The address of The University of New South Wales is:

P.O. Box 1, Kensington 2033
New South Wales Australia

Telephone: (02) 697 2222

Telegraph: UNITECH, SYDNEY

Telex: AA26054
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 8 October 1990, but may be amended without notice by the University Council.

Contents

Calendar of Dates .. 1
Staff List .. 3

Foreword .. 11
Faculty Information .. 12
Some People Who Can Help You 12
Entrance Requirements ... 12
Enrolment Procedures .. 13
Equal Opportunity in Education 13
Library Facilities .. 13
Student Clubs and Societies 13
Students with Disabilities ... 14
IAESTE ... 14
Professional Institutions ... 14
General Information ... 14

Undergraduate Study .. 15
Transfer Courses ... 15
Combined Courses .. 16
Course Transfers ... 16
General Rules for Progression 16
Pre-requisites and Co-requisites 16
Industrial Experience Requirements 17
Subject Identification Scheme 17
General Education Requirement 17

Conditions for the Award of Degrees
Bachelor of Engineering .. 18
Bachelor of Surveying ... 18

Undergraduate Study: Course Outlines
School of Civil Engineering 19
3620 Civil Engineering (BE) .. 20
Engineering

Combined Courses

3730 BE BSc in Civil Engineering 21
4775 BE (Civil Engineering) LLB 22
School of Electrical Engineering and Computer Science 22
3640 Electrical Engineering (BE) 24
Full-time 24 Part-time 25 Sandwich 25
3645 Computer Engineering (BE) 25
3650 Electrical Engineering (BSc(Eng)) 26
Technical Electives 26, Professional Electives 26
Prerequisites and Co-requisites 27

Combined Courses

3725 BE BSc in Electrical Engineering 28
3720 BE BA in Electrical Engineering 29
Studies in Computer Science other than in BE Course 3640, 3645 BE BA 3720 and BE BSc 3725 29
Computer Science Electives offered by the School 29

School of Mechanical and Manufacturing Engineering

3700 Naval Architecture (BE) Years 1 - 2 32
3610 Aerospace Engineering (BE) 32
3660 Manufacturing Management (BE) 33
3680 Mechanical Engineering (BE) Full-time Course 34
3680 Mechanical Engineering Technical Electives 34
3700 Naval Architecture (BE) Years 3 - 4 35

Combined Courses

3611 Aerospace Engineering (BE BSc) 35
3661 Manufacturing Management (BE BSc) 35
3681 Mechanical Engineering (BE BSc) 35
3701 Naval Architecture (BE BSc) 35

Combined Courses

3612 Aerospace Engineering (BE BA) 38
3662 Manufacturing Management (BE BA) 38
3682 Mechanical Engineering (BE BA) 38
3702 Naval Architecture (BE BA) 38

School of Surveying

3740 Surveying (BSuT) 40

Undergraduate Study: Subject Descriptions
Identification of Subjects by Number
Accounting
Aerospace Engineering
Anatomy
Biological Science
Chemical Engineering and Industrial Chemistry
Chemical Engineering
Chemistry
Civil Engineering
Computer Science
Electrical Engineering
Environmental Engineering
Fibre Science and Technology
Fuel Technology
Geography
Applied Geology
Industrial Chemistry
Information Systems
Law
Manufacturing Management
Mathematics
Materials Science and Engineering
Mechanical Engineering
Naval Architecture
Physiology and Pharmacology
Physics
Town Planning
Polymer Science
Surveying

Graduate Study: Course Outlines
Enrolment Procedures
Graduate School of Engineering
English Language Requirements
Research Degrees

Doctor of Philosophy (PhD) 69
Master of Engineering Master of Science Master of Surveying (ME/MSc/MSurv) 89

Course Work Masters Degrees

Master of Engineering Science Master of Surveying Science (MEngSc/MSurvSc) 90
Master of Biomedical Engineering (MBiomedE) 90
Master of Safety Science (MSafetySc) 90

Course Work Programs

8501 Electrical Engineering and Computer Science (MEngSc) 91
8541 Mechanical Engineering (MEngSc) 94
8612 Civil Engineering (MEngSc) 96
8631 Industrial Engineering (MEngSc) 94
8641 Remote Sensing (MEngSc) 96
8651 Surveying (MSurvSc) 97
8660 Biomedical Engineering (MBiomedE) 97

Graduate Diplomas

Graduate Subjects

Civil Engineering

Electrical Engineering and Computer Science

Mechanical and Manufacturing Engineering

Surveying

Centre for Biomedical Engineering

Safety Science

Graduate Diploma Subjects

Projects and Research

Civil Engineering

Electrical Engineering and Computer Science

Mechanical and Manufacturing Engineering

Surveying

Biomedical Engineering

Remote Sensing

Safety Science

Graduate Study: Subject Descriptions

Identification of Subjects

Accounting

Anatomy

Biomedical Engineering

Biotechnology

Chemical Engineering and Industrial Chemistry

Chemistry

Civil Engineering

Community Medicine

Computer Science

Electrical Engineering

Fuel Technology

Geography

Applied Geology

Graduate School of the Built Environment

Health Services Management

Industrial Relations and Organizational Behaviour

Librarianship

Industrial Technology and Management

Marketing

Mathematics

Mechanical Engineering

Mines

Pathology

Remote Sensing

Safety Science

Surveying
Engineering

Conditions for the Award of Higher Degrees
- Doctor of Philosophy .. 147
- Master of Biomedical Engineering 149
- Master of Engineering and Master of Science 150
- Master of Engineering, Master of Science and Master of Surveying without supervision .. 151
- Master of Engineering Science and Master of Surveying Science 152
- Master of Safety Science ... 154
- Master of Surveying ... 155
- Graduate Diploma .. 156

Scholarships and Prizes
- Scholarships ... 157
 - Undergraduate ... 157
 - Graduate .. 159
- Prizes ... 162
 - Undergraduate ... 162
 - Graduate .. 165
Calendar of Dates

The academic year is divided into two sessions, each containing 67 days for teaching. There is a recess of approximately six weeks between the two sessions and there are short recesses of one week within each of the sessions.

Session 1 commences on the Monday nearest 1 March.

Session 1 (67 teaching days)

Recess:

1991
- 4 March to 28 March
- 29 March to 7 April
- 8 April to 14 June
- 15 June to 20 June

1992
- 2 March to 16 April
- 17 April to 26 April
- 27 April to 10 June
- 11 June to 16 June

Study Recess:

1991
- 1992

Examinations

1991
- 21 June to 9 July

1992
- 17 June to 3 July

Midyear Recess:

1991
- 10 July to 28 July

1992
- 4 July to 26 July

Session 2 (67 teaching days)

Recess:

1991
- 29 July to 27 September
- 28 September to 7 October
- 8 October to 6 November
- 7 November to 12 November
- 17 June to 3 July
- 4 July to 26 July

1992
- 27 July to 25 September
- 26 September to 5 October
- 6 October to 4 November
- 5 November to 10 November

Study Recess:

1991
- 13 November to 29 November

1992
- 11 November to 27 November

Examinations

1991
- 13 November to 29 November

1992
- 11 November to 27 November

Important Dates for 1990

January

1 New Year’s Day – Public Holiday
3 Last day for acceptance of applications by office of the Admissions Section for transfer to another undergraduate course within the University
9 Last day for applications for review of assessment
14 Term 1 begins - Medicine IV and V
21 Term 1 begins - Medicine V
26 Australia Day – Public Holiday

February

5 Enrolment period begins for new undergraduate students and undergraduate students repeating first year
11 Re-enrolment period begins for second and later year undergraduate and graduate students enrolled in formal courses. Students should consult the “Re-enrolling 1991” leaflet for their course for details..
March
F 1 Last day for acceptance of enrolment by new and re-enrolling students. (Late fee payable thereafter if enrolment approved).
M 4 Session 1 begins – all courses except Medicine IV and V
F 15 Last day applications are accepted from students to enrol in Session 1 or whole year subjects
F 29 Good Friday – Public Holiday
Mid-session Recess begins
S 30 Easter Saturday – Public Holiday
Su 31 HECS Census Date for Session 1

April
M 1 Easter Monday – Public Holiday
Th 25 Anzac Day – Public Holiday

May
T 14 Publication of Provisional Timetable for June examinations
W 22 Last day for students to advise of examination clashes

June
T 4 Publication of Timetable for June examination Session 1 ends
M 10 Queen’s Birthday – Public Holiday
F 14 Session 1 ends
S 15 Study Recess begins
Th 20 Study Recess ends
F 21 Examinations begin

July
T 9 Examinations end
Su 28 Midyear Recess ends
M 29 Session 2 begins

August
F 9 Last day applications are accepted from students to enrol in Session 2 subjects.
S 31 HECS Census Day for Session 2.

September
F 27 Closing date for applications to the Universities Admission Centre
S 28 Mid-session Recess begins

October
M 7 Labour Day – Public Holiday
Mid-session Recess ends
T 8 Publication of Provisional Timetable for November examinations
W 16 Last day for students to advise of examination clashes
W 29 Publication of Timetable for November examinations

November
W 6 Session 2 ends
Th 7 Study Recess begins
T 12 Study Recess ends
W 13 Examinations begin
F 29 Examinations end

December
W 25 Christmas Day – Public Holiday
Th 26 Boxing Day – Public Holiday
Staff

Comprises Schools of Civil Engineering, Electrical Engineering and Computer Science, Mechanical and Manufacturing Engineering (incorporating Aerospace Engineering and Naval Architecture), and Surveying; and Centres for Biomedical Engineering, Photovoltaic Devices and Systems, Safety Science and Wastewater Treatment. The Faculty is also associated with the Centres for Groundwater Management and Hydrogeology, Membrane and Separation Technology and Remote Sensing.

Dean
Professor Christopher Joseph Dalzell Fell, BSc N.S.W., PhD Camb., CEng, CPEng, FTS, FIEAust, MAmerChE

Presiding Member
Professor C. Patterson

Administrative Assistant
Fay Miley

Honorary Visiting Fellow
Emeritus Professor Peter Thomas Fink, AO, CB, CBE, BE Syd., CPEng, FTS, HonFIEAust, FIMechE, FRINA, MAIAA, MSNAME

Schools and Industry Liaison Unit
Director
Professor N. L. Svensson

Administrative Assistant
Patricia Rooney

School of Civil Engineering

Professor of Civil Engineering and Head of School
Robin Fell, BE MEngSc Qld., CPEng, FIEAust

Professor of Civil Engineering and Head of Department of Engineering Construction and Management
David Gordon Carmichael, BE MEngSc Syd., PhD Cant., CPEng, MIEAust

Associate Professor and Head of Department of Geotechnical Engineering
Brian Shackel, BE Sheff., MEngSc PhD N.S.W., CPEng, MIEAust

Professor of Civil Engineering and Head of Department of Structural Engineering
Hilary Max Irvine, ME Cant., CE Caltech., PhD Auck., MIPENZ, CPEng, FIEAust

Professor of Transport Engineering and Head of Department of Transport Engineering
John Andrew Black, BA Manc., MTCP Syd., PhD Brad., CPEng, MIEAust

Professor and Head of Department of Water Engineering
David Herbert Pilgrim, AM, BE PhD DSc N.S.W., CPEng, FIEAust

Senior Administrative Officer
George John Harris, BA N.S.W.

Administrative Assistant
Won-Mi Choi, BA N.S.W.

Computer Systems Officer
Robert Peter Hegedus, BSc N.S.W., MACS, MACM
Department of Engineering Construction and Management

Includes Systems Engineering, Engineering Economy, Project Planning and Management.

Senior Lecturers
Jonathan Brian O'Brien, BE N.S.W., MASc Tor., CEng, MIEAust
Victor John Summersby, BE MEngSc MCom N.S.W., ASTC, PEng, CEng, MIEAust

Lecturers
George Nawar, BScEng MEngSc N.S.W., CEng, MIEAust
Ronald Richard Wakefield, BE N.S.W., MSE Princeton.

Professional Officer
Andrzej Waldemar Raczkowski, Mgrinz T.U. Warsaw, CEng, MIEAust

Computer Systems Officer
Jong Hwai Perng, BE N.T.U., ME T.K.U.

Department of Geotechnical Engineering

Includes Foundation Engineering, Soil Mechanics, Rock Mechanics, Concrete Technology, Pavement Engineering.

Associate Professors
Somasundaram Valliappan, BE Annam., MS Northeastern, PhD DSc Wales, CEng, FIEAust, FASCE
William Otho Yandell, BE N.S.W., MEngSc N.S.W., BA Macq., CEng, MIEAust

Senior Lecturers
Arthur William Manton-Hall, BE MEngSc PhD N.S.W., CEng, MIEAust, LGE
Garry Robert Mostyn, BE MEngSc N.S.W., BA Macq., CEng, MIEAust
Viriyawan Murti, BSc BE PhD N.S.W., MACS
Bruce John Francis Patten, BE Syd., PhD N.S.W., DIC Lond.

Professional Officers
Peter Kenneth Maguire BS N.E., GradDip N.S.W.

Department of Structural Engineering

Includes Structural Analysis, Structural Design, Stress Analysis and Solid Mechanics

Associate Professors
Donald John Fraser, MEngSc PhD N.S.W., ASTC
Raymond Ian Gilbert, BE PhD N.S.W., CEng, MIEAust
Victor Andrada Pulmano, BSCE Philippines, MEng A.I.T., PhD Northwestern

Senior Lecturers
Mark Andrew Bradford, BSc BE PhD Syd., AMASCE, CEng, MIEAust
Alexander Cuthbert Heaney, BE MEngSc Melb., PhD Wat., CEng, MIEAust, MASCE, AMICE
Peter Walder Kneen, BE Melb., PhD Wat., CEng, MIEAust, IASS
Raymond Eric Lawther, BE PhD N.S.W.
Neil Colin Mickleborough, MEng Car., PhD Tas., DipCE HobartT.C., CEng, MIEAust, MASCE, MCSCE, RPEQ
Ian James Somerville, BE PhD N.S.W., ASTC
Francis Shay Khiet Tin Loi, BE PhD Monash, CEng, MIEAust

Teaching Fellow
Stephen James Foster, BE N.S.W.I.T., MEngSc N.S.W.

Professional Officer
Sortiris Pazpinis, BE N.S.W.I.T.

Department of Transport Engineering

Senior Lecturer
Theo ten Brummelaar, BE MEngSc N.S.W., CEng, MIEAust

Lecturers
Michael Clarence Dunne, BSc PhD Adel.
Peter Hidas, MCEng DipArch PhD Budapest
Upali Vandebona, BSc Eng Ceylon, MEng A.I.T. PhD Monash

Professional Officers
Tu That Ton, BE Saigon Polytech., BE C.I.T., MEngSc N.S.W.
Colin John Wingrove, BSc MEngSc N.S.W., AlArbA

Department of Water Engineering

Associate Professor and Director, Water Research Laboratory
Colin Raymond Dudgeon, ME PhD N.S.W., CEng, MIEAust, MACS

Associate Professors
Ian Cordery, ME PhD N.S.W., CEng, MIEAust
David Lyon Wilkinson, BE Syd., PhD N.S.W., CEng, MIEAust

Senior Lecturers
Peter John Bliss, BE N.S.W., MSc DIC Lond., ASTC, CEng, MIEAust
Brian Selby Jenkins, BE PhD N.S.W., ASTC, CEng, MIEAust, LGE
Stephen James Moore, BE N.S.W., CEng, MIEAust

Lecturers
Penelope Anne FitzGerald, BSc Syd., CEng, MIEAust, MIWES, ARACI, MASC, MCAWC
James Edward Ball, ME PhD N'cle(NSW), CEng, MIEAust, MASCE

Teaching Fellow
Brian Clive Wallace, BE ME N.S.W., MIEAust

Professional Officers
David George Doran, BE DipCompSc Qld., MEngSc N.S.W., CEng, MIEAust, MACS
Kenneth Brian Higgs, MSc Aston, MAIP
Vir Abhimanyu Sardana, BScEng Rour., MTech IITD, PhD N.S.W., MISB, CEng, MIEAust

Centre for Wastewater Treatment

Director
Professor D. H. Pilgrim
Manager
Terrence John Schulz, BE Syd.
Deputy Manager
Ralph Kaye, BSc Newark
School of Electrical Engineering and Computer Science

Tyree Professor of Electrical Engineering – Electric Power Engineering and Head of School
Ian Francis Morrison, BSc BE PhD Syd., FIAE, CEng, MIEAust, MIEE, MIEEE

Professor of Electrical Engineering and Head of Department of Systems and Control
Neville Waller Rees, BSc PhD Wales, CEng, FIEAust, FIEEE

Professor of Electrical Engineering and Head of Department of Communications
Vacant

Professor of Computer Science and Head of Department
John Hiller, BE PhD N.S.W., FIEAust, FIREE

Department of Communications

Associate Professors
Pak Lim Chu, ME PhD N.S.W., SMIEEE, MIEEE, MOSA
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD Camb., SMIEEE, SMIEE, MAE, EtaKappaNu
Israel Korn, MSc DSc Technion, Haifa, SMIEEE

Senior Lecturers
Edward Henry Fooks, BSc PhD Lond., CEng, MIEE, MIEEE
Christopher John Elliott Phillips, BSc BE PhD Syd., CEng, MIEE, SMIEEE
Robert Radzyner, BE Melb., MEngSc PhD N.S.W., SMIEEE, SMIEEE
Ramunis Anthony Zakarevicius, BSc BE MEngSc PhD Syd., CEng, MIEAust., SMIEEE, SMIEEE

Lecturers
William John Dewar, MScEng Qu., PhD N.S.W., MIEEE
Douglas Hamilton Irving, BE PhD N.S.W.

Department of Computer Science

Associate Professor
John Lions, BSc Syd., PhD Camb., MACS, MACM, FACS

Senior Lecturers
Paul Justin Compton, MSc N.S.W.
William Stephen Matheson, BE MEngSc Melb., PhD Br.Col., MIEEE, MIEEE CEng
Kam Ng, MSc PhD Brad., MBCS
Kenneth Arthur Robinson, BSc BE Syd., Claude Anthony Sammut, BSc PhD N.S.W.
William Hulme Wilson, MSc A.N.U., PhD Syd., DipCompSc Qu., MACM, MACS

Lecturers
Paul William Baker, BE PhD N.S.W.
Man-Chung Chan, BA Chinese H.K., CUHK
Pranay Chaudhuri, BSc BTech Calc., ME, PhD Jad.
Timothy David Lambert, BMath N'cle (N.S.W.), MSc Manit.
Peter Alexander Lindsay, MSc Melb., PhD U.I.U.C., MSL
Jacek Olszewski, MSc DSc Warsaw, PhD Wroclaw, MACS
Jerz Piotrowski, MSc PhD Warsaw Tech. Uni.
Arcot Sowmya, BSc Madras, MSc MTech IIT Bombay
Geoffrey Robert Whale, BE PhD N.S.W., MIEEE

Professional Officers
Serge Poplavsky, Dipl Ing Bratislava, ME N.S.W.
Keith William Titmuss, BSc Tech MEngSc N.S.W.

Administrative Assistants
Vanessa Joubert, Young Kim, BA MA Ewha.

Visiting Fellow
Stephen Michael Russell, BSc Syd.
Department of Electric Power Engineering

Senior Lecturers
Trevor Robert Blackburn, BSc Adel., PhD Flin., CEng, MAIP, MIEE, MIEE
Kevan Charles Daly, BSc BE PhD N.S.W., CEng, MIEE, MIEE
Colin Grantham, BSc PhD N’cle. (U.K.), CEng, MIEE
Roland John Kaye, BE MEngSc Melb., PhD Calif., MIEE
Hugh Ronald Outhred, BSc PhD Syd., AMIEE, MIEE
Fazlur Muhammed Rahman, MSc PhD Manc. Inst. Sci. & Tech., MIEE, MISA, AMI
Darmawan Sutanto, BE PhD W.A., MIEEE, CPEng, MIEAust

Lecturer
Qi Su, MEngSc, WUHEE, PhD N.S.W., MIEE

Professional Officers
Erik Maria Keller, DipLIng C.V.U.T. Prague
Bao Ton Phung, BE Wgong, MEngSc N.S.W.

Project Scientist
Edward Douglas Spooner, ME N.S.W.

Visiting Fellow
Ronald Edward James, BScEng PhD Lond., CEng, CPEng, FIEAust, MIEEE, MIMechE, SMIEEE

Department of Electronics

Senior Lecturers
Christopher Max Horwitz, MSc PhD Syd.
Ruey Shing Star Huang, BS Natl.Cheng Kung, MS Natl.Chiao Tung, PhD N.S.W.
Chee Yee Kwok, BSc BE PhD N.S.W.

Lecturer
Stuart Ross Wenham, BE BSc PhD N.S.W.

Professional Officers
Eric Gauja, BSc BE PhD N.S.W., MIEEE
Ulrich Theden, DipLIng U.T.Berlin

Department of Systems and Control

Associate Professor
Branko George Celler, BSc BE PhD N.S.W., MIEEE, MIEEE, MAPPs
Keith Eugene Tait, BE(Hons) BSc N.Z., PhD N.S.W.
Peter Douglas Neilson, BScEng PhD N.S.W.

Senior Lecturers
David James Clements, BSc Qld., ME PhD N’cle. (N.S.W.), MIEEE, MIEEE, SigmaXi
Timothy Hesketh, BSc MSc CapeT., PhD Massey, MIEEE
Khiang Wei Lim, BE Malaysia, PhD Oxf., MIEEE, MIES
David Harold Mee, BSc BE Syd., PhD DIC Lond., SMIEEE

Lecturer
Rongsheng Li, BSMS P.R.C., PhD U.S.C.

Professional Officers
Kong Been Lee, BE MEngSc ME N.S.W., MIEEE, AMIEE

Centre of Photovoltaic Devices and Systems

Director
Professor M. A. Green

School of Mechanical and Manufacturing Engineering

Incorporates Aerospace Engineering and Naval Architecture.

Nuffield Professor of Mechanical Engineering and Head of School
Brian Edward Milton, BE PhD N.S.W., MSc Birm., CEng, CPEng, FIEAust, MRAeS

Professor of Mechanical Engineering and Director of Laboratories
Noel Levin Svensson, AM, MMechE PhD Melb., CEng, CPEng, FIEAust, MIMechE.

Professor of Mechanical Engineering and Director of Programs
Clifford Patterson, MA PhD Camb., FIEAust, CEng, CPEng, FIMechE, CPhys, FInstP, FIMA, MIEE

Sir James Kirby Professor of Production Engineering
Vacant

Associate Professor and Director of Undergraduate Studies
John Edward Baker, MSc Syd., BE MEngSc PhD N.S.W.

Associate Professor and Director of Postgraduate Studies
Donald Wainwright Kelly, BE Syd., PhD Lond.

Heads of Disciplines
Applied Mechanics
Eric Joseph Hahn, BE BSc PhD N.S.W., FIEAust, MASME

Design
Alexander Eric Churches, BE PhD N.S.W., ASTC, FIEAust, CEng, CPEng, FRSA

Fluid and Thermal Engineering
Graham de Vahl Davis, AM, BE Syd., PhD Camb., CEng, CPEng, FIMechE, CPhys, FInstP, FIMA, MIEE

Industrial Technology and Management
Vacant

Mechatronics
Richard Adrian Willgoss, BSc PhD S’ton, CEng, MIEE, MinstP, MIEEE, CPhys

Heads of Programmes
Energy and Power Systems
John Arthur Reizes, ME PhD N.S.W., CPEng, FIEAust

Machine Systems Design
Richard Butler Frost, BE N.S.W., CEng, CPEng, FIEAust

Maintenance Engineering
Robert Bond Randall, BTech Adel., BA Melb., CPEng, MIEEE, MAAs, FIDiagE

Manufacturing and Automation
(Centre for Manufacturing and Automation)
Grier Cheng L Lin, DipMechEng Nat. Taiwan I.T., PhD N.S.W., CPEng, MIEEE, FIMechE, FISME, MASEM

Mechanical Building Services
Eddie Leonardl, BScEng PhD N.S.W., MASEM, CPEng, MIEEE, MAIRAH, MASHRAE

Transportation Systems Engineering
John Randall Page, BSc Hat., MSc Cran.I.T., CEng, MRAeS, FBIS, MAIAA
Executive Assistant to Head of School
Dr C. V. Madhusudana

Administrative Officer
Annos Dimitrius, BSc Eng Sri Lanka, MEngSc
Adel., CEng, CEng, MIEAust, MIE Sri Lanka

Administrative Assistant
Audrey Muriel Colquhoun

Senior Tutors
Sangarapillai Kanapathippillai, BSc Eng Sri Lanka, MEngSc
Adel., CEng, CEng, MIEAust, MIE Sri Lanka
Luis Fernando Velez, IngMechSc Pont.Boliv., Colombia, ME Flor.

Tutors
Min Hu, BE China Text.U., PhD N.S.W.
Raaft Ibrahim, BSc MEng Cairo, CEng, MIEAust

Project Scientist
Peter Yo Pin Chen, BSc MEngSc ME PhD N.S.W., ASTC

Professional Officers
James Beck, ME Prague
Eric Arthur Carter, BE MEngSc N.S.W., ASTC
Anthony Gordon Harris, BSc Exe.
Alfred Win Lin Hu, BE Rangoon IT, MIEEE, AIREEE
Philip Chi Bong Kwok, BE Beijing Inst.Aer. & Astro. CEng, MIEAust, MIEEE
Alexander Lev Litvak, Dipling Odessa, MEngSc N.S.W., CEng, MIEAust
Barrie Clifford Motson, BE N.S.W., ASTC, CEng, MIEAust
Jason Trihung Nhieu, BSc Nat Cheng Kung, MEngSc N.S.W., CEng, MIEAust
Kenneth Norcross, BScEng N.S.W.
Russell Norman Overhall, BE N.S.W., CEng, MIEAust.
Charles James Sanderson

Computer Systems Officer
David Alexander Herd, BSc Syd.

Honorary Associate
George Lorenz

Honorary Research Professor
Peter Louis Brennan Oxley, BSc PhD Leeds, CEng, CEng, FTS, FIProdE, FIEAust, FIMechE

Visiting Professors
George Bennet, BA Syd., PhD N.S.W., ASTC, CEng, FIProdE
Henry Ehkpehale Enahoro, BSc(Hons) MScTech Mancl., PhD Sheff., FIMechE, MiProdE, FAS, CEng
Leslie George Kemeny, BE Syd., CEng, MIEAust, FAIE, MACS
Zdenek Josef Holy, DiplIng Prague, MSc Birm., MEngSc PhD N.S.W., CEng, MIEAust

Visiting Fellows
Frances Herbert Carr, BE ME W.A., PhD N.S.W., CEng, MIEAust, FAIE, MANA
Gerhart Klaus Lowenthal, BA BSc DipPubAdm Melb., MSc PhD N.S.W., FAIP, MinstP

Applied Mechanics Discipline

Professor
Clifford Patterson

Associate Professors
John Edward Baker
Kerry Patrick Byrne, BE MEngSc Qld., BSc Melb., PhD Ston

Eric Joseph Hahn, BE BSc PhD N.S.W., CEng, FIEAust, MASME
Donald Wainwright Kelly, BE Syd., PhD Lond.

Senior Lecturers
Mahiuddin Chowdhury, BSc Bangl.U.T., PhD N'cle (U.K), FRINA, CEng, CEng, FIE
Robin Arthur Julian Ford, BScEng PhD Lond., ACGI, CEng, MIEAust
Chakravarti Varadachar Madhusudana, BE Mys., ME I.I.Sc., PhD Monash, BE MIEAust, MASME, CEng
Robert Bond Randall, BTech Adel., BA Melb., CEng, MIEAust, MAAs, FIDiagE
Hugh Lithgow Stark, BSc PhD Strath., CEng, CEng, FIMechE, MIEAust

Lecturer
See Seng Leong, BE PhD N.S.W., CEng, MIEAust

Design Discipline

Professor
Noel Levin Svenssson

Associate Professor
Alexander Eric Churches

Senior Lecturers
John Michael Challen, BE MEngSc Syd., PhD N.S.W., FIEAust
George Crawford, BE BSc N.S.W., ASTC, CEng, CEng, FIEAust, MAIE, ARACI, CC chem
Richard Butler Frost, BE N.S.W., CEng, CEng, FIEAust
John Randall Page
Prabhat Kumar Pal, BME N.C.E., Bangal, BTech PhD IIIT Kharagpur, FRINA CEng, FIEAust, MIINA, MGTG Hamburg

Fluid and Thermal Engineering Discipline

Professor
Brian Edward Milton

Associate Professors
Graham de Vahl Davis
Lawrence Julian Doctors, BE MEngSc Syd., PhD Mich., FRINA, AMSNAME
Graham Lindsay Morrison, BE PhD Melb.

