The University of New South Wales

Engineering

1977 Faculty Handbook
Arms of
The University of New South Wales

Granted by the College of Heralds, London
3 March 1952

Heraldic Description of Arms

Argent on a Cross Gules a Lion passant guardant between four Mullets of eight points Or a Chief Sable charged with an open Book proper thereon the word SCIENTIA in letters also Sable.

The lion and the four stars of the Southern Cross on the Cross of St George have reference to the State of New South Wales which brought the University into being; the open book with SCIENTIA across its page reminds us of its original purpose. Beneath the shield is the motto 'Manu et Mente', which is the motto of the Sydney Technical College, from which the University has developed. The motto is not an integral part of the Grant of Arms and could be changed at will; but it was the opinion of the University Council that the relationship with the parent institution should in some way be recorded.
The address of the University of New South Wales is:

PO Box 1, Kensington, New South Wales, Australia 2033

Telephone: (02) 663 0351

Telegraph: UNITECH, SYDNEY

Telex AA26054

The University of New South Wales Library has catalogued this work as follows:

UNIVERSITY OF NEW SOUTH WALES

Faculty of Engineering

Handbook.

Annual, Kensington.

1962 +

University of New South Wales —
Faculty of Engineering — Periodicals.
Information in this Handbook has been brought up to date as at 13 September 1976, but may be amended without notice by the University Council.

Contents

General Information 1
Some People Who Can Help You 1
Calendar of Dates
1977 .. 2
1978 .. 4
The Academic Year 4
Organization of the University 4
Council/Professorial Board/Faculties 4
Schools/Executive Officers/Administration/Student Representation/
Award of the University Medal/Subject Numbers/General Studies 5
Student Services and Activities
The University Library 6
Accommodation 6
Other Accommodation 6
Student Employment and Scholarships 7
Student Health 7
Student Counselling and Research 7
Student Amenities and Recreation 7
Physical Education and Recreation Centre 8
The Sports Association 8
University Union 8
Students' Union 8
Chaplaincy Centre 9
Other Services and Activities 9
Financial Assistance to Students
Tertiary Education Assistance Scheme 9
Scholarships, Cadetships, Prizes 10
Other Financial Assistance 10
Financial Assistance to Aboriginal Students ... 10
Fund for Physically Handicapped and Disabled Students 10
Rules and Procedures 11
Admission ... 11
Enrolment ... 11
Fees ... 15
Examinations 17
Essays .. 19
Student Conduct on Campus 19
Further Information 20
Vice-Chancellor's Official Welcome to New Students 20
Foreword
The Faculty of Engineering Handbook 21
Information Service for Students 21
The Faculty of Engineering 22
School of Civil Engineering 22
School of Electrical Engineering 22
School of Highway Engineering 22
School of Mechanical and Industrial Engineering 22
School of Nuclear Engineering 23
School of Surveying 23
School of Transportation and Traffic 23
Faculty of Applied Science 24

Message from the Dean 25

Faculty Information
Enrolment Procedures 37
Library Facilities 40
Location of Laboratories outside Kensington Campus 41
The Undergraduate Society of Engineers 41
IAESTE 41
The Institution of Engineers, Australia 41
The Institution of Surveyors, Australia 41
The Rupert H. Myers Award for Materials Engineering 42
Financial Assistance to Students 42
Scholarships 42
Undergraduate 42
Graduate 44
Prizes 47
Undergraduate 47
Graduate 50

Undergraduate Courses 51
Full-time Courses 52
Part-time Courses 52

Conditions for the Award of Degrees
Bachelor of Science (Engineering) 52
Bachelor of Engineering 53
Bachelor of Surveying 53

Course Outlines
School of Civil Engineering 54
362 Civil Engineering (BE) 54
 Full-time 54
 Part-time 55
School of Electrical Engineering 56
364 Electrical Engineering (BE) Full-time 57
365 Electrical Engineering (BSc(Eng)) 58
Substitution of Subjects 59
Double Degrees 59
397/364 Double Degree [BSc BE] in Electrical Engineering 59
372 Double Degree (SA BE) in Electrical Engineering 59
School of Mechanical and Industrial Engineering 60
368 Mechanical Engineering (BE) Full-time 61
369 Mechanical Engineering (BSc(Eng)) Part-time 61
361 Aeronautical Engineering (BE) Full-time 62
360 Aeronautical Engineering (BSc(Eng)) Part-time 63
370 Naval Architecture (BE) Full-time 63
371 Naval Architecture (BSc(Eng)) Part-time 63
Non-Engineering Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Undergraduate Study</th>
<th>Graduate Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Metallurgy</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>152</td>
<td>154</td>
</tr>
<tr>
<td>Accountancy</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Industrial Relations</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Optometry</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Town Planning</td>
<td>155</td>
<td></td>
</tr>
</tbody>
</table>
General Information

To obtain the maximum benefit from your studies you should make an effort to learn what facilities the University offers, to investigate the best methods of study and to discover as much as possible about the course for which you are enrolled.

This Handbook has been specially designed as a detailed source of reference for you in all matters related to your Faculty. The General Information Section is intended to help you put the Faculty into perspective with the University as a whole, to introduce you to some of the services available to students and to note some of the most important rules and procedures.

For fuller details about the University and its activities you should consult the University Calendar.

Now, see the following pages for other general information which may be of value to you.

Some people who can help you

Note: All phone numbers below are University extension numbers. If you are outside the University, dial 663 0351 and ask for the extension or dial 662—and then the extension number.

If you are experiencing difficulties in adjusting to the requirements of the University, you will probably need advice. The best people to talk to on matters relating to progress in studies are your tutors and lecturers. If your problem lies outside this area, there are many other people with specialized knowledge and skills who may be able to help you.

The Deputy Registrar (Student Services), Mr Peter O'Brien, and his Administrative Assistant, Mr Stephen Briand, are located on the first floor of the Chancellery. They will see students who need advice and who have problems and are not sure whom they should see about them. Mr Briand looks after financial assistance matters. Enquire at room 148A, phone 2482 or 3164.

The Assistant Registrar (Examinations and Student Records), Mr John Warr, is located on the ground floor of the Chancellery. For particular enquiries regarding Student Records (including matters related to illness affecting study) contact Mr Jack Morrison (phone 2141), and regarding Examinations, Mr John Grigg (phone 2143). This section can also advise on matters relating to discontinuation of subjects and termination of courses. General enquiries should be directed to 3711.

The Assistant Registrar (Admissions and Higher Degrees), Mr Jack Hill, is located on the ground floor of the Chancellery. For particular enquiries regarding undergraduate courses phone Mr John Beauchamp on 3319. General enquiries should be directed to 3711.
The Adviser for Prospective Students, Mrs Fay Lindsay, is located on the ground floor of the Chancellery and is available for personal interview. For an appointment phone 3453.

The Assistant Registrar (Student Employment and Scholarships), Mr Jack Foley, is located on the ground floor of the Chancellery. Enquiries should be directed to 2086 (undergraduate scholarships), 2525 (graduate scholarships), and 3259 (employment).

The Housing Officer, Mrs Judy Hay, is located in the Student Amenities and Recreation Unit in Hut B at the foot of Basser Steps. For assistance in obtaining suitable lodgings phone 3260.

The Student Health Unit is located in Hut E on College Road. The Director is Dr Max Naphthali. For medical aid phone 2679 or 3275.

The Student Counselling and Research Unit is located at the foot of Basser Steps. The Head is Mr George Gray. For assistance with educational or vocational problems ring 3681, 3685 or 2696 for an appointment.

The University Librarian is Mr Allan Horton. Library enquiries should be directed to 2048.

The Chaplaincy Centre is located in Hut F at the foot of Basser Steps. For spiritual aid consult Rev Phillip Jensen (Anglican)—2684; Rev Father Michael Fallon (Catholic)—2379; Dr Allen Elliott (Church of Christ)—2683; Rev Peter Holden (Methodist)—2683; Mr Glen Weare (Seventh Day Adventist)—2683; Mr Ze'ev Dar (Jewish)—3273; Rev Barry Waters (Baptist)—398 4065.

The Students' Union is located on the second floor of Stage III of the University Union where the SU full-time President or Education Vice-President are available to discuss any problems you might have. In addition the SU offers a range of diverse services including legal advice (full-time solicitor available), clubs and societies services, second-hand bookshop (buy or sell), new records/tapes at discount, food shop (The Nuthouse), a professional nursery/kindergarten House at Pooh Corner, a typesetting service, electronic calculators (bulk purchasing), health insurance and AUS insurance, an information referral centre (the Infakt Bus), a ball fund and publications such as Tharunka, Orientation Magazine, Concessions Book and counter-course handbooks. For information about these phone 2929.

Calendar of Dates

1977

<table>
<thead>
<tr>
<th>Session 1 (14 weeks)</th>
<th>7 March to 14 May.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May Recess: 16 May to 21 May</td>
</tr>
<tr>
<td></td>
<td>23 May to 18 June</td>
</tr>
<tr>
<td>Session 2 (14 weeks)</td>
<td>Midyear Recess: 20 June to 23 July</td>
</tr>
<tr>
<td></td>
<td>August Recess: 29 August to 3 September</td>
</tr>
<tr>
<td></td>
<td>5 September to 5 November</td>
</tr>
<tr>
<td>Monday 14 November</td>
<td>Study Recess: 7 November to 12 November</td>
</tr>
<tr>
<td>Tuesday 6 December</td>
<td>Annual examinations begin</td>
</tr>
<tr>
<td>September 1</td>
<td></td>
</tr>
<tr>
<td>Friday 7</td>
<td></td>
</tr>
<tr>
<td>Monday 10</td>
<td></td>
</tr>
<tr>
<td>Friday 14</td>
<td></td>
</tr>
<tr>
<td>Monday 24</td>
<td></td>
</tr>
<tr>
<td>Monday 31</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
</tr>
<tr>
<td>Saturday 5</td>
<td></td>
</tr>
<tr>
<td>Monday 14</td>
<td></td>
</tr>
<tr>
<td>Tuesday 15</td>
<td></td>
</tr>
<tr>
<td>Friday 18</td>
<td></td>
</tr>
<tr>
<td>Monday 21</td>
<td></td>
</tr>
<tr>
<td>Tuesday 22</td>
<td></td>
</tr>
<tr>
<td>New Year's Day—Public Holiday</td>
<td></td>
</tr>
<tr>
<td>Last day for application for review of results of annual examinations</td>
<td></td>
</tr>
<tr>
<td>Last day for application for permission to re-enrol by students who infringed re-enrolment rules at annual examinations</td>
<td></td>
</tr>
<tr>
<td>Timetables for deferred examinations available</td>
<td></td>
</tr>
<tr>
<td>Last day for acceptance of applications by Admissions Office for transfer to another course within the University</td>
<td></td>
</tr>
<tr>
<td>Deferred examinations begin</td>
<td></td>
</tr>
<tr>
<td>Australia Day—Public Holiday</td>
<td></td>
</tr>
<tr>
<td>Deferred examinations end</td>
<td></td>
</tr>
<tr>
<td>Enrolment period begins for new students and students repeating first year</td>
<td></td>
</tr>
<tr>
<td>Last day for appeal against exclusion by students who infringed re-enrolment rules at annual examinations</td>
<td></td>
</tr>
<tr>
<td>Deferred examination results available</td>
<td></td>
</tr>
<tr>
<td>Enrolment period begins for second and later year students</td>
<td></td>
</tr>
<tr>
<td>Last day for application for review of deferred examination results</td>
<td></td>
</tr>
</tbody>
</table>
General Information

Friday 25 March
Last day for application for permission to re-enrol by students who infringed re-enrolment rules at deferred examinations

March
Monday 7
Session 1 commences
Friday 11
Last day for acceptance of enrolments by new students (late fee payable)

Thursday 17
Last day for appeal against exclusion by students who infringed re-enrolment rules at deferred examinations

April
Friday 1
Last day for acceptance of enrolments by students re-enrolling in second and later years (late fee payable)

Friday 8 to Monday 11
Last day for students other than those attending the University for the first time to discontinue without failure subjects which extend over Session 1 only

Friday 29
Last day to enrol in additional subjects

Friday 8 to Monday 11
Easter

Monday 25
Anzac Day—Public Holiday

Friday 29 May
Last day for students attending the University for the first time to discontinue without failure subjects which extend over Session 1 only

May
Tuesday 10
Publication of provisional timetable for June/July examinations

Thursday 12
Last day for acceptance of corrected enrolment details forms

Friday 20
Last day for applications from students completing requirements at end of Session 1 for admission to University degrees and diplomas

Monday 16 May
May Recess begins

Friday 20
Last day for students other than those attending the University for the first time to discontinue without failure subjects which extend over the whole academic year

Saturday 21 May
May Recess ends

Monday 23
Last day for students to advise of examination timetable clashes

June
Tuesday 7
Publication of timetable for June/July examinations

Monday 13
Queen’s Birthday—Public Holiday

Sunday 19
Session 1 ends

Monday 20
Midyear Recess begins

Tuesday 21
Midyear examinations begin

July
Tuesday 5
Midyear examinations end

Saturday 23
Midyear Recess ends

Monday 25
Session 2 begins

Thursday 28
Foundation Day

August
Friday 5
Last day for students attending the University for the first time to discontinue without failure subjects which extend over the whole academic year

Friday 19
Last day for students other than those attending the University for the first time to discontinue without failure subjects which extend over Session 2 only

Monday 29
August Recess begins

Wednesday 31
Last day for acceptance of applications for re-admission in 1978 after exclusion under the re-enrolment rules

September
Saturday 3

Monday 12

Friday 7
Last day for applications from students completing requirements at end of Session 2 for admission to University degrees and diplomas

Wednesday 14
Last day for return of corrected enrolment details forms

Friday 16
Last day for students attending the University for the first time to discontinue without failure subjects which extend over Session 2 only

Tuesday 27
Publication of provisional timetable for annual examinations

Friday 30
Last day to apply to MUAC for transfer to another university in Sydney metropolitan area and Wollongong

October
Monday 3
August Recess ends

Friday 7
Eight Hour Day—Public Holiday

Tuesday 25
Last day for students to advise of examination timetable clashes

November
Saturday 5

Monday 7
Publication of timetable for annual examinations

Monday 14
Annual examinations begin

December
Tuesday 6
Annual examinations end

Sunday 25
Christmas Day

Monday 26
Boxing Day

Tuesday 27
Public Holiday
1978

Session 1

Monday 13 November
Tuesday 7 December

January

Monday 2
Friday 6

Session 2

May Recess: 15 May to 21 May
22 May to 18 June
Midyear Recess: 19 June to 23 July
24 July to 27 August
August Recess: 28 August to 3 September
4 September to 5 November
Study Recess: 6 November to 12 November

6 March to 14 May

May Recess: 15 May to 21 May
May Recess: 15 May to 21 May
22 May to 18 June
Midyear Recess: 19 June to 23 July
24 July to 27 August
August Recess: 28 August to 3 September
4 September to 5 November
Study Recess: 6 November to 12 November

Organiza/on of the University

Rapid development has been characteristic of the University of New South Wales since it was first incorporated by an Act of Parliament in 1949, under the name of the New South Wales University of Technology.

In 1976 the University had 18,378 students and 4000 staff who worked in more than eighty buildings. These figures include staff and students at Broken Hill (W. S. and L. B. Robinson University College), Duntroon (the Faculty of Military Studies) and Jervis Bay.

The Council

The chief governing body of the University is the Council which has the responsibility of making all major decisions regarding its policy, conduct and welfare.

The Council consists of 42 members representative of the professions, commerce and industry, the legislature, employee organizations, rural, pastoral and agricultural interests, and the academic staff of the University, its graduates and students.

The Council meets six times per year and its members also serve on special committees dealing with such matters as academic matters, finance, buildings and equipment, personnel matters, student affairs and public relations.

The Chairman of the Council is the Chancellor, the Hon. Mr. Justice Samuels, and the Deputy Chancellor is Dr F. M. Mathews.

The Professorial Board

The Professorial Board is one of the two chief academic units within the University and includes all the professors from the various faculties. It deliberates on all questions such as matriculation requirements, the content of courses, the arrangement of syllabuses, the appointment of examiners and the conditions for graduate degrees. Its recommendations on these and similar matters are presented to Council for its consideration and adoption.

The Faculties

The Dean, who is also a professor, is the executive head of the Faculty. Members of each Faculty meet regularly to consider matters pertaining to their own areas of study and research, the result of their deliberations being then submitted to the Professorial Board.

The Academic Year

The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of five weeks between the two sessions as well as short recesses of one week within each of the sessions.

Session 1 commences on the first Monday of March.

February

Monday 13
Friday 17
Monday 20
Tuesday 21

Deferred examinations end
Results of deferred examinations available
Enrolment period begins for second and later year students
Last day for applications for review of deferred examination results

Saturday 4

Deferred examinations end

Enrolment period begins for new students and students repeating first year

Public Holiday

Last date for application for review of results of annual examinations
Publication of timetable for deferred examinations
Last day for acceptance of applications by Admissions Office for transfer to another course within the University
Deferred examinations begin
Australia Day—Public Holiday

Last day for applications for review of annual examination results

The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of five weeks between the two sessions as well as short recesses of one week within each of the sessions.

Session 1 commences on the first Monday of March.

1978
The term "faculty" is used in two distinct senses in the University. Sometimes it is used to refer to the group of Schools comprising the Faculty, and at others to the deliberative body of academic members of the Schools within the Faculty.

The eleven Faculties are Applied Science, Architecture, Arts, Biological Sciences, Commerce, Engineering, Law, Medicine, Military Studies, Professional Studies, Science together with the Australian Graduate School of Management. In addition, the Board of Studies in General Education fulfils a function similar to that of the faculties. The Board of Studies in Science and Mathematics, which was established to facilitate the joint academic administration of the Science and Mathematics degree course by the Faculties of Biological Sciences and Science, considers and reports to the Professorial Board on all matters relating to studies, lectures and examinations in the science course.

The Schools

Once courses of study have been approved they come under the control of the individual Schools (e.g., the School of Chemistry, the School of Mathematics). The professorial Head of the School in which you are studying is the person in this academic structure with whom you will be most directly concerned.

Executive Officers

As chief executive officer of the University, the Vice-Chancellor, Professor Rupert Myers, is charged with managing and supervising the administrative, financial and other activities of the University.

He is assisted in this task by three Pro-Vice-Chancellors, Professor John Thornton, Professor Rex Vowels and Professor Albert Willis; the Deans and the three heads of the administrative divisions.

General Administration

The administration of general matters within the University comes mainly within the province of the Registrar, Mr. Keith Jennings, the Bursar, Mr. Tom Daly, and the Business Manager (Property), Mr. Bob Fletcher.

The Registrar's Division is concerned chiefly with academic matters such as the admission of students, and the administration of examinations as well as the various student services (health, employment, amenities, and counselling).

The Bursar's Division is concerned with the financial details of the day-to-day administration and matters to do with staff appointments, promotions, etc.

The Property Division is concerned with the maintenance of buildings and grounds and equipment, and includes the University Architect's office.

Student Representation on Council and Faculties

Three members of the University Council may be students elected by students. All students who are not full-time members of staff are eligible to stand for a two-year term of office. The students who are elected to the Council are eligible for election to the Committees of Council.

Students proceeding to a degree or a graduate diploma may elect one of their number to a Faculty for each 500 registered students, with a minimum of three students per Faculty. Elections are for a one-year term of office. New provisions for student membership of faculties and boards of studies have been approved by Council, providing for each faculty/board to recommend its own formula for determining the number of students eligible.

Open Faculty Meetings

If you wish you may attend a Faculty meeting. You should seek advice at the office of the Faculty whose meeting you wish to attend, as different faculties have their own rules for the conduct of open meetings.

Award of the University Medal

The University may award a bronze medal to the students who have most distinguished themselves in their final year.

Identification of Subjects by Numbers

For information concerning the identifying number of each subject taught in this faculty as well as the full list of identifying numbers and subjects taught in the University, turn to the first page of the section below. Subject Descriptions and Textbooks. This is also published in the Calendar.

General Studies Program

Almost all undergraduates in Faculties other than Arts and Law are required to complete a General Studies program. The Department of General Studies within the Board of Studies in General Education publishes its own Handbook which is available free of charge. All enquiries about General Studies should be made to the General Studies Office, Room G54, Morven Brown Building (663 0351 Extn. 3478).
Student Services and Activities

The University Library

The University Libraries are mostly situated on the upper campus. The library buildings house the Undergraduate Library on Level 3, the Social Sciences and Humanities Library on Level 4, the Physical Sciences Library on Level 7 and the Law Library on Level 8. The Biomedical Library is in the western end of the Sciences Building and is closely associated with libraries in the teaching hospitals of the University.

There are also library services at other centres:

The Water Reference Library situated at Manly Vale (Phone 948 0261) which is closely associated with the Physical Sciences Library.

The library at the Broken Hill Division in the W. S. and L. B. Robinson University College building. Phone 6022/3/4.

The library at the Royal Military College, Duntroon, ACT, serving the Faculty of Military Studies.

Each library provides reference and lending services to staff and students and each of the libraries on the Kensington campus is open throughout the year during day and evening periods. The exact hours of opening vary during the course of the academic year.

Staff and students normally use a machine-readable identification card to borrow from the University libraries. For students, a current union card is acceptable. Staff must apply to the library for a library card.

Accommodation

Residential Colleges

There are seven residential colleges on campus. Each college offers accommodation in a distinctive environment which varies from college to college, as do facilities and fees. A brief description of each college is given below, and further information may be obtained directly from the individual colleges. In addition to basic residence fees, most colleges make minor additional charges for such items as registration fees, caution money or power charges. Intending students should lodge applications before the end of October in the year prior to the one in which they seek admission. Most colleges require a personal interview as part of the application procedure.

The Kensington Colleges
The Kensington Colleges comprise Basser College, Goldstein College, and Philip Baxter College. They house 450 men and women students, as well as staff members. Fees are payable on a session basis. Apply in writing to the Master, PO Box 24, Kensington, NSW 2033.

International House
International House accommodates 154 students from Australia and up to twenty other countries. Preference is given to more senior undergraduates and graduate students. Apply in writing to the Warden, International House, PO Box 88, Kensington, NSW 2033.

New College
This Church of England College is open to all students without regard to race or religion. It has accommodation for approximately 220 students and is co-educational. Enquiries should be addressed to the Master, New College, Anzac Parade, Kensington, NSW 2033.

Shalom College
Shalom College provides accommodation for 86 men and women students. Non-resident membership is available to students who wish to avail themselves of the Kosher dining room and tutorial facilities. Apply in writing to the Master, Shalom College, The University of New South Wales, PO Box 1, Kensington, NSW 2033.

Warrane College
Warrane College provides accommodation for 200 men and is open to students of all ages, backgrounds and beliefs. A comprehensive tutorial program is offered along with a wide variety of activities and opportunities to meet informally with members of the University staff. Non-resident membership is available to male students who wish to participate in College activities and make use of its facilities. Warrane is directed by the International Catholic lay association Opus Dei. Apply in writing to the Master, Warrane College, PO Box 123, Kensington, NSW 2033. Phone: 663 6199.

Creston Residence
Creston, associated with Warrane College, offers residence for 25 full-time undergraduate and graduate women students of all nationalities and denominations. It is directed by the Women’s Section of Opus Dei, a Catholic lay association. Further information: The Principal, 36 High Street, Randwick, NSW 2031.

Other Accommodation

Off-campus Accommodation
Students requiring other than College accommodation may contact the Housing Officer in the Student Amen-
Student Employment and Scholarships

The Student Employment and Scholarships Unit offers assistance with career employment for final year students and graduates of the University. This service includes the mailing of regular job vacancy notices to registered students and a campus interview program for final year students.

Careers advice and assistance is also available to undergraduates. Assistance is offered in finding vacation employment which gives either course-related experience or industrial training experience, where this is a course requirement. Information and advice regarding cadetships, undergraduate and graduate scholarships is also available.

The service is located in the Chancellery on the ground floor.

Phone extension 3259 for employment and careers advice, or extension 2086 for cadetships and industrial training information.

Student Health

A student health clinic and first aid centre is situated within the University. It is staffed by three qualified medical practitioners, assisted by two nursing sisters. The medical service, although therapeutic, is not intended to entirely replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected, the student may be referred to a private practitioner or to an appropriate hospital for specialist opinion and/or treatment. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.

The service is available to all enrolled students by appointment, free of charge, between 9 am and 5 pm Mondays to Fridays. For staff members, immunizations are available, and first aid service in the case of injury or illness on the campus.

The centre is located in Hut E on the northern side of the campus in College Road at the foot of the Basser Steps.

Appointments may be made by calling at the centre or by telephoning extension 2679 or 3275 during the above hours.

The Family Planning Association of NSW conducts clinics at the Student Health Unit and at the adjacent Prince of Wales Hospital. These clinics are open to staff and students and appointments may be made for the Student Health Unit clinic by telephoning 698 9499, or for The Prince of Wales Hospital clinics by telephoning 399 0111.

Student Amenities and Recreation

In general the Student Amenities and Recreation Unit seeks ways to promote the physical, social and educational development of students through their leisure time activities. The Unit provides, for example, a recreational program for students and staff at the Physical Education and Recreation Centre; negotiates with the Public Transport Commission of NSW on student travel concessions and supplies concession forms for bus, rail, ferries and

General Information
The Unit is located in Hut B at the foot of Basser Steps. The various services may be contacted by phone on the following extensions: Recreation Program 3271; Travel 2617; Accommodation 3260; Sports Association 2673.

Physical Education and Recreation Centre

The Student Amenities and Recreation Unit provides a recreational program for students and staff at the Physical Education and Recreation Centre. The Centre consists of eight squash courts and a main building, the latter containing a large gymnasium and practice rooms for fencing, table tennis, judo, weight-lifting, karate and jazz ballet, also a physical fitness testing room. The recreational program includes intramurals, teaching/coaching, camping, and fitness testing. The Centre is located on the lower campus adjacent to High Street. The Supervisor of PERC may be contacted on extension 3271.

The Sports Association

The Sports Association caters for a variety of competitive sports for both men and women. Membership is compulsory at $6 per year for all registered students and is open to all members of staff and graduates of the University.

The Sports Association office is situated in Hut G, near the bottom of Basser Steps, and the control of the Sports Association is vested in the General Committee. The Executive Officer of the Sports Association may be contacted on extension 2673.

The University Union

The University Union provides the facilities students, staff and graduates require in their daily University life and thus an opportunity for them to know and understand one another through associations outside the lecture room, the library and other places of work.

The Union is housed in three buildings near the entrance to the Kensington Campus from Anzac Parade. These are the Roundhouse, the Blockhouse and the Squarehouse. Membership of the Union is compulsory at $45 per year for all registered students and is open to all members of staff and graduates of the University.

The full range of facilities provided by the Union includes a cafeteria service and other dining facilities, a large shopping centre, cloak room, banking and hairdressing facilities, showers, a women's lounge, common, games, reading, meeting, music, practice, craft and dark rooms. Photocopying, sign printing, and stencil cutting services are also available. The Union also sponsors special concerts (including lunchtime concerts) and conducts courses in many facets of the arts including weaving, photography, creative dance and yoga. Exhibitions are held in the John Clark Gallery.

Full information concerning courses is contained in a booklet obtainable from the Union's Program Department. The University Union should not be confused with the Students' Union or Students' Representative Council as it is known in some other universities. This latter body has a representative function and is the instrument whereby student attitudes and opinions are crystallized and presented to the University and the community.

The Students' Union

The Students' Union is run by students and represents them on and off campus. Presidential elections are by popular vote and all students who have completed two years at the University are eligible for election.

A full-time President, elected each year by popular ballot, directs the entire administration of the Students' Union and its activities, through the permanent Administrative Officer.

Other full-time officers include the Education Vice-President who works towards the implementation of Student Union education policy and in assisting students with problems they may encounter in the University; Director of Overseas Students who deals with specific problems these students may encounter while in Australia.

Both are elected by students with the latter elected by overseas students.

Membership is compulsory at $10 per annum*.

The activities of the Students' Union include:
1. Infakt: a student-run information referral service. If you want someone to talk to or need help of any kind see the people at Infakt located in the bus at the foot of Basser Steps.
2. A casual employment service.
3. Organization of Orientation Week.
4. Organization of Foundation Day.
6. Publication of the student paper Tharunka.

* A rise in Students' Union fees may occur in 1977.
7. A free legal service run by a qualified lawyer employed by the Students' Union Council.
8. Students' Union Record Shop which gives an 18% discount.
9. The Nuthouse which deals in bulk and health foods.
10. Secondhand Bookshop for cheap texts.
11. Clubs and societies receive money from the Students' Union through CASOC (Clubs and Societies on Campus).

The Students' Union is affiliated with the Australian Union of Students (AUS) which represents students on the national level.

The Students' Union is located on the second floor, Stage III, the Union.

Chaplaincy Centre

This service is provided for the benefit of students and staff by various religious and spiritual beliefs. Chaplains are in attendance at the University at regular times. A Chapel is also available for use by all denominations. For further details, turn to page 2.

Other Services and Activities

CASOC All clubs and societies on campus (except sporting clubs) are loosely organized under the umbrella of CASOC, which is a committee of the Students' Union. Some of these clubs are: the Motor Cycle Club; Chess Club; Dramsoc; Opunka; Kite Club and the Jazz Society.

School and Faculty Associations Many schools and faculties have special clubs with interests in particular subject fields. Enquire at your Faculty Office for information.

University Co-operative Bookshop Limited Membership is open to all students, on initial payment of a fee of $10, refundable when membership is terminated. Members receive an annual rebate on purchases of books.

Cashier's Hours The University cashier's office is open from 9.30 am to 1.00 pm and from 2.00 pm to 4.30 pm, Monday to Friday. It is open for additional periods at the beginning of Session 1. Consult notice boards for details.

Australian Armed Forces Enquiries should be directed to:

Royal Australian Air Force: Undergraduates interested in the RAAF Undergraduate Scheme should contact The Recruiting Officer, Defence Forces Recruiting Centre, 320 Castlereagh Street, Sydney.

Financial Assistance to Students

Tertiary Education Assistance Scheme

Under this scheme, which is financed by the Australian Government, assistance is available for full-time study in approved courses, to students who are not bonded and who are permanent residents of Australia, subject to a means test on a non-competitive basis.

Students in the following types of university courses are eligible for assistance:

- Undergraduate and graduate degree courses
- Graduate diplomas
- Approved combined Bachelor degree courses
- Master's qualifying courses if the course is the equivalent of an honours year and the student has not attempted an honours year.

Benefits (as at 30 June 1976)

Means-tested Living Allowance The maximum rates of living allowances are $1,000 per annum for students living at home and $1,600 per annum for students living away from home. The maximum rates of living allowance will be paid where the adjusted family income is equal to or less than $7,600 per annum. The adjusted family income is assessed by subtracting from the gross income of both parents their business expenses and an amount of $450 for each dependent child other than the student.

When the adjusted family income exceeds $7,600 pa the amount of living allowance will be reduced by $2 for every $10 of income until the family income exceeds $15,200 per annum. After this level, the living allowance will be reduced by $3 for every $10 of income.

A concession may be made where there are other children in the family undertaking tertiary education with scholarship assistance from schemes other than the Tertiary Education Assistance Scheme of less than $600 pa.
Students qualifying for living allowance will also receive the following allowances where appropriate:

Incidentals Allowance The Incidentals Allowance of $100 is designed to help the student meet the cost of those fees which have not been abolished—the Students' Union, University Union and Sports Association fees, and other expenses associated with their studies.

Travel Allowance Students whose home is in the country may be reimbursed the cost of three return trips per year, during vacation time.

Dependents' Allowance This is made up of allowances of $15 per week for a dependent spouse and $7 per week for each child.

How to Apply 1976 Higher School Certificate candidates and tertiary students receiving an allowance were sent forms last October. Other students may obtain forms from the Admissions Section or the Student Employment and Scholarships Unit, or from the Regional Director, Department of Education, 323 Castlereagh Street, Sydney, NSW 2000 (Phone 218 8800). The administrative closing date for 1977 applications was 31 October 1976.

Scholarships, Cadetships, Prizes

1. Undergraduate Scholarships In addition to finance provided under the Australian Government's Tertiary Education Assistance Scheme there are a number of scholarships, cadetships, prizes and other forms of assistance available to undergraduate students. Details of procedures for application for these awards are contained in the Calendar.

There are also special scholarships not administered by the University. Information about which may be obtained from the School office.

Further information and advice regarding scholarships is available from the Student Employment and Scholarships Unit in the Chancellery Building.

2. Graduate Awards An honours degree is generally an essential requirement for gaining one of the many graduate scholarships which are available at the University. Therefore gifted students should not neglect the opportunity to qualify for honours and thus become eligible for an award.

Details of graduate awards are contained in the University Calendar.

Other Financial Assistance

In addition to the Tertiary Education Assistance Scheme financed by the Australian Government the following forms of assistance are available:

1. Deferment of Payment of Fees Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided the deferment is requested prior to the due date for fee payments.

2. Short Term Cash Loans Donations from the Students' Union, the University Union and other sources have made funds available for urgent cash loans not exceeding $100. These loans are normally repayable within one month.

3. Early in 1973 the Australian Government made funds available to the University to provide loans to students in financial difficulty. The loans are to provide for living allowances and other approved expenses associated with attendance at University. Repayment usually commences after graduation or upon withdrawal from the course. Students are required to enter into a formal agreement with the University to repay the loan.

From the same source students who are in extremely difficult financial circumstances may apply for assistance by way of a non-repayable grant. In order to qualify for a grant a student must generally show that the financial difficulty has arisen from exceptional misfortune.

In all cases assistance is limited to students with reasonable academic records and whose financial circumstances warrant assistance.

Inquiries about all forms of financial assistance should be made at the office of the Deputy Registrar (Student Services), Room 148A, in the Chancellery.

Financial Assistance to Aboriginal Students

Financial assistance is available from a number of sources to help Aboriginal students. Apart from the Australian Government's Tertiary Education Assistance Scheme there is a Commonwealth Aboriginal Study Grant Scheme. Furthermore, the University may assist Aboriginal students with some essential living expenses in exceptional circumstances.

All inquiries relating to this scheme should be made at the office of the Deputy Registrar (Student Services), Room 148A, in the Chancellery.

Fund for Physically Handicapped and Disabled Students

The University has a small fund (started by a generous gift from a member of staff who wishes to remain anonymous) available for projects of benefit to handicapped and disabled students. Inquiries should be made at the office of the Deputy Registrar (Student Services), Room 148A, in the Chancellery.
Rules and Procedures

The University, in common with other large organizations, has some agreed ways of doing things in order to operate for the benefit of all members. The rules and procedures listed below will affect you at some time or another. In some cases there are penalties (eg fines or exclusion from examinations) for failure to observe these procedures and therefore they should be read with care.

Admission

Where can I get information about admission?

The Admissions Office, located in the Chancellery on the upper campus, provides information for students on admission requirements, undergraduate and graduate courses and enrolment procedures. The Admissions Office is open from 9 am to 5 pm Monday to Friday (excluding the lunch hour 1 pm to 2 pm). During enrolment the office is also open for some part of the evening.

Applications for special admission, admission with advanced standing and from persons relying for admission on overseas qualifications should be lodged with this office. The Office also receives applications from students who wish to transfer from one course to another, resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled. It is essential that the closing dates for lodgment of applications are adhered to. For further details see the sections below on Enrolment and Fees.

Enrolment

How do I enrol?

All students, except those enrolling in graduate research degrees (see below), must lodge an authorized enrolment form with the Cashier on the day the enrolling officer signs the form or on the day their General Studies electives are approved if their course requires this.

All students, except those enrolling in graduate research degrees and those exempted (see below), should on that day also either pay the required fees or lodge an enrolment voucher or other appropriate authority.

What happens if I am unable to pay fees at the time of enrolment?

If you are unable to pay fees by the due date you may apply in writing to the Deputy Registrar (Student Services) for an extension of time which may be granted in extenuating circumstances.

If a student is unable to pay the fees the enrolment form must still be lodged with the Cashier and the student will be issued with a 'nil' receipt. The student is then indebted to the University and must pay the fees by the end of the second week of the Session for which enrolment is being effected. Penalties apply if fees are paid after that time (see "Fees" below). Payment may be made through the mail in which case it is important that the student registration number be given accurately.

New Undergraduate Enrolments

Persons who are applying for entry in 1977 must lodge an application for selection with the Metropolitan Universities Admissions Centre, PO Box 7049, GPO, Sydney 2001, by 1 October 1976.
Those who are selected will be required to complete enrolment at a specified appointment time before the start of Session 1. Compulsory fees must be paid on the day of the appointment. In special circumstances, however, and provided class places are still available, students may be allowed to complete enrolment after the prescribed week, subject to the payment of a penalty (see below).

Application forms and details of the application procedures may be obtained from the Admissions Office.

First Year Repeat Students

First year students who failed more than half the program at the 1976 Annual Examinations and who were not granted any deferred examinations should NOT follow the above procedure. They are required to show cause why they should be allowed to continue in the course, and should await instructions in writing from the Registrar as to the procedure.

Later Year Enrolments

Students should enrol through the appropriate School in accordance with the procedures set out in the current year's booklet, Enrolment Procedures, available from the Admissions Office and from School offices.

New Research Students

Students enrolling for the first time in graduate research degrees will receive an enrolment form by post. They have two weeks from the date of offer of registration in which to lodge the enrolment form with the Cashier and pay the appropriate fees. Completion of enrolment after this time will incur a penalty (see below).

Re-enrolling Research Students

Students re-enrolling in research degrees should lodge the enrolment form with the Cashier as soon as possible but no later than the end of the second week of Session 1. Completion of enrolment after that date will incur a penalty (see below).

Submission of Graduate Thesis or Project Report at Commencement of Session 1

A candidate who has completed all the work for a graduate degree except for the submission of a thesis or project report is required to re-enrol and pay fees as outlined above unless the thesis or project report is submitted by the end of the second week of Session 1 in which case the candidate is not required to re-enrol. Those required to re-enrol may claim a refund of fees if able to withdraw (see below).

Miscellaneous Subject Enrolments

Students may be permitted to enrol for miscellaneous subjects (ie as students not proceeding to a degree or diploma) provided the Head of the School offering the subject considers it will be of benefit and there is accommodation available. Only in exceptional cases will subjects taken in this way count towards a degree or diploma. Students who are under exclusion may not be enrolled in miscellaneous subjects which may be counted towards courses from which they have been excluded.

Students seeking to enrol in miscellaneous subjects should obtain a letter of approval from the Head of the appropriate School or his representative permitting them to enrol in the subject concerned. The letter should be given to the enrolling officer at the time of enrolment.

Students who have obtained written permission to enrol may attend the Unisearch House enrolment centre on:

- Friday 4 March 9.30 am to 12.30 pm
- or they may attend the Admissions Office, Chancellery, at the times shown below.

Week Commencing
- 7 March 9.30 am to 10.00 pm
- 2.00 pm to 4.30 pm
- 5.30 pm to 7.00 pm

Week Commencing
- 14 March 9.30 am to 1.00 pm
- 2.00 pm to 4.30 pm
- Wednesday and Friday 5.30 pm to 7.00 pm

Final Dates for Completion of Enrolments

No enrolments for courses extending over the whole year or for Session 1 only will be accepted from new students after the end of the second week of Session 1 (18 March 1977) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned; no later year enrolments for courses extending over the whole year or for Session 1 only will be accepted after the end of the fourth week of Session 1 (1 April 1977) except with the express approval of the Deputy Registrar (Student Services) and the Heads of Schools concerned. No enrolments for courses in Session 2 only will be accepted after the end of the second week of Session 2 (5 August 1977) except with the express approval of the Deputy Registrar (Student Services) and the Heads of Schools concerned.

How do assisted students (eg scholarship holders) enrol?

Scholarship holders or sponsored students who have an enrolment voucher or letter of authority from their sponsor should present it at the time of enrolment. Such vouchers and authorities are generally issued by the NSW Department of Education and the NSW Public Service. They are not always issued in time and students who expect to receive an enrolment voucher or other appropriate authority but have not done so must pay the fees (and arrange a refund later). Such vouch-
ers and authorities are not the responsibility of the University and their late receipt is not to be assumed as automatically exempting a student from the requirements of enrolling and paying fees.

What special rules apply if I wish to be considered for admission with advanced standing?

If you make application to register as a candidate for any degree or other award granted by the University you may be admitted to the course of study with such standing on the basis of previous attainments as may be determined by the Professorial Board. For complete details regarding "Admission with Advanced Standing" consult the University Calendar.

Can I transfer from one course to another?

To transfer from one course to another you must apply on an application form obtainable from the Admissions Office by 16 January. If your application is successful you are required to comply with the enrolment procedures for the year/stage of the new course and, unless otherwise instructed, you should present the letter granting transfer to the enrolling officer. You should also inform the enrolling officer of the school in which you are enrolled of your intention to transfer.

Can I change my course program?

If you wish to seek approval to substitute one subject for another, add one or more subjects to your program or discontinue part or all of your program, you must make application to the Registrar through the Head of the School responsible for the course on forms available from the School office. The Registrar will inform you of the decision. Application to enrol in additional subjects must be submitted by the end of the fourth week of Session 1.

It is emphasized that failure to sit for examinations in any subject in which you are enrolled will be regarded as failure to satisfy the examiners in that subject unless written approval to withdraw without failure has been obtained from the Registrar.

Withdrawal from subjects

Students are permitted to withdraw from subjects without being regarded as having failed, provided they apply by the dates indicated.

First Year Students
1. one-session subjects: the end of the eighth week of session;
2. double-session subjects: the end of the second week of Session 2.

For the purpose of this rule a first-year student is defined as one who is attending the University for the first time either on a full- or part-time basis and is enrolled in the first year or first stage of a course.

Other Students
1. one-session subjects: the end of the fourth week of session;
2. double-session subjects: the end of the May Recess.

How do I enrol after an absence of twelve months or more?

If you have had a leave of absence for twelve months and wish to resume your course you should follow the instructions about re-enrolling given in the letter granting your leave of absence. If you do not fully understand or have lost these instructions, then you should contact the Admissions Office either in December of the preceding year or before October in the year preceding the one in which you wish to resume your course.

If you have not obtained leave of absence from your course and have not been enrolled in the course over the past twelve months or more, then you should apply for admission to the course through the Metropolitan Universities Admission Centre before 1 October in the year preceding that in which you wish to resume studies.

Are there any restrictions upon students re-enrolling?

The University Council has adopted the following rules governing re-enrolment with the object of requiring students with a record of failure to show cause why they should be allowed to re-enrol and retain valuable class places.

First-year Rule

1. A student enrolled for the first time in any undergraduate course in the University shall be required to show cause why he/she should be allowed to continue the course if that student fails more than half the program in which he/she is enrolled. In order that students may calculate half their program, the weighting of subjects in each course is defined in Schedule A,* which may be varied from time to time by the Professorial Board.

Repeated-failure Rule

2. A student shall be required to show cause why he/she should be allowed to repeat a subject which that student has failed more than once. Where the subject is prescribed as part of the student’s course he/she shall also be required to show cause why he/she should be allowed to continue that course. Failure in a deferred examination as well as in the initial examination counts for the purposes of this rule as one failure.

*For details of Schedule A see Restrictions upon Students Re-enrolling in the University Calendar.
General Rule

3. The Re-enrolment Committee may, on the recommendation of the relevant faculty or board of studies, review the academic progress of any student. If that student's academic record seems to demonstrate, in the opinion of the Committee, the student's lack of fitness to pursue a subject or subjects and/or a course or courses, the Committee may require that student to show cause why he/she should be allowed to re-enrol in such subject(s) and/or course(s).

The Session-unit System

4. A student who infringes the provisions of Rules 1 or 2 at the end of Session 1 of any year will not be required to show cause at that time but will be allowed to repeat the subject(s) (if offered) and/or continue the course in Session 2 of that year, subject to the rules of progression in that course.

5. A faculty or board of studies examination committee may, in special circumstances, exempt a student from some or all of the provisions of Rules 1 and 2.

Exemption from Rules by Faculties

6. A student wishing to show cause must apply for special permission to re-enrol. Application should be made on the form available from the Examinations and Student Records Section and must be lodged with the Registrar by the dates published annually by the Registrar. A late application may be accepted at the discretion of the University.

Appeal

7. Any student who is excluded by the Re-enrolment Committee from a course and/or subject(s) under the provisions of the Rules may appeal to an Appeal Committee constituted by Council for this purpose with the following membership:

A Pro-Vice- Chancellor nominated by the Vice- Chancellor who shall be Chairman.

C A student excluded from a course or courses under the provisions of A or B may not enrol as a miscellaneous student in subjects which may be counted towards any such course.

8. A student who is required to show cause under the provisions of Rule 2 and either does not attempt to show cause or does not receive special permission to re-enrol from the Re-enrolment Committee (or the Appeal Committee on appeal) shall be excluded from re-enrolling in the subject(s) and course(s) on account of which he was required to show cause. Where the subjects failed are prescribed as part of any other course (or courses) he/she shall not be allowed to enrol in any such course.

Exclusion

A A student who infringes the provisions of Rules 1 or 2 at the end of Session 1 of any year will not be required to show cause at that time but will be allowed to repeat the subject(s) (if offered) and/or continue the course in Session 2 of that year, subject to the rules of progression in that course.

The decision of the Committee shall be final.

B The notification to any student of a decision by the Re-enrolment Committee to exclude him/her from re-enrolling in a course and/or subject(s) shall indicate that the student may appeal against that decision to the Appeal Committee. In lodging such an appeal with the Registrar the student should provide a complete statement of all grounds on which the appeal is based.

C The Appeal Committee shall determine the appeal after consideration of the student’s academic record, his/her application for special permission to re-enrol, and the stated grounds of appeal. In exceptional circumstances, the Appeal Committee may require the student to appear in person.

The Chairman of the Professorial Board, or if he is unable to serve, a member of the Professorial Board, nominated by the Chairman of the Professorial Board, or when the Chairman of the Professorial Board is unable to make a nomination, nominated by the Vice-Chairman.

One of the category of members of the Council elected by the graduates of the University, nominated by the Vice-Chancellor.

It is proposed that under this arrangement, the membership of the Appeal Committee will be Pro-Vice-Chancellor J. B. Thornton (Chairman), Professor D. M. McCullum, Chairman of the Professorial Board, and a member of Council in the category of members elected by the graduates of the University, nominated by the Vice-Chancellor.
Re-admission after Exclusion

9. A An excluded student may apply to the Re-enrolment Committee for re-admission after two academic years.

B An application for re-admission after exclusion should be made on the form available from the Examinations and Student Records Section and should be lodged with the Registrar not later than 31 August in the year prior to that for which re-admission is sought. A late application may be accepted at the discretion of the University.

C An application should include evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity and/or evidence of appropriate study in the subject(s) (or the equivalent) on account of which the applicant was excluded.

Restrictions and Definitions

10. A These rules do not apply to students enrolled in programs leading to a higher degree or graduate diploma.

B A subject is defined as a unit of instruction identified by a distinctive subject number.

How do I apply for admission to degree or diploma?

Applications for admission to a degree or diploma of the University must be made on the appropriate form by 12 September, in a student's final year. Forms are mailed to all final year students. Don't forget to inform the University if you subsequently change your address so that correspondence related to the ceremony will reach you without delay. Applicants should ensure that they have completed all requirements for the degree or diploma, including industrial training where necessary. Any variation such as cancelling of application in order to proceed to an honours degree or submission of an application following discontinuation of honours program, must be submitted in writing to the Registrar no later than 30 January.

Fees*

Fees and penalties quoted are current at the time of publication but may be amended by the University Council without notice.

Do I have to pay fees for tuition?

As a result of a decision by the Commonwealth Government, no tuition fees are charged in 1977.

What other fees and charges are payable?

Apart from the tuition fees (above) there are other fees and charges which include those charges raised to finance the expenses incurred in operating student activities such as the University Union, the Students' Union, the Sports Association and the Physical Education and Recreation Centre. Penalties are also incurred if a student fails to complete procedures as required. Charges may also be payable, sometimes in the form of a deposit, for the hiring of kits of equipment which are lent to students for their personal use during attendance in certain subjects. Accommodation charges, costs of subsistence on excursions, field work etc., and for hospital residence (medical students) are payable in appropriate circumstances.

How much is my contribution to student activities and services on campus?

All students (with the exceptions noted below) will be required to pay the following fees if enrolling for a program involving two sessions. Those enrolling for only one session will pay one-half of the Student Activities Fees, but the full University Union entrance fee, if applicable.

Student Activities Fees

University Union—$25 entrance fee, payable on first enrolment
University Union—$45 annual subscription
Sports Association—$6 annual subscription
Students' Union:
Students enrolling in full-time courses—$10 annual subscription
Students enrolling in part-time courses—$8 annual subscription
Miscellaneous—$25 annual fee.

