Theory and Geodetic Use of some Common Projections*. School of Surveying, U.N.S.W.

29.831 Astronomy I

The celestial sphere and the astronomical triangle. Time. Latitude, longitude and azimuth determinations; best position, balancing, circum- and ex-meridian methods. Sun observations.

TEXTBOOKS

Star Almanac for Land Surveyors for Current Year. H.M.S.O.
29.832 Astronomy II

TEXTBOOK
Star Almanac for Land Surveyors for Current Year. H.M.S.O.

REFERENCE BOOKS

29.842 Surveying Computations II

TEXTBOOKS
Seven Figure Mathematical Tables. Chambers, 1958.
Tables of Natural Sines, Tangents, etc. to every Ten Seconds. D.M.R., 1949,
or,

REFERENCE BOOKS
Shortrede, R. Logarithms of Sines and Tangents for Every Second. Layton.
Vega, G. Seven Figure Logarithmic Tables. Hafner Pub. Co., N.Y.

29.851 Photogrammetry I

TEXTBOOK

REFERENCE BOOKS
29.852 Photogrammetry II

TEXTBOOK

REFERENCE BOOKS

29.881 Land Law, Utilization and Valuation

TEXTBOOKS

or

29.882 Cadastral Surveying

Land tenure, registration and cadastral surveys in selected countries. Survey practice law, professional ethics, surveyors' rights, powers and duties. Cadastral surveys in New South Wales; searches, Torrens and Old System title surveys, identification surveys, field records and plans.

TEXTBOOK
Willis, R. W. Survey Investigation. Registrar-General's Dept.

REFERENCE BOOK

29.893 Survey Camp

A two-week Field camp followed by one week on campus for computations.
NON-ENGINEERING SUBJECTS
(For General Studies subjects see the Department of General Studies Handbook.)

1.001 Physics I

TEXTBOOKS
Bueche, F. Introduction to Physics for Scientists and Engineers. McGraw-Hill.
Dunn, I., Higinbotham, J. & Russell, G. J. Laboratory Notes for Physics I. U.N.S.W.
Russell, G. J., & Mann, K. Alternating Current Circuit Theory. N.S.W.U.P.

REFERENCE BOOKS

1.011 Higher Physics I

Subject matter same as 1.001, but in greater depth.

TEXTBOOKS
Dunn, I., Higinbotham, J. & Russell, G. J. Laboratory Notes for Physics I. U.N.S.W.

B58
REFERENCE BOOKS

1.041 Physics IC

For students in the Faculty of Science, School of Surveying, and Industrial Arts course; also available as an elective in the Faculty of Arts. Consists of Units 1-5, 7, 9, 10.

TEXTBOOKS

Dunn, I., Higinbotham, J. & Russell, G. J. *Laboratory Notes for Physics I*. U.N.S.W.
Gutronich, J. E. *Electricity*. Clarendon.
Lishmund, R. E. *Introductory Physical and Geometrical Optics*. U.N.S.W.
Russell, G. J. & Mann, K. *Alternating Current Circuit Theory*. U.N.S.W.

REFERENCE BOOKS

Ference, M., Lemon, H. & Stephenson, R. J. *Analytical Experiment Physics*. C.U.P.

1.051 Physics IE

For students in the Aeronautical, Civil, Industrial and Mechanical Engineering and Naval Architecture courses. Consists of Units 1, 3, 4, 6, 9, 11, 13.

UNITS

Nuclear structure and binding. Nuclear reactions including fission and fusion. Nuclear reactors.

TEXTBOOKS

Lishmund, R. E. *Introductory Physical and Geometrical Optics*. U.N.S.W.

Parry, L. G. & Jennings, P. J. *Modern Physics*. U.N.S.W.

Pollard, H. F. & Harris, R. W. *Introductory Physical Acoustics*. U.N.S.W.

Russell, G. J., Dunn, I. & Higinbotham, J. *Laboratory Notes for Physics I*. U.N.S.W.

REFERENCE BOOKS

PHYSICS LEVEL II UNITS (Professional)

The units are at two levels, an ordinary level, prefix 1.112, and a higher level, prefix 1.122:

TEXTBOOK
For all students taking Level II Physics laboratory:
Coster, H. G. L. Experimental Physics. U.N.S.W.

1.112A Electromagnetism

Electrostatics in vacuum and in dielectrics. Magnetostatics in vacuum and in magnetic materials. Maxwell’s equations and simple applications.

TEXTBOOKS
Coster, H. G. L. Experimental Physics. U.N.S.W.

1.112B Modern Physics

Special theory of relativity, Lorentz transformation, relativistic mass, momentum and energy; quantum theory, photoelectric effect, Compton effect; wave-particle duality, Schrödinger wave equation, infinitely deep square well, H atom; spectra, magnetic moment, exclusion principle; Rutherford scattering, nuclear properties, mass spectrograph, binding energy, radioactivity, alpha, beta and gamma radiation, nuclear reactions.