John Arthur Reizes

Senior Lecturers
Masud Behnia, BSME, MSME PhD Purdue, MASME, MAIAA, CEng, MIEng
Eleonora Maria Kopalinsky, BE PhD N.S.W.
Eddie Leonard
Ian Lachlan Maclaine-cross, BE Melb., PhD Monash, MIEAust

Industrial Technology and Management Discipline

Associate Professor
Bruce Albert Murtagh, ME Cant., PhD Lond., CEng, IMChemE, CEng, MIEAust

Senior Lecturers
Leonard Edward Farmer, BE MEngSc PhD N.S.W., CEng, MIEAust
Roger Malcolm Kerr, BSc Lond., MSc Bath., DPhil Oxf.

Grier Cheng I Lin
Philip Mathew, BE PhD N.S.W., MIEAust
Engineering

Lecturer
Khoi Hoang, BE Saigon, PhD N.S.W.

Mechatronics Discipline
Senior Lecturer
Richard Adrian Willgoss
Lecturer
Michal John Tordon, Dipling Bratislavae, PhD Prague, MIEEE

School of Surveying

Associate Professor and Head of School
John Charles Trinder, BSurv PhD N.S.W., MSc I.T.C. Delft, RegSurvNSW, FISAust
Professor of Surveying
Friedrich Karl Brunner, Dipling Ortech T.U. Vienna

Associate Professors
Bruce Crosby Forster, MSurv Melb., MSc R’dg., PhD N.S.W., MISAust, LSVic, MIEEE
Arthur Harry William Kearley, BSurv MSurvSc PhD N.S.W., MISAust
Jean Marc Rueger, Dipling E.T.H. Zurich, PhD N.S.W., SIA, ACSM LSSwitz, MISAust
Artur Stolz, BSurv PhD N.S.W., RegSurvNSW

Senior Lecturers
Christopher Rizos, BSurv PhD N.S.W.
Anthony John Robinson, BSurv MBA PhD N.S.W., RegSurvNSW, MISAust, MAIC

Lecturers
Pratap Shivabhai Amin, BSc I.T.C. Delft, MSc Lond., MISK, OLEA, ARICS
Sabapathy Ganeshan, BSc Ceyl.
Bruce Raymond Harvey, BSurv PhD Reg Surv N.S.W.
Ewan Gerald Masters, BSurv PhD N.S.W., MISAust
John Richard Pollard, BSc Qld., BTech S.A.I.T.

Administrative Assistant
Leon Daras, BA N.S.W.

Professional Officers
Brian Edward Donnelly, BSurv N.S.W., MSurv N’cle(N.S.W.), RegSurvNSW, GradDipCompStud C.C.A.E.
Karl David Sippel, BSurv N.S.W.
William Zhong, BSc Shanghai

Computer Systems Officer
Bernd Hirsch, BAAppSc M.C.A.E.

Centre for Groundwater Management and Hydrogeology

In association with the Faculty of Applied Science

Director
Associate Professor M. J. Knight
Deputy Director
Associate Professor C. R. Dudgeon

Senior Lecturers
William Alexander Milne-Home, BSc Leic., MSc Lond., PhD Alta., FGS
Richard Ian Acworth, BSc Leeds, MSc PhD Birm., FGS

Senior Research Fellow
Jerzy Jankowski, M.Geog, Doktor Navr Geog, Wroclaw

Project Scientist
Rolph Wilhelm Beck, BSc Syd.
David Ronald Cohen, BSc Syd., MSc Qu. PhD N.S.W.

Professional Officers
Robert Gregor McLaughlin, BSc MApplSc N.S.W.

Administrative Assistant
Areerom Romy Peters

Centre for Biomedical Engineering

Associate Professor and Director
Klaus Schindhelm, BE PhD N.S.W., MIEAust, MASAIO

Associate Professor
Christopher David Bertram, MA DPhil Oxf.

Centre for Membrane and Separation Technology

In association with the Faculties of Applied Science and Science

Director
Professor C. J. D. Fell
Centre for Remote Sensing

In association with the Faculty of Applied Science

Director
Associate Professor B. C. Forster
Deputy Director
Associate Professor A. K. Milne
Professional Development Manager
Helen Dawn Williamson, BA Lond., MSc Cran I.T., PhD Sheff.
Professional Officer
Arthur Mark Hall, BSc N.E.
Laboratory Manager
John Charles Klingberg, BSc Darling Downs I.A.E., GradDip Remote Sensing N.S.W.
Research Assistant
John Lambert Steer, BApp Sc N.S.W.I.T.

Centre for Safety Science

Monier Chair of Safety Engineering and Director
Jean Cross, BSc Manc., PhD Lond., FIEAust, MAIP
Senior Lecturers
*Edward Maxwell Nicholls, MD BS Adel., FACOM
Ronald Rosen, MSc N.Z., PhD N.S.W., CPhys, FinstP, FAIP, MACPSEM, FIPSM
Lecturers
Keith Post, BE PhD N.S.W.
Roger Roy Hall, BSc A.N.U., MSc N.S.W., FES, MIES
Senior Research Assistant
David Gavin Lloyd, BScEng N.S.W.
Professional Officer
Kamal Yatapanage, BSc MSc N.E., PhD Macq.
Administrative Assistant
Barbara Littlewood

*Conjoint appointment with the Faculty of Medicine.
This handbook provides information on courses of study offered by the Faculty of Engineering, at both undergraduate and graduate levels, together with descriptions of subjects available and areas in which research may be undertaken.

The Faculty consists of the Schools of Civil Engineering, Electrical Engineering and Computer Science, Mechanical and Manufacturing Engineering, Surveying and the Centres for Biomedical Engineering, Photovoltaic Devices and Systems, Safety Science and Wastewater Treatment. The Faculty is also closely associated with the Centres for Groundwater Management and Hydrogeology, Membrane and Separation Technology and Remote Sensing which are multidisciplinary in nature.

The Faculty is dedicated to the achievement of excellence in scholarship, teaching and research in technology and its application for the benefit of the community. The goals of the Faculty are to:

1. provide undergraduate, graduate and continuing education programs, and to undertake research, in the professional fields of engineering and surveying;
2. provide formal and continuing education programs, and to undertake research, in interdisciplinary fields in which engineering science and practice play a prominent role;
3. aid the advancement, development and practical application of science and technology to satisfy the needs of industry, commerce, the infrastructure of society and the efficient management of resources.

Achievement of these goals will develop the attitudes and skills required of professional engineers operating into the twenty-first century.

Schools within the Faculty offer undergraduate courses leading to the award of the degree of Bachelor of Engineering (BE) in Aerospace Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Environmental Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture and Bachelor of Surveying (BSurv). Combined degree courses are also available which lead to the award of two degrees: Bachelor of Engineering and Bachelor of Science (BE BSc), Bachelor of Engineering and Bachelor of Arts (BE BA) and Bachelor of Engineering (Civil Engineering) and Bachelor of Laws (BE LLB).

Through its schools and centres, the Faculty offers an active graduate program. Formal graduate courses are available which lead to the award of the degrees of Master of Biomedical Engineering (MBimedE), Master of Engineering Science (MEngSc), Master of Safety Science (MSafetySc), Master of Surveying Science (MSurvSc) and to the award of Graduate Diplomas. Supervision is also available for candidates undertaking research degrees leading to the awards of Master of Engineering (ME), Master of Science (MSc) and Doctor of Philosophy (PhD).

The Faculty's engineering and surveying courses seek to develop in students:

1. The technical, scientific and creative skills required to solve all aspects of engineering problems.
2. An understanding of human interaction with the environment so that the impact of engineering activity can be assessed.
3. The ability to direct and manage engineering activities.
4. The ability to communicate with other members of the profession, with industrial personnel, administrators and with members of the public.
5. The desire and ability for continuing self-education and reappraisal of current practice including the ability to innovate.
6. The ability to evaluate independently and to criticise constructively their own work and the work of other engineers.

As part of their training for the profession, students are required to write reports and make verbal presentations. Therefore a high level of competence in written and spoken English expression is expected.

It is also important for students to join in the development of themselves as professional engineers. Engineering is a co-operative profession where teamwork is very important. Whilst at university, students should take as many opportunities as possible to join in the activities which help to develop the whole person. Student clubs and professional institutions provide many opportunities for gaining knowledge and experience which will be valuable in later years.

Dean
Faculty of Engineering
Faculty Information

Some People Who Can Help You

If you require advice about enrolment, degree requirements, progression within courses, subject content and requirements, contact the appropriate school/centre representative listed below:

School of Civil Engineering: Mr G. J. Harris, Room 406, Civil Engineering Building.

School of Electrical Engineering and Computer Science: Dr. C. J. E. Phillips, Room G6, or Ms A. G. M. Johnson, School Office, Electrical Engineering and Computer Science Building.

School of Mechanical and Manufacturing Engineering: Dr C.V. Madhusudana, Room 105B, or Mr A.D. Bauman, Room 112, Mechanical and Manufacturing Engineering Building.

School of Surveying: Mr L. Daras, School Office, Room 529, Geography and Surveying Building.

Centre for Biomedical Engineering: Associate Professor K. Schindhelm, 34-36 Botany Street, Randwick, 2031.

Centre for Groundwater Management and Hydrogeology: Dr M. J. Knight, Room 810, Applied Science Building.

Centre for Remote Sensing: Associate Professor B.C. Forster Room 247, Geography and Surveying Building.

Centre for Safety Science: Professor J. Cross, 30 Botany Street Randwick, 2031

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboards of the schools and the official noticeboards of the University.

Entrance Requirements

Students are selected for courses offered by the Faculty according to the Tertiary Entrance Rank based on the scaled aggregate mark obtained in the New South Wales Higher School Certificate (NSW HSC). Other students are admitted on the basis of their previous academic mark. In addition, students are expected to have reached the following standards (or equivalent) in the NSW HSC subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>NSW HSC Prerequisites For First-Year Subjects</th>
<th>NSW HSC Score Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering:</td>
<td>2U Mathematics or 3U Mathematics or 4U Mathematics</td>
<td>60-100</td>
</tr>
<tr>
<td>Aerospace</td>
<td>2U Mathematics or 3U Mathematics or 4U Mathematics</td>
<td>1-50</td>
</tr>
<tr>
<td>Civil</td>
<td>2U Mathematics or 3U Mathematics or 4U Mathematics</td>
<td>1-100</td>
</tr>
<tr>
<td>Computer Electrical</td>
<td>2U Science (Physics) or 3U Science or 4U Science</td>
<td>53-100</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td>90-150</td>
</tr>
<tr>
<td>Mechanical Manufacturing</td>
<td></td>
<td>1-50</td>
</tr>
<tr>
<td>Management Surveying</td>
<td>2U English (General) or 2U English or 3U English or 2U Contemporary English</td>
<td>53-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60-100</td>
</tr>
</tbody>
</table>

Students are advised that the lack of specified subject prerequisite/s do not preclude their selection to any course but the required standard must be achieved before enrolment in the University subject is permitted.

The University conducts Bridging Courses to assist in remedying deficiencies in subject levels. Further details are available from the Students' Information Guide published annually by the Universities Admissions Centre (UAC).
Faculty Information

Introductory subjects are also available to students who do not have the New South Wales Higher School Certificate prerequisite/s in Mathematics or Physics. It should be noted that inclusion of these subjects in first-year programs could extend the duration of a course.

Faculty of Engineering Enrolment Procedures

All students re-enrolling in 1991 or enrolling in graduate courses should obtain a copy of the free leaflet Re-Enrolling 1991 available from School offices and the Admissions Office. This leaflet provides detailed information on enrolment procedures and fees, enrolment timetables, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Equal Opportunity in Education (EOE)

The Faculty of Engineering is committed to the principles that course design, curriculum content, classroom environment, assessment procedures and other aspects of engineering education provide equality of educational opportunity to all students enrolled in subjects offered within the Faculty.

It is nevertheless expected of students that they possess prerequisite knowledge and manipulative skills and obtain the relevant practical experience necessary to satisfactorily complete a degree course in Engineering or Surveying. The University provides bridging and remedial courses to overcome prerequisite deficiencies, counselling services to help with problems of a personal or a psychological nature and support services to assist with obtaining mandatory industrial experience during the undergraduate course.

It is Faculty and University policy to promote equal opportunity in Education; refer to EOE Policy Statement, University of New South Wales Calendar, and the Guide for Students 1991.

Faculty of Engineering Library Facilities

Although any of the university libraries may meet specific needs, the staff and students of the Faculty of Engineering are served mainly by the Physical Sciences Library and the Undergraduate Services.

The Physical Sciences Library

The library, located on Levels 6 and 7 of the Library tower, caters for the information needs of staff, postgraduate students and undergraduates in the pure and applied sciences, engineering and architecture.

Physical Sciences Library materials are listed in the Library’s online catalogue, microfiche book finding list or microfiche serials catalogue.

This Library provides reference, reader assistance and reader education services including interlibrary loan, online search and CD-ROM facilities. Photocopying facilities are also available.

Trained Library staff are always available on Level 7 to assist readers with their enquiries.

Physical Sciences Librarian Rhonda Langford

Undergraduate Services

- The Open Reserve Section houses books and other materials which are required reading. Level 2.
- The Audio Visual Section contains multimedia videos and cassette tapes of lectures. The section has wired study carrels and cassette players for student use. The map collection is also located here. Level 3.
- The Reader Education program provides orientation tours and introductory library research method lectures to students.

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students’ Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students’ Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar and Deputy Principal for approval by the University Council.

The following societies serve the interests of students in the various courses in the Faculty of Engineering: Biomedical Engineering Society (BioEngSoc); Civil Engineering Society (CIVSOC); Computing Science Association (CSA); Electrical Engineering Society (ELSOC); Mechanical Engineering Society (MECHSOC); Naval Architecture Students’ Association (NASA); Students of Safety Science Society (SAFSOC); Surveying Society (SURVSOC).

Students are encouraged to participate in the activities of their societies. Enquiries should be directed initially to the general offices of the respective Schools.
Students With Disabilities

The University of New South Wales has a policy of equal opportunity in education and seeks wherever possible to ensure maximum participation of students with disabilities. The University offers a range of assistance: examination support; specialized equipment; educational support; parking provisions; library assistance.

A Resource Guide for students and staff with disabilities and a map showing wheelchair access is available from the Advisor to students with Disabilities, the EEO Unit, the Library and the Students’ Union.

It is advisable to make contact with the Adviser to Students with Disabilities prior to, or immediately following enrolment, to discuss your support needs. The Adviser can be contacted on 697-5418 or at Building F15 (Careers & Counselling Unit).

International Association for the Exchange of Students for Technical Experience - IAESTE

IAESTE is an organization to facilitate overseas work in technical areas in 53 different countries throughout the world for students or recent graduates. It organizes visas, work periods for as little as 6 weeks or up to 12 months, lodging and an initial welcome.

Further information may be obtained from the Association, C/-The Graduate Careers Council of Australia, PO Box 28, Parkville, Vic, 3052. Telephone (03) 347 4644.

Professional Institutions

1. The Institution of Engineers, Australia
The professional body for engineering in Australia is the Institution of Engineers, Australia (IEAust), which has as its first objective 'to promote the science and practice of engineering in all its branches'.

The IEAust has its national headquarters in Canberra and functions through a series of divisions, the local one being the Sydney Division. Within each division are branches representing the main interests within the profession, eg civil, mechanical, electrical, engineering management and environmental engineering.

Students of an approved school of engineering may join the Institution as a student member (StudIEAust). Student members receive the fortnightly publication Engineers, Australia and for a small fee they also receive The Transactions which contains articles on a particular branch of engineering.

Student members are invited to participate in the Excellence Award for Work Experience, the National Young Engineer of the Year Award and to avail themselves of other IEAust services including the Mentor Scheme and industrial experiences guidance.

For more information and membership application forms, write to The Secretary, The Institution of Engineers, Australia, Sydney Division, 1st Fl., 118 Alfred Street, Milsons Point NSW 2061.

2. The Institution of Surveyors, Australia
During their years as undergraduates, students in the surveying course are encouraged to take the first steps in joining in the activities of the professional body which represents surveyors, The Institution of Surveyors, Australia. The aims of the Institution are to promote scientific, technical and educational aspects of surveying and to maintain high professional standards of practice and conduct. Student members receive the quarterly journal of the Institution, The Australian Surveyor and Azimuth which is published by the New South Wales Division of the Institution. Membership also entitles the student to attend all meetings of the Institution and to attend the annual Congress at a special concessional rate. Membership application forms are available at the office of the School of Surveying and from the Institution Office, Third Floor, Guild House, 363 Pitt Street, Sydney.

General Information

While this Handbook has been specially designed as a detailed source of reference in all matters related to the Faculty, the University's Guide for Students is intended to provide general information on some of the most important rules and procedures and introduces students to many of the services available to them. The Guide, which helps to put the Faculty into perspective within the University as a whole, is issued free of charge to all enrolled students. For fuller details about some aspects of the University and its activities students might need to consult the University Calendar.
Undergraduate Study

The Faculty of Engineering offers courses leading to the award of the degrees of Bachelor of Engineering (BE) in Aerospace, Civil, Computer, Electrical, Environmental and Mechanical Engineering, Manufacturing Management and Naval Architecture. These courses are available on a full-time or part-time basis. BE courses in sandwich form after the first year are also available in Civil and Environmental Engineering.

A course is also offered leading to the award of the degree of Bachelor of Surveying (BSurv) and is available on a full-time basis and in sandwich form.

The full-time courses are designed to be taken over a period of four years, whereas part-time study usually involves a combination of mainly day-time together with some evening attendance over a period of six or seven years. It may not be possible to offer evening classes in the later year subjects. The sandwich pattern provides for alternate periods of full-time study and full-time employment with part-time study.

The three major subject areas in engineering and surveying courses are basic sciences, engineering sciences and engineering applications. The basic sciences area is emphasised in Year 1 since it forms the foundation for the remainder of the course. Engineering sciences form the link between the basic sciences and engineering applications. The engineering applications area provides the opportunity for applying knowledge to the solution of problems and is consequently emphasised later in the course. A feature of the courses at the University of New South Wales is the inclusion of a program of General Education, the requirements for which are set out below.

Basic Sciences consist of Mathematics, Physics and some Chemistry. Engineering Science subjects are those which provide the theoretical basis for engineering applications. These include Applied Mechanics, Fluid Mechanics, Electronics, Electricity, Thermodynamics, Structural Mechanics, Materials Science. Engineering Applications involve Innovation and Design, Systems and Control, Production, Technical Communication, Energy Conversion, Management. General Education subjects serve to provide both an introduction to the environments in which humans function - physical, biological, socio-economic, and technological - and an introduction to the cultural bases of knowledge and belief.

Transfer Courses

The University of Melbourne has guaranteed entry for up to three students in the Bachelor of Engineering (Agriculture) degree course who successfully complete the first year of an engineering degree course at the University of New South Wales. Application should be made during the year in which first-year studies are undertaken. Further information may be obtained from the Professor of Agricultural Engineering, Department of Civil and Agricultural Engineering, University of Melbourne, Parkville, Vic. 3052.

Students transferring to the University of New South Wales after successful completion of the first year of an engineering degree course at an Australian university would normally be admitted with advanced standing into the degree courses offered by the Faculty of Engineering. Students transferring from related courses at an Australian university are granted exemptions based on parity of all junior courses.

Formal advanced standing procedures apply for entry into the following Bachelor of Engineering (BE) courses at the University of New South Wales with full credit.
BE in Electrical Engineering
Students attending the University of Western Sydney, Macarthur, who complete at their first attempt the first year of the Science Program are granted enrolment in the second year of the BE course. Entry is restricted to applicants who are residents of the South-Western Region of Sydney, only.

BE in Mechanical Engineering
Students studying at the Charles Sturt University, Riverina Campus, may transfer after undertaking study equivalent to the preliminary stages of engineering courses.

BE in Aerospace Engineering
Students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian university may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering. (The first and second years of this course are identical with the first two years of the course in Mechanical Engineering.)

Further information regarding entry into the above listed courses may be obtained from the Dean’s Office, Faculty of Engineering.

Course Transfers
Students who have completed the first year of an undergraduate course in one school may apply for a transfer to a course in another school of the Faculty with credit for relevant subjects completed. However, as there are considerable differences in the various Year 1 programs, students are not granted complete exemption from Year 1 of the course to which the transfer is made.

General Rules for Progression
Progression in all undergraduate courses in the Faculty of Engineering is permitted by subject. However:

1. Course programs will continue to be stated and timetabled by year or stage and it cannot be guaranteed that non-standard programs can be completed in the minimum number of years.

2. Students must satisfy the rules governing re-enrolment: in particular, those require students enrolled in the first year of a degree program to pass in at least half that program. Students are also required to show cause why they should be allowed to repeat a subject which has been failed more than once. Students are also required to show cause why they should be allowed to continue with their course if their average mark in a year of study falls below 50%.

3. Students must satisfy the relevant prerequisite and co-requisite requirements. This will usually necessitate students completing or attempting all subjects of a particular year or stage before proceeding to a subject in the next part of a course. Further details are available from the appropriate school.

4. Only in exceptional circumstances will students be permitted to enrol in subjects extending over more than two years of the course or for more than twenty-eight hours of course work per week if a full-time student or fourteen hours per week if a part-time student. Students repeating subjects are required to choose a program which limits their hours of course work to twenty-two per week if a full-time student, and to eleven per week if a part-time student, unless they have the express permission of the Head of School to exceed these hours.

5. Notwithstanding the above, before students can enrol in any non-standard program such program must meet with the approval of the Head of School. A non-standard program is one which involves enrolment in subjects from more than one year or stage, or comprises subjects which do not normally constitute a particular year’s course work.

Prerequisites and Co-requisites

- A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.
- A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.
Industrial Experience Requirements

The Faculty of Engineering endorses the requirement of The Institution of Engineers, Australia, in that all students must complete at least 60 working days of approved industrial experience prior to enrolment in the final year of their course. The staff of the Faculty will, where possible, assist students to obtain this employment, but it is emphasized that the primary responsibility for obtaining suitable industrial experience rests with each student. The award of the degree is dependent on the completion of the requisite periods of industrial employment at a standard approved by the University.

Students enrolled in Bachelor of Engineering courses in the Schools of Civil Engineering, Electrical Engineering and Computer Science, and Mechanical and Manufacturing Engineering are required to enrol in Industrial Training subjects. Schools’ entries under Course Outlines should be consulted for details of subject requirements.

Subject Identification Scheme

A new alpha-numeric subject identification scheme has been introduced by the University for implementation in 1991. Please locate Subject Descriptions: Identification of subjects in the Contents for further information.

In the Faculty of Engineering, Schools and Centres have allocated the first digit in the numeric suffix of all new subject identifiers as indicating the level of the subject. Please note that the value ‘9’ in this position is reserved for graduate subjects.

General Education Requirement

The University requires that all undergraduate students undertake a structured program in General Education as an integral part of studies for their degree.

Among its objectives, the General Education program provides the opportunity for students to address some of the key questions they will face as individuals, citizens and professionals.

The program requires students to undertake studies in three categories of the program:

CATEGORY A. An introduction in non-specialist terms to an understanding of the environments in which humans function.

CATEGORY B. The Internal Context of Assumptions and Values

CATEGORY C. An introduction to the development, design and responsible management of the systems over which human beings exercise some influence and control. This category is required only of students in four-year professional and honours programs.

The key questions addressed by the Program are:

1. How do we define ourselves in relation to the larger human community? (The Self and Society)
2. How do our conceptions of human nature and well being influence both individual and social behaviour? (Changing Conceptions of Human Nature and Well-Being)
3. What are the prevailing conceptions of and challenges to human rationality? (The Pursuit of Human Rationality)
4. How do language, images and symbols function as means and media of communication? (The Use of Language, Images and Symbols)
5. What is the impact of the computer on human society and culture? (The Computer: Its Impact, Significance and Uses)
6. Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth? (Beliefs, Values and the Search for Meaning)

CATEGORY A: The External Context

Course requirement: 2 x 28 hr subjects

1. How do we, can we, generate wealth? (Australia and the Development of the World Economy)
2. How can we, ought we, distribute wealth, status and power? (Human Inequality)
3. What steps should we take, and what policies should we adopt, in science and technology? (Science and Civilization)
4. What effects do our wealth generating and techno-scientific activities have on the environment? (Ecosystems, Technology and Human Habitation)
5. What are the effects of the new mass media of communication? (Mass Media and Communication)
6. What are the key social and cultural influences on Australia today? (Australian Society and Culture)

CATEGORY B: The Internal Context of Assumptions and Values

Course requirement: 2 x 28 hr subjects

1. How do we define ourselves in relation to the larger human community? (The Self and Society)
2. How do our conceptions of human nature and well being influence both individual and social behaviour? (Changing Conceptions of Human Nature and Well-Being)
3. What are the prevailing conceptions of and challenges to human rationality? (The Pursuit of Human Rationality)
4. How do language, images and symbols function as means and media of communication? (The Use of Language, Images and Symbols)
5. What is the impact of the computer on human society and culture? (The Computer: Its Impact, Significance and Uses)
6. Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth? (Beliefs, Values and the Search for Meaning)

CATEGORY C: An Introduction to the design and responsible management of the human and planetary future

The central question to be addressed by students in a systematic and formal way is: For what purpose or purposes will I use my intellectual skills, my expertise, or my technological prowess?

Will these abilities be used, for example:

(i) in a creative and innovative way?
(ii) to widen the circle of human participation in the benefits they bring?
(iii) to break down the barriers of exclusion and discrimination?
(iv) to enhance the prospects for survival of the human species?
(v) to enhance the capacity of the planet earth to sustain life?

The exact form in which Category C will be satisfied is still being decided and should be finalized during 1991. This could
Engineering involve, however, a slight change to the later years of each of the courses. There are differing requirements for students commencing before, in, and after 1988. Students must complete a program of general education in accordance with the requirements in effect when they commenced their degree program. Students should consult the appropriate course authority or the Centre for Liberal and General Studies in Morven Brown Building, Room G58.

Conditions for the Award of the Degree of Bachelor of Engineering

Conditions for the Award of the Degree of Bachelor of Engineering.

1. A candidate for the award of the degree of Bachelor of Engineering shall:
 (1) comply with the requirements for admission;
 (2) follow the prescribed course of study in the appropriate School, and satisfy the examiners in the necessary subjects;
 (3) complete an approved program of industrial training for such periods as are prescribed. In general, this training must be completed before 31 January in the year in which the degree is to be awarded.

2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations, excursions and field camps to such an extent and in such a manner as is prescribed from time to time by the Academic Board on the recommendation of the Faculty. Those students who are required to undertake field work for any subject must be prepared to pay the appropriate costs and be in attendance at all scheduled examinations except in abnormal circumstances.

3. A student may be granted advanced standing by the Academic Board on the recommendation of the Faculty, but in each case must complete an adequate period of approved industrial training before being eligible for the degree. In addition to the above requirements a student coming from another institution must comply with the conditions laid down by the Academic Board for admission with advanced standing.

4. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
 Honours Class I
 Honours Class II, Division I
 Honours Class II, Division II

5. In special cases the Faculty may approve the variation of any of the preceding conditions.

Conditions for the Award of the Degree of Bachelor of Surveying

1. A candidate for the award of the degree of Bachelor of Surveying shall:
 (1) comply with the requirements for admission;
 (2) follow the prescribed course of study in the School of Surveying and satisfy the examiners in the necessary subjects;

2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations, excursions and field camps to such an extent and in such a manner as is prescribed from time to time by the Academic Board on the recommendation of the Faculty. Those students who are required to undertake field work for any subject must be prepared to pay the appropriate costs and be in attendance at all scheduled examinations except in abnormal circumstances.

3. A student may be granted advanced standing by the Academic Board on the recommendation of the Faculty of Engineering. In addition to the above requirements a student coming from another institution must comply with the conditions laid down by the Academic Board for admission with advanced standing.

4. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
 Honours Class I
 Honours Class II, Division I
 Honours Class II, Division II

5. In special cases the Faculty may approve the variation of any of the preceding conditions.
Course Outlines

School of Civil Engineering

Head of School
Professor R. Fell
Senior Administrative Officer
Mr G.J. Harris

The School consists of five departments: Geotechnical Engineering (foundation engineering, soil mechanics, rock mechanics, concrete technology, and pavement engineering); Engineering Construction and Management (civil engineering systems, engineering economy, project planning and management and civil engineering construction); Structural Engineering (structural analysis and structural design); Transport Engineering (planning, design, construction and operation of transport systems, statistical analysis, land use and transport modelling, economic evaluations and environmental impact studies); Water Engineering (hydraulics, hydrology, water resources, waste management and public health engineering).