The miscellaneous fee is used to finance expenses generally of a capital nature relating to student activities. Funds are allocated to the various student bodies for projects recommended by the Student Affairs Committee and approved by the University Council.

Are fees charged for examinations?

Generally there are no charges associated with examinations; however, two special examination fees are applied:

Examinations conducted under special circumstances—for each subject $11

Review of examination result—for each subject $11

What penalties exist for late payment of fees?

The following additional charges will be made in 1977 when fees are paid late:

Failure to lodge enrolment form according to enrolment procedure $20

* Fees quoted are current at the time of publication and may be amended by the Council without notice.
Location and Hours of Cashier

Cashier’s Offices are open during the enrolment periods referred to in this booklet. The locations and hours are shown below:

Unisearch House
221 Anzac Parade

Week Commencing
21 February
Monday and Thursday
10.00 am to 1.00 pm
2.00 pm to 5.00 pm
6.00 pm to 9.00 pm
Wednesday
10.00 am to 1.00 pm
2.00 pm to 5.00 pm
Friday
9.30 am to 1.00 pm

Chancellery

Week Commencing
21 February
Monday to Friday
9.30 am to 1.00 pm
2.00 pm to 4.30 pm
Friday
6.00 pm to 8.30 pm

First Week of Session 1
Commencing 7 March
Monday to Friday
9.30 am to 1.00 pm
2.00 pm to 4.30 pm
5.30 pm to 8.00 pm

Second Week of Session 1
Commencing 28 March
Monday to Friday
9.30 am to 1.00 pm
2.00 pm to 4.30 pm
Wednesday and Friday
5.30 pm to 8.00 pm

Who is exempt from payment of fees?

1. Life members of University Union, Sports Association, and Students' Union are exempt from the relevant fee or fees.

2. Students enrolled in courses classified as External are exempt from all Students Activities Fees and the University Union entrance fee.

3. University Union fees and subscriptions may be waived by the Deputy Registrar (Student Services) for students enrolled in graduate courses in which the academic requirements require no attendance on the Kensington campus.

4. Students who while enrolled at and attending another university (or other tertiary institution as approved by the Vice-Chancellor) in a degree or diploma course are given approval to enrol at the University of New South Wales but only in a miscellaneous subject or subjects to be credited towards the degrees or diplomas for which they are enrolled elsewhere are exempt from all Student Activities Fees and the University Union entrance fee.

5. Undergraduate students of a recognized university outside Australia who attend the University of New South Wales with the permission of the Dean of the appropriate faculty and of the Head of the appropriate school or department to take part as miscellaneous students in an academic program relevant to their regular studies and approved by the authorities of their own institution are exempt from all Student Activities Fees and the University Union entrance fee.

6. Graduate students not in attendance at the University and who are enrolling in a project only, other than for the first time, are exempt from all Student Activities Fees.

7. Graduate students resubmitting a thesis or project only are exempt from all Student Activities Fees.

8. All Student Activities Fees, for one or more sessions may be waived by the Deputy Registrar (Student Services) for graduate students who are given permission to pursue their studies away from the Kensington campus for one or more sessions.

How much will textbooks and special equipment (if any) cost?

You must allow quite a substantial sum for textbooks. This can vary from $200 to $600 depending on the course taken. These figures are based on the cost of new books. The Students' Union operates a second-hand bookshop. Information about special equipment costs, accommodation, and costs of subsistence excursions, field work, etc., and for hospital residence (medical students) are available from individual schools.

Will I receive any refund if I withdraw from a course?

Yes. The following rules apply:

1. If you withdraw from courses you are required to notify the Registrar in writing.

2. Where notice of withdrawal from a course is received by the Registrar before the first day of Session 1 a refund of all fees paid will be made. After that time only a partial refund will be made. See the Calendar for details.
What happens if I fail to pay the prescribed fees or charges?

If you fail to pay prescribed fees or charges or become otherwise indebted to the University and you fail to make a satisfactory settlement of your indebtedness upon receipt of due notice then you cease to be entitled to the use of University facilities. You will not be permitted to register for a further session, to attend classes or examinations, or be granted any official credentials. In the case of a student enrolled for Session 1 only or for Sessions 1 and 2 this disbarment applies if any portion of fees is outstanding after the end of the eighth week of Session 1 (29 April 1977). In the case of a student enrolled for Session 2 only this disbarment applies if any portion of fees is outstanding after the end of the sixth week of Session 2 (2 September 1977).

In special cases the Registrar may grant exemption from disqualifications referred to in the preceding paragraph upon receipt of a written statement setting out all relevant circumstances.

Can I get an extension of time to pay?

If you apply before the due date and extenuating circumstances exist, an extension of time may be granted. Apply to the Deputy Registrar (Student Services).

Examinations

When are examinations held?

Examinations for Session 2 and for Full Year subjects are held in November/December. Examinations for Session 1 subjects are held during the Midyear Recess. Provisional timetables indicating the dates and times of examinations and notices of the location of examinations are posted on the central notice boards in the Biological Sciences Building, the Chancellery, Central Lecture Block, Dalton Building (Chemistry), Main Building (Mining and Physics), and in the Western Grounds Area on 10 May and 27 September. You must advise the Examinations Unit (Chancellery) of a clash in examinations by 23 May and 7 October. Final timetables are displayed and individual copies are available for students on 7 June and 25 October.

Misreading of the timetable is not an acceptable excuse for failure to attend an examination.

In the assessment of your progress in University courses, consideration is given to work in laboratory and class exercises and to any term or other tests given throughout the year as well as to the results of written examinations.

How are examination passes graded?

Passes are graded: High Distinction, Distinction, Credit and Pass. A Pass Conceded may be granted to a student whose mark in a subject is slightly below the standard required for a pass but whose overall satisfactory performance warrants this concession.

A Terminating Pass may be granted where the mark for the subject is below the required standard. A terminating pass will not permit a student to progress further in the subject or to enrol in any other subject for which a pass in the subject is a co-requisite or pre-requisite. A student given a terminating pass may attempt a deferred examination, if available, to improve his performance but should he fail in such attempt, the terminating pass shall stand.

When are examination results available?

Final examination results will be posted to your term address (which can be altered up to 30 November) or to your vacation address (fill in a form obtainable at the Information Desk, Chancellery, also by 30 November). Results are also posted on School notice boards and in the foyer of the Sir John Clancy Auditorium. No examination results are given by telephone.

Can examination results be reviewed?

Examination results may be reviewed for a fee of $11 a subject, which is refundable in the event of an error being discovered. This review consists mainly of ensuring that all questions attempted have been marked and checking the total of the marks awarded. Applications for review must be submitted on the appropriate form to the Examinations and Student Records Section together with the necessary fee by the dates printed on the reverse side of Notification of Results.

Are allowances made if students are sick before or during an examination?

A student who through serious illness or other cause outside his control is unable to attend an examination is required to bring the circumstances (supported by a medical certificate or other evidence) to the notice of the Registrar not later than seven days after the date of the examination, and may be required to submit to medical examination.

A student who believes that his performance in a subject has been affected by serious illness during the year or by other cause outside his control, and who desires these circumstances to be taken into consideration in determining his standing, is required to bring the circumstances (supported by a medical certificate or other evidence) to the notice of the Registrar as soon as the circumstances are known but not later than seven days after the date of the examination.
All medical certificates should be as specific as possible concerning the severity and duration of the complaint and its effect on the student’s ability to take the examinations.

A student who attempts an examination, yet claims that his performance is prejudiced by sickness on the day of the examination must notify the Registrar or Examination Supervisor before, during, or immediately after the examination, and may be required to submit to medical examination.

A student suffering from a physical disability which puts him at a disadvantage in written examinations should apply to the Registrar in writing for special provision when examinations are taken. The student should support his request with medical evidence.

Use of electronic calculators

Where the use of electronic calculators has been approved by a faculty or school, examiners may permit their use in examinations. Authorized electronic calculators are battery operated with the minimum operations of addition, subtraction, multiplication and division and are of a type in common use by university students. They are not provided by the University, although some schools may make them available in special circumstances.

How are examinations conducted?

Examinations are conducted in accordance with the following rules and procedure:

1. Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.

2. Candidates are required to be in their places in the examination room not less than ten minutes before the time for commencement.

3. No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.

4. No candidate shall be admitted to an examination after thirty minutes from the time of commencement of the examination.

5. No candidate shall be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.

6. No candidate shall be re-admitted to the examination room after he has left it unless during the full period of his absence he has been under approved supervision.

7. A candidate shall not by any improper means obtain, or endeavour to obtain, assistance in his work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.

8. Smoking is not permitted during the course of examinations.

9. All answers must be in English unless otherwise directed. Foreign students who have the written approval of the Officer-in-Charge of Examinations may use standard translation dictionaries.

10. A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room, and to such further penalty as may be determined in accordance with the By-laws.

Under what circumstances are deferred examinations granted?

Deferred examinations may be granted in the following cases:

1. When a student through illness or some other acceptable circumstance has been prevented from taking the annual examination or has been placed at a serious disadvantage during the annual examinations.

2. To help resolve a doubt as to whether a student has reached the required standard in a subject.

3. To allow a student by further study to reach the required standard in a subject.

4. Where a student’s progression or graduation is inhibited by his failure in one subject only, a deferred examination may be granted notwithstanding his failure otherwise to qualify for this concession.

In the Faculties of Arts, Commerce and Law special circumstances apply in the granting of deferred examinations. Details in each circumstance are given in the section Faculty Information in the respective handbooks for these faculties, or in the Calendar.

Deferred examinations must be taken at the centre at which the student is enrolled, unless he has been sent on compulsory industrial training to a remote country centre or interstate. In this case the student must advise the Registrar, on a form available from his school or the Information Desk, the Chancellery, of relevant particulars, before leaving for his destination, in anticipation that deferred examination papers may have to be forwarded to him. Normally, the student will be directed to the nearest university for the conduct of the deferred examination.

Can I buy copies of previous examination papers?

Yes—for 5c each from the Union Shop in the University Union.
Essays

Should I list my sources?

Students are expected to acknowledge the sources of ideas and expressions that they use in essays. To provide adequate documentation is not only an indication of academic honesty but also a courtesy enabling the marker to consult your sources with ease. Failure to do so may constitute plagiarism which is subject to a charge of academic misconduct.

Student Conduct on Campus

Is there a detailed code of rules related to the general conduct of students?

No. The University has not considered it necessary to formulate a detailed code of rules relating to the general conduct of students.

However, now that you have become a member of the University you should understand that this involves an undertaking on your part to observe its rules, by-laws and other requirements, and to pay due regard to any instructions conveyed by any officer of the University.

What are the rules related to attendance at classes?

You are expected to be regular and punctual in attendance at all classes in the course or subject in which you are enrolled. All applications for exemption from attendance at lectures or practical classes must be made in writing to the Registrar.

In the case of illness or of absence for some other unavoidable cause you may be excused by the Registrar for non-attendance at classes for a period of not more than one month or, on the recommendation of the Dean of the appropriate Faculty, for a longer period.

Applications for exemption from lectures (leave of absence) should be addressed to the Registrar and, where applicable, should be accompanied by a medical certificate. If examinations have been missed, state this in your application.

If you fail a subject at the annual examinations in any year and re-enrol in the same course in the following year, you must include in your program of studies for that year the subject in which you failed. This requirement will not be applicable if the subject is not offered the following year; is not a compulsory component of a particular course; or if there is some other cause which is acceptable to the Professorial Board, for not immediately repeating the failed subject.

If you attend less than eighty per cent of your possible classes, you may be refused permission to sit for the examination in that subject.

Why is my University Union card important?

All students enrolled for courses leading to degrees and/or diplomas, except those exempt from fees, are issued with a University Union membership card. Your card must be carried during attendance at the University and shown on request.

The number appearing on the front of the card above your name is your student registration number used in the University's records. This number should be quoted in all correspondence.

The card must be presented when borrowing from the University libraries, when applying for travel concessions and when notifying a change of address. It must also be presented when paying fees on re-enrolment each year when it will be made valid for the year and returned. Failure to present the card could result in some inconvenience in completing re-enrolment.

If you lose your Union card it is important to notify the University Union as soon as possible.

New students will be issued with University Union cards on enrolment.

Why should I inform the University if I change my address?

If you change your address you should notify the Student Records Section of the Registrar's Division as soon as possible. Failure to do so could lead to important correspondence (including examination results) not reaching you. The University cannot accept responsibility if official communications fail to reach students who have not notified their change of address. Change of Address Advice Forms are available at Faculty and School offices and at the Information Counters on the Ground Floor of the Chancellery Building.

These will be accepted up to 30 November, except for final year students who may advise changes up to four weeks before their graduation ceremony.

Will the University release information to third parties without my permission?

In general, no. The University treats examination results and information it receives from a student as confidential and will not reveal such information to third parties without the permission of the student except at the discretion of senior officers in circumstances considered of benefit to the student and when it is either impossible or impracticable to gain the student's prior permission. This happens rarely. This policy is considered so important that it often involves officers of the University in very difficult situations, for example, when they must refuse to reveal the address of a student to parents or other relatives.

In spite of the policy, there are sometimes accusations made that the University has revealed information, including addresses (especially to insurance companies).
All students should be aware that students’ addresses are eagerly sought by various commercial agents and that sometimes tricks are used to obtain them. For example, from time to time people claiming to be from the University telephone students or their families and ask for information (usually another student’s address) which is often given, unsuspectingly. There is evidence that this is a technique used by commercial agents.

It would be generally helpful if students (and their families and friends) are cautious in revealing information, making it a practice to ask the name, position, and telephone extension of any caller claiming to be from the University and, if suspicious, returning the call to the extension given.

How are student records kept up to date?

Enrolment details forms will be sent to all students on 30 April and 30 August. It is not necessary to return these forms unless any information recorded thereon is incorrect. Amended forms must be returned to the Examinations and Student Records Section within fourteen days. Amendments notified after the closing date will not be accepted unless exceptional circumstances exist and approval is obtained from the Registrar. Amended forms returned to the Registrar will be acknowledged in writing within fourteen days.

Is there any rule related to the ownership of students’ work?

Yes. The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, theses or other work executed by you as part of your courses, or submitted for any award or competition conducted by the University.

Can I get a permit to park on campus?

Only a limited amount of parking is available on campus. Copies of the University’s parking rules may be obtained on application to Room 240, Chancellery Building.

Lost Property?

All enquiries concerning lost property should be made to the Superintendent on extension 3580 or to the Lost Property Office at the Union.

Further Information

Where can I get further information concerning courses, admission requirements, scholarships and enrolment procedure?

General

Any student who requires information on the application of these rules or any service which the University offers, may make enquiries from the Admissions Office, the Student Counselling Unit or the Registrar.

Notices

Official University notices are displayed on the notice boards and students are expected to be acquainted with the contents of those announcements which concern them. These boards are in the Biological Sciences Building, the Sciences Building, the Chancellery (lower ground floor), Central Lecture Block, Dalton Building (Chemistry), Electrical Engineering Building, Main Building (foyer, Mining), Main Building (Physics) and in the Western Grounds Area.

Appeals

Section 5(c) of Chapter III of the By-laws provides: ‘Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action by the Vice-Chancellor, whether on appeal or otherwise, to the Council’.

The Calendar

Please consult the Calendar if you want a more detailed account of the information contained in this section.

Vice-Chancellor’s Official Welcome to New Students

All students initially enrolling in the University are officially welcomed by the Vice-Chancellor, at the following times:

Full-time Students

In the Faculties of Architecture, Arts, Biological Sciences, Commerce, Law:
Monday 28 February 1977
11 am in the Clancy Auditorium

In the Faculties of Applied Science, Engineering, Medicine, Professional Studies, Science, and the Board of Studies in Science and Mathematics:
Tuesday 1 March 1977
11 am in the Clancy Auditorium

Part-time Students

Tuesday 1 March 1977
6.30 pm in the Clancy Auditorium
Foreword

This handbook is primarily for undergraduate students in the Faculty of Engineering and aims to provide information concerning the requirements for admission, enrolment and re-enrolment, conditions for the award of the different Bachelor degrees in the Faculty and the subject matter of the courses offered, including textbooks. It is important that each student in the Faculty becomes well acquainted with the information presented here.

In addition to this Handbook, pamphlets and brochures issued in conjunction with the enrolment period and Orientation Week are available. These should be consulted, together with the University Calendar, for further information on problems associated with courses.

At the same time, it is appreciated that a student's choice in regard to course and other matters remains to be discussed with members of the academic staff. Some students do not need to make their final choice of degree course before the start of third year.

Standard programs for courses leading to the award of Bachelor degrees in Aeronautical Engineering*, Civil Engineering, Electrical Engineering, Industrial Engineering, Mechanical Engineering, Naval Architecture* and Surveying are contained in the section Course Outlines later in this handbook. For further information, students should consult the head of the appropriate school or one of the persons listed below:

School of Civil Engineering ...

School of Electrical Engineering ...

School of Mechanical and Industrial Engineering ...

School of Surveying ...

*These courses are taught within the School of Mechanical and Industrial Engineering.
The Faculty of Engineering

The Faculty consists of seven Schools: Civil Engineering, Electrical Engineering, Highway Engineering, Mechanical and Industrial Engineering, Nuclear Engineering, Surveying, and Transportation and Traffic.

School of Civil Engineering

The School of Civil Engineering consists of four departments, Water Engineering, Civil Engineering Materials, Structural Engineering and Engineering Construction and Management. The School conducts both part-time and full-time undergraduate courses in Civil Engineering. In addition, all departments conduct graduate courses and carry out graduate research programs in many fields.

The Department of Water Engineering encompasses the fields of Hydraulics, Hydrology, Water Resources and Public Health Engineering. The Public Health Engineering Laboratory is located at Kensington. The Hydrology research centre is also at Kensington, but a substantial amount of investigation is carried out in the field. The Water Research Laboratory is located at Manly Vale and is the centre for instruction and research in hydraulics.

The Department of Civil Engineering Materials includes the fields of Soil Mechanics, Rock Mechanics, Concrete Technology, Plastics and Timber, and Continuum and Statistical Mechanics. The Materials Laboratories are located at Kensington.

The Department of Structural Engineering covers the fields of Structures, Stress Analysis and Solid Mechanics. The Model Structures, Experimental Stress Analysis and Solid Mechanics Laboratories are at Kensington. The Structural Testing Laboratory is at King Street, Randwick.

The Department of Engineering Construction and Management is responsible for the fields of Civil Engineering Systems, Engineering Economy, Project Planning and Management and Civil Engineering Construction.

School of Electrical Engineering

The School of Electrical Engineering comprises five departments — Communications, Computer Science, Electric Power Engineering, Solid State Electronics, and Systems and Control Engineering.

Each department carries out research in its own field and offers lecture and laboratory courses at the undergraduate and graduate levels. Subjects of common interest are provided by the School as a whole.

Special laboratories are equipped for work in the areas of Microelectronics, Microwaves, Computer Control, Machines and Acoustics. A Measurements Laboratory provides a calibrating service under certificate from the National Association of Testing Authorities.

School of Highway Engineering

Graduate courses are offered, leading to the degree of Master of Engineering Science and to a Postgraduate Diploma, in which road location and geometrics, properties of road materials, construction techniques, bridge design and traffic engineering are studied. Similar courses are also offered which are designed for the needs of engineers. The School has well-equipped laboratories for studying the properties of soils, road aggregates, bitumen and cement concrete, and active studies on these subjects are in progress. Members of the School use a 1620 IBM computer as part of their course, and studies are being made of its utilization in all phases of highway engineering. They also have access to a very large central computing network.

School of Mechanical and Industrial Engineering

Full-time undergraduate courses leading to the degree of Bachelor of Engineering are offered in Mechanical, Industrial, and Aeronautical Engineering, and in Naval Architecture. Part-time courses leading to the degree of Bachelor of Science (Engineering) are offered in the same four fields. Either degree may be taken out by a combination of full-time/part-time study, subject to approval by the Head of School.

The first two years of the full-time degree, and the first four stages of the part-time degree are common to all courses within the School. Thus a final decision on the discipline to be followed need not be made until the end of Year 2 for full-time and Stage 4 for part-time students.

Formal graduate courses of study are available, with a wide choice of subjects, leading to the degree of Master of Engineering Science. There are special Master of Engineering Science courses in Refrigeration and Air Conditioning, and in Industrial Engineering. The Department of Industrial Engineering within the School offers a course leading to a Graduate Diploma.
Graduates with a good first degree may register for the higher degrees of Master of Engineering and Doctor of Philosophy. Current research fields are as follows — Aerodynamics, Agricultural Engineering, Applied Plasticity, Automatic Control, Bio-mechanics, Dynamics, Gas Dynamics, Heat Transfer, Fluid Mechanics, Metal Cutting, Naval Hydromechanics, Refrigeration and Air Conditioning, and Two-phase Flow.

Undergraduates who are interested in working for a research degree should consult the Head of School towards the end of their final year. Advice will be given to all students during their third year so that each can select the best possible combination of final year elective subjects.

The School of Nuclear Engineering in the University of New South Wales was established in 1961. The School presently operates at the graduate level in the Faculty of Engineering. A four year undergraduate subject in Nuclear Power Technology is provided as an elective for other Schools (23.051 Nuclear Power Technology).

In addition to the supervision of programs of advanced study and research for candidates for the research degrees of Master of Engineering and Doctor of Philosophy, the School offers a formal graduate course leading to the degree of Master of Engineering Science. This formal course aims specifically at the education of engineers for the detailed understanding, analysis and assessment of nuclear reactors and nuclear power systems. Particular attention is given to the mathematical, numerical and computational techniques which are relevant to nuclear engineering.

Special research interests in the School include the general field of fluctuation phenomena and noise in nuclear reactors, the coupled thermomechanical, fluid dynamics and nuclear aspects of reactor fuel elements and coolant channels, and the subject of reactor utilization and reactor strategy.

The School is presently situated in the Electrical Engineering building at Kensington. Library, workshop, digital and analogue computing facilities are available. Special digital and analogue equipment for the analysis and recording of random signals has been acquired for experimental noise research. Through the Australian Institute of Nuclear Science and Engineering, the special facilities of the Australian Atomic Energy Commission's Research Establishment at Lucas Heights can be made available for research purposes. Close personal contact is maintained between members of the School and the Engineering Research Division at Lucas Heights.

The School of Surveying consists of three Departments, Geodesy, Photogrammetry including Land Studies and Cartography and Surveying including Astronomy and Computations. It offers a full-time course and a sandwich course leading to the degree of Bachelor of Surveying. The full-time course is of 4 years' duration while the sandwich course may be completed in 6 or 7 years. Until 1975, a part-time evening course of 7 years' duration was also available but this is now being phased out and replaced by the sandwich course. The graduate courses offered are Master of Surveying Science, a two year part-time or one year full-time course; and the research degrees Master of Surveying and Doctor of Philosophy.

The Departments of Photogrammetry and Surveying are located in the Civil Engineering Building; the Department of Geodesy and the School Office In the Mechanical Engineering Tutorial Building. Facilities include four Photogrammetry laboratories with plotting instruments of various types, an observing platform for Positional Astronomy and a comprehensive range of field equipment for Surveying and Geodesy. Computing facilities include programmable calculators and a library of programs for use on the University's computers.

Current research is in the fields of physical geodesy, photogrammetry, geometrical geodesy, error theory, computer applications, land data banks and cadastral systems.

The School of Transportation and Traffic is located at Randwick, and is associated with the School of Highway Engineering.

The establishment of the School followed the endowment of a Chair by the Australian Automobile Association, which had long been concerned with the need for a centre for training traffic engineers and specialists. The School is assisting this object by conducting courses in traffic and transport planning and control, and offering opportunities for research into the technical problems created by the motor vehicle and other forms of transport and on their interaction with land use activity.
The research activities of the School cover a wide range of transport and traffic phenomena, viz. traffic flow theory — queueing, traffic stream structure, saturation flow, transportation planning — land use and transport interaction, system parameters, synthetic models for growth, distribution and assignment of desire lines; public enterprise economics; and human factors and road safety. Research in these fields can be undertaken for the ME, MSc, and PhD degrees. Formal courses, one year full-time and two years part-time, leading to the degree of Master of Engineering Science are also offered in Transport and Traffic. A part-time Transport graduate course offered over four sessions leads to a Graduate Diploma.

In addition to the academic research activities the School has an Applied Research Division which undertakes project research for national bodies and institutions.

Courses in Chemical Engineering, Ceramic Engineering, Metallurgy, Metallurgical Engineering, Mining Engineering and Textile Engineering are taught by the Faculty of Applied Science. For further information on these courses students should consult the Calendar and Faculty of Applied Science Handbook.
Message from the Dean

A great deal of discussion has taken place within the Faculty in recent years concerning the type of education appropriate for an engineer. Central to this discussion are the basic objectives which are implicit in the various engineering courses. These are to impart to and foster within its students the following:

- Technical and scientific and creative skills required to solve all aspects of engineering problems.

- An understanding of human interaction with the environment, so that the impact of engineering activity can be assessed.

- The ability to direct and manage engineering activities.

- The ability to communicate, with other members of the profession, with industrial personnel, administrators, and with members of the public.

- The desire and ability for continuing self-education and reappraisal of current practice, including the ability to innovate new ideas and practices.

- The ability to evaluate independently and to criticise constructively their own work and the work of other engineers.

We hope to do much more than merely impart a body of knowledge to our undergraduates. Appropriate attitudes and skills for professional engineers operating into the twenty-first century must also be developed. Technology has come under increasing criticism from other sectors of society. It is no longer accepted that advances in technology are necessarily synonymous with the betterment of society, and future engineers must be prepared not only to take account of the ramifications of their work, but also to vindicate them to an increasingly doubtful public. Good opportunities exist for this in Faculty Hour, a voluntary series of lectures and discussions on topics touching on the interaction of the engineer and society. This takes place at noon on Mondays in
the Electrical Engineering Theatre LG1. All third and fourth year students, and some others also, will find their timetables free of formal classes at noon on Mondays. Students are urged to use Faculty Hour to broaden their approach to their studies.

P. T. Fink
Dean
Faculty of Engineering
Faculty of Engineering

Staff

Comprises Schools of Civil Engineering, Electrical Engineering, Highway Engineering, Mechanical and Industrial Engineering, Nuclear Engineering, Surveying, and Transportation and Traffic.

Dean
Professor P. T. Fink

Chairman
Professor T. K. Hogan

Administrative Officer
Patricia Rathburn Kinard, BA Maryland

School of Civil Engineering

Professor of Civil Engineering, Head of School and of Department of Structural Engineering
*Arthur Stanley Hall, BSc(Eng) Lond., DIC, FIEAust, MACI

Professor of Civil Engineering and Head of Department of Civil Engineering Materials
Ian Kenneth Lee, BCE MEngSc PhD Melb., FIEAust, MASCE

Professor of Civil Engineering and Head of Department of Engineering Construction and Management
Ronald William Woodhead, BE Syd., ME N.S.W., FIEAust, FAIB, MASCE, MAIC, MPMI, MACI

Professor of Civil Engineering and Head of Department of Water Engineering
Harold Rupert Valentiine, BE Syd., MS Iowa, ASTC, FIEAust, MASCE

Visiting Professor of Civil Engineering
James Macquarie Antill, BE Syd., ME N.S.W., FIEAust, FIArb(Lond), FIArb(Aust), MAusIMM

Professor of Engineering (on secondment)
Thomas Kevin Hogan, BE W.Aust., FIEAust., MAusIMM

Honorary Associates
Lance Aubrey Endersbee, BCE ME Melb., FIEAust, FASCE, MAusIMM
Desmond Ford Glynn, BCE Melb., MIEAust, MASCE
Alexander Wargon, MSc Harv., CE, FIEAust, FASCE, MNZIE

Executive Assistant to Head of School
Peter Stephen Balint, DiplEng Bud., ME N.S.W., MIEAust

Administrative Officer
Ross Leonard Woodham, BA N.S.W.

*Retired from the University 29 December 1976 and succeeded as Head of School by Professor I. K. Lee.
Department of Civil Engineering Materials

Includes Soil Mechanics, Rock Mechanics, Concrete Technology, Plastics and Timber, Continuum and Statistical/Mechanics.

Associate Professors
Owen Graeme Ingles, BA MSc Tas., CEng, FRIC, MinstF
Somasundaram Vallieppan, BE Annam, MS Northeastern, PhD Wales, MASCE
Geoffrey Baldwin Welch, BE Syd., ME N.S.W., CEng, MICE, FIEAust

Senior Lecturers
William Henry Coglll, MS Cape T. and Camb., PhD N.S.W., FIEAust MICE
David John Cook, BE W.Aust., MSc PhD Celg., MIEAust, AMASCE, APIA
Esca Morrice Kitchen, BE Syd., MIEAust
Bruce John Francis Patten, BE Syd., PhD N.S.W., DIC

Lecturers
Stephen John Hain, BE Syd.
Arthur William Manton-Hall, BE MEngSc N.S.W., MIEAust
Harry Taylor, BSc(Eng) Birm., DipNA&AC Syd.
John Maurice Wheatley, MA PhD Camb., FIM, FAusWI, MAusIMM, MWeld(Lond), AFAIM
Stephen Ross Yeomans, BSc PhD N.S.W., GradMAIAust

Teaching Fellows
Pravit Boonlualohr, BE Syd., MEngSc N.S.W.
Kellichi Matsuzaki, ME Tokyo

Professional Officers
David Edwin Hattersley, MSc N.S.W., ASTC
Hinrich Nicolaus Lunsmann, BE N.S.W., ASTC, GradIEAust
Ghodratollah Tamaddoni, BEngAg Tehran, DAgSc Gembloux

Department of Engineering Construction and Management

Includes Systems Engineering, Engineering Economy, Project Planning and Management.

Associate Professor
Alan Frank Stewart Nettleton, BSc BE Syd., ME N.S.W., DIC

Senior Lecturers
Arthur Gordon Douglas, ME N.S.W., PhD Mich.State, MIEAust
Lawrence Vincent O'Neil, BE Syd., MIEAust

Lecturers
George Rush Easton, BSc BE Syd., MEngSc Birm.
Victor John Summersby, BE MEngSc N.S.W., ASTC, MIEAust
Stephen Joseph Symonds, BSc BE Syd., MEngSc N.S.W., MIEAust

Tutor
George Charles Birdsall, BE N.S.W., GradIEAust

Professional Officer
Frederick Adrian John Stein, ED, BE N.S.W., GradIEAust, AMASCE

Department of Structural Engineering

Includes Structures, Stress Analysis and Solid Mechanics.

Associate Professors
Horace Joseph Brattle, BE Syd., PhD N.S.W., DIC, ASTC, FIEAust
Robert Alexander Frisch-Fay, DiplEng Bud., ME N.S.W., MIEAust
Aigis Kaballa, MEngSc PhD N.S.W., FRMTC, MIEAust, MASCE
Rupert Whitfield Trallil-Nash, BE W.Aust., PhD Brist., CEng, MIEAust, MRAeC
Robert Falcon Warner, ME N.S.W., PhD Lehigh, MIEAust
Staff

Senior Lecturers
Peter Stephen Balint, DiplEng B.Eng., ME N.S.W., MIEAust
Lloyd Sydney Edwards, BCE Melb., BSc Syd., MSc Lond., DIC, ARMTC, MIEAust
Donald John Fraser, MEngSc PhD N.S.W., ASTC
Kenneth Alan Faulkes, ME N.S.W., MS III., PhD N.S.W., MIEAust
Jack Lachlan Jenkins, BE Syd., ME N.S.W., DIC, ASTC, MIEAust
Victor Andrade Pulmano, BSCE Philippines, MEng A.I.T. PhD Northwestern
B. Vilaya Rangan, BE Madr., PhD I.I.S.B’lore., MASCE, MIEAust
Ian James Somervaille, BE PhD N.S.W., ASTC

Lecturers
Alex Cuthbert Heaney, BE MEngSc Melb., PhD Wat., MIEAust, MASCE, AMICE
Peter Walder Kneen, BE Melb., PhD Wat., MIEAust
Raymond Eric Lawther, BE PhD N.S.W.

Teaching Fellows
Robert Frank Care, BE N.S.W., AMASCE
Robert John Edwardes, BScEng N.S.W.
Raymond Ian Gilbert, BE N.S.W.
Radhey Krishna Gupta, ME Roor., LM-ISET, MIEAust
Russell Forrester Stasley, BSc Leeds

Professional Officer
Kim Small, BSc Syd.

School of Electrical Engineering

Professor of Computer Science and Head of School
Murray William Allen, BE Adel., PhD Syd., CEng, FIEEE, MIEE, MIEE

Professor of Electrical Engineering—Communications
Antoni Emil Karbowiak, DSc(Eng) Lond., CEng, FIEAust, FT, FIEEE

Professor of Electrical Engineering—Systems and Control
Neville Waller Rees, BSc PhD Wales, FIEAust

Tyree Professor of Electrical Engineering—Electric Power Engineering
Frederic John Evans, BSc BE Syd., CEng, FIEE, FIEAust

Visiting Professor—Solid State Electronics
Louis Walter Davies, BSc Syd., DPhil Oxon., SMIEEE, FinstP, FAIP, FIEEE, FTS, FAA

Department of Water Engineering

Associate Professors
Douglas Neil Foster, BE Syd., MIEAust
Bernard William Gould, BE Tas., ME N.S.W., MIEAust
David Herbert Pilgrim, BE PhD N.S.W., MIEAust
Keith Kingsford Watson, BE Syd., ME PhD DSc N.S.W., MIEAust

Senior Lecturers
Arthur John Askew, BSc Birm., MSc(Engin) Qu., PhD N.S.W., MASCE, MIEAust
Ian Cordery, ME PhD N.S.W., MIEAust
Colin Raymond Dudgeon, ME N.S.W., MIEAust, MASCE
Trevor Regis Fietz, ME N.S.W., MIEAust
David Trehella Howell, BE Syd., ME N.S.W., MIEAust, MAIAS
John Robert Learmonth, BE Syd., ME N.S.W.
Senior Tutor
Geoffrey Nicholas Horton Westley, BEng Liv.

Tutors
Branko George Cellar, BSc BE N.S.W.
Brian Louis Cohen, BSc N.S.W.
Dorothy Megarsari Lesmana, BSc BE N.S.W.
Phillip George McCrea, BE N.S.W.

Teaching Fellows
Peter Garde, BE MEngSc Monash
Graham Reginald Hellestrand, BSc N.S.W.
Wudhi Nippita, BSc BE Syd.
Sui Cheong Albert Poon, BE N'cle.,(N.S.W.), HDip H.K.Poly

Professional Officer
Jeffrey Stanley Skebe, BS Case W.R.

Department of Communications

Associate Professor
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD Camb., MIEE, MIEEE

Senior Lecturers
Edward Henry Focks, BSc PhD Lond., CEng, MIEE, MIEEE
Thomas Leslie Hooper, BSc Syd., MSc N.S.W., CEng, MIEE, MIEEE, MIEEE, MIEEE
Geoffrey John Parker, BSc BE Syd., ME N.S.W., MIEAust, MIEEE
Christopher John Elliot Phillips, BSc BE PhD Syd., AMIEEE
The Bao Vu, Be PhD Adel.
Ramutis Anthony Zakarevicius, BSc BE MEngSc PhD Syd., MIEEE, MIEEE, MIEEE

Lecturers
Peter Thomas Bason, ME N.S.W., MIEEE
Pak Lim Chu, ME PhD N.S.W., MIEEE
William John Dewar, MSc(Eng), Qu., PhD N.S.W.
Harold Leslie Humphries, BSc BE BSc Syd., MIEAust, MIEEE
Robert Radzyner, BE Melb., MEngSc PhD N.S.W., MIEEE

Professional Officers
Douglas Hamilton Irving, BE N.S.W.
Kirill Poronnik, BE N.S.W., ASTC, MIEEE
Trevor Wayne Whittred, BE N.S.W.

Department of Electric Power Engineering

Associate Professors
Garth Claud Dewsnip, MEE Melb., CEng, FIEEE, MIEAust
Gordon William Donaldson, BE Qld., BSc MA Oxon., CEng, MIEEE, MIEE, MIEEE
Gregory Joseph Johnson, MSc Syd., SMIEEE, CEng, MIEEE, MIEAust, MIEEE
Ian Francis Morrison, BSc BE PhD Syd., CEng, MIEAust, MIEEE, MIEEE

Senior Lecturers
Harry Harrison, BSc BE Syd., ME N.S.W., MIEAust
Ronald Edward James, BSc(Eng) PhD Lond., CEng, MIEEE, MIEEE, MIEEE

Lecturers
Trevor Robert Blackburn, BSc Adel., PhD Flin., GAIP
David Bruce Goudie, BSc BE PhD Syd., MIEEE, AMIEEE
Hugh Ronald Outhred, BSc BE PhD Syd., AMIEEE

Professional Officers
Joseph Rhine Kinar, BA Fla.S.U., MS Mass., MIEEE, MOSA
Edward Douglas Spooner, ME N.S.W.
Department of Solid-State Electronics

Associate Professor
Richard Meredyth Huey, BSc BE Syd., SMIEEE, FIEAust, FIREE

Senior Lecturers
Henry Stanley Blanks, BSc ME Syd., PhD N.S.W., CEng, MIREE, MIQA, SMIEEE
Richard Vaughan, BSc BE PhD Syd.

Lecturers
Martin Andrew Green, BE MEngSc Old., PhD McM.
Peter Howard Ledbrooke, BTech Lough., PhD Camb.

School of Highway Engineering

Professor of Highway Engineering and Head of School
Dennis Frank Orchard, BSc PhD Lond., DIC, ACGI, FIEAust FCIT, MIECE

Senior Lecturers
Robert Alexander Jones, BE W.Aust., ME Auck., MSc Lond., DIC, MSINZ, MIEAust
Theo ten Brummelaar, BE MEngSc N.S.W., MIEAust
Brian Shackel, BE Shett., MEngSc PhD N.S.W., MIEAust, MASCE
William Otho Yandell, ME PhD N.S.W., MIEAust

Professional Officers
Clement Edward Quinalan, GradDip N.S.W., ASTC, MIEAust
Andrzej Waldemar Raczkowski, Mgrlnz T.U. Warsaw

Department of Systems and Control

Associate Professors
John Barry Hiller, BE PhD N.S.W., FIREE, MIEEE
Colin Arthur Stapleton, BSc BE Syd., CEng, MIEEE, MIEEE, MIEAust
Keith Eugene Tait, BE(Hons) BSc N.Z., PhD N.S.W., MIEAust

Senior Lecturers
Peter Thomas Bason, ME N.S.W., MIEEE
Reginald Frederick Brown, BEng Liv., PhD N.S.W., CEng, MIEEE
David Harold Mee, BSc BE Syd., PhD Lond., DIC, MIEEE

Lecturers
Kevin Charles Daly, BSc BE PhD N.S.W.
Felix Lewin, BSc BE Syd.
Oleg Pawloff, Dipling Berl., MIEAust, MIEEE
Robert Luxmore Payne, BSc BE Adel., MSc PhD Lond., MIEEE
Darrell Williamson, BSc ME N’cGe.(N.S.W.), PhD Harv.

Professional Officers
Alec Dunn, BA Essex
Kevin John Flynn, BE MEngSc N.S.W., ASTC
Johan Herman Sieuwerds, BE N.S.W., ASTC

School of Mechanical and Industrial Engineering

Nuffield Professor of Mechanical Engineering, Head of School and of Department of Fluid Mechanics/Thermodynamics
Raymond Alfred Arthur Bryant, ME N.S.W., ASTC, CEng, FIMechE, FIEAust, MRAeS

Professor of Mechanical Engineering
Peter Thomas Fink, BE Syd., CEng, FIEAust, FIMechE, FRAeS, FTS, MAIAA, MRINA

Sir James Kirby Professor of Production Engineering and Head of Department of Industrial Engineering
Peter Louis Brennan Oxley, BSc PhD Leeds, CEng, FIProdE, FIEAust, MIMechE

Professor of Operations Research
George Bennett, BA Syd., PhD N.S.W., ASTC, CEng, FiProdE

Professor of Mechanical Engineering and Head of Department of Applied Mechanics
Noel Levin Svensson, MMechE PhD Meib., CEng, FIEAust, MIMechE, AMIM, MSES

Professor of Mechanical Engineering and Head of Department of Agricultural Engineering
Albert Henry Willis, DSc(Eng) Lond., CEng, FIMechE, FIEAust, MemASAE, WhSc

Executive Assistant to Head of School
John Young Harrison, BE Syd., PhD N.S.W., MIEAust

Senior Administrative Officer
George Dusan, BEc Syd.
Honorary Associate
Cyril Arthur Gladman, BSc(Eng) Lond., ACGI, CEng, FIProdE, MIMechE, MIEAust

Teaching Fellows
Hok Fung Chau, BE N.S.W.
William Ernest Fisher, BSc BE Syd.
Vijay Kumar Goel, BE Punj., ME Roork.
See Seng Leong, BE N.S.W.
Robert Ching Yin Lim, BE N.S.W., GradIEAust
Do Le Minh, BE N.S.W.
Moshe Daniel Rabinowitz, BSc Technion-Israel I.T., Haifa
Hadi Winarto, BE Syd., MEngSc N.S.W., GradIEAust

Professional Officers
Han Bao, BE MEngSc PhD N.S.W.
Eric Arthur Carter, BE MEngSc N.S.W., ASTC
Walter Dollar, ASTC
Richard Butler Frost, BE N.S.W., GradIEAust
Joseph Yuk Ming Fung, BE MEngSc Syd., GradIEAust
Khoi Hoang, BE Saigon
Brian Robert Edgar Lederer, BSc N.S.W., PhD Syd.
Barrie Clifford Motson, BE N.S.W., ASTC, MIAust
Philip Henry Sivyer, BE N.S.W., MIAust
Colin Barrington Smith, BE MEngSc N.S.W., ASTC, MAIRAH, GradIEAust

Department of Fluid Mechanics and Thermodynamics
Includes Aeronautical Engineering and Naval Architecture.

Associate Professors
Richard Douglas Archer, BSc Melb., BE Syd., MS PhD Minn., FBIS, MIAust, MAIAA, MRAeS
Graham de Vahl Davis, BE Syd., PhD Camb., CEng, FIMechE, FIEAust, MASME

Senior Lecturers
Reginald Edward Corbett, DIC, ASTC, CEng, MIMechE, MIAust
Michael Richard Davis, BSc(Eng) PhD St’ton, CEng, MRAeS
Lawrence Julian Doctors, BE MEngSc Syd., PhD Mich., AMCASI, AMNAME
John Newton Hoof, BE Syd., DPhil Oxon., ASTC, CEng, FIMechE, MIAust
Owen Francis Hughes, BS SM(NavArch) M.I.T., PhD N.S.W., MIAust, MRINA, MSNAME
Robert Taggart Black McKenzie, MS ME Purdue, CEng, ARCS-T(Glas), FIMechE
Brian Edward Milton, BE PhD N.S.W., MSc Birm., CEng, MIAust, MRAeS
Charles Matthew Sapsford, BSc(Eng) Lond., ME N.S.W., CEng, FIMechE, MIAust

Lecturers
Graham Lindsay Morrison, BE PhD Melb.
John Arthur Reizes, ME PhD N.S.W., MIAust
Department of Industrial Engineering

Includes Operations Research and Production Engineering.

Associate Professors
Michael Geoffrey Stevenson, BSc(Tech) PhD N.S.W., ASTC, CEng, MIEngAu, MIProdE
Jack Taylor, BSc Nott., CEng, FIMechE

Senior Lecturers
John Frederick Campbell Close, BSc BE Syd., ME N.S.W., MIEE, SMAIIE, MIProdE
Bruce Albert Murtagh, ME Camb., PhD Lond., DIC, CEng, MChemE

Lecturers
Leonard Edward Farmer, BE MEngSc PhD N.S.W., MIEAust
Daniel Goodridge, DiplomaChim L'Aurore, Shanghai, DiplomaEng N.S.W.
Thomas Richard Jefferson, MSc Tor., PhD Northwestern
Grier Cheng Lin, DiplomaMechEng P.T.I.T., Taiwan, PhD N.S.W., MIEAust
Raymond Norman Roth, BE PhD N.S.W., CEng, MIEAust
Carlton Henry Scott, BSc Qld., PhD N.S.W.
Graham Smith, BE MEngSc PhD N.S.W., ASTC, MIEAust

School of Surveying

Professor of Surveying, Head of School and of Department of Geodesy
Peter Vincent Angus-Leppan, BSc(Eng) Rand., PhD DipTP Natal, FISAust, MILS(Natal), MAIC

Professor of Surveying and Head of Department of Photogrammetry
Robert Brewster Forrest, DGeodSci Ohio State, BA Minn.

Associate Professor of Surveying and Head of Department of Surveying
George Gordon Bennett, MSurv Melb., PhD N.S.W., LS(NSW), FISAust

Administrative Assistant
Joseph Valentine Fonseka, BA Lond.

Professional Officers
Norman John Brinsden, BE N.S.W.
Warren William Kent, BSurv N.S.W.
Colin Edward Wardrop, BSc N.S.W.

School of Nuclear Engineering

Professor of Nuclear Engineering and Head of School
James Joseph Thompson, BE PhD Syd., FIEAust

Associate Professors
Paul Robert Barrett, MSc PhD Birm., FAIP, MInstP
Zdenek Josef Holy, Dipling Prague, MSc Birm., MEngSc PhD N.S.W., MIEAust

Lecturers
Olaf Oscar Carlos Alexander Bils, Dipling Berl., PhD N.S.W.
Leslie George Kemeny, BE Syd., MIEAust

Teaching Fellow
Peter Thomas Bath, BE MEngSc N.S.W.

Professional Officer
Peter Yo Pin Chen, BSc MEngSc ME PhD N.S.W., ASTC

School of Nuclear Engineering

Professor of Nuclear Engineering and Head of School
James Joseph Thompson, BE PhD Syd., FIEAust

Associate Professors
Paul Robert Barrett, MSc PhD Birm., FAIP, MInstP
Zdenek Josef Holy, Dipling Prague, MSc Birm., MEngSc PhD N.S.W., MIEAust

Lecturers
Olaf Oscar Carlos Alexander Bils, Dipling Berl., PhD N.S.W.
Leslie George Kemeny, BE Syd., MIEAust

Teaching Fellow
Peter Thomas Bath, BE MEngSc N.S.W.

Professional Officer
Peter Yo Pin Chen, BSc MEngSc ME PhD N.S.W., ASTC

Department of Geodesy

Associate Professor
Ronald Sunthereraj Mather, BSc Ceyl., PhD DSc N.S.W., FISAust

Senior Lecturer
Arthur Stolz, BSurv PhD N.S.W., LS(NSW), MISAust

Lecturers
Friedrich Karl Brunner, Dipling Dr techn T.H. Vienna, MISAust
Arthur Harry William Kearsley, BSurv MSurvSc N.S.W., MAIC, MISAust
Engineering

Department of Photogrammetry

Includes Land Studies and Cartography.

Senior Lecturers
Bruce Crosby Forster, BSurv Melb., MSc R'dg., MAS P.N.G., LS(Vic)
George James Forster Holden, DipPhoto Lond., PhD N.S.W., FRGS, MISAust, MAIC, ARICS
John Charles Trinder, BSurv PhD N.S.W., MSc T.H. Delft, LS(NSW), MISAust

Lecturers
Pratap Shivabhai Amin, BSc T.H. Delft, MSc Lond., MISAust, MISK, CLSEA, ARICS
Leonard Berlin, BSc(LS) Cape T., BSc T.H. Delft., MISAust
Ian Philip Williamson, BSurv MSurvSc N.S.W., LS(NSW), MIEAust

Senior Tutor
Salvatore Umberto Nasca, DotlScGeoI Florence, DipTop&Cart (Istituto Geografico Militare), MGAS, AMAIMM

School of Transportation and Traffic

Professor of Traffic Engineering and Head of School
William Ross Blunden, BSc BE Syd., FCIT(Lond), FITE(Wash), MIEAust, MStatSocAust, MAustSocOpRes

Senior Lecturers
Alex James Fisher, BSc Lond., PhD N.S.W.
Ross Donald Munro, BSc W.Aust., BA Melb., FSS
John Irwin Tindall, BE Qld., BCom ME N.S.W., AMIEAust

Lecturers
John Andrew Black, BA Mano., PhD Brad., AMIT
Michael Clarence Dunne, BSc PhD Adel.

Professional Officers
Roger Roy Hall, BSc A.N.U., MSc N.S.W.
Colin John Wingrove, BSc MEngSc N.S.W.