TEXTBOOKS
Coster, H. G. L. Experimental Physics. U.N.S.W.

REFERENCE BOOKS

1.112C Waves in Continuous Media and Thermodynamics

TEXTBOOKS
Continuum Mechanics
Thermodynamics

REFERENCE BOOKS
1.122A Electromagnetism

TEXTBOOK

REFERENCE BOOK

1.122B Quantum Physics

TEXTBOOK

REFERENCE BOOK

1.122C Thermodynamics and Mechanics

TEXTBOOKS

REFERENCE BOOKS
2.001 Chemistry I
Classification of matter and theories of the structure of matter, Atomic structure, the periodic table and chemical behaviour. Chemical bonds and molecular structure. Equilibrium and change in chemical systems. The structure, nomenclature and properties of organic compounds. Reactions of organic compounds.

TEXTBOOKS

REFERENCE BOOKS

2.021 Chemistry IE
A terminating subject for students in the Aeronautical, Civil, Industrial and Mechanical Engineering, Naval Architecture, and Applied Geography courses.
Classification of matter and theories of the structure of matter. Atomic structure, the periodic table and chemical behaviour. Chemical bonding and the nature and properties of chemical substances. Equilibrium and change in chemical systems.

TEXTBOOKS
4.913 Materials Science

Polymer materials. The structure and properties of polymers. Mechanisms for the modification of properties.

Ceramic materials. The structure and properties of ceramics. Similarities and differences with other crystalline solids. Ceramic-metal composites.

4.921 Materials Science

TEXTBOOK

REFERENCE BOOK

10.001 Mathematics I

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

TEXTBOOKS
Blatt, J. M. Introduction to Fortran IV Programming. Prentice-Hall.
Tetra, B. C. Basic Linear Algebra, Harper & Row.

REFERENCE BOOKS
Lange, I. H. Elementary Linear Algebra. Wiley.
Shields, P. C. Elementary Linear Algebra. Worth.
PRELIMINARY READING LIST

Courant, R. & Robbins, H. What is Mathematics? O.U.P.
Polya, G. How to Solve It. Doubleday Anchor.

10.011 Higher Mathematics I

Calculus, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

TEXTBOOKS
Blatt, J. M. Introduction to Fortran IV Programming. Prentice-Hall.
Fagg, S. V. Differential Equations. E.U.P.
Kelly, G. M. Lectures in Algebra. N.S.W.U.P.
Spivak, M. Calculus. Benjamin.

REFERENCE BOOKS
As for 10.001 Mathematics I plus:
Abraham, R. Linear and Multilinear Algebra. Benjamin.
Burkhill, J. C. A First Course in Mathematical Analysis. C.U.P.
Lang, S. Linear Algebra. Addison-Wesley.
Spivak, M. Calculus on Manifolds. Benjamin.

PRELIMINARY READING LIST
As for 10.001 Mathematics I plus:
Reid, C. From Zero to Infinity. Routledge & Kegan Paul.

10.021 Mathematics II

Calculus, analysis, analytic geometry, algebra, probability theory, elementary computing.

TEXTBOOKS
Blatt, J. M. Introduction to Fortran IV Programming. Prentice-Hall.
Greening, M. G. First Year General Mathematics. N.S.W.U.P.
REFERENCE BOOKS

10.022 Engineering Mathematics II
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigen values and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.

TEXTBOOK

REFERENCE BOOKS
Hildebrand, F. B. Advanced Calculus for Applications. Prentice-Hall.

10.033 Electrical Engineering Mathematics III

TEXTBOOKS

REFERENCE BOOKS
Hague, B. An Introduction to Vector Analysis. Methuen.
Tranter, C. J. Integral Transforms. Methuen.
10.111A Pure Mathematics II—Linear Algebra

Vector Spaces: inner products, linear operators, spectral theory, quadratic forms. Linear Programming: convex sets and polyhedra, feasible solutions, optimality, duality.

TEXTBOOKS
SESSION 1
SESSION 2

REFERENCE BOOKS
Lang, S. Linear Algebra. Addison-Wesley.

10.111B Pure Mathematics II—Analysis

Complex variables: analytic functions, elementary functions, Taylor and Laurent series, integrals, Cauchy's theorem, residues, evaluation of certain real integrals, maximum modulus principles. Linear differential equations of the second order: equations with constant coefficients, power series solutions, Laplace transforms, Bessel functions.

TEXTBOOKS
SESSION 1
or
SESSION 2

REFERENCE BOOKS

10.111C Pure Mathematics II—Algebra and Geometry

Abstract Algebra: Euclidean algorithm, unique factorization theorem, mathematical systems, groups, determination of small groups, homomorphisms and normal subgroups. Geometry: elementary concepts of Euclidean, projective and affine geometries.

TEXTBOOKS
SESSION 1
SESSION 2

REFERENCE BOOKS
Coxeter, H. S. M. Introduction to Geometry. Wiley.
10.341 Statistics SU

An introduction to probability theory. Random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood; confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to linear regression. Least squares adjustment of data.