In addition to extensive laboratory facilities on the Kensington campus, the School operates laboratories at Govett Street and King Street, Randwick and King Street, Manly Vale. The latter complex houses the School's Water Research Laboratory and the associated Water Reference Library. The School also uses the Fowlers Gap Arid Zone Research Station for construction camps and data collection for arid zone hydrology.

The School offers courses (3620) and (3625) leading to the degrees of Bachelor of Engineering (Civil) (BE) and Bachelor of Engineering (Environmental) (BE), at pass or honours level, which can be taken on a four-year full-time basis, on a part-time basis or on a combined full-time part-time basis subject to the approval of the Head of School. Intending part-time students are advised that most subjects are offered only in the daytime. Part-time students will normally take two years for each equivalent full-time year.

Alternatively, the courses may be taken in a sandwich form in which a student, after completing the first year of the course on a full-time basis, gains industrial experience during one or more periods of employment by taking leave of absence for one academic year.

A six-year full-time course (4775) leading to the award of the degrees of Bachelor of Engineering and Bachelor of Laws (BE LLB) is offered.

The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For details of the requirements, please locate General Education in the Contents.

The requirements for the award of the BE degrees include a period of at least sixty working days of approved industrial training prior to enrolment in the final year.

The degree of Bachelor of Engineering (Civil or Environmental) may be conferred as a Pass degree or as an Honours degree. There are two classes of Honours, Class I, and Class II in two divisions, and the award and grade of Honours are made in recognition of superior performance throughout the course with a greater weighting on subjects in the later years.

The award of the degree of Bachelor of Engineering (Civil or Environmental) is recognized by the Institution of Engineers, Australia, as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is accorded to the BE course by overseas engineering institutions.
Bachelor of Engineering—Full-time Course

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1989</td>
<td>Physics*</td>
<td>4 S1, 3 S2</td>
</tr>
<tr>
<td>CHEM1808</td>
<td>Chemistry 1CE</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>CIVL1106</td>
<td>Computing and Graphics</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL1803</td>
<td>Engineering Mechanics 1</td>
<td>4 S1, 4 S2</td>
</tr>
<tr>
<td>CIVL1301</td>
<td>Civil Engineering Practice</td>
<td>3 S1, 2 S2</td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics</td>
<td>6 S1, 6 S2</td>
</tr>
<tr>
<td>GEOL5100</td>
<td>Geology for Civil and Environmental Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL2106</td>
<td>Systems Engineering</td>
<td>2 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL2203</td>
<td>Engineering Mechanics 2</td>
<td>4 S1, 4 S2</td>
</tr>
<tr>
<td>CIVL2301</td>
<td>Engineering Construction</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL2402</td>
<td>Materials Engineering 1</td>
<td>4 S1, 4 S2</td>
</tr>
<tr>
<td>CIVL2505</td>
<td>Hydraulics 1</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>MATH2009</td>
<td>Engineering Mathematics 2</td>
<td>4 S1, 4 S2</td>
</tr>
<tr>
<td>MATH2699</td>
<td>Statistics SC</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>SURV0441</td>
<td>Surveying for Engineers</td>
<td>0 S1, 4.5 S2</td>
</tr>
<tr>
<td>SURV0491</td>
<td>Survey Camp*</td>
<td>0 S1, 0(3) S2</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL3106</td>
<td>Engineering Computations</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL3203</td>
<td>Structural Analysis</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL3303</td>
<td>Structural Design</td>
<td>4 S1, 4 S2</td>
</tr>
<tr>
<td>CIVL3402</td>
<td>Geotechnical Engineering 1</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL3505</td>
<td>Hydraulics 2</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL3601</td>
<td>Engineering Management 1</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL3705</td>
<td>Water Resources</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL3804</td>
<td>Transport Engineering</td>
<td>2 S1, 2 S2</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4006</td>
<td>Industrial Training</td>
<td>0 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4101</td>
<td>Engineering Management 2</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4203</td>
<td>Structural Engineering</td>
<td>4 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4306</td>
<td>Engineering and the Environment*</td>
<td>4 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4403</td>
<td>Materials Engineering 2</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4502</td>
<td>Geotechnical Engineering2</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4605</td>
<td>Water Supply and Wastewater</td>
<td>3 S1, 0 S2</td>
</tr>
</tbody>
</table>

Year 4 (cont.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4704</td>
<td>Highway and Pavement Engineering</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4906</td>
<td>Project/Thesis</td>
<td>1 S1, 6 S2</td>
</tr>
</tbody>
</table>

Plus two of the following five elective majors:

- CIVL4811 Construction Major**
- CIVL4822 Geotechnical Major
- CIVL4833 Structures Major
- CIVL4844 Transport Major
- CIVL4855 Water Major

- CIVL4855 Water Major 0
- CIVL4844 Transport Major 0
- CIVL4833 Structures Major 0
- CIVL4822 Geotechnical Major 0
- CIVL4811 Construction Major** 0

Bachelor of Engineering BE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours Per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics I</td>
</tr>
<tr>
<td>PHYS1989</td>
<td>Physics I</td>
</tr>
<tr>
<td>CHEM1101</td>
<td>Chemistry IA</td>
</tr>
<tr>
<td>CHEM1201</td>
<td>Chemistry IB</td>
</tr>
<tr>
<td>CIVL1203</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>GEOL5100</td>
<td>Geology for Civil & Environmental Engineers</td>
</tr>
<tr>
<td>CIVL1007</td>
<td>Engineering Practice</td>
</tr>
<tr>
<td>GEOG1031</td>
<td>Environmental Processes</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2009</td>
<td>Engineering Mathematics 2</td>
<td>4 S1, 4 S2</td>
</tr>
<tr>
<td>MATH2699</td>
<td>Statistics SC</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL1106</td>
<td>Computing and Graphics</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL2007</td>
<td>Engineering Mechanics and Materials</td>
<td>4 S1, 4 S2</td>
</tr>
<tr>
<td>CIVL2017</td>
<td>Data Survey and Analysis</td>
<td>0 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL2106</td>
<td>Systems Engineering</td>
<td>2 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL2505</td>
<td>Hydraulics 1</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>BIOS1021</td>
<td>Biology B</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>INDC4120</td>
<td>Chemistry of the Industrial</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Education Elective A</td>
<td>4 S1, 0 S2</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL3007</td>
<td>Environmental Fluid Mechanics</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL3106</td>
<td>Engineering Computations</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL3402</td>
<td>Geotechnical Engineering</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL3705</td>
<td>Water Resources</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CIVL3804</td>
<td>Transport Engineering</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>BIOS3111</td>
<td>Population and Community Ecology</td>
<td>3 S1, 3 S2</td>
</tr>
<tr>
<td>CEIC0010</td>
<td>Mass Transfer and Material Balance</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>GEOL9110</td>
<td>Hydro and Environmental Geology</td>
<td>4 S1, 0 S2</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4006</td>
<td>Industrial Training</td>
<td>0 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4101</td>
<td>Engineering Management 2</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4203</td>
<td>Structural Engineering</td>
<td>4 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4306</td>
<td>Engineering and the Environment*</td>
<td>4 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4403</td>
<td>Materials Engineering 2</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4502</td>
<td>Geotechnical Engineering2</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4605</td>
<td>Water Supply and Wastewater</td>
<td>3 S1, 0 S2</td>
</tr>
</tbody>
</table>

Year 4 (cont.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4704</td>
<td>Highway and Pavement Engineering</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4906</td>
<td>Project/Thesis</td>
<td>1 S1, 6 S2</td>
</tr>
</tbody>
</table>

*Students are advised to attempt PHYS1989 Physics 1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt PHYS1002 Physics 1. Students who intend to apply for transfer to the Combined BE BSc degree program involving Level 2/3 Physics subjects must enrol in PHYS1002.

*Students are required to attend a one week Survey Camp which is equivalent to 3 class contact hours per week in Session 2.
Undergraduate Study: Course Outlines

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4006</td>
<td>Industrial Training</td>
<td>0 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4007</td>
<td>Waste Management</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4037</td>
<td>Communications and Ethics</td>
<td>0 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL4101</td>
<td>Engineering Management 2</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL4085</td>
<td>Water Supply and Wastewater Engineering</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CHEN3070</td>
<td>Process Control</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>CEIO0020</td>
<td>Fluid/Solid Separation</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>LAWS3410</td>
<td>Environmental Law</td>
<td>0 S1, 4 S2</td>
</tr>
<tr>
<td>GEOG3042</td>
<td>Environmental Impact Assessment</td>
<td>4 S1, 0 S2</td>
</tr>
<tr>
<td>GEOL9120</td>
<td>Groundwater Contaminant Transport</td>
<td>4 S1, 0 S2</td>
</tr>
<tr>
<td>SURV0752</td>
<td>Remote Sensing Techniques and Applications</td>
<td>4 S1, 0 S2</td>
</tr>
</tbody>
</table>

Environmental Majors, 2 of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4017</td>
<td>Water Engineering</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>CIVL4027</td>
<td>Geotechnical and Transport Engineering</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>CEIO0030</td>
<td>Environmental Protection in the Process Industries</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>GEOG9110</td>
<td>Soil Erosion and Conservation</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>CIVL4907</td>
<td>Project/The Thesis</td>
<td>1 S1, 6 S2</td>
</tr>
</tbody>
</table>

General Education Program

The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For further details, please locate General Education in the Contents.

Requirements for General Education elective and prescribed subjects in courses offered by the School of Civil Engineering are: Years 2 and 3 - one elective from each of Categories A and B, respectively. The subject to be studied in Course 3620 in Year 4, in order to satisfy the Category C requirements, is CIVL4306 Engineering and the Environment. The Category C requirements for Course 3625 were not determined in time for inclusion in this handbook.

Combined Courses

3730

BE BSc In Civil Engineering

Students may seek permission to undertake a five-year full-time combined course leading to the award of the degrees of Bachelor of Engineering (Civil) and Bachelor of Science (BE BSc). The course is administered by the Faculty of Engineering.

Normally, students enrolled in the BE BSc course may be awarded their degrees at the conclusion of five years' study. However, students who commence the course and do not complete the Civil Engineering component may take out a BSc degree on completion of one of the approved programs of the Science and Mathematics Course.

Similarly, students not wishing to complete the BSc degree course may revert to the Civil Engineering program (3620) with appropriate credit for subjects satisfactorily completed.

The combined course consists of the Civil Engineering program (3620), and at least fourteen units of the Science and Mathematics Course (3970) within an approved program.

There are three approved programs but additional ones may be approved if they are relevant. Approval may be given to change the programs listed below to allow for timetabling and the student's academic interests.

Although transfer from Course 3620 to Course 3730 is normally made at the end of Year 1, first year students who are considering to apply for transfer should note the requirements for PHYS1002 Physics 1 in the second program.

The prerequisite for CHEM1002, 2.121 and 2.131 will be waived for students in Course 3730.

Environmental Majors, 2 of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4017</td>
<td>Water Engineering</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>CIVL4027</td>
<td>Geotechnical and Transport Engineering</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>CEIO0030</td>
<td>Environmental Protection in the Process Industries</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>GEOG9110</td>
<td>Soil Erosion and Conservation</td>
<td>0 S1, 6 S2</td>
</tr>
<tr>
<td>CIVL4907</td>
<td>Project/The Thesis</td>
<td>1 S1, 6 S2</td>
</tr>
</tbody>
</table>

Year 1

PHYS1989*
CHEM1808
CIVL1106, CIVL1203, CIVL1301
MATH1032
GEOL5100

Year 2

CHEM2011, CHEM2031, CHEM2041,
CIVL2203, CIVL2301, CIVL2402
MATH2009
GEOG1012 and GEOG1031
56-hr General Education elective (Cat A)

Year 3

CHEM3311
CIVL2106, CIVL2505, CIVL3106, CIVL3203, CIVL3303
GEOG3021, GEOG2032
SURV0441, SURV0491
56-hr General Education elective (Cat B)

Year 4

CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804,
GEOG3011, GEOG3042, GEOG3211†
At least 2 units chosen from:
GEOG2021, GEOG3032, GEOG3051, GEOG3062

Year 5

Choose 2 units from Table 1 in the Sciences Handbook at Level II or higher.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL4006</td>
<td>Industrial Training</td>
<td>0 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4101</td>
<td>Waste Management</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4203</td>
<td>Communications and Ethics</td>
<td>0 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL4306‡</td>
<td>Engineering Management 2</td>
<td>2 S1, 2 S2</td>
</tr>
<tr>
<td>CIVL4403</td>
<td>Water Supply and Wastewater Engineering</td>
<td>3 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4502</td>
<td>Process Control</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4605</td>
<td>Fluid/Solid Separation</td>
<td>2 S1, 0 S2</td>
</tr>
<tr>
<td>CIVL4704</td>
<td>Environmental Law</td>
<td>0 S1, 4 S2</td>
</tr>
<tr>
<td>CIVL4906</td>
<td>Environmental Impact Assessment</td>
<td>4 S1, 0 S2</td>
</tr>
</tbody>
</table>

Note: All material not in italic typeface refers to the BE degree component of this combined course.

*See footnote at end of Course Outline.
†Two field tutorials, equivalent to 16 tutorial hours, are compulsory.
‡General Education (Cat C).
Physics with Mathematics

Year 1
PHYS1002
CHEM1808
CIVL1106, CIVL1203, CIVL1301
MATH1032
GEOL5100

Year 2
PHYS2011, PHYS2021, PHYS2031
CIVL2203, CIVL2301, CIVL2402
MATH2510, MATH2520, MATH2100, MATH2120
MATH2869
56-hr General Education elective (Cat A)

Year 3
PHYS3001, PHYS3021, PHYS3041
CIVL2106, CIVL2505, CIVL3203, CIVL3303
MATH2501
SURV0441, SURV0491
56-hr General Education elective (Cat B)

Year 4
PHYS3030
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
Choose 1 unit from: PHYS3631, PHYS3110, PHYS3010, PHYS3050
Choose 2 Level II or Level III Mathematics units from Table 1 in the Sciences Handbook.

Year 5
CIVL4006, CIVL4101, CIVL4203, CIVL4306, CIVL4403, CIVL4502, CIVL4605, CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from Table 1 in the Sciences Handbook at Level II or higher.

Note: All material not in italic typeface refers to the BE degree component of this combined course.
*Students are advised to attempt PHYS1989 Physics 1CE but if time-tableing difficulties arise or other exceptional circumstances prevail permission will be given to attempt PHYS1002 Physics 1
#General Education (Cat C)

Computing with some Mathematics

Year 1
PHYS1989*
CHEM1808
CIVL1106, CIVL1203, CIVL1301
MATH1032
GEOL5100

Year 2
COMP1011, COMP1021
CIVL2106, CIVL2203, CIVL2301, CIVL2402
MATH2501†,
MATH2510†,
MATH2520†,
MATH2869
56-hr General Education elective (Cat A)

Year 3
COMP2011, COMP2021, COMP2031
CIVL2505, CIVL3203, CIVL3303
MATH2100†,
MATH2120†,
SURV0441, SURV0491
56-hr General Education elective (Cat B)
Choose 1/2 Level II or Level III Mathematics unit from Table 1 in the Sciences Handbook.

Year 4
COMP3121, CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
Choose three units, at least one of which is a Computer Science Unit, from COMP3121, COMP3231, COMP3311 or Level II or Level III Mathematics units from Table 1 in the Sciences Handbook.

Year 5
CIVL4006, CIVL4101, CIVL4203, CIVL4306#, CIVL4403, CIVL4502, CIVL4605, CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from Table 1 in the Sciences Handbook at Level II or higher.

Note: All material not in italic typeface refers to the BE degree component of this combined course.
*Students are advised to attempt PHYS1989 Physics 1CE but if time-tableing difficulties arise or other exceptional circumstances prevail permission will be given to attempt PHYS1002 Physics 1
#General Education (Cat C)
† Students are encouraged to select higher level Mathematics units where applicable.

4775
BE (Civil Engineering) LLB

This course is administered by the School of Law. Further information may be obtained from that School or from the School of Civil Engineering.

School of Electrical Engineering and Computer Science

Head of School
Professor I F Morrison
Executive Assistant to Head of School
Dr C J E Phillips
Executive Officer
Mr K J Flynn
Administrative Assistants
Miss A G M Johnson,
Ms V Joubert

The School comprises five departments and a Special Research Centre: Communications (all aspects of theory, applied electronics and engineering relating to communication systems and networks such as telephones, broadcasting and television); Electric Power (electrical machines and...
generation, distribution and utilisation of electric energy); **Electronics** (electronic circuits, devices, micro-electronics and application of electronics to such areas as solar power generation); **Computer Science** (design of computer devices and the handling of information in all forms, e.g. numerical, alphabetic, pictorial, verbal); **Systems and Control** (development of theories for the control of complex systems and the application of these theories including computer simulation). The **Centre for Photovoltaic Devices and Systems** conducts research into energy efficient silicon solar cells for electricity generation.

Electrical Engineering has close links with the pure sciences and mathematics. Its technology is changing rapidly, and the School's teaching and research programs are constantly under review to meet the ever changing challenges of present and future needs.

The School offers undergraduate and graduate training in all branches of the profession of electrical engineering. A number of inter-departmental and specialised groups (such as Digital Systems, Biomedical Engineering, Measurement, Microelectronics, etc.) are also active.

Summary of Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Degree(s)</th>
<th>Duration (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3640</td>
<td>BE</td>
<td>Note 1 4 full-time</td>
</tr>
<tr>
<td>3645</td>
<td>BE</td>
<td>Note 2 4 full-time</td>
</tr>
<tr>
<td>3720</td>
<td>BE and BA</td>
<td>5 full-time</td>
</tr>
<tr>
<td>3725</td>
<td>BE and BSc</td>
<td>5 full-time</td>
</tr>
<tr>
<td>3970</td>
<td>BSc (pass)</td>
<td>3 full-time</td>
</tr>
<tr>
<td></td>
<td>BSc (honours)</td>
<td>4 full-time</td>
</tr>
</tbody>
</table>

Note 1 Course 3640 Full-time/Part-time Sandwich
Current sandwich students may complete their sandwich pattern but no new students are being accepted into the sandwich pattern.

Note 2 Course 3645
This new course, which commenced in 1989, is to be phased in over four years. Only Years 1, 2 and 3 of the course will be offered in 1991.

Note 3 Course 3970
This course is operated by the Board of Studies in Science and Mathematics and is for students wishing to major in Computer Science in a Science and Mathematics context. For more details see the Sciences Handbook.

The undergraduate curriculums are being progressively revised to provide a flexible training to suit the needs of today and tomorrow. Individual student needs can be further met by quite extensive substitution provisions within the course programs.

Recognition

The degree of Bachelor of Engineering (BE) is recognised by the Institution of Engineers, Australia and the Institution of Radio and Electronics Engineers, Australia, as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is also accorded to the BE courses by overseas engineering institutions.

Honours

In the Bachelor of Engineering Course the same formal program is offered to both pass students and to those aiming at honours. Honours will be awarded for meritorious performance over the course; special attention is paid to a candidate's performance in the final year subjects and thesis project. A student with a creditable performance in the Bachelor of Science (Engineering) course may be awarded a degree with Merit.

The award of the BA or BSc degree at honours level requires two additional sessions of study. See the Arts and Sciences Handbooks for details.

Substitution of Subjects

General Education

Students must apply to the Director, Centre for Liberal and General Studies, for permission to substitute a subject for part, or all, of their General Studies (old rules) or General Education (new rules) requirement.

Other Subjects

To suit the special abilities or needs of individual students a limited amount of substitution is permitted within each course. Any such substitution must have prior approval of the Head of School who will ensure that:

1. The replacement subject is at least the same length and level as the prescribed subject it replaced; and
2. The resulting overall program of study is suited to the award of the degree as applicable.

Substitution is not permitted in Year 1.

Examples

(i) The normal Year 4 of the BE degree program includes 5 Professional Electives. Students may substitute for one of these electives, a subject of suitable level and difficulty from an area outside the School relevant to the profession of Electrical Engineering. A graduate subject of the School may also be substituted in this way, provided that the student has passed the Year 3 Electrical Engineering subjects at an adequate level.

(ii) Part-time BE students in full-time employment may request substitution of Industrial Electives (ELEC0931, ELEC0932, ELEC0933) for up to three subjects in the BE course. See Industrial Elective subject descriptions for details.

General Education Program

All students in the BE degree courses are required to complete a program of General Education Category A, B and C elective subjects of 4 hours per week over a single Session (or their equivalent) totaling 168 hours. These are normally undertaken during Years 2, 3 and 4 (full-time revised course), stages 3, 4, 5 and 6 (part-time course) and Years 2, 3, 4 and 5 (sandwich course). In Years 2 and 3 (or equivalent) an elective subject is selected from Categories A and B, respectively. Year 4 subjects ELEC4010 Introduction to Management for Electrical Engineers and ELEC4011 Ethics and Electrical Engineering Practice satisfy the requirements of Category C of the General Education Program. For further details, please locate General Education Program in the Contents.

Students commencing prior to 1998 complete requirements under the General Studies rules established by the Board of Studies in General Education.
Engineering

Industrial Experience

All students in the BE degree courses must complete at least 60 days of industrial experience prior to completing their final year (subject ELEC4903 Industrial Training; see subject description for more details). Students will formally enrol in this subject as part of the program for year 4 (full-time course), Stage 6 (part-time course) and Year 5 (sandwich course).

Course Rules

It is the responsibility of students to meet the course requirements applicable at the date of application for the degree.

- Programs and timetables are arranged in preferred year or stage groupings. Progression is, however, by subject.
- Students are not permitted to enrol in subjects with clashing timetables.
- In addition to the specific subject prerequisites a general understanding of the material in the preceding Year or Stage is assumed. Students are not normally permitted to enrol in subjects spread beyond two Years or Stages.
- Students who do not pass their full programs in any year will be limited to a reduced load in the following year. Typically, this is 20 hours per week.
- Previously failed subjects must be included, except that a failed elective may be replaced by another elective.

Course Revision

Following each course revision students are assessed on the basis of the new program but retain credit for any subject already completed and are not liable for the increased requirements if progression is normal.

Re-enrolment

Students must collect enrolment information from the School Office before the end of Session 2. Re-enrolment forms, giving details of students' proposed 1991 programs must be lodged with the School Office by the start of the third week in December. Enrolment at the University will not be authorised until the re-enrolment form has been checked and the program approved. Students not intending to re-enrol should advise the School. Leave of absence for up to one year is usually granted to students in good standing.

It is the responsibility of students to enrol in a program consistent with the rules governing re-enrolment and admission to the degree.

3640
Electrical Engineering - Full-time Course
Bachelor of Engineering
BE

Course 3640 has been revised and is shown below.

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>Year 1</td>
<td></td>
</tr>
<tr>
<td>PHYS1969</td>
<td>Physics 1</td>
</tr>
<tr>
<td>CHEM1806</td>
<td>Chemistry 1EE</td>
</tr>
<tr>
<td>MECH0160</td>
<td>Introductory Engineering Design and Drawing Practice</td>
</tr>
<tr>
<td>MECH0360</td>
<td>Introductory Engineering Mechanics</td>
</tr>
<tr>
<td>ELEC1010</td>
<td>Introduction to Electrical Engineering</td>
</tr>
<tr>
<td>ELEC1011</td>
<td>Electrical Engineering 1</td>
</tr>
<tr>
<td>COMP1011</td>
<td>Computing 1A</td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics 1</td>
</tr>
<tr>
<td>MATH1091</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td></td>
<td>25.5</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
</tr>
<tr>
<td>MATH2110</td>
<td>Higher Applied Mathematics 2</td>
</tr>
<tr>
<td>MATH3150</td>
<td>Transform Methods</td>
</tr>
<tr>
<td>MATH2610</td>
<td>Higher Pure Mathematics 2</td>
</tr>
<tr>
<td>MATH2620</td>
<td>Higher Pure Mathematics 2</td>
</tr>
<tr>
<td>MATH2849</td>
<td>Statistics SE 1</td>
</tr>
<tr>
<td>PHYS2989</td>
<td>Solid State Physics</td>
</tr>
<tr>
<td>COMP1021</td>
<td>Computing 1B</td>
</tr>
<tr>
<td>ELEC2010</td>
<td>Circuit Theory</td>
</tr>
<tr>
<td>ELEC2011</td>
<td>System Theory</td>
</tr>
<tr>
<td>ELEC2012</td>
<td>Digital Circuits</td>
</tr>
<tr>
<td>ELEC2015</td>
<td>Electromagnetic Applications</td>
</tr>
<tr>
<td>ELEC2016</td>
<td>Electraca*Design and Practice</td>
</tr>
<tr>
<td>ELEC2020</td>
<td>Analog Electronics</td>
</tr>
<tr>
<td></td>
<td>56-hr General Education subject (Cat A)</td>
</tr>
<tr>
<td></td>
<td>23.5</td>
</tr>
</tbody>
</table>

*Students may attempt similar material at a lower level.
†Students who plan to specialise in Computer Science, Mathematics or Physics in a BE/BSc course should consult the School before enrolling in Year 2.

Year 3* | Hours per week |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>MATH2051</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MATH2859</td>
<td>Statistics SE 2</td>
</tr>
<tr>
<td>MATH3141</td>
<td>Numerical & Mathematical Methods</td>
</tr>
<tr>
<td>ELEC3010</td>
<td>Introduction to Electrical Energy</td>
</tr>
<tr>
<td>ELEC3011</td>
<td>Integrated Electronics</td>
</tr>
<tr>
<td>ELEC3012</td>
<td>Signals, Spectra & Filters</td>
</tr>
</tbody>
</table>
Year 3

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3013 Communication Systems 1</td>
<td>4</td>
</tr>
<tr>
<td>ELEC3014 Systems & Control</td>
<td>4</td>
</tr>
<tr>
<td>ELEC3020 Microprocessors & Interfacing</td>
<td>2.5</td>
</tr>
<tr>
<td>ELEC3110 Electrical Engineering Laboratory 3</td>
<td>6</td>
</tr>
<tr>
<td>and two from:</td>
<td></td>
</tr>
<tr>
<td>ELEC3015 Electrical Energy</td>
<td>4</td>
</tr>
<tr>
<td>ELEC3016 Electronic Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td>4</td>
</tr>
<tr>
<td>and:</td>
<td></td>
</tr>
<tr>
<td>56-hr General Education subject (Cat B)</td>
<td>22</td>
</tr>
</tbody>
</table>

*Students who intend to major in particular disciplines should note that certain subjects are prerequisites for the Professional Electives they choose in Year 4.

†See list of Technical Electives later in this section.

Year 4

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Professional Electives*</td>
<td>15</td>
</tr>
<tr>
<td>ELEC4010 Introduction to Management for</td>
<td>10</td>
</tr>
<tr>
<td>Electrical Engineers†</td>
<td>4</td>
</tr>
<tr>
<td>ELEC4011 Ethics and Electrical</td>
<td>0</td>
</tr>
<tr>
<td>Engineering Practice†</td>
<td>2</td>
</tr>
<tr>
<td>ELEC4903 Industrial Training††</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4910 Thesis Part A**</td>
<td>6</td>
</tr>
<tr>
<td>ELEC 4911 Thesis Part B**</td>
<td>12</td>
</tr>
</tbody>
</table>

| Total for Year 4 | 25 |

*Normally 3 electives are taken in Session 1 and 2 in Session 2. See list of Professional Electives later in this section.

**Thesis is done in the last two sessions of the course. Students enrol in ELEC4910 for the first session of their thesis and ELEC4911 for the second.

Subjects ELEC4010, ELEC4011 satisfy the requirements of General Education, Category C.

†All students in the BE degree course must complete at least 60 days of industrial training before the end of Year 4.

3645

Computer Engineering – Full-time course

Bachelor of Engineering BE

This is a new course, which commenced in 1989. The course is to be phased in over four years and only Years 1, 2 and 3 will be offered in 1991. As a consequence subject descriptions for computing subjects appearing in later years are not given in this handbook.