Department of Surveying

Associate Professor
John Stuart Allman, BSurv PhD N.S.W., MISAust, MAIC

Senior Lecturers
Anthony John Robinson, BSurv PhD N.S.W., LS(NSW), MISAust, MAIC
Arthur Paul Heinz Werner, Dipling Bonn, FISAust

Lecturers
Sabapathy Ganeshan, BSc Ceyl., MISAust
Klaas Iids Groenhout, BSurv MSurvSc N.S.W., LS(NSW), MISAust, AMAIC
Gregory Justin Hoar, BSurv PhD N.S.W., LS(NSW), MISAust
Jean Marc Rueger, Dipling E.T.H. Zurich, SIA, LS(Switz), MISAust

Senior Tutor
Robert Campbell Patterson, BSurv BSc MSurvSc N.S.W.
W.S. and L.B. Robinson University College

Director and Head of Department of Science
Professor John Everard Andersen, BE Melb., PhD N.S.W., FIEAust, MAusIMM, ARACI

Head of Department of Mining and Mineral Sciences
Professor Leon John Thomas, BSc PhD Birm., CEng, FIEAust, MAusIMM, MIMinE

Administrative Officer
Peter Francis Hern, AASA

Professional Officer
Boyd Parker Watson, BSc(Tech) N.S.W.

Department of Mining and Mineral Sciences

Mechanical Engineering

Lecturers
Llewellyn Ramsey Jones, BSc N.Z., DipAm MEng Sheff., PhD Wales, MIEAust, MIMechE

Ian Lachlan Maclaine-cross, BE Melb., MIEAust, MAIRA, MSES
Chakravarti Varadachar Madhusudana, BE Mys., ME B'l ore, PhD Monash, MIEAust

Mining Engineering

Lecturer
Venkata Satyanarayana Vutukuri, BSc(Eng) Ban., MS Wis.,

Professional Officer
Kenneth James Murray, BSc Syd., MSc N.S.W., AMAusIMM MMGI, AIME, AMAusIMM

Mineral Science

Senior Lecturer
Barenya Kumar Banerji, MSc Patna, PhD Leeds, MAusIMM

Geology

Senior Lecturer
Gerrit Neef, BSc Lond., PhD Well., FGS, AMAusIMM

Lecturers
Ian Rutherford Pilmer, BSc N.S.W., PhD Macq., AMAusIMM, AMIMM
Kevin David Tuckwell, BSc PhD N.S.W., AMAusIMM

Tutor
Alaster Carlile Edwards, BSc Melb., GSA, AMAusIMM
Department of Science

Chemistry
Associate Professor
Keith George O'Brien, MSc Syd., PhD N.S.W., FRACI, AMAusIMM

Lecturer
Derek Richard Smith, BSc PhD Wales

Senior Tutor
Robert Edward Byrne, MSc N.S.W., ARACI, AMAusIMM

Mathematics

Lecturers
David Charles Guiney, BSc PhD Adel.
Zdenek Kviz, Dip Phys Brno, CSc RerNatDr Charles, PhD Prague
Dennis William Trenerry, BSc PhD Adel.

Physics

Lecturers
Robert John Stening, MSc Syd., PhD Qld., MAIP
Kenneth Reid Vost, BSc Glas., MSc N.S.W., AMAusIMM

Fowlers Gap Research Station

Officer-in-Charge
Ian Hugh Auldist, BAgSc Melb., MAIAS
Faculty Information

Faculty of Engineering Enrolment Procedures*

Preliminary Enrolment

Courses in Aeronautical, Industrial, Mechanical Engineering and Naval Architecture.

Students in the above courses should have received a form requesting them to nominate their choice of Technical Electives where applicable.

If any student has not received the above form he should obtain it from the School's General Office, complete it and return it to the General Office before the end of lectures in Session 2.

Since this booklet contains all other necessary information no further enrolment instructions will be sent through the mail.

Course in Civil Engineering

Students should obtain enrolment information and a form to nominate Technical Electives from the School Office before end of lectures, Session 2.

Course in Surveying

Students should obtain enrolment information and a form to nominate General Studies and Technical Electives from the School Office before end of lectures, Session 2.

Course in Electrical Engineering

Students must collect enrolment information and forms from the School Office before the end of Session 2.

Students entering Year 4 should return their Choice of Electives forms by the end of Session 2. Proposed Program forms should be lodged with the School Office by Friday 14 January 1977. This form should not be completed until 1976 results are notified and this Handbook is consulted.

School of Civil Engineering

Enrolment Timetable

1. Full-time Courses

A. Students progressing into a complete year as shown in the Handbook.

<table>
<thead>
<tr>
<th>Year 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surnames A to M</td>
<td>9.00 am to 11.00 am</td>
<td></td>
</tr>
<tr>
<td>Surnames N to Z</td>
<td>11.00 am to 1.00 pm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surnames A to M</td>
<td>9.00 am to 11.00 am</td>
<td></td>
</tr>
<tr>
<td>Surnames N to Z</td>
<td>11.00 am to 1.00 pm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surnames A to M</td>
<td>9.00 am to 11.00 am</td>
<td></td>
</tr>
<tr>
<td>Surnames N to Z</td>
<td>11.00 am to 1.00 pm</td>
<td></td>
</tr>
</tbody>
</table>

As a result of a decision by the Commonwealth Government, no tuition fees are charged in 1977.
B. Students with broken programs NOT progressing into a complete year, as shown in the Handbook.

Year 2
- Students progressing into a complete stage or year: Thursday 3 March
 - 9.30 am to 11.00 am
 - 11.00 am to 12.30 pm

Year 3
- Students progressing into a complete stage or year: Wednesday 2 March
 - 9.30 am to 11.00 am
 - 11.00 am to 12.30 pm

Year 4
- Students progressing into a complete stage or year: Monday 28 February
 - 9.30 am to 11.00 am
 - 11.00 am to 12.30 pm

2. **Part-time Courses**

A. Students progressing into a complete stage as shown in the Handbook.

Stages 2, 3, 4, 5 and 6
- Thursday 24 February
 - 2.00 pm to 5.00 pm
 - 6.00 pm to 8.00 pm

B. Students with broken programs NOT progressing into a complete stage as shown in the Handbook.

Stages 2, 3, 4, 5 and 6
- Wednesday 2 March
 - 2.00 pm to 4.30 pm
 - 6.00 pm to 8.00 pm

3. **New Students with Advanced Standing**

Thursday 3 March
- 6.00 pm to 8.00 pm

General Studies

Students enrolling in general studies electives after completing enrolment in their own Faculty and BEFORE GOING TO THE CASHIER, should proceed to the General Studies enrolment centre in Unisearch House where they will obtain places in electives, complete class admission cards and finalize enrolment forms.

Enrolment Centre

1. Students progressing into a complete stage or year as shown in the Handbook.
2. Students with broken programs NOT progressing into a complete stage or year as shown in the Handbook and Part-time New Students with Advanced Standing.
3. New Students with Advanced Standing.

School of Electrical Engineering

Enrolment Timetable

Students should attend the appropriate enrolment centre according to the timetable below and enrol in the approved program.

1. **Full-time Courses**

Year 1 (repeats and)
- Thursday 3 March
 - 2.00 pm to 3.30 pm
 - 3.30 pm to 5.00 pm

Year 2
- Thursday 3 March
 - 2.00 pm to 3.30 pm
 - 3.30 pm to 5.00 pm

Year 3
- Tuesday 1 March
 - 2.00 pm to 3.30 pm
 - 3.30 pm to 5.00 pm

Year 4
- Monday 26 February
 - 9.30 am to 11.00 am
 - 11.00 am to 12.30 pm

2. **Part-time Courses**

Students re-enrolling at all stages:
- Wednesday 2 March
 - 6.00 pm to 8.00 pm

3. **New Students with Advanced Standing**

Friday 4 March
- 9.30 am to 12.30 pm

4. **Note:** To avoid delays during Enrolment Week, students enrolling in Years 2 to 4 full-time and Stages 3 to 6 part-time who are not subject to Show Cause Rules or awaiting results of deferred examinations may complete their enrolment from the beginning of February. Details will be given with enrolment information when enrolment forms are collected from the School Office before the end of Session 2 1976.

General Studies

Students enrolling in general studies electives after completing enrolment in their own Faculty and BEFORE GOING TO THE CASHIER, should proceed to the General Studies enrolment centre in Unisearch House where they will obtain places in electives, complete class admission cards and finalize enrolment forms.

Enrolment Centre

- Room 109
 - School of Civil Engineering
 - Unisearch House
 - 221 Anzac Parade
 - (across from Main Campus)

- Room 407
 - School of Civil Engineering

- Room G3
 - Electrical Engineering Building
School of Mechanical and Industrial Engineering

Enrolment Timetable

Unless otherwise indicated students enrolling in the courses offered by the School are required to attend Room 106 in the School's Building in accordance with the following timetable.

1. Full-time Courses
 Year 2 and Year 1 repeats Tuesday 1 March
 9.00 am to 12 noon
 Year 3 and Year 4 Monday 28 February
 1.00 pm

2. Part-time Courses
 Stages 2, 3, 4, 5 and 6 and Stage 1 repeats
 Tuesday 1 March
 2.00 pm to 5.00 pm
 6.00 pm to 8.00 pm

3. New Students with Advanced Standing
 Friday 4 March
 2.00 pm to 5.00 pm

4. Note: Students enrolling in years 2 to 4 full-time and stages 3 to 6 part-time who are not subject to Show Cause Rules or awaiting results of deferred examinations may complete their enrolment early in February. Those students wishing to enrol early should contact the School's General Office during the first week of February 1977.

General Studies

Students enrolling in general studies electives after completing enrolment in their own Faculty and BEFORE GOING TO THE CASHIER, should proceed to the General Studies enrolment centre in Unisearch House where they will obtain places in electives, complete class admission cards and finalize enrolment forms.

Enrolment Centre

Room 106
School of Mechanical and Industrial Engineering Building.

School of Surveying

Enrolment Timetable

1. Full-time Courses
 Year 2 Monday 28 February
 9.30 am to 12.30 pm
 Year 3 Tuesday 1 March
 9.30 am to 12.30 pm
 Year 4 Friday 4 March
 9.30 am to 12.30 pm

2. Part-time and Sandwich Courses
 Students re-enrolling at all Stages
 Wednesday 2 March
 2.00 pm to 6.00 pm

3. New Students with Advanced Standing
 Full-time Tuesday 1 March
 9.30 am to 12.30 pm
 Part-time and Sandwich Wednesday 2 March
 2.00 pm to 6.00 pm

General Studies

Students enrolling in general studies electives after completing enrolment in their own Faculty and BEFORE GOING TO THE CASHIER, should proceed to the General Studies enrolment centre in Unisearch House where they will obtain places in electives, complete class admission cards and finalize enrolment forms.

Enrolment Centre

School Office.
Enrolment in Miscellaneous Subjects
(Students not proceeding to a degree or diploma)

School of Electrical Engineering

Persons who wish to obtain a letter of approval to enrol as Miscellaneous Students in graduate subjects in the School of Electrical Engineering are required to attend Room G3, School of Electrical Engineering, on Friday 25 February, 2.00 pm to 5.00 pm and 6.00 pm to 8.00 pm.

School of Civil Engineering

Students who wish to obtain a letter of approval to enrol as Miscellaneous Students in graduate subjects in the School of Civil Engineering are required to attend Room 109, School of Civil Engineering, on Friday 25 February, 9.30 am to 11.30 am and 6.00 pm to 8.00 pm.

Students who wish to obtain a letter of approval to enrol as Miscellaneous Students in undergraduate subjects should attend the School Office on Friday 4 March, 9.30 am to 11.30 am.

Late Enrolments

Students are strongly advised to attend for enrolment during Enrolment Week as those who fail to do so not only miss initial classes but disrupt lecture, tutorial and practical work programs and cause considerable inconvenience to lecturers and the punctual students.

There are two late enrolment sessions:

First Late Enrolment Period
Wednesday 9 March

Second Late Enrolment Period
Wednesday 16 March

The times and locations for late enrolment in the Faculty of Engineering are shown below:

Faculty of Engineering
Civil Engineering
School Office, 4th Floor
Civil Engineering Building
5.00 pm to 7.00 pm

Surveying
Room 112
Civil Engineering Building
By arrangement with the School

Faculty Office, Room G1
Electrical Engineering Building
5.00 pm to 7.00 pm

Room 103
School of Mechanical and Industrial Engineering
5.00 pm to 7.00 pm

Faculty of Engineering Library Facilities

Although any of the university libraries may meet specific needs, the staff and students of the Faculty of Engineering are served mainly by the Physical Sciences Library and the Undergraduate Library.

The Physical Sciences Library

This library serves the information needs of senior undergraduate students, graduate students and members of the academic staff. It contains books, a large collection of journals, and guides to the literature including abstracting and indexing journals in the subject areas of pure and applied science, technology, engineering and architecture. The library also houses a growing map collection and some microfilm material. All material in the library bears the prefix 'P' and is indexed in the library's central catalogue on Level 2. There is also a catalogue in the Physical Sciences Library. There is seating for approximately 300 people, and a number of room carrels and seminar rooms are available for use. Photocopying facilities are provided. Journals may not be borrowed from the collection. The library staff on Level 7 are ready to assist readers with any enquiries.

The Undergraduate Library

This library caters for the library needs of first and second year students and other groups where large numbers require mass teaching.

The Undergraduate Library provides a reader education program and reader assistance service aimed at teaching students the basic principles of finding information. Services of particular interest to undergraduates and academic staff are:

- The Open Reserve Section, housing books and other material which are required reading.
- The Audio Visual Section, containing cassette tapes, mainly lectures and other spoken word material. The
Faculty Information

Audio-Visual Section has wired study carrels and cassette players for student use.

Physical Sciences Librarian Janine Schmidt
Undergraduate Librarian Pat Howard

Location of Laboratories outside Kensington Campus

Randwick
The Schools of Highway and Transportation and Traffic and the Structures Laboratory of the School of Civil Engineering occupy new buildings on the site of the old Tramway Depot at King Street, Randwick.

Manly Vale
The Water Research Laboratory of the School of Civil Engineering.

The Undergraduate Society of Engineers

All engineering students are automatically members of the Undergraduate Society of Engineers (USE) on enrolment in the faculty. The USE Committee, elected annually at the General Meeting, is responsible for the administration of the society.

The committee organizes numerous social and sporting events and prints NODUS, the newspaper for engineering students. In addition, it is asked to nominate students to sit on education committees, visiting committees and other associated bodies, which provide a valuable forum for student opinion on a wide range of topics.

The General Meeting is usually held in about the third week of Session I and students are encouraged to attend.

International Association for the Exchange of Students for Technical Experience — IAESTE

IAESTE is an organization to facilitate overseas work in technical areas in 48 different countries throughout the world for students or recent graduates. It organizes visas, work periods for as little as a 6 week holiday up to 12 months; lodging and an initial welcome.

In Australia IAESTE has a permanent Executive Director, and volunteer local committees made up of interested students at each university. At the University of New South Wales the local committee is associated with the Undergraduate Society of Engineers.

For more information write to the Executive Director at Australian National Committee, Box 55, Alexandria, NSW 2015 or contact the local committee through the USE.

The Institution of Engineers, Australia

The professional body for engineering in Australia is the Institution of Engineers, Australia, which has as its first object "to promote the science and practice of engineering in all its branches".

The Institution functions through a series of Divisions, our local one being the Sydney Division. Within each Division are branches representing the main interests within the profession, e.g., civil, mechanical, electrical, chemical, transportation.

Students of an approved school of engineering may join the institution as a student member (StudIAust). Student members receive the monthly bulletin The Chartered Engineer advising you of site tours, conferences, technical meetings of all branches, harbour cruises, film nights etc. They also receive the Journal of the Institution (eight per year) containing articles of a general engineering interest, and The Transactions which contains articles on a particular branch of engineering.

Student members are also free to use the comprehensive library and reference facilities maintained by the Institution. The library is a handy place to obtain a rare book or periodical.

For more information and membership application forms, write to The Secretary, The Institution of Engineers, Australia, Sydney Division, PO Box 138, Milsons Point NSW 2061.

The Institution of Surveyors, Australia

During their years as undergraduates, students in the surveying course are encouraged to take the first steps in joining in the activities of the professional body which represents surveyors, The Institution of Surveyors. The aims of the Institution are to promote scientific, technical and educational aspects of surveying and to maintain high professional standards of practice and conduct.

Student members receive the quarterly journal of the Institution, The Australian Surveyor and The NSW Surveyors' Monthly Bulletin which is published by the New South Wales Division of the Institution. Membership also entitles the student to attend all meetings of institution and to attend the annual Congress at a special concessional rate. Membership application forms are available at the office of the School of Surveying and from the institution office at 65 York Street, Sydney.
The Rupert H. Myers Award in Materials Engineering

The University, in conjunction with the Department of Civil Engineering Materials in the School of Civil Engineering, makes an award, known as the Rupert H. Myers Award in Materials Engineering, which recognises contributions made by individual engineers and scientists of international repute to the science of materials engineering. The selected candidate receives a silver medal and delivers the Rupert H. Myers Lecture as a key feature of a symposium concerned with the most recent developments in this field.

Financial Assistance to Students

The scholarships and prizes listed below are available to students whose courses are listed in this handbook. A similarly oriented list appears in the Faculty Information section of each of the faculty handbooks.

The complete list of University scholarships and prizes appears in the General Information section of the Calendar.

Scholarships

Undergraduate Scholarships

As well as the assistance mentioned, there are a number of scholarships available to students. What follows is an outline only. Full information may be obtained from the Student Employment and Scholarships Unit, located on the Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar by 14 January each year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Years of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td>Merit in HSC and total family income not exceeding $4000.</td>
</tr>
<tr>
<td>Bursary Endowment Board*</td>
<td>$300 pa if living at home;</td>
<td>7 years</td>
<td>$400 pa if living away from home</td>
</tr>
<tr>
<td>Donor</td>
<td>Value</td>
<td>Year/s of Tenure</td>
<td>Conditions</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>$1000 to $1500 pa payable in fortnightly instalments</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport either directly or administratively; and financial need. Child of member or former member of Royal Australian Air Force undertaking a full-time degree course.</td>
</tr>
<tr>
<td>Air Force Association Memorial Scholarship</td>
<td>$250 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td></td>
</tr>
<tr>
<td>The Tyree Electrical Company Pty Ltd</td>
<td>$500-$1500 pa</td>
<td>1 year renewable for the duration of the course, subject to satisfactory progress</td>
<td>Eligibility for admission to the full-time degree course in Electrical Engineering.</td>
</tr>
<tr>
<td>The Fox Manufacturing Company</td>
<td>$1200 pa</td>
<td>1 year renewable for the duration of the course, subject to satisfactory progress</td>
<td>Eligibility for admission to the full-time degree course in Mechanical Engineering.</td>
</tr>
<tr>
<td>James Howden & Co Australia Pty Ltd</td>
<td>$300 pa</td>
<td>1 year</td>
<td></td>
</tr>
<tr>
<td>The Institution of Surveyors, NSW Division</td>
<td>$250 per session</td>
<td>In parts 4, 5, 6 and 8 of the full-time course</td>
<td>Permanent residence in Australia and eligibility for admission to the full-time degree course in Surveying.</td>
</tr>
</tbody>
</table>
Graduate Scholarships

Applications for scholarships should be made in triplicate on the required form, and sent to the Registrar by 31 October. Eligibility depends on such factors as the applicant holding an honours degree or equivalent qualification, or having relevant experience. Students completing the final year of a course may apply. Those under bond should disclose this fact. Awards are tenable for one year, and may be renewed for a maximum of two years for a Masters and 3 to 4 years for a PhD degree. Renewal each year is subject to satisfactory progress. Any exceptions from these requirements are indicated.

Application forms and further information are available from the Student Employment and Scholarships Unit, which is located on the ground floor of the Chancellery. This Unit produces the booklet Graduate Awards, and also provides information on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

Where possible, the scholarships are listed in order of schools within the faculty.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of New South Wales Research Awards</td>
<td></td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates (or equivalent).</td>
</tr>
<tr>
<td>Australian Government (Research Awards)</td>
<td>Living allowance of $3250 pa. Other allowances may also be paid.</td>
<td>As above</td>
<td>Applicants must be honours graduates (or equivalent) or scholars who will graduate with honours in current academic year, and who are domiciled in Australia.</td>
</tr>
<tr>
<td>Australian Government (Course Awards)</td>
<td>1-2 years; minimum duration of course</td>
<td></td>
<td>Applicants must be graduates or scholars who will graduate in current academic year, and who have not previously held an Australian Government Postgraduate Award. Applications to Registrar by 30 September.</td>
</tr>
<tr>
<td>Australian American Educational Foundation Travel Grant*</td>
<td></td>
<td></td>
<td>Applicants must be graduates, senior scholars or post-doctoral Fellows. Graduate applications close 31 December. Other applications by mid-November.</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td>A total of $500-$3200</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates from any accredited Australian or overseas university.</td>
</tr>
<tr>
<td>The British Council Commonwealth University Interchange Scheme</td>
<td>Cost of travel to UK or other Commonwealth country university</td>
<td></td>
<td>Applicants must be: 1. University staff on study leave. Applications close with Registrar by 30 November. For visits to commence during ensuing financial year 1 April to 31 March. 2. Graduate research workers holding research grants. Applications close with Registrar by 28 February for visits to commence during ensuing 1 April to 31 March.</td>
</tr>
</tbody>
</table>

*Application forms are available from: The Secretary, Department of Education, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.
<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Pacific Airlines Award for Travel to Canada for University Graduates</td>
<td>One free economy class return flight a year to Canada</td>
<td></td>
<td>Graduates of an Australian University who are Australian citizens or permanent residents. Candidates must have been accepted by a Canadian University, be able to support themselves on a full-time basis, and intend to return to Australia. Applications close with Registrar by 31 May.</td>
</tr>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</td>
<td>Usually 2 years, sometimes 3</td>
<td>Graduates who are Commonwealth citizens or British Protected Persons, and who are not older than 35 years of age. Applications close with Registrar by 1 October.</td>
</tr>
<tr>
<td>General Motors Holden's Research Fellowship</td>
<td>Living allowance and other allowances</td>
<td>Maximum of 3 years</td>
<td>Graduates qualified to undertake research program for Masters or PhD degree.</td>
</tr>
<tr>
<td>Gowrie Graduate Research Travelling Scholarship</td>
<td>Maximum $2000 pa</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War.</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York</td>
<td>Living and travel allowances, tuition and research expenses, book and equipment and other allowances</td>
<td>Between 12 to 21 months</td>
<td>Candidates must be either: 1. Members of the Commonwealth or a State Public Service or semi-government Authority. 2. Staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree and be between 21-30 years of age. Applications close 23 July.</td>
</tr>
<tr>
<td>IBM Graduate Scholarship Plan</td>
<td>A maximum of $1200 pa</td>
<td>A maximum of 2 years for a degree of Master and 4 years for a PhD</td>
<td>Graduates must already hold a scholarship, such as an Australian Government Postgraduate Research Award and be studying computer science or its applications. Applications close with Registrar by 30 November.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships at Harvard University</td>
<td>Stipend of $3400 plus tuition fees pa</td>
<td>2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian University.</td>
</tr>
</tbody>
</table>

Application forms must be obtained from the Australian representative of the Fund, Mr L. T. Hinde, Reserve Bank of Australia, Box 3947, GPO, Sydney, NSW 2001. These must be submitted to the Registrar by 24 July.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuffield Foundation</td>
<td>Approximately £2240 stg pa</td>
<td>1 year</td>
<td>Australian citizens usually between 25 and 35 who are graduates preferably with higher degrees and who have at least a year's teaching or research experience at a university. Applications close by February.</td>
</tr>
<tr>
<td>Commonwealth Travelling Fellowships†</td>
<td>Approximately £1760 stg pa in other cases plus travelling costs.</td>
<td>2 years, may be extended for a third year</td>
<td>Unmarried male and female British subjects, between the ages 19 and 25 who have been domiciled in Australia at least 5 years and have completed at least 2 years of an approved university course. Applications close in July each year.</td>
</tr>
<tr>
<td>The Rhodes Scholarship**</td>
<td>£1650 stg pa</td>
<td>Up to 3 years</td>
<td>The field of study is unrestricted. Applications close early September each year.</td>
</tr>
<tr>
<td>Rothmans Fellowships Award‡</td>
<td>$12000 pa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Applications to Mr H. McCredle, Secretary of the NSW Committee, University of Sydney, NSW 2006.
†Applications to The Secretary, Rothmans University Endowment Fund, University of Sydney, NSW 2006.
‡Applications to the Secretary, The Nuffield Foundation Australian Advisory Committee, Chemistry Laboratory, Barry Building, University of Melbourne, Parkville, Victoria 3052.

Engineering

<table>
<thead>
<tr>
<th>Scholarship</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harold G. Conde Memorial Fellowship</td>
<td>$3250 pa plus allowances</td>
<td>1 year. Renewable up to 3 years</td>
<td>Candidate should be honours graduate permanently domiciled in Australia. The Fellowship is for graduate study or research in a field related to the electricity industry. The successful candidate will undertake the degree of Master of Engineering Science in Highway Engineering. Further Information: Professor D. Orchard, School of Highway Engineering, UNSW or Public Relations Officer, Mobil Oil Pty Ltd, ADC Building, 189 Kent Street, Sydney 2000. The Fellowship enables scholars to complete a Master of Engineering Science Course in Highway Engineering, or alternatively undertake research leading to a Master of Engineering or PhD degree.</td>
</tr>
<tr>
<td>Mobil Fellowship in Highway Engineering</td>
<td>$3250 pa plus allowances</td>
<td>1 year</td>
<td></td>
</tr>
<tr>
<td>University Fellowships in Highway Engineering</td>
<td>$3250 pa plus allowances</td>
<td>Course Work: 1 year, Research: 1 year, renewable</td>
<td></td>
</tr>
<tr>
<td>Kenneth W. Craig Memorial Fellowship</td>
<td>$3250 pa plus allowances</td>
<td>1 year</td>
<td></td>
</tr>
</tbody>
</table>
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Institute of Nuclear Science and Engineering Studentships</td>
<td>Single students $3500 pa. Married students $4000 pa, $300 for each dependent child, plus some University expenses.</td>
<td>1-3 years</td>
<td>Applicants must be graduates in Nuclear Science or Engineering. At least one quarter of the period of tenure must be spent at the Institute at Lucas Heights, NSW.</td>
</tr>
<tr>
<td>Australian Institute of Nuclear Science and Engineering Research Fellowship†</td>
<td>$11500-$14860 pa plus certain travel and supporting grants</td>
<td>Minimum of 2 years. Maximum of 3 years</td>
<td>To enable graduates holding a PhD or similar qualification to undertake graduate work in Nuclear Science and Engineering.</td>
</tr>
<tr>
<td>Shell Scholarship in Science and Engineering</td>
<td>£1750 stg pa plus travelling expenses</td>
<td>2 years</td>
<td>Applicants must be unmarried, male, British subjects, under 25 years of age, with at least 5 years domicile in Australia and who are graduates with at least 1 year's research experience. The successful candidate will undertake 2 years' graduate research leading to the MSc or PhD degree, at a British university.</td>
</tr>
</tbody>
</table>

†Applications to The Registrar, or AINSE Private Mail Bag, Sutherland 2232.

Prizes

Undergraduate University Prizes

The following table summarizes the undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under 'General'. All other prizes are listed under the Faculty or Schools in which they are awarded.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sydney Technical College Union Award</td>
<td>$50.00</td>
<td>Leadership in the development of student affairs, and academic proficiency throughout the course</td>
</tr>
<tr>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit — students in their final or graduating year</td>
</tr>
<tr>
<td>Donor/Name of Prize</td>
<td>Value ($)</td>
<td>Awarded for</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Faculty of Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Dean's Faculty Hour</td>
<td>25.00</td>
<td>Best essay by a graduating student on a topic discussed in Faculty Hour</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>Best essay by a nongraduating student on a topic discussed in Faculty Hour</td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Association of Consulting Structural Engineers of New South Wales</td>
<td>20.00</td>
<td>General proficiency — Structures in the Bachelor of Engineering Course in Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>and books to the value of 30.00</td>
<td></td>
</tr>
<tr>
<td>Australian Welding Institute</td>
<td>30.00</td>
<td>Best design using a welding process for students in Years 2, 3 or 4</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Department of Civil Engineering Materials Staff</td>
<td>50.00</td>
<td>Best aggregate marks in the subjects 8.273 Civil Engineering Materials II and 8.274 Civil Engineering Materials III</td>
</tr>
<tr>
<td>Harbin Polytechnical Alumni Association</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Water Board Gold Medal</td>
<td>Medal</td>
<td>Public Health Engineering</td>
</tr>
<tr>
<td>Wood Hall Ltd</td>
<td>100.00</td>
<td>Proficiency in Engineering Construction and Management</td>
</tr>
<tr>
<td>School of Electrical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austral Bronze Crane Copper Ltd</td>
<td>25.00</td>
<td>Bachelor of Engineering Course in Electrical Engineering, Year III Power or Control elective</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Third year full-time or equivalent part-time students for overall performance including proficiency in Electric Power Distribution Control Systems</td>
</tr>
<tr>
<td>Electricity Supply Engineers Association of New South Wales</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>J. Douglas Maclurcan</td>
<td>30.00</td>
<td>A student eligible to enter the final year of the course and who is deemed to be in necessitous circumstances</td>
</tr>
<tr>
<td>The Wilfred Holmes Memorial Award</td>
<td>120.00</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Mechanical and Industrial Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas Copco</td>
<td>75.00</td>
<td>General proficiency in Bachelor of Engineering course in Mechanical Engineering</td>
</tr>
<tr>
<td>Austral Crane Ltd</td>
<td>50.00</td>
<td>Full-time Year III Mechanical Engineering</td>
</tr>
<tr>
<td>Babcock & Wilcox Aust Ltd</td>
<td>21.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>CSR Limited</td>
<td>30.00</td>
<td>5.113 Mechanical Engineering Design</td>
</tr>
<tr>
<td>Ford Motor Co of Aust Ltd</td>
<td>20.00</td>
<td>Theory of Machines</td>
</tr>
<tr>
<td>Harbin Polytechnical Alumni Association</td>
<td>50.00</td>
<td>Bachelor of Engineering or Bachelor of Science (Engineering) Course in Naval Architecture, final year or stage</td>
</tr>
<tr>
<td>Jeremy Hirschhorn</td>
<td>20.00</td>
<td>General proficiency in Bachelor of Engineering Course in Mechanical Engineering, Year II</td>
</tr>
<tr>
<td>Royal Institution of Naval Architects</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>Staedtler (Pacific) Pty Ltd</td>
<td>50.00 (order)</td>
<td></td>
</tr>
</tbody>
</table>

| **Department of Industrial Engineering** |
Austral Crane Ltd	50.00	Bachelor of Engineering Course in Industrial Engineering, Year III
Chamber of Manufactures of New South Wales	10.00	Subject selected by Head of School
Industrial Engineering	25.00	Bachelor of Engineering Course in Industrial Engineering, Year IV
TRW Australia Ltd	20.00	Bachelor of Science (Engineering) Course in Industrial Engineering, Stage 6

School of Surveying

| Board of Surveyors Medal | Medal | Bachelor of Surveying Course, Final Year |
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduation University Prizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Thistlethwayte Memorial Prize</td>
<td>100.00</td>
<td>Best essay in the field of water — waste water treatment or water quality management, by MEngSc, MAppSc, ME, MSc student</td>
</tr>
<tr>
<td>School of Highway Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wabco Aust Pty Ltd</td>
<td>300.00</td>
<td>Most distinguished graduate in the Master of Engineering Science in Highway Engineering</td>
</tr>
</tbody>
</table>
The Faculty of Engineering consists of seven Schools — Civil Engineering, Electrical Engineering, Mechanical and Industrial Engineering, Highway Engineering, Nuclear Engineering, Transportation and Traffic, and Surveying. The Schools of Civil Engineering, Electrical Engineering, and Mechanical and Industrial Engineering offer full-time courses leading to the degree of Bachelor of Engineering, and part-time courses leading to the degree of Bachelor of Engineering or Bachelor of Science (Engineering). The School of Surveying offers a full-time, part-time and sandwich course leading to the degree of Bachelor of Surveying. The Schools of Highway Engineering, Nuclear Engineering and Transportation and Traffic offer graduate courses only.

All the graduate activities of the Faculty are co-ordinated under the Graduate School of Engineering. For full details of such activities please see the Graduate School of Engineering Handbook and the University Calendar, or contact the appropriate school.

Common First Year

The Schools of Civil, and Mechanical and Industrial Engineering have similar first year courses in physics, mathematics and chemistry, facilitating the transfer of students from one Bachelor of Engineering course to another within these schools at the end of their first year without loss of standing.

The first year courses in the Schools of Electrical Engineering and Surveying differ from the courses offered by the Schools of Civil Engineering and Mechanical and Industrial Engineering. However, notwithstanding the fact that the courses are not identical, sympathetic consideration will be given to requests by students who have completed first year to transfer to an allied course without loss of standing. When such transfer is desired an application must be made with the Registrar.

General Rules for Progression

Progression in all undergraduate courses in the Faculty of Engineering is now permitted by subject. However:

1. Course programs will continue to be stated and time-tabled by year or stage and it cannot be guaranteed that non-standard programs can be completed in the minimum number of years.

2. Students must satisfy the rules governing re-enrolment: in particular, these require all subjects of the first year to be completed by the end of two years of full-time (or four years of part-time) study.

3. A student must satisfy the relevant prerequisite and co-requisite requirements. This will usually necessitate a student completing or attempting all subjects of a particular year or stage before proceeding to a subject in the next part of a course. Further details are available from the appropriate School.

4. Only in exceptional circumstances will a student be permitted to enrol in subjects extending over more than two years of the course or for more than twenty-eight hours of course work per week if a full-time student or fourteen hours per week if a part-time student. Students repeating subjects are required to choose a program which limits their hours of course work to twenty-two per week if a full-time student, and to eleven per week if a part-time student, unless they have the express permission of the Head of School to exceed these hours.

5. Notwithstanding the above, before a student can enrol in any non-standard program such program must meet with the approval of the Head of School. A non-standard program is one which involves enrolment in subjects from more than one year or stage, or comprises subjects which do not normally constitute a particular year's course work.
Full-time Courses

Full-time courses of four-years' duration are offered in Civil, Electrical, Mechanical, Industrial, and Aeronautical Engineering, and in Naval Architecture: all of these lead to the degree of Bachelor of Engineering. A four-year full-time course in Surveying is offered by the School of Surveying leading to the degree of Bachelor of Surveying. The award of the degree of Bachelor of Engineering is recognized by the Institution of Engineers, Australia, as giving complete exemption from the examinations required for admission to the grade of Member. In nearly all cases substantial or complete recognition is accorded to these courses by overseas engineering institutions.

Industrial Training Requirements

All full-time engineering courses incorporate industrial training and reference should be made to the entries under each School heading for details of the arrangements applicable. All students are strongly recommended to gain further industrial experience in those long vacations where such training is not already prescribed.

The staff of the University will, where possible, assist students to obtain this employment, but it is emphasized that the primary responsibility for obtaining suitable industrial experience rests with each student. Progression to succeeding years of the course and the award of the degree are dependent on the completion of the requisite periods of industrial employment at a standard approved by the University.

Part-time Courses

Since 1961 the Schools of the Faculty have offered six-year part-time courses in a variety of engineering fields leading to the degree of Bachelor of Science (Technology). From 1971 the name of this degree became Bachelor of Science (Engineering) but is not awarded retrospectively. Courses for the BSc(Eng) degree are offered in Civil, Electrical, Industrial and Mechanical Engineering and in Naval Architecture and Aeronautical Engineering (these two being offered by the School of Mechanical and Industrial Engineering). No enrolments are now accepted for the BSc(Eng) course in Civil Engineering; the last initial enrolment year was 1974.

The General Studies program is the same for part-time as for full-time students, except that part-time students do not do an Advanced Elective.

The award of the degree of BSc(Eng) is recognized at present by the Institution of Engineers, Australia, as giving complete exemption from the examinations required for admission to the grade of Member. However, recognition after 1980 is currently being reviewed by the Institution of Engineers, Australia.

Recognition by overseas engineering institutions varies in the different branches of engineering, and particular enquiries on this matter should be addressed to the head of the appropriate School.

A student completing the BSc(Eng) degree course and wishing to qualify for the corresponding BE degree may, on the recommendation of the Head of the School, transfer to the corresponding full-time BE course provided he does not take out the BSc(Eng) degree. Further, provided he continues as a registered student on transfer from one course to the other, he may retain any concession granted in the BSc(Eng) degree course.

Holders of the BSc(Eng) award are eligible to proceed to the degree of Master of Engineering, Master of Engineering Science or Master of Surveying Science subject to the conditions for the award of these degrees set out in the Calendar.

Courses leading to the BSc(Eng) award are basically part-time and the prescribed industrial experience should be gained concurrently with the course of study (a minimum of three years of suitable engineering experience is required). Students transferring from full-time courses must, therefore, also satisfy these industrial experience requirements before being admitted to the degree of BSc(Eng).

The BSc(Eng) degree program may in some cases be accelerated by a student attending for one or more years full-time. For example, in all courses of the Faculty it is possible to take the equivalent of the first two part-time years in the full-time first year.

The School of Surveying offers a part-time course of seven years' duration for the degree of Bachelor of Surveying. The existing part-time course is being phased out over the period 1975-1980, and replaced by a sandwich course.

Conditions for the Award of the Degree of Bachelor of Science (Engineering)

The course leading to the award of the degree of Bachelor of Science (Engineering) is normally programmed over six years of part-time study in the University whilst the student is employed in industry. The regulations governing the award of this degree are as follows:

1. A candidate for the degree of BSc(Eng) shall:
 A comply with the requirements for admission;
 B follow the prescribed course of study in the appropriate school and pass the necessary examinations;
C complete an approved program of industrial training over such period as is prescribed concurrently with attendance in the course. In general, this training must be completed before 31 January in the year in which the degree is to be recorded.

2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations and excursions to such an extent and in such a manner as is prescribed from time to time by the Professorial Board on the recommendation of the Faculty, and, in addition, undertake industrial training as approved by the Head of the School.

3. A student may be granted advanced standing by the Professorial Board on the recommendation of the appropriate Faculty but in each case a student must follow an approved course for at least three years with such period of approved industrial training as is prescribed before being eligible for admission to the degree.

4. The degree of BSc(Eng) shall be awarded in the pass grade only but in the case of superior performance throughout the course the degree shall be conferred “with merit”.

5. Students shall be required to conform with the general rules relating to progression in University courses.

Conditions for the Award of the Degree of Bachelor of Surveying

1. A candidate for the degree of Bachelor of Surveying shall:
 A comply with the requirements for admission;
 B follow the prescribed course of study in the School of Surveying and satisfy the examiners in the necessary subjects;
 C complete an approved program of industrial training for such periods as are prescribed. In general this training should be completed before the commencement of Part 8 of the undergraduate studies;

2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations, excursions and field camps to such an extent and in such a manner as is prescribed from time to time by the Professorial Board on the recommendation of the Faculty.

3. A student shall be required to complete the first year of the course in not more than two years. Re-enrolment thereafter will be governed by the general regulations of the Professorial Board.

4. A student may be granted advanced standing by the Professorial Board on the recommendation of the Faculty of Engineering, but in each case must complete an adequate period of approved industrial training before being eligible for the degree. In addition to the above requirements a student coming from another institution must follow an approved course of study in this University for at least two years.

5. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
 Honours Class I
 Honours Class II, Division I
 Honours Class II, Division II

53
The School of Civil Engineering offers two degree courses in Civil Engineering: the Bachelor of Engineering (BE) course which can be taken on a 4-year full-time basis, a 7-stage part-time basis or any approved combination of full-time and part-time study; and the Bachelor of Science (Engineering) (BSc(Eng)) course which is a part-time program, comprising the first six stages of the 7-stage Bachelor of Engineering course. No enrolments are now accepted for the BSc(Eng) course in Civil Engineering; the last initial enrolment year was 1974.

Additionally students may seek permission to undertake a course leading to a combined degree of Bachelor of Science and Bachelor of Engineering (BSc BE). The course* is of five years' duration and comprises the main strands of Civil Engineering course together with a major in any of a number of the subjects offered in the Faculty of Science.

The requirements for the BE degree include a period of at least sixty working days of approved industrial experience prior to enrolment in the final year; the requirements for the BSc(Eng) degree include a period of at least three years of suitable engineering experience concurrent with the university course.

A student who has completed the requirements for the award of the BSc(Eng) degree in Civil Engineering but has not taken out the degree by formal graduation may apply to the Head of School for enrolment on a part-time basis in the BE degree course.

The degree of Bachelor of Engineering may be conferred as a Pass degree or as an Honours degree. There are two classes of Honours, Class I, and Class II in two divisions, and the award and grade of Honours are made in recognition of superior performance throughout the course. The degree of Bachelor of Science (Engineering) may be awarded with Merit in recognition of superior performance throughout the course.

362

Civil Engineering — Full-time Course

Bachelor of Engineering

BE

Year 1

<table>
<thead>
<tr>
<th></th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.981</td>
<td>Physics I or</td>
</tr>
<tr>
<td>1.001</td>
<td>Physics I or</td>
</tr>
<tr>
<td>1.011</td>
<td>Higher Physics I</td>
</tr>
<tr>
<td>2.981</td>
<td>Chemistry ICE</td>
</tr>
<tr>
<td>8.003</td>
<td>Civil Engineering A</td>
</tr>
<tr>
<td>8.004</td>
<td>Civil Engineering B</td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I or</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$1</th>
<th>$2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Proposed for implementation in 1977. Details are not available at time of publication.
Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.172</td>
<td>Mechanics of Solids II</td>
<td>4</td>
</tr>
<tr>
<td>8.181</td>
<td>Structural Design I</td>
<td>4</td>
</tr>
<tr>
<td>8.272</td>
<td>Civil Engineering Materials I</td>
<td>2</td>
</tr>
<tr>
<td>8.301</td>
<td>Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.571</td>
<td>Hydraulics I</td>
<td>3</td>
</tr>
<tr>
<td>8.671</td>
<td>Engineering Construction</td>
<td>3</td>
</tr>
<tr>
<td>10.022</td>
<td>Engineering Mathematics II</td>
<td>2</td>
</tr>
<tr>
<td>29.441</td>
<td>Surveying for Engineers</td>
<td>2</td>
</tr>
<tr>
<td>29.491</td>
<td>Survey Camp†</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Two Electives*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22½</td>
</tr>
</tbody>
</table>

*See this footnote below Stage 4.

Civil Engineering: Part-time Course

Bachelor of Engineering

BE

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI S2</td>
</tr>
<tr>
<td>1.001</td>
<td>Physics I or</td>
</tr>
<tr>
<td>1.011</td>
<td>Higher Physics I</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I or</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I **</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 12</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.981</td>
<td>Chemistry ICE</td>
<td>6</td>
</tr>
<tr>
<td>5.010</td>
<td>Engineering A</td>
<td>4</td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B</td>
<td>6</td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.172</td>
<td>Mechanics of Solids II</td>
<td>0</td>
</tr>
<tr>
<td>8.272</td>
<td>Civil Engineering Materials I</td>
<td>4</td>
</tr>
<tr>
<td>10.022</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>29.441</td>
<td>Surveying for Engineers</td>
<td>0</td>
</tr>
<tr>
<td>29.491</td>
<td>Survey Camp†</td>
<td>3</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.181</td>
<td>Structural Design I</td>
<td>2½</td>
</tr>
<tr>
<td>8.273</td>
<td>Civil Engineering Materials II</td>
<td>3</td>
</tr>
<tr>
<td>8.301</td>
<td>Systems Engineering</td>
<td>2</td>
</tr>
<tr>
<td>8.571</td>
<td>Hydraulics I</td>
<td>0</td>
</tr>
<tr>
<td>8.671</td>
<td>Engineering Construction</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>One Elective*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13½</td>
</tr>
</tbody>
</table>

*Of ten required electives at least four are in General Studies and at least four are technical electives. Two of the General Studies electives are taken prior to Year 4 or Stage 5.

Approved technical electives for Year 2 are 8.851 Electronics and Instrumentation, 8.832 Industrial Electrical Machinery, 8.040 Advanced Engineering Geology, 9.411 Town Planning, 8.047 History of Civil Engineering.

Footnote continued overleaf, column on
Approved technical electives for Year 3 include those listed for Year 2 and 8.011 Projects, 8.012 Elements of Architecture, 8.013 Bridge Engineering, 8.014 Computer Applications in Civil Engineering, 8.015 Road Engineering, 8.016 Hydraulics, 8.017 Transportation Engineering, 8.019 Railway Engineering, 8.020 Hydrology, 8.022 Elasticity and Plasticity, 8.024 Foundation and Dams Engineering, 8.025 Structural Failures, 8.026 New Materials II, 8.030 Concept Design, 8.032 Law for Builders, 8.033 Industrial Law and Arbitration, 8.034 Engineering Economy, 8.035 Flat Slab Design, 8.036 Philosophy of Limit State Design, 8.037 Optimum Design of Structures, 8.038 Special Topics in Reinforced Concrete, 8.039 Computer Programming, 8.040 Water Resources, 8.041 Public Health Engineering, 8.046 Town Planning.

Approved technical electives for Year 4 include those listed for Year 2 and Year 3 and 8.011 Projects, 8.012 Elements of Architecture, 8.013 Bridge Engineering, 8.014 Computer Applications in Civil Engineering, 8.015 Road Engineering, 8.016 Hydraulics, 8.017 Transportation Engineering, 8.019 Railway Engineering, 8.020 Hydrology, 8.022 Elasticity and Plasticity, 8.024 Foundation and Dams Engineering, 8.025 Structural Failures, 8.026 New Materials II, 8.030 Construction Management, 8.031 Construction Project Finance, 8.032 Law for Builders, 8.033 Industrial Law and Arbitration, 8.034 Engineering Economy, 8.035 Flat Slab Design, 8.036 Philosophy of Limit State Design, 8.037 Optimum Design of Structures, 8.038 Special Topics in Reinforced Concrete, 8.039 Computer Programming, 8.041 Public Health Engineering, 8.046 Town Planning.

Stage 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.173 Structural Analysis I</td>
<td>0 3</td>
</tr>
<tr>
<td>8.182 Structural Design II</td>
<td>3 3</td>
</tr>
<tr>
<td>8.351 Engineering Mathematics</td>
<td>0 5</td>
</tr>
<tr>
<td>8.572 Hydraulics II</td>
<td>0 3</td>
</tr>
<tr>
<td>8.672 Planning & Management I</td>
<td>4 0</td>
</tr>
<tr>
<td>Two Electives</td>
<td>6 0</td>
</tr>
<tr>
<td>Total</td>
<td>13 14</td>
</tr>
</tbody>
</table>

Stage 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.174 Structural Analysis II</td>
<td>3 0</td>
</tr>
<tr>
<td>8.191 Structural Engineering</td>
<td>0 3</td>
</tr>
<tr>
<td>8.274 Civil Engineering Materials III</td>
<td>3 3</td>
</tr>
<tr>
<td>8.573 Hydraulics III</td>
<td>3 0</td>
</tr>
<tr>
<td>8.581 Water Resources I</td>
<td>0 3</td>
</tr>
<tr>
<td>8.582 Water Resources II</td>
<td>3 0</td>
</tr>
<tr>
<td>Two Electives</td>
<td>1½ 4½</td>
</tr>
<tr>
<td>Total</td>
<td>13½ 13½</td>
</tr>
</tbody>
</table>

Stage 7*

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.001 Industrial Training</td>
<td></td>
</tr>
<tr>
<td>8.051 Design Project — Materials</td>
<td>1¼ 0</td>
</tr>
<tr>
<td>8.052 Design Project — Structures</td>
<td>1¼ 0</td>
</tr>
<tr>
<td>8.053 Design Project — Water</td>
<td>1¼ 0</td>
</tr>
<tr>
<td>8.054 Design Project — Construction</td>
<td>1¼ 0</td>
</tr>
<tr>
<td>8.583 Water Resources III</td>
<td>0 3</td>
</tr>
<tr>
<td>8.673 Planning & Management II</td>
<td>3 0</td>
</tr>
<tr>
<td>8.674 Planning & Management III</td>
<td>0 3</td>
</tr>
<tr>
<td>Four Electives</td>
<td>6 6</td>
</tr>
<tr>
<td>Total</td>
<td>14 12</td>
</tr>
</tbody>
</table>

*Available in 1978 for the first time.

School of Electrical Engineering

Electrical Engineering has close links with the pure sciences and mathematics. Its technology is changing rapidly, and the School's teaching and research programs are constantly under review to meet the ever changing challenges of present and future needs.

The School offers undergraduate and graduate training in all branches of the profession of electrical engineering: there are Departments of Communications, Computer Science, Electric Power, Solid State Electronics, and Systems and Control Engineering. A number of interdepartmental and specialized groups (such as Digital Systems, Acoustics, Biomedical Engineering, Measurements etc.) are also active.