10.351 Statistics SM

For students in Aeronautical, Industrial and Mechanical Engineering and Naval Architecture as part of 5.071 Engineering Analysis.

An introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions, with emphasis on those derived from the normal distribution; t, χ^2 and F. Estimation of parameters: the methods of moments and maximum likelihood, and confidence interval estimation. The standard tests of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

TEXTBOOKS (for 10.341 and 10.351.)

REFERENCE BOOKS
Derman, C. & Klein, M. *Probability and Statistics Inference for Engineers*. O.U.P.
Freeman, H. *Introduction to Statistical Inference*. Addison-Wesley.
Hald, A. *Statistical Theory with Engineering Applications*. Wiley.

36.411 Town Planning

The study of factors influencing the direction of the development and use of land in the public interest. Objectives of town and regional planning; historical background; contemporary planning techniques; New South Wales planning law and administration; parks and playing fields; housing and neighbourhood planning; traffic and transport; the central area; elements of civic design; the city of the future.

TEXTBOOK

REFERENCE BOOKS
Colman, J. *Planning and People*. A. & R.
14.001 Introduction to Accounting

An introduction for non-commerce students to the nature, purpose and conceptual foundation of accounting. Information systems including accounting applications. Analysis and use of accounting reports. Relevance of accounting to managerial and technological functions including planning, decision-making and control.

PRELIMINARY READING

TEXTBOOK

25.101 Geology for Engineers

TEXTBOOK

REFERENCE BOOKS

25.303 Geophysics for Surveyors

Physics, shape, structure and constitution of the earth; geotectonics, seismology, gravity, geodesy, geothermy, geomagnetism, palaeomagnetism.

TEXTBOOKS

REFERENCE BOOKS

31.212 Geometrical Optics

REFERENCE BOOKS
Fincham, W. *Optics*. Hatton.
HELP IMPROVE YOUR HANDBOOK

It is important to the University and to yourself that you understand its conventions and regulations. The University Calendar and faculty handbooks are means by which the University attempts to convey, amongst other things, information regarding the facilities it has to offer, and the rules and regulations which govern the conduct and progress of students. You can help us assess the efficacy of the handbooks by completing this questionnaire, and thereby help yourself and your fellow students in the years to come.

If you would like to discuss any aspect of the Calendar or handbooks personally, please contact Mr. Douglas Howie, Room 307, The Chancellery, or phone extension 3340.

1. Name of faculty .. Course .. Yr./Stage ..

A. CONTENTS

2. What information in your handbook did you find most useful?

3. (a) What information did you find least useful?

(b) Why was the information of so little use to you?

4. How would you rate the following information areas for inclusion in the handbook?

(Tick appropriate square)

<table>
<thead>
<tr>
<th>Information Area</th>
<th>Essential</th>
<th>Interested</th>
<th>Unnecessary to Have</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar of dates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List of academic staff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course outlines or rules governing course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptions of subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textbook lists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference book lists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements for admission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admission and enrolment procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course fees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rules relating to students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scholarships</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timetables</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Please comment on any aspect of the information areas listed in Question 4 and particularly, if you think necessary, on the form of presentation i.e., its content, layout, position.
6. If there is any section which you feel might be expanded, please list and state why you feel it should be expanded.

7. Would you like any of the following included in the handbook?
 - Photographs of senior academic and administrative personnel
 - Prices of textbooks
 - Names of lecturers listed alongside subject descriptions
 - Timetables
 - Map of the Campus
 - Any other items

 YES NO

8. Do you use the textbook lists in your handbook when buying your books?
 If 'NO', please state where you obtained a list of the required textbooks

9. Do you use your handbook when selecting reference books?
 If 'NO', please state where you obtained your list of reference books

10. The handbooks are generally available at the latest by mid-December. Is this date early enough for your purposes?
 If 'NO', please nominate a month when you feel they should be on sale

11. Have you ever sought information from the University Calendar because it was not available in the handbook?
 If 'YES', please indicate which information

12. If you had any difficulty in obtaining a copy of your handbook, please outline problem

B. FORMAT

13. Is the handbook a convenient size?

14. Would you prefer some of the information to be presented differently, e.g., in tabular form, or expressed in a less complex manner or perhaps communicated in some other way?
 If 'YES', please give examples of what you would like changed, and how you would change it

15. Have you any comments which you would like to make on either the contents or format?

When you have completed this form, please either return it personally to Mr. Douglas Howie, Assistant Registrar, Room 307, The Chancellery, or post it via the internal mail system. Thank you for your co-operation.
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday Session 1</th>
<th>Monday Session 2</th>
<th>Tuesday Session 1</th>
<th>Tuesday Session 2</th>
<th>Wednesday Session 1</th>
<th>Wednesday Session 2</th>
<th>Thursday Session 1</th>
<th>Thursday Session 2</th>
<th>Friday Session 1</th>
<th>Friday Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-10</td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
</tr>
</tbody>
</table>