Year 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1969 Physics</td>
<td>6</td>
</tr>
<tr>
<td>ELEC1011 Electrical Engineering I</td>
<td>6</td>
</tr>
<tr>
<td>COMP1011 Computing 1A</td>
<td>6</td>
</tr>
<tr>
<td>COMP1021 Computing 1B</td>
<td>6</td>
</tr>
<tr>
<td>MATH1032 Mathematics I</td>
<td>6</td>
</tr>
<tr>
<td>MATH1081 Discrete Mathematics</td>
<td>1.5</td>
</tr>
<tr>
<td>(An Accounting subject to be determined)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

| Total for Year 1 | 25.5 |

Year 2 (1991 only)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS2959</td>
<td>1.5</td>
</tr>
<tr>
<td>MATH2510 Real Analysis</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2520 Complex Analysis</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2400 Finite Mathematics A</td>
<td>2</td>
</tr>
<tr>
<td>MATH3150 Transform Methods</td>
<td>2</td>
</tr>
<tr>
<td>MATH2849 Statistics SE</td>
<td>2</td>
</tr>
<tr>
<td>COMP2011 Data Organisation</td>
<td>5</td>
</tr>
<tr>
<td>COMP2021 Digital System Structures</td>
<td>5</td>
</tr>
<tr>
<td>COMP2031 Concurrent Computing</td>
<td>5</td>
</tr>
<tr>
<td>ELEC2130 Electrical Laboratory 2A</td>
<td>1</td>
</tr>
<tr>
<td>ELEC2131 Electrical Laboratory 2B</td>
<td>2</td>
</tr>
<tr>
<td>ELEC2010 Circuit Theory</td>
<td>2.5</td>
</tr>
<tr>
<td>ELEC2011 System Theory</td>
<td>2.5</td>
</tr>
<tr>
<td>ELEC2020 Analog Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ELEC4532 Integrated Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>(an Accounting subject to be determined)</td>
<td>1.5</td>
</tr>
<tr>
<td>(a Physics subject to be determined)</td>
<td>1.5</td>
</tr>
<tr>
<td>General Education (Cat A)</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total for Year 2 | 25.5 |

3640

Electrical Engineering – Part-time Course

Bachelor of Engineering BE

Note: as from 1989 no formal Part-time course is being offered. However, after completing Year 1 full-time it is possible for students to progress on a semi-part-time basis with a reduced program. It should also be noted that very few undergraduate subjects are offered in the evenings.

3640

Electrical Engineering – Sandwich Course

Bachelor of Engineering BE

Note: No new enrolments will be accepted into the Sandwich course from 1990.

After the successful completion of Year 1 of the full-time Course 3640, a sandwich pattern is available, comprising alternate periods of full-time study and full-time employment with part-time study.
Notes:

1. The recommended streamed subjects which may be substituted in the above Table are listed below.
 Subject Substitution
 Communications
 Stream 1A ELEC3031 Integrated Electronics + Laboratory
 Stream 1B ELEC3013 Communications Systems
 Control
 Stream 1A ELEC3031 Integrated Electronics + Laboratory
 Stream 1B ELEC3014 Systems and Control
 Electronics
 Stream 1A ELEC3031 Integrated Electronics + Laboratory
 Stream 1B ELEC3016 Electronic Signal Processing
 Computing
 Stream 1A Any Level 3/4 Computer science subject or
 ELEC3031 Integrated Electronics & Laboratory
 Stream 1B Any Level 3/4 Computer Science subject

2. The following subjects must be completed in Year 3 or Year 4:
 - ELEC4532 Integrated Digital Systems
 - COMP3131 Parsing and Translation
 - COMP3231 Operating Systems
 - COMP3241 Computer Networks and Applications

3. In the Computing Stream, other subjects may be selected from the Table of Electrical Engineering Technical Electives and from Table 2 in the Science Course, with permission of the Head of School. All prerequisite requirements must be met for the subjects selected.

Year 4
The Year 4 program, for which details are not yet available, will consist of the following subjects:
- 5 or 6 Professional Electives
- Managing People
- Category C General Education
- Thesis
- Industrial Training

Notes:
A. Elective Subjects must be chosen from:
 - Computer Science Years 3 and 4 subjects list.
 - Electrical Engineering Professional Electives list.
B. All students in the BE (Computer Engineering) Course must complete at least 60 days of industrial training before the end of Year 4.

Technical Electives – all courses

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY2999 Mechanics and Thermal Physics</td>
<td>2 2</td>
</tr>
<tr>
<td>MAT3640 Materials Science and Engineering for Electrical Engineers</td>
<td>0 4</td>
</tr>
<tr>
<td>MECH0760 Mechanical Engineering</td>
<td>4 0</td>
</tr>
<tr>
<td>ELEC3401 Reliability Engineering in Design and Development</td>
<td>0 4</td>
</tr>
<tr>
<td>ELEC3402 Introductory Physiology for Engineers</td>
<td>4 0</td>
</tr>
<tr>
<td>COMP2011 Data Organization*</td>
<td>5 or 5</td>
</tr>
<tr>
<td>COMP321 Concurrent Computing*</td>
<td>0 5</td>
</tr>
<tr>
<td>CIVL1203 Civil Engineering</td>
<td>4 0</td>
</tr>
<tr>
<td>ACCT9062 Accounting for Engineers</td>
<td>1.5 1.5</td>
</tr>
<tr>
<td>SAFE9583 Electrical Safety</td>
<td>0 4</td>
</tr>
<tr>
<td>FUEL0020 Fuels and Energy</td>
<td>0 4</td>
</tr>
<tr>
<td>* Professional Elective subjects in the computer science area require either COMP2011 or COMP2021 as a prerequisite.</td>
<td></td>
</tr>
</tbody>
</table>

A free choice may not be possible.

Electrical Engineering Professional Electives – all courses

Each elective is 5 hours per week for one session.

- ELEC4042 Signal Processing
- ELEC4202 Power Systems
- ELEC4215 Industrial Electrical Systems
- ELEC4216 Electric Drive Systems
- ELEC4240 Power Electronics
- ELEC4303 Electromagnetic Wave Propagation
- ELEC4313 Optical Communications
- ELEC4323 Digital and Analog Communications
- ELEC4333 Communication Systems 2
- ELEC4412 Systems and Control 2
- ELEC4443 Digital Control
- ELEC4432 Computer Control and Instrumentation
- ELEC4483 Biomedical Engineering
- ELEC4503 Advanced Electronic Circuits
- ELEC4512 Semiconductor Devices
- ELEC4522 Microelectronics Design and Technology
- ELEC4532 Integrated Digital Systems
- ELEC4540 Applied Photovoltaics
- ELEC4531 Digital Communication and Computer Networks
- COMP3211 Computer Organization and Design
- COMP3231 Operating Systems
- COMP3311 Database Systems
- COMP3411 Artificial Intelligence

Because of timetable clashes not all combinations of subjects are possible.

The program selected by each student must be approved by the Head of School. Not all electives are offered each session, nor is the full range available to part-time students. Students are advised each year of the timetable of available electives. Substitution is not permitted if it unduly restricts the range of subjects studied to only one area of electrical engineering and computer science.
Prerequisites and Co-requisites (Course 3640)

Arranged in order of full-time Bachelor of Engineering Degree Course

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHYS1969,</td>
<td>See Matriculation and Admission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH1032</td>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM1806</td>
<td>See Matriculation and Admission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MECH0360,</td>
<td>See Matriculation and Admission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MECH0160</td>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC1011</td>
<td>PHYS1969 (or equivalent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC1010</td>
<td>MATH1032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP1011</td>
<td>MATH1032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH1091</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHYS2989</td>
<td>PHYS1969, MATH1032</td>
<td>MATH2100</td>
</tr>
<tr>
<td></td>
<td>COMP1021</td>
<td>COMP1011</td>
<td>MATH2620 or MATH2520</td>
</tr>
<tr>
<td></td>
<td>ELEC2010</td>
<td>ELEC1011, MATH1032</td>
<td>MATH2510</td>
</tr>
<tr>
<td></td>
<td>ELEC2011</td>
<td>ELEC2010, MATH2610 or MATH2510</td>
<td>MATH2620</td>
</tr>
<tr>
<td></td>
<td>ELEC2020</td>
<td>ELEC2010, PHYS2989</td>
<td>MATH2520</td>
</tr>
<tr>
<td></td>
<td>ELEC2012</td>
<td>ELEC1011</td>
<td>MATH2510</td>
</tr>
<tr>
<td></td>
<td>ELEC2013</td>
<td>ELEC1011, PHYS1969</td>
<td>MATH2510</td>
</tr>
<tr>
<td></td>
<td>ELEC2110</td>
<td>PHYS1969, ELEC1011</td>
<td>ELEC2010</td>
</tr>
<tr>
<td></td>
<td>ELEC2111</td>
<td>ELEC2110</td>
<td>ELEC2010, ELEC2012, ELEC2013</td>
</tr>
<tr>
<td></td>
<td>ELEC2014</td>
<td>MATH2520+</td>
<td>MATH2520</td>
</tr>
<tr>
<td></td>
<td>MATH2610</td>
<td>MATH1032(CR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH2620</td>
<td>MATH2610#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH2110</td>
<td>MATH1032(CR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH2849</td>
<td>MATH1032</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHYS2999</td>
<td>PHYS1969, MATH1032</td>
<td>MATH2100</td>
</tr>
<tr>
<td></td>
<td>MATS9640</td>
<td>PHYS2989</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MECH0760</td>
<td>MATH2100, PHYS1969</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH3141</td>
<td>MATH2501, MATH2520, MATH2100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH2501</td>
<td>MATH1032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH2859</td>
<td>MATH1032, MATH2849</td>
<td>MATH2520</td>
</tr>
<tr>
<td></td>
<td>ELEC3401</td>
<td>MATH2849</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC3015</td>
<td>MATH2859</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC3016</td>
<td>ELEC3011, ELEC3012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP2011</td>
<td>COMP1021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP2031</td>
<td>COMP1021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC3020</td>
<td>ELEC2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC3010</td>
<td>ELEC2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC3011</td>
<td>ELEC2020</td>
<td></td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3012</td>
<td>ELEC2011, MATH2280</td>
<td>MATH2849, MATH2859</td>
</tr>
<tr>
<td>ELEC3110</td>
<td>ELEC2111, ELEC2014</td>
<td>ELEC3020, ELEC3010, ELEC3011, ELEC3012</td>
</tr>
<tr>
<td>ELEC3013</td>
<td>ELEC3012</td>
<td></td>
</tr>
<tr>
<td>ELEC3014</td>
<td>ELEC3012</td>
<td></td>
</tr>
</tbody>
</table>

Year 5

<table>
<thead>
<tr>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC4042</td>
<td>ELEC3012</td>
<td></td>
</tr>
<tr>
<td>ELEC4202</td>
<td>ELEC3015</td>
<td></td>
</tr>
<tr>
<td>ELEC4216</td>
<td>ELEC3010</td>
<td></td>
</tr>
<tr>
<td>ELEC4240</td>
<td>ELEC2020, ELEC3010, MATH2280</td>
<td></td>
</tr>
<tr>
<td>ELEC4215</td>
<td>ELEC3015</td>
<td></td>
</tr>
<tr>
<td>ELEC4303</td>
<td>ELEC3013</td>
<td></td>
</tr>
<tr>
<td>ELEC4313</td>
<td>ELEC4303</td>
<td></td>
</tr>
<tr>
<td>ELEC4323</td>
<td>ELEC3013, MATH2280, MATH2859</td>
<td></td>
</tr>
<tr>
<td>ELEC4333</td>
<td>ELEC3013, ELEC3016</td>
<td></td>
</tr>
<tr>
<td>ELEC4412</td>
<td>ELEC3014, (ELEC4432 recommended)</td>
<td></td>
</tr>
<tr>
<td>ELEC4413</td>
<td>ELEC3014, MATH2859 (ELEC4412 recommended)</td>
<td></td>
</tr>
<tr>
<td>ELEC4432</td>
<td>ELEC3014, ELEC3016, ELEC3020</td>
<td></td>
</tr>
<tr>
<td>ELEC4453</td>
<td>ELEC3014, ELEC3016</td>
<td></td>
</tr>
<tr>
<td>ELEC4503</td>
<td>ELEC3020, ELEC3011, (ELEC3016 recommended)</td>
<td></td>
</tr>
<tr>
<td>ELEC4512</td>
<td>ELEC3011</td>
<td></td>
</tr>
<tr>
<td>ELEC4522</td>
<td>ELEC3011, ELEC3016</td>
<td></td>
</tr>
<tr>
<td>ELEC4532</td>
<td>ELEC2012</td>
<td></td>
</tr>
<tr>
<td>ELEC4540</td>
<td>ELEC3010, ELEC3011, ELEC3020</td>
<td></td>
</tr>
<tr>
<td>COMP3211</td>
<td>COMP2021 or ELEC2012</td>
<td></td>
</tr>
<tr>
<td>ELEC4351</td>
<td>ELEC3013, ELEC3020</td>
<td></td>
</tr>
<tr>
<td>COMP3231</td>
<td>COMP2031</td>
<td></td>
</tr>
<tr>
<td>COMP3311</td>
<td>COMP2011</td>
<td></td>
</tr>
<tr>
<td>COMP3411</td>
<td>COMP2011</td>
<td></td>
</tr>
</tbody>
</table>

Combined Courses

Students in Electrical Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. (The two degrees referred to here are the Bachelor of Engineering/Bachelor of Science BE BSc and the Bachelor of Engineering/Bachelor of Arts BE BA). Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Electrical Engineering and Computer Science and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate. Students wishing to enrol in, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisite study, sequencing and academic attainment (a creditable performance, ie 65%) average of both the Course Authorities concerned.

NB Pass Terminated Result (PT) DOES NOT satisfy prerequisite requirements.
Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. AUSTUDY support is available for the five years of the combined degree courses.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However, the choice of subjects and the time taken to complete the program can seriously affect this. Thus, students considering course 3725 or course 3720 should contact the Electrical Engineering School before completing their Year 2 enrolment. Application for transfer to a combined course must be made in writing to the Head of School by the start of the third week of December in the year that they complete of Year 2 of the BE course.

Students wishing to gain a degree at honours level in Arts or Science as part of their combined degree program shall meet all the relevant requirements of the Faculty concerned and of the appropriate Schools. Such students may enrol for the Honours year only on the recommendation of the Head of School of Electrical Engineering and Computer Science and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Mathematics, as appropriate.

Re-enrolment of students in Courses 3720 and 3725 each year is arranged by the School of Electrical Engineering and Computer Science.

3725
BE BSc in Electrical Engineering

Changes may be made to the double degree program in 1991 due to the introduction of revisions to the BE course 3640. Students who commenced course 3640 in 1988 or later, and who wish to do the double degree, should consult with the School of Electrical Engineering and Computer Science.

Having completed Years 1 and 2 of course 3640 prior to 1990 students in their third year complete a specific course of study consisting of four Level III Science units chosen from related disciplines, the appropriate General Education electives and no less than four other Level II or Level III units, and otherwise accord with the rules of course 3970 leading to a major in Computer Science, Mathematics or Physics.

Students may open up a wider choice of subjects in their Science Year by including additional Computer Science (viz COMP2011), Physics (viz PHYS2999) or Mathematics (viz MATH2501) in their Year 2 Electrical Engineering program. Any subject omitted may be required to be taken later in the course. The extra subject in Year 2 may be credited towards either the BE or BSc requirements, but not both. Students who commence their BE in 1989 or later and wish to do the combined degree program, should consult the School Office at enrolment time before Year 2 and before Year 3 of their BE program.

Students wishing to gain a degree at honours level in Science as part of their combined degree program shall meet all the relevant requirements of the Board of Studies in Science and Mathematics and of the School concerned. Such students may enrol for the honours year only on the recommendation of the Head of the School of Electrical Engineering and Computer Science and with the approval of the Head of the appropriate Science School, the Faculty of Engineering and the Board of Studies in Science and Mathematics. AUSTUDY support is available for the six years of the combined degree programs including honours level Science.

In their fourth and fifth years, for students who commenced the BE prior to 1990, students do Year 3 and Year 4 of course 3640. Depending on the program followed in their year of Science they may have already completed parts of the normal third and fourth year programs of the Electrical Engineering course, and they will be required to omit these from their program and to include an equivalent amount of other courses chosen with the approval of the Head of School.

Year 1
PHYS1969
CHEM1809
MECH0360
MECH0160
ELEC1010
ELEC1011
COMP1011
MATH1032
MATH1091

Year 2†
COMP1021
ELEC2010, ELEC2011, ELEC2020, ELEC2012, ELEC2013,
ELEC2110, ELEC2111, ELEC2114
MATH2610, MATH2620, MATH2110, MATH3150, MATH2849,
PHYS2989
56-hr General Education subject (Cat A)

Year 3‡‡
Either
Computer Science
56 hr General Education subject (Cat B)
Choose at least 8 Level II or Level III units including at least 4
Computer Science units at Level III, the balance to be chosen
from Level III Computer Science units and other Level II or Level
III units in Table 1 or Tables 2 for program 0600**
or
Mathematics
56-hr General Education subject (Cat B)
Choose at least 5 Mathematics units, 4 of which are Level III
Choose at least 3 Level II or Level III units from Table 1 or Table
2 for program 1000
or
Physics
56-hr General Education subject (Cat B)
Choose 7 Level II or Level III units from Table 1 of which four
must be Level III Physics units, chosen to include PHYS3010,
PHYS3050, PHYS3021 and PHYS3030.

Year 4‡
Year 3 of Electrical Engineering course, modified as required
by Head of School

Year 5
Year 4 of Electrical Engineering course

† Students intending to major in Computer Science should include COMP2011 in their Year 2 enrolment. Students intending to major in Physics are required to take units PHYS2999 in Year 2. Students intending to major in Mathematics are required to take MATH2501 in year 2.

‡ For Year 3 refer to course 3970 and the Science Handbook.

‡‡ For students in year 1 in 1989 or later, years 3 and 4 will most likely be interchanged. Consult the School of Electrical Engineering and Computer Science.
BE BA in Electrical Engineering

The combined course should include

• the requirements of a normal BE program in Electrical Engineering less the General Education Category A & B subjects and one other subject approved by the Head of the School;

• subjects equivalent to 108 credit points in accordance with the regulations of the Faculty of Arts provided that this includes a major sequence of subjects available within the Faculty of Arts in addition to the studies in the School of Mathematics and the Department of Computer Science. These include the subjects in Table A or their equivalents.

Table A

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Level</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1032</td>
<td>Mathematics 1</td>
<td>I</td>
<td>As for MATH1032</td>
<td>MATH1032 or MATH1042</td>
<td>COMP1811</td>
</tr>
<tr>
<td>MATH2501</td>
<td>Pure Mathematics 2</td>
<td>I</td>
<td>COMP1011, 6.620, 6.621,6.021D</td>
<td>COMP1011 or COMP1812</td>
<td>6.641</td>
</tr>
<tr>
<td>MATH2510</td>
<td>Pure Mathematics 2</td>
<td>I</td>
<td>COMP1011 or COMP1821</td>
<td>COMP1011 or COMP1821</td>
<td>ELEC2012</td>
</tr>
<tr>
<td>MATH2520</td>
<td>Pure Mathematics 2</td>
<td>I</td>
<td>COMP1011 or COMP1821</td>
<td>COMP1011 or COMP1821</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>MATH2100</td>
<td>Applied Mathematics 2</td>
<td>I</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2031</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>MATH3141</td>
<td>Numerical & Mathematical Methods</td>
<td>I</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.643, 6.664G</td>
</tr>
<tr>
<td>MATH2859</td>
<td>Statistics SE2</td>
<td>I</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>PHYS1969</td>
<td>Physics 1</td>
<td>I</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>ELEC2013</td>
<td>Electromagnet Theory & Applications</td>
<td>I</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>PHYS2999</td>
<td>Solid-State Physics</td>
<td>I</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.643, 6.664G</td>
</tr>
<tr>
<td>COMP1021</td>
<td>Computing 1B</td>
<td>I</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>ELEC2012</td>
<td>Digital Circuits</td>
<td>I</td>
<td>COMP2031</td>
<td>COMP2031</td>
<td>6.632, 6.663G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.672</td>
</tr>
</tbody>
</table>

Guidance should be sought from the School of Electrical Engineering and Computer Science, the relevant schools in the Faculty of Arts and the Arts Faculty office. After four years of study a student will normally have completed the BA requirements of study, together with subjects selected from course 3640 in accordance with an acceptable program loading and in the fifth year will complete requirements for a BE.

It is necessary for each individual student entering the course to lodge for approval a complete program of study: changes in detail are usual from year to year. Students should choose their Arts Major early so as to start the sequence in Year 1 if possible.

Studies in Computer Science other than in BE Courses 3640 and 3645, BE BA 3720 and BE BSc 3725

Minor Study In BA Course 3400 or BSc Course 3970

Some students will wish to include a small number of Computer Science units in courses leading to major studies in other disciplines. Level I unit COMP1011, Level II unit COMP1021 and Level II units COMP2011, COMP2021, COMP2031 are freely available to such students.

Students majoring in other disciplines may also seek entry, on a competitive merit basis, to a limited range of Level III units.

Computer Science Electives offered by the School

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1011</td>
<td>Computing 1A</td>
<td>I</td>
<td>As for MATH1032</td>
<td>MATH1032 or MATH1042</td>
<td>COMP1811</td>
</tr>
<tr>
<td>COMP1021</td>
<td>Computing 1B</td>
<td>II</td>
<td>COMP1011, 6.620, 6.621,6.021D</td>
<td>COMP1011 or COMP1812</td>
<td>6.641</td>
</tr>
<tr>
<td>COMP2011</td>
<td>Data Organization</td>
<td>II</td>
<td>COMP1011 or COMP1821</td>
<td>COMP1011 or COMP1821</td>
<td>ELEC2012</td>
</tr>
<tr>
<td>COMP2021</td>
<td>Digital Systems Structures</td>
<td>II</td>
<td>COMP1011 or COMP1821</td>
<td>COMP1011 or COMP1821</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>COMP2031</td>
<td>Concurrent Computing</td>
<td>II</td>
<td>COMP1011 or COMP1821</td>
<td>COMP1011 or COMP1821</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>COMP3111</td>
<td>Software Engineering</td>
<td>III</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2031</td>
<td>6.643, 6.664G</td>
</tr>
<tr>
<td>COMP3131</td>
<td>Parsing and Translation</td>
<td>III</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>COMP3311</td>
<td>Database Systems</td>
<td>III</td>
<td>COMP2011 or COMP2031</td>
<td>COMP2011</td>
<td>6.642, 6.660G</td>
</tr>
<tr>
<td>COMP3211</td>
<td>Computer Organization and Design</td>
<td>III</td>
<td>COMP2021 or ELEC2012</td>
<td>COMP2021</td>
<td>6.632, 6.663G</td>
</tr>
<tr>
<td>COMP3221</td>
<td>Microcomputers and Interfacing</td>
<td>III</td>
<td>COMP2021 or ELEC2012</td>
<td>COMP2021</td>
<td>6.672</td>
</tr>
<tr>
<td>COMP3231</td>
<td>Operating Systems</td>
<td>III</td>
<td>COMP2031</td>
<td>COMP2031</td>
<td>6.632, 6.663G</td>
</tr>
<tr>
<td>COMP3331</td>
<td>Computer Networks and Applications</td>
<td>III</td>
<td>COMP2011, COMP2031</td>
<td>COMP2011</td>
<td>6.633, 6.665G</td>
</tr>
<tr>
<td>COMP3411</td>
<td>Artificial Intelligence</td>
<td>III</td>
<td>COMP2011</td>
<td>COMP2011</td>
<td>6.633, 6.665G</td>
</tr>
</tbody>
</table>
Major Study In BA Course 3400 or BSc Course 3970

For studies in Computer Science to be regarded as being major studies, at least four Level III units of Computer Science must be included after completing Level 1 unit COMP1011, Level 1/2 unit COMP1021 and the three Level 2 units, COMP2011, COMP2021, COMP2031.

Course 3400

For further details of major studies in Computer Science within the Bachelor of Arts degree course, please see the Arts Handbook.

Course 3970

Entry to a Computer Science major in course 3970 is normally by direct selection at University entry.

A total of 23 units is required for graduation at the pass level.

For Computer Science Major:

Year 1
COMP1011, COMP1021
MATH1032, MATH1081
3 other Level 1 units

Year 2
COMP2011, COMP2021, COMP2031
5 other Level 2 units
56-hr General Education subject (Cat A)

Year 3
At least 4 Computer Science Level 3 units
3 other Level 2 or Level 3 units
56-hr General Education subject (Cat B)
Students intending to proceed to Honours should choose 7 Level 3 units

Year 4
COMP4914 or COMP4913
For further details see the Sciences Handbook.

School of Mechanical and Manufacturing Engineering*

Following the re-consideration of the needs of mechanical and manufacturing engineering, and in order to better represent the orientation of the School, the name of the School has been changed from Mechanical and Industrial Engineering to Mechanical and Manufacturing Engineering. At the same time, a new management structure has been instituted whereby the School operates with five Disciplines which underpin the fundamental areas of the profession. In addition, six Programs of industry-oriented cross-disciplinary activity have been introduced.

The Disciplines are: Applied Mechanics (engineering mechanics and mechanics of solids); Design (conceptual design, machine systems design, optimization and failure analysis); Fluid and Thermal Engineering (energy utilization and power generation, refrigeration and air conditioning, gas and liquid handling); Industrial Technology and Management (economic analysis, production planning and control, product and process design, methods engineering and operations research); Mechatronics (interface between mechanical engineering and electronic engineering).

The Programs are: Manufacturing and Automation; Mechanical Building Services; Maintenance Engineering; Energy and Power Systems; Transport Engineering; Machine Systems Design.

Please consult the Staff List in the forward section of this handbook for information concerning the Discipline Heads and Program Leaders.

The School offers courses in Aerospace Engineering, Mechanical Engineering, Manufacturing Management and Naval Architecture, either singly or in combination with Science or Arts courses.

Summary of Courses

The courses are planned to provide the appropriate academic training for the professional engineer in the fields of aerospace, manufacturing and mechanical engineering, and for the naval architect. They may be taken on a full-time basis, normally over four years, or on a combined full-time part-time basis. Part-time students will normally take two years for each equivalent full-time year and will be required to attend day classes for the equivalent of at least 1.5 days per week. Students intending to enter part-time study are advised that most subjects in the course are only offered in the day-time.

The courses lead to the award of the degree of Bachelor of Engineering (BE).

The School also offers combined courses in conjunction with other faculties of the University, leading to the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc) or Bachelor of Engineering and Bachelor of Arts (BE BA). These combined courses enable students to major in the area of computer science, materials science, mathematics, physics, statistics or another relevant field, in addition to studying their chosen engineering specialty.

For the four BE courses, the study of the basic sciences - mathematics, physics and chemistry - together with an introduction to engineering, comprise Year 1. In Year 2 further mathematical studies are undertaken, together with a study of the engineering sciences - thermodynamics, fluid mechanics, engineering mechanics, mechanics of solids - and their application in the field of design.
The first halves of the courses of Mechanical Engineering, Manufacturing Management and Aerospace Engineering and of Naval Architecture are identical, and students attend classes together. The latter halves of these four courses contain a number of common core subjects together with specific disciplinary requirements. In the final years, in addition to core subjects and disciplinary requirements, provision is made for a limited degree of specialization in one or more elective subjects. Students with a distinguished academic record may take, subject to the approval of the Head of School, a limited number of graduate subjects offered by the School in lieu of an equivalent quantity of final year undergraduate electives. Each student is required to submit a thesis at the end of the final year and to deliver a short paper on the subject of the thesis.

General Education Program

The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For further details, please locate General Education in the Contents.

Requirements for General Education elective and prescribed subjects are as follows: Year 2 - one elective subject from Category A; Year 3 - one elective subject from Category B. The key questions and issues to be addressed in Category C will be considered in the following subjects: MECH1000/MECH2000/MECH3000 Professional Studies 1-3, MECH1100/MECH2100/MECH3100 Mechanical Engineering Design 1-3, MANF3619 Management/Economics, MECH4002 The Engineer in Society.

Industrial Experience

Industrial experience is an integral part of the courses. Full-time students must complete forty working days of approved industrial experience between both Years 2 and 3 and Years 3 and 4. Students are strongly recommended to gain as much industrial experience as possible between Years 1 and 2. Students taking the course on a full-time/part-time basis must complete an equivalent amount of industrial training. Students who have had suitable experience in industry may qualify for exemption from certain subjects. The Head of School should be contacted for details.

Honours

All BE degree course students are considered for the award of Honours which is granted for meritorious performance in the course with particular emphasis on the later years. Honours in Science or Arts in the BE BSc or BE BA combined degree course require an extra year of study.

Recognition

The Institution of Engineers, Australia, recognizes the degree of BE in any of the undergraduate courses offered by the School as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is accorded to the BE courses by overseas engineering institutions.

The award of the degree BE in Aerospace Engineering is recognized by the Royal Aeronautical Society as giving exemption from the formal examination requirements for corporate membership. Advancement from graduate membership to associate membership grade is awarded on a case by case basis after a further period of some years of professional experience.

The award of the degree BE in Naval Architecture is recognized by the Royal Institution of Naval Architects (RINA), London, as the academic qualification for corporate membership of that body.

Course Progression Guidelines

It is the responsibility of each student to have met the course requirements by the date of application for the degree. In this context, the student's attention is directed to the Faculty's General Rules for Progression contained in the preceding chapter of this Handbook. As well, the following points should be noted.