The undergraduate curricula are being progressively revised to provide a flexible training to suit the needs of today and tomorrow. Individual student needs can be further met by quite extensive substitution provisions within the course programs.

The School of Electrical Engineering offers a full-time course of four years duration leading to the degree of Bachelor of Engineering (pass or honours), and a six year part-time course for the degree of Bachelor of Science (Engineering). Each subject of the BSc(Eng) course is generally identical with a subject of the BE program and the requirements of these subjects can be completed by either day or evening study in most cases: a part-time student is expected to be able to attend classes on at least one afternoon a week. Thus, provided prerequisites are met and the program can be time-tabled, a student in either course may, with the approval of the Head of the School, complete the requirements by a combination of full-time and part-time study.

The degrees of Bachelor of Engineering and Bachelor of Science (Engineering) are recognized by the Institution of Engineers, Australia, the Institution of Radio and Electronics Engineers, Australia, and the Institution of Electrical Engineers, London, as giving complete exemption from the examinations required for admission, to Graduate or Corporate membership. The Institution of Engineers, Australia, is reviewing its requirements for graduates completing their course after June 1980.

Honours

In the Bachelor of Engineering course the same formal program is offered to both pass students and to those aiming at honours. Honours will be awarded for meritorious performance over the course: special attention is paid to a candidate's performance in the final year thesis project. A student with a creditable performance in the Bachelor of Science (Engineering) course may be awarded a degree with Merit.

Industrial Experience

All students in the BSc(Eng) course must complete three years of concurrent appropriate industrial training. Students should enrol in the subject 6.902 Industrial
Experience in the year in which they expect to satisfy requirements.

All students in the BE course must complete at least 60 days industrial experience usually in the summer recesses at the end of Years 2 and 3. Details of the BE requirements are available in the Industrial Training booklet produced by the Student Employment Service and Scholarship Unit.

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.961 Physics I*</td>
<td>S1</td>
</tr>
<tr>
<td>2.121 Chemistry**</td>
<td>6</td>
</tr>
<tr>
<td>5.030 Engineering C</td>
<td>6</td>
</tr>
<tr>
<td>6.010 Electrical Engineering I</td>
<td>0</td>
</tr>
<tr>
<td>10.001 Mathematics I*</td>
<td>6</td>
</tr>
<tr>
<td>Either</td>
<td></td>
</tr>
<tr>
<td>2.131 Chemistry** or Engineering A</td>
<td>0</td>
</tr>
<tr>
<td>5.010 Engineering A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

*Students who have achieved a certain standard may attempt similar material at a higher level.

**Available in either Session 1 or 2.

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.972 Electromagnetism</td>
<td>0</td>
</tr>
<tr>
<td>1.982 Solid State Physics</td>
<td>4</td>
</tr>
<tr>
<td>1.992 Thermal Physics and Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>Electrical Engineering II</td>
<td></td>
</tr>
<tr>
<td>6.021A Basic Circuit Theory</td>
<td>4</td>
</tr>
<tr>
<td>6.021B Power</td>
<td>0</td>
</tr>
<tr>
<td>6.021C Electronics</td>
<td>0</td>
</tr>
<tr>
<td>6.021D Introduction to Computing</td>
<td>4</td>
</tr>
<tr>
<td>6.021E Digital Logic and Systems</td>
<td>4</td>
</tr>
<tr>
<td>6.022 EE Materials</td>
<td>0</td>
</tr>
<tr>
<td>10.111A Pure Mathematics II (Linear Algebra)*</td>
<td>2</td>
</tr>
<tr>
<td>10.111B Pure Mathematics II (Analysis)*</td>
<td>2</td>
</tr>
<tr>
<td>10.211A Applied Mathematics II (Mathematical Methods)*</td>
<td>2</td>
</tr>
<tr>
<td>One General Studies Elective</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td>25½</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.561 Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.113 Civil Engineering</td>
<td>4</td>
</tr>
<tr>
<td>10.033 EE Maths III</td>
<td>2</td>
</tr>
<tr>
<td>10.361 Statistics SE</td>
<td>1½</td>
</tr>
<tr>
<td>Electrical Engineering III</td>
<td></td>
</tr>
<tr>
<td>6.0311 Systems and Feedback</td>
<td>4</td>
</tr>
<tr>
<td>6.0314 Signal Processing</td>
<td>0</td>
</tr>
<tr>
<td>6.0312 Utilization of Electric Energy</td>
<td>4</td>
</tr>
<tr>
<td>6.0315 Electric Energy</td>
<td>0</td>
</tr>
<tr>
<td>6.0313 Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td>6.0316 Electronic Circuits II</td>
<td>0</td>
</tr>
<tr>
<td>6.0317 Communication Systems</td>
<td>0</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>25½</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.911 Thesis*</td>
<td>2</td>
</tr>
<tr>
<td>Electrical Engineering IV</td>
<td></td>
</tr>
<tr>
<td>(6 electives)†</td>
<td></td>
</tr>
<tr>
<td>and General Studies Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

*In Session 1 two hours per week and in Session 2 three days per week are devoted to directed laboratory and research work on an approved subject under the guidance of members of the lecturing staff. Generally, the project involves the design and construction of experimental apparatus together with laboratory tests. Each student is required to present a seminar and a written thesis must be submitted on each project by the last Monday in November.

†Electrical Engineering IV

Four Electives are taken in Session 1 and two in Session 2. The program selected by each student must be approved by the Head of School. Each Department offers specialized electives, and a number of general electives are also available. Not all electives are offered every session; students are advised each year which electives are available. Each elective is 5 hours per week for one session.

The list of electives is:

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.041 Electrical Measurements</td>
<td></td>
</tr>
<tr>
<td>6.042 Circuits, Signals and Information Theory</td>
<td></td>
</tr>
<tr>
<td>6.044 Electrical Product Design and Reliability</td>
<td></td>
</tr>
<tr>
<td>6.202 Power Engineering Systems I</td>
<td></td>
</tr>
<tr>
<td>6.203 Power Engineering Systems II</td>
<td></td>
</tr>
<tr>
<td>6.212 Power Engineering Utilization</td>
<td></td>
</tr>
<tr>
<td>6.222 High Voltage and High Current Technology</td>
<td></td>
</tr>
<tr>
<td>6.303 Communication Electronics</td>
<td></td>
</tr>
<tr>
<td>6.313 Wave Radiation and Guidance</td>
<td></td>
</tr>
<tr>
<td>6.322 Electronics</td>
<td></td>
</tr>
<tr>
<td>6.323 Signal Transmission</td>
<td></td>
</tr>
<tr>
<td>6.333 Communication Systems</td>
<td></td>
</tr>
<tr>
<td>6.383 Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>6.412 Automatic Control</td>
<td></td>
</tr>
<tr>
<td>6.413 Modern Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>6.432 Computer Control and Instrumentation</td>
<td></td>
</tr>
<tr>
<td>6.512 Advanced Semiconductor Device Theory</td>
<td></td>
</tr>
<tr>
<td>6.622 Translator and Integrated Circuit Design</td>
<td></td>
</tr>
<tr>
<td>6.637A Computer Hardware Architecture</td>
<td></td>
</tr>
<tr>
<td>6.637B Advanced Software Technology</td>
<td></td>
</tr>
<tr>
<td>6.812 Computer Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>6.622 Computer Application and Systems</td>
<td></td>
</tr>
</tbody>
</table>
365

Electrical Engineering
Bachelor of Science (Engineering)
BSc(Eng)

Stage 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
<tr>
<td>1.001 Physics I</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
<tr>
<td>2.121 Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>5.030 Engineering C</td>
<td>0</td>
</tr>
<tr>
<td>6.010 Electrical Engineering I</td>
<td>6</td>
</tr>
<tr>
<td>6.021A Basic Circuit Theory</td>
<td>0</td>
</tr>
<tr>
<td>10.111B Pure Mathematics II — Analysis</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
<tr>
<td>1.982 Solid State Physics</td>
<td>4</td>
</tr>
<tr>
<td>6.021B Power</td>
<td>4</td>
</tr>
<tr>
<td>6.021C Electronics</td>
<td>0</td>
</tr>
<tr>
<td>6.0311 Systems and Feedback</td>
<td>0</td>
</tr>
<tr>
<td>10.111A Pure Mathematics II — Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>10.211A Applied Mathematics II — Mathematical Methods</td>
<td>1½</td>
</tr>
<tr>
<td>One General Studies Elective</td>
<td>13½</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
<tr>
<td>1.972 Electromagnetism</td>
<td>0</td>
</tr>
<tr>
<td>1.992 Thermal Physics and Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>6.021D Computing</td>
<td>0</td>
</tr>
<tr>
<td>6.021E Digital Logic and Systems</td>
<td>0</td>
</tr>
<tr>
<td>6.022 EE Materials</td>
<td>4</td>
</tr>
<tr>
<td>6.0312 Utilization of Electric Energy</td>
<td>4</td>
</tr>
<tr>
<td>One General Studies Elective</td>
<td>13</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
<tr>
<td>6.0313 Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td>6.0314 Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td>6.0315 Electric Energy</td>
<td>0</td>
</tr>
<tr>
<td>6.0316 Electronic Circuits II</td>
<td>0</td>
</tr>
<tr>
<td>10.361 Statistics SE One General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

Stage 6†

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Professional Electives*</td>
<td>10</td>
</tr>
<tr>
<td>6.0317 Communication Systems</td>
<td>0</td>
</tr>
<tr>
<td>5.661 Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

*The list of electives to be offered largely corresponds to those in Electrical Engineering IV list (see the BE program). The full range of electives are not offered in the BSc(Eng) course; students who can arrange the necessary day attendance may request approval to substitute Electrical Engineering IV electives.

†Students who have not completed 6.902 Industrial Experience by this stage of their course should include the subject in their program. For further details of the requirement see the introduction to School of Electrical Engineering.

Transition Arrangements Into Revised Programs

No student will lose credit for any subjects completed. Broken program students will be assessed on the basis of the new program but will not be liable for increased requirements if they progress normally.

BE

There are no transition problems.

BSc(Eng)

Because the order of subjects has been rearranged, transition programs vary depending on which stage the student has completed in 1976.

- **Completing Stage 1** On new program.
 - Completing Stage 2 or 3 Attempt transition programs in 1977 and 1978. Students who have otherwise completed Stage 4 by the end of 1978 are not required to do 6.022.
 - Completing Stage 4 or 5 Continue with the old course as designated in the 1976 Faculty Handbook except that 6.043 is replaced by a third Professional Elective, 5.661 and the alternative to 5.661 Mechanical Engineering III is now 10.361 Statistics SE. Stages 5 and 6 for these students are given below.
Stage 5 (Old Course)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.921</td>
<td>Material Science</td>
<td>1 1</td>
</tr>
<tr>
<td>6.0312</td>
<td>Utilization of Electric Energy</td>
<td>4 0</td>
</tr>
<tr>
<td>6.0315</td>
<td>Electrical Energy</td>
<td>0 4</td>
</tr>
<tr>
<td>6.0313</td>
<td>Electronic Circuits I</td>
<td>4 0</td>
</tr>
<tr>
<td>6.0316</td>
<td>Electronic Circuits II</td>
<td>0 4</td>
</tr>
<tr>
<td></td>
<td>Two General Studies Electives</td>
<td>3 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 12</td>
</tr>
</tbody>
</table>

Stage 6 (Old Course)*

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.021E</td>
<td>Computing</td>
<td>0 4</td>
</tr>
<tr>
<td></td>
<td>Three Professional Electives*</td>
<td>10 5</td>
</tr>
<tr>
<td></td>
<td>Either</td>
<td></td>
</tr>
<tr>
<td>10.361</td>
<td>Statistics</td>
<td>1½ 1½</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>5.661</td>
<td>Mechanical Engineering</td>
<td>3 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11½ /13 10½ /12</td>
</tr>
</tbody>
</table>

By 1979 all students will be fully on the new program.

Electrical Engineering — Substitution of Subjects

To suit the special abilities or needs of individual students a limited amount of substitution is permitted within each course. Any such substitution must have prior approval of the Head of School who will ensure that:

1. The replacement subject is at least of the same length and level as the prescribed subject it replaces; and
2. The resulting overall program of study is suited to the award of either the BE or BSc(Eng) as applicable.

Examples are:

A Replacement of two General Studies subjects by an approved Arts subject;

B Replacement of General Studies subjects by subjects approved (by the Head of the Department of General Studies) selected from areas such as: Life Sciences; Earth Sciences; Accounting and Business Administration; Law; Economics; Industrial Management.

C If students proposing to attempt the BSc BE pattern include additional Computer Science or Applied Mathematics in their Second Year Electrical Engineering program they open up a wider choice of subjects in their Science Third Year. Subjects omitted may be required to be taken in the student's Third Year of Electrical Engineering.

D The normal Fourth Year of the BE program includes 6 units of Electrical Engineering IV. Students may substitute for ONE of these units, a subject of suitable level and difficulty from an area outside the School of Electrical Engineering.

Double Degrees

397/364 Double Degree of BSc BE in Electrical Engineering

Students in Electrical Engineering may qualify for this double degree in five years of full-time study. Having completed the first and second year of the Electrical Engineering course, students with a creditable performance may transfer to Science (this is subject to the recommendation of the Head of the School of Electrical Engineering and the approval of the Deans of the Faculties of Engineering and Science) and do the appropriate General Studies subjects and four level III units chosen from related disciplines and no less than four other units of either Level II or Level III chosen in accordance with the Science Course regulations.

In their fourth year the students revert to the Faculty of Engineering. Depending on the program followed in their year in Science they will have already completed parts of the normal third year program of the Electrical Engineering course, and they will be required to omit those from their program and to include an equivalent amount of other courses chosen with the approval of the Head of School. In their fifth year they will complete the fourth year of the Electrical Engineering course.

372 Double Degree BA BE in Electrical Engineering

The double degree BA BE in Electrical Engineering may be gained by a five-year course of combined study. Students wishing to enrol for this double degree may do so: by initially enrolling as a student proceeding to the double degree, or by transferring to the BA BE program with advanced standing after partially completing the requirements or either degree, provided that suitable courses have been studied.

Any students wishing to enrol in, transfer into or continue in the double degree course BA BE shall have complied with all the requirements for prerequisite study and academic attainment (ie a creditable performance) of both the Faculties concerned. Students wishing to enrol in or to transfer into the double degree course may do so only after receiving the approval of the respective Deans of the Faculties of Arts and Engineering. Guidance should be sought from the School of Electrical Engineering, the relevant schools in the Faculty of Arts and the Arts Faculty Office.

Initial Enrolment for BA BE

A student enrolling initially for the double degree shall pursue a program for four years in which he completes subjects equivalent to 18 units in accordance with the regulations of the Faculty of Arts, provided that he...
includes: the subjects in Table A below, and a major
sequence of subjects available within the Faculty of
Arts (see that Faculty’s regulations) in addition to his
studies in the School of Mathematics. He shall also
study concurrently subjects selected from Course 364
in accordance with an acceptable program loading.

To complete his studies he must satisfy the requirements
of a normal BE program in Electrical Engineering, less
the General Studies subjects, one of the six units of
Electrical Engineering IV, and two other subjects
approved by the Head of School of Electrical
Engineering.

Table A*

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Or Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td></td>
</tr>
<tr>
<td>10.111A</td>
<td>Pure Mathematics II (Linear Algebra)</td>
<td></td>
</tr>
<tr>
<td>10.111B</td>
<td>Pure Mathematics II (Analysis)</td>
<td></td>
</tr>
<tr>
<td>10.211A</td>
<td>Applied Mathematics II (Mathematical Methods)</td>
<td>or equivalent</td>
</tr>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td></td>
</tr>
<tr>
<td>1.112A</td>
<td>Electromagnetism</td>
<td></td>
</tr>
<tr>
<td>1.112B</td>
<td>Modern Physics</td>
<td></td>
</tr>
<tr>
<td>1.112C</td>
<td>Thermodynamics & Mechanics</td>
<td></td>
</tr>
</tbody>
</table>

*Students who have achieved a certain standard may attempt similar
material at a Higher level.

The requirements of the appropriate Schools in respect
of prerequisites, sequencing or substitutions shall be
adhered to.

Subsequent Transfer to BA BE Course

Students wishing to pursue this route shall at the time of
transfer and subsequently comply with the requirements
for students initially enrolling in the double degree
BA BE.

Honours Degree in Arts

Students wishing to gain an Honours degree in Arts as
part of their combined BA BE double degree program
shall meet all the relevant requirements of the Faculty
of Arts and of the appropriate Schools. Such students
may enrol for the Honours year in Arts only after
receiving the approval of the respective Deans of the
Faculties of Arts and Engineering.

School of Mechanical and Industrial
Engineering

The courses in the School are planned to provide the
appropriate academic training for the professional
engineer in the fields of aeronautical, industrial and
mechanical engineering, and for the naval architect.

The study of the basic sciences — Mathematics, Physics
and Chemistry — together with an introduction to Engi-
neering, comprises the first year. In the second year

further mathematical studies are undertaken together
with a study of the Engineering Sciences — Thermody-
namics, Fluid Mechanics, Engineering Mechanics,
Mechanics of Solids and their application in the field of
Design.

The full-time courses of Mechanical, Industrial and Aero-
nautical Engineering and of Naval Architecture have
common subjects for the first two years. The third and
fourth years contain a number of common core subjects
together with specific departmental requirements. In the
fourth and final year, in addition to core subjects and
departmental requirements, provision is made for a
limited degree of specialization in one or more elective
subjects. Students in the Mechanical Engineering Course
may take, subject to the approval of the Head of
School, up to six credits of graduate subjects offered by
the School in lieu of an equivalent quantity of final year
undergraduate electives. Each full-time student is
required to present a thesis at the end of his final year
and to deliver a short paper on the subject of his thesis.

General studies form a regular part of all courses. In
certain instances and with permission from the Head of
the School students may substitute an Arts subject in
lieu of two General Studies subjects.

Industrial experience is an integral part of the full-time
courses. All students enrolled in the School must com-
plete forty working days of approved industrial training
between Years 2 and 3, also between Years 3 and 4,
and irrespective of their specialization, are strongly
recommended to gain as much industrial training as
possible between Years 1 and 2.

The full-time courses in Aeronautical, Industrial and
Mechanical Engineering and in Naval Architecture are of
four years’ duration and lead to the degree of Bachelor
of Engineering (BE).

All students will be considered for the award of Honours
which will be granted for meritorious performance in the
course with particular emphasis on the later years. With
the approval of the Head of School, students may proceed
to the BE degree via a combination of full-time and part-
time study.

Part-time courses of six years’ duration leading to the
degree of Bachelor of Science (Engineering) are offered
in the same four fields as the full-time courses.

Part-time courses may also be completed by a combina-
tion of part-time and of full-time study. Students pro-
ceeding to the BSc(Eng) degree whether by a combina-
tion of part-time and of full-time study, or by part-time
study alone, are required to undergo a minimum period
of three years approved concurrent industrial training.
(See also conditions for the award of the Degree of
BSc(Eng) in the Calendar.)

Students should enrol in the subject 5.042 Industrial
Experience in the year in which they expect to satisfy
the requirement and, upon completion, submit to the
School evidence from their employers of such industrial
training.

A student who has successfully completed the first two
stages of any of the Bachelor of Science (Engineering)
courses mentioned above may transfer to the second year of any of the full-time BE courses offered by the School. A part-time student will be able to transfer at the end of Stage 4 of his course to the third year of the corresponding BE course. The BSc(Eng) degree may be awarded 'With Merit' to students whose performance in the course is superior.

The award of the degree BE or BSc(Eng) in Mechanical Engineering is recognized by the Institution of Mechanical Engineers, London, as giving exemption from Parts I and II of the examinations required for admission to the grade of Member. Exemption from Part III (The Engineer in Society) of the examinations may also be granted, depending on the particular General Studies subjects taken. Exemption from Part III is considered on a case by case basis, and is not automatic. Specific enquiries on this matter should be addressed to the Head of the School.

The award of the degree of BE or BSc(Eng) in Industrial Engineering is similarly recognized by the Institution of Production Engineers, London.

The Institution of Engineers, Australia, grants full exemption from examinations for admission to the grade of Member to holders of the degree of BE or BSc(Eng) in any of the undergraduate courses offered by the School.

368

Mechanical Engineering — Full-time Course

Bachelor of Engineering

BE

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.951 Physics I (Mech. Eng.)</td>
<td>4</td>
</tr>
<tr>
<td>2.021 Chemistry I*</td>
<td>0</td>
</tr>
<tr>
<td>5.010 Engineering A*</td>
<td>6</td>
</tr>
<tr>
<td>5.030 Engineering C*</td>
<td>6</td>
</tr>
<tr>
<td>5.040 Engineering D</td>
<td>0</td>
</tr>
<tr>
<td>5.061 Technical Orientation</td>
<td>2</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>6</td>
</tr>
<tr>
<td>10.011 Higher Mathematics I</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.033 Experimental Engineering III</td>
<td>1\frac{1}{2}</td>
</tr>
<tr>
<td>5.043 Industrial Training I</td>
<td>—</td>
</tr>
<tr>
<td>5.071 Engineering Analysis</td>
<td>3\frac{1}{2}</td>
</tr>
<tr>
<td>5.112 Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>5.331 Dynamics of Machines I</td>
<td>2</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids III</td>
<td>2</td>
</tr>
<tr>
<td>5.612 Fluid Mechanics/Thermodynamics II</td>
<td>3\frac{1}{2}</td>
</tr>
<tr>
<td>6.802 Electrical Engineering*</td>
<td>3</td>
</tr>
<tr>
<td>18.011 Industrial Engineering IA or</td>
<td>2</td>
</tr>
<tr>
<td>18.021 Industrial Engineering IB</td>
<td>2</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.032 Experimental Engineering II</td>
<td>2</td>
</tr>
<tr>
<td>5.051 Technical Orientation</td>
<td>1\frac{1}{2}</td>
</tr>
<tr>
<td>5.111 Mechanical Engineering Design I</td>
<td>2</td>
</tr>
<tr>
<td>5.330 Engineering Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>5.611 Fluid Mechanics/Thermodynamics I</td>
<td>4</td>
</tr>
<tr>
<td>6.801 Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>5.411 Mechanics of Solids II*</td>
<td>4</td>
</tr>
<tr>
<td>8.259 Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>10.022 Engineering Mathematics II</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.033 Experimental Engineering III</td>
<td>1\frac{1}{2}</td>
</tr>
<tr>
<td>5.043 Industrial Training I</td>
<td>—</td>
</tr>
<tr>
<td>5.071 Engineering Analysis</td>
<td>3\frac{1}{2}</td>
</tr>
<tr>
<td>5.112 Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>5.331 Dynamics of Machines I</td>
<td>2</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids III</td>
<td>2</td>
</tr>
<tr>
<td>5.612 Fluid Mechanics/Thermodynamics II</td>
<td>3\frac{1}{2}</td>
</tr>
<tr>
<td>6.802 Electrical Engineering*</td>
<td>3</td>
</tr>
<tr>
<td>18.011 Industrial Engineering IA or</td>
<td>2</td>
</tr>
<tr>
<td>18.021 Industrial Engineering IB</td>
<td>2</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1\frac{1}{2}</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.033 Experimental Engineering III</td>
<td>1\frac{1}{2}</td>
</tr>
<tr>
<td>5.043 Industrial Training I</td>
<td>—</td>
</tr>
<tr>
<td>5.071 Engineering Analysis</td>
<td>3\frac{1}{2}</td>
</tr>
<tr>
<td>5.112 Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>5.331 Dynamics of Machines I</td>
<td>2</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids III</td>
<td>2</td>
</tr>
<tr>
<td>5.612 Fluid Mechanics/Thermodynamics II</td>
<td>3\frac{1}{2}</td>
</tr>
<tr>
<td>6.802 Electrical Engineering*</td>
<td>3</td>
</tr>
<tr>
<td>18.011 Industrial Engineering IA or</td>
<td>2</td>
</tr>
<tr>
<td>18.021 Industrial Engineering IB</td>
<td>2</td>
</tr>
</tbody>
</table>

*One session only. Students will take this subject in either Session 1 or Session 2.

369

Mechanical Engineering — Part-time Course

Bachelor of Science (Engineering)

BSc(Eng)

This course is of six years' duration, and leads to the degree of Bachelor of Science (Engineering).

Stage 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.951 Physics I or</td>
<td>6</td>
</tr>
<tr>
<td>1.011 Higher Physics I</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td>12</td>
</tr>
</tbody>
</table>

*Not available in the evening in 1977.
Aeronautical Engineering — Full-time Course

Bachelor of Engineering (BE)

The first and second years of this course are identical with the first two years of the full-time course in Mechanical Engineering.

Stage 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.021</td>
<td>Chemistry IE*</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5.010</td>
<td>Engineering A*</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B†</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C*</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

*One session only. Students take this subject in either Session 1 or Session 2.

†Broken Hill students take 5.031 Engineering Mechanics (1—4) in lieu of 5.020.

Stage 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.311</td>
<td>Engineering Mechanics*</td>
<td>2½</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.411</td>
<td>Mechanics of Solids II*</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8.259</td>
<td>Properties of Materials</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.022</td>
<td>Engineering Mathematics II</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*One session only. Students take this subject in either Session 1 or Session 2.

Stage 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.032</td>
<td>Experimental Engineering II</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.111</td>
<td>Mechanical Engineering Design I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.611</td>
<td>Fluid Mechanics/Thermodynamics I</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.601</td>
<td>Electrical Engineering</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 14½

Stage 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.071</td>
<td>Engineering Analysis</td>
<td>3½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.112</td>
<td>Mechanical Engineering Design II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.331</td>
<td>Dynamics of Machines I</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.412</td>
<td>Mechanics of Solids III</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.612</td>
<td>Fluid Mechanics/Thermodynamics II</td>
<td>3½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 14

Stage 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.042</td>
<td>Industrial Experience*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.113</td>
<td>Mechanical Engineering Design III</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.324</td>
<td>Automatic Control Engineering</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plus one of the following technical electives:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.913</td>
<td>Materials Science</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.324</td>
<td>Automatic Control Engineering</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.026</td>
<td>Systems Methods in Civil Engineering</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 13½

*See the Introduction of School of Mechanical and Industrial Engineering.

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.033</td>
<td>Experimental Engineering III</td>
<td>1½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.043</td>
<td>Industrial Training I</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.071</td>
<td>Engineering Analysis</td>
<td>3½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.303</td>
<td>Mechanical Vibrations</td>
<td>1½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.412</td>
<td>Mechanics of Solids III</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.800</td>
<td>Aircraft Design</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.811</td>
<td>Aerodynamics I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.822</td>
<td>Analysis of Aerospace Structures I</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.802</td>
<td>Electrical Engineering*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.011</td>
<td>Industrial Engineering IA or</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.021</td>
<td>Industrial Engineering IB</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*One session only. Students take this subject in either Session 1 or Session 2.

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.044</td>
<td>Industrial Training II</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.051</td>
<td>Thesis</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.062</td>
<td>Communications</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.801</td>
<td>Aircraft Design</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.812</td>
<td>Aerodynamics II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.823</td>
<td>Analysis of Aerospace Structures II</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.831</td>
<td>Aircraft Propulsion</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plus one of the following technical electives:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
<th>S1</th>
<th>S2</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.913</td>
<td>Materials Science</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.324</td>
<td>Automatic Control Engineering</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.026</td>
<td>Systems Methods in Civil Engineering</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.022</td>
<td>Industrial Engineering IIB</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.551</td>
<td>Operations Research</td>
<td>23½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See the Introduction of School of Mechanical and Industrial Engineering.
Aeronautical Engineering — Part-time Course

Bachelor of Science (Engineering) BSc(Eng)

This course is of six years' duration and leads to the degree of Bachelor of Science (Engineering). The first four stages are identical with the Mechanical Engineering part-time course.

Stage 5

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>5.071 Engineering Analysis</td>
</tr>
<tr>
<td>5.303 Mechanical Vibrations</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids III</td>
</tr>
<tr>
<td>5.811 Aerodynamics I</td>
</tr>
<tr>
<td>5.822 Analysis of Aerospace Structures I</td>
</tr>
</tbody>
</table>

Total: 12 hours per week

Stage 6

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>5.042 Industrial Experience*</td>
</tr>
<tr>
<td>5.061 Aircraft Design</td>
</tr>
<tr>
<td>5.812 Aerodynamics II</td>
</tr>
<tr>
<td>5.823 Analysis of Aerospace Structures II</td>
</tr>
<tr>
<td>5.831 Aircraft Propulsion</td>
</tr>
<tr>
<td>General Studies Elective</td>
</tr>
</tbody>
</table>

Total: 10½ hours per week

*See the Introduction to School of Mechanical and Industrial Engineering.

Naval Architecture — Full-time Course

Bachelor of Engineering BE

The first and second years of this course are identical with the first two years of the full-time course in Mechanical Engineering. Subject to the Head of the School of Mechanical and Industrial Engineering being satisfied that the present extent of equivalences is maintained, and on his recommendation, Faculty has approved an arrangement by which students who satisfy the requirements of the first two years of the Mechanical Engineering degree course at any other Australian tertiary institutions may be admitted to a two-year program leading to the Bachelor of Engineering degree in Naval Architecture.

Year 3

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>5.033 Experimental Engineering III</td>
</tr>
<tr>
<td>5.043 Industrial Training I</td>
</tr>
<tr>
<td>5.071 Engineering Analysis</td>
</tr>
</tbody>
</table>

Total: 13 hours per week

Naval Architecture — Part-time Course

Bachelor of Science (Engineering) BSc(Eng)

This course is of six years' duration and leads to the degree of Bachelor of Science (Engineering). The first four stages are identical with the Mechanical Engineering part-time course.

Stage 5

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>5.071 Engineering Analysis</td>
</tr>
<tr>
<td>5.303 Mechanical Vibrations</td>
</tr>
<tr>
<td>5.412 Mechanics of Solids II</td>
</tr>
<tr>
<td>5.911 Naval Architecture</td>
</tr>
<tr>
<td>5.921 Ship Structures I</td>
</tr>
<tr>
<td>5.931 Principles of Ship Design I</td>
</tr>
<tr>
<td>5.932 Principles of Ship Design II</td>
</tr>
<tr>
<td>5.951 Hydrodynamics</td>
</tr>
</tbody>
</table>

Total: 13 hours per week
Engineering

Stage 6

5.042 Industrial Experience* 0
5.922 Ship Structures II 2
5.933 Principles of Ship Design II 3
5.934 Ship Design Project 3
5.941 Ship Propulsion and Systems 4
General Studies Elective 1½

13½

*See the Introduction of School of Mechanical and Industrial Engineering.

Department of Industrial Engineering

The Department of Industrial Engineering offers a full-time and a part-time course in industrial engineering leading to the degree of Bachelor of Engineering and Bachelor of Science (Engineering) respectively. These courses are designed for students with engineering ability whose interests lie in the planning, developing and control of manufacturing or service operations.

The first two years of the full-time course and the first four years of the part-time course provide the student with a sound foundation in the basic science and engineering subjects, and this knowledge is used and extended in the later years in the study of the industrial subjects. Finally, the problems associated with the practical economics of manufacturing operations are studied. These three fields of study provide the student with the training necessary to carry out an industrial job and to examine it critically in the light of economic efficiency.

Traditional engineering courses do not embrace the problems which are characteristic of industrial engineering. These problems include the analysis of a product to ensure satisfactory functioning with regard to methods and sequence of manufacturing operations; the disposition of buildings and of equipment in relation to buildings to permit efficient handling of materials; the avoidance or elimination of bottlenecks; the related problems of quality and cost control, testing and inspection; labour and personnel relations; and, finally, the problem of distribution and sales.

The financial and economic aspects are studied as the problem in manufacturing has not been solved until the final translation of the product into money has been accomplished successfully. While it is not intended to develop an expert in accounting practice or economics, it is intended to produce an engineer with an appreciation of the problems of cost and one who can apply considerations of ultimate economy to all industrial problems. The techniques of operations research may be applied here, where mathematical models of real life situations are constructed and manipulated to yield optimal solutions as guides to management.

All full-time students must obtain approved industrial training for a period of forty working days between Years 2 and 3, also between Years 3 and 4. They are also strongly advised to obtain further experience during the long vacation between Years 1 and 2.

The Work of the Industrial Engineer

The industrial engineer may initially be employed in any of the following major areas of industrial activity:

1. Industrial Economic Analysis

One of the principal functions of industrial engineering is to analyse a product, project or process from the economic point of view to ensure that an adequate profit can be obtained from it. A general working knowledge of economics and management skill has to be directed towards the making of decisions on how to operate an enterprise most efficiently. The basis for such decisions is furnished largely by the logical application of mathematics and statistics.

2. Planning and Control of Production

Manufacturing processes and operations must be planned in detail throughout an enterprise to ensure that they proceed smoothly and economically. Functions in this field include the establishment of production standards, the setting of production targets and, finally, control of quality.

The ultimate responsibility of those in charge of the planning and control of production is to ensure that the goods, as originally specified, perform satisfactorily and are produced when required at an optimum cost. Modern electronic computers may be called upon to help achieve this.

3. Product and Process Design

The design interest of the industrial engineer goes beyond normal mechanical design to develop a product that will not only function effectively but also have a pleasing appearance.

Further, the product has to be adapted to suit existing manufacturing equipment, or a manufacturing process has to be developed by means of which an existing product can be manufactured at the right price and of the right quality. The design work of the industrial engineer incorporates also problems of equipment selection and application for both economy and performance. Fundamental scientific studies of manufacturing processes such as metal machining, forming and casting are continually being made to improve their efficiency.

4. Methods Engineering

Methods engineering is particularly concerned with the co-ordination of men, materials and machines, so that an enterprise will run at maximum efficiency. A considerable knowledge of engineering in general, as well as an
understanding of human factors and materials science, is necessary for methods engineering work. Time and motion study is part of methods engineering. In many cases the methods engineer works in close co-operation with the design department and executives engaged in industrial economic analysis.

5. Operations Research
This is the attack of modern science on complex problems arising in the direction and management of large systems of men, machines, materials and money in industry, business, government, and defence. The distinctive approach is to develop a scientific model of the system, incorporating measurements of factors such as chance and risk, with which to predict and compare the outcomes of alternative decisions, strategies or controls. The purpose is to help management determine its policy and actions scientifically.

Employment in any of these fields may well lead to a position of responsibility in industrial management if the engineer is so inclined.

Year 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.044 Industrial Training II</td>
<td>0</td>
</tr>
<tr>
<td>5.051 Thesis</td>
<td>6</td>
</tr>
<tr>
<td>5.062 Communications</td>
<td>2</td>
</tr>
<tr>
<td>18.012 Industrial Engineering IIA</td>
<td>3</td>
</tr>
<tr>
<td>18.022 Industrial Engineering IIB</td>
<td>3</td>
</tr>
<tr>
<td>18.431 Design for Production</td>
<td>3</td>
</tr>
<tr>
<td>18.551 Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1½</td>
</tr>
<tr>
<td>Plus one elective chosen from:</td>
<td></td>
</tr>
<tr>
<td>4.913 Materials Science</td>
<td></td>
</tr>
<tr>
<td>5.324 Automatic Control Engineering</td>
<td></td>
</tr>
<tr>
<td>5.332 Dynamics of Machines II</td>
<td></td>
</tr>
<tr>
<td>5.413 Mechanics of Solids II</td>
<td></td>
</tr>
<tr>
<td>8.026 Systems Methods in Civil Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.071 Engineering Analysis</td>
<td>3½</td>
</tr>
<tr>
<td>5.112 Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>5.331 Dynamics of Machines I</td>
<td>2</td>
</tr>
<tr>
<td>14.001 Introduction to Accounting A*</td>
<td>1½</td>
</tr>
<tr>
<td>14.002 Introduction to Accounting B*</td>
<td>1½</td>
</tr>
<tr>
<td>18.011 Industrial Engineering IA</td>
<td>2</td>
</tr>
<tr>
<td>18.021 Industrial Engineering IB</td>
<td>2</td>
</tr>
</tbody>
</table>

*One session only.

Stage 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.042 Industrial Experience*</td>
<td>0</td>
</tr>
<tr>
<td>18.022 Industrial Engineering IIB</td>
<td>3</td>
</tr>
<tr>
<td>18.432 Design of Production Systems</td>
<td>6</td>
</tr>
<tr>
<td>18.551 Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

| Hours per week | 13½ |

*See the introduction to School of Mechanical and Industrial Engineering.
School of Surveying

The School of Surveying offers a full-time course and a sandwich course leading to the Degree of Bachelor of Surveying. The full-time course is of four years' duration and is divided into eight parts of one session each. The sandwich course also consists of eight parts of one session each and may be completed in six or seven years. Until 1975, a part-time course of seven years' duration was available for those who wished to attend classes in the evenings. This course is now being phased out and is being replaced by the sandwich course.

The course is designed to provide the appropriate academic training for a professional surveyor working in any of the many branches of surveying. Since these branches cover a wide range, the course is broad in its scope. Parts 1-4 of the course are concerned mainly with the basic sciences, but the basic surveying subjects are also included. In Parts 5 and 6, the major surveying subjects appear: geodesy, photogrammetry, astronomy and land studies. With the addition of some elective courses these are continued into Part 8. Part 7 comprises professional training and a survey camp. The graduate can take up engineering surveying, geodetic surveying, photogrammetry, cartography, hydrographic surveying, cadastral surveying, land management or environmental impact surveys. The course is also an appropriate first qualification for those wishing to specialize in astronomy, satellite geodesy, geodynamics, computing and systems analysis, town and regional planning, land and resources development, environmental sciences or spatial information systems.

The course has undergone comprehensive revision in recent years. Features of the revisions include: decreased lecture time to allow use of teaching methods which involve more student participation; an extended period of professional experience in the final year; Land Studies, a group of subjects designed to provide a broad understanding of the ecology of land and its development; and a survey camp of four weeks in the final year. Throughout the course the theoretical studies are complemented by practical exercises in the field and the laboratory. Students make use of the most modern measuring instruments and computing equipment. As far as possible each stage of the part-time course is equivalent to one part (one session) of the full-time course. However Stage 7 includes the Survey Camp of Part 7 as well as subjects of Part 8.

Students attending the sandwich course will attend full-time for one session per year, and will be free to undertake full-time employment for the remainder of the year, approximately 35 weeks. The standard time for completion of the sandwich course will be seven years. It will also be possible for a student in the sandwich course to attend for both sessions in a year, thus decreasing the length of his course by one year.

During the period that the part-time course is being phased out the transition arrangements are as follows: part-time students who commenced before 1973 will be unaffected. Those who commenced in 1973 and 1974 will move into the sandwich system in 1975 and 1976 respectively and each year from then on will attend full-time for one session of each year. Students commencing the sandwich course in 1977 either attend full time for one year in 1977 and switch to Part 3 of the sandwich course in 1978 or take part-time classes in 1977 and 1978 (part-time Stages 1 and 2) and switch to Part 3 of the sandwich course in 1979. Thereafter they will follow the pattern of the sandwich course. See diagram below: Method of Implementation of the Sandwich Course.

Parts 1, 2, 7 and 8 of the sandwich course are not offered in 1977:

In the full-time course, the first half of the fourth year is taken up by 29.193 Professional Training. Students who are unable to obtain suitable employment are advised to contact the Professional Training Officer in the School, who will assist in seeking out employment or will arrange a practical project to substitute for the Training.

The Bachelor of Surveying degree may be awarded as a Pass degree, Honours Class I, or Honours Class II in two divisions. Honours are awarded in recognition of superior performance throughout the course.

Students wishing to become Registered Surveyors after graduation are advised to gain practical experience under a Registered Surveyor. Some reduction in the period of practical experience required before registration may be granted because of practical experience gained during the University course, provided the New South Wales Surveyors' Board is informed in the prescribed manner. Details are obtainable from the Registrar, Surveyors' Board, Department of Lands, Bridge Street, Sydney 2000. The degree of Bachelor of Surveying confers exemption from all written examinations of the Surveyors' Board. Students enrolled in the Bachelor of Surveying degree course are required to equip themselves with an electronic calculator. Details of the features required are available from the School.

374
Surveying — Full-time Course
Bachelor of Surveying
BSurv

Year 1
Session 1 (Part 1)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.971</td>
<td>Physics I</td>
<td>6</td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C*</td>
<td>5</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td>6</td>
</tr>
<tr>
<td>29.001</td>
<td>Surveying IA</td>
<td>5½</td>
</tr>
</tbody>
</table>

| Total | 22½ |

*Introduction to Systems and Computers Option.
Year 1

Session 2 (Part 2)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.971</td>
<td>Physics I</td>
<td>6</td>
</tr>
<tr>
<td>5.010</td>
<td>Engineering A*</td>
<td>6</td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td>6</td>
</tr>
<tr>
<td>29.002</td>
<td>Surveying IB</td>
<td>6½</td>
</tr>
<tr>
<td>29.191</td>
<td>Survey Camp†</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24½</td>
</tr>
</tbody>
</table>

*4.90t Materials Option.

+ Students are required to attend a one week survey camp, which is equivalent to 40 class contact hours.

Year 2

Session 1 (Part 3)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.022</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>10.341</td>
<td>Statistics SU</td>
<td>1½</td>
</tr>
<tr>
<td>29.011</td>
<td>Surveying IIA</td>
<td>4½</td>
</tr>
<tr>
<td>29.151</td>
<td>Survey Computations I</td>
<td>6</td>
</tr>
<tr>
<td>31.212</td>
<td>Geometrical Optics</td>
<td>3</td>
</tr>
<tr>
<td>27.295</td>
<td>Physical Geography for Surveyors†</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Year 3

Session 1 (Part 5)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.712</td>
<td>Engineering for Surveyors</td>
<td>3</td>
</tr>
<tr>
<td>29.311</td>
<td>Astronomy I</td>
<td>3</td>
</tr>
<tr>
<td>29.511</td>
<td>Photogrammetry I</td>
<td>6</td>
</tr>
<tr>
<td>29.621</td>
<td>Land Development I</td>
<td>4</td>
</tr>
<tr>
<td>29.631</td>
<td>Land Inventory I</td>
<td>2</td>
</tr>
<tr>
<td>36.411</td>
<td>Town Planning</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Session 2 (Part 6)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.013</td>
<td>Surveying III</td>
<td>7</td>
</tr>
<tr>
<td>29.152</td>
<td>Survey Computations II</td>
<td>3</td>
</tr>
<tr>
<td>29.211</td>
<td>Geodesy I</td>
<td>6</td>
</tr>
<tr>
<td>29.622</td>
<td>Land Development II</td>
<td>3</td>
</tr>
<tr>
<td>29.641</td>
<td>Land Law and Tenure I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Year 4

Session 1 (Part 7)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.193</td>
<td>Professional Training</td>
<td>5 months</td>
</tr>
<tr>
<td>29.194</td>
<td>Survey Camp*</td>
<td>2 weeks: Field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 weeks: Office</td>
</tr>
</tbody>
</table>

*Students are required to attend a four-week survey camp, equivalent to 160 hours of class contact.

Session 2 (Part 8)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.713</td>
<td>Management for Surveyors</td>
<td>2</td>
</tr>
<tr>
<td>29.212</td>
<td>Geodesy II</td>
<td>3</td>
</tr>
<tr>
<td>29.312</td>
<td>Astronomy II</td>
<td>3</td>
</tr>
<tr>
<td>29.512</td>
<td>Photogrammetry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Studies Advanced Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two Electives†</td>
<td>20</td>
</tr>
</tbody>
</table>

†Electives chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.162</td>
<td>Hydrographic Surveying</td>
</tr>
<tr>
<td>29.183</td>
<td>Cartography Advanced Elective</td>
</tr>
<tr>
<td>29.213</td>
<td>Geodesy III</td>
</tr>
<tr>
<td>29.313</td>
<td>Astronomy III</td>
</tr>
<tr>
<td>29.513</td>
<td>Photogrammetry III</td>
</tr>
<tr>
<td>29.173</td>
<td>Project</td>
</tr>
<tr>
<td>29.623</td>
<td>Land Development III</td>
</tr>
<tr>
<td>29.632</td>
<td>Land Inventory II</td>
</tr>
<tr>
<td>29.642</td>
<td>Land Law and Tenure II</td>
</tr>
</tbody>
</table>

*Students are required to attend a two-week survey camp, which is equivalent to 80 class contact hours.

†A one-day field tutorial is an essential part of this course.
375
Surveying — Sandwich Course
Bachelor of Surveying
BSurv

Students commencing the Sandwich Course in 1977 either attend full time for one year in 1977 and switch to Part 3 of the sandwich course in 1978 or take part-time classes in 1977 and 1978 (part-time Stages 1 and 2) and switch to Part 3 of the sandwich course in 1979. See diagram below.

1. Full-time
See Year 1, full-time course.

2. Part-time
Stage 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>1.971 Physics I</th>
<th>10.001 Mathematics I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>5.010 Engineering A*</th>
<th>5.030 Engineering C**</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6½</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6½</td>
</tr>
<tr>
<td></td>
<td>11½</td>
<td>11½</td>
</tr>
</tbody>
</table>

*4.901 Materials Option.

**Introduction to Systems and Computers Option.

†Students are required to attend a one-week survey camp equivalent to 40 class contact hours.

3. Sandwich Course
Part 3

Offered in Session 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>10.022 Mathematics II</th>
<th>10.342A Statistics SU</th>
<th>29.011 Surveying II A</th>
<th>29.151 Survey Computations I</th>
<th>31.212 Geometrical Optics</th>
<th>27.295 Physical Geography for Surveyors†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1½</td>
<td>4½</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part 4

Offered in Session 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1½</td>
<td>3</td>
<td>4</td>
<td></td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>20½</td>
</tr>
</tbody>
</table>

*Students who passed in 10.341 Statistics in 1975 do not take this subject.

**Students are required to attend a two-week survey camp, equivalent to 80 class contact hours during Session 2 along with the full-time students.

†A one-day field tutorial is an essential part of this course.

Part 5

Offered in Session 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>8.712 Engineering for Surveyors II</th>
<th>29.311 Astronomy I</th>
<th>29.511 Photogrammetry I</th>
<th>29.621 Land Development I</th>
<th>29.631 Land Inventory I</th>
<th>36.411 Town Planning</th>
<th>General Studies Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part 6

Offered in Session 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>29.103 Surveying III</th>
<th>29.152 Survey Computations II</th>
<th>29.211 Geodesy I</th>
<th>29.622 Land Development II</th>
<th>29.641 Land Law and Tenure</th>
<th>General Studies Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part 7 and 8

Not offered in 1977.
Course Outlines

374 Surveying — Part-time Course
Bachelor of Surveying
BSurv

Stages 3, 4 and 5
No longer offered.

Stage 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.103 Surveying III</td>
<td>3½</td>
</tr>
<tr>
<td>29.152 Survey Computation II</td>
<td>1½</td>
</tr>
<tr>
<td>29.511 Photogrammetry I</td>
<td>3</td>
</tr>
<tr>
<td>29.622 Land Development II</td>
<td>1½</td>
</tr>
<tr>
<td>29.641 Land Law and Tenure I</td>
<td>1</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1½</td>
</tr>
<tr>
<td>General Studies Advanced Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

Stage 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.212 Geodesy II</td>
<td>1½</td>
</tr>
<tr>
<td>29.312 Astronomy II</td>
<td>1½</td>
</tr>
<tr>
<td>29.512 Photogrammetry II</td>
<td>1½</td>
</tr>
<tr>
<td>8.713 Management for Surveyors</td>
<td>1</td>
</tr>
<tr>
<td>Two Electives§</td>
<td></td>
</tr>
<tr>
<td>29.194 Survey Camp†</td>
<td></td>
</tr>
</tbody>
</table>

*Students normally must fulfill the academic requirements of the subject, 29.183 Professional Training, before attempting Stage 7.
§Electives chosen from

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.162 Hydrographic Surveying II</td>
<td></td>
</tr>
<tr>
<td>29.163 Cartography Advanced Elective</td>
<td></td>
</tr>
<tr>
<td>29.213 Geodesy III</td>
<td></td>
</tr>
<tr>
<td>29.313 Astronomy III</td>
<td></td>
</tr>
<tr>
<td>29.513 Photogrammetry III</td>
<td></td>
</tr>
<tr>
<td>29.623 Land Development III</td>
<td></td>
</tr>
<tr>
<td>29.632 Land Inventory II</td>
<td></td>
</tr>
<tr>
<td>29.642 Land Law and Tenure II</td>
<td></td>
</tr>
<tr>
<td>29.173 Project</td>
<td></td>
</tr>
</tbody>
</table>

Stage 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.194 Survey Camp†</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor of Surveying

Method of Implementation of the Sandwich Course

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commencing in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>Part 3</td>
<td>Part 4</td>
<td>Part 5</td>
<td>Part 6</td>
<td>Part 7</td>
<td>Part 8</td>
<td>Part 7</td>
<td>Part 8</td>
</tr>
<tr>
<td>1974</td>
<td>Stage 2</td>
<td>Part 3</td>
<td>Part 4</td>
<td>Part 5</td>
<td>Part 6</td>
<td>Part 7</td>
<td>Part 8</td>
<td></td>
</tr>
<tr>
<td>1975 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Year 1</td>
<td>Part 1</td>
<td>Stage 1</td>
<td>Part 2</td>
<td>Part 3</td>
<td>Part 4</td>
<td>Part 5</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Stage 2</td>
<td>Part 3</td>
<td>Part 4</td>
<td>Part 5</td>
<td>Part 6</td>
<td>Part 7</td>
<td>Part 8</td>
<td></td>
</tr>
<tr>
<td>1976 1.</td>
<td>Year 1</td>
<td>Stage 1</td>
<td>Part 3</td>
<td>Part 4</td>
<td>Part 5</td>
<td>Part 6</td>
<td>Part 7</td>
<td>Part 8</td>
</tr>
<tr>
<td>2.</td>
<td>Stage 2</td>
<td>Part 3</td>
<td>Part 4</td>
<td>Part 5</td>
<td>Part 6</td>
<td>Part 7</td>
<td>Part 8</td>
<td></td>
</tr>
<tr>
<td>1977 1.</td>
<td>Year 1</td>
<td>Stage 1</td>
<td>Part 3</td>
<td>Part 4</td>
<td>Part 5</td>
<td>Part 6</td>
<td>Part 7</td>
<td>Part 8</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The horizontal lines in the Table indicate the normal progression from Part to Part. A student may however change from one line to another in order to take the next part in the course, if he wishes to reduce the period of time required to complete the course.
Definitions: *Year* means a "year" in the full-time course.
"Stage" means a "stage" in the part-time course.
"Part" means a "part" in the sandwich course.
Graduate Enrolment Procedures

Graduate Study

Higher Degree Research Programs

New Students
Students seeking admission to Higher Degree (Research) must make application on the appropriate form which should be submitted to the Registrar. Successful applicants will be advised by letter concerning the method of enrolment.