- Progression in the School's courses is by subject, although programs and timetables are arranged by year.
- In addition to the specific subject prerequisites for a particular year of a course, a general understanding of the material in the preceding year is assumed.
- Previously failed subjects must be included in a student's current program, except that a failed elective may be replaced by another elective.
- A student who is faced with compiling a mixed year's program must give preference to subjects from the lower year of the course.
- In the event of a student dropping one or more subjects from a mixed year's program, the discarded subjects must be chosen from the higher year's selection.

The subjects MECH4000 Thesis and MECH4019 Communications can be taken only in the final year of a student's program.

Revision of Courses

An extensive review of all the courses in the School has taken place over the last few years and the revised courses are being progressively introduced from 1989. Changes have been made to the Year 1, Year 2 and Year 3 subjects, and there will be a continuous introduction of new or altered subjects until 1992. Thus, students commencing in 1989 will complete the new programs, while those who commenced in 1988 or earlier will continue with the existing ones.

The object of the revision has been to modernise the courses, so that a greater emphasis will be placed on electronics, microprocessors, instrumentation, robotics and computing, all of which are now important to Mechanical and Manufacturing Engineering. In first year this has resulted in a revised Physics course, emphasising in part the fundamentals of the above areas, and a new, more extensive Computing subject. Subject areas are to be streamed throughout the courses so that discontinuities in the teaching of material will be minimised.

In addition, owing to the increased emphasis in Australia on Manufacturing, the previous Industrial Engineering course has been replaced by a course in Manufacturing Management.
Engineering

3610 Aerospace Engineering

3660 Manufacturing Management

3680 Mechanical Engineering

3700 Naval Architecture

Bachelor of Engineering BE

Note: The program as presented is for full-time study. Alternative programs are available for a combination of full-time and part-time study. Students wishing to commence studies on a part-time basis must, in Year 1, study the subjects: PHYS1919, CHEM1807, MECH1000, MECH1300, MATH1032.

The common first two years of these four courses are as follows:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1919</td>
<td>Physics 1 (Mechanical Engineering) 4 4</td>
</tr>
<tr>
<td>CHEM1807</td>
<td>Chemistry 1ME 6 0</td>
</tr>
<tr>
<td>MANF1100</td>
<td>Workshop Technology 3 0</td>
</tr>
<tr>
<td>MANF1110</td>
<td>Manufacturing Technology 0 3</td>
</tr>
<tr>
<td>MECH1000</td>
<td>Professional Studies 1 1 0</td>
</tr>
<tr>
<td>MECH1100</td>
<td>Mechanical Engineering Design 1 1 2</td>
</tr>
<tr>
<td>MECH1110</td>
<td>Graphical Analysis and Communication 0 3</td>
</tr>
<tr>
<td>MECH1300</td>
<td>Engineering Mechanics 1 4 0</td>
</tr>
<tr>
<td>MECH1400</td>
<td>Mechanics of Solids 0 3</td>
</tr>
<tr>
<td>MECH1500</td>
<td>Computing 1M 0 3</td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics 1 6 6</td>
</tr>
</tbody>
</table>

An alternative 'Science Arts compatible' course which can be undertaken by all students, and which must be undertaken by potential combined degree students, is as follows:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1002</td>
<td>Physics 1 6 6</td>
</tr>
<tr>
<td>CHEM1807</td>
<td>Chemistry 1ME 6 0</td>
</tr>
<tr>
<td>MANF1100</td>
<td>Workshop Technology 3 0</td>
</tr>
<tr>
<td>MANF1110</td>
<td>Manufacturing Technology 0 3</td>
</tr>
<tr>
<td>MECH1000</td>
<td>Professional Studies 1 1 0</td>
</tr>
<tr>
<td>MECH1110</td>
<td>Mechanical Engineering Design 1 1 2</td>
</tr>
<tr>
<td>MECH1110</td>
<td>Graphical Analysis and Communication 0 3</td>
</tr>
<tr>
<td>MECH1300</td>
<td>Engineering Mechanics 1 4 0</td>
</tr>
<tr>
<td>MECH1400</td>
<td>Mechanics of Solids 0 3</td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics 1 6 6</td>
</tr>
</tbody>
</table>

A relevant level I unit from the School of Physics, Chemistry, Electrical Engineering and Computer Science, or Mathematics offerings in Table 1 of Sciences Handbook + or (for BE/BA) MECH1500 Computing 1M 0 3

3610 Aerospace Engineering

Bachelor of Engineering BE

Subject to the Head of the School being satisfied that the present extent of equivalences is maintained, and on his recommendation, Faculty has approved an arrangement by which students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering.

Year 2 | Hours per week |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS9520</td>
<td>Engineering Materials 3 0</td>
</tr>
<tr>
<td>MECH2000</td>
<td>Professional Studies 2* 0 0</td>
</tr>
<tr>
<td>MECH2100</td>
<td>Mechanical Engineering Design 2 3 3</td>
</tr>
<tr>
<td>MECH2300</td>
<td>Engineering Mechanics 2A 3 0</td>
</tr>
<tr>
<td>MECH2310</td>
<td>Engineering Mechanics 2B 0 2</td>
</tr>
<tr>
<td>MECH2400</td>
<td>Mechanics of Solids 2 3.5 3.5</td>
</tr>
<tr>
<td>MECH2500</td>
<td>Fluid Mechanics 1 2 2</td>
</tr>
<tr>
<td>MECH2700</td>
<td>Thermodynamics 1 2 2</td>
</tr>
<tr>
<td>ELEC0805</td>
<td>Electronics for Measurement and Control 0 3</td>
</tr>
<tr>
<td>MATH2001</td>
<td>Engineering Mathematics 2** 4 4</td>
</tr>
<tr>
<td>MATH2839</td>
<td>Statistics SM 2 2</td>
</tr>
<tr>
<td>General Education subject (Cat A) 2 2</td>
<td></td>
</tr>
</tbody>
</table>

Hours per week: S1: 24.5 S2: 23.5

*The total contact hours are 4. This subject is preparatory to MECH3010 Industrial Training 1.

**Students may substitute MATH2501, MATH2510, MATH2100 and MATH2120 for MATH2001. Also, if they satisfy pre-requisites, they may take one or more of these at the higher level.

3610 Aerospace Engineering

Bachelor of Engineering BE

Subject to the Head of the School being satisfied that the present extent of equivalences is maintained, and on his recommendation, Faculty has approved an arrangement by which students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering.

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO3100</td>
<td>Aerospace Design 1 4 2</td>
</tr>
<tr>
<td>AERO3400</td>
<td>Analysis of Aerospace Structures 1 0 4</td>
</tr>
<tr>
<td>AERO3601</td>
<td>Aerodynamics 1 4 0</td>
</tr>
<tr>
<td>AERO3602</td>
<td>Flight Dynamics 1 2 0</td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3 0 2</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training 1* 0 0</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation 1.5 1.5</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems* 3 0</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems 0 3</td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis 0 2</td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids 3 4 0</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M 2 0</td>
</tr>
<tr>
<td>MECH3800</td>
<td>Numerical Methods+ 0 3</td>
</tr>
<tr>
<td>MANF3400</td>
<td>Engineering Economics 2 0</td>
</tr>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering General Education subject (Cat B) 0 3</td>
</tr>
</tbody>
</table>

Hours per week: S1: 24.5 S2: 22.5
analysis of a product to ensure satisfactory functioning with regard to methods and sequence of manufacturing operations; the disposition of buildings and of equipment within them to permit efficient handling of materials; the avoidance of bottlenecks; the related problems of quality and cost control, testing and inspection; labour and personnel relations; and, finally, the problem of distribution and sales.

The financial and economic aspects are studied as the problem in manufacturing has not been solved until the final translation of the product into money has been accomplished successfully. While it is not intended to develop an expert in accounting practice or economics, it is intended to produce an engineer with an appreciation of the problems of cost and one who can apply considerations of ultimate economy to all industrial problems. The techniques of operations research may be applied here, where mathematical models of real life situations are constructed and manipulated to yield optimal solutions as guides to management.

An engineer trained in Manufacturing Management may initially be employed in any of the following major areas of industrial activity: industrial economic analysis; planning and control of production; product and process design; methods engineering; operations research.

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF3200</td>
<td>Product Design and Manufacturing Technology</td>
<td>4 0</td>
</tr>
<tr>
<td>MANF3300</td>
<td>Design of Manufacturing Facilities</td>
<td>0 4</td>
</tr>
<tr>
<td>MANF3400</td>
<td>Engineering Economics</td>
<td>2 0</td>
</tr>
<tr>
<td>MANF3410</td>
<td>Quality Systems 1</td>
<td>4 0</td>
</tr>
<tr>
<td>MANF3500</td>
<td>Computers in Manufacturing</td>
<td>1 4</td>
</tr>
<tr>
<td>MANF3600</td>
<td>Information and Decision Making Technology</td>
<td>4 2</td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td>1.5 1.5</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems+</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH3800</td>
<td>Introduction to Numerical Methods†</td>
<td>0 1.5</td>
</tr>
<tr>
<td>ACCT9001/2</td>
<td>Introduction to Accounting A/B</td>
<td>3 0</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4000</td>
<td>Thesis</td>
<td>6 6</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society*</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH4010</td>
<td>Industrial Training 2+</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH4019</td>
<td>Communications</td>
<td>2 2</td>
</tr>
<tr>
<td>MANF4429</td>
<td>Manufacturing Management</td>
<td>2 2</td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
<td>10 10</td>
</tr>
</tbody>
</table>

*Report to be submitted by end of Session 1 detailing involvement and experience gained prior to Year 3.

†Combined degree course students who have taken MATH3101 or 10.222A Numerical Analysis should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook.

‡Combined degree course students who have taken MATH3181 or 10.222M Optimal Control Theory should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook.

*Report to be submitted by end of Session 1 detailing involvement and experience gained prior to Year 3.

Note: The Technical Electives may be taken from the Mechanical Engineering or Industrial Engineering Technical Elective List or from Years 3 or 4 of other courses in the School or subject to the approval of the Head of School.

Note 2: Only a limited number of Technical Electives is offered each year. The actual Technical Electives offered each year are decided on the basis of staff availability and student demand. Students are advised in September of each year which Technical Electives will be offered in the following year.

Technical Electives offered each year are decided on the basis of staff availability and student demand. Students who have taken MATH3101 or 10.222A Numerical Analysis should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook.

Technical Electives offered each year are decided on the basis of staff availability and student demand. Students who have taken MATH3181 or 10.222M Optimal Control Theory should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook.

Note 1: The Technical Electives may be taken from the Mechanical Engineering or Industrial Engineering Technical Elective List or from Years 3 or 4 of other courses in the School or subject to the approval of the Head of School.

Note 2: Only a limited number of Technical Electives is offered each year. The actual Technical Electives offered each year are decided on the basis of staff availability and student demand. Students are advised in September of each year which Technical Electives will be offered in the following year.
Note 1: At least 6 hours per week of Technical Electives must be taken from the Industrial Engineering Technical Elective List. The remaining Technical Electives may be taken from the Mechanical Engineering Technical Elective List or from Years 3 or 4 of other courses in the School or suitable subjects outside the School. Students with good academic records may include some graduate subjects. A counselling service is provided to assist students to choose electives. The selection of certain subjects or combinations of subjects may require the approval of the Head of School.

Note 2: Only a limited number of Technical Electives is offered each year. The actual Technical Electives offered each year are decided on the basis of staff availability and student demand. Students are advised in September of each year which Technical Electives will be offered in the following year.

Note: *Report to be submitted by end of Session 1 detailing involvement and experience gained between Years 3 and 4.

* This subject completes the General Education (Cat C) requirement.

Manufacturing Management Technical Electives

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4440 Theory of Plasticity</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MANF4509 Numerical Control of Machine Tools</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MANF9320 Ergonomics</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4509 Computing Science for Mechanical Engineers</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MANF9440 Management of Distribution Systems</td>
<td>2 or 2</td>
</tr>
<tr>
<td>MANF9450 Management Simulation</td>
<td>1 or 2</td>
</tr>
<tr>
<td>MANF9530 Discrete-Event Simulation Languages</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MANF9610 Decision Theory for Industrial Management</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MANF9660 Energy Modelling, Optimization and Energy Accounting</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MANF9860 Optimization of Networks</td>
<td>2 or 2</td>
</tr>
<tr>
<td>MANF9840 Industrial Applications of Mathematical Programming</td>
<td>2 or 2</td>
</tr>
<tr>
<td>MANF9870 Dynamic Programming</td>
<td>2 or 2</td>
</tr>
</tbody>
</table>

Note: The graduate subjects listed should be of particular interest to undergraduate students; with approval, alternative graduate subjects from this and other Schools may be taken.

3680 Mechanical Engineering

Bachelor of Engineering BE

Year 3

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH3000 Professional Studies 3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3010 Industrial Training 1*</td>
<td>0</td>
</tr>
<tr>
<td>MECH3100 Mechanical Engineering Design 3</td>
<td>3</td>
</tr>
<tr>
<td>MECH3200 Engineering Experimentation</td>
<td>1.5</td>
</tr>
<tr>
<td>MECH3211 Linear Systems‡</td>
<td>3</td>
</tr>
<tr>
<td>MECH3212 Principles of Control of Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>MECH3300 Engineering Mechanics 3</td>
<td>2</td>
</tr>
<tr>
<td>MECH3310 Vibration Analysis</td>
<td>0</td>
</tr>
<tr>
<td>MECH3400 Mechanics of Solids 3</td>
<td>4</td>
</tr>
<tr>
<td>MECH3500 Computing 2M</td>
<td>2</td>
</tr>
<tr>
<td>MECH3600 Fluid Mechanics 2</td>
<td>2</td>
</tr>
<tr>
<td>MECH3701 Thermodynamics 2</td>
<td>2</td>
</tr>
<tr>
<td>MECH3702 Heat Transfer</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: *Combined degree course students who have taken MATH3101 or 10.222M Numerical Analysis should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook for this subject.

Note 2: Only a limited number of Technical Electives is offered each year. The actual Technical Electives offered each year are decided on the basis of staff availability and student demand. Students are advised in September of each year which Technical Electives will be offered in the following year.

Note: *Report to be submitted by end of Session 1 detailing involvement and experience gained between Years 3 and 4.

Year 4

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH3212 Principles of Control of Mechanical Systems</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4000 Thesis</td>
<td>6 or 6</td>
</tr>
<tr>
<td>MECH4002 The Engineer in Society+</td>
<td>2 or 2</td>
</tr>
<tr>
<td>MECH4010 Industrial Training 2*</td>
<td>0 or 0</td>
</tr>
<tr>
<td>MECH4019 Communications</td>
<td>2 or 2</td>
</tr>
</tbody>
</table>

Note: *Combined degree course students who have taken MATH3101 or 10.222M Optimal Control Theory should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook.

Mechanical Engineering Technical Electives

Applied Dynamics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4301 Plane Mechanism Kinematics</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4310 Advanced Vibration Analysis</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4321 Engineering Noise 1</td>
<td>3</td>
</tr>
<tr>
<td>MECH4322 Engineering Noise 2</td>
<td>0</td>
</tr>
</tbody>
</table>

Mechanics of Solids

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4400 General Mechanics of Solids</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4420 Plates and Shells</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4430 Theory of Elasticity</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4440 Theory of Plasticity</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4450 Structural Instability</td>
<td>2 or 3</td>
</tr>
</tbody>
</table>

Mechanical Design

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4110 Design Project</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4120 Design Technology</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4130 Computer-Aided Engineering Design</td>
<td>3</td>
</tr>
</tbody>
</table>
Fluid Mechanics Thermodynamics

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4361 - Lubrication</td>
<td>S1 3 S2 3</td>
</tr>
<tr>
<td>MECH4600 - Viscous Flow Theory</td>
<td>1.5 or 1.5</td>
</tr>
<tr>
<td>MECH4610 - Hydraulic Transients</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4690 - Special Fluid Mechanics Elective</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4700 - Turbomachines and Engines</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4710 - Convection Heat Transfer</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4720 - Solar Energy</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4730 - Multiphase Flow</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4740 - Thermal Power Plants</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4759 - Turbomachines</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4769 - Energy, Combustion and Engines</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4790 - Special Thermodynamics Elective</td>
<td>3 or 3</td>
</tr>
</tbody>
</table>

Manufacturing and Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF4429 - Manufacturing Management</td>
<td>2 2</td>
</tr>
<tr>
<td>MANF4509 - Numerical Control of Machine Tools</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MANF4610 - Operations Research</td>
<td>3 3</td>
</tr>
</tbody>
</table>

Other Technical Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS9130 - Materials Science</td>
<td>3 3</td>
</tr>
<tr>
<td>MECH4509 - Computing Science for Mechanical Engineers</td>
<td>3 0</td>
</tr>
<tr>
<td>AERO4700 - Aircraft Propulsion</td>
<td>2 2</td>
</tr>
</tbody>
</table>

Note: The graduate subjects listed should be examined by undergraduate students; with approval, graduate subjects from this and other Schools may be taken by students with a distinguished academic record.

3700 Naval Architecture

Bachelor of Engineering

BE

The Faculty of Engineering has approved an arrangement whereby, upon the recommendation of the Head of School, students who satisfy the requirements for the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to the final two years of the BE degree course in Naval Architecture.

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVL3100 - Principles of Ship Design 1</td>
<td>1.5 1.5</td>
</tr>
<tr>
<td>NAVL3400 - Ship Structures 1</td>
<td>4 0</td>
</tr>
<tr>
<td>NAVL3600 - Ship Hydrostatics</td>
<td>5 0</td>
</tr>
<tr>
<td>NAVL3610 - Ship Hydrodynamics</td>
<td>0 5</td>
</tr>
<tr>
<td>MECH3000 - Professional Studies 3</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3010 - Industrial Training 1*</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH3200 - Engineering Experimentation</td>
<td>1.5 1.5</td>
</tr>
<tr>
<td>MECH3211 - Linear Systems**</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH3212 - Principles of Control of Mechanical Systems</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH3310 - Vibration Analysis</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3400 - Mechanics of Solids 3</td>
<td>4 0</td>
</tr>
<tr>
<td>MECH3500 - Computing 2M</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH3800 - Numerical Methods+</td>
<td>0 3</td>
</tr>
<tr>
<td>ELEC0802 - Electrical Power Engineering General Education subject (Cat B)</td>
<td>2 2</td>
</tr>
</tbody>
</table>

Combined Courses

Bachelor of Engineering/Bachelor of Science

3611

BE BSc in Aerospace Engineering

3661

BE BSc in Manufacturing Management

3681

BE BSc in Mechanical Engineering

3701

BE BSc in Naval Architecture

The combined degree course of five years full-time study enables a student in the School to qualify for the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc). The course enables such combined degree students to major in the areas of computer science, materials science, mathematics, physics or statistics. It is administered by the Faculty of Engineering.

All students who are accepted into the Year 1 'Science/Arts compatible' course in the School may enrol directly into this course. Continued enrolment in Year 2 requires a pass in all subjects by the end of Year 1 and students who fail to achieve this will automatically be transferred to the normal Engineering program. Alternatively, students may transfer into the Year 2 of this course, provided they have passed all subjects of the 'Science/Arts compatible' course by the end of Year 1.
Normally, students enrolled in this BE BSc degree course are awarded their degrees at the conclusion of five years study. However, it is possible for students to take out the Science degree prior to the Engineering degree provided they have: 1. completed the requirements for Years 1, 2 and 3, 2. completed the General Education requirements for the Science degree, and 3. obtained approval from the Board of Studies in Science and Mathematics.

Students may also undertake an additional honours year in Science and Mathematics and automatically re-enter this course without having to re-apply for admission. To undertake such an honours year in Science and Mathematics, permission is to be obtained at the end of Year 3 both from the Head of the School in which the honours year is to be undertaken and from the Head of the School of Mechanical and Manufacturing Engineering.

Students who commence the course and do not complete the Engineering component may take out a BSc degree on completion of one of the approved programs in the Science and Mathematics course. Similarly, students not wishing to complete the BSc degree course may revert to the normal Engineering program with appropriate credit for subjects satisfactorily completed.

Year 1 of the combined course is equivalent to the Year 1 'Science Arts compatible' course in the School of Mechanical and Manufacturing Engineering, and is as detailed in course 3680 Mechanical Engineering. Having completed Years 2 and 3, as outlined below, students in Years 4 and 5 do Year 3 and Year 4 of their selected Engineering course except that significant repetition of subject material is not allowed. Instead, students are required to substitute either an appropriate Technical Elective or an appropriate Level II or III subject from Table 1 or Table 2, or in exceptional circumstances, some other equivalent subject with the permission of the Head of the School of Mechanical and Manufacturing Engineering.

Note: In order to limit the combined degree courses to five years, the workload in the first three years is higher than in the single degree course. Students who have barely satisfied the minimum entrance requirements are therefore advised against enrolling for the combined degree course. Those who do enrol and whose average mark at the end of Session 1 of Year 1 is less than 65% are advised to contact the School to see whether or not they should continue in the combined course or Session 2 of Year 1, as the workload in Session 2 is higher than in Session 1.

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH1500</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH2300</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH2400</td>
<td>3.5 3.5</td>
</tr>
<tr>
<td>MATH2100</td>
<td>2.5 0</td>
</tr>
<tr>
<td>MATH2120</td>
<td>2.5 2.5</td>
</tr>
<tr>
<td>MATH2501</td>
<td>2.5 0</td>
</tr>
<tr>
<td>MATH2510</td>
<td>2.5 0</td>
</tr>
<tr>
<td>MATH2520</td>
<td>2.5 0</td>
</tr>
<tr>
<td>MATH2520</td>
<td>4.5 2.5</td>
</tr>
<tr>
<td>MATH2520</td>
<td>9+ 9+</td>
</tr>
<tr>
<td>MATH2520</td>
<td>23+ 23+</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH2000</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH2100</td>
<td>3 3</td>
</tr>
<tr>
<td>MECH2310</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH2600</td>
<td>2 2</td>
</tr>
<tr>
<td>MECH2700</td>
<td>2 2</td>
</tr>
<tr>
<td>MECH2841 (or MATH2839)</td>
<td>19+ 21+</td>
</tr>
<tr>
<td>MECH2841 (or MATH2839)</td>
<td>10+ 10+</td>
</tr>
</tbody>
</table>

Computer Science Majors 3

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS9520</td>
<td></td>
</tr>
<tr>
<td>MECH2300, MECH2400, MECH1500</td>
<td></td>
</tr>
<tr>
<td>COMP1021, COMP2011, COMP2021, COMP2031</td>
<td></td>
</tr>
<tr>
<td>MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH2110), MATH2120 (or MATH2130)</td>
<td></td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH2000, MECH2100, MECH2310, MECH2600, MECH2700</td>
<td></td>
</tr>
<tr>
<td>ELEC0805</td>
<td></td>
</tr>
<tr>
<td>MAT2841 (or MATH2839)</td>
<td></td>
</tr>
<tr>
<td>ELEC0805</td>
<td></td>
</tr>
</tbody>
</table>

Materials Science Majors

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2011</td>
<td></td>
</tr>
<tr>
<td>CHEM2021</td>
<td></td>
</tr>
<tr>
<td>MATS8193 (Units 1 & 3), MATS4053, MATS1253</td>
<td></td>
</tr>
<tr>
<td>MECH2300, MECH2400, MECH1500</td>
<td></td>
</tr>
<tr>
<td>MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH2110), MATH2120 (or MATH2130)</td>
<td></td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS9193 (Units 2 & 4), MATS9325 (Units 1 & 3), MATS1263, MATS1083</td>
<td></td>
</tr>
<tr>
<td>MECH2000, MECH2100, MECH2310, MECH2600, MECH2700</td>
<td></td>
</tr>
<tr>
<td>ELEC0805</td>
<td></td>
</tr>
<tr>
<td>MAT2841 (or MATH2839)</td>
<td></td>
</tr>
<tr>
<td>POLY3010</td>
<td></td>
</tr>
</tbody>
</table>

3.5 appropriate Level 3 units from School of Materials Science and Engineering offerings in Table 2 for course 3681. 1 General Education subject (Cat A)
Mathematics Majors

Year 2
Same Year 2 as for Computer Science or Materials Science majors
or
MATS9520
MECH2300, MECH2400, MECH1500
ELEC0805
MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH2110), MATH2120 (or MATH2130)
3.5 appropriate Level 2 units from Table 1* or Table 2 for course 3681, including some from the School of Mathematics.

Year 3
MECH2000, MECH2100, MECH2310, MECH2600, MECH2700, MATH2841 (or MATH2839)
4 Level 3 units from School of Mathematics offerings in Table 1*
1 General Education subject (Cat A)6

Physics Majors

Year 2
PHYS2001, PHYS2011, PHYS2021, PHYS2031
MATS9520
MECH2300, MECH2400, MECH1500
MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520
(or MATH2620), MATH2100 (or MATH2110), MATH2120 (or 10.2212)

Year 3
PHYS3010, PHYS3021, PHYS3030, PHYS3041
1 Level 3 unit from School of Physics offerings in Table 1*
MECH2000, MECH2100, MECH2310, MECH2600, MECH2700
MATH2841 (or MATH2839)
1 General Education subject (Cat A)6

Statistics Majors

Year 2
MATS9520
MECH2300, MECH2400, MECH1500
ELEC0805
MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH2110), MATH2120 (or MATH2130), MATH2821 (or MATH2921), MATH2810 (or MATH2910), MATH2830 (or MATH2930)
1/2 appropriate Level 2 unit from Table 1* or Table 2* for course 3681

Year 3
MECH2000, MECH2100, MECH2310, MECH2600, MECH2700
4 Level 3 units from Statistics offerings in Table 1*
1 Level 2 or III unit from School of Mathematics or School of

Physics offerings in Table 1*
1 General Education subject (Cat A)6
* Tables refer to the Sciences Handbook.

Notes
1. Years 2 and 3 are requirements pertaining to students who commenced Year 1 in 1989, or later. Students who commenced in earlier years should consult the Handbook appropriate to their year.
2. The following considerations pertain to the choice of additional units in Years 2 and 3:
 (a) The Level 3 units satisfy the relevant major requirements.
 (b) They be from the Schools of Chemistry, Electrical Engineering and Computer Science, Mathematics, Materials Science and Engineering and/or Physics.
 (c) They include MATH2841 Statistics or MATH2839 Statistics SM or MATH2821 Basic Inference.
 (d) They include PHYS2031 Laboratory or ELEC0805 Electronics for Measurement and Control.
 (e) They include MATS9520 Engineering Materials or MATS1253 Ferrous Alloys.
 (f) They exclude 10.261A Mathematical Computing.
 (g) All pre and co-requisites are satisfied.
3. Quota restrictions apply to certain Computer Science Level 3 units and application must be made in writing to the Head of the School of Electrical Engineering and Computer Science before the end of Session 2 in the preceding year. Prospective Computer Science Majors should aim for a creditable academic attainment (65%) over Years 1 and 2.
4. With permission of the School of Mechanical and Manufacturing Engineering, students may delay this subject till Year 3.
5. Provided MECH2400 is taken concurrently or has been taken, the pre or co-requisite requirement of MATS1062 is assumed to be satisfied.
6. General Education requirements correspond to whatever is required in the second year of the normal Mechanical Engineering, Manufacturing Management, Aerospace Engineering or Naval Architecture degree course.
7. These Mathematics Majors need to add ELEC0805 Electronics for Measurement and Control to Year 3.
8. These Mathematics Majors should substitute 1 Level 2 or 3 units from the Schools of Physics, Chemistry or Mathematics offerings in Table 1 for MATH2841 Statistics in Year 3.
9. Students may substitute PHYS2031 Laboratory for ELEC0805 plus a 0.5 Level 2 unit.
10. Under special circumstances, with permission of the Head of the School of Physics, a student may substitute alternative Physics Level 3 offerings of equivalent unit value.
11. The Mathematics units are also offered at higher level.
12. Students who have satisfactorily completed CHEM1807 Chemistry 1ME and CHEM1201 Chemistry 1B will be considered to have satisfied the prerequisites for
Combined Courses
Bachelor of Engineering/Bachelor of Arts

3612
BE BA in Aerospace Engineering

3662
BE BA in Manufacturing Management

3682
BE BA in Mechanical Engineering

3702
BE BA in Naval Architecture

Introduction
The Bachelor of Engineering and Bachelor of Arts combined degree course provides the opportunity of taking one of the normal accredited Engineering courses offered by the School together with a normal Arts course. Common content between the two courses makes it possible to complete the combined degree course in 5 years, although the minimum time required could be longer, depending upon the choice of Arts subjects. The course is administered by the Faculty of Engineering.

The Engineering content follows that of the standard courses offered by the School. It includes the Science Arts compatible first year program which provides a wide range of course options at the end of Year 1. The options include, in addition to the BE BA combined program, a BE BSc combined program and a normal BA program, a normal BSc program and a normal BA program. (The Science/Arts compatible first year provides up to 30 Arts credit points towards a BA program).

The Arts content is to be chosen from the Faculty of Arts offerings in the usual way and would depend upon the interests of each individual student. Refer to the Faculty of Arts handbook for further details.

Requirements
The broad requirements of the BE BA course are given below. The details of a particular student’s program will depend upon the student’s interests and the Arts content which is chosen. Sample programs are available on request to show typical arrangements.

Engineering
The program is to contain the Science Arts compatible first year segment followed by the full program for one of the strands offered by the School of Mechanical and Manufacturing Engineering. Course variations may be permitted in some cases on application to the Head of School.

Arts
The Arts component of the program is to contain at least 60 Arts credit points in addition to Arts credit points allocated to components of the Engineering strand. (A session-length Arts subject normally carries 6 credit points). The 60 must include

- no more than 30 First Level credit points (typically 5 one session subjects)
- at least 24 Upper Level credit points forming a major sequence (typically 4 one-session subjects)
- at least 6 Upper Level credit points in a school other than that in which the major is taken. Computing and mathematics majors are not permitted. The combined BE BSc program would be more appropriate in these cases.

Honours
In the Engineering component, Honours are awarded for superior performance in the standard program. In the Arts components, the award of Honours requires at least one further year of study devoted exclusively to the Honours subject(s). Consult the Faculty of Arts for further details.

General
A BE BA proposal should be discussed with representatives of the School and the Faculty of Arts as early as possible. In many cases this will be at (or preferably before) first year enrolment, but a student who has satisfactorily completed the Science Arts compatible first year will normally be able to transfer to the second year of a combined BE BA program, and the discussions could then take place at any time before second year enrolment. Enquiries should be directed to the Executive Assistant to the Head of the School and the Executive Assistant to the Dean of Faculty of Arts.

School of Surveying

Head of School
Associate Professor J.C. Trinder
Administrative Assistant
Mr. L. Daras

What Is Surveying?
Surveying is a professional science dealing with measuring processes and the handling and computation of data. Traditionally, surveyors measure land and water areas and produce maps for use in development projects such as land subdivision, town planning, building construction, engineering works (e.g. dams and railways), mining and navigation.

Today in Australia, a surveyor may choose to work in one of the specialised areas of: Satellite Surveying (position determination techniques using satellite signals); Geodetic Surveying (determining the mathematical model of the Earth, and its gravity field, and the practice of surveying on the Earth’s surface); Hydrographic Surveying (mapping the seabed and waterways for navigation and offshore resource management); Engineering Surveying (the precise surveying
The method of entry to a professional career in Surveying is by completion of a University degree. How to become a Surveyor?

• A degree which can lead to further studies towards a course at University?

What can a student look forward to in a Surveying course at University?

• A well-rounded education enabling him or her to enter the surveying profession.

• A challenging and rewarding course.

• An awareness of many related areas such as town planning, engineering, land law, optics and computing technology.

• On completion, a degree which is recognised and respected throughout the world.

• The chance to enter a career with excellent prospects.

• The chance to choose a career with a combination of indoor and outdoor lifestyles and the opportunity to travel.

• A degree which can lead to further studies towards a higher degree in one of the specialist areas.

How to become a Surveyor?
The method of entry to a professional career in Surveying is by completion of a University degree. Modern technology is playing an increasingly important role in the professional life of the surveyor. For example, the use of computers and small electronic distance measuring devices is common. The next generation of surveyors will be able to determine accurate positions on the Earth from radio signals transmitted from satellites. Field survey techniques are being revolutionised through the use of satellite systems which are due to come into full operation in the 1990’s.

Who should become a Surveying Professional?

New technology and techniques have paved the way for Surveying to be a career suited to both MEN and WOMEN who have an aptitude for computing, mathematics and environmental sciences.

Because of the unique nature of the profession, Surveying offers opportunities to satisfy a wide range of individual preferences.

A professional qualification in Surveying will provide a start towards realising the ambitions of students whether they would like to:

• work in the field or in the office,

• work on their own or as a member of a multi-disciplinary team,

• work in private industry or in government service,

• work as a self-employed consultant,

• work in Australia or overseas.

What can a student look forward to in a Surveying course at University?

• A well-rounded education enabling him or her to enter the surveying profession.

• A challenging and rewarding course.

• An awareness of many related areas such as town planning, engineering, land law, optics and computing technology.

• On completion, a degree which is recognised and respected throughout the world.

• The chance to enter a career with excellent prospects.

• The chance to choose a career with a combination of indoor and outdoor lifestyles and the opportunity to travel.

• A degree which can lead to further studies towards a higher degree in one of the specialist areas.

How to become a Surveyor?
The method of entry to a professional career in Surveying is by completion of a University degree.

The Bachelor of Surveying Course

The School offers a full-time course of four years duration leading to the award of the degree of Bachelor of Surveying (BSurv). Alternatively, the course may be taken in a sandwich form in which a student may, after completing the first year of the course on a full-time basis, alternate his or her studies with one or more periods of employment by taking leaves of absence of two consecutive sessions. The BSurv course is a well rounded course aimed at preparing the graduate for a broad range of career opportunities in the various branches of Surveying and in associated fields referred to above. The course recognises that its graduates may be called on to act as survey practitioners, consultants, managers, teachers or researchers, and indeed a single graduate may take on several of these roles during his or her career. To this end, the BSurv course covers general scientific principles with special emphasis on computing, as well as specialised Surveying applications. Throughout the course, theoretical studies are complemented by practical exercises in the field and in the laboratory.

Recognition

The degree of Bachelor of Surveying is recognised by the New South Wales Surveyors’ Board as meeting all examination requirements for registration as a Registered Surveyor in New South Wales, and is recognised by the Institution of Surveyors, Australia for admission as corporate members.

Students wishing to become Registered Surveyors with the New South Wales Surveyors’ Board after graduation are advised to gain practical experience under a Registered Surveyor during their course. Some reduction in the period of practical experience required before registration may be granted because of practical experience gained during the University course, provided the New South Wales Surveyors’ Board is informed in the prescribed manner. Details are obtainable from the Registrar, Surveyors’ Board, Department of Lands, Bridge Street, Sydney 2000.

Honours

In the BSurv course the same formal program is offered to both pass students and to those aiming for an honours grading. Honours will be awarded for meritorious performance throughout the course, with greater emphasis placed on subjects in Year 3 and 4.

Scholarships and Prizes

Please locate Scholarships and Prizes in the Contents. In addition, substantial prizes are offered for the best performance by a woman student at the end of Year 1 and the best performance by all students at the end of Years 2 and 3. There is also a range of prizes available for the graduating class.

Professional Practice

All students in BSurv course must gain at least 60 days of recognised professional practice after the completion of Session 1 in Year 2 as part of the requirements for subject SURV8711. Special instructions will be given before commencement of professional practice.

Field Excursions

Students must complete all necessary fieldwork for any subject and be prepared to pay all the appropriate costs, and must be in attendance at all scheduled examinations except in exceptional circumstances.
Course Rules

- Students are not permitted to enrol in subjects with clashing timetables.
- In addition to the specific subject prerequisites and co-requisites a general understanding of the material in the preceding year is assumed. Students are not normally permitted to enrol in subjects spread beyond two years.
- Students who do not pass their full programs in any year will be limited to a reduced load in the following year. Typically, this is 20 hours per week.
- Previously failed subjects must be included, except that a failed elective may be replaced by another elective.

Course Revision

Following each course revision, students are assessed on the basis of the new program but retain credit for any subjects already completed and are not liable for the increased requirements if progression is normal.

It is the responsibility of students to enrol in a program consistent with the rules governing re-enrolment and admission to the degree.

The BSurv course is currently being revised. Years 1 and 2 of the new course have been introduced in 1989, while year 3 was introduced in 1990, and year 4 will be introduced in 1991.

Students with broken programs will have their status in the new course determined according to a table of equivalent subjects in the new and old courses.

Re-enrolment

Students must collect enrolment information from the School Office before the end of Session 2 for re-enrolment in the following February. Students not intending to re-enrol should advise the School.

Leave of absence for up to one year is usually granted to students in good standing.

3740 Surveying

Bachelor of Surveying

BSurv

Year 1

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1929</td>
<td>Physics 1</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MECH0130</td>
<td>Engineering Drawing and Descriptive Geometry</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics 1</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SURV1111</td>
<td>Introduction to Computing</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SURV1711</td>
<td>Introduction to Surveying**</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

**Cat C (P) General Education

Session 2

| PHYS1929 | Physics 1 |
| 4 |
| MATH1032 | Mathematics 1 |
| 6 |
| SURV1711 | Introduction to Surveying** |
| 3 |
| SURV2041 | Survey Data Presentation |
| 3 |
| SURV2111 | Principles of Computer Processing |
| 4 |
| SURV2221 | Introduction to Geodetic Science |
| 3 |

**Cat C (P) General Education

Year 2

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS2969</td>
<td>Physics of Measurements</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH2009</td>
<td>Engineering Mathematics 2</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH2829</td>
<td>Statistics SU</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV3011</td>
<td>Surveying Instruments</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SURV3111</td>
<td>Survey Computations</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV3231</td>
<td>Geodetic Computations</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV4721</td>
<td>28-hr General Education subject (Cat A)</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Session 2

| SURV4051 | Survey Camp 1* |
| 3 |
| MATH2009 | Engineering Mathematics 2 |
| 4 |
| SURV4011 | Surveying Techniques |
| 6 |
| SURV4111 | Data Analysis and Computing 1 |
| 3 |
| SURV4221 | Geodetic Positioning 1 |
| 3 |
| SURV4721 | Project Management 1 |
| 2 |

**Cat C (P) General Education

Year 3

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL0646</td>
<td>Engineering for Surveyors 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV5011</td>
<td>Engineering Surveying</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SURV5111</td>
<td>Data Analysis and Computing 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV5221</td>
<td>Geodetic Positioning 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV5621</td>
<td>Cadastral Surveying 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV5721</td>
<td>Project Management 2</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PLAN9111</td>
<td>Town Planning</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SURV7051</td>
<td>Survey Camp 3*</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7311</td>
<td>Offshore Surveying</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7511</td>
<td>Photogrammetry and Mapping 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7521</td>
<td>Remote Sensing and Resource Surveys</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7531</td>
<td>Spatial Information Systems 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7711</td>
<td>Land Management and Development Project</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

**Cat C (P) General Education

Year 4

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURV7051</td>
<td>Survey Camp 3*</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SURV7311</td>
<td>Offshore Surveying</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7511</td>
<td>Photogrammetry and Mapping 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7521</td>
<td>Remote Sensing and Resource Surveys</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7531</td>
<td>Spatial Information Systems 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV7711</td>
<td>Land Management and Development Project</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

**Students are required to attend a one-week survey camp, which is equivalent to 3 class contact hours per week.
Year 4

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURV7811 Land Subdivision and Development</td>
<td>3</td>
</tr>
<tr>
<td>SURV8001 Project</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURV7711 Land Management and Development Project+</td>
<td>2</td>
</tr>
<tr>
<td>SURV8011 Project Surveying</td>
<td>3</td>
</tr>
<tr>
<td>SURV8221 Advanced Geodesy</td>
<td>3</td>
</tr>
<tr>
<td>SURV8531 Spatial Information Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>SURV8711 Professional Practice**+</td>
<td>2</td>
</tr>
<tr>
<td>SURV8001 Project</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

* Students are required to attend 2 weeks of Survey Camp, equivalent to 6 class contact hours per week, together with one hour per week evaluation on campus for preparation of report.

** 60 days approved professional practice required as part of this subject together with two hours per week seminar and field work.

+ Cat C General Education.

General Education Program

The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For further details, please locate General Education in the Contents.

Requirements for General Education elective and prescribed subjects are as follows: Year 2 - one elective subject from Category A; Year 3 - one elective subject from Category B. The key questions and issues to be addressed in Category C will be considered in the following subjects: SURV1711 Introduction to Surveying, SURV7711 Land Management and Development Project and SURV8711 Professional Practice.
Subject Descriptions

Identification of Subjects

A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

In 1991 a new system of subject identification is introduced. Each approved subject of the University is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subject identifiers are approved by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the four character alphabetical prefix.

2. Each subject identifier is unique and is not used for more than one subject title.

3. Subject numbers which have previously been used are not used for new subject titles.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Appropriate subjects for each school appear at the end of each school section.

The identifying alphabetical prefixes for each organizational unit are set out on the following pages.

Servicing Subjects are those taught by a school or department outside its own faculty. Their subject descriptions are published in the handbook of the faculty which originates the subject and are also published in the handbook of the faculty in which the subject is taught. The following pages contain descriptions for most of the subjects offered for the courses described in this book, the exception being General Education subjects. For General Education subjects see the General Education Handbook which is available free of charge.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information which may be supplied about each subject:

- **SI** Session 1, **S2** Session 2
- **F** Session 1 plus Session 2, ie full year
- **S1 or S2** Session 1 or Session 2, ie choice of either session
- **SS** single session, but which session taught is not known at the time of publication
- **CCH** class contact hours
- **P/T** part-time
- **L** Lecture, followed by hours per week
- **T** Laboratory/tutorial, followed by hours per week
- **hpw** hours per week
- **wks** weeks of duration
- **C** credit or Credit units
- **CR** Credit level
- **DN** Distinction
- **HD** High Distinction
In the Faculty of Engineering, Schools and Centres have allocated the first digit in the numeric suffix of all new subject identifiers as indicating the level of the subject. Please note that the value ‘9’ in this position is reserved for graduate subjects.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABO</td>
<td>School of Applied Bioscience</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ACHM</td>
<td>Department of Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>ACMA</td>
<td>Department of Civil Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ASCC</td>
<td>Department of Computer Science</td>
<td>University College</td>
</tr>
<tr>
<td>AECM</td>
<td>Department of Economics & Management</td>
<td>University College</td>
</tr>
<tr>
<td>AELE</td>
<td>Department of Electrical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AENG</td>
<td>Department of English</td>
<td>University College</td>
</tr>
<tr>
<td>AERO</td>
<td>Aerospace Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>AGOC</td>
<td>Department of Geography & Oceanography</td>
<td>University College</td>
</tr>
<tr>
<td>AHIS</td>
<td>Department of History</td>
<td>University College</td>
</tr>
<tr>
<td>AINT</td>
<td>University College (Interdisciplinary)</td>
<td>University College</td>
</tr>
<tr>
<td>AMAT</td>
<td>Department of Mathematics</td>
<td>University College</td>
</tr>
<tr>
<td>AMEC</td>
<td>Department of Mechanical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>APHY</td>
<td>Department of Physics</td>
<td>University College</td>
</tr>
<tr>
<td>APOL</td>
<td>Department of Politics</td>
<td>University College</td>
</tr>
<tr>
<td>APSE</td>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ARCH</td>
<td>School of Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>ARTS</td>
<td>Faculty of Arts</td>
<td>Arts</td>
</tr>
<tr>
<td>ASIA</td>
<td>Asian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>AUST</td>
<td>Australian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BLDG</td>
<td>School of Building</td>
<td>Architecture</td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science & Mathematics</td>
<td></td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese</td>
<td>Arts</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Medicine</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Engineering</td>
</tr>
<tr>
<td>COFA</td>
<td>College of Fine Arts</td>
<td></td>
</tr>
<tr>
<td>COMM</td>
<td>Faculty of Commerce</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>COMP</td>
<td>Computer Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Economics and Econometrics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>EDST</td>
<td>School of Education Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering & Computer Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>ENGL</td>
<td>School of English</td>
<td>Arts</td>
</tr>
<tr>
<td>EURO</td>
<td>European Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>EXPA</td>
<td>School of Arts and Music Education</td>
<td>Applied Studies</td>
</tr>
<tr>
<td>FIBR</td>
<td>School of Fibre Science & Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FINC</td>
<td>School of Banking & Finance</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>FOOD</td>
<td>Department of Food Science and Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FREN</td>
<td>School of French</td>
<td>Arts</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal & General Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Arts</td>
</tr>
<tr>
<td>GERS</td>
<td>School of German Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>GREEK</td>
<td>Modern Greek</td>
<td>Arts</td>
</tr>
<tr>
<td>GSBE</td>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
</tr>
<tr>
<td>HEAL</td>
<td>School of Health Services Management</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>HIST</td>
<td>School of History</td>
<td>Arts</td>
</tr>
<tr>
<td>HOSP</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>IDES</td>
<td>Department of Industrial Design</td>
<td>Architecture</td>
</tr>
<tr>
<td>INDG</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDO</td>
<td>Indonesian</td>
<td>Arts</td>
</tr>
<tr>
<td>INFS</td>
<td>School of Information Systems</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>INTD</td>
<td>Interdisciplinary Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organ. Behaviour</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>JAPN</td>
<td>School of Marketing</td>
<td>Applied Science</td>
</tr>
<tr>
<td>KCME</td>
<td>Key Centre for Mines</td>
<td>Architecture</td>
</tr>
<tr>
<td>LAND</td>
<td>School of Landscape Architecture</td>
<td>Law</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies & Taxation</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Librarianship</td>
<td>Engineering</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>MARK</td>
<td>School of Marketing</td>
<td>Science</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science and Engineering</td>
<td>Medicine</td>
</tr>
<tr>
<td>MDCN</td>
<td>School of Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>MSDG</td>
<td>Med/Surg. Clinical Studies</td>
<td>Engineering</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Medicine</td>
</tr>
<tr>
<td>MEED</td>
<td>School of Medical Education</td>
<td>Medicine</td>
</tr>
<tr>
<td>MFAC</td>
<td>Medical Faculty (Admin)</td>
<td>Medicine</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology</td>
<td>Medicine</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Medicine</td>
</tr>
<tr>
<td>MNGT</td>
<td>Australian Graduate School of Management</td>
<td>Medicine</td>
</tr>
<tr>
<td>MUSIC</td>
<td>Department of Music</td>
<td>Medicine</td>
</tr>
<tr>
<td>NAVL</td>
<td>Naval Architecture</td>
<td>Engineering</td>
</tr>
<tr>
<td>OBST</td>
<td>School of Obstetrics & Gynaecology</td>
<td>Medicine</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Medicine</td>
</tr>
<tr>
<td>PAED</td>
<td>School of Paediatrics</td>
<td>Medicine</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts</td>
</tr>
</tbody>
</table>

44
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPH</td>
<td>School of Physiology & Pharmacology</td>
<td>Law</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Law</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological & Behavioural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sciences</td>
</tr>
<tr>
<td>PTRL</td>
<td>Department of Petroleum Engineering Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>RUSS</td>
<td>Department of Russian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SAFE</td>
<td>Centre for Safety Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>SCTS</td>
<td>School of Science & Technology Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>HPST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLSP</td>
<td>Department of Social Science & Policy</td>
<td>Arts</td>
</tr>
<tr>
<td>SLST</td>
<td>School of Sport & Leisure Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SOCI</td>
<td>School of Sociology</td>
<td>Arts</td>
</tr>
<tr>
<td>SOCW</td>
<td>School of Social Work</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish & Latin American Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SURG</td>
<td>School of Surgery</td>
<td>Medicine</td>
</tr>
<tr>
<td>SURV</td>
<td>School of Surveying</td>
<td>Engineering</td>
</tr>
<tr>
<td>TEDG</td>
<td>School of Teacher Education (grad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TEED</td>
<td>School of Teacher Education (undergrad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TESL</td>
<td>TESOL</td>
<td>Arts</td>
</tr>
<tr>
<td>TEXT</td>
<td>Department of Textile Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>THST</td>
<td>Department of Theatre Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>USOM</td>
<td>School of Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>WOMS</td>
<td>Women Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool & Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Accounting

ACCT1501 Accounting and Financial Management 1A
Prerequisite: Nil.
The basic concepts of financial model building and information systems, including the double-entry recording system, the accounting cycle, income measurement and financial reporting, and an introduction to basic elements of auditing. (Old No. 14.501)

ACCT9001 Introduction to Accounting A S1 L1.5
Architecture: 2 credit points compulsory for BBuild degree course students.
Prerequisite: Nil.

ACCT9002 Introduction to Accounting B S2 L1.5
Architecture: 2 credit points; compulsory for BBuild degree course students.
Prerequisite: 14.001.
An introduction for non-commerce students to managerial accounting. Long-range planning, budgeting and responsibility accounting; cost determination, cost control and relevant cost analyses. (Old No. 14.002)

Aerospace Engineering

Aerospace Engineering is a course offered by the School of Mechanical and Manufacturing Engineering.

AERO3100 Aerospace Design 1 S1 L/T 4 S2 L/T2
Prerequisites: MATS9520, MECH2100, MECH2300, MECH2400. Co-requisites: AERO3400, AERO3601, AERO3602.
Introduction to the special constraints involved in the design of an aerospace vehicle. The development of detail design skills and the methodology of aerospace design. An introduction to airworthiness regulations, ESDU data sheets and the use of computer-aided design techniques. The production of engineering design reports on selected areas and the design work carried out.

AERO3400 Analysis of Aerospace Structures F L1.5 T.5
Equilibrium of forces: aerospace applications of plane frames and space structures. Beams; shear and bending stress distribution in thin-webbed beams, close-section thin-wall beams, tapered beams, beams with variable flange areas. Semi-monocoque structures; ribs and bulkheads. Deflection of structures; stresses due to torsion and shear in multicell tubes. Statically indeterminate structures; beams, trusses and frames. Structural instability; buckling of perfect and imperfect columns; bending and buckling of thin flat plates. (Old No. 5.822)

AERO3601 Aerodynamics 1 S1 L/T 4

AERO3602 Flight Dynamics 1 S1 L/T 2

AERO4109 Aircraft Design 2 F L2 T1
Prerequisites: MECH3400, 5.800, 5.811. Co-requisites: AERO3400, AERO4400, AERO4700.
Aerodynamics, structures and operations leading to detailed design, calculation and drawing of an original aircraft configuration. (Old No. 5.801)

AERO4400 Analysis of Aerospace Structures 2 F L1.5 T.5
Prerequisites: MECH3400, AERO3400. Excluded: MECH9410, MECH4410.
Structural instability; local instability and crippling of thin-walled columns; buckling of stiffened panels, curved panels and monocoque cylinders; tension field beams. Stress functions. Shear lag. Warping of thin-walled open and closed section tubes. Torsional buckling. Advanced applications of finite elements; introduction to commercial f.e.m. systems. Thermal stresses. Vibrations and aeroelasticity. Fatigue. (Old No. 5.823)

AERO4609 Aerodynamics 2 F L2 T1
Prerequisites: 5.811, MECH3211.
Compressible flow: subsonic, transonic and supersonic two-dimensional flows; viscous boundary layers and heat transfer. Dynamic stability and control; characteristic solutions
for rigid aircraft. Hypersonic, high enthalpy flows. (Old No. 5.812)

AER04700 Aerospace Propulsion F L1.5 T0.5
Prerequisites: MECH2600, MECH2700 or 5.811.

Anatomy

ANAT2111 Introductory Anatomy S1 L2 T4
Prerequisites: BIOS1011, BIOS1021

Introduction to gross anatomy, based on a study of prospected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy. (Old No. 70.011C)

Biological Science

BIOS1021 Biology B S2 L2 T4
Prerequisite: BIOS1011 (however, students without this prerequisite may seek the permission of the Co-ordinator of First Year Biology to enrol). Excluded 17.021.

The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes. (Old No. 17.041)

BIOS3111 Population and Community Ecology S1 L2 T4
Prerequisite: BIOS1021 and MATH1032 or both MATH1011 and MATH1021. Excluded: 45.152.

Examination of the dynamics of one, two or more interacting populations. Systems analysis and simulation in ecology. Theoretical and mathematical analysis of the dynamics and stability of ecosystems. Topics in the optimal management of renewable resources. Unifying concepts in ecology. (Old No. 17.733)

Chemical Engineering and Industrial Chemistry

CEIC0010 Mass Transfer and Material Balances FL1T1
Prerequisites: CHEM1101, CHEM1201, CIVL2505

CEIC0020 Fluid/Solid Separation SS L1.5 T.5

CEIC0030 Environmental Protection in the Process Industries SS L3 T3
Prerequisites: CEIC0010, INDC3070, INDC4120

Selection of 3 topics from:

Environmental Pollutants

The characteristics of pollutants in air and water. Consequences of pollutions by aqueous, gaseous and solid wastes; case histories. Standards and regulations; legislative aspects. Measurement, analysis and sampling - modern techniques of environmental chemical analysis.

Pollution Control Techniques

Water Pollution Control Engineering

Air Pollution Control

Laboratory for Environmental Analysis
14 hour laboratory unit developing techniques in modern environmental analysis.

Advanced Environmental Protection
This comprises a series of elective strands which build upon the core subject as follows:
1 Advanced treatment methods (water)
2 Advanced treatment methods (air)
3 Hazardous wastes
4 Computer-aided risk assessment
5 Advanced laboratory
6 Occupational Health Laboratory (Old No. 3.4A)

Chemical Engineering

Chemical Engineering is a department within the School of Chemical Engineering and Industrial Chemistry.

CHEN3070 Process Control F L1
Prerequisites: CEIC2010, CEIC2020, MATH2021
Unsteady state modelling of simple processes: linearisation, transfer function, concept of input-output models. Lumped parameter versus distributed parameter systems. Process identification: transient, frequency, pulse and correlation analysis. Control system hardware: transducers, valves, measuring devices for flow, pressure, temperature. (Old No. 3.034)

Chemistry

Level 1 Units

CHEM1002 Chemistry 1 F L3T3
Prerequisites
HSC Exam Score
Range required
2 unit Mathematics or 55-100
3 unit Mathematics or 1-50
4 unit Mathematics 1-100
and
2 unit Chemistry or 53-100
3 unit Science or 90-150
4 unit Science or 1-50
2 unit Physics 53-100

Note: CHEM1002 is the normal prerequisite for Level II Chemistry.

CHEM1101 Chemistry 1A S1 L3T3
Prerequisites
HSC Exam Score
Range required
2 unit Mathematics or 55-100
3 unit Mathematics or 1-50
4 unit Mathematics 1-100
and
2 unit Chemistry or 53-100
3 unit Science or 90-150
4 unit Science or 1-50
2 unit Physics 53-100

CHEM1201 Chemistry 1B S2 L3T3
Prerequisites CHEM1101 Chemistry 1A
Molecular structure, valence bond theory, hybridization of orbitals, common geometries. Periodicity of physical and chemical properties of common representative elements and compounds. Chemistry of carbon compounds, stereoisomerism; alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, aldehydes, ketones, carboxylic acids and derivatives, amines. Polymers.

Note: The two subjects CHEM1101 and CHEM1201, taken sequentially, are equivalent to CHEM1002. (Old No. 2.231)

CHEM1302 Introductory Chemistry F L3T3
Prerequisites
HSC Exam Score
Range required
2 unit Mathematics or 55-100
3 unit Mathematics or 1-50
4 unit Mathematics 1-100
stereoisomerism; alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, aldehydes, ketones, carboxylic acids and derivatives, amines. Polymers. (Old No. 2.271)

Note: CHEM1002 is the normal prerequisite for Level II Chemistry. However, students who perform very well in CHEM1302 will be permitted to continue on to Level II Chemistry with the permission of the Head of School of Chemistry.

CHEM1401 Introductory Chemistry A

Prerequisites

<table>
<thead>
<tr>
<th>Degree Units</th>
<th>Mathematics Degrees Required</th>
<th>Chemistry Degrees Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHEM1501 Introductory Chemistry B

Prerequisites

<table>
<thead>
<tr>
<th>Degree Units</th>
<th>Mathematics Degrees Required</th>
<th>Chemistry Degrees Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electron configurations and the periodic table. Types of chemical bonds, electronegativity. Molecular structure, valence bond theory, hybridization of orbitals, common geometries. Chemical equilibrium, equilibrium constants, quantitative calculations applied to acid-base and solubility equilibria, buffers, titrations, chemical analysis. Periodicity of physical and chemical properties of common representative elements and compounds. Chemistry of carbon compounds, stereoisomerism; alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, aldehydes, ketones, carboxylic acids and derivatives, amines. Polymers. (Old No. 2.261)

Note: The two subjects CHEM1401 and CHEM1501, taken sequentially, are equivalent to CHEM1302.

CHEM1607 Chemistry 1ME

Prerequisite: As for CHEM1806

A treatment of chemistry which illustrates the application of the principles of chemistry to problems of concern to mechanical engineers. Topics: chemistry of materials, thermochemistry, chemical kinetics and equilibrium, radioactivity and nuclear power, electrochemistry and corrosion of metals. Introduction to organic chemistry, structure and properties of polymers, fuels and lubricants. Surface chemistry. (Old No. 2.951)

Prerequisite:

<table>
<thead>
<tr>
<th>Degree Units</th>
<th>Mathematics Degrees Required</th>
<th>Chemistry Degrees Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHEM1806 Chemistry 1EE

Prerequisite:

<table>
<thead>
<tr>
<th>Degree Units</th>
<th>Mathematics Degrees Required</th>
<th>Chemistry Degrees Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Undergraduate Study: Subject Descriptions

CHEM1806 Chemistry 1EE

Prerequisite:

<table>
<thead>
<tr>
<th>Degree Units</th>
<th>Mathematics Degrees Required</th>
<th>Chemistry Degrees Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHEM1808 Chemistry 1CE

Prerequisites As for CHEM1806

<table>
<thead>
<tr>
<th>Degree Units</th>
<th>Mathematics Degrees Required</th>
<th>Chemistry Degrees Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The two subjects CHEM1401 and CHEM1501, taken sequentially, are equivalent to CHEM1302.