Re-enrolling Students
Candidates registered for Higher Degrees (Research) are required to re-enrol at the commencement of each academic year. Unless advised to the contrary, candidates should obtain re-enrolment forms and advice on procedure and fees from the office of the appropriate School after 1 January 1977. Each candidate must complete a re-enrolment form and submit it to the Cashier. (See section on Enrolment Procedures and Fees.)

A candidate who has completed all work for a graduate degree except for the submission of a thesis is required to re-enrol as above unless the thesis is submitted by 18 March 1977 in which case the candidate is not required to re-enrol.

Masters Degree and Graduate Diploma Courses

Note: All formal masters degree and graduate diploma students must lodge an authorised enrolment form with the Cashier on the day the enrolling officer signs the form. (For further details see the Enrolment Procedures and Fees section.)

New Students
Students seeking admission to formal masters degree courses and graduate diploma courses are required to apply on the appropriate form and by the closing date specified for the particular course. Unless advised to the contrary, successful applicants are required to attend for enrolment at the appropriate time and place as listed below. The letter offering a place must be taken to the enrolment centre.

Re-enrolling Students
Candidates continuing formal graduate courses including those who have completed their formal examination but have not submitted their project report are required to attend for re-enrolment at the appropriate time and place as listed below:

*PhD and ME candidates re-enrolling in the School of Electrical Engineering should attend on Friday 25 February, 2.00 pm to 5.00 pm in Room 63 at the School.

PhD and ME candidates re-enrolling in the School of Mechanical and Industrial Engineering should attend on Friday 4 March, 2.00 pm to 5.00 pm in Room 106 at the School.
Master of Engineering Science, Master of Surveying Science and Graduate Diploma Courses

Students enrolling in the Graduate Diploma in Engineering Developments are required to attend for enrolment at the School or Department that offers the majority of their subjects.

Students are required to attend for enrolment on Friday 25 February at the locations and times specified below:

Civil Engineering (MEngSc)
- Room 109
- School of Civil Engineering
- 2.00 pm to 5.00 pm
- 6.00 pm to 8.00 pm

Electrical Engineering (MEngSc)
- Room G3
- School of Electrical Engineering
- 2.00 pm to 5.00 pm
- 6.00 pm to 8.00 pm

Highway Engineering (MEngSc) (GradDip)
- School of Highway Engineering
- King Street, Randwick
- 2.00 pm to 6.00 pm only

Human Communication (GradDip)
- Division of Graduate Extension Studies
- Room 1807
- The Sciences Building
- 2.00 pm to 6.00 pm

Industrial Engineering (MEngSc) (GradDip)
- Room 306
- School of Mechanical and Industrial Engineering
- 2.00 pm to 5.00 pm
- 6.00 pm to 8.00 pm only

Mechanical Engineering (MEngSc)
- Room 201
- School of Mechanical and Industrial Engineering
- 6.00 pm to 8.00 pm only

Nuclear Engineering (MEngSc)
- Room 325
- School of Electrical Engineering
- 2.00 pm to 5.00 pm
- 6.00 pm to 8.00 pm

Surveying (MSurvSc)
- School Office
- School of Surveying
- 2.00 pm to 5.00 pm only

Students are required to attend for enrolment on Friday 4 March as specified below:

Transportation and Traffic (MEngSc) (GradDip)
- School of Transportation and Traffic
- King Street, Randwick
- 2.00 pm to 6.00 pm only

Qualifying Programs
(for admission to Higher Degree Candidature)

Students may only enrol in such programs after approval has been obtained from the relevant Higher Degree Committee.

Unless advised to the contrary successful applicants are required to attend for enrolment at the appropriate time and place as listed below. The letter offering a place must be taken to the enrolment centre.

Candidates who are continuing a qualifying program are required to attend for re-enrolment at the appropriate time and place as listed below.

Note: All qualifying students must lodge an authorised enrolment form with the Cashier on the day the enrolling officer signs the form. (For further details see the Enrolment Procedures section of this handbook.)

Schools in the Faculty of Engineering

Mechanical Engineering
- Friday 25 February
- 6.00 pm to 8.00 pm only
- Room 201
- School of Mechanical and Industrial Engineering

Civil Engineering
- Friday 25 February
- 2.00 pm to 5.00 pm
- 6.00 pm to 8.00 pm
- Room 109
- School of Civil Engineering

Surveying
- Friday 25 February
- 2.00 pm to 5.00 pm only
- School of Surveying Office

Electrical Engineering
- Friday 25 February
- 2.00 pm to 5.00 pm
- 6.00 pm to 8.00 pm
- Room G3
- School of Electrical Engineering

Miscellaneous Subjects

Transportation and Traffic
- Friday 4 March
- 2.00 pm to 6.00 pm only
- School of Transportation and Traffic
- King Street, Randwick

Highway Engineering
- Friday 25 February
- 2.00 pm to 6.00 pm only
- School of Highway Engineering
- King Street, Randwick

Other Schools (Engineering)
- Friday, 25 February
- 2.00 pm to 5.00 pm
- 6.00 pm to 8.00 pm
- Office of the appropriate School
In November 1964 Council approved the establishment of the Graduate School of Engineering to co-ordinate and develop the graduate activities of the Faculty. For full details of such activities please see the Graduate School of Engineering Handbook and the brochures prepared by the Schools.

The Faculty of Engineering provides facilities for well-qualified graduates to engage in advanced studies and research leading to the award of the degrees of Doctor of Philosophy, Master of Engineering or Master of Surveying in all seven schools. In addition the degree of Master of Science is available through the Schools of Civil Engineering, Electrical Engineering, Highway Engineering, Mechanical and Industrial Engineering, and Transportation and Traffic.

The Master of Engineering Science/Master of Surveying Science are faculty-wide degrees, and allow for flexibility of choice between formal course work and research together with the possibility of interdisciplinary studies. In 1976 a new set of faculty-wide regulations for graduate diplomas was introduced, which includes provision for interdisciplinary study in the new Graduate Diploma in Engineering Developments, as well as more flexibility in the Graduate Diplomas in Highway Engineering, Human Communication, Industrial Engineering and Transport. Students are advised to consult the Graduate Handbook for further information.

The conditions for the award of the various higher degrees and graduate diplomas are published later in this Handbook.

The degrees of Master of Engineering Science and Master of Surveying Science may be gained by:

1. formal course work; or
2. a combination of formal course work and the completion of a report on a project or a research thesis; or
3. completion of a research thesis.

The number of credits for a project report shall be 9, and for a research thesis 18 or 36.

Candidates proceeding to the degree of Master of Engineering Science and Master of Surveying Science are encouraged to develop interdisciplinary attitudes and, with the approval of the Head of the School, may take subjects from other schools of the Faculty, other Faculties of the University and other universities or institutions. By means of this system, a student, with the approval of the Head of School, is able to select a program of studies best suited to his needs.

Under the credit system in operation in the Faculty, one credit is normally equal to one hour's attendance per week for one session. The qualification “normally” is required because of the varying ways in which credits are distributed for course work, design, critical review or research in the different schools. A minimum of thirty-six credits is required for the Master of Engineering Science and Master of Surveying Science degrees in the Faculty.

The subjects which may be available for candidates proceeding to the degree of Master of Engineering Science or Master of Surveying Science are listed below under the various Schools. Not all electives will necessarily be offered in any particular year.

Part-time candidates may be required to attend lectures on one half day per week in addition to the evenings.
School of Civil Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.701G</td>
<td>Decision Making in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.702G</td>
<td>Network Methods in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.703G</td>
<td>Optimization Techniques in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.704G</td>
<td>Stochastic Methods in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.705G</td>
<td>Systems Modelling</td>
<td>3</td>
</tr>
<tr>
<td>8.706G</td>
<td>Experimental Methods in Engineering Research</td>
<td>3</td>
</tr>
<tr>
<td>8.708G</td>
<td>Finite Element Methods in Civil Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>8.709G</td>
<td>Finite Element Methods in Civil Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>8.710G</td>
<td>Advanced Topics in Optimization in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.714G</td>
<td>Advanced Topics in Systems Modelling</td>
<td>3</td>
</tr>
<tr>
<td>8.723G</td>
<td>Construction Design</td>
<td>3</td>
</tr>
<tr>
<td>8.724G</td>
<td>Construction Technology</td>
<td>3</td>
</tr>
<tr>
<td>8.725G</td>
<td>Construction Accounting and Control Practice</td>
<td>3</td>
</tr>
<tr>
<td>8.726G</td>
<td>Construction Law and Professional Practice</td>
<td>3</td>
</tr>
<tr>
<td>8.727G</td>
<td>Construction Planning and Estimating</td>
<td>6</td>
</tr>
<tr>
<td>8.728G</td>
<td>Design of Construction Operations</td>
<td>6</td>
</tr>
<tr>
<td>8.752G</td>
<td>Terrain Engineering</td>
<td>6</td>
</tr>
<tr>
<td>8.753G</td>
<td>Soil Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>8.754G</td>
<td>Soil Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>8.755G</td>
<td>Materials of Construction I</td>
<td>3</td>
</tr>
<tr>
<td>8.756G</td>
<td>Materials of Construction II</td>
<td>3</td>
</tr>
<tr>
<td>8.758G</td>
<td>Materials Mechanics III</td>
<td>3</td>
</tr>
<tr>
<td>8.759G</td>
<td>Rock Mechanics</td>
<td>6</td>
</tr>
<tr>
<td>8.760G</td>
<td>Materials Construction III</td>
<td>3</td>
</tr>
<tr>
<td>8.761G</td>
<td>Advanced Rock Mechanics</td>
<td>6</td>
</tr>
<tr>
<td>8.763G</td>
<td>Rock Mechanics Investigation</td>
<td>3</td>
</tr>
<tr>
<td>8.764G</td>
<td>Composites in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.766G</td>
<td>Welding in Structural Engineering</td>
<td>3</td>
</tr>
<tr>
<td>8.768G</td>
<td>Fracture Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>8.771G</td>
<td>Foundation Engineering</td>
<td>6</td>
</tr>
<tr>
<td>8.802G</td>
<td>Elastic Stability I</td>
<td>3</td>
</tr>
<tr>
<td>8.803G</td>
<td>Elastic Stability II</td>
<td>3</td>
</tr>
<tr>
<td>8.804G</td>
<td>Vibrations of Structures I</td>
<td>3</td>
</tr>
<tr>
<td>8.805G</td>
<td>Vibrations of Structures II</td>
<td>3</td>
</tr>
<tr>
<td>8.806G</td>
<td>Prestressed Concrete I</td>
<td>3</td>
</tr>
<tr>
<td>8.807G</td>
<td>Prestressed Concrete II</td>
<td>3</td>
</tr>
<tr>
<td>8.808G</td>
<td>Prestressed Concrete III</td>
<td>3</td>
</tr>
<tr>
<td>8.809G</td>
<td>Reinforced Concrete I</td>
<td>3</td>
</tr>
<tr>
<td>8.810G</td>
<td>Reinforced Concrete II</td>
<td>3</td>
</tr>
<tr>
<td>8.811G</td>
<td>Reinforced Concrete III</td>
<td>3</td>
</tr>
<tr>
<td>8.812G</td>
<td>Plastic Analysis and Design of Steel Structures I</td>
<td>3</td>
</tr>
<tr>
<td>8.813G</td>
<td>Plastic Analysis and Design of Steel Structures II</td>
<td>3</td>
</tr>
<tr>
<td>8.814G</td>
<td>Analysis of Plates and Shells</td>
<td>3</td>
</tr>
<tr>
<td>8.815G</td>
<td>Computer Analysis of Frames I</td>
<td>3</td>
</tr>
<tr>
<td>8.816G</td>
<td>Computer Analysis of Frames II</td>
<td>3</td>
</tr>
<tr>
<td>8.817G</td>
<td>Experimental Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>8.818G</td>
<td>Bridge Design I</td>
<td>3</td>
</tr>
<tr>
<td>8.819G</td>
<td>Bridge Design II</td>
<td>3</td>
</tr>
</tbody>
</table>

Credits

8.830G Hydromechanics 3
8.831G Closed Circuit Flow 3
8.832G Pipe Networks and Transients 3
8.833G Free Surface Flow 3
8.834G River and Estuarine Hydraulics 3
8.835G Coastal Engineering I 3
8.836G Coastal Engineering II 3
8.837G Hydrological Processes 3
8.838G Hydrological Design 3
8.839G Advanced Methods of Flood Estimation 3
8.840G Hydrological Models and Data Synthesis 3
8.841G Hydrometeorology 3
8.842G Groundwater Hydrology 3
8.843G Groundwater Hydraulics 3
8.844G Soil-Water Hydrology 3
8.845G Investigation of Groundwater Resources 3
8.847G Water Resources Policy 3
8.848G Water Resources System Design 3
8.849G Irrigation 3
8.850G Drainage of Agricultural Lands 3
8.851G Unit Operations in Public Health Engineering 3
8.852G Water Distribution and Sewage Collection 3
8.853G Public Health Science 6
8.855G Water and Wastewater Analysis and Quality Requirements 3
8.855G Water Treatment 3
8.857G Sewage Treatment and Disposal 3
8.858G Water Quality Management 3
8.801G Civil Engineering Elective I 3
8.802G Civil Engineering Elective II 3
8.803G Project 9
8.919G Research Project 18
8.936G Research Project 36

A 36 Credit Research Project is not normally approved in the School of Civil Engineering.

School of Electrical Engineering

Each subject (except 6.909G, 6.918G and 6.936G) counts as three credits.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.050G</td>
<td>Occasional Elective</td>
</tr>
<tr>
<td>6.053G</td>
<td>Advanced Mathematics II</td>
</tr>
<tr>
<td>6.054G</td>
<td>Numerical Computation</td>
</tr>
<tr>
<td>6.071G</td>
<td>Electrical Measurements</td>
</tr>
<tr>
<td>6.073G</td>
<td>Precise Electrical Computation</td>
</tr>
<tr>
<td>6.074G</td>
<td>Superconductivity</td>
</tr>
<tr>
<td>6.075G</td>
<td>Electric Contacts</td>
</tr>
<tr>
<td>6.150G</td>
<td>Communication Elective</td>
</tr>
<tr>
<td>6.152G</td>
<td>Field Theory in Electrical Engineering</td>
</tr>
<tr>
<td>6.151G</td>
<td>Field Mapping</td>
</tr>
</tbody>
</table>

73
School of Highway Engineering

20.041G Road Location and Design Part I 6
20.042G Road Location and Design Part II 6
20.052G Road Location and Design Part II (Surveyors) 6
20.121G Soil Analysis, Pavement and Bridge Foundation Design Part I 3
20.122G Soil Analysis, Pavement and Bridge Foundation Design Part II 3
20.131G Road Construction Part II (Surveyors) 6
20.211G Road Construction Part I 6
20.212G Road Construction Part II 6
20.213G Road Construction Part III (Surveyors) 6
20.221G Road Construction Part I (Surveyors) 6
20.311G Highway Structures Part I 3
20.312G Highway Structures Part II 3
20.421G Law and Administration 6
20.430G Highway Engineering Elective I 3
20.431G Highway Engineering Elective II 3
20.501G Management for Highway Engineers 6
20.909G Project 9
20.918G Research Project 18
20.936G Research Project 36

School of Mechanical and Industrial Engineering

5.045-6-7G Advanced Topics in Mechanical Engineering 2, 2, 2
5.073G Ordinary Differential Equations in Mechanical Engineering 3
5.075-8G Computation Methods in Mechanical Engineering I, II 2, 2
5.077-8G Analogue Computation in Mechanical Engineering I, II 2, 2
5.101-2G Optimization Methods for Mechanical Engineers I, II 2, 2
5.110G Morphology of Design 4
*5.151-2G Refrigeration and Air Conditioning Design I, II 3, 3
Department of Industrial Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.304-5G</td>
<td>Advanced Dynamics I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>*5.321-2G</td>
<td>Automatic Control I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>5.328-9G</td>
<td>Control and Modelling of Mechanical Systems I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>5.335G</td>
<td>Vibrations</td>
<td>2</td>
</tr>
<tr>
<td>5.401G</td>
<td>Experimental Stress Analysis</td>
<td>2</td>
</tr>
<tr>
<td>5.415-5G</td>
<td>Stress Analysis for Mechanical Engineering Design I, II</td>
<td>3, 3</td>
</tr>
<tr>
<td>5.417G</td>
<td>Mechanics of Fracture and Fatigue</td>
<td>3</td>
</tr>
<tr>
<td>5.428G</td>
<td>Advanced Mechanics of Materials I</td>
<td>2</td>
</tr>
<tr>
<td>5.491-2G</td>
<td>Biomechanics I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>5.615G</td>
<td>Reciprocating Internal Combustion Engines</td>
<td>2</td>
</tr>
<tr>
<td>5.621-2G</td>
<td>Gasdynamics I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>5.631-2G</td>
<td>Lubrication Theory and Design I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>5.653-4G</td>
<td>Acoustic Noise I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>*5.712-3G</td>
<td>Convection Heat Transfer I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>5.718G</td>
<td>Conduction Heat Transfer</td>
<td>2</td>
</tr>
<tr>
<td>5.719G</td>
<td>Radiation Heat Transfer</td>
<td>2</td>
</tr>
<tr>
<td>5.725G</td>
<td>Statistical Thermodynamics</td>
<td>2</td>
</tr>
<tr>
<td>5.735G</td>
<td>Direct Energy Conversion</td>
<td>2</td>
</tr>
<tr>
<td>*5.751-2G</td>
<td>Refrigeration, Air Conditioning and Cryogenics I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>*5.758G</td>
<td>Refrigeration and Air Conditioning Applications</td>
<td>4</td>
</tr>
<tr>
<td>5.909G</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>5.912-3G</td>
<td>Naval Hydrodynamics, I, II</td>
<td>2, 2</td>
</tr>
<tr>
<td>5.918G</td>
<td>Research Project</td>
<td>18</td>
</tr>
<tr>
<td>†5.935G</td>
<td>Research Project</td>
<td>38</td>
</tr>
</tbody>
</table>

*Candidates wishing to specialize in Refrigeration and Air Conditioning should select these subjects.

†A 36 credit Research Project is not normally approved in the School of Mechanical and Industrial Engineering.

School of Nuclear Engineering

Each subject counts as three credits.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.013G</td>
<td>Neutron Transport and Diffusion</td>
<td>3</td>
</tr>
<tr>
<td>23.014G</td>
<td>Fewgroup Reactor Theories</td>
<td>2</td>
</tr>
<tr>
<td>23.015G</td>
<td>Multigroup Reactor Theories</td>
<td>2</td>
</tr>
<tr>
<td>23.016G</td>
<td>Neutron Kinetics and Reactor Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>23.023G</td>
<td>Reactor Thermal Performance</td>
<td>2</td>
</tr>
<tr>
<td>23.024G</td>
<td>Boiling and Two Phase Flow</td>
<td>2</td>
</tr>
<tr>
<td>23.025G</td>
<td>Reactor Structural Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>23.026G</td>
<td>Reactor Systems Analysis</td>
<td>2</td>
</tr>
<tr>
<td>23.027G</td>
<td>Boiling Reactor Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>23.028G</td>
<td>Reactor Accident and Safety Analysis</td>
<td>2</td>
</tr>
<tr>
<td>23.032G</td>
<td>Mathematics Analysis and Computation</td>
<td>2</td>
</tr>
</tbody>
</table>
Graduate Diplomas in Engineering

The Faculty of Engineering also offers courses leading to the award of a graduate diploma in several areas. Currently these are Graduate Diplomas in Engineering Developments; in Highway Engineering; in Human Communication; in Industrial Engineering; and in Transport. Candidates must complete a program totalling 30 credits, the number of credits for each subject being determined by Faculty on the recommendation of Heads of Schools; normally one credit is equal to attendance for one hour per week for one session. Forty percent of the credits may consist of approved undergraduate subjects and the program may contain subjects from other schools of the faculty, other faculties of the university and other universities or institutions. Before enrolment, an applicant must submit his intended program for approval by the head of the school or division which will offer the majority of the credits and ensure that he has the necessary prerequisite background for any subjects taken in other schools, faculties or institutions.

The program may be taken full-time, part-time or externally by tape correspondence or by a combination of these.

The purpose of offering these graduate diplomas is to provide engineers with the opportunity to update their professional knowledge in their own speciality, and to have access to a program of study in other areas which are relevant to their professional activities by virtue of changes and developments that are occurring. The subjects offered have been specially chosen for these purposes and many of them are available by radio and television broadcasts in the Sydney metropolitan area from year to year.

The Graduate Diploma in Engineering Developments is intended for those who wish to take a more general program in several areas of interest. The course may contain subjects from the Division of Postgraduate Extension Studies (by radio, tape correspondence, etc) and elsewhere. Subjects offered by tape correspondence are listed in this handbook under the Division of Postgraduate and Extension Studies. Subjects from other schools to be offered in any year by the Division of Postgraduate and Extension Studies are determined after consultation with that school and examination will be through that school.

Other subjects which may be available in the graduate diploma course are listed below under the various schools. Not all electives are necessarily offered in any particular year.

School of Surveying

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.106G</td>
<td>Special Topic A</td>
<td>3</td>
</tr>
<tr>
<td>29.107G</td>
<td>Special Topic B</td>
<td>3</td>
</tr>
<tr>
<td>29.154G</td>
<td>Adjustment of Observations</td>
<td>6</td>
</tr>
<tr>
<td>29.163G</td>
<td>Mathematical Methods 1</td>
<td>3</td>
</tr>
<tr>
<td>29.164G</td>
<td>Mathematical Methods 2</td>
<td>3</td>
</tr>
<tr>
<td>29.165G</td>
<td>Mathematical Methods 3</td>
<td>3</td>
</tr>
<tr>
<td>29.215G</td>
<td>Geometrical Geodesy</td>
<td>3</td>
</tr>
<tr>
<td>29.216G</td>
<td>Geodetic Surveying</td>
<td>3</td>
</tr>
<tr>
<td>29.223G</td>
<td>Dynamic Geodesy</td>
<td>3</td>
</tr>
<tr>
<td>29.224G</td>
<td>Physical Geodesy</td>
<td>6</td>
</tr>
<tr>
<td>29.314G</td>
<td>Geodetic Astronomy</td>
<td>6</td>
</tr>
<tr>
<td>29.516G</td>
<td>Mathematical Model of the Imaging Process</td>
<td>3</td>
</tr>
<tr>
<td>29.517G</td>
<td>Stereophotogrammetry</td>
<td>3</td>
</tr>
<tr>
<td>29.518G</td>
<td>Analytical Photogrammetric Orientation</td>
<td>3</td>
</tr>
<tr>
<td>29.519G</td>
<td>Photogrammetric Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>29.520G</td>
<td>Photogrammetric Production Processes</td>
<td>3</td>
</tr>
<tr>
<td>29.521G</td>
<td>Control Extension A</td>
<td>3</td>
</tr>
<tr>
<td>29.522G</td>
<td>Control Extension B</td>
<td>3</td>
</tr>
<tr>
<td>29.909G</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>29.918G</td>
<td>Research Project</td>
<td>18</td>
</tr>
<tr>
<td>29.936G</td>
<td>Research Project</td>
<td>36</td>
</tr>
</tbody>
</table>

School of Transportation and Traffic

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.101G</td>
<td>Applications and Practice of Traffic Engineering</td>
<td>6</td>
</tr>
<tr>
<td>19.111G</td>
<td>Theory of Traffic Behaviour</td>
<td>6</td>
</tr>
<tr>
<td>18.121G</td>
<td>Theory and Practice of Statistics for Traffic Engineers</td>
<td>6</td>
</tr>
<tr>
<td>19.131G</td>
<td>Land Use and Transport Planning</td>
<td>6</td>
</tr>
<tr>
<td>19.141G</td>
<td>Transport Systems Analysis</td>
<td>6</td>
</tr>
<tr>
<td>19.151G</td>
<td>Economics of Transport Part A</td>
<td>3</td>
</tr>
<tr>
<td>19.152G</td>
<td>Economics of Transport Part B</td>
<td>3</td>
</tr>
<tr>
<td>19.909G</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>19.918G</td>
<td>Research Project</td>
<td>18</td>
</tr>
<tr>
<td>19.936G</td>
<td>Research Project</td>
<td>36</td>
</tr>
</tbody>
</table>
School of Highway Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.022G</td>
<td>Soil Mechanics applied to Road Engineering</td>
<td>8</td>
</tr>
<tr>
<td>20.003G</td>
<td>Road Engineering Practice</td>
<td>8</td>
</tr>
<tr>
<td>20.061G</td>
<td>Road Location and Design Part I</td>
<td>7</td>
</tr>
<tr>
<td>20.062G</td>
<td>Road Location and Design Part II</td>
<td>7</td>
</tr>
<tr>
<td>20.231G</td>
<td>Road Construction</td>
<td>6</td>
</tr>
<tr>
<td>20.232G</td>
<td>Highway Materials</td>
<td>6</td>
</tr>
</tbody>
</table>

School of Mechanical and Industrial Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.080G</td>
<td>Organization and Administration</td>
<td>2</td>
</tr>
<tr>
<td>18.083G</td>
<td>Industrial Studies</td>
<td>2</td>
</tr>
<tr>
<td>18.084G</td>
<td>Industrial Applications of Probability Theory</td>
<td>4</td>
</tr>
<tr>
<td>18.380G</td>
<td>Methods Engineering</td>
<td>4</td>
</tr>
<tr>
<td>18.580G</td>
<td>Operations Research</td>
<td>6</td>
</tr>
<tr>
<td>18.680G</td>
<td>Decision Making Under Uncertainty</td>
<td>2</td>
</tr>
<tr>
<td>18.681G</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>18.780G</td>
<td>Production Control</td>
<td>2</td>
</tr>
<tr>
<td>14.001</td>
<td>Introduction to Accounting A</td>
<td>3</td>
</tr>
<tr>
<td>14.002</td>
<td>Introduction to Accounting B</td>
<td>3</td>
</tr>
<tr>
<td>14.042G</td>
<td>Industrial Law</td>
<td>2</td>
</tr>
<tr>
<td>14.062G</td>
<td>Accounting for Engineers</td>
<td>2</td>
</tr>
</tbody>
</table>

School of Transportation and Traffic

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.161G</td>
<td>Characteristics of Transport</td>
<td>6</td>
</tr>
<tr>
<td>19.171G</td>
<td>Fundamentals of Transport Economics</td>
<td>6</td>
</tr>
<tr>
<td>19.181G</td>
<td>Introduction to Statistics</td>
<td>6</td>
</tr>
<tr>
<td>19.181G</td>
<td>Introduction to Traffic Theory</td>
<td>6</td>
</tr>
<tr>
<td>19.211G</td>
<td>Fundamentals of Transport Planning</td>
<td>6</td>
</tr>
<tr>
<td>19.221G</td>
<td>Traffic Operation and Control</td>
<td>6</td>
</tr>
</tbody>
</table>

Division of Postgraduate Extension Studies*

Human Communication

The following subjects are offered by a combination of attendance at the Kensington campus for studio, laboratory and tutorial sessions and lectures by radio in the Sydney area and by audio tape elsewhere.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.001G</td>
<td>Linguistics and Written and Spoken Communication</td>
<td>2</td>
</tr>
<tr>
<td>97.002G</td>
<td>Basic Information Theory</td>
<td>6</td>
</tr>
<tr>
<td>97.004G</td>
<td>Psychology of Communication</td>
<td>3</td>
</tr>
<tr>
<td>97.005G</td>
<td>Audio and Video Equipment — Capabilities and Applications</td>
<td>4</td>
</tr>
<tr>
<td>97.006G</td>
<td>Project</td>
<td>6</td>
</tr>
<tr>
<td>97.007G</td>
<td>Audio Video Signals in Communication</td>
<td>3</td>
</tr>
<tr>
<td>97.008G</td>
<td>Signals-Body in Communication</td>
<td>2</td>
</tr>
<tr>
<td>97.009G</td>
<td>Presentation of Information</td>
<td>4</td>
</tr>
</tbody>
</table>

*Half-session only.

Subjects offered by Tape Correspondence

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.075G</td>
<td>Computational Methods in Mechanical Engineering, Part 1</td>
<td>2</td>
</tr>
<tr>
<td>5.076G</td>
<td>Computational Methods in Mechanical Engineering, Part 2</td>
<td>3</td>
</tr>
<tr>
<td>6.345G</td>
<td>Active and Adaptive Circuits for Integrated Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
Conditions for the Award of Higher Degrees

First Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Disciplines of the University: Faculty Table (Undergraduate Study) in the Calendar.

Higher Degrees

The following is the list of higher degrees and graduate diplomas of the University, together with the publication* in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Disciplines of the University: Faculty Table (Graduate Study) in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the use of Higher Degree Theses see the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine in the Faculty of Medicine</td>
<td>MD</td>
<td>Calendar and all faculties</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA(Hons)</td>
<td>Arts</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Chemistry by Formal Course Work</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Commerce by Formal Course Work</td>
<td>MCom</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Counselling (Education)</td>
<td>MCouns(Ed)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Education</td>
<td>MEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering without Supervision</td>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of General Studies</td>
<td>MGenStud</td>
<td>General Studies</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Calendar†</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws by Research</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship by Formal Course Work</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Librarianship by Research</td>
<td></td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Psychology</td>
<td>MPsychol</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Public Administration</td>
<td>MPA</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science without Supervision</td>
<td></td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Science and Society by Formal Course Work</td>
<td>MScSoc</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Science (Biotechnology)</td>
<td>MSc(Biotech)</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Science (Building)</td>
<td>MSc(Building)</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Science (Building Services)</td>
<td>MSc(Building Services)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Social Work by Research</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Social Work by Formal Course Work</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Doctor of Philosophy (PhD)

1. The degree of Doctor of Philosophy may be granted by the Council on the recommendation of the Professorial Board to a candidate who has made an original and significant contribution to knowledge and who has satisfied the following requirements:

Qualifications

2. A candidate for registration for the degree of Doctor of Philosophy shall:
A hold an honours degree from the University of New South Wales; or
B hold an honours degree of equivalent standing from another approved university; or
C if he holds a degree without honours from the University of New South Wales or other approved university, have achieved by subsequent work and study a standard recognised by the appropriate Faculty or Board of Studies as equivalent to honours; or
D in exceptional cases, submit such other evidence of general and professional qualifications as may be approved by the Professorial Board on the recommendation of the Faculty or Board of Studies.

3. When the Faculty or Board of Studies is not satisfied with the qualifications submitted by a candidate, the Faculty or Board of Studies may require him, before he is permitted to register, to undergo such examination or carry out such work as the Faculty or Board of Studies may prescribe.

Registration

4. A candidate for registration for a course of study leading to the degree of Doctor of Philosophy shall:
A apply to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which he desires to register; and
B submit with his application a certificate from the head of the University school in which he proposes to study stating that the candidate is a fit person to undertake a course of study and research leading to the degree of Doctor of Philosophy and that the school is willing to undertake the responsibility of supervising the work of the candidate and of reporting to the Faculty or Board of Studies at the end of the course on the merits of the candidate's performance in the prescribed course.
5. Subsequent to registration the candidate shall pursue a program of advanced study and research for at least six academic sessions, save that:

A a candidate fully engaged in advanced study and research for his degree, who before registration was engaged upon research to the satisfaction of the Faculty or Board of Studies, may be exempted from not more than two academic sessions;

B in special circumstances the Faculty or Board of Studies may grant permission for the candidate to spend not more than one calendar year of his program in advanced study and research at another institution provided that his work can be supervised in a manner satisfactory to the Faculty or Board of Studies;

C in exceptional cases, the Professorial Board on the recommendation of the Faculty or Board of Studies may grant permission for a candidate to be exempted from not more than two academic sessions.

6. A candidate who is fully engaged in research for the degree shall present himself for examination not later than ten academic sessions from the date of his registration. A candidate not fully engaged in research shall present himself for examination not later than twelve academic sessions from the date of his registration. In special cases an extension of these times may be granted by the Faculty or Board of Studies.

7. The candidate shall be required to devote his whole time to advanced study and research, save that:

A the Faculty or Board of Studies may permit a candidate on application to undertake a limited amount of University teaching or outside work which in its judgment will not interfere with the continuous pursuit of the proposed course of advanced study and research;

B a member of the full-time staff of the University may be accepted as a part-time candidate for the degree, in which case the Faculty or Board of Studies shall prescribe a minimum period for the duration of the program;

C in special circumstances, the Faculty or Board of Studies may, with the concurrence of the Professorial Board, accept as a part-time candidate for the degree a person who is not a member of the full-time staff of the University and is engaged in an occupation which, in its opinion, leaves the candidate substantially free to pursue his program in a school of the University. In such a case the Faculty or Board of Studies shall prescribe for the duration of his program a minimum period which, in its opinion, having regard to the proportion of his time which he is able to devote to the program in the appropriate University school is equivalent to the six sessions ordinarily required.

8. Every candidate shall pursue his program under the direction of a supervisor appointed by the Faculty or Board of Studies from the full-time members of the University staff. The work, other than field work, shall be carried out in a School of the University save that in special cases the Faculty or Board of Studies may permit candidates to conduct their work at other places where special facilities not possessed by the University may be available. Such permission will be granted only if the direction of the work remains wholly under the control of the supervisor.

9. Not later than two academic sessions after registration the candidate shall submit the topic of his research for approval by the Faculty or Board of Studies. After the topic has been approved it may not be changed except with the permission of the Faculty or Board of Studies.

10. A candidate may be required by the Faculty of Board of Studies to attend a formal course of study appropriate to his work.
Thesis

11. On completing his course of study every candidate must submit a thesis which complies with the following requirements:

A the greater proportion of the work described must have been completed subsequent to registration for the PhD degree;

B it must be an original and significant contribution to the knowledge of the subject;

C it must be written in English except that a candidate in the Faculty of Arts may be required by the Faculty on the recommendation of the supervisor to write the thesis in an appropriate foreign language;

D it must reach a satisfactory standard of expression and presentation.

12. The thesis must present the candidate's own account of his research. In special cases work done conjointly with other persons may be accepted, provided the Faculty or Board of Studies is satisfied on the candidate's part in the joint research.

13. Every candidate shall be required to submit with his thesis a short abstract of the thesis comprising not more than 600 words.

The abstract shall indicate:

A the problem investigated;

B the procedures followed;

C the general results obtained;

D the major conclusions reached;

but shall not contain any illustrative matter, such as tables, graphs or charts.

Entry for Examination

14. A candidate may not submit as the main content of his thesis any work or material which he has previously submitted for a university degree or other similar award.

15. The candidate shall give in writing two months' notice of his intention to submit his thesis and such notice shall be accompanied by the appropriate fee.

16. Four copies of the thesis shall be submitted together with a certificate from the supervisor that the candidate has completed the course of study prescribed in his case. The four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.* The candidate may also submit any work he has published whether or not such work is related to the thesis.

17. It shall be understood that the University retains the four copies of the thesis submitted for examination, and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

18. There shall normally be three examiners of the thesis, appointed by the Professorial Board on the recommendation of the Faculty or Board of Studies, at least one of whom shall be an external examiner.

19. After examining the thesis the examiners may:

A decide that the thesis reaches a satisfactory standard; or

B recommend that the candidate be required to re-submit his thesis in revised form after a further period of study and/or research; or

C recommend without further test that the candidate be not awarded the degree of Doctor of Philosophy.

*See Conditions for the Award of Degrees In the Calendar.
20. If the thesis reaches the required standard, the examiners shall arrange for the candidate to be examined orally, and, at their discretion, by written papers and/or practical examinations on the subject of the thesis and/or subjects relevant thereto, save that on the recommendation of the examiners the Faculty or Board of Studies may dispense with the oral examination.

21. If the thesis is of satisfactory standard but the candidate fails to satisfy the examiners at the oral or other examinations, the examiners may recommend the University to permit the candidate to represent the same thesis and submit to a further oral, practical or written examination within a period specified by them but not exceeding eighteen months.

22. At the conclusion of the examination, the examiners will submit to the Faculty or Board of Studies a concise report on the merits of the thesis and on the examination results, and the Faculty or Board of Studies shall recommend whether or not the candidate may be admitted to the degree.

23. A candidate shall be required to pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Engineering may be granted by the Council on the recommendation of the Professorial Board to a candidate who has demonstrated ability to carry out research by the submission of a thesis embodying the results of an original investigation.

2. An application to register as a candidate for the degree of Master of Engineering shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the session in which the candidate desires to register.

3. A applicant for registration for the degree shall have been admitted to the degree of Bachelor in the University of New South Wales, or other approved University, in an appropriate school.

B In exceptional cases a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainment as may be approved by the Professorial Board on the recommendation of the appropriate Faculty (hereinafter referred to as 'the Faculty').

4. Notwithstanding any other provisions of these conditions, the Faculty may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Faculty may determine.

5. In every case, before permitting an applicant to register as a candidate, the Faculty shall be satisfied that adequate supervision and facilities are available.

6. An approved applicant shall register in one of the following categories:

A student in full-time attendance at the University;
B student in part-time attendance at the University;
C student working externally to the University;
and shall pay such fees as may be determined from time to time by the Council.
7. Every candidate for the degree shall be required to carry out a program of advanced study to take such examinations and perform such other work as may be prescribed by the Faculty. The program shall include the preparation and submission of a thesis embodying the results of an original investigation, three copies of which shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may submit any work he has published whether or not such work is related to the thesis.

8. It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

9. The investigation and other work as provided in paragraph 7. shall be carried out under the direction of a supervisor appointed by the Faculty or under such conditions as the Faculty may determine.

10. No candidate shall be considered for the award of the degree until the lapse of four complete sessions from the date from which registration becomes effective save that, in the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may, with the approval of the Faculty, be reduced by up to two sessions.

11. For each candidate there shall be at least two examiners appointed by the Professorial Board, on the recommendation of the Faculty, one of whom shall, if possible, be an external examiner.

Master of Engineering Science (MEngSc) and Master of Surveying Science (MSurvSc)

1. The degrees of Master of Engineering Science and Master of Surveying Science may be awarded by the Council on the recommendation of the Professorial Board to a candidate who has:
 A completed a program of advanced study which may include the submission of a report on a project based upon a design or a critical review; or
 B demonstrated ability to carry out research by the submission of a thesis embodying the results of an original investigation; or
 C completed an approved combination of the above.

2. A An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the course.
 B An applicant for registration shall indicate the proposed project area or major field of study in order that the responsibility for the supervision of the program may be determined.

3. A An applicant for registration for the degree shall have been admitted to the degree of Bachelor with Honours in the University of New South Wales or other approved University or tertiary education institution of acceptable standing in an appropriate school or department.

*See Conditions for the Award of Degrees in the Calendar.
Conditions for the Award of Higher Degrees

B A graduate with a pass degree of good standing from an appropriate degree course with academic standards equivalent to the Bachelor course in Engineering or Surveying at the University of New South Wales may be admitted on the recommendation of the Head of School and the confirmation of Faculty.

C In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Faculty on the recommendation of its Higher Degree Committee.

4. Notwithstanding any other provisions of these conditions the Faculty may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Faculty may determine.

5. The program of advanced study including the preparation of a thesis or report on a project to be completed by each candidate shall total a minimum of 36 credits, the number of credits allocated for each subject being determined by Faculty on the recommendation of Heads of Schools. Where the formal course work comprises no more than 50% of the total study, the candidate will be required to submit a research thesis and where the formal work comprises 50% or more but less than 100% the candidate will be required to submit a report on a project. With the approval of the Head of School, candidates may take subjects from other Schools of the Faculty, other Faculties of the University and other universities or institutions.

6. The approval of the appropriate Head of School for the proposed program must be obtained by the candidate prior to enrolment. For the purpose of this regulation the Head of School will normally be the Head of the School providing supervision of the project or research, or if there is no project the major field of study. Should the appropriate school be the School of Surveying the degree awarded will be master of Surveying Science.

7. An approved candidate shall register in one of the following categories:
A student in full-time attendance at the University,
B student in part-time attendance at the University,
and shall pay such fees as may be determined from time to time by Council.

8. No full-time candidate shall be considered for the award of the degree until the lapse of two sessions from the date from which registration becomes effective. No part-time candidate shall be considered for the award of the degree until the lapse of four sessions from the date from which registration becomes effective.

9. A The project forming the basis for the thesis shall be conducted under a supervisor appointed by the Faculty or under such conditions as Faculty may determine, to the satisfaction of the Head of School.
B For each candidate who submits a thesis as provided in paragraph 1. B there shall be at least two examiners appointed by the Professorial Board on the recommendation of Faculty, one of whom shall, if possible, be an external examiner.
C The report on the project (9 credits) provided in paragraph 1. A shall be under the supervision of a member of the academic staff and shall be examined by two examiners. The satisfactory completion of the project shall be regarded as part of the annual examinations.
10. Every candidate who submits a thesis (18 or more credits) as provided in paragraph 1B shall submit three copies in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.* The candidate may also submit any work he has published whether or not such work is related to the thesis. The format of the report on a project as provided in paragraph 1A shall comply with the requirements of the Faculty for the preparation and submission of project reports.*

11. The examiners referred to in paragraph 9B shall submit to the Faculty a report on the merits of the thesis, and the Faculty shall recommend whether or not the candidate be admitted to the degree.

Master of Science (MSc)

1. The degree of Master of Science may be granted by the Council on the recommendation of the Professorial Board to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. An application to register as a candidate for the degree of Master of Science shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the session in which the candidate desires to register.

3. An applicant for registration for the degree shall have been admitted to the degree of Bachelor of Science in the University of New South Wales, or other approved University, in an appropriate School or Department.

B In exceptional cases a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Professorial Board on the recommendation of the appropriate Faculty or Board of Studies.

4. Notwithstanding any other provisions of these conditions the Faculty or Board of Studies may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Faculty or Board of Studies may determine.

5. In every case before permitting an applicant to register as a candidate the Faculty or Board of Studies shall be satisfied that adequate supervision and facilities are available.

6. An approved applicant shall register in one of the following categories:
 A student in full-time attendance at the University;
 B student in part-time attendance at the University;
 C student working externally to the University;
 and shall pay such fees as may be determined from time to time by the Council.

*See Conditions for the Award of Degrees in the Calendar.
7. Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design, to take such examinations and to perform such other work as may be prescribed by the Faculty or Board of Studies. The thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may submit also for examination any work he has published whether or not such work is related to the thesis.

8. It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part in photostat or microfilm or other copying medium.

9. The investigation, design and other work as provided in paragraph 7 shall be carried out under the direction of a supervisor appointed by the Faculty or Board of Studies or under such conditions as the Faculty or Board of Studies may determine.

At least once a year and at any other time that the Higher Degree Committee sees fit, the candidate's supervisor shall present to the Head of School in which the candidate is registered, a report on the progress of the candidate. The Committee shall review the report and as a result of its review may cancel registration or take such other action as it considers appropriate.

10. Unless otherwise recommended by the Committee, no candidate shall be awarded the degree until the lapse of four complete sessions from the date of registration, save that in the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may be reduced by up to two sessions with the approval of the Committee. A candidate who is fully engaged in research for the degree shall present himself for examination not later than six academic sessions from the date of registration. A candidate not fully engaged in research shall present himself for examination not later than twelve academic sessions from the date of his registration. In special cases an extension of these times may be granted by the Committee.

11. A candidate shall give in writing to the Registrar two months' notice of his intention to submit his thesis.

B For each candidate there shall be at least two examiners, appointed by the Professorial Board on the recommendation of the Committee, one of whom, if possible, shall be external to the University.

C After examining the thesis an examiner may:

1. recommend that the candidate be awarded the degree without further examination
 or
2. recommend that the candidate be awarded the degree subject to minor corrections as listed being made to the satisfaction of the Head of School
 or
3. recommend that the candidate be not awarded the degree but be permitted to resubmit his thesis in a revised form after a further period of study and/or research
 or
4. recommend that the candidate be not awarded the degree and be not permitted to resubmit his thesis.

D In considering a recommendation made in terms of clause 3 of sub-condition C of this condition the Committee may specify the period within which the thesis is to be resubmitted.

E Having considered the examiners' reports the Committee shall recommend to the Professorial Board whether or not the candidate should be admitted to the degree.

*See Conditions for the Award of Degrees in the Calendar.
Where it is not possible for candidates to register under the existing conditions for the degree of Master of Science, Master of Engineering or Master of Surveying by reason of their location at centres which are distant from University Schools or where effective supervision is not practicable registration may be granted in these categories under the following conditions:

1. An application to register as an external candidate for the degree of Master of Science, Master of Engineering or Master of Surveying without supervision shall be lodged with the Registrar for recommendation by the Head of School and consideration by the Faculty, not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should in his own interest at an early stage, seek the advice of the appropriate School with regard to the adequacy of the subject matter for the degree. A synopsis of the work should be enclosed.

2. An applicant for registration shall have been admitted to a degree of Bachelor in the University of New South Wales.

3. An approved applicant shall pay such fees as may be determined from time to time by the Council.

4. A candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design. The thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.* A candidate may submit also for examination any work he has published, whether or not such work is related to the thesis.

B Every candidate shall submit with the thesis a statutory declaration that the material contained therein is his own work, except where otherwise stated in the thesis.

5. It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

6. A candidate shall not be considered for the award of the degree until the lapse of six sessions in the case of honours graduates and eight sessions in the case of pass graduates from the date of graduation.

7. For each candidate there shall be at least two examiners appointed by the Professorial Board on the recommendation of the appropriate Faculty, one of whom shall be an internal examiner.

8. If the thesis reaches the required standard, the candidate shall be required to attend for an oral examination at a time and place nominated by the University. The examiners may also arrange at their discretion for the examination of the candidate by written and/or practical examinations on the subject of the thesis and/or subjects related thereto.

*See Conditions for the Award of Degrees in the Calendar.
1. The degree of Master of Surveying may be granted by the Council on the recommendation of the Professorial Board to a candidate who has demonstrated ability to carry out research by the submission of a thesis embodying the results of an original investigation.

2. An application to register as a candidate for the degree of Master of Surveying shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the session in which the candidate desires to register.

3. An applicant for registration for the degree shall have been admitted to the degree of Bachelor with Honours in the University of New South Wales or other approved University or tertiary education institution of acceptable standing, in an appropriate School or Department.

 B A graduate with a pass degree of good standing from an appropriate degree course with academic standards equivalent to the Bachelor's courses in Engineering or Surveying at the University of New South Wales may be admitted on the recommendation of the Head of School and the confirmation of Faculty.

 C In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Faculty on the recommendation of its Higher Degree Committee.

4. Notwithstanding any other provisions of these conditions the Faculty may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Faculty may determine.

5. In every case before permitting an applicant to register as a candidate the Faculty shall be satisfied that adequate supervision and facilities are available.

6. An approved applicant shall register in one of the following categories:

 A student in full-time attendance at the University;
 B student in part-time attendance at the University;
 C student working externally to the University;

 and shall pay such fees as may be determined from time to time by the Council.

7. Every candidate for the degree shall be required to carry out a program of advanced study, to take such examinations and perform such other work as may be prescribed by the Faculty. The program shall include the preparation and submission of a thesis embodying the results of an original investigation, three copies of which shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.* The candidate may submit any work he has published whether or not such work is related to the thesis.

8. It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

*See Conditions for the Award of Degrees in the Calendar.
9. The investigation and other work as provided in paragraph 7. shall be carried out under the direction of a supervisor appointed by the Faculty or under such conditions as the Faculty may determine.

10. No candidate shall be considered for the award of the degree until a lapse of four complete sessions from the date from which registration becomes effective save that, in the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may with the approval of the Faculty, be reduced by up to two sessions.

11. For each candidate there shall be at least two examiners appointed by the Professorial Board, on the recommendation of the Faculty, one of whom shall, if possible, be an external examiner.

Graduate Diploma

Graduate Diploma (GradDip)

1. An application for admission to a graduate diploma course shall be made on the prescribed form which should be lodged with the Registrar at least two full calendar months before the commencement of the course.

2. An applicant for admission to a graduate diploma course shall be:
 A a graduate of the University of New South Wales or other approved university.
 B a person with other qualifications as may be approved by Faculty.

3. Notwithstanding clause 2. above, Faculty may require an applicant to take such other prerequisite or concurrent studies and/or examinations as it may prescribe.

4. Every candidate for a graduate diploma shall be required to undertake the appropriate course of study, to pass any prescribed examinations, and if so laid down in the course, to complete a project or assignment specified by the Head of the School. The format of the report on such project or assignment shall accord with the instructions laid down by the Head of the School.

5. An approved applicant shall be required to pay the fee for the course in which he desires to register. Fees shall be paid in advance.
Subject Descriptions and Textbooks

Identification of Subjects by Numbers

Each of the subjects taught in the University is identifiable both by number and by name. This is a fail-safe measure at the points of enrolment and examination against a student nominating a subject other than the one intended. Subject numbers are allocated by the Assistant Registrar, Examinations and Student Records, and the system of allocation is:

1. The School offering a subject is indicated by the number before the decimal point;
2. If a subject is offered by a Department within a School, the first number after the decimal point identifies that Department;
3. The position of a subject in a sequence is indicated by the third number after the decimal point. For example, 2 would indicate that the subject is the second in a sequence of subjects;
4. Graduate subjects are indicated by the suffix G.

As indicated above, a subject number is required to identify each subject in which a student is to be enrolled and for which a result is to be returned. Where students may take electives within a subject, they should desirably be enrolled initially in the particular elective, and the subject numbers allotted should clearly indicate the elective. Where it is not possible for a student to decide on an elective when enrolling or re-enrolling, and separate examinations are to be held in the electives, Schools should provide to the Examinations and Student Reference Section in April (Session 1) and August (Session 2) the names of students taking each elective. Details of the actual dates in April and August are set out in the Calendar of Dates earlier in this volume.

Those subjects taught in each Faculty are listed in full in the handbook of that Faculty, together with the subject description and the required textbook list, in the section entitled Subject Descriptions and Textbooks.

The identifying numbers for each School are set out below.

Reference book lists are not published here, but are available from the various Schools.

For General Studies subjects see the Board of Studies in General Education Handbook, which is available free of charge.

Information Key

The following is the key to the information supplied about each subject listed below: S1 (Session 1); S2 (Session 2); F (Session 1 plus Session 2, ie full year); S1 or S2 (Session 1 or Session 2, ie choice of either session); SS (single session, ie which session taught not known at time of publication); L (Lecture, followed by hours per week); T (Laboratory/Tutorial, followed by hours per week).

continued next page
<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics*</td>
<td>Science</td>
<td>148</td>
</tr>
<tr>
<td>School of Chemistry*</td>
<td>Science</td>
<td>151</td>
</tr>
<tr>
<td>School of Chemical</td>
<td>Applied Science</td>
<td>151</td>
</tr>
<tr>
<td>Engineering*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Metallurgy*</td>
<td>Applied Science</td>
<td>151</td>
</tr>
<tr>
<td>School of Mechanical</td>
<td>Engineering</td>
<td>93</td>
</tr>
<tr>
<td>and Industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Electrical</td>
<td>Engineering</td>
<td>103</td>
</tr>
<tr>
<td>Engineering*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Mining</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Engineering*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Civil</td>
<td>Engineering</td>
<td>115</td>
</tr>
<tr>
<td>Engineering*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Wool and</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Pastoral Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Mathematics*</td>
<td>Science</td>
<td>152</td>
</tr>
<tr>
<td>11 School of Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>12 School of Psychology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>13 School of Textile Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>14 School of Accountancy*</td>
<td>Commerce</td>
<td>154</td>
</tr>
<tr>
<td>15 School of Economics*</td>
<td>Commerce</td>
<td>154</td>
</tr>
<tr>
<td>16 School of Health</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>Administration*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Biological Sciences</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>18 Department of Industrial</td>
<td>Engineering</td>
<td>130</td>
</tr>
<tr>
<td>Engineering*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 School of Transportation and Traffic</td>
<td>Engineering</td>
<td>135</td>
</tr>
<tr>
<td>20 School of Highway Engineering</td>
<td>Engineering</td>
<td>137</td>
</tr>
<tr>
<td>21 Department of Industrial Arts</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>22 School of Chemical Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>23 School of Nuclear Engineering</td>
<td>Engineering</td>
<td>140</td>
</tr>
<tr>
<td>24 School of Applied Geology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>25 Department of General Studies</td>
<td>Board of Studies in General Education</td>
<td></td>
</tr>
<tr>
<td>26 School of Geography*</td>
<td>Applied Science</td>
<td>155</td>
</tr>
<tr>
<td>27 School of Marketing</td>
<td>Commerce</td>
<td>155</td>
</tr>
<tr>
<td>28 School of Surveying</td>
<td>Engineering</td>
<td>142</td>
</tr>
<tr>
<td>29 Department of Behavioural Science</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>30 School of Optometry*</td>
<td>Science</td>
<td>155</td>
</tr>
<tr>
<td>31 Graduate School of Business</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>32 School of Building</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>33 School of Town Planning*</td>
<td>Architecture</td>
<td>155</td>
</tr>
<tr>
<td>34 School of Town Planning*</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>35 School of Building</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>36 School of Town Planning*</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>37 School of Building</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>38 School of Food Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>39 School of Biochemistry</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>40 School of Biological Technology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>41 School of Botany</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>42 School of Microbiology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>43 School of Zoology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>44 School of Zoology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>45 School of Zoology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>46 School of Zoology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>47 School of Zoology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>48 School of Zoology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>49 School of Zoology</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>50 School of English</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>51 School of History</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>52 School of Philosophy</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>53 School of Sociology</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>54 School of Political Science</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>55 School of Librarianship</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>56 School of French</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>57 School of Drama</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>58 School of Education</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>59 School of Russian</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>60 School of History and Philosophy of Science</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>61 School of Social Work</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>62 School of German</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>63 School of Spanish and Latin American Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>64 School of Spanish and Latin American Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>65 Subjects Available from Other Universities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 Subjects Available from Other Universities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 Board of Studies in Science and Mathematics</td>
<td>Board of Studies in Science and Mathematics</td>
<td></td>
</tr>
<tr>
<td>68 School of Anatomy</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>69 School of Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>70 School of Pathology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>71 School of Pathology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>72 School of Physiology and Pharmacology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>73 School of Surgery</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>74 School of Surgery</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>75 School of Obstetrics and Gynaecology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>76 School of Paediatrics</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>77 School of Psychiatry</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>78 School of Community Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>79 School of Community Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>80 Faculty of Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>81 Australian Graduate School of Management</td>
<td>AGSM</td>
<td></td>
</tr>
<tr>
<td>82 Division of Postgraduate Extension Studies</td>
<td>Law</td>
<td></td>
</tr>
<tr>
<td>83 Faculty of Law</td>
<td>Law</td>
<td></td>
</tr>
</tbody>
</table>
School of Mechanical and Industrial Engineering

Undergraduate Study

5.010 Engineering A SS L4T2
Introduction to Engineering Design: Engineering methods, problem identification, creative thinking, mathematical modeling, computer aided design, materials and processes, communication of ideas, the place of engineering in society.
Introduction to Materials Science: The structure and properties of the main types of engineering materials, with emphasis on the way in which properties may be controlled by controlling structure.

Textbooks
Svensson N. L. Introduction to Engineering Design NSWUP

For Statics:
To be advised.

and

For Introduction to Materials Science:
Gordon J. E. The New Science of Strong Materials, or Why You Don't Fall through the Floor Pelican
Scientific American Materials Freeman

5.020 Engineering B SS L4T2
Co-requisite: 5.010.
Civil Engineering students only: Prerequisite 8.003.

Engineering Dynamics: Kinetics of the plane motion of a particle; equations of motion, dynamic equilibrium, work and energy. Kinetics of systems of particles; impulse and momentum. Rotation of rigid bodies about a fixed axis. Belt, rope and chain drives, gear trains.

Textbooks
For Engineering Dynamics:
To be advised.

For Mechanics of Solids I:
Hall A. S. Introduction to Mechanics of Solids Wiley

5.030 Engineering C SS L2T4 or L4T2
Engineering Drawing: Fundamental concepts of descriptive geometry, including reference systems, representation of point, line and plane; fundamental problems of position and measurement. Application of descriptive geometry to certain problems arising in engineering practice. Special emphasis on ability to visualize problems and process involved in their solution. Instruction in the correct use of drawing instruments and the application of drawing standards. Measurements and dimensioning. Orthographic and isometric projections.

and, one of the following options (determined by the course of study)

1. (Mechanical, Industrial and Aeronautical Engineering and Naval Architecture students must take this option) Design for Manufacture I: Approximately 30 hours of workshop training, including casting, fitting, machining, welding.
Principles of design for manufacture.

2. Production Technology: Description and appraisal of the processes classified as: forming from liquid or solid, material removal, material joining. Machines. Analysis of the primary functions of the machine tools and an appraisal of their limitations. Principles of operation of common machine tools and illustrations of their use.

3. Introduction to Systems and Computers: Introduction to computers to follow the computer work in Mathematics I. To develop: A familiarity with algorithms; B the use of procedure-oriented languages; and C an introduction to computing equipment.
Systems. To give students an appreciation of some of the concepts used in engineering, to relate the concepts to phenomena within their experience, and to illustrate them by case histories and engineering examples. Quantities. Concepts. Components. Systems.

4. (Chemical Engineering students must take this option) Introduction to Chemical Engineering: Routes to and uses of industrial chemicals. Likely new industrial chemicals. A survey of several Australian chemical industries from the point of view of their historical and economic importance. Examination of the unit operations involved in the industry and the raw materials, equipment and services used. Environmental aspects of the chemical industry.

5. (Metallurgy students must take this option) Introduction to Metallurgical Engineering: History and significance of the exploitation of metals. Ores, mineral economics, mineral processing, and metal extraction and processing methods illustrated by reference to the Australian mineral and metal industries. Properties, uses and applications of metallic materials. The role of the metallurgist in industry and in processing and materials research, and in relation to conservation and the environment.

6. (Mining Engineering students must take this option) Introduction to Mining Engineering: Mineral deposits; metallic, non-metallic and fuels. Elements of prospecting and exploration. Basic mining techniques. Mining phases; development, exploitation, beneficiation and withdrawal. Mining and the environment. Mining services. Relevance of basic science and engineering subjects to mining design and operations.
7. (Electrical Engineering students must take this option) Introduction to Computing: Introduction to computer program design with emphasis on the design of correct, reliable programs. The subject is organized on a tutorial basis and a number of simple fundamental programming tasks are illustrated. Programs are written in a high level language which provides facilities for the specifications of algorithms and data structures.

8. (Industrial Chemistry students take this option) Introduction to Chemical Technology: Introduction to computation in chemical technology: process flow diagrams, information flow diagrams, flow charts in computer programming, development of algorithms.

The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials.

Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, pot forming and other forming procedures.

and Introduction to Engineering Construction: All students are required to visit a nominated construction project as an integral part of the course. Introduction to engineering construction, equipment and methods. The scope of engineering construction, typical projects and decision agents.

Textbooks
For Engineering Drawing:
Robertson R. G. Descriptive Geometry Pitman
Thomson R. Exercises in Graphic Communication Nelson

For Design for Manufacture I and Production Technology:
De Garmo F. P. Materials and Processes in Manufacturing Macmillan

For Introduction to Systems and Computers:
Karbowiak A. E. & Huey R. M. eds Information, Computers, Machines and Man Wiley

For Introduction to Metallurgical Engineering:
Street A. & Alexander W. O. Metals in the Service of Man Penguin

For Introduction to Computing:
Wirth N. Systematic Programming: An Introduction Prentice-Hall

5.032
Experimental Engineering II F L1T1
Prerequisites: 1.951, 5.010, 5.020, 10.001. Co-or prerequisites: 5.330, 6.801, 4.111, 5.611.
A series of lectures, demonstrations and experiments designed to show the theory and techniques of instrumentation in Mechanical Engineering.

Textbook
Beckwith T. G. & Buck N. L. Mechanical Measurements 2nd ed Addison-Wesley

5.033
Experimental Engineering III F L1T½
Prerequisites: 5.032. Co-or prerequisite: 5.071.
A series of experiments and associated lectures to illustrate some common problems in experimental work.

Textbook
Freund J. E. Mathematical Statistics Prentice-Hall

5.040
Engineering D SS L3T5

Design for Manufacture II: A further 30 hours of workshop training. Design for manufacture.

Textbooks
Hall A. S. Introduction to Mechanics of Solids Wiley
De Garmo E. P. Materials and Processes in Manufacturing Macmillan

5.042
Industrial Experience L0T0

A minimum of three years of satisfactory Industrial experience must be obtained concurrently with attendance in all BSc(Eng) courses. Students are required to submit to the School evidence from their employers confirming completion of the prescribed period of industrial training.

5.043
Industrial Training I

5.044
Industrial Training II L0T0
An industrial training report must be submitted to the School for assessment after completion of the period of training and must meet School requirements.
5.051
Thesis

Prerequisite: All subjects in Years 1, 2 and 3.

For students in the full-time courses in the School of Mechanical and Industrial Engineering.

5.061
Technical Orientation

Prerequisite: All subjects in Years 1, 2 and 3.

Designed to inform students of the art and technique of technical communication, the forms of engineering professional work and the nature of the courses of instruction. A major objective is to bring staff and students together in an atmosphere of discussion and enquiry. Visits to engineering establishments.

Textbook

Cooper B. M. *Writing Technical Reports* Pelican

5.062
Communications

Prerequisite: All subjects in Years 1, 2 and 3.

The basic techniques of communication by various media, as required by the professional man. Drawings as a means of communication, pictorial sketches and drawings as illustrations, instructions and visual aids. Basic photgraphic techniques, the grammar of cine film and of television. Library searching, collation of information, preparation of a seminar and relevant visual aids. Techniques of public speaking and chairmanship. Preparation of a technical paper and its copyright and fair copying. Computerized data storage. Production of a short cine film, videotape and slide sequence; pictorial illustrations. Participation in a seminar and writing of a thesis.

Textbook

Rosenstein A. B. et al *Engineering Communications* Prentice-Hall

5.071
Engineering Analysis

Prerequisite: 10.022.

Textbooks

Freund J. E. *Mathematical Statistics* Prentice-Hall

5.111
Mechanical Engineering Design I

Prerequisite: 5.010, 5.020. Co- or prerequisite: 5.311, 5.611, 5.411, 8.259.

Introductory lectures illustrating the interdependence of design and technology. Mechanical technology. Interpretation of engineering drawing practice. Philosophy and technique of design. Simple creative design assignments. Basic engineering elements.

Textbook

De Garmo E. P. *Materials and Processes in Manufacturing* Macmillen

5.112
Mechanical Engineering Design II

Prerequisite: 5.111, 5.311, 5.411, 8.259. Co- or prerequisite: 5.330, 5.412, 5.612.

Design for Production: Principles of tolerance specification, standard procedures for gauging, dimensioning and surface finish specification. Design of Machine Elements: Application of fundamental principles to the design of common machine elements, such as shafts, springs, bearings, power transmission devices.

Textbooks

Siddall J. N. *Analytical Decision Making in Engineering Design* Prentice-Hall 1972

Shigley, J. E. *Mechanical Engineering Design* 2nd ed McGraw-Hill

or

5.113
Mechanical Engineering Design III

Prerequisite: 5.112, 5.330, 5.412. Co- or prerequisite: 5.612.

5.301
Engineering Mechanics

Prerequisite: 1.951, 5.010. Co- or prerequisite: 10.001.

Kinematics and kinetics of the plane motion of particles. Rectilinear, curvilinear and relative translational motion; work and energy; impulse and momentum.

Textbook

Meriam J. L. *Dynamics* Wiley
5.303
Mechanical Vibrations
SS L1T½
Prerequisites: 5.311, 10.022.

5.311
Engineering Mechanics
SS L1½ T1
Prerequisites: 1.951, 5.010, 5.020. Co- or prerequisite: 10.001.
Kinematics and kinetics of the plane motion of rigid bodies. Absolute motion, relative translational motion and relative angular motion; dynamic equilibrium.
Textbook
Meriam J. L. Dynamics Wiley

5.324
Automatic Control Engineering
F L2T1
Prerequisite: 10.022.

5.330
Engineering Dynamics
SS L2½ T1½
Kinematics and kinetics of the plane motion of rigid bodies. Absolute motion, relative translational motion and relative angular motion. Dynamic equilibrium.
Textbook
Meriam J. L. Dynamics Wiley

5.331
Dynamics of Machines I
F L1½ T½
Prerequisites: 5.311, 10.022.
Mechanical Vibrations: Simple harmonic motion. One degree of freedom systems, free and forced vibrations, transmissibility and motion isolation. Whirling of shafts.
Textbook
Hirschhorn J. Dynamics of Machinery Nelson

5.332
Dynamics of Machines II
F L2T1
Prerequisite: 5.331.
Textbook
Meriam J. L. Dynamics Wiley

5.411
Mechanics of Solids II
SS L2T2
Prerequisites: 5.411, 8.259, 10.022.
Experimental stress analysis, photoelasticity, strain gauges.
Textbook
Timoshenko S. P. & Gere J. M. Mechanics of Materials Van Nostrand

5.412
Mechanics of Solids III
F L1½ T½
Prerequisites: 5.411, 8.259, 10.022.
Experimental stress analysis, photoelasticity, strain gauges.
Textbook
Timoshenko S. P. & Gere J. M. Mechanics of Materials Van Nostrand

5.413
Mechanics of Solids IV
F L2T1
Prerequisite: 5.412.
5.611 Fluid Mechanics/Thermodynamics I F L2T2
Prerequisites: 1.951, 5.010, 5.020, 10.001. Co- or prerequisite: 5.311, 10.022.

Textbooks
Massey B. S. Mechanics of Fluids Van Nostrand
Mayhew Y. & Rogers G. F. Thermodynamic and Transport Properties of Fluids Blackwell

5.612 Fluid Mechanics/Thermodynamics II F L2\(\frac{1}{2}\)T1
Prerequisites: 5.311, 5.611, 10.022.

Textbooks

5.614 Fluid Mechanics/Thermodynamics IIIA F L2T1
Prerequisite: 5.612.

Textbook
No set texts.

5.615 Fluid Mechanics/Thermodynamics IIIB F L2T1
Prerequisite: 5.612.

Textbooks
No set texts.

5.661 Mechanical Engineering III F L2T1
Prerequisites: 1.951, 5.010, 10.211A.

Textbooks
or
Massey B. S. Mechanics of Fluids Van Nostrand

5.800 Aircraft Design SS L1\(\frac{1}{2}\)T1
Prerequisites: 5.111, 5.311, 8.172, 8.259. Co- or prerequisite: 5.412.

Aircraft types and development, overall design process, inertia forces, load factors, wing load, shear force, bending moment and torque distributions. Detailed stressing of lugs, sockets, pins, bearings, fittings, hinges, gears, riveted, welded and bonded joints. Design and drawing of small fittings such as hinge assembly, spar for tailplane, control stick or landing gear component.

Textbook
Bruhn E. F. Analysis and Design of Flight Vehicle Structures Tri-State Offset Co 1965
5.801
Aircraft Design
F L2T2
Prerequisites: 5.303, 5.412, 5.800 (full-time only), 5.811, 5.822. Co- or prerequisite: 5.823.

1. **Aerodynamic Design:** Design authorities, criteria, flight envelope, design cases, Airloads. Weight and Balance. Performance and stability estimation. Aerodynamic design of an aircraft.

2. **Design of Aircraft Structures:** Significance of design requirements: proof and ultimate load, load and safety factors, interpretation of V-g diagram. Stressing cases. Detailed structural and mechanical design of airframe, controls, joints; choice of materials; use of structures data sheets. Practical design of a simple aircraft structural component. Fatigue, Aeroelasticity.

Textbooks
Bruhn E. F. *Analysis and Design of Flight Vehicle Structures*. Tri-State Offset Co

U.S. Federal Aviation Agency *Federal Aviation Regulations Part 23: Airworthiness Standards*

5.811
Aerodynamics I
F L2T1
Prerequisites: 5.311, 5.611, 10.022.

Textbooks
Abbott I. H. & Von Doenhoff A. E. *Theory of Wing Sections*. Dover

5.812
Aerodynamics II
F L2T1
Prerequisites: 5.612 or 5.811; 5.303 or 5.331.

Compressible flow and high speed aerodynamics. Hypersonic and high enthalpy flow. Dynamic stability and control.

Textbooks
Abbott I. H. & Von Doenhoff A. E. *Theory of Wing Sections*. Dover

5.822
Analysis of Aerospace Structures I
F L1½T½
Prerequisites: 5.311, 6.172, 6.259, 10.022. Co- or prerequisite: 5.412.

Equilibrium of forces, plane frames, space frames; beams; two-moment equation, shear and bending-stress distribution in various thin-webbed beams, tapered beams, beams with variable flange areas. Semi-monocoque structures. Deflection of structures: Maxwell's and Castigliano's theorems, virtual work method. Statically indeterminate structures; beams, trusses, stiff-jointed frames; methods of superposition, energy, moment distribution, elastic centre; shear distribution in two-cell beam. Aircraft materials, physical properties and their measurement. Dimensionless stress-strain data.

Textbook
Bruhn E. F. *Analysis and Design of Flight Vehicle Structures*. Tri-State Offset Co

5.823
Analysis of Aerospace Structures II
F L1½T½
Prerequisites: 5.412, 5.822.

Textbook
Megson T. H. G. *Aircraft Structures for Engineering Students*. Arnold

5.831
Aircraft Propulsion
F L1½T½
Prerequisites: 5.611, 5.811.

Textbook
Hesse W. J. & Mumford N. V. *Jet Propulsion*. Pitman
5.911 Naval Architecture
Prerequisite: 5.311. Co- or prerequisite: 5.951 (full-time only).

Textbook
Comstock J. P. *Principles of Naval Architecture* Soc. of Naval Architects & Marine Engineers

5.921 Ship Structures I
Prerequisites: 8.172, 8.259, 10.022. Co- or prerequisite: 5.412.

Textbook
Comstock J. P. *Principles of Naval Architecture* Soc. of Naval Architects & Marine Engineers NY

5.922 Ship Structures II
Prerequisites: 5.071, 5.412, 5.521.

Textbooks
As for 5.921.

5.931 Principles of Ship Design IA
S1 L1T1½

- Modern ship types and developments. The overall design process. Ship structural arrangements.

Textbooks
D'Arcangelo A. M. *A Guide to Sound Ship Construction* Cornell Maritime P
D'Arcangelo A. M. *Ship Design and Construction* Soc of Naval Architects and Marine Engineers NY

5.932 Principles of Ship Design IB
S2 L1T1½

- Co-requisite: 5.911 (5.931 full-time only).

5.933 Principles of Ship Design II
F L2T1

- **Prerequisite:** 5.932.

Textbooks
D'Arcangelo A. M. *Ship Design and Construction* Soc of Naval Architects and Marine Engineers NY

5.934 Ship Design Project
F L0T3

- **Prerequisites:** All subjects in Years 1, 2 and 3. Co- or prerequisite: 5.922, 5.933, 5.941.

- Design of a vessel to provide characteristics of hull form, preliminary general arrangement, lines plan, hydrostatic curves, investigation of stability and trim, structural profile and midship section, capacity, free-board, tonnage, floodable length (if applicable), power requirements, propeller design, investigation of vibration, rudder design and final general arrangement.

Textbooks
As for 5.933.

5.941 Ship Propulsion and Systems
F L2½ T1½

- **Prerequisites:** 5.071, 5.951 (full-time only).

Textbook
Comstock J. P. *Principles of Naval Architecture* Soc of Naval Architects and Marine Engineers NY

5.951 Hydrodynamics
SS L1½ T1½

- **Prerequisites:** 5.311, 5.611, 10.022. Co- or prerequisite: 5.071.

- Kinematics of fluids, stream functions, velocity potentials, added mass, representation of bodies by source singularities, vorticity. Descriptive treatment of the effects of viscosity in typical situations, such as boundary layers and separation.
Graduate Study

5.045G
Advanced Topic in Mechanical Engineering

5.046G
Advanced Topic in Mechanical Engineering

5.047G
Advanced Topic in Mechanical Engineering
Subjects which may be offered by a Visiting Professor for graduate credit.

5.073G
Ordinary Differential Equations in Mechanical Engineering
Solutions and their meaning, integration constants, linearity; special methods of solution; integration factors; variation of parameters; Euler, higher order linear equations; physical origins of ordinary differential equations and linear systems; linearization of engineering problems; stability of engineering systems.

5.075G
Computational Methods in Mechanical Engineering I

5.076G
Computational Methods in Mechanical Engineering II
Partial differential equations: finite differences and finite elements. Mathematical formulation of physical problems in mechanical engineering and their solution.

5.077G
Analogue Computation in Mechanical Engineering I
Basic operations; computer components; programming methods, problem check procedures; solution of linear, non-linear differential equations; generation of functions of dependent, independent variables; algebraic equations and real roots of polynomials; problem control for slow, high speed repetitive generation, automatic iterative solutions; transfer function simulation.

5.078G
Analogue Computation in Mechanical Engineering II
Use of digital logic elements, computers; interface for parallel hybrid operation control facilities run functions and parameter optimization. Full hybrid, direct on line, operation.

5.101G
Optimization Methods for Mechanical Engineers I
Mathematical theories of optimization. Calculus of variation.

5.102G
Optimization Methods for Mechanical Engineers II
Application of theory with special reference to design of mechanical elements and systems.

5.110G
Morphology of Design
Design strategy illustrated by a major engineering design. Problem recognition; economic analysis; decision making; model formulation and optimization. Design analysis, communication and implementation of solution.

5.151G
Refrigeration and Air Conditioning Design I
5.152G
Refrigeration and Air Conditioning Design II

5.304G
Advanced Dynamics I
5.305G
Advanced Dynamics II
5.321G
Automatic Control I

5.322G
Automatic Control II
Transient state dynamics of refrigeration and air conditioning system components. Frequency response methods. Response functions and controller settings. Analogue simulation of refrigeration and air conditioning systems.

5.328G
Control and Modelling of Mechanical Systems I

5.329G
Control and Modelling of Mechanical Systems II
Development of modelling techniques using both digital and analogue computation, with special emphasis on the representation of non-linearities. Typical examples of mechanical systems.

5.335G
Vibrations
Comparison of time, frequency, transform domain techniques for linear systems analysis. Application of Lagrange's equations and matrix methods in free, forced multi degree-of-freedom systems. Model analysis; numerical methods; Beam shaft vibrations; approximate methods; self-excited vibrations, stability. Random vibrations. Laboratory work on vibration measurement, testing.

5.401G
Experimental Stress Analysis
Grid technique; Moire fringe method; Strain gauges; photo-elasticity; crack detection techniques. Class project.

5.415G
Stress Analysis for Mechanical Engineering Design I

5.416G
Stress Analysis for Mechanical Engineering Design II

5.417G
Mechanics of Fracture and Fatigue

5.428G
Advanced Mechanics of Materials
Plasticity, Creep.

5.491G
Biomechanics I

5.492G
Biomechanics II

5.615G
Reciprocating Internal Combustion Engines
Thermodynamic cycles, fuel air mixtures, combustion, real gases. Spark ignition, detonation, combustion chamber design, modelling of emissions performance, efficiency; charging, discharging, losses. Compression Ignition, knock, combustion chamber design, modelling. Alternative fuels. Emission control. Laboratory tests.

5.621G
Gasdynamics I

5.622G
Gasdynamics II

5.631G
Lubrication Theory and Design I
Hydrostatic lubrication, squeeze films, hydrodynamic lubrication, slider bearings, tilting pad thrust bearings, journal bearings, practical journal and thrust bearing design; air bearings; friction, wear; dry, boundary lubrication; lubricant, bearing material selection; anti-friction bearings.

5.632G
Lubrication Theory and Design II

5.653G
Acoustic Noise I
Acoustic Noise II

Convection Heat Transfer I

Conduction Heat Transfer

Steady, one-dimensional conduction. Analysis of extended surfaces. Two- and three-dimensional conduction. Unsteady conduction in one or more dimensions; analytical, numerical and analogical methods of solution. Initial value and boundary value problems. Temperature fields with heat sources. Nonhomogeneous bodies; anisotropic bodies; variable material properties.

Radiation Heat Transfer

Thermal radiation properties of materials, black bodies; characteristics of real solids, liquids and gases; radiation exchange between infinite surfaces and between finite surfaces; shape factor for various configurations; radiation in an enclosure; radiation behaviour of gases and vapours. Pyrometry. Solar radiation; solar angles; atmospheric absorptions of solar radiation; direct and diffuse radiation; pyrheliometers.

Statistical Thermodynamics

Direct Energy Conversion

Magneto-hydrodynamics (M.H.D.): governing equations, ionisation seeding of working gas; material property limitations; fossil, nuclear fuelled M.H.D. generator combined with conventional steam plant. Fuel cells: electro chemical fundamentals; maximum work, Gibb's function, enthalpy of formation, equilibrium constant, e.m.f., limitations, polarization, existing types. Thermoelectric generators: theory of irreversible thermodynamics, Onsager coefficients, coupled phenomena, Pettier, Thomson, Seebeck effects, thermal efficiency, max. power output; design of thermodynamic generator, thermoelectric cooler, magneto-thermo-electricity; radioisotope, solar powered generators; semiconductors, basic ideas of quantum physics, Fermi level and energy bands. Other modes of direct energy conversion: photovoltaic; thermionic, Nernst effect generator.
Undergraduate Study

6.010 Electrical Engineering I SS L2T4
An orientation subject to acquaint students with the various areas and problems of Electrical Engineering. Secondary school physics and maths applied to some aspects of energy conversion and transmission; electronics; logic, number systems, and computers; systems and circuit theory; probability, information and communication. Laboratory exercises and project work in these areas including instrumentation and device characteristics.

Textbooks
No set texts.

6.021A Basic Circuit Theory SS L2T2
Prerequisites: 1.001, 6.010, 10.001.

Textbook
Fider J. D. Introduction to Circuit Analysis Prentice-Hall

6.021B Introduction to Electromagnetic Energy Conversion SS L2T2
Prerequisite: 6.021A.
An introduction to the transmission, distribution and utilisation of electrical energy, including devices which utilise the interaction of electric and magnetic fields. Topics treated include a revision of three phase circuit analysis, magnetic circuits, transformers, electro-mechanical energy conversion, direct-current and alternating-current machines and their applications.

Textbook

6.021C Electronics SS L2T2
Prerequisite or co-requisite: 6.021A.
The principles of operation of discrete electronic devices, sufficient to permit their effective modelling for the purpose of circuit design. Illustration of device modelling in some specific circuit applications. Digital and analogue integrated circuits, including operational amplifiers, and their application in electronic equipment. Design considerations in equipment, including thermal effects and signal/noise ratio.

Textbooks
To be advised.

6.021D Computing SS S1 or S2 L2T2
Prerequisite: 5.030.
Programming: systematic development of algorithms and associated data-structures using PASCAL, a high-level, algorithmic, programming language which provides simple, high-level program-control and data-structure definitions facilities. The translation of a program expressed in such a high-level language to a program expressed in the more commonly encountered, lower-level, non-algorithmic programming language FORTRAN. Computer organization: simple machine architecture; data storage devices; simple operating system concepts.

Textbook

6.021E Digital Logic and Systems SS S1 or S2 L2T2
Prerequisite: 10.001.
A hardware oriented subject concerned with the design of digital circuits for control and general computational purposes. Includes representation of digital information, combinational logic design, closed circuitry, digital systems and PDP 11 assembler programming.

Textbook
Booth T. L. Digital Networks and Computer Systems Wiley

6.022 Electrical Engineering Materials SS L3T1
Prerequisites: 1.001, 2.001 or 2.021.
A survey of materials and their technology for electrical and electronic devices and systems. Influence of molecular structure on the relevant properties of metals, semiconductors, glasses, ceramics, polymers, liquids and gases, with particular regard to their electrical, magnetic, mechanical, optical and transducing characteristics and their behaviour in electrostatic, magnetic, electromagnetic and thermal fields. Properties of thin and thick films. Control of material properties through
heat-treatment, additives, impregnation, etc. Fabrication, forming and deposition methods. Composite materials, joining and bonding techniques. Failure mechanisms and long-term stability. Effects of environment; corrosion; radiation damage. Stabilising and protective treatments. Example applications to illustrate selection criteria, including cost-effectiveness, for specific purposes, including both traditional applications as well as some of contemporary interest.

Textbook

6.0314
Signal Processing
S2 L2T2
Prerequisite: 6.0313.
Textbooks
To be advised.

6.0315
Electrical Energy
S2 L2T2
Prerequisite: 6.0312.
Features of the electrical supply system relevant to a user of electricity.

6.0316
Electronic Circuits II
S2 L2T2
Prerequisite: 6.0313.
Extension of 6.0313 to include tuned and difference amplifiers, operational amplifiers, power amplifiers, oscillators, Schmitts; comparators and multivibrators with increasing emphasis on the integrated circuit embodiment of these.
Textbooks
To be advised.
6.042 SS L2T3 Circuits, Signals and Information Theory
Prerequisites: 6.031A, 10.033, 10.361.

Circuit Theory and network synthesis. Signal Analysis and transmission through networks, including theory of noise and stochastic signals. Includes time frequency and mixed domain presentation; transients and other signals; correlation, convolution, etc.; statistical properties of signals; applications. Information Theory of discrete systems including coding and encoding of patterns. Information theory of continuous systems. Mathematical theory of signal detection, including an introduction to decision theory. Signal and system analysis in the light of information theory.

Textbook
Karbowiak A. E. Theory of Communication Oliver & Boyd

6.044 SS L2T3 Electrical Product Design and Reliability

The design and development of reliable, high-quality hardware, from components to systems: product and procurement specifications; factors in choice of system configuration, materials, components, processes, prediction of reliability, availability, system effectiveness; cost-of-ownership optimization; maintainability; thermal design; mechanical design; redundancy; design reviews; fault-free analysis; failure mechanisms; failure mode analysis; Monte Carlo simulation; worst case and statistical design; sensitivity analysis and parametric testing; component screening; product development; life testing; environmental testing, non-destructive testing; quality control, attribute sampling.

Textbook
Blanks H. S. Electrical Product Design and Reliability UNSW

6.212 SS L2T3 Power Engineering—Utilization

Prerequisite: 6.031B. Co-requisite: 6.322.

Topics include: Machines and electrical drives, applications and control, a.c. d.c. conversion; rating of plant; industrial heating: frequency changing; illumination. A program of experimental projects and applications of design will accompany the lectures.

Textbooks
No set texts.

6.222 LS L2T3 High Voltage and High Current Technology

An elective concerned with aspects of design and testing of high power electrical equipment. Topics selected from: fields and materials in high voltage apparatus; effects of high currents; design testing and measurement; effects of transients, earthing; applications of superconductivity.

Textbook
Alston L. L. High Voltage Technology Wiley

6.303 SS L2T3 Communication Electronics

High frequency and noise performance of active and passive devices and circuits. Includes the following topics: high frequency transistor characterization; transistor noise properties; parametric amplifiers; Gunn and IMPATT diodes; quantum electronics; microwave valves; klystrons, traveling wave tubes, magnetrons.

Textbooks
No set texts.

6.313 SS L2T3 Wave Radiation and Guidance

Prerequisite: 6.031A.

A selection from the following topics:

6.322 Electronics SS L2T3
Prerequisites: 6.031A, 6.031C.

6.323 Signal Transmission SS L2T3
Prerequisites: 6.031A, 6.031C. Co-requisite: see note.

Transmission System Environment: noise distortion; bandwidth; interference; multipath; fading; transmission media. Analog Transmission: baseband; linear and non-linear modulation; envelope techniques; Hilbert transforms; envelopes; DSB, SSB, FM, PM; asynchronous and coherent demodulation; threshold. Transmitters and receivers. Pulse modulation; sampling techniques; aliasing; interpolation filters. Digital Transmission: A/D, D/A conversion; quantization errors; companders PCM; delta modulation. Multi-level transmission; bandwidth; SNR exchange. Elementary detection theory; error probability. Synchronization; regenerative repeaters. Coding. Data transmission; modems; COK, FSK, PSK; demodulation; match filters. Interymbol interference; equalization; eye patterns. Multiplex Systems: FDM, TDM; random access techniques; noise power ratio.

Note: A working knowledge of elementary Fourier transforms and of elementary probability is assumed. 6.042 is recommended as a co-requisite.

Textbook

6.333 Communication Systems SS L2T3
Prerequisites: 6.031A, 6.031C.

Textbooks
Patchett G. N. Colour Television Norman Price
Townsend B. PAL Colour Television CUP
Showalter L. C. Closed Circuit T.V. for Engineers and Technicians Sams & Co
Skolnik M. I. Introduction to Radar Systems McGraw-Hill

6.383 Biomedical Engineering SS L2T3
Prerequisites: 6.031A, 6.031C.

A course designed to introduce electrical engineering students to the practice of engineering techniques applied to the biological and medical fields. The lectures are supplemented by demonstrations and experimental work, and deal with the basic physiology of cells, tissues, organs and organisms, instrumentation and measurement techniques and modelling of various types of biological systems.

6.412 Automatic Control SS L2T3
Prerequisites: 6.031A, 6.031B.

Principles and techniques applicable to the analysis and design of continuous and discrete feedback control systems as encountered in industrial processes. Frequency, transform and time domain methods for compensation and stability analysis of single-input single-output linear systems. Extension to some common nonlinearities. Case histories.

Textbook
Stapleton C. A. Basic Control — Classic and Modern UNSW
Takahashi Y. et al Control and Dynamic Systems Addison-Wesley

6.413 Modern Systems Engineering SS L2T3
Prerequisite: 6.412.

The understanding and use of methods to analyse and design control systems for complex dynamic plants. Applications from many fields, including power systems, communication systems, nuclear and steam generating plant, biological systems; extensive use of modelling, simulation and control design programs developed for the Cyber and Varian Computer Systems.

Textbook
To be advised.
6.432 SS L2T3
Computer Control and Instrumentation
Prerequisites: 6.031C, 6.031D.
Current practice in hardware and introduction to software techniques as applied to the implementation of control and instrumentation systems. Analog computers and associated circuit techniques. Transducers, actuators, controllers and special electo-mechanical devices discussed from both physical and dynamic response viewpoints. Digital Instrumentation. Hybrid devices and analog conversion. Computer organization and interfacing concepts. Peripherals. Introduction to software systems for control applications. Computer control of processes via on-line languages.
Textbooks
To be advised in class.

6.601A S1 L3T2 or F L1½ T1
Introduction to Computer Science
Prerequisite: 10.001.
Introduction to programming, algorithm and data structure design programming in a high level algorithmic language which provides simple, high level program-control and data-structuring facilities. Introduction to data structures. Program verification. Introduction to computer organization; simple machine architecture, logical design; data storage devices; simple operating system concepts.
Textbooks
Gear C. W. Introduction to Computer Science SRA

6.512 SS L2T3
Advanced Semiconductor Device Theory
Prerequisites: 6.031C, 6.031E.
Semiconductor materials; metal/semiconductor contacts; MIS structures; FETs and their applications; FET models used in computer-aided circuit design; charge-coupled devices; high-frequency bipolar transistor considerations; photoelectronic semiconductor devices; dynamic characteristics of thyristors.
Textbook
Grove A. S. Physics & Technology of Semiconductor Devices Wiley

6.522 SS L2T3
Transistor and Integrated Circuit Design
Prerequisites: 6.031C, 6.031E.
Development of theory of transistor operation including high injection level effects and three dimensional geometry effects. Kinetics of epigrowth, diffusion and oxide growth as far as these are required to permit the student to specify process cycles. Design of transistor in terms of desired diffusion profiles, oxide growth thicknesses, and the specification of process cycles. Extension of the above to passive components as used in integrated circuits. Design aspects of integrated circuits, covering aspects peculiar to integrated circuits such as distributed parameters, parasitic couplings, correlated component tolerances and variations, special DC biasing methods.
Textbooks

6.602A S1 L2T3
Computer Systems I
Prerequisite: 6.601B.
Textbook
Booth T. L. Digital Networks and Computer Systems Wiley
6.602B
Computer Systems II
Prerequisite: 6.601B.

Operating systems via an intensive case study of a particular system. Includes system initialization memory management, process management, handling of interrupts, basic input/output and file systems.

Textbooks
To be advised.

6.607B
Advanced Software Technology

A selection of topics from a list which normally includes Artificial Intelligence, Program Verification, High Speed Calculation of Mathematical Functions, Computer Graphics.

Textbooks
To be advised.

6.602C
Computer Applications
Prerequisite: 6.601A.

A selection of topics from: Computer simulation, Modelling of discrete event systems, with applications to queueing; Pseudo random number generation and testing; simulation languages, especially SIMULA. Optimization techniques: 'hill climbing', critical path method, dynamic programming, linear programming. The simplex and revised simplex methods. Job shop scheduling. Data processing, file and data management systems; use of COBOL; searching and sorting of files. Information retrieval: search on secondary keys, inverted files. Artificial intelligence. Social consequences of computer technology.

Textbooks
Simula Reference Manual
Control Data
Cohen C. & Stein J. *MPOS Users Guide* Northwester Univ

6.612
Computer Systems Engineering
Prerequisites: 6.031D or 6.602A.

Analysis and design of clocked-sequential and fundamental-mode sequential circuits. Introduction to APL as a digital system design and simulation language. Applications to the description, design and simulation of basic computer circuits and organizations. Machine organization and hardware, control units, micro programming, input-output, high-speed arithmetic units.

Textbook

6.602D
Programming Languages and Compiling Techniques
Prerequisite: 6.601A.

Compiling Techniques: data structures; table look-up; language description; lexical analysis; syntax analysis; semantic analysis/code generation; interpretation/program execution. Programming Languages: a comparative study.

6.606
Computing Science Honours

6.607A
Computer Hardware Architecture

The basic principles of computer architecture. A comparative study of the architectural features of a number of significant computer systems.

Textbooks
To be advised.

6.622
Computer Application and Software
Prerequisite: 6.601A.

Topics chosen from the following: simulation, heuristics, numerical analysis, mathematical optimization, data structures, machine organization, high-level languages, compilers and operating systems.

Textbooks
No set texts.

6.822
Electronics for Distance Measurement
Prerequisite: 1.001.

A user-oriented introduction to the electronic principles which form the basis of electromagnetic distance measurement. Provides a basis of circuit theory and elementary electronics and then considers distance measurement systems. Includes an applications-oriented interdisciplinary project.

Textbook
Printed notes are issued.
6.831
Chemical Instrumentation
Prerequisite: 1.001.
A user-oriented introduction to the electronic principles which form the basis of electronic instrumentation as used in the applied sciences. Provides a basis of circuit theory and elementary electronics and then considers analog computers, amplifiers and instrumentation systems.
Textbook
Printed notes are issued.

6.832
Industrial Electrical Machinery
Prerequisite: 1.001.
An applications-oriented introduction to the usage of electrical machinery in industry. Provides a basis of circuit theory and then considers the characteristics and selection of electrical machinery, their interface with the prime power supply, protection and electrical safety. Included in the course is a project illustrating the application of electrical engineering to other disciplines.

6.851
Electronics and Instrumentation
Prerequisite: 1.001.
An applications-oriented introduction to electronics and instrumentation. Provides a basis of circuit theory and elementary electronics and then considers analog computers, amplifiers, amplifier systems and electronic instrumentation. Included in the course is a project illustrating the application of electrical engineering to other disciplines.
Textbook
Printed notes are issued.

6.852
Electrical Machinery and Supply
Prerequisite: 6.851.
A user-oriented introduction to the usage of electrical power in industry, covering the characteristics and selection of electrical machinery, their interface with the prime power supply protection, electrical safety and compliance with Australian standards. Includes an applications-oriented interdisciplinary project.
Textbook
Printed notes are issued.

6.853
Analog and Digital Instrumentation
Prerequisite: 6.851, 6.852.
Study of electrical and electronic equipment, emphasising analog and digital techniques applicable to the electrical measurement of non-electrical quantities. Open-loop and closed-loop control systems and some of their applications to instrumentation.
Textbook
Smith R. J. Circuits Devices and Systems 2nd ed Wiley

6.902
Industrial Experience
A minimum of three years of appropriate industrial experience must be obtained concurrently with attendance in Course 365. Students are required to submit to the School evidence from their employers confirming completion of the prescribed period of industrial training.

6.911
Thesis
For students in the final year of their BE course.

Graduate Study

6.050G
Occasional Elective
This syllabus will change from one occasion to the next, allowing presentation of a modern topic at graduate level, particularly by visiting academics of eminence.

6.053G
Advanced Mathematics II
Mathematical techniques applicable to electrical engineering problems. Topics may include: an introduction to state variable theory, Green's functions, operator theory.

6.054G
Numerical Computation
Topics include numerical solution of partial differential equations and approximation theory.
6.071G
Electrical Measurements
Electrical measurements of moderate precision. Theory and practice of deflection measurements and null techniques at DC and low audio frequencies.

6.073G
Precise Electrical Measurements
An advanced course primarily devoted to the special problems of precision measurements at DC and audio frequencies. Establishment of electrical standards.

6.074G
Superconductivity
The theory of superconductivity and its application. Includes loss mechanisms, ac losses, flux jumps, superconducting materials, applications to electrical apparatus.

6.075G
Electric Contacts
The theory of stationary electric contacts making use of classical field theory and the modern ideas of electronic conduction. Topics may include constriction and film resistance, elastic and plastic deformation of contacts, thermal behaviour, electron tunnelling through thin films, tarnishing, fritting, formation of whiskers and bridges, material transfer in small contacts.

6.150G
Communications Elective
As for 6.050G.

6.160G
Field Theory in Electrical Engineering
Revision of metric transformations and co-ordinate systems. Solution of the Laplace and Poisson equations in the eleven Eisenhart co-ordinate systems in three dimensions. Extension to selected cases of the diffusion and wave equations.

6.161G
Field Mapping
The Laplace and Poisson equations: complex variable techniques for 2-dimensional solutions. Graphical, experimental and numerical methods for 2- and 3-dimensional problems. The Helmholtz equation. Cases where solutions may be based on the Laplace equation. Review of selected examples in electrical engineering.

6.164G
Microwave Radiators and Applications
A selection of the following topics: review of basic theory. Adaptive arrays, Monopulse radar, Radiotelescopes — primary radiator design. Tolerance theory.

6.166G
Wave Propagation Theory
Topics may include: introduction to propagation theory. Propagation over earth's surface. Propagation in a plasma. Ionospheric propagation, scatter propagation.

6.167G
Microwave Transmission Theory
A selection of topics from: transmission lines, waveguides, microstrip and striplines, surface waves, resonant and periodic structures, long haul guided propagation, wave propagation in anisotropic media and the application of wave theory to millimetric and optical waves.

6.169G
Microwave Circuits: Theory and Techniques
The theory and design of microwave circuits including a selection from waveguide circuit elements, multiport structures, cavities, filters and the symmetry properties of waveguide junctions. Microwave measurement techniques and applications.

6.170G
Microwave Electronics
A selection of topics covering the principles and application of electron beam and solid-state microwave devices. These include klystrons, travelling wave tubes, backward wave tubes, crossed-field devices, parametric devices, high frequency diodes and transistors, Gunn-effect and IMPATT-type devices.

6.171G
Network Synthesis
A course in passive network synthesis leading on from the circuit theory of current undergraduate courses. Emphasis is placed on the classical realizations and modern filters.