CHEM1809 Biological Chemistry

Prerequisites

<table>
<thead>
<tr>
<th>Degree Units</th>
<th>Mathematics Degrees Required</th>
<th>Chemistry Degrees Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level II Units

CHEM2011 Physical Chemistry S1 or S2 L3 T3
Prerequisites: CHEM1002 or CHEM1101 and CHEM1201 and MATH1042, or MATH1032, or MATH1011 and MATH1021. Excluded 2.002A

Thermodynamics: first, second and third laws of thermodynamics; statistical mechanical treatment of thermodynamic properties; applications of thermodynamics: chemical equilibria, phase equilibria, solutions of nonelectrolytes and electrolytes, electrochemical cells. Kinetics: order and molecularity; effect of temperature on reaction rates: elementary reaction rate theory. Surface chemistry and colloids: adsorption, properties of dispersions; macromolecules and association colloids. (Old No. 2.102A)

CHEM2021 Organic Chemistry F or S2 L3 T3
Prerequisite: CHEM1002 or CHEM1201. Excluded 2.002B

Discussion of the major types of organic reaction mechanisms eg addition, substitution, elimination, free-radical, molecular rearrangement within context of important functional groups eg aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, organometallic compounds, alcohols, phenols, aldehydes, ketones, ethers, carbonylic acids and their derivatives, nitro compounds, amines and sulfonic acids. Introduction to application of spectroscopic methods to structure determination. (Old No. 2.102B)

CHEM2031 Inorganic Chemistry and Structure S1 or S2 L3 T3
Prerequisites: CHEM1002 and CHEM1101 and CHEM1201. Excluded 2.042C

CHEM2041 Chemical and Spectroscopic Analysis S1 or S2 L3 T3
Prerequisites: CHEM1002 or both CHEM1101 and CHEM1201 and MATH1042, or MATH1032, or MATH1011 and MATH1021. Excluded 2.002D and 2.003H

General procedures in analytical science, accuracy, propagation of errors, precision. Analytical reaction chemistry, titrimetric, and gravimetric, analysis. Solvent extraction. Electroanalytical methods. Chromatography. Instrumental aspects of all major spectroscopic methods. Optical spectroscopy, nuclear magnetic and electron spin resonances, mass spectrometry. Sample handling. (Old No. 2.102D)

Level III Core

CHEM3011 Physical Chemistry S1 L3 T3
Prerequisites: PHYS1002, CHEM2011, CHEM2041 and CHEM2031. Excluded 2.013A

CHEM3311 Environmental Chemistry S2 L3 T3
Prerequisites: CHEM2011 and CHEM2041. Excluded 2.043A.

Physico-chemical aspects of the environment. Factors affecting the chemistry of rivers, estuaries, oceans, surface and sub-surface water. Photolysis reactions in the atmosphere, primary and secondary pollutants. Distribution of elements, nutrient elements, carbon and oxygen in ecological systems (chemical models of these cycles). Analysis of naturally occurring species and pollutants. Requirements, validation and performance monitoring of standard analytical procedures. (Old No. 2.123E)

Civil Engineering

CIVL1007 Engineering Practice S1 L1 T1
Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam Score</th>
<th>Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit English (General)</td>
<td>53-100</td>
</tr>
<tr>
<td>2 unit English</td>
<td>49-100</td>
</tr>
<tr>
<td>3 unit English</td>
<td>1-50</td>
</tr>
<tr>
<td>or 2 unit contemporary English</td>
<td>60-100</td>
</tr>
</tbody>
</table>

CIVL1106 Computing and Graphics S1 L2 T1 S2 L1 T2
Introduction to programming and development of skills for solving problems and rapid calculation. Computing elements, input-output, data and program structures. Useful and correct algorithms. The use of Pascal and control languages. Introduction to higher level languages and graphics.

Australian Drawing Standards. Descriptive geometry and orthographic projections. Perspective drawing. Introduction to computer aided drafting. Introduction to graphics – primitives, attributes, windows, layers, etc. Elementary graphics programming. Tutorials include supervised and free practice at computing, testing algorithms, data manipulation. Drawing practice includes graphs, systems diagrams; road, concrete and steel work; perspective drawing; pseudo computer aided drafting and a graphics plot. (Old No. 8.110)

CIVL1203 Engineering Mechanics F L2 T2
Co-requisite: MATH1032.

Dynamics of particles. Laws governing conservation of energy and momentum. Curvilinear motion and angular momentum. Planar motion of rigid bodies. Derivation and solution of equations of motion for simple spring-mass systems responding to forces of simple form. Applications to civil engineering problems. (Old No. 8.120)

CIVL1301 Civil Engineering Practice S1 L2 T1 S2 L1.5 T.5
Prerequisite: HSC Exam Score Range Required
2 unit English (General) or 53-100
2 unit English 49-100
3 unit English or 1-50
2 unit contemporary English 60-100

CIVL2106 Systems Engineering S1 L1 T1 S2 L2 T1
Prerequisites: MATH1032, CIVL1106. Co-requisite: MATH2869.

The solution of Civil Engineering problems involving probabilistic and statistical aspects. Problems examined include hydrological data fitting, traffic data analysis, structural reliability, limit state design, quality control, geomechanics site investigations and field data gathering and reduction. Regression. Decision processes associated with indefinite information; the modelling of the associated Civil Engineering systems. (Old No. 8.210)

CIVL2203 Engineering Mechanics 2 F L2.5 T1.5
Prerequisite: CIVL1203.

CIVL2301 Engineering Construction F L1.5 T.5
Prerequisite: CIVL1301.

CIVL2402 Materials Engineering 1 F L2.5 T1.5
Prerequisites: CIVL1203, GEOL5002, CHEM1808. Co-requisite: CIVL2203.

Behaviour of metals and other engineering materials. Response of materials to forces in tension, compression, bending, shear and torsion; elastic and plastic deformation strength brittleness, hardness etc. Effects of temperature and strain rates, static and dynamic loading, fatigue, brittle fracture and creep failures.

Metals Technology Relationship of properties to microstructure, dislocation mechanisms of plastic deformation; micro-mechanism of creep and fracture. Property control by strain hardening, alloying and heat treatment of steel and aluminium. (Old No. 8.240)

CIVL2505 Hydraulics 1 F L1 T1
Prerequisites: MATH1032, CIVL1203.

Fluid properties: definition of a fluid, density, unit weight, specific volume, relative density, bulk modulus, vapour pressure, surface tension, viscosity, properties of gases. Fluid Statics: pressure at a point, absolute and gauge pressure, manometers, forces on plane and curved surfaces, buoyancy, stability of floating bodies, accelerated bodies of fluid.

Kinematics of Fluid Flow: streamlines, pathlines, continuity.

Fluid dynamics: the energy equation, the momentum equation, application of the concepts of flow resistance, energy loss and fluid momentum to steady flows in closed conduits and to steady uniform free-surface flows. Hydrodynamics: the stream function and velocity potentials, rotation, basic flow patterns, flow nets. (Old No. 8.250)

CIVL3007 Environmental Fluid Mechanics F L2 T1
Prerequisite: CIVL2505.

CIVL3106 Engineering Computations F L1 T1
Prerequisites: CIVL1106, MATH2009.

CIVL3203 Structural Analysis F L2 T1
Prerequisite: CIVL2203.

The requirements of structural analysis. The work theorem and its applications. Flexibility and stiffness analysis of trusses. Flexibility and stiffness analysis of frames. Reciprocal theorems. Introduction of finite element analysis. (Old No. 8.320)

CIVL3303 Structural Design F L3 T1
Prerequisite: CIVL2203.

Design of steel girders; lateral and local buckling, web buckling. Steel beam-columns, slenderness effects. Plastic design of continuous steel beams. (Old No. 8.330)

CIVL3402 Geotechnical Engineering 1 F L2 T1
Prerequisites: GEOL5100, CIVL2203.

CIVL3505 Hydraulics 2 F L2 T1
Prerequisite: CIVL2505.

CIVL3601 Engineering Management 1 F L1.5 T5
Prerequisites: CIVL1301, CIVL2106.

Basic techniques used in the management of engineering works; purpose and principles of management; management of people, plant, materials, money and sites; management of safety. Planning techniques used in management: networks, critical path method, and PERT. Operations Research in management: methodologies for problem solving including simulation and queuing theory. Theory of the management of humans. Theory of the management of organisations. Use and management of information systems. Law and the law of contract. (Old No. 8.360)

CIVL3705 Water Resources F L2 T1
Prerequisite: MATH2869. Co-requisite: CIVL3505.

Hydrological processes – hydrological cycle, climatology, atmospheric water. Precipitation – processes and analysis.
Runoff - process, measurement, analysis. Flood estimation.
Urban hydrology - drainage design, retarding basins, flood routing. Groundwater hydrology - aquifers, aquifer modelling, water extraction, groundwater recharge and discharge processes, unsaturated flow. Water resource systems - systems approach, objectives and constraints, modelling, stochastic behaviour, optimisation. (Old No. 8.370)

CIVL3804 Transport Engineering
Prerequisites: CIVL2106, MATH2869.

CIVL4006 Industrial Training
Students are required to complete a minimum of 60 working days of approved industrial training, submit a report on this training before the fourth week of Session 1 of fourth year, and to present a seminar during the first session of fourth year outlining their industrial training experiences. (Old No. 8.400)

CIVL4007 Waste Management
Prerequisite: INDC4120.
Chemical fixation, acid waste treatment, metals removal, landfill site selection, leachate testing, toxicity testing, hydrogeological sampling. Transportation of hazardous materials. Legal aspects of hazardous waste.

CIVL4017 Water Engineering
Prerequisites: CIVL3402, CIVL3007.
Selection of 4 topics from:
Water Resources
The evaluation of water resources planning and management alternatives (the "rational" approach). Water and politics. Water and law.
Hydrology
Numerical Modelling of Free Surface Flow
An introduction to one-dimensional and two-dimensional numerical models of unsteady gradually varied canal, river and flood plain flows.
Public Health Engineering

Advanced Hydraulics
Hydraulic modelling. Introduction to unsteady flow in open channels.

Coastal Engineering

CIVL4027 Geotechnical and Transport Engineering
Prerequisites: CIVL3402, CIVL3804.
Four topics selected from:

CIVL4037 Communications and Ethics
Written and verbal communication skills in engineering practice. Preparation of proposals and reports. Relations to the media. Engineering ethics.

CIVL4101 Engineering Management 2
Prerequisite: CIVL3601.
Contract management and administration. Business and financial management: corporate entities; basic accounting to trial balance; income statements; balance sheets; accounting for fixed assets; taxation aspects; financial report. Management of large projects; management of international projects. (Old No. 8.410)

CIVL4203 Structural Engineering
Prerequisites: CIVL3203, CIVL3303.
Slab design: two-way edge-supported slabs and flat slab design; idealised frame and simplified design methods, punching shear, moment transfer at column connections, serviceability approach, detailing. Design of reinforced concrete footings and retaining walls. Plastic analysis and design of steel frames. Approximate analysis and structural form. Variational theorems. Brief discussions of cable structures, arches, plates and shells. (Old No. 8.420)

CIVL4306 Engineering and the Environment
Prerequisite: CIVL3601.
Decision making methodologies for engineering and non-engineering groups. Planning for non-optimal engineering solutions. Professional ethics. (Old No. 8.430)

CIVL4403 Materials Engineering 2
S1 L3
Prerequisites: CIVL2402, CIVL3303.

Metals used in structures: types, applications and developments in steels, aluminium alloys etc. Corrosion: causes, prevention and control in structural, reinforcing and piling steels. Fatigue and brittle fracture: factors leading to increased risk, significance of welding; empirical and fracture mechanics approaches to design against failures in service.

CIVL4502 Geotechnical Engineering 2
S1 L2 T1
Prerequisite: CIVL3402.

Site investigation and selection of design parameters. Slope stability including simple models and methods of slices. Lateral earth pressures and retaining wall design. Single axially and laterally loaded piles, pile groups. Reactive soils, residential slabs and footings. (Old No. 8.450)

CIVL4605 Water Supply and Wastewater Disposal
S1 L2 T1
Prerequisite: CIVL2505.

Water demand and sources of supply, transmission and distribution. Wastewater collection and disposal. Water pollution and quality criteria, water analysis. Water Treatment: screening and sedimentation, filtration, coagulation and flocculation, disinfection and fluoridation, water softening and desalination. Waste water treatment: preliminary and primary treatment, biological treatment, sludge digestion, tertiary treatment. (Old No. 8.460)

CIVL4704 Highway and Pavement Engineering
S1 L2 T1
Prerequisites: CIVL3402, CIVL3804.

CIVL4811 Construction Major
S2 L/T9
Prerequisites: CIVL2301, CIVL4101, CIVL4306.

Construction camp: a one week field camp involving several construction procedures and associated performance measurements. Construction planning and design: organisation, management and control to support the conduct of the construction camp. Advanced construction technology and construction management topics. Construction and/or management project. (Old No. 8.481)

CIVL4822 Geotechnical Major
S2 L/T9
Prerequisites: CIVL4306, CIVL4502, CIVL4704.

CIVL4833 Structures Major
S2 L/T9
Prerequisites: CIVL4203, CIVL4403.

Specialisation in each of the following strands of structural engineering: Bridge engineering. Concrete structures. Structural analysis and stability. Structural dynamics. (Old No. 8.483)

CIVL4844 Transport Major
S2 L/T9
Prerequisite: CIVL4306.

Application of computer aided methods for geometric design of roads. Design for traffic management and control: efficiency, safety, environmental factors, information systems, lighting. Environmental and social impact of transport design. Transport system design and operations. (Old No. 8.484)

CIVL4855 Water Major
S2 L/T9
Prerequisites: CIVL3505, CIVL3705, CIVL4605.

Specialisation in six of the following strands (only six topics are offered each year): Water resources. Hydrology. Advanced hydraulics. Coastal engineering. Public health engineering. Environmental and social issues. Special topic. (Old No. 8.485)

CIVL4906 Project/Thesis
S1 1S2 6

Directed laboratory, investigatory, design, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work. (Old No. 8.490)

CIVL4907 Project/Thesis
S1 1S2 6

Directed laboratory, investigatory, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.
Servicing Subjects

These are subjects taught within courses offered by other schools and faculties.

For further information regarding the following subjects see the Faculty of Applied Science Handbook.

CIVL0616 Structures S1 L1 T2

CIVL0626 Civil Engineering for Electrical Engineers SS L2 T2
Includes an introduction to the various branches of civil engineering, the nature and organisation of the profession. Relationship between clients and design consultants. The historical development of civil engineering. Theory of beams and trusses, resultant forces, structural action, stress and strain. Relation between load, shear force and bending moments, geometric properties of sections, deflection of beams. Properties of materials used in structures; various steels, concrete plain, reinforced and prestressed, aluminium and timber. Brittle fracture. Introduction to buckling. Engineering failures. Introduction to design of transmission lines and towers. (Old No. 8.6120)

CIVL0636 Properties of Materials F L1 T1
Mechanical behaviour of materials. Response to static loading in tension, compression, shear and bending. Use of static test data in analysis and design; variability of material properties; factors of safety. Hardness tests. Creep in solid materials. Response to dynamic loading; fatigue; impact. Deterioration of engineering materials. Rheological classification of materials. (Old No. 8.6130)

CIVL0646 Engineering for Surveyors 1 SS L1.5 T1.5
Aspects of hydraulics: Fluid properties, hydrostatics, motion of fluids, continuity, energy and momentum aspects, closed conduit flow and open channel flow. Aspects of hydrology: Scope and applications. Hydrologic measurements, rainfall analysis, storm rainfall-runoff relations, flood estimation. Urban drainage design. (Old No. 8.6140)

CIVL0856 Engineering for Surveyors 2 SS L3
Municipal engineering. Soil mechanics: Soil forming processes; pedological classification; engineering classification of soils; pavement design based on engineering classification; effective stress concept for saturated and unsaturated soils, shear strength, flow of water through soils, consolidation; slope stability and earth pressures. Public utilities: Relationship between urban development and each of water supply, wastewater and stormwater drainage, transport. (Old No. 8.6150)
Introduction to the nature, history and scope of computer engineering (including computer architecture, digital systems, software engineering, information processing, electronics, and communications). The roles of computer engineering in industry, government and public utilities. Development of organisation, communication and research skills in engineering. (Old No. 6.710)

COMP2011 Data Organisation S1 or S2 L3 T2
Prerequisites: COMP1021. Excluded: 6.641.

COMP2021 Digital System Structures S1 or S2 L3T2
Prerequisites: COMP1021 or COMP1821. Excluded: ELEC2012.
Analysis, design, and realisation of modern digital subsystems, and the organisation and design of major subsystems in a model computer: data path, instruction decode, address generation, arithmetic algorithms, and the fetch-execute cycle of a typical computer. Timing, minimisation techniques, circuit schematics and simulation tools.
The translation of higher level programming abstractions and data structures to a real computer using a macro assembler as the target; study of the relationships between a hardware model, a programming model, and the I/O subsystem of a computer. An understanding of the inter-relationships between the fundamental layers of a modern digital computer system. (Old No. 6.722)

COMP2031 Concurrent Computing S2 L3 T2

COMP3111 Software Engineering S1 L3T2
Prerequisites: COMP2011, COMP2031. Excluded: 6.642, 6.660G.
Informal specification: Data flow diagram methodology, analysis, design, testing, management and documentation of software. Formal specification: set theory, logic, schema calculus, case studies. The Z specification notation. Managing the project lifecycle. CASE tools. A major group project will be undertaken.

COMP3121 Algorithms and Programming Techniques S2 L3T2

COMP3131 Parsing and Translation S2 L3T2
This subject covers some of the common theories and techniques used for syntax-directed parsing and translation. These techniques are adequate for parsing many well-structured objects encountered in computing, but are not intended for natural language parsing.

COMP3211 Computer Organisation and Design S1 L3T2
Prerequisites: COMP2021 or ELEC2021 Excluded: 6.654G
Topics will be chosen from: Advanced Design Strategies: combinational and sequential circuit design and realisation; synchronisation, communication and arbitration; register transfer specification (Modul). Arithmetic Design Strategies. Memory Organisation: physical and virtual address space: memory hierarchy; operating system and compiler support; memory mapping and caching. Communication Organisation: shared memory, memory mapping; network systems. Processor Design: the instruction pipeline; hardwired and micro-programmed control; instruction sets; RISC and object-based processor organisation. Error Detection/Correction and Fault Tolerance: testing and testability: faults, errors, and failures; coding theory; diagnosing and correcting errors. (Old No. 6.612)

COMP3221 Microprocessors and Interfacing S2 L3T2
Prerequisites: COMP2021 Excluded: 6.0318, 6.060G, 6.613, ELEC3020
The concept of a microprocessor system, busses, address spaces, memory devices, bus timing, bus standards, the VME bus, I/O device interfacing, polling, interrupts, the 68000 processor family, the C programming language, device drivers, the device driver software environment, other microprocessors, advanced topics. Laboratory work involves interfacing to and programming MC68000-series microprocessor-based systems.

COMP3231 Operating Systems S2 L3T2
Prerequisites: COMP2031 Excluded: 6.632, 6.663G, 6.672
Services provided by operating systems. System calls and user commands (command languages, menus, etc). Virtual machines. Efficient techniques and methods of process management, memory management, input/output and communication handling. Performance evaluation and tuning. Protection and security.
COMP3311 Database Systems S1 L3T2
The relational database model, object data bases, 4GL query languages, database design and implementation, deductive databases. Concurrency, optimisation, distribution. A major project involving both design and realisation is included.

COMP3321 Business Systems Organisation S1 L3T2
Prerequisites: COMP2011 Excluded: 6.647, 6.861G
Review of the organisation of accounting systems - journals, accruals, merchandising. The structure, design, development, and integration of various business systems selected from the following: general ledger; financial reporting; debtors, creditors; stock control; invoicing; purchasing and receiving; fixed assets; payroll. Systems for generating application systems and packages. User interfaces. File specifications and B-tree index files. Distributed commercial systems. The partial implementation of a business system is undertaken as a group project.

COMP3331 Computer Networks and Applications S2 L3T2
Prerequisites: COMP2011, COMP2031 Excluded: 6.633, 6.659G

COMP3411 Artificial Intelligence S1 L2T3
Prerequisites: COMP2011. Excluded: 6.666G

COMP3421 Computer Graphics S2 L3T2
Prerequisites: COMP2011 Excluded: 6.668G

COMP3511 Human-Computer Interaction S2 L3T2
Prerequisites: COMP2011 Excluded 6.006G
Not offered in 1991.
Communication between computing systems and their users, with an emphasis on applications related to high-level query languages and searching techniques. Cognitive issues will figure prominently in the treatment. Topics include: theories and principles of interface design, interaction styles, interactive devices, interface and language testing, the null value problem, natural language systems.

COMP4914 Computing Science Honours (Full time)
Prerequisite: PHYS1002 or equivalent (PHYS2920 or 6.851 for students in Course 3140).

Prerequisites kxELEC0931, ELEC0932, ELEC0933: Students must be in at least the third stage of part-time BE degree course and be in...

Electrical Engineering

ELEC0802 Electrical Power Engineering S2 L/T3
Prerequisite: PHYS1002 or equivalent (PHYS2920 or 6.851 for students in Course 3140).
The course deals with the principles and practice of electrical power apparatus, particularly the transformer, the dc motor and the ac motor. It also covers some of the electronic power converters for power supplies and for control of electrical machinery. The course commences with the basic circuit theory and phasor algebra relevant to the analysis of the above systems and then proceeds to the consideration of distribution of electrical power. It then covers the operation, analyses and characteristics of transformers, dc motors, ac motors and a few semiconductor power converter circuits. Rating and thermal consideration electrical apparatus are also treated. (Old No. 6.854)

ELEC0805 Electronics for Measurement SS L2 T1 and Control
The use of electronics in mechanical systems and the processing of signals by analog and digital techniques. Revision of basic circuit theory, operational amplifier circuits and filtering. Digital logic using integrated circuits. Microcomputers and Microprocessors. Techniques for A/D and D/A conversion, measurement system interfacing to microprocessors. (Old No. 6.856)

ELEC0931 Industrial Elective (Old No. 6.931)
ELEC0932 Industrial Elective (Old No. 6.932)
ELEC0933 Industrial Elective
Prerequisites for ELEC0931, ELEC0932, ELEC0933: Students must be in at least the third stage of part-time BE degree course and be in
full-time approved employment or be pursuing an approved sandwich course.

Each Industrial Elective represents one year of appropriate quality concurrent industrial experience for students in approved full-time employment. Students must submit evidence and a written report to the satisfaction of the Head of School. Some attendance at the University for verbal reporting may also be required.

A maximum of three such electives can be taken and they may be substituted for certain subjects in course 3640 requirements. The substitution is not available for work done during the first year of employment if this coincides with the first year of part-time enrolment. The period of employment claimed must precede the completion of the thesis 6.911. An Industrial Elective cannot be claimed for work submitted for credit as 6.911 Thesis. Details of the procedure for registering and the requirements to be met can be obtained from the School of Electrical Engineering and Computer Science. (Old No. 6.933)

ELEC1010 Introduction to Electrical Engineering
Prerequisite: HSC Exam Score Range Required
2 unit English (General) or 53-100
2 unit English or 49-100
3 unit English or 3-50
2 unit Contemporary English 60-100
Introduction to the nature and scope of electrical engineering, including communications, computing, electrical energy, electronics and systems. Careers for electrical engineers in public and private enterprise. Organisation, verbal and written communication and research skills in engineering. (Old No. 6.011)

ELEC1011 Electrical Engineering 1
Co-requisite: PHYS1969 or equivalent.

ELEC2010 Circuit Theory
Prerequisites: ELEC1011, MATH1032. Co-requisite: MATH2620 or MATH2520.
Dynamic response of linear circuits: 1st and 2nd order circuits with DC sources, introduction to higher order circuits. Sinusoidal steady state operation: phasors, impedance and admittance; dynamic response of circuits driven by sinusoidal sources; linearity, network theorems; resonance, bandwidth, and quality factor. Two-port network: parameters, circuits as filters. Power in steady-state circuits; average and reactive power, power factor, power factor correction. Three-phase circuits: balanced and unbalanced steady-state operation; real and reactive power in balanced circuits, transient analysis. Operational amplifiers and ideal transformers. (Old No. 6.821)

ELEC2011 Systems Theory
Prerequisites: ELEC2010, MATH2610 or MATH2510. Co-requisites: MATH2280, MATH2620, MATH2520.
Continuous and discrete signals and their transformations. Properties of continuous and discrete systems. Linear time invariant systems. Low order differential and difference equations. Diagrammatic representations of systems. Impulse responses, step responses, convolution. Frequency responses, poles, zeros. Introduction to feedback, stability. Examples of systems will be taken from areas of circuits, analog and digital electronics, power and mechanical engineering, communications and control. (Old No. 6.822)

ELEC2012 Digital Circuits
Prerequisite: ELEC1011.

ELEC2013 Electromagnetic Theory and Applications
Electrostatics in vacuum and in dielectric materials. Electric current. Magnetostatics in vacuum and magnetic media, magnetic materials and magnetic circuits. Time-varying fields. Capacitance and inductance calculations. General field concepts. Rotating magnetic fields, and electromagnetic principles of machines. Transformers, Superconductivity. Maxwell’s equations. Transmission lines from circuit and electromagnetic viewpoints. Electromagnetic radiation and electromagnetic interference. This subject is taught jointly by staff from the schools of Physics and Electrical Engineering and Computer Science. (Old No. 6.825)

ELEC2014 Electrical Design
Concepts of product design: specification, design methodology, project management, costing for prototype production, testing. Electronic circuit design – device specifications, thermal dissipation, passive component choices, tolerances. Electronic circuit analysis and design using computer aids. Electronic circuit prototyping techniques: wire-wrap, PCB layouts using computer aids, interconnection technologies, earthing. Group Project Work: including initial design, PCB production and testing, and preparation of a report on an electrical project. (Old No. 6.829)
ELEC2015 Electromagnetic Applications
Prerequisites: PHYS2979. Excluded: ELEC2013.
Rotating magnetic fields and electromagnetic principles of machines. Transformers. Transmission lines from circuit and electromagnetic viewpoints. Electromagnetic radiation and electromagnetic interference.

ELEC2016 Electrical Design and Practice

ELEC2020 Analog Electronics
Prerequisites: ELEC2010, MATH2859.
Operating principles and terminal characteristics of PN diodes, bipolar and field effect transistors, and thyristors. Small signal models of devices, including h-parameter model. Analysis and design of low-frequency Class-A amplifiers, including choice of biasing method. (Old No. 6.823)

ELEC2110 Electrical Engineering Laboratory 2A S1 T1.5
Experiments in electric circuits and electromagnetic fields and applications. Laboratory technique. (Old No. 6.827)

ELEC2111 Electrical Engineering Laboratory 2B S2 T3
Experimental work on digital and analog devices and circuits, electromagnetic fields and electrical systems. (Old No. 6.828)

ELEC2130 Electrical Engineering - LAB2A S1 T1
Experiments in electric circuits. The use of the computer aided circuit analysis package SPICE. Laboratory Technique. (Old No. 6.729A)

ELEC2131 Electrical Engineering - LAB2B S2 T2
Experimental work on digital and analogue circuits, devices and systems. Computer aided experimental work. (Old No. 6.729B)

ELEC3010 Introduction to Electrical Energy S1 L2 T.5
Prerequisites: ELEC2013.

ELEC3011 Integrated Electronics S1 L2 T.5
Prerequisite: ELEC2020.

ELEC3012 Signals, Filters, and Spectra S1 L2 T.5
Prerequisites: ELEC2011, MATH2280. Co-requisite: MATH2849, MATH2859.