6.172G
Advanced Network Synthesis
Further work in passive network synthesis with more attention to the approximation problem in the frequency domain and including some work on time domain synthesis.
6.224G Electrical Insulation Engineering
Co-ordinated approach to the design of insulation systems for application at high and low voltages. Basic principles, experimental and theoretical factors involved in the establishment of particular design criteria. Practical situations and demonstrations.

6.225G Electrical Discharges and their Technical Applications
Low and high pressure gaseous discharges, both naturally occurring and laboratory produced. Methods of production of discharges. Diagnostic techniques. Arcing in circuit interrupters and methods of control and extinction. Other technological applications of electrical discharges.

6.226G Electrical Apparatus Design
Based on fundamental concepts and in which thermal, electric and magnetic properties on a macroscopic scale and their inter-relationships are displayed in relation to the design of electrical and electronic apparatus.

6.227G Assessment of Insulation Performance In Electrical Plant
Selection from: design test requirements. Forms of high voltage works test: alternating, impulse, switching surge and direct. Non destructive tests: dielectric loss angle, dispersion, partial discharge and insulation resistance. Methods of determining material condition: moisture content, gas in oil, Impurities, electron microscopy including determination of aging and long life. Commissioning and site tests. Demonstrations and projects to support the lecture material.

6.228G Power System Equipment
Includes study of the operating characteristics and major design features of the items comprising a power system, including alternators, power transformers, voltage and current instrumentation equipment, oil and gas insulated circuit breakers, isolators, overhead lines and components. Lightning arrestors and protection for lines and substations. Power and line coupling capacitors, bus bars, connectors, cables and bushings. Line carrier systems.

6.229G Power System Protection
The theory and application of protective devices and systems, related to the protection of transmission lines, transformers, busbars and generators.

6.244G Power Systems I
An advanced course dealing with topics such as economic despatch, load flow and stability in large power systems.

6.245G Power Systems II
An advanced course concerned with some of the following topics: modal propagation on HV lines, DC transmission; power system transients, communication systems etc.

6.246G Power System Operation and Control

6.247G Power System Analysis

6.248G Power System Planning
World energy resources and alternative methods of generation and transport of energy. Sources of electrical energy on a large scale. Economic evaluation of projects. Planning the location and rating of power stations. Transmission system planning: voltage levels, fault levels, basic network interconnections. High voltage DC transmission: comparison with high voltage AC. Problems in planning distribution systems (brief treatment only). Industrial system planning. Power system reliability.

6.249G Dynamic Performance of Power Systems
The dynamic behaviour of power systems. Modelling of power system components, simulation of their dynamic behaviour by computer program, and design of control systems for alternators in power systems.
6.250G
Power Elective I
As for 6.050G.

6.251G
Power Elective II
As for 6.050G.

6.254G
Electrical Machines I

6.255G
Electrical Machines II
These two independent options are concerned with the theory, design, operation and control of modern electrical machines.

6.256G
Underground Transmission
A specialized course relating to developments and contemporary practices in underground systems for the transmission of electrical energy. The thermal and electrical properties, rating and economics of cable systems and their accessories for a range of voltages from the reticulation level through to transmission voltage levels.

6.257G
Electric Power Distribution Systems
The engineering problems of distribution systems including industrial power systems, stressing the electrical distribution system as an entity. Distribution system planning. Overall design criteria. Co-ordination of thermal ratings. Protection of distribution network: cables and overhead lines. Design and performance of individual plant items. Particular problems of urban and rural distribution systems. Demonstrations and project work.

6.343G
Modulation Theory and Application to Systems
Modulation theory including modulation, frequency modulation and other analog modulation methods. Sampling. Pulse and digital modulation schemes, with particular reference to PCM. Comparative analysis or modulation methods and communication systems.

6.344G
Optimal Design of Communication Systems
Theory of optimal filtering according to Wiener and others. Decision theory, leading to a discussion of optimal receivers for extracting signals from noise (detection and estimation). Optimal signal design. Joint optimization of signal and receiver.

6.345G
Active and Adaptive Circuits for Integrated Systems

6.346G
Acoustics
Electrical, mechanical and acoustical analogies. Velocity of propagation of acoustical energy. Transducers, architectural acoustics. The ear, noise measurement and reduction. Sound as a means of communication.

6.350G
Solid State Electronics Elective
As for 6.050G.

6.342G
Information and Communication Theory
Theory of discrete channels and systems. Theory or coding for discrete sources. Properties of languages. Continuous communication channels. Capacity of communication systems. Application of information theory to engineering systems.

6.370G
Solid State Theory I
6.371G
Solid State Theory II

6.373G
Semiconductor Devices
Theory and characteristics of semi-conductor devices, notably bipolar transistors, field effect transistors, and thyristors. The course discards many of the simplifications and generalizations made in the undergraduate treatment of transistors.

6.375G
Integrated Circuit Technology
An account of the modern planar technology of semiconductor device and integrated circuit fabrication.

6.376G
Reliability Engineering
Principles and applications of the reliability engineering concept, with particular reference to electronic components and systems.

6.377G
Integrated Circuit Design
An advanced course on the design of integrated circuits, including the properties and modelling of integrated circuit elements, dc and ac design of operational amplifiers, low-pass and bandpass circuits, digital gates and complex functions, computer-aided design.

6.378G
Solar Energy Conversion

6.381G
Biology and Physiology for Engineers
Attempts to bridge the language barrier between biology and engineering. Some of the problems and techniques of biology and medicine which may be encountered by the biomedical engineer. Cells, tissues and organs, with emphasis on their system, function and characteristics.

6.382G
Biomedical Engineering
Includes instruction in the specialized measurement techniques and instrumentation required in biomedicine. Emphasis on signal processing and control system analysis as examples of the application of engineering to biomedicine.

6.452G
Principles of Feedback Control
An intensive series of lectures, laboratory and tutorial, for upgrading at the graduate level those students who are deficient in the basics of control. Material covered includes design of continuous and discrete feedback systems, via classical frequency response and time-domain methods, as well as state space techniques. Nonlinear systems and systems with random inputs.

6.453G
Optimization In Systems Engineering
The fundamentals of optimization as used in Systems and Control. Topics covered include: constrained and unconstrained minimization of functions; review of search techniques; principle of optimality; dynamic programming; Hamilton Jacobi Bellman equations; calculus of variations; Pontryagin Maximum Principle; two point boundary value problem; linear quadratic problem. Time optimal control; state and control constraints; numerical methods.

6.455G
System Identification and Modelling
Develops the basic techniques used in System Identification and Modelling. Topics include: representation of static and dynamic systems; parameter estimation; Maximum Likelihood Estimation methods, nonparametric methods; time series; spectral methods; pseudo random noise methods; recursive methods, least squares; analysis of residuals; accuracy, goodness of fit; adaptive systems (on-line estimation).
6.456G
General Concepts in Formal System Theories
Provides fundamental concepts common to many formal abstract system theories reflecting different aspects of the physical systems, which are their bases.
Input-output, state transition, fuzzy, axiomatic-hierarchical and evolutionary representants will be reviewed with discussion based on differential and discrete models, and some form of pulsed automata.
Basic concepts presented include the state properties and basis functions for linear systems; equivalence and reduction, structure, decomposition and interconnection; complexity; accessibility of states and stability considerations.

6.457G
Cybernetic Systems Theory
Provides advanced systems concepts relevant to both engineered and natural sensory systems, including a review of fundamental concepts relevant to Cybernetic Engineering, the genesis of cybernetics, coding, learning and neural networks. Special topics treated include: the Perceptron, subsystems of the human brain and 'functional' descriptions of a 'Cybernetic Brain' and an approach towards industrial robots with reference to their social implications.

6.458G
Pattern Recognition Systems
Basic concepts and methods in mathematical pattern recognition and an in-depth study of both non-parametric and parametric methods. Includes such topics as: pattern, feature and classification spaces; feature selection; linear discriminant functions and linearly separable training algorithms; piece-wise discriminant functions; decision rules; the Bayes framework; approximation of probability densities; clustering and dimensionality reduction.

6.459G
Control Computing
Review of fundamental principles of digital and analog computation with special reference to the solution of engineering and control problems. Topics include: small computer systems architecture; process control interfacing techniques; machine language programming; operation of hybrid computers and their applications.

6.461G
Large Scale Systems
The special problems in modelling and controlling large scale systems, including numerical problems. Modelling topics include: modeling of large-scale static and dynamic systems; flow-network analysis; solution of large networks by tearing; linear programming using sparsity and other techniques; solution of large sets of normal equations.
Control topics include: multilevel approaches to the control of large-scale systems; simplification of models; aggregation method; pole-shifting techniques for multivariable modal control.

6.464G
Stochastic Processes In Automatic Control
This subject reflects the non-deterministic nature of many control problems. Topics include: random variables and distribution; random processes; Gaussian and Markov processes. Processing of processes through linear systems; correlation functions. Spectral theory; Wiener and Kalman filtering. Least squares estimation; the stochastic regulator problem and separation theorem.

6.466G
Advanced Linear Control Theory

6.470G
Advanced Topics In Control
Advanced topics taught either by visiting academics or staff members with specific research interest. Typical topics are: design case studies; current research problems and review of important papers; game theory; multi-input-output design. Stochastic control theory. Distributed systems (diffusion, display, etc). Functional analysis.

6.650G
Computer Science Elective
As for 6.050G.
6.651G
Digital Electronics
Digital circuits and principles, sub-system organization, microprocessors, memory technology, interface design, graphics, display systems.

6.654G
Switching Theory and Digital Systems
Analysis and design of three different types of sequential circuit: clocked sequential, pulse-mode sequential, and fundamental-mode sequential circuits. Applications to the design of digital computer circuits. Error correcting and detecting binary codes. Linear sequential feedback circuits.

6.655G
Computer Organization and Architecture
Number systems and computer arithmetic — storage, control, input/output. System organization.

6.656G
Software Systems A
A theoretical and practical basis for subject matter within the following areas: compiler organization; data structures, table organization, list structures, trees, stacks, etc), lexical analysis, syntax analysis, code generation, code optimization. Portability: solutions to the problem of moving software systems between different mechanics. Compiler compilers: translator writing systems designed to provide facilities to aid the compiler writer.

6.657G
Software Systems B
Overview of operating systems, sequential processes, concurrent processes, processor management, store management, scheduling algorithms, resource protection, data communication case studies.

6.909G
Project

6.918G
Research Project

6.936G
Research Project

School of Civil Engineering

Undergraduate Study

8.001
Industrial Training
Requirement for the Bachelor of Engineering degree.
Students are required to complete a minimum of sixty working days of approved industrial training and submit a report on this training prior to enrolment in the final year.

8.002
Industrial Experience
Requirement for the Bachelor of Science (Engineering) degree.
A minimum of three years of satisfactory industrial experience must be obtained concurrently with attendance in the course. Students are required to submit to the School on enrolment in the final year evidence from their employers confirming completion of the prescribed period of industrial training.

8.003
Civil Engineering A SS L3T3
Introduction to Engineering Design: Engineering method, problem identification, creative thinking, mathematical modeling, computer aided design, materials and processes, communication of ideas, the place of engineering in society. Statics: Equilibrium equations, internal actions, bending moment and shear force. Simple beams and trusses.

Textbooks
Svensson N. L. Introduction to Engineering Design NSWUP
Hall A. S. & Archer F. E. Elements of Statics NSWUP

8.004
Civil Engineering B SS L4T2
Engineering Drawing: Fundamental concepts of descriptive geometry, including reference systems, representation of point, line and plane; fundamental problems of position and measurement. Application of descriptive geometry to certain problems arising in engineering practice. Special emphasis on ability to visualize problems and processes involved in their solution. Instruction in the correct use of drafting instruments and the application of drawing standards. Measurements and dimensioning. Orthographic and isometric projections.
Introduction to Engineering Construction: All students are required to visit a nominated construction project as an integral part of the course. Introduction to engineering construction, equipment and methods. The scope of engineering construction, typical projects and decision agents.
Introduction to Materials: Role of engineering materials in design process. Traditional and new engineering materials. Concepts of stress and strain. Structure of crystalline and

Textbooks
Robertson R. G. Descriptive Geometry Pittman
Thomson R. Exercises in Graphic Communication Nelson
Richards C. W. Engineering Materials Science Chapman & Hall
Polakowski N. H. & Ripling E. J. Strength and Structure of Engineering Materials Prentice-Hall

8.014 Computer Applications in Civil Engineering

8.015 Road Engineering

8.016 Hydraulics

8.017 Transportation Engineering

8.018 Construction Engineering
8.019
Railway Engineering
SS L2T1

Not compatible with 8.013. Prerequisite: 8.672.

First half of subject consists of the Session 1 lectures and tutorials of the Bridge Engineering elective, the second half is devoted to railway engineering. It includes railway geometry, track rails, traffic, railway development.

8.024
Foundation and Dam Engineering
SS L2T1

Prerequisite: 8.273.

8.025
Structural Failures
SS L2T1

Prerequisites: 8.174, 8.182.

Case studies of significant structural failures and distress during concept, construction, design and use. Modes, causes, consequences, responsibilities, corrective procedures.

8.026
Systems Methods in Civil Engineering
SS L2T1

Prerequisite: 8.301.

The development of models for the definition, design, and control of engineering problems in construction project management. Influence of decision level on systems model formulation. Case study approach coupled with field investigations and group projects. All students are required to visit a nominated field site as an integral part of the subject.

8.027
New Materials I
SS L2T1

8.028
New Materials II
SS L2T1

Prerequisites: 8.273, 8.162.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisite(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.029</td>
<td>Continuum Mechanics</td>
<td>Prerequisite: 8.172.</td>
<td>Concept of continua, mathematical foundations, analysis of deformation, strain and stress, fundamental laws of continuum mechanics, constitutive equations, mechanical properties of solids and fluids, simple problems in elasticity.</td>
</tr>
<tr>
<td>8.030</td>
<td>Construction Management</td>
<td>Prerequisite: 8.672.</td>
<td>Civil Engineering Construction organization, management and control.</td>
</tr>
<tr>
<td>8.031</td>
<td>Construction Project Finance</td>
<td>Prerequisite: 8.672.</td>
<td>Civil Engineering construction project feasibility, financial management, cash flow, cost control, insurance and company finance.</td>
</tr>
<tr>
<td>8.032</td>
<td>Law for Builders</td>
<td>Prerequisite: 8.672.</td>
<td>Introduction to the law, including brief outline of sources of law in New South Wales and the System of judicial precedent. General principles of law of contract. Some special forms of building contract.</td>
</tr>
<tr>
<td>8.033</td>
<td>Industrial Law and Arbitration</td>
<td>Prerequisites: 8.672, 8.032</td>
<td>Introduction to Industrial law, including reference to Commonwealth and State statutory provisions dealing with conciliation and arbitration. State and Commonwealth awards, Industrial disputes. Employers' association. Trade unions. Introduction to real property and local government law.</td>
</tr>
<tr>
<td>8.034</td>
<td>Engineering Economy</td>
<td>Prerequisite: 8.573.</td>
<td>Economic evaluation of civil engineering projects, including benefit-cost analysis and rate of return analysis.</td>
</tr>
<tr>
<td>8.035</td>
<td>Flat Slab Design</td>
<td>Prerequisites: 8.182, 8.174.</td>
<td>Current design methods for flat slabs and two-way slabs, and the background to and limitation of these methods; problem areas in the design of these floor systems and current research activity and its likely effects on future design methods.</td>
</tr>
<tr>
<td>8.038</td>
<td>Special Topics in Reinforced Concrete Design</td>
<td>Prerequisite: 8.182.</td>
<td>General design process; analysis and design of flat plates and flat slabs; design for torsion, deep beams and corbels; lateral load analysis of concrete building; water-retaining structures; and a topic of general interest (suggested by students).</td>
</tr>
<tr>
<td>8.039</td>
<td>Computer Programming</td>
<td></td>
<td>Introduction to FORTRAN Programming, use of WATFIV compilers, flow charts and simple problems.</td>
</tr>
</tbody>
</table>
8.041
Geological Engineering SS L2T1
Prerequisite: 8.272.

8.042
Water Resources SS L2T1
Prerequisite: 8.582.
Resource systems approach to the problem of matching, by means of engineering works, the supply of water and the demand for water.

8.043
Public Health Engineering SS L2T1
Prerequisite: 8.581.

8.046
Town Planning SS L2T1
The influence of structural technique in the past on architectural styles. Effect of modern structural engineering systems on architecture. Responsibilities of the structural engineer as a consultant.

8.047
History of Civil Engineering SS L2T1
A study of the theoretical, practical and sociological aspects of the development of civil engineering, including its relationship to other disciplines.

8.051
Design Project — Materials SS L2T1
Final year design project in the field of civil engineering materials.

8.052
Design Project — Structures
Final year design project in the field of structural engineering.

8.053
Design Project — Water
Final year design project in the field of hydraulics and water resources.

8.054
Design Project — Construction
Final year design project in the field of engineering construction and management.

8.112
Structures S1 L1T2

8.154
Structures F L1T2

Textbooks
No set texts.

8.171
Mechanics of Solids I
Prerequisite: Statistics Section of 8.003.
This subject forms part of 5.020 Engineering B. Concepts of stress, strain. Stress and deformation due to axial force; linear and non-linear problems; compound bars. Concepts of stiffness and flexibility. Bending moment and shear force in simple beams. First and second moments of area. Stress and deformation due to bending; linear and non-linear problems; use of step functions.

Textbook
Hall A. S. Introduction to the Mechanics of Solids S1 ed Wiley
8.172 Mechanics of Solids II SS L2T2
Prerequisites: 5.020, 8.003.
Structural statics. Bending moments, shear force and torsion. Stresses due to shear force in solid and thin-walled sections; shear centre. Torsion of circular, non-circular and thin-walled sections. Principal stresses and strains; yield criteria. Combined stresses. Concepts of instability.

Textbook
Hall A. S. Introduction to the Mechanics of Solids 1 ed Wiley

8.173 Structural Analysis I SS L2T1
Prerequisite: 8.172.
The analysis of pin-jointed trusses. The principle of work applied to trusses; forces in, and deformation of, statically determinate trusses; statically indeterminate trusses (force method); displacement method of analysis; variational theorems; non-linear analysis.

8.174 Structural Analysis II SS L2T1
Prerequisite: 8.173.
Force and displacement transformations. Rigid jointed frames and their components; the principle of work applied to frames; forces in, and deformation of, statically determinate frames; force and displacement methods of analysis; moment distribution; moving loads.

8.182 Structural Design II SS L1T2
Prerequisite: 8.181.
Extension of the fundamental concepts developed in Structural Design I to the behaviour and design of more advanced members and structures. Further consideration of safety and design loads including wind and earthquake loading. Some reference to codes of practice, concentrating on the principles behind the more important sections.
Reinforced Concrete: continuous beams and frames; two-way slabs and flat slabs; footings; members subjected to combined axial force and bending moment.
Prestressed Concrete; pre- and post-tensioning; simple beams, design for working loads and ultimate flexural strength; design of end blocks.
Steel: plate girders; moment connections and splices; residual stresses; columns with elastic and restraints; plastic and elastic design of continuous beams and frames.

8.191 Structural Engineering SS L1½T1½
Prerequisite: 8.182, Pre- or Co-requisite: 8.174.
2. Timber design. Emphasis on special properties of timber affecting the design of timber structures. Introduction to plastic design of steel structures. Application to continuous beams and portal frames.

8.250 Properties of Materials SS L2T2

Textbook
Polakowski N. H. & Ripling E. J. Strength and Structure of Engineering Materials Prentice-Hall
8.252
Civil Engineering Materials SS L3T1
Prerequisite: 8.272.

Textbooks
Lambe T. W. & Whitman R. V. Soil Mechanics Wiley
or
Neville A. Properties of Concrete Pitman

8.254
Civil Engineering Materials SS L3T1
Prerequisite: 8.252.

Laboratory. Examination of concrete and concrete materials; aggregate testing, mix design, mechanical properties of concrete.

Part II — Soil Engineering.
Foundation engineering; bearing capacity theory; allowable settlement, shallow and deep foundations; rafts; pile groups; site investigation as applicable to foundation design. Earth and rockfill dams, types, materials, stability analysis and design, construction problems.

Laboratory. Consolidation and shear strength testing of cohesive and granular soils. Evaluation of simple earth pressure, foundation engineering and earth dam theory.

Textbooks
Lambe T. W. & Whitman R. V. Soil Mechanics Wiley
or
Bowles J. E. Foundation Analysis and Design McGraw-Hill
Neville A. M. Properties of Concrete Pitman
Terzaghi K. V. & Peck R. B. Soil Mechanics in Engineering Practice Wiley

8.259
Properties of Materials FL1T2

8.250 Properties of Materials, plus the structure and properties of binary alloys; control of structure and properties, commercial alloys, materials selection.

Textbooks
As for 8.250.

8.271
Introduction to Materials

Part of 8.004 Civil Engineering B.

Part B: Experimental techniques for determination of mechanical properties. Effect of temperature and rate of loading.

8.272
Civil Engineering Materials I F L1½ T2½
Prerequisite: 8.004.

8.273
Civil Engineering Materials II
Prerequisites: 8.172, 8.272.

Textbooks
Terzaghi K. V. & Peck R. B. Soil Mechanics in Engineering Practice Wiley Int Ed
Ingles O. G. & Melcalf J. Soil Stabilization Butterworths
Mase G. E. Continuum Mechanics Schaum
or
McClintock F. A. & Argon S. eds Mechanical Behaviour of Materials Addison-Wesley

8.274
Civil Engineering Materials III F L1½T1½
Prerequisite: 8.273.

Textbook
Neville A. M. Properties of Concrete Pitman

8.301
Systems Engineering SS L2T2
Prerequisite: 10.001.

The systems approach to engineering problem formulation, modelling, and decision analysis is presented in a project format. Relevant system modelling concepts, techniques, and decision models are introduced during project development.

Textbook

8.351
Engineering Mathematics SS L2½T2½
Prerequisite: 10.002.

Textbooks
No set texts.

8.571
Hydraulics I S2 L1½T1½
Prerequisite: 5.020 (B.171).

Fluid properties: hydrostatics, stability of floating bodies; fluid acceleration; flow patterns, continuity; Euler, Bernoulli, energy and momentum equations.

Textbooks
As for 8.571.

8.572
Hydraulics II SS L1½T1½
Prerequisite: 8.571.

Dimensional analysis, hydraulic model theory, scale effect. Fluid turbulence, velocity distribution, surface resistance in flow past plane boundaries and in pipes and channels. Pipe flow, pipe networks, steady flow in uniform channels.

Textbooks
As for 8.571.

8.573
Hydraulics III SS L1½T1½
Prerequisite: 8.572.

Textbooks
As for 8.571.
8.581 Water Resources I
Prerequisite: 8.571.

Textbook
Tebbutt T. H. Y. *Principles of Water Quality Control* Pergamon

8.582 Water Resources II
Prerequisite: 8.581.
The hydrologic cycle, water and energy balances, climatology, atmospheric moisture, precipitation, runoff cycle, infiltration, stream gauging, hydrograph analysis, storm runoff and loss rates, design storms, flood estimation, yield and storage determination, groundwater.

8.583 Water Resources III
Prerequisites: 8.572, 8.582.
Hydraulics of groundwater systems, application to regional problems. Water resources planning, systems approach, applied aspects of water engineering.

8.632 Civil Engineering
Part II: Road Engineering. Route analysis and road location in the rural and urban environment including the location of bridges. Road geometrics and design, its influence on the behaviour of drivers. Landscape aspects of road design. Some examples of road design policies and their application. Types of roads and expressways and their applications, advantages and disadvantages. Types of intersections and interchanges, and some problems in their design. Pavement requirements, thickness design, pavement materials, gravels, stabilization, cement and bituminous concrete. Function of wearing courses. Road drainage requirements and examples of design, road construction methods and plant. Uses of electronic computation in Highway Engineering.

Textbooks
No set texts.

8.670 Introduction to Engineering Construction
Prerequisite: 8.670.
This subject forms part of 8.004 Civil Engineering B. Introduction to construction engineering, projects and decision agents, construction equipment and methods. Compulsory field excursion to a civil engineer construction site.

Preliminary Reading List
Pannell J. P. M. *An Illustrated History of Civil Engineering* Wiley

8.671 Engineering Construction
Prerequisite: 8.670.
Role of professional construction engineer. Project breakdown into construction activities and operations. Engineering construction characteristics of equipment, materials and methods. The analysis, estimating, design, field prediction models, field operation and control of construction operations. State of practice in engineering construction.

Textbooks

8.672 Planning and Management I
Prerequisite: 8.671.
Project definition, documents, estimating, planning, and scheduling models. Project finance and cost control methods. Field project management and reporting systems.

Textbooks
Standards Association of Australia *General Conditions of Contract CA 24.1*
O'Neill L. V. *Fundamentals of Estimating and Cost Control* Thomson
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.673</td>
<td>Planning and Management II</td>
<td>SS L1T2</td>
<td>Prerequisite: 8.672.</td>
</tr>
<tr>
<td></td>
<td>Types of engineering projects, the feasible, risk, financial and economic analysis of projects at the plant engineer, contractor, shire engineer, entrepreneur, government agency and national decision levels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Textbooks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investment Analysis, Supplement to the Treasury Information Bulletin (White Paper), Commonwealth Treasury, Canberra, July 1968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.674</td>
<td>Planning and Management III</td>
<td>SS L1T2</td>
<td>Prerequisites: 8.001, 8.672.</td>
</tr>
<tr>
<td></td>
<td>Project implementation, organization and control, field management techniques, industrial relations, field documentation and information flow, field change orders, risks, and delays, legal aspects, the relationship and duties between professional agents involved in projects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Textbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antill J. M. Civil Engineering Management 2nd ed A & R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.711</td>
<td>Engineering for Surveyors I</td>
<td>SS L1½T1½</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Textbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.712</td>
<td>Engineering for Surveyors II</td>
<td>SS L3T0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Municipal Engineering. Soil Mechanics: Soil forming processes; pedological classification; engineering classification of soils; pavement design based on engineering classification; effective stress concept for saturated and unsaturated soils, shear strength, flow of water through soils, consolidation; slope stability and earth pressures. Public Utilities: Relationship between urban development and each of water supply, wastewater and stormwater drainage, transport.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Textbooks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lambe T. W. & Whitman R. V. Soil Mechanics Wiley</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leeper G. W. Introduction to Soil Sciences MUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.713</td>
<td>Management for Surveyors</td>
<td>SS L2T0</td>
<td></td>
</tr>
<tr>
<td>8.701G</td>
<td>Decision Making in Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision theory, game theory, multiple objective planning, micro-economic theory, objectives and criteria, benefit/cost analysis, bidding applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.702G</td>
<td>Network Methods in Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graphs, flow-in networks, optimal paths, critical path schedule, resources levelling, simulation networks, stochastic networks, project management, further applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.703G</td>
<td>Optimization Techniques in Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Search, linear programming, non-linear programming, dynamic linear programming, geometric programming, calculus of variations, maximum principle, applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.704G</td>
<td>Stochastic Methods in Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Queueing, Markov processes, theory of storage, reliability, renewal, application, transportation and allocation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.705G</td>
<td>System Modelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The development of system models for specific problem areas and decision positions. Problem environment, goals, objectives, and definition established by field contact and team discussion, information flow requirements and the design of user-oriented decision processes. Class size is limited to selected students.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.706G
Experimental Methods in Engineering Research
Purposes of experimentation in engineering research. Design of experiments; factorial and other designs; replication. Analysis of experimental data: analysis of variance and covariance; spectral analysis; other statistical methods. Decision theory.

8.708G
Finite-Element Methods in Civil Engineering I

8.709G
Finite Element Methods in Civil Engineering II

8.710G
Advanced Topics in Optimization in Civil Engineering
Special studies in optimization in Civil Engineering design and construction to be offered from time to time by appropriate specialists.

8.714G
Advanced Topics in System Modelling
Special studies in system modelling to be offered from time to time by appropriate specialists.

8.723G
Construction Design
Design of field services and structures; compressed air services, coffer-dams, ground anchors, floating plant, formwork and falsework, bridge centring, well-points and dewatering systems.

8.724G
Construction Technology
Blasting techniques, tunnelling, rock-bolting and other ground support, harbours, railways, dams, bridges, structural steelwork techniques, pipeline construction, foundation grouting, pile-driving, compressed air work.

8.725G
Construction Accounting and Control

8.726G
Construction Law and Professional Practice

8.727G
Construction Planning and Estimating
Project initiation and development, feasibility studies, planning and estimating procedures, contract administration; estimating costs of labour, plant and materials, indirect costs and overheads, profit; construction administration. Preparation of cost estimate for a major civil engineering project.

8.728G
Design of Construction Operations
Heavy equipment, labour intensive, and composite operations; spatial layout and material flow concepts; the modelling of operations at the micro, macro, and systems level; engineered estimates and productivity prediction models; analysis of construction operations by timelapse methods; field methods at foreman, superintendent, engineer, and project manager levels; field studies of specific construction operations.

8.752G
Terrain Engineering
Basic geology, geological processes, civil engineering applications, photo interpretation, ground surveying.

8.753G
Soil Mechanics I
Soil pedology, fabric studies, unsaturated soils, transient water flow in soils.

8.754G
Soil Mechanics II
Failure theories, natural and stabilized soils, plastic equilibrium and general stability problems in soil masses. Application of statistics.
8.755G
Materials of Construction I
Concrete significance of tests and characteristics of constituent materials, target strength, mix design theories, workability, elastic properties, creep and shrinkage.

8.756G
Materials of Construction II
Metals: evaluation and acceptance tests, relaxation, fatigue, ductility and brittle fracture, structural alloys. Timber and plastics: mechanical and physical properties. Adhesives, laminates, elastomers, development of plastics for construction purposes.

8.758G
Soil Mechanics III

8.759G
Rock Mechanics
Elasticity and plasticity analyses for rock masses, discontinues strength and deformation of rocks, failure theories, an isotropy, creep in rock masses, permeability of rock masses, water flow in rock masses.

8.760G
Materials of Construction III
Concrete as a structural material. Strength and failure mechanism, crack propagation, bond with steel and cracking of reinforced members. Fatigue and durability of reinforced and prestressed concrete. Non-destructive testing. Recent developments and special concretes.

8.761G
Advanced Rock Mechanics
Finite element analysis and application to open and underground excavations, stability of rock slopes, design of underground openings, rock anchors, grouting, blasting—theory and techniques. Tunnelling techniques, weathering.

8.763G
Rock Mechanics Investigations
Elastic solutions applicable to flat jack and over-coring methods for measurement of field stress state and to field measurement of deformation. Laboratory projects. Measurement of strength and deformation characteristics of rock. Direct shear tests on joints. In-situ stress measurements by flat jack and over-coring. Plate bearing test. Joint survey. Field trip of approximately two weeks' duration.

8.764G
Composites in Civil Engineering
Physical and mechanical properties of composites.

8.766G
Welding in Structural Engineering
Terminology, welding processes, metallurgy, weldability of ferrous and non-ferrous metals, pre-heat and post-heat treatments, residual stresses.

8.768G
Fracture Mechanics
Theories of fracture, failure modes, cleavage. Ductile fracture, plastic deformation, brittle fracture, crack propagation, and arrest, energy releases. Ceramics, silicates, rocks, polymers.

8.771G
Foundation Engineering
A specialized study of theoretical and practical aspects of geotechnical engineering directly relevant to the analysis and design of foundation systems. The primary object of the course is to establish the state-of-art with particular emphasis on the application of recent theoretical developments to foundation engineering, including piles, rafts, raft-piles, laterally loaded piles, retaining structures and techniques of strengthening soils.

8.802G
Elastic Stability I
Euler strut; uniform and non-uniform cross sections. Eccentric loading; stressing beyond the elastic limit. Struts continuous over several supports. Stability of frames.

8.803G
Elastic Stability II

8.804G
Vibration of Structures I
Review of basic aspects. Analysis of lumped mass systems with various degrees of freedom. Vibration in beams and other continuous structures.
8.805G
Vibration of Structures II

8.806G
Prestressed Concrete I
Historical development. Methods of prestressing. Elastic analysis and design. Flexural capacity and shear capacity of prestressed elements.

8.807G
Prestressed Concrete II

8.808G
Prestressed Concrete III
Analysis and design of various prestressed concrete structures. Estimating and costing.

8.809G
Reinforced Concrete I
Historical development. Methods of analysis and design, including limit state concepts. Analysis and design for bending, compression and combined bending and compression. Serviceability requirements.

8.810G
Reinforced Concrete II

8.811G
Reinforced Concrete III

8.812G
Plastic Analysis and Design of Steel Structures I
The perfectly plastic material; the plastic hinge; plastic collapse of beams and frames; basic theorems; general design methods.

8.813G
Plastic Analysis and Design of Steel Structures II
Estimation of deflections; factors affecting plastic moment; shake-down; three-dimensional plastic behaviour; minimum weight design.

8.814G
Analysis of Plates and Shells

8.815G
Computer Analysis of Frames I

8.816G
Computer Analysis of Frames II

8.817G
Experimental Structural Analysis I
Dimensional analysis and principles of similitude, model analysis and design of models, Instrumentation and special methods of measurement. Evaluation of data.

8.818G
Bridge Design I

8.819G
Bridge Design II
8.830G
Hydromechanics

General equation of fluid motion, potential flow, conformal mapping, laminar flow, Navier-Stokes equations; turbulence, shear flows, jets and wakes, boundary layers, turbulent mixing, diffusion, air entrainment, cavitation, stratification.

8.831G
Closed Conduit Flow

Theories for energy loss in conduit flows, roughness at pipe walls and tunnels, design applications. Cavitation in conduits, transport of water borne mixtures in pipes, accuracy of flow measurements in pipe lines.

8.832G
Pipe Networks and Transients

8.833G
Free Surface Flow

Theory of water flow in open channels. Application of theory to design of hydraulic structures, spillways, control gates, energy dissipators, channel transitions. Use of hydraulic models.

8.834G
River and Estuarine Hydraulics

Channel flow in natural and urban channels, tidal and flood flows, loose bed and earthen bank stability, sediment transport, interfaces, diffusion and mixing processes, hydraulic models for river works.

8.835G
Coastal Engineering I

Theory of periodic waves as applied to tides and wind generated waves in water of varying depths. Wave and tide prediction.

8.836G
Coastal Engineering II

Wave forces on structures, shore processes and beach erosion. Estuarine hydraulics, wave and tide models.

8.837G
Hydrological Processes

Hydrologic cycle, atmospheric moisture, precipitation process, precipitation analysis, evaporation and transpiration, storm runoff process, interception, infiltration curves, land use and management, instruments.

8.838G
Hydrological Design

Steam gauging, hydrography analysis, storm runoff, loss rates, flood estimation, rational method, unitgraphs, flood frequency, storage-yield analysis.

8.839G
Advanced Methods of Flood Estimation

Flood routing, catchment characteristics, runoff routing, synthetic unitgraphs, urban drainage, regional empirical flood estimation methods.

8.840G
Hydrological Models and Data Synthesis

Hydrological systems and models, deterministic catchment models, stochastic hydrology, storage-yield, probability of failure, storm models and extreme precipitation, hydrograph models and unitgraph derivation.

8.841G
Hydrometeorology

Water and energy balances, atmospheric moisture, precipitation, evaporation and transpiration, snow and snowmelt, extreme precipitation.

8.842G
Groundwater Hydrology

Confined and unconfined aquifers, analogue and digital models of aquifer systems, water movement in the unsaturated zone, recharge, groundwater quality, sea water intrusion.

8.843G
Groundwater Hydraulics

Mechanics of flow in saturated porous materials, steady and unsteady flow to wells, leaky aquifers, partial penetration, multiple aquifer boundaries, delayed yield from storage, regional studies.
8.844G
Soil-Water Hydrology
Hydrologic characteristics of unsaturated media, hysteresis, theory of infiltration, drainage and redistribution studies, laboratory and field instrumentation, applications to field problems.

8.845G
Investigation of Groundwater Resources
Evaluation and development of groundwater resources, seismic and resistivity methods, well-loggine techniques, drilling methods, management of groundwater resources, conjunctive use studies.

8.847G
Water Resources Policy
Resource economics, water supply, water demand, multiple objective planning, multiple purpose projects, water law, water administration, case studies.

8.848G
Water Resources System Design
Principles of the optimal design and operation of multiple purpose, multiple component, water resource systems; evaluation of cost and benefits in complex and simple systems.

8.849G
Irrigation
Soils, soil-water relationships, plants, climate, crop requirements; water budgets, sources, quality, measurement; irrigation efficiency. Design of irrigation systems, appurtenant works, distribution.

8.850G
Drainage of Agricultural Land
Characteristics of drainage systems, steady and unsteady state drainage formulas, conformal transformations solutions, soil characteristics, field measurement of hydraulic conductivity and soil water pressure, significance of unsaturated zone, practical aspects.

8.851G
Unit Operations In Public Health Engineering
Theory of physical, chemical, biological, and hydraulic processes used in both water and wastewater treatment. Applications where these are common to both water and wastewater treatment.

8.852G
Water Distribution and Sewage Collection
Water collection, transmission and distribution systems—layout design and analysis, reservoirs, pumping. Sewage collection system design and analysis—capacities, corrosion, pumping.

8.853G
Public Health Science
Science in public health engineering; environmental factors. Applications of chemistry, physics, biology, and biochemistry to water and wastewater technology. Control of disease and industrial hygiene; community health and epidemiology. Food technology. Air pollution and solid wastes. Radioactivity and radioactive wastes.

8.855G
Water and Wastewater Analysis and Quality Requirements
The effects of impurities in water and wastewater on its suitability for various beneficial uses, and methods used for detecting impurities. Analytical methods used in water and wastewater treatment for monitoring and process control.

8.856G
Water Treatment
Application of processes and process variations used to upgrade the quality of water for specified uses, with particular reference to the treatment of water for municipal use.

8.857G
Sewage Treatment and Disposal
Application of processes and process variations used to improve the quality of sewage effluent, and the disposal of the effluent. Re-use of effluents where applicable. Sludge treatment and disposal.

8.858G
Water Quality Management
Fundamental concepts; systems approach to quality aspects of water resource systems; quality interchange systems; quality changes in estuarine, surface, and ground water. Quality management by engineered systems. Economic criteria relating to water use and re-use systems.

8.901G
Civil Engineering Elective I
A Session I occasional elective on a civil engineering topic, selected according to current demand and availability of local and visiting specialists.
8.902G
Civil Engineering Elective II
A Session 2 occasional elective on a civil engineering topic, selected according to current demand and availability of local and visiting specialists.

8.909G
Project

8.918G
Research Project

Department of Industrial Engineering

Undergraduate Study

18.011
Industrial Engineering 1A
F L1¼ T½
Prerequisite: 10.022. Co- or prerequisite: 5.071, 5.111.

Textbook
Radford J. D. Richardson D. B. Production Engineering Technology Macmillan

18.012
Industrial Engineering IIA
F L2T1
Prerequisites: 5.112, 18.011.

Textbook
Radford J. D. & Richardson D. B. Production Engineering Technology Macmillan

18.021
Industrial Engineering IB
F L1½ T½
Prerequisite: 10.022. Co- or prerequisite: 5.071.

Textbook
Smith G. W. Engineering Economy Iowa State UP 1973

18.022
Industrial Engineering IIB
F L2T1
Prerequisites: 5.071, 18.021.

Design of Manufacturing Facilities: Product and objectives, equipment selection. Charting and systematic improvement of methods, factory and workplace layout, the factory environment. The Use of Human and Physical Resources: Motion and time study, financial incentives, applications to machine controlled processes. Work sampling and data collection, predetermined motion-time systems.

Industrial Psychology: Individual differences, operator selection and learning, motivation to work, conflict and frustration, social aspects of industry, worker participation.

Textbook
Stevenson M. G. Methods Engineering NSWUP
18.121 Production Management F L3T0
Prerequisites: 10.031, 10.331.

Engineering Economy: Economic objectives of the firm. Economic measures of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment.

Process Selection: Evaluation of alternative processes, make or buy decisions, planning the process sequence, case studies.
Production Planning: Forecasts, capacity decisions, plant location, factory design and layout.

Production Systems: Computer systems for production control and information flow, computer control of machines and groups of machines, socio-technical systems.

Project: The project will consist of the design analysis for production and the planning of the production system for the manufacture of a simple engineering assembly. A comprehensive written report will be required.

Textbooks
Gladman C. A. Geometric Analysis of Engineering Designs
Aust Trade Pub
Radford J. D. & Richardson D. B. Production Engineering Technology Macmillan

18.431 Design for Production F L2T4
Prerequisite: 5.112.

Textbooks
Gladman C. A. Geometric Analysis of Engineering Designs
Aust Trade Pub
Radford J. D. & Richardson D. B. Production Engineering Technology Macmillan

18.432 Design of Production Systems F L2T4 (Project)
Prerequisites: 5.071, 18.011, 18.021. Co- or prerequisite: 18.012.

This subject may be taken only by potential graduates.

Interchangeable Manufacture: Design for production, tooling gauges, metrology.

10.031 Production Systems: Computer systems for production control and information flow, computer control of machines and groups of machines, socio-technical systems.

18.051 Operations Research F L2T1
Prerequisites: Either 5.071 and 18.021 or 10.031, 10.331 and 18.121.

The formulating and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queuing theory, inventory models, replacement and reliability models; simulation. These techniques applied to situations drawn from industrial fields, eg production planning and inventory control. Practical problems of data collection, problem formulation and analysis.

Textbook

Graduate Study

18.061G Industrial Experimentation I
Design of experiments with reference to industrial problems; planning experiments; significance testing; simple comparative experiments, accelerated experiments; fatigue testing, tool life testing; economic aspects of experimental design; analysis of variance of randomized block, latin square and factorial experiment designs.

18.062G Industrial Experimentation II
Regression analysis; use of orthogonal polynomials in regression analysis and analysis of variance; confounding in factorial design; response surfaces and determination of optimum conditions.
18.073G
Ergonomics

18.080G
Organization and Administration
The development of the theory and practice of organization in industry. The nature and types of organizations. The application of the principles of organization in the design of organizational structures.

18.083G
Industrial Studies
Studies in the organizational and executive action requirements of certain specific industrial situations, using the case study method. Members of the class are required to make formal verbal presentation of solutions.

18.084G
Industrial Applications of Probability Theory
Probability and Statistics: An Introduction to probability theory. Random variables and distribution functions. The Binomial, Poisson and Normal distributions in particular. Standard sampling distributions, including χ^2, t and F. Estimation by moments and maximum likelihood. Confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to linear regression. Least squares adjustment of data. *Industrial Applications: Tutorial problems from the fields of sampling inspection, quality control, control charts. Simple economic models—for example, the newsvendor problem, length of steel bars.*

18.171G
Inspection and Quality Control
Economics of measurement; advanced measuring and inspection methods; non-destructive testing; quality control systems; sampling by attributes and variables; standardization; case studies; process capability and variability; machine tools acceptance testing; alignment procedures.

18.271G
Theory of Machining and Forming Processes

18.272G
Technology of Machining and Forming Processes
Selected topics from: Machine tool vibration; design of machine tool elements; economics of machining and forming; numerical and adaptive control of machine tools; design of dies and cutting tools for strength and wear resistance; automation.

18.371G
Factory Design and Layout

18.380G
Methods Engineering

18.461G
Design for Production
Influence of manufacturing processes on design; design simplification and standardization; value engineering; economics of process selection; case studies.

18.462G
Industrial Design
Economic considerations; fundamentals of design; influence of processes; case studies.

18.463G
Tool Design
Advanced theories and techniques for design and specification of cutting tools; jig and fixture design; press tool design, gauge design; design of selected machine tool components; computer aided tool design.
18.471G
Design Communication
Communication system in design; aids to design communication; engineering drawing practice; standardization; interpretation of design information.

18.472G
Engineering Design Analysis
Error analysis in design; economic tolerance selection; probabilistic tolerancing; case studies using industrial design.

18.571G
Operations Research I
The formulation and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queueing theory, inventory models, replacement and reliability models and simulation. These techniques are applied to situations drawn from industrial fields, for example, production planning and control. Practical problems of data collection, problem formulation and analysis.

18.574G
Operations Research II

18.580G
Operations Research
The formulation and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queueing theory, inventory models, replacement and reliability models and simulation. These techniques are applied to situations drawn from industrial fields, for example, production planning and control. Practical problems of data collection, problem formulation and analysis.

18.671G
Decision Theory
Theories of choice, value, risk and uncertainty for the individual and for multi-person situations. Statistical decision theory, Bayes and minimax rules.

18.680G
Decision Making Under Uncertainty
The structure of decisions: payoff matrices, decision trees. Principles of choice; utility of risky choice; subjective probability. Analysis of decisions under risk; certainty equivalents; value of imperfect information. Bayesian criteria of choice and their application to solving realistic problems.

18.681G
Engineering Economic Analysis
Price-output decision under various competitive conditions. The time-value of money, net present worth and DCF rate of return, and their application in the selection and replacement of processes and equipment. Construction and optimization of particular models, eg replacement, capital rationing. Measures of profitability.

18.761G
Simulation in Operations Research

18.770G
Stochastic Control

18.772G
Information Processing Systems in Organizations
The place of operations research in information processing systems. Computer hardware and software. Data structures and data manipulation techniques. Typical structures of suites of programs. The life cycle of information processing systems. System design. Applications packages with emphasis on systems for production and inventory control. Major problems in information processing systems.

18.773G
Optimal Control in Operations Research
Brief survey of dynamic optimization techniques. Introduction to the calculus of variations and the maximum principle for both continuous and discrete systems. Applications to operations research problems drawn from the areas of production and inventory control, machine maintenance, investment, and natural resource utilization.

18.774G
Applied Stochastic Processes
Examples of stochastic processes, basic concepts and Markov chains. Renewal theory. Applications to queues, inventory, replacement, risk business and marketing. Markov decision processes.
18.775G
Networks and Graphs
Basic concepts. Application of Hamiltonian paths, Euler cycles, trees, planar graphs, dominating and independent sets to operations research problems. Shortest route algorithms. Concept of maximum flow in a network applied to transportation assignment and scheduling problems.

18.776G
Production and Inventory Control
Basic inventory replenishment models, continuous stock review, periodic re-ordering and base stock models, with deterministic, probabilistic, and dynamic demands. Variations of the basic models to include additional features (e.g., demand dependent on delivery time). Costs of the complete system in practice. Production smoothing models. Forecasting techniques. Optimum stock locations in multistage systems. Practical inventory surveys and control systems.

18.777G
Time Series and Forecasting

18.778G
Scheduling and Sequencing

18.779G
Game Theory

18.780G
Production Control
Corporate objectives and organization. The production environment. The detailed mechanics of control of jobbing production and its extension to repetition batch and continuous production. Manufacturing organization and controls, functions, inter-relationships and information flow. Relevance to computerized control. Introduction to inventory control, and the analysis of some typical engineering planning decisions.

18.871G
Mathematics for Operations Research

18.872G
Mathematical Programming A

18.873G
Mathematical Programming B

18.874G
Dynamic Programming

18.875G
Geometric Programming
The geometric programming theory is developed for convex and non-convex mathematics programs. The theory is applied to polynomial and posynomial programming. As projects actual polynomial and posynomial programs will be solved.

18.876G
Advanced Mathematics for Operations Research
A survey of mathematical ideas which are of value in Operations Research. Topics will be selected from the following areas: Set Theory, Real Analysis, Matrix Theory, Topology, Function Spaces, Linear Operator Theory, Inequalities, Stability, Complex Analysis, Convex Analysis, Distribution Theory, Group Theory and Measure — Theoretic Probability Theory.
18.877G
Large-scale Optimization

School of Transportation and Traffic

Graduate Study

19.101G
Applications and Practice of Traffic Engineering
1. Vehicle and driver characteristics; 2. measurement of traffic; 3. the design and execution of traffic surveys; 4. kinematic design of highways; capacity, lanes, medians, shoulders; 5. intersection design and control; 6. traffic control devices and regulations; unbalanced flow, speed limits and zoning, pedestrian control; 7. street lighting: methods of discernment, characteristics of lighting systems, location and spacing; 8. organization of traffic engineering functions; and 9. traffic law and enforcement.

19.111G
Theory of Traffic Behaviour

19.121G
Theory and Practice of Statistics for Traffic Engineers

19.131G
Land Use and Transport Planning
The development of the basic laws of land use and transport system interaction. Covers models for traffic generation, desire line distribution and inter- and intramodal assignment. The systems and programming philosophies of transport planning. Mathematical programming.

*Subjects which allow the presentation of special topics, particularly by visiting academics.
19.141G
Transport Systems Analysis
Historical introduction to sea and land transport systems. The impact of the internal combustion engine and subsequent rise of automobile and air transport. Description and methods of measurement of performance characteristics of different transport modes: rail, road, sea, air, pipeline, eg capacity, speed range, unit operating costs. Operating characteristics of terminal and transfer facilities. Frequency and speed of service, timetables, peak hour problems. Cargo and passenger systems, description of cargo characteristics. Inventory, insurance and packaging costs. Development of criteria for distribution and assignment of cargo and passenger traffic.

19.151G
Economics of Transport Part A

19.152G
Economics of Transport Part B
Cost and price analysis of each of the transport modes (road, rail, air and sea). Welfare analysis and taxation theory with respect to transport. Economics of location; economics of land use models; regional trade model.

19.161G
Characteristics of Transport
Historical Introduction to sea and land transport systems. Description and methods of measurement of performance characteristics of different transport modes: rail, road, sea, air, pipeline, eg capacity, speed range, unit operation costs. Operating characteristics of terminal and transfer facilities. Cargo and passenger systems, description of cargo characteristics. Inventory, Insurance and packaging costs. Criteria for distribution and assignment of cargo and passenger traffic.

19.171G
Fundamentals of Transport Economics

19.181G
Introduction to Statistics
Introduction to probability theory. Random variables and distribution functions: binomial, normal and Poisson. Standard sampling distributions \(\chi^2 \), t and F. Estimation of confidence intervals. Tests for significance based on above distributions. Introduction to linear regression and least squares adjustment of data.

19.191G
Introduction to Traffic Theory

19.211G
Fundamentals of Transport Planning
Generation of traffic, estimation of traffic growth and assignment of traffic to competing traveling modes. Land use and transport interaction.

19.221G
Traffic Operation and Control
Traffic measurements and data handling. Studies of capacity of roads and intersections, levels of service, delay. Accident analysis and treatments. Traffic service — street lighting and guidance. Principles of traffic design, improvements.

19.909G
Project

19.918G
Research Project

19.936G
Research Project
School of Highway Engineering

Graduate Study

20.002G
Soil Mechanics Applied to Road Engineering

20.003G
Road Engineering Practice

Highway Law: Highway Law, the law of contracts, definition of a contract, five necessary elements for a valid contract. Operation and interpretation, fundamental principles and established practice, time for performance, discharge or dissolution, remedies for breach of contract, variations. Powers and duties of the engineer, agency, commercial arbitration, approvals, scope of obligations and authority, both legal and ethical. Related contracts, carriage of goods by land, insurance, master and servant (contracts of employment), sale of goods, arbitration act.

Contract Documents: Engineering contracts, types of contract, contract documents, general conditions of contract, drawings, specification, schedule or Bill of Quantities, tenders, letter of acceptance, the agreement, mechanics of execution of a contract, contract law in other countries. Specifications, purpose and relationship to other contract documents, principles of specification writing, basic layout, method of approach and composition, bills of quantities, purpose and relationship to other contract documents, methods of presentation, principles of preparation and standard procedures, units.

Aggregates: Types of aggregates, properties of aggregates, review of available tests, difficulties of testing, relationship between results of arbitrary and fundamental tests, effect of various factors on the result obtained with Los Angeles and aggregate crushing tests, importance and determination of surface texture of aggregate, crushing and preparation of aggregate and factors affecting particle shape, importance of fine silica content in crushing, presence of secondary minerals and other factors affecting durability, alkali aggregate reaction, proportioning (blending) aggregates.

20.041G
Road Location and Design — Part I

Preliminary and final survey, geometric designs of roads for rural and urban conditions, sight distances, stopping distances, passing distances, road gradients, super-elevation, horizontal curves, vertical curves, appreciation of visual effects of combinations of horizontal and vertical curves, design models, types of cross section, speed change lanes, median lanes, median openings, design of grade road junctions, expressways and parkways, types of and design of grade separation crossings. Road planning, design traffic load estimation, urban highway network planning and design road capacity and level of service. Drawing office examples in design for rural and urban conditions.

20.042G
Road Location and Design — Part II

Traffic Engineering: Traffic measurements, relation between flow and concentration, speed, sampling, headway distributions and gap acceptance, delays to conflicting streams, car following behaviour, traffic signals (isolated and linked), street lighting, accident studies and traffic control warrants. Photogrammetry: Drawing office methods of photo measurement and interpretation, radial line plotting, parallax bar measurements, controlled mosaic assembly.

Town Planning and Landscape Architecture: Analysis of the 20th century town, principles of land use zoning, planning for traffic and transport, public open spaces, the planning of residential areas, planning for industry, visual quality of urban and rural environment, the city centre, vegetation and environment, plant materials, principles of landscape design, examples of landscape design, street and roadside planting, urban sociology.

Hydrology: Urban drainage design, hydraulic design of highway structures, introduction to run off process and estimates, review of and discussion of the theoretical basis for the most important existing methods of calculating culvert and gully sizes.
20.052G
Road Location and Design — Part II
(Surveyors)
As for 20.042G, omitting section on Photogrammetry and adding: Use of computers in Highway Engineering: capabilities and limitation of integrated design systems used in highway design.

20.061G
Road Location and Design — Part I
As for 20.041G.

20.062G
Road Location and Design — Part II
As for 20.042G.

20.121G
Soil Analysis, Pavement and Bridge Foundation Design — Part I
Strength and deformation properties of saturated and unsaturated soils, application of theories of plasticity in stability analysis, treatment of weak grounds, marshes, etc. sand drains, investigation design and field observations of stability of natural slopes, cuttings and embankments, earth pressures relative to abutments and wing walls; design and construction of shallow and deep bridge foundations, factors of safety, use of piles and caissons, grouting techniques, settlement prediction and measurement, subsoil exploration, engineering geology, ground water lowering, subsoil drainage.

20.122G
Soil Analysis, Pavement and Bridge Foundation Design — Part II
Soil classification, function and material specifications of pavement base (base courses), moisture under steady and non-steady conditions and under temperature gradients, moisture equilibrium, soil suction, frost heave, laboratory and field methods of soil compaction, soil structure, field control of compaction, performance of compaction plant, stage compaction, area compaction, proof rolling, cement, lime, bituminous and mechanical stabilization, environmental factors, stress distribution in layered systems, dynamic behaviour of soil and flexible pavement structures, design criteria for flexible pavements, critical review of some current design methods, modern trends, airfield runways pavement design, review of pavement evaluation by surface deflection AASHO road test and other methods, design of overlays, evaluation of subgrade reaction, analysis of temperature stress in concrete slabs, design of rigid pavement analytical and empirical methods.

20.131G
Road Construction — Part II (Surveyors)
Soil Engineering for Highways: The origin and formation of soils, soil as an engineering material, classification of soils, site investigation, sampling and in situ testing, stress-strain and consolidation characteristics of soils, failure hypotheses, laboratory test methods, moisture movement in saturated and unsaturated soils, soil suction, compaction characteristics of soils, field and laboratory compaction, specifications for compaction, the role of soil structure, the effects of temperature and other environmental factors, the improvement of soil properties by mechanical stabilization or by the use of binders or additives.

Pavement design methods for flexible and rigid pavements, stability analysis and field observation of natural slopes, cuttings and embankments, earth pressure relative to abutments and wing walls, reinforced earth, sand drains, ground water lowering, applications of computers in soil engineering.

20.211G
Road Construction — Part I
Materials Science: Rheology, study of linear and non-linear materials, mechanistic and phenomenological approaches, time and temperature dependent processes, state process theory, viscousity and elasticity, multiphase materials, mathematical models for material behaviour, three dimensional analyses of stress and strain, failure mechanisms in continuous and particulate materials, choice of testing methods and their influence on results, blending materials, wave propagation methods and their interpretation, factors affecting road surface friction at high and low speeds, measurement of road surface friction.

Bituminous Materials: Forms and origins of binders, emulsions selection criteria, laboratory tests, physical and chemical properties of binders, design of dense and open graded bituminous mixes, stability tests, engineering properties of mixes, continuous and batch manufacture of mixes, construction of bituminous concrete surface courses and full depth pavements, overlays, special forms of bituminous construction, heavy duty surfacings, seal coats, primes and primeseals, durability of bituminous materials, stripping, climatic factors, maintenance procedures, comparisons of Australian and overseas practice.

Aggregates: Types of aggregates, properties of aggregates, review of available tests, difficulties of testing, relationship between results of arbitrary and fundamental tests, effect of various factors on the result obtained with Los Angeles and aggregate crushing tests, importance and determination of surface texture of aggregate, crushing and preparation of aggregate and factors affecting particle shape, importance of free silica content in crushing, presence of secondary minerals and other factors affecting durability, alkali aggregate reaction, proportioning (blending) aggregates.

Geology: Geophysical methods of investigating foundations, conditions of proposed bridge sites, roads or other engineering constructions. The seismic refraction methods and specialized techniques for the detailed investigation of the depth and quality of subsurface rock and overburden. Electrical resistivity methods and their use in foundation investigation, finding overburden thickness, or related problems.
petrological interpretation for highway engineers, petrology, rock weathering, the clay minerals and their importance in engineering geology.

Quarrying and the Use of Explosives: Acquisition and administration of plant, estimating plant productivity and cost. Quarrying, crushing and screening. Types and application of explosives.

Seminar: One day seminar on maintenance requirements and methods.

20.212G
Road Construction — Part II
Highway Law: As for 20.003G.
Contract Documents: As for 20.003G.
Construction Surveying and Setting Out: Lectures on and field exercises in difficult construction and setting out problems.
Linear Programming and Critical Path Analysis: Introduction to operations research, critical path methods for planning and control, PERT techniques, available computer systems, administration of roadworks.
Use of Computers in Highway Engineering: Introduction to computers and programming, discussion of capabilities and limitations of integrated design systems used in highway design.
Statistical Analysis in Highway Engineering: Quality control, laboratory techniques, design of experiments.
Seminar: One day seminar on engineering management.

20.213G
Road Construction — Part III
Plant Operation and Earthworks: Construction plant, planning and supervision of earthmoving operations.
Construction Setting Out: Lectures on and field exercises in difficult construction and setting out problems.

20.221G
Road Construction — Part I (Surveyors)
Bituminous Materials: As for 20.211G.
Concrete: Kinds of cement and their principal properties, additives, mix design, placing and control of quality, compaction, curing, testing of fresh and set concrete, properties of concrete.
Aggregates: As for 20.211G.
Geology: As for 20.211G.
Quarrying and the Use of Explosives: As for 20.211G.

20.231G
Road Construction
Specifications, bills of quantities, engineering drawings for roadworks, feasibility and cost-benefit analyses, supervision of construction, progress payments, cost estimation, construction and personnel management, report writing.
Construction planning, use of critical path methods, setting out roadworks, selection and use of roadmaking plant including fixed and mobile units, quality control.

20.232G
Highway Materials
Selection, evaluation and specification of materials for flexible and rigid pavements and for road embankments. Forms and origins of bituminous materials and road tars, laboratory tests, seal-coats, primes and primessels, design of bituminous mixes, wearing courses, full depth asphalt pavements, manufacture of bituminous concrete, maintenance procedures.
Types of aggregates and their application, laboratory tests, relevance of tests to pavement performance, crushing, screening, grading of aggregates, durability of aggregates, blending procedures, quarrying and use of explosives, selection and testing of gravels.
Types of cement, additives, design of concrete mixes, transport and placing of concrete, compaction and curing, laboratory and in situ tests, quality control.

20.311G
Highway Structures — Part I
Systems analysis in the choice of location and structure type of bridges, site investigation, foundation, waterways, aesthetics of design, design and planning constraints, optimum criteria, bridge structure analysis, orthotropic plate theory, articulated plate theory, theories of load distribution, matrix methods of analysis.

20.312G
Highway Structures — Part II
Bridge design — concrete, steel, prestressed concrete, culvert design and construction under high fills, foundation, substructure and retaining wall design, computer programs for design and optimization.
20.421G
Law and Administration
The law relating to the planning and construction of roads and highways and associated works, constructional law, industrial law, company law, Commonwealth and State laws relating to roadworks. Relevant sections and ordinances of Local Government and Main Roads Acts. Supervision and administration of contracts, interpretation of documents, organization of construction and maintenance works. Types of contract and their application, general conditions of contracts and responsibilities of engineer thereunder, sureties, guaranties, arbitration, drawings, specifications, bills of quantities, their function and inter-relationship, employment and discharge of labour, cost accounting, industrial awards.

20.430G
Highway Engineering Elective I
An occasional elective on a Highway Engineering topic selected according to current demand and availability of local and visiting specialists.

20.431G
Highway Engineering Elective II
An occasional elective on a Highway Engineering topic selected according to current demand and availability of local and visiting specialists.

20.501G
Management for Highway Engineers
Organization and Management: The purpose of management; planning, organizing, directing, co-ordinating. The qualities of management; technical skill, human skill, conceptual skill. Behavioural Science and Personnel Management: The psychological and sociological factors affecting organizational behaviour and affecting the individual. Perception, learning, motivation, conflict and frustration. Personality development and learning theory. Group dynamics, systems and subsystems, individual and group motivation, communications within the organization, leadership theory, the nature of authority, human engineering principles, techniques of personnel control. Recruitment, selection, promotion, job evaluation and salary administration, education, training, placement policies, incentive schemes. Staff reporting and counselling, appraisal and control of personnel. Public relations.

Decision Making: Dynamic programming, decision trees, Bayesian and other decision making techniques. Operations research techniques: Problems of allocation, the transport techniques, mathematical programming, the simplex method, inventory and queueing problems.

School of Nuclear Engineering

Undergraduate Study

23.051
Nuclear Power Technology
L2½ T½
Nuclear processes, reaction rates, fission and energy release. Neutron multiplication, slowing down and diffusion. Nuclear reactor criticality and burnup, neutron kinetics and reactor control.
Thermal and fast reactor types, operation, environmental and safety aspects. Nuclear fuel enrichment and utilization, nuclear power costing and economics.
Heat generation and removal, fluid dynamics and heat transfer aspects of gas and liquid coolants, boiling, two phase flow and burnout. Structural mechanics in reactor technology, thermo-mechanical performance of fuel pins and pressure vessels.

Textbooks
No set texts.

Graduate Study

23.013G
Neutron Transport and Diffusion
Neutron and nuclear reactions, the formation of neutron spectra in infinite multiplying media, transport and diffusion theories, and their application to the analysis of heterogeneous reactor lattices.

23.014G
Fewgroup Reactor Theories
The derivation and use of fewgroup reactor models for the macroscopic analysis of finite reactor criticality, burnup and control.

23.015G
Multigroup Reactor Theories
A selection of topics from general reactor theory, variational principles, perturbation theory, and multigroup transport theory, for the general problem of three-dimensional fine scale neutron flux distribution analysis.

23.016G
Neutron Kinetics and Reactor Dynamics
The derivation and application of point reactor kinetic models to the study of macroscopic power reactor dynamics, stability and control, and the development of general space-time kinetic models.
23.023G Reactor Thermal Performance
The processes of heat generation, conduction, heat transfer, and heat and momentum transport in fluids, in relation to the thermal performance of reactor channels and cores.

23.024G Boiling and Two-Phase Flow
Subcooled and bulk boiling, boiling crises, and the special problems associated with the analysis of reactor channel and core performance under boiling and two-phase flow conditions.

23.025G Reactor Structural Mechanics
A study of the theoretical models and numerical techniques required for the analysis of mechanical and thermal stress, deformation, and failure modes of reactor core components and containment structures under high temperature, neutron and gamma irradiation.

23.026G Reactor Systems Analysis
Nonlinear and linear system dynamics and stability theory applied to reactor processes and components, for the development and use of overall reactor and power system dynamics models.

23.027G Boiling Reactor Dynamics
The special problems associated with the dynamics and stability of fluid cooled reactors under boiling conditions.

23.028G Reactor Accident and Safety Analysis
The mathematical modelling and computation of ideal and actual reactor accident histories, particularly for fluid cooled systems, and the application of probability theory to reactor hazard evaluation.

23.032G Mathematical Analysis and Computation
Mathematical methods, partial differential equations, special functions, and numerical methods for digital computation, relevant to Nuclear Engineering.

23.033G Matrix Theory and Computation
Matrix theory and matrix computations required for the numerical solution of problems in neutronics, fluid dynamics, structural mechanics, etc, arising in the analysis and prediction of nuclear power system performance.

23.034G Random Processes and Reactor Noise
The mathematics of random processes applied to fluctuation phenomena in nuclear reactors, and the practical application of noise analysis techniques to reactor monitoring, control, and parameter estimation.

23.042G Nuclear Fuel and Energy Cycles
The utilization of nuclear energy, the thermodynamics of nuclear power systems and applications, and the study of nuclear fuel cycles.

23.043G Nuclear Power Costing and Economics
The principles of nuclear power cost estimation for various reactor types and applications, the comparative evaluation of nuclear power systems, and the problem of reactor strategy.

23.044G Nuclear Engineering Optimization
The theory and application of function and functional minimization techniques to problems of design, control and operation of nuclear reactors and associated nuclear fuel supply complexes.

23.045G Uranium Enrichment Technology
The theory and technology of uranium enrichment by the diffusion, ultra-centrifuge and nozzle processes; the economics of enrichment within the nuclear reactor fuel cycle, in relation to optimal reactor strategy and resources utilization.

23.909G Project

23.918G Research Project

23.936G Research Project
School of Surveying

Undergraduate Study

Note: Electronic Calculators
Students enrolled in the BSurv Course are required to equip themselves with an electronic calculator. Details of the features required are available from the School.

29.001 Surveying IA SS L3T2½

Textbook
Whyte W. S. Revision Notes on Plane Surveying Newnes-Butterworth

29.002 Surveying IB SS L1T5½
Tacheometric surveys: calculation, plotting and contouring. Minor instruments. Surveying project embodying the selection of instruments and the design and application of field procedures. Introduction to plotting and plan drawing.

Textbooks
No set texts.

29.011 Surveying IIA S1 L1½ T3
Plane triangulation, trigonometrical heighting, barometric heighting, tacheometry.

29.012 Surveying IIB S2 L1T3½
Engineering surveys, curves, volumes. Survey errors, adjustment of instruments.

29.103 Surveying III SS L4T3

29.151 Survey Computations I SS L3½ T2½

Textbook
Maughan M. Survey Computations School of Surveying Monograph No 5

29.152 Survey Computations II SS L2T1

Textbook
Maughan M. Adjustment of Observations by least squares School of Surveying Monograph No 6

29.161 Hydrographic Surveying I SS L1T1
Principles, objectives, equipment and methods of hydrographic surveying.

29.162 Hydrographic Surveying II SS L2T1
Advanced techniques of hydrographic surveying, theory and applications. Tidal measurements and analysis.

29.173 Project S2
An elective project involving investigation of an assigned topic.

29.182 Cartography Elective SS L1T1

29.183 Cartography Advanced Elective SS L1½ T1½
Cartographic Technology: Drawing techniques, scribing techniques, type and symbols, photomechanical methods, screens and masks, colour registration, proofing methods, principles of lithography. Automation of cartographic techniques. Planning and organization.
29.192
Survey Camp
A two-week field camp. Including the preparation of a report and plans.
Textbooks
As for 29.151 Survey Computations I.

29.193
Professional Training
A five-month period of practical experience including the submission of a report.
In special circumstances, a five-week practical project, supervised by the School, may be substituted. The project is equivalent to 160 contact hours.

29.194
Survey Camp
A two-week field camp followed by two weeks on campus for completion of computations.
Textbooks
As for 29.152 Survey Computations II, 29.211 Geodesy I, 29.311 Astronomy I and 29.511 Photogrammetry I.

29.211
Geodesy I
SS, F L4T2
Textbooks
Mather R. S. The Theory and Geodetic Use of some Common Projections School of Surveying UNSW Monograph No 1
Survey Integration Committee Integrated Survey Grid Tables Dept of Lands Sydney

29.212
Geodesy II
SS, F L2T1
A. Adjustment of control surveys using the condition and parametric methods of least square adjustment for measured angular and linear quantities. Variance/covariance matrix; variance factor; weight coefficient matrix. Elementary statistical testing of observations and adjusted values.
B. Relationship between geoid and ellipsoid; astro geodetic levelling; ellipsoidal elevations; mean sea level and the geoid. Methods for establishing a world geodetic system. Gravity and its use in geodesy.

29.213
Geodesy III
SS L2T1

29.311
Astronomy I
SS L2T1
Textbooks
Mackie J. B. The Elements of Astronomy for Surveyors 6th ed Griffin
or
Textbook of Field Astronomy HMSO
Star Almanac for Land Surveyors for Current Year HMSO

29.312
Astronomy II
SS L2T1
Azimuth by circum-elongation, circum-polar and sun observations. Optimum position of observation, balancing of observations. Position line methods.
Textbook
Star Almanac for Land Surveyors for Current Year HMSO

29.313
Astronomy III
SS L2T1
A study of topics selected from the following: Corrections to observations and calculations; star co-ordinates; meridian methods; equal altitude methods; precise timing.
Textbook
As for 29.312 Astronomy II

29.411
Surveying for Architects
SS L1T1½

29.431
Surveying and Cartography
SS L2T2½
29.441
Surveying for Engineers SS L2T4
Part B. Levelling (other methods). Linear measurement (electronic). Applications of survey techniques: control surveys, provision of information for design, setting out engineering works, etc. Outline of photogrammetry.

Textbook

29.491
Survey Camp
A one-week field camp.

Textbooks
As for 29.441 Surveying for Engineers.

29.511
Photogrammetry I SS L3T3

Textbook
Moffit F. H. Photogrammetry 2nd ed International Textbook Co

29.512
Photogrammetry II L1½T1½

Textbook
As for 29.511 Photogrammetry I.

29.513
Photogrammetry III SS L1½T1½

Textbooks
As for 29.511 Photogrammetry I.

29.621
Land Development I S1 L3T1

Textbooks
Bariowe R. Land Resource Economics — The Economics of Real Property, Prentice-Hall
or
Lean W. & Goodall B. Aspects of Land Economics. The Estates Gazette Ltd
Murray J. F. N. Principles and Practice of Valuation. Commonwealth Inst of Valuers
or
Rost R. O. & Collins H. G. Land Valuation and Compensation in Australia Commonwealth Inst of Valuers
Faculty of Architecture Designing a Neighbourhood UNSW

29.622
Land Development II S2 L1T2
A project involving the preliminary survey, analysis and all aspects of design for a development. Detailed costing and feasibility report.

29.623
Land Development III S2 L2T1

Textbooks
Munn R. E. ed Environmental Impact Assessment: Principles and Procedures SCOPE

29.631
Land Inventory I S1 L1½T½
29.632
Land Inventory II
S2 L2T1

Textbooks

29.641
Land Law and Tenure I
S2 L2T0

Textbooks
Hallman F. M. *Legal Aspects of Boundary Surveying as Applied in New South Wales* Inst of Surveyors Sydney
Willis R. W. *Survey Investigation* Registrar-General's Dept

29.642
Land Law and Tenure II
S2 L2T1

Graduate Study

29.106G
Special Topic in Surveying A
C3
A special subject to be lectured on by visiting professors or other visiting staff. Details of syllabus and lecturer to be communicated to the Higher Degree Committee on each occasion when the subject runs.

29.154G
Adjustment of Observations

29.163G
Mathematical Methods I — Numerical Analysis

29.164G
Mathematical Methods II — Statistics of Observations

Advanced applications to survey observations and least square adjustments of frequency distributions, variance, minimum variance, unbiased estimation, central limit theorem, multivariate distributions and statistical testing.

29.165G
Mathematical Methods III — Ellipsoidal Harmonics

Vector theorems. Theory of spherical and ellipsoidal harmonics.

29.215G
Geometrical Geodesy

29.216G
Geodetic Surveying

29.223G
Dynamic Geodesy

Orbital motion of near earth satellites; the analysis of satellite orbits for low degree harmonics of the earth's gravitational field; the application of results at the surface of the earth.
29.224G
Physical Geodesy
Fundamental equations for the solution of the boundary value problem; telluroid; solutions to the order of the flattening. The gravitational field of the rotating spheroid. The analysis of gravity; extension techniques. Astro-geodetic levelling; comparison of gravimetric and astro-geodetic solutions. The determination of the earth's gravitational field from satellite orbital analysis. The combination of satellite and surface gravity data. Computational data.

29.314G
Geodetic Astronomy

29.519G
Photogrammetric Instrumentation
Theory of instruments; comparators, restitution instruments, approximate instruments, ancillary equipment. Testing and calibration of instruments.

29.520G
Photogrammetric Production Processes

29.521G
Control Extension A
Prerequisite: 29.517G or consent of the instructor.

29.522G
Control Extension B
Prerequisite: 29.518G.

29.909G
Project
Cr9
See Graduate School of Engineering Handbook for details of research areas in the School.

29.918G
Research Project
Cr18
See Graduate School of Engineering Handbook for details of research areas in the School.

29.936G
Research Project
Cr36
See Graduate School of Engineering Handbook for details of research areas in the School.
97.001G
Linguistics and Written and Spoken Communication

The broad purpose of the lectures on linguistics is to analyse the structure of English on the phonetic, phonemic, morphological and syntactical levels but in making this analysis, consideration is given to:

The different general approaches to linguistics; eg traditionalist, structuralist, generative and transformationalist; specific matters in theoretical dispute; eg the statistics of the phoneme; experimental and instrumental research; eg spectrographic examinations of English sounds and their combination; correlations between acoustic phenomena and the perceived sounds of English; the statistics of written and spoken English. Types of communication problems; establishing identity of purpose or common ground; essential differences between written and spoken English; limitation of words; visual aids to comprehension; preparation of factual or technical reports; preparation of a technical lecture.

97.002G
Basic Information Theory

97.004G
The Psychology of Communication

The basic communication process analysed in terms of Source, Medium/Message, Respondent and Effects. A social context theory of communication relating the influence of groups, roles, social class, power, status etc on communication. Attitude change through communication. Elementary statistics and statistical analyses in the experimental study of communication.

97.005G
Audio and Video Equipment — Capabilities and Applications

Aims to give an understanding of the characteristics of equipment used in sound recording and broadcasting, television and printing with some reference to mechanical detail. Topics: audio systems; testing of audio equipment; microphones and loudspeakers; amplifiers; sound transmission; level control; recording and reproduction; studio acoustics; editing and effects. Television scanning; television signals; camera tubes and cameras; television receivers and picture monitors; basic concepts of colour television; the PAL colour television system; switching, mixing and processing of television signals; lighting equipment; studio floor equipment. Printing processes; letterpress, gravure and lithography. Photography.

97.007G
Audio and Video Signals in Communication

97.008G
The Body in Communication

97.009G
Presentation of Information

97.010G
Basic Fortran

Introduction to computer programming in FORTRAN IV for people with no computer experience and no mathematical training beyond High School mathematics. Practice at programming and debugging, with problems taken from both data processing and scientific applications. Input and output formats; nested DO loops; arithmetic statement functions; matrix arrays; implied DO loops; magnetic tape and disc READ and WRITE statements; function subprograms and subroutine programs; sorting and merging techniques; Common Storage; Program planning and debugging.
97.031G
Linguistics and Written and Spoken Communication
As for 97.001G (lectures only).

97.032G
Basic Information Theory
As for 97.002G (lectures only).

97.034G
Psychology of Communication
As for 97.004G (lectures only).

97.035G
Audio Video Equipment
As for 97.005G (lectures only).

97.037G
Audio Video Signals in Communication
As for 9.007G (lectures only).

97.038G
The Body in Communication
As for 97.008G (lectures only).

97.039G
Presentation of Information
As for 97.009G (lectures only).

Non-Engineering Subjects

Physics

Undergraduate Study

Physics Level I units
The School of Physics has introduced the specialized units 1.951, 1.961, 1.971, 1.981, 1.991, 1.962, 1.972, 1.982 and 1.992 for students in the Faculty of Engineering. The first year units 1.951, 1.961, 1.971 and 1.981 are not available at night. Part-time students will be catered for by the Science Course unit 1.001.
All first year full-time students, including repeat students, should enrol in 1.951, 1.961, 1.971, 1.981 according to their schools. However, full-time Electrical Engineering students may substitute 1.001H for 1.951, subject to the approval of the School of Physics.
All first year part-time students, including repeats, should enrol in 1.001.
Second year full-time Electrical Engineering students should enrol in 1.972, 1.982 and 1.992.
Second level part-time Electrical Engineering students who are enrolling at this level for the first time, should enrol in one or more of 1.972, 1.982, 1.992, according to the Electrical Engineering programs for various stages.
Full-time or part-time Electrical Engineering students who have completed only part of the set of old Science Course units 1.112A, 1.112B, 1.112C, or the corresponding set of Higher units, should enrol according to the following table:

<table>
<thead>
<tr>
<th>Missing Unit</th>
<th>Enrol In</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.112A or 1.122A</td>
<td>1.112A</td>
</tr>
<tr>
<td>1.112B or 1.122B</td>
<td>1.112B</td>
</tr>
<tr>
<td>1.112C or 1.122C</td>
<td>1.012</td>
</tr>
</tbody>
</table>
Second year Surveying students should enrol in 1.912.

1.001
Physics I

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertia, mass, energy, momentum, charge, potential, fields. Application of the conservation principles to solution of problems involving charge, energy, and momentum. Electrical circuit theory, application of Kirchoff’s Laws to AC and DC circuits. Uniform circular motion, Kepler’s Laws and Rotational mechanics. The application of wave and particle theories in physics. A review of the atomic theory of matter and the structure and properties of atomic nuclei. A molecular approach to energy transfer, kinetic theory, gas laws and calorimetry. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polariza-

Textbook
Weidner R. T. & Sells R. L. Elementary Physics Classical and Modern Allyn & Bacon

1.011 Higher Physics I
F L3T3
For students of all Faculties except Medicine, Engineering and Architecture who have a good secondary school record and who wish to do a more challenging course. Full-time Electrical Engineering students may be admitted after consultation with the School of Physics.

As for 1.001 with additional topics: space physics, mechanical properties of real materials, rotational dynamics, physics of biological systems, QG and charged particle dynamics, physics of energy resources and conversion.

Textbooks
Russell G. J. & Mann K. Alternating Current Circuit Theory NSWUP
Weidner R. T. & Sells R. L. Elementary Physics Classical and Modern Allyn & Bacon

1.951 Physics I (Mechanical Engineering) F L2T2
A basic course on physics for students in the School of Mechanical Engineering.

Textbook
Weidner R. T. & Sells R. L. Elementary Physics Classical and Modern Allyn & Bacon

1.961 Physics I (Electrical Engineering) F L3T3
For students in the School of Electrical Engineering.

Electrostatics in vacuum, electrostatics in dielectrics, steady state currents, magnetostatics in vacuum, ferromagnetism, electromagnetic induction, transient currents.

Vectors, motion in one dimension, motion in a plane, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, collisions, rotational kinematics, rotational dynamics, simple harmonic motion, gravitation.

Temperature, heat and the first law of thermodynamics, kinetic theory of gases.

Waves in elastic media, sound waves, geometrical optics, interference, diffraction, gratings and spectra, polarization.

Textbook
Halliday D. & Resnick R. Physics Wiley

1.971 Physics I (Surveying) L3T3
Aims and nature of physics, linear and rotational mechanics, hydrostatics, elasticity, gravitation, temperature, electricity and magnetism, wave motion, optical instruments, interference and diffraction, lasers and atomic clocks. The importance in surveying of precise frequency, time, speed and distance measurements.

Textbook
Halliday D. & Resnick R. Physics Wiley

1.981 Physics I (Civil Engineering) S1 L3T2

Textbooks
Halliday D. & Resnick R. Physics Wiley
Pollard H. & Harris R. Introductory Physical Acoustics NSWUP

Physics Level II Units

1.012 Mechanics and Thermal Physics S1 L3T2
Prerequisites: 1.001, 10.001. Co-requisite: 10.211A.

For part-time Engineering students.

Properties of solids and liquids, elasticity, hydrostatics, hydrodynamics, damped and forced vibrations, resonance, coupled systems, normal modes, Fourier analysis, waves, group velocity, reflection and transmission at a boundary.

Kinetic theory, Maxwell velocity distribution, transport coefficients, first and second laws of thermodynamics, thermodynamic functions, simple applications, microscopic approach to thermodynamics, Boltzmann probability.

Additional material is studied for the award of Distinction/High Distinction.

Textbooks
French A. P. Vibrations and Waves Nelson
Mandl F. Statistical Physics Wiley
1.022 S2 L3T2
Electromagnetism and Modern Physics

Prerequisites: 1.001, 10.001. Co-requisite: 10.211A.

For part-time Engineering students.
Electrostatics in vacuum and in dielectrics, Gauss' law, current density, magnetostatics in vacuum and in magnetic materials, electromagnetic induction, displacement current, Maxwell's equations, simple solutions, applications.

Special theory of relativity, Lorentz transformation, simultaneity, relativistic mass, momentum and energy, formalism of wave mechanics, Schrodinger's equation, simple solutions, hydrogen atom, spectra, electron spin, selection rules, exclusion principle, Zeeman effect, molecules.

Additional material is studied for the award of Distinction/High Distinction.

Textbooks
Arya A. P. Elementary Modern Physics Addison-Wesley

For students intending to proceed to Level III physics:
Arya A. P. Fundamentals of Atomic Physics Allyn & Bacon

1.962 S1 L1½ T1½
Physics of Measurement (Surveying)

Prerequisite: 1.971.

Not available in 1977.

Textbook
Fincham W. H. A. & Freeman M. H. Optics 8th ed Butterworths
or
Smith E. S. & Thomson J. H. Optics Wiley
or
Wheadon R. A. Principles of Light and Optics Longmans

1.972 S2 L2T2
Electromagnetism (Electrical Engineering)

Prerequisites: 1.961 or 1.001H or 1.001 or 1.011, 10.001, 10.211A.

Electrostatics in vacuum, Electrostatics in Dielectrics, electric currents, magnetostatics in vacuum, magnetic scalar potential, magnetostatics in magnetic media, time varying fields, Maxwell's equations.

Textbooks
To be advised.

1.982 S1 L2T2
Solid State Physics (Electrical Engineering)

Prerequisites: 1.961 or 1.001H or 1.001 or 1.011, 10.001. Co-requisite: 10.211A.

The concepts of waves and particles, introductory quantum mechanics, atomic structure, optical spectra and atomic structure, structural properties of solids, band theory and its applications, uniform electronic semiconductors in equilibrium, excess carriers in semiconductors.

Textbook
Arya A. P. Elementary Modern Physics Addison-Wesley
Thermal Physics and Classical Mechanics (Electrical Engineering)

Prerequisites: 1.961 or 1.00W or 1.011, 10.001.
Co-requisite: 10.211A.

Kinetic theory, molecular velocity distribution, elementary transport theory, first law of thermodynamics; applications, microscopic aspect of thermal equilibrium, definition and properties of entropy, Boltzmann probability distribution, second law of thermodynamics, heat engine and refrigeration cycles, some thermodynamic relationships and their applications.

Textbook
Mandi F. Statistical Physics Wiley
Symon K. R. Mechanics Addison-Wesley

Electromagnetism

Not available to students unless completing a set of Physics Level II units.

Electrostatics in vacuum and in dielectrics. Magnetostatics in vacuum and in magnetic materials. Maxwell's equations and simple applications.

Textbook

Modern Physics

Not available to students unless completing a set of Physics Level II units.

Special theory of relativity, Lorentz transformation, relativistic mass momentum and energy; Schrodinger wave equation expectation values, operators, eigenfunctions, eigenvalues, free-particle, bound-particle and applications to physical systems, spectra, electron spin, spin-orbit coupling, exclusion principle, origins and spectra of X-rays, electron energy levels in solids.

Textbook
Arya A. P. Elementary Modern Physics Addison-Wesley

Undergraduate Study

Chemistry

Classification of matter and theories of the structure of matter. Atomic structure, the periodic table and chemical behaviour. Chemical bonding, molecular structure and stereochemistry. Chemical kinetics and equilibrium; enthalpy, free energy and entropy changes in chemical systems. The structure, nomenclature and properties of organic and inorganic compounds, Reactions of organic and inorganic compounds.

Textbooks
Aylward G. H. & Findlay T. J. V. SI Chemical Data Wiley
Chemistry I— Laboratory Manual Univ of NSW
Mahan B. H. University Chemistry 3rd ed Addison-Wesley

Electromagnetism

Not available to students unless completing a set of Physics Level II units.

Special theory of relativity, Lorentz transformation, relativistic mass momentum and energy; Schrodinger wave equation expectation values, operators, eigenfunctions, eigenvalues, free-particle, bound-particle and applications to physical systems, spectra, electron spin, spin-orbit coupling, exclusion principle, origins and spectra of X-rays, electron energy levels in solids.

Textbook

Modern Physics

Not available to students unless completing a set of Physics Level II units.

Special theory of relativity, Lorentz transformation, relativistic mass momentum and energy; Schrodinger wave equation expectation values, operators, eigenfunctions, eigenvalues, free-particle, bound-particle and applications to physical systems, spectra, electron spin, spin-orbit coupling, exclusion principle, origins and spectra of X-rays, electron energy levels in solids.

Textbook
Arya A. P. Elementary Modern Physics Addison-Wesley

Chemistry

Classification of matter and theories of the structure of matter. Atomic structure, the periodic table and chemical behaviour. Chemical bonding, molecular structure and stereochemistry. Chemical kinetics and equilibrium; enthalpy, free energy and entropy changes in chemical systems. The structure, nomenclature and properties of organic and inorganic compounds, Reactions of organic and inorganic compounds.

Textbooks
Aylward G. H. & Findlay T. J. V. SI Chemical Data Wiley
Chemistry I— Laboratory Manual Univ of NSW
Mahan B. H. University Chemistry 3rd ed Addison-Wesley
Metallurgy

Undergraduate Study

4.913
Materials Science F L2T1

Polymer materials. The structure and properties of polymers. Mechanisms for the modification of properties.

Ceramic materials. The structure and properties of ceramics. Similarities and differences with other crystalline solids. Ceramic-metal composites.

Textbook
Clark D. S. & Varney W. R. Physical Metallurgy for Engineers Van Nostrand

4.921
Materials Science F L1T0

Textbook

4.931
Metallurgy SS L2T1
For students of Civil Engineering. Part of 8.272 Civil Engineering Materials I.

Textbook
As for 4.921 Materials Science.

4.941
Metallurgy for Engineers FL1
For students of Civil Engineering. Part of 8.259 Properties of Materials.

Textbook
As for 4.921 Materials Science.

Mathematics

Undergraduate Study

10.001
Mathematics I FL4T2
Calculus, analytic, geometry, linear algebra, an introduction to abstract algebra, an introduction to computer programming.

Textbooks
Blatt J. M. Basic Fortran IV Programming Miditran Version Computer Systems (Aust)
Shields P. C. Elementary Linear Algebra 2nd ed Worth
Thomas G. B. Calculus and Analytic Geometry 4th ed Addison-Wesley

Preliminary Reading List
Bell E. T. Men of Mathematics 2 Vols Pelican
Courant R. & Robbins H. What is Mathematics? OUP
Polya G. How to Solve It Doubleday Anchor
Sawyer W. W. A Concrete Approach to Abstract Algebra Freeman
Sawyer W. W. Prelude to Mathematics Pelican

10.011
Higher Mathematics I FL4T2
Calculus, analytic, geometry, linear algebra, an introduction to abstract algebra, elementary computing.

Textbooks
Blatt J. M. Basic Fortran IV Programming Miditran Version Computer Systems (Aust)
Clark C. The Theoretical Side of Calculus Wadsworth
Thomas G. B. Calculus and Analytic Geometry 4th ed Addison-Wesley

Preliminary Reading List
As for 10.001 Mathematics I plus:
David F. N. Games, Gods and Gambling Griffin
Felix L. The Modern Aspect of Mathematics Science Editions
Huff D. How to Lie with Statistics Galliancz
Reid C. From Zero to Infinity Routledge & Kegan Paul

10.111B
Pure Mathematics II — Analysis F L1½T½
Real analysis: partial differentiation, multiple integrals. Analysis of real valued functions of one and several variables. Complex analysis: analytic functions, Taylor and Laurent series, integrals, Cauchy's theorem, residues, evaluation of certain real integrals, maximum modulus principles.

Textbook
Session 2
Churchill R. V. Complex Variables and Applications ISE McGraw-Hill

10.211A
Applied Mathematics II — Mathematical Methods
F L1½T½
Review of functions of two and three variables, divergence, gradient, curl; line, surface, and volume integrals; Green's and Stokes' theorems. Special functions, including gamma and Bessel functions. Differential equations and boundary value problems, including vibrating string and vibrating circular membrane; Fourier series.

Textbooks
Boas M. L. Mathematical Methods In the Physical Sciences Wiley
Spiegel M. R. Advanced Mathematics for Scientists and Engineers Schaum
Spiegel M. R. Theory and Problems of Vector Analysis Schaum

10.341
Statistics SU F L1T½
An introduction to probability theory. Random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood. Confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to linear regression. Least squares adjustment of data.

Textbooks
or
Freund J. E. Mathematical Statistics Prentice-Hall
Statistical Tables

10.342A*
Statistics SU (Part A Sandwich Course) L1T½
An introduction to probability theory. Random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood.

Textbooks
As for 10.341 Statistics SU.

*May not be offered in 1977.
10.342B Statistics SU (Part B Sandwich Course)

Confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to linear regression. Least squares adjustment of data.

Textbooks
As for 10.341 Statistics SU.

10.351 Statistics SM

For students in Aeronautical, Industrial and Mechanical Engineering and Naval Architecture as part of 5.071 Engineering Analysis.

An introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, \(\chi^2 \) and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard tests of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

Textbooks
As for 10.341 Statistics SU.

10.361 Statistics SE

For students in the School of Electrical Engineering.

As for 10.341 Statistics SU, with the addition of auto-correlation.

Textbooks
As for 10.341 Statistics SU.

Graduate Study

10.061G Advanced Mathematics for Electrical Engineers†

Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms and orthogonal functions and polynomials.

10.062G Advanced Mathematics General

For research workers throughout the University requiring employment of advanced mathematics. Topics vary from year to year according to demand and interest.

10.361G Statistics

Probability theory; a survey of random processes with engineering applications — processes in discrete and continuous time. Markov processes, ergodicity, stationarity, auto-correlation, power spectra; estimation of auto-correlation and power spectra.

Textbook

10.371G Statistics

Revision of probability and distribution theory, including estimation and hypothesis testing. Extension of this to include topics such as more complex probabilistic modelling, analyses of modified data (censored, truncated and missing observations), general statistical inference (decision theory), acceptance testing, and reliability analysis (hazard functions).

Accountancy

Undergraduate Study

14.001 Introduction to Accounting A

Textbook

14.002 Introduction to Accounting B

Prerequisites: 14.001.

An introduction for non-commerce students to managerial accounting. Long-range planning, budgeting and responsibility accounting; cost determination, cost control and relevant cost analyses.

Textbook

†May not be offered in 1977.
Industrial Relations

Undergraduate Study

15.501
Introduction to Industrial Relations
For students enrolled in Faculties other than Commerce and Arts. It is designed to provide a practical introduction to important industrial relations concepts, issues and procedures. Topics covered include: the origins, evolution and operation of the Australian system of industrial relations; the structure and role of trade unions and employer bodies; the function of industrial tribunals such as the Australian Conciliation and Arbitration Commission and the N.S.W. Industrial Commission; wages structure and determination employment, unemployment and retraining; the nature and causes of strikes and other forms of industrial conflict; the processes and procedures for conflict resolution.

Where appropriate to class composition; particular attention is paid to individual industries.

Preliminary Reading
*Hyman R. Strikes Fontana
*Martin R. Trade Unions in Australia Penguin
Portus J. H. Australian Compulsory Arbitration 1900-1970
Hicks Smith

Textbooks
*Isaac J. E. & Ford G. W. eds Australian Labour Relations Readings 2nd ed Sun Books
*Rosow J. M. ed The Worker and the Job: Coping with Change Prentice-Hall

Geography

Undergraduate Study

27.295
Physical Geography for Surveyors S2 L2T2
Fundamentals of physical geography. Landscapes of Australasia. Techniques of landscape appraisal. Laboratory classes to support the above, including map analysis, air photo interpretation and examination of soil properties. There is a compulsory one-day excursion.

Textbook
Strahler A. N. An Introduction to Physical Geography Wiley

Town Planning

Undergraduate Study

36.411
Town Planning SS L2T0

Optometry

Undergraduate Study

31.212
Geometrical Optics L1½ T1½

Textbook
Fincham W. H. A. & Freeman M. H. Optics 8th ed Butterworths

*Paperback.
The University of New South Wales

Kensington Campus 1977

Buildings

Applied Science F10
Architecture H14
Banks F22
Basser College C18
Biological Sciences D26
Biomedical Lecture Theatres E27
Central Lecture Block E19
Central Store B13
Chancellery C22
Civil Engineering H20
Classroom Block H3
Dalton (Chemistry) F12
Electrical Engineering G17
Electrical Engineering Theatre F17
Goldstein College D16
Golf House A27
Gymnasium B5
House at Pooh Corner N8
International House C6
John Goodsell (Commerce) F20
Keith Burrows Lecture Theatre H14
Kensington Colleges C17
Main Building K15
Maintenance Workshop B13
Mechanical and Industrial Engineering J17
Medicine (Administration) B27
Menzies Library E21
Metallurgy E8
Morven Brown (Arts) C20
New College (Anglican) L6
Newton J12
Old Main Theatrette J14
Parade Theatre E3
Packing Station H25
Philip Baxter College D14
Robert Helfron (Chemistry) E12
Sam Cracknell Pavilion H8
Sciences F23
Sciences Lecture Theatre Block D23

Science Theatre F13
Shalom College (Jewish) N9
Sir John Clancy Auditorium C24
Sir Robert Webster (Textile Technology) G14
Squash Courts B7
Unisearch House L5
University Regiment J2
University Union (Roundhouse) — Stage I E6
University Union (Blockhouse) — Stage II G6
University Union (Squarehouse) — Stage III E4
Wallace Wurth School of Medicine C27
Warrane College (Roman Catholic) M7
Wool and Pastoral Sciences B8

General

Accountancy C20
Admissions Office B23
Anatomy C27
Applied Geology F10
Applied Physics H12
Applied Science (Faculty Office) F10
Appointments Office B23
Architecture (including Faculty Office) F10
Arts (Faculty Office) D20
Australian Graduate School of Management F23
Biochemistry D26
Biological Sciences (Faculty Office) D26
Biological Technology D26
Biomedical Library F23
Bookshop G17
Botany D26
Building H15
Cashier's Office B23

Centre for Medical Education
Research and Development F24
Chemical Engineering F10
Chemical Technology F10
Chemistry E12
Child Minding Centre N8
Civil Engineering H20
Closed Circuit Television Centre F19
Commerce (Faculty Office) F20
Community Medicine E25
Computer Services Unit F21
Drama D9
Economics F20
Education G1
Electrical Engineering G17
Engineering (Faculty Office) K17
English C19
Examinations and Student Records B22
Fees Office B23
Food Technology F10
French C20
General Studies C20
Geography K17
German C20
Health Administration C22
History C20
History and Philosophy of Science C19
Industrial Arts B1
Industrial Engineering J17
Institute of Administration G2
Institute of Languages G14
Institute of Rural Technology B8
Law (Faculty Office) F21
Law Library F21
Librarianship B10
Library E21
Marketing F19
Mathematics F23
Mechanical Engineering J17
Medicine (Faculty Office) B27
Metallurgy E8

Microbiology D26
Mining Engineering K15
Music B11
National Institute of Dramatic Art C15
Nuclear Engineering F18
Optometry H12
Pathology C27
Patrol and Cleaning Services F20
Philosophy C20
Physics K13
Physical Education and Recreation Centre (PERC), see Gymnasium and Squash Courts
Physiology and Pharmacology C27
Political Science C19
Postgraduate Committee in Medical Education B27
Postgraduate Extension Studies (Closed Circuit Television) F19
Postgraduate Extension Studies (Radio Station and Administration) F23
Psychology F23
Public Affairs Unit C23
Regional Teacher Training Centre F24
Russian D20
Science (Faculty Office) K14
Social Work F1
Sociology C20
Spanish and Latin American Studies D19
Student Amenities and Recreation E15
Student Counselling and Research E16
Student Employment C22
Student Health E15
Students' Union E4
Surveying H20
Teachers College Liaison Office E16
Tertiary Education Research Centre E18
Textile Technology G14
Town Planning K15
University Union G6
Wool and Pastoral Sciences B8
Zoology D26
This Handbook has been specially designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University—its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce, Engineering, Law, Medicine, Professional Studies, Science (including Biological Sciences and the Board of Studies in Science and Mathematics), the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education.

The Calendar and Handbooks are available from the Cashier's Office. The Calendar costs $3 (plus postage and packing, 90 cents). The Handbooks vary in cost. Applied Science, Arts, Commerce and Sciences are $1.50; Architecture, Engineering, Law, Medicine, Professional Studies and AGSM are $1.00. Postage is 40c in each case. The exception is General Studies, which is free.