ELEC3013 Communication Systems 1 S2 L2 T2
Prerequisite: ELEC3012.
Overview of information acquisition, transmission and processing. Aims to enable students not specialising in this field to understand the communication problems they are likely to meet in their career, and to provide a background if they intend to specialise in communications. Topics: analogue to digital conversion (sampling, quantising, aliasing, pulse code modulation, delta modulation, time and frequency division multi-plexing). Modulation and demodulation (amplitude, frequency and phase modulation, signal to noise ratio, noise figure, error probability, bandwidth, spectrum, intersymbol interference). Communication systems (radio wave propagation, antennas and arrays, modems, repeaters, equalisers, line and error coding). (Old No. 6.836)

ELEC3014 Systems and Control 1 S2 L2 T2
Prerequisite: ELEC3012.
Consolidation and extension of basic material on continuous-time and discrete-time systems, and the relationships between them. Includes dynamic systems modelling, block diagrams, signal flow graphs, frequency and time domain relationships, stability criteria, Nyquist diagrams.
and root locus methods. Also includes introductory state space analysis. (Old No. 6.837)

ELEC3110 Electrical Engineering Laboratory 3

Prerequisites: ELEC2111, ELEC2041. Co-requisites: ELEC3020, ELEC3010, ELEC3011, ELEC3012.

A programme of experiments and laboratory-based design exercises in electrical energy, electronic devices and circuits, signal processing and microprocessors. (Old No. 6.835)

ELEC3016 Electronic Signal Processing

Prerequisites: ELEC3011, ELEC3012.

ELEC3020 Microprocessors and Interfacing

Prerequisite: ELEC2012. Excluded: COMP3221.

Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The 68000 family and assembly programming language. Other microprocessors. (Old No. 6.732E)

ELEC3031 Integrated Electronics

Prerequisite: ELEC2010

Analysis and design of bipolar and field effect transistor amplifiers. Applications of negative feedback. Differential amplifiers. Properties and applications of operational amplifiers. Analysis and design of sinusoidal oscillators. Basic logic families: TTL, ECL, nMOS, CMOS. Includes the appropriate laboratory component from ELEC3110 Electrical Engineering Laboratory 3.

ELEC3032 Signals, Spectra and Filters

Prerequisites: ELEC2011, MATH2280. Co-requisites: ELEC2849, MATH2859.

ELEC4010 Introduction to Management for Electrical Engineers

Prerequisite: ELEC4010.

The purpose of this subject is to introduce students to key management concepts and techniques in the content of electrical engineering. Topics to be discussed will be taken from accounting, economics, finance, marketing, decision-making techniques, operations research, project and strategic management, human resources, industrial relations and law.

ELEC4011 Ethics and Electrical Engineering

Prerequisite: ELEC4010.

An introduction to the ethical issues associated with electrical engineering practice. The role of the professional expert in society will be discussed and the nature of the decision making process will be examined. Social, political, environmental and economic considerations in decision making will be explored using case studies.

ELEC4042 Digital and Analogue Signals

Prerequisites: ELEC3012.

Analysis and processing of continuous-time (analogue) and discrete-time (digital) signals and systems. Sampling and digital processing of analog signals, interpolation and decimation. Design of finite and infinite duration impulse response (FIR and IIR) digital filters: approximation, computer aided design and filter structures; implementation in hardware.
and software; quantization and finite wordlength effects. Programmable digital signal processors. Nonlinear filtering techniques. The discrete Fourier transform (DFT), faster Fourier transform (FFT) algorithms and applications. Processing and analysis of random signals and noise; mean square estimation of signals in noise. Wiener filters and linear prediction. Adaptive systems: least mean-square error designs, adaptive filter structures and applications to equalization and echo and noise cancellation. Spectrum estimation. (Old No. 6.042)

ELEC4202 Power Systems SS L2 T3
Prerequisite: ELEC3015.

Review of basic concepts used in power systems analysis: phasors, complex power, systematic network analysis, three phase systems, the per-unit methodology. Some aspects of power systems analysis, including load flow and fault analysis. Distribution systems. An introduction to power system protection. Power systems planning: electricity pricing, demand side options, co-ordinated pricing and planning, practical tariffs. (Old No. 6.202)

ELEC4215 Industrial Electrical Systems S2 L2 T3
Prerequisite: ELEC3015.
The design, operation, maintenance and efficiency of large industrial electric power systems. Protection and detailed fault calculations. Choice and use of protective equipment, including circuit interrupters, surge diverters and personnel protection. Testing of equipment and relevance of Standards (including loading specifications, safety and general wiring procedures). Insulation systems, their design and practical limitations. High voltage testing techniques and their use in insulation assessment of high, medium and low voltage industrial systems. (Old No. 6.215)

ELEC4216 Electrical Drive Systems SS L2 T3
Prerequisite: ELEC3010.

ELEC4240 Power Electronics SS L2 T3
Prerequisites: ELEC2020, ELEC3010, MATH2280. Excluded: 6.212

The course will be of interest to intending electronic specialists who want to know about techniques of designing high current electronic circuits using devices in the switching mode rather than in the linear mode as well as to power specialists who want to know of techniques of power conversion by other than electromagnetic means. The course starts with coverage of the full spectrum of modern power semiconductor devices, their characteristics - both static and switching, their drive circuit design and protection techniques including the snubber. Topologies of power electronic circuits for applications in controlled rectification, inversion, dc-dc conversion and ac-ac conversion, their control techniques and characteristics will then be treated. Effects of power electronic circuits on supply systems will also be covered. (Old No. 6.240)

ELEC4303 Electromagnetic Wave Propagation SS L2 T3
Prerequisite: ELEC3013.

ELEC4313 Optical Communications SS L2 T3
Prerequisite: ELEC4303.
Theory of multimode and single mode optical fibres. Measurements of fibre characterisation calculation of fibre bandwidth optical sources and transmitters. Optical detectors and receiver design. Power Budget calculation. (Old No. 6.313)

ELEC4323 Digital and Analog Communications SS L2 T3
Prerequisite: ELEC3013, MATH2280, MATH2659.

ELEC4333 Communications Systems 2 SS L2 T3
Prerequisites: ELEC3013, ELEC3016.
Modern communications systems from a systems point of view. Topics selected from: radar: Fundamentals of radio systems, CW radar, MTI and Pulse Doppler radar, tracking radar, synthetic aperture radar, electronic navigation aids, radio direction finding, VOR and dopper VOR, DME, hyperbolic systems of navigation aids, television systems: Monochrome and colour television systems, teletext, terrestrial and satellite TV transmission, the MAC transmission format and HDTV systems; satellite communications systems: satellite channel, antenna systems, effect of rainfall and atmospheric losses, receiver noise, link analysis, satellite transponders, FDMA, TDMA, CDMA, mobile satellite communications systems. (Old No. 6.333)

ELEC4351 Data Communication and Computer Networks SS L3 T2
Prerequisites: ELEC3013, ELEC3020.
switching. Local area networks. Contention and token passing systems. Laboratory work covers experiments on physical, data link and network layer protocols in a practical network. (Old No. 6.651)

ELEC4352 Data Networks 2
SS L3 T2
Prerequisite: ELEC4351.

Data transmission on telephone networks. Data in mixed traffic environment. Local area network interconnection. Analysis of protocols for data link, network and transport layers. TCP/IP protocols. Operating system views of communications; network protocol drivers, network servers. Case studies: ARPAnet and ACSNet. Laboratory work covers experiments on network layer to application layer protocols in a practical network. (Old No. 6.652)

ELEC4412 Systems and Control 2
SS T2 T3
Prerequisites: ELEC3012, ELEC3014.

This subject discusses the analysis and design of control systems using both classical and state-space design methods. The emphasis will be discussed where appropriate. The course covers: Process modelling by physical analysis. Experimental methods and systems identification. Classical PID control and discrete PID implementation. Classical frequency response and pole locus design for continuous systems. Discrete and continuous state space theory, including controllability, observability, solution of state equations and pole placement design by matrix and transfer function methods. Observers. Optimal control. Multivariable transfer function models. Decoupling control. Relative gain array. Nonlinear systems stability and design for algebraic non-linearities. Lyapinov and Popov theorems. (Old No. 6.412)

ELEC4413 Digital Control
SS L2 T3
Prerequisites: ELEC3014, MATH2849, MATH2859.

Covers the design and implementation of digital control systems. The topics covered include: identification of discrete-time model parameters; pole placement and linear-quadratic controller design; observers; noise models and stochastic systems; minimum variance controllers; Kalman filtering; LQG control; introduction to ideas of adaptive control and robustness. Aspects of implementation are constantly emphasized. (Old No. 6.413)

ELEC4432 Computer Control and Instrumentation
SS L2 T3
Prerequisites: ELEC3014, ELEC3020, ELEC3016.

Design, evaluation and implementation of computer and microprocessor based control systems and instrumentation. The program is laboratory intensive. Topics covered include software systems for process control, the organisation of hardware systems for computer control, programmable logic controllers, robust implementation of digital controllers, smart sensors and instrumentation networks. (Old No. 6.432)

ELEC4483 Biomedical Engineering
SS L2 T3
Prerequisites: ELEC3402, ELEC3014, ELEC3016.

Application of signals and systems theory to the analysis and computer modelling of dynamic properties of physiological systems. Topics include descriptions of typical biomedical signals, statistical properties of signals, optimal filtering of physiological signals, ARIMA stochastic models of time series, forecasting or prediction methods, estimation of transfer function - noise models using least squares procedures, identification of multivariable nonlinear systems, computer modelling of stochastic signals and dynamic systems, and physiological adaptive control processes. Several laboratory experiments will be run concerned with computer simulation and analysis of models of cardiac, respiratory and nervous systems. (Old No. 6.483)

ELEC4503 Advanced Electronic Circuits
SS L2 T3
Prerequisites: ELEC2020, ELEC3011 (ELEC3016 recommended).

Electronic devices circuits and subsystems for use in communication and signal processing. The emphasis is on high performance applications which require an understanding of device behaviour and advance circuit design techniques. Topics include: high frequency models for bipolar and field effect devices, noise in systems, tuned amplifiers, power amplifiers, controlled gain amplifiers, AGC, multipliers, modulators and phase-locked loops.

ELEC4512 Semiconductor Devices
SS T2 T3
Prerequisite: ELEC3011.

Principles of operation and circuit characteristics of a range of semiconductor devices including bipolar diodes and transistors, MOS devices and circuits, charge-coupled devices, solar cells, light-emitting diodes, and semiconductor lasers. The lectures are supplemented by experimental work with a selection of these devices. (Old No. 6.512)

ELEC4522 Transistor and Integrated Circuit Design
SS L2 T3
Prerequisites: ELEC3011, ELEC3016.

Review of technology for bipolar and MOS integrated circuits. Device models, layout rules, the relationship of parameters to processes. Analog circuit modules: current mirrors, compound transistors, differential pairs and multipliers. Operational amplifiers and voltage regulators. Bipolar logic: S&TT and compound functions. MOS and CMOS logic. Analog MOS circuits, switched capacitor filters and other selected topics. The use of SPICE in circuit simulation. The laboratory program is aimed at understanding the internal design of some standard IC functions. (Old No. 6.522)

ELEC4532 Integrated Digital Systems
SS L2 T3
Prerequisites: ELEC2012.

Integrated circuit logic families with emphasis on MOS technologies, structured chip design, custom and semi-custom approaches, system architecture, computer aided design, layout considerations, timing estimates, circuit failures, faults, fault modelling, testing, design for testability. (Old No. 6.532)

ELEC4540 Applied Photovoltaics
SS L2 T3

The use of solar cells (photovoltaic devices) as electrical power supplies based on the direct conversion of sunlight into electricity. The emphasis is placed on applications including system design and construction, although the properties of sunlight, the operating principles of solar cells and the interaction between sunlight and the cells are also treated. (Old No. 6.540)
The evaluation of water resources planning and management and law.

Selection of CIVL4017 Water Engineering of directed laboratory work. If facilities are not available for this project is done in the final stages of the BSc(Eng) course. It involves the design and construction of experimental apparatus together with laboratory tests. Each student is required to present a seminar and submit a written report. Experience claimed as an industrial elective covers requirements for this subject. (Old No. 6.903)

ELEC4910 Thesis Part A

ELEC4911 Thesis Part B

This is done in the last two sessions of the BE degree course. For full-time students, six hours per week in the first session, and twelve hours per week in the second session are devoted to directed laboratory and research work on an approved subject under guidance of members of the lecturing staff. Part-time students may need to attend the University full-time in their final session or attend for one further part-time session, if facilities are not available for the thesis to be done at work. Generally, the thesis involves the design and construction of experimental apparatus together with laboratory tests. Each student is required to present a seminar, and a written thesis must be submitted on each project by the Tuesday of the fourteenth week of Session 1 or Session 2. (Old No. 6.911)

ELEC4921 Project

The project is done in the final stages of the BSc(Eng) course. It involves the design and construction of experimental apparatus together with laboratory tests. Each student is required to present a seminar and submit a written report. The project should represent the equivalent of a minimum 100 hours of directed laboratory work. If facilities are not available for this to be done largely at work, students may need to attend the University full-time in its final session, or attend for one further part-time session. (Old No. 6.921)

Environmental Engineering

Environmental Engineering is a course offered by the School of Civil Engineering.

Majors - Two of the following Majors (other subject descriptions are to be found elsewhere in the Handbook).

CIVL4017 Water Engineering S2 L4T2

Prerequisites: CIVL3402, CIVL3007

Selection of 4 topics from:

Water Resources
The evaluation of water resources planning and management alternatives (the "rational" approach). Water and politics. Water and law.

Hydrology

Numerical Modelling of Free Surface Flow
An introduction to one-dimensional and two-dimensional numerical models of unsteady gradually varied canal, river and flood plain flows.

Public Health Engineering

Advanced Hydraulics
Hydraulic modelling. Introduction to unsteady flow in open channels.

Coastal Engineering

CEIC0030 Environmental Protection in the Process Industries S2 L3T3

Prerequisites: CEIC0010, CHEN3070, CEIC0020

Selection of 3 topics from:

Environmental Pollutants
The characteristics of pollutants in air and water. Consequences of pollution by aqueous, gaseous and solid wastes; case histories. Standards and regulations; legislative aspects. Measurement, analysis and sampling - modern techniques of environmental chemical analysis.

Pollution Control Techniques

Water Pollution Control Engineering

Filtration technologies - deep bed filtration. Biological treatment plant design - trickling filters - activated sludge processes (and variants) - anaerobic digesters. Sludge processing and disposal.

Air Pollution Control

Laboratory for Environmental Analysis
14 hour laboratory unit developing techniques in modern environmental analysis.

Advanced Environmental Protection
This comprises a series of elective strands which build upon the core subject as follows:

1 Advanced treatment methods (water)
Engineering

2 Advanced treatment methods (air)
3 Hazardous wastes
4 Computer-aided risk assessment
5 Advanced laboratory
6 Occupational Health Laboratory

GEOG9110 Soil Erosion and Conservation

CIVL4027 Geotechnical and Transport Engineering
Prerequisites: CIVL3402, CIVL3804
Four topics selected from:

Fibre Science and Technology

FIBR2201 Computing Applications SS L2 T2
Introduction to hardware and software concepts; Operating systems. Introduction to computer programming: simple algorithms and data organization. Computer applications in fibre science and technology: computer-aided design and manufacture CAD CAM; process monitoring and control, computer-integrated manufacture CIM; data acquisition; data analysis, statistical packages; modelling and optimisation techniques; databases, spreadsheets, text wordprocessing. (Old No. 13.200)

Fuel Technology

Fuel Technology is a department within the School of Chemical Engineering and Industrial Chemistry.

FUEL0020 Fuels and Energy S2 L2 T2
A servicing subject for students in Electrical Engineering which deals with sources and properties of fuels (with particular emphasis on coal, crude oil and natural gas), principles of combustion including combustion calculation and the technology of boilers and other fuel plant. Other energy sources including solar energy and nuclear energy are discussed. The national and global situation is reviewed. (Old No. 48.302)

Geography

GEOG1012 Land Studies S1 L2 T2
Concepts, significance and problems of land. Land as territory and land as resource in Australia. Constraints imposed by the physical environment on human occupancy and settlement patterns, the variety of conflicts that result and management strategies. Practical work involves study of the ways in which the attributes and characteristics of land are displayed on maps, air photos and satellite imagery, and introduces these as basic information sources and research tools in applied geography. (Old No. 27.010)

GEOG1031 Environmental Processes S1 L2 T2
Excluded: GEOG1051, GENSA4240.
Essential and continuing links between components of the physical environment. Movement of energy and matter in the physical environment, including consideration of Earth’s energy balance, the hydrological cycle, nutrient cycles in vegetation and soil, imbalances leading to land degradation and instability, to and movement of materials. (Old No. 27.030)

GEOG2021 Introduction to Remote Sensing S1 L2 T2
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts or equivalent as approved by the Head of School.
Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airphoto interpretation techniques relevant to environmental assessment. Introduction to principles of the electromagnetic spectrum, photometry and radiometry. Sensor types, image formation and and products associated with selected satellite programs, including Landsat. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement. (Old No. 27.175)

GEOG2032 Geomorphology S2 L2 T3
Prerequisites: GEOG1031 or GEOG1051 or GEOL1201.
Hillslope materials, processes and form; models of slope and landscape evolution. Fluvial geomorphology including water movement and sediment transport in river channels, hydraulic geometry, channel patterns, river types, flood plain formation, alluvial fans, river channel changes. Erosional and depositional landforms in coastal, arid, humid and glacial environments. Field work in fluvial and hillslope geomorphology, and laboratories on field measurements of geomorphic processes, sediment analyses and airphotograph interpretation. (Old No. 27.183)

GEOG3011 Pedology S2 L2 T3
Prerequisites: GEOG1031 or GEOG1051 and one of CHEM1492 or CHEM1492 or both GEOL110 and GEOL120 or both BIOS1011 or BIOS1021.
Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology. (Old No. 27.133)

GEOG3021 Biogeography S1 L2 T3
Prerequisites: GEOG1031 or GEOG1051 or both BIOS1011 and BIOS1021.

GEOG3032 Remote Sensing Applications S2 L2 T2
Prerequisite: GEOG2021 or SURV8711.

Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multitemporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring. (Old No. 27.176)

GEOG3042 Environmental Impact Assessment S2 L2 T2
Prerequisites: GEOG1031 or GEOG1051 or by permission from Head of School.

Rationale and basic objectives: standardized types of environmental impact assessment EIA, including matrix approach, adopted methods of EIA in Australia. Frequently used assessment and predictive techniques for meteorological, hydrological, biological, socio-economic impacts. Techniques of impact evaluation in terms of socio-economic criteria. Environmental decision making and planning under conditions of uncertainty. Case studies exemplifying procedures, techniques and issues. Trends, changes and possible future developments in EIA. Practical exercises representing components of typical EIAs. (Old No. 27.193)

GEOG3051 Soils and Landforms S1 L2 T2
Prerequisite: GEOG3011 or GEOG2032 or GEOG2081 or by permission from Head of School.

GEOG3062 Environmental Change S2 L2 T2
Prerequisite: Successful completion of a Year 2 Programme in Applied Science, Science, or Arts or equivalent as approved by the Head of School.

The nature of environmental change on the land, oceans, biosphere and atmosphere. Evolution of the continents, oceans, life and atmosphere. Techniques for environmental reconstruction and chronology building. Quaternary climatic change and modelling. Human impact on the atmosphere and climatic consequences. (Old No. 27.223)

GEOG3211 Australian Environment and Natural Resources S1 L2 T2
Prerequisite: GEOG2032 or GEOG1051.

Continental and regional patterns of land, water and energy resources in Australia and its territorial waters, and natural factors affecting their development, including climate, soils and terrain; problems of limited surface and underground water resources and of conflicting demands, exemplified through particular basin studies; comparable reviews of energy, minerals and forest resources, human resources and development. (Old No. 27.862)

Applied Geology

GEOL5100 Geology for Civil and Environmental Engineers S1 L2 T1
An introduction to mineralogy, petrology, structural geology, stratigraphy and geomorphology. Weathering of rocks and development of soils. The role of the geologist in civil and environmental engineering. (Old No. 25.5112)

GEOL9110 Hydro and Environmental Geology S L3 T1
Prerequisite: GEOL5100.

Industrial Chemistry

Industrial Chemistry is a department within the School of Chemical Engineering and Industrial Chemistry.

INDC4120 Chemistry of the Industrial Environment S1 L2 T1
Prerequisites: CHEM1101, CHEM1201

Information Systems

INFS3605 Computer Systems Implementation S2 L2 T1
Prerequisite: INFS2609

Supervised implementation of an information systems project in a commercial programming language. Advanced program design and structured techniques, interface with systems software at application implementation level, comparison of a range of programming languages, test data specification, implementation procedures. (Old No. 19.605)

Law

LAWS3410 Environmental Law SS Hpw4 C3
Statutory and common law regulation of access to, and use and management of, natural resources, and the theories and policies underlying such regulation. The focus is upon land, water and air, involving a detailed treatment of pollution and land use control, attempting to draw out the techniques (for example, licensing and standards setting) which are common to attempts at legal regulation of resources. Emphasis is on the law as it operates in practice. Students are encouraged to take an interest in ongoing environmental debates and to carry out fieldwork. Specific attention to the part played by the exercise of political and administrative discretion in this field, the tension which exists between the various levels of government and the potential role of public participation in the decision-making process. (Old No. 90.341)

LAWS5020 Industrial Safety and Health S1S2 Hpw4 C3

The law relating to compensation for work-related injuries and disabilities and to the regulation of safety standards in industry and of the processes and substances employed therein. Topics include: the employer’s common law duty of care; the development and application of workers’ compensation schemes; comprehensive no-fault compensation schemes and inquiries relating thereto in their application to industrial injuries and disabilities; existing protective legislation in Australia; a comparative survey of protective legislation in other countries and its effectiveness; proposals for amendment of protective legislation; individual rights under protective legislation; regulation of industrial safety and health under compulsory arbitration schemes; management and union initiatives in the fields of industrial safety and health; new problems in industrial safety and health. (Old No. 90.502)

Manufacturing Management

Manufacturing Management is a course offered by the School of Mechanical and Manufacturing Engineering.

MANF1100 Workshop Technology SS L1 T2
The implementation of design and its interaction with manufacturing equipment and processes. Manufacturing capabilities and tolerancing. Approximately 30 hours of practical training including welding, fitting and machining. Students who have done Industrial Arts for the HSC, have an appropriate trade or certificate course qualification, or are suitably employed, may qualify for exemption from this subject. (Old No. 5.0303)

MANF1110 Manufacturing Technology S2 L/T3
Co-requisites: MECH1300, MECH1100, MECH1400.

Description of the processes classified as: forming from liquid or solid, material removal, material joining. Elementary mechanics of forming and cutting processes. Analysis of the
primary functions of machine tool structures and their operation. Relationship between product design and manufacture processes. Elementary functional analysis of product designs, including linear loop equations, limits and fits, dimensional accuracy of processes and alternate design and manufacturing strategies. (Old No. 5.0305)

MANF3200 Product Design and Manufacturing Technology
Design of products so that they can be manufactured economically. Material on: geometric analysis of product designs and the technology and economics of manufacturing, assembly, storage and transportation processes provides a basis for rational process selection and the refinement of product design to suit the chosen manufacturing methods.

MANF3300 Design of Manufacturing Facilities 1
The design of workplace elements in which operations such as assembly, measurement and loading/unloading are performed by a human operator or robot. Material on: documentation of manufacturing processes, characteristics of human operators and robots, workplace and methods design, measurement of workplace element characteristics.

MANF3400 Engineering Economics
Prerequisites: MECH1500. Excluded: 18.603.
An analytic framework for decision making from an economic viewpoint which included: cost information, engineering and investment decision, cost/benefit analysis, replacement analysis, capital recovery models, break-even analysis and decision trees.

MANF3410 Quality Systems 1
Prerequisites: MANF1110, MATH2839, MECH3000. Excluded: 18.003, MANF4429.
An introduction to the role of national and international standards in manufacturing, the principle and technology underlying-dimensional metrology, the basic concepts of statistical process control and the design and analysis of experiments to investigate the performance of manufacturing processes.

MANF3500 Computers in Manufacturing 1
Prerequisites: ELEC0805, MANF1110, MECH1500. Excluded: 18.224.
The selection and use of computer-controlled devices such as robots, machines and vehicles in manufacturing systems: Control of other devices by PLCs (possibly in conjunction with pneumatics) is also examined.

MANF3800 Introduction to Numerical Methods
Prerequisites: MECH1500, MATH2001. Excluded: 18.003.
An introduction to the processes, data structures and numerical algorithms required for the solution of engineering problems including: numerical solution of equations, sets of simultaneous equations interpolation, differentiation and integration.

MANF4429 Manufacturing Management
Prerequisites: ACCT9001, ACCT9002. Excluded: 18.503, 18.603.
Overview of basic issues of production planning and control; use of inventory as a buffer; Economic Batch Quantities and their limitations; simple re-order point systems; statistical inventory control and its limitations. Material Requirements Planning: the basic material requirements explosion process; capacity planning and control; Master Production Scheduling; structuring the Bell of Materials for MRP; cycle counting; lot sizing techniques; implementation of MRP in practice; limitations of MRP, OPT (Optimised Production Technology), its basic philosophy and approach to production scheduling. Just in Time Production; basic philosophy of JIT; prerequisites for JIT; planning a JIT product mix; the Kan Ban System. Comparative evaluation of alternative Production Management Approaches and their relationship to manufacturing strategy.

MANF4600 Information and Decision Making
Prerequisites: MANF1500, MATH2839. Excluded: MANF3609, MANF4610, MANF9620, MANF9629.
An introduction to the quantitative aspects of decision making and relevant computing tools including: decision theory, data modelling and database management systems, operations research, spreadsheets, fourth generation languages and decision support systems.

MANF4610 Operations Research
Prerequisites: MECH1500, MATH2001, MATH2839. Excluded: 6.646.
The formulating and optimisation of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queuing theory, inventory models, replacement and reliability models; simulation. These techniques applied to situations drawn from industrial fields, eg production planning and inventory control. Practical problems of data collection, problem formulation and analysis. (Old No. 18.551)

Servicing Subjects
These are subjects taught within courses offered by other schools and faculties.

MANF0410 Industrial Management
Prerequisites: MATH2120, MATH2849, MATH2859.
This subject is intended primarily for Electrical Engineering students.

Economic measures of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment. Introduction to operational research: The formation and optimisation of mathematical models of industrial processes. The development of decision rules. Some techniques of operational research and applications, eg mathematical programming.
queuing theory, inventory models, simulation, critical path networks. The use of human and physical resources: Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout. Production and quality control: Control of jobbing, repetitive batch and continuous production. Manufacturing organisations, functions, inter-relationships and information flow. Sampling techniques in quality control, control charts. Introduction to inventory control: Analysis of some engineering planning decisions. (Old No. 18.091)

MANF0400 Production Management F L2 T1
Prerequisites: MATH2021, MATH2841.

Engineering economy: Economic objectives of the firm. Economic measure of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment. The use of human and physical resources: Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout. Production and quality control: Control of jobbing, repetitive batch and continuous production. Manufacturing organisations, functions, inter-relationships and information flow. Sampling techniques in quality control, control charts. Introduction to inventory control: Analysis of some engineering planning decisions. (Old No. 18.121)

MANF0401 Production Management A S1 L3
Prerequisites: MATH2021, MATH2841 or MATH1011, MATH1021, FIBR2201.

Use of human and physical resources: Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout. Production and quality control: Control of jobbing, repetitive batch and continuous production. Manufacturing organisations, functions, inter-relationships and information flow. Sampling techniques in quality control, control charts. Introduction to inventory control: Analysis of some engineering planning decisions. (Old No. 18.1211)

MANF0402 Production Management B S2 L3
Prerequisites: MANF0401.

Engineering economy: Economic objectives of the firm. Economic measure of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment. Introduction to operational research: Formation and optimisation of mathematical models of industrial processes. Development of decision rules. Some techniques of operational research and applications, eg mathematical programming, queuing theory, inventory models, simulation. (Old No. 18.1212)

MANF0600 Operations Research
Introduction to operational research: The formation and optimisation of mathematical models of industrial processes. The development of decision rules. Some techniques of operational research and applications, eg mathematical programming, queuing theory, inventory models, simulation. (Old No. 18.131)

Mathematics

MATH1011 General Mathematics 1B S1 L4 T2
Prerequisite: HSC Exam Score
Range Required
2 unit Mathematics* or 60-100
2 and 3 unit Mathematics or 61-150
3 and 4 unit Mathematics or 61-200

Excluded MATH1042, MATH1032
Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the binomial theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra. (Old No. 10.021B)
† the required score may vary slightly from year to year

MATH1021 General Mathematics 1C S2 L4 T2
Prerequisite: MATH1011 or Excluded MATH1032, MATH1042.
Techniques for integration, improper integrals; Taylor's theorem; first order differential equations and applications; introduction to multivariable calculus; conics; finite sets; probability; vectors, matrices and linear equations. (Old No. 10.021C)

MATH1032 Mathematics 1 F L4 T2
Prerequisite: HSC Exam Score
Range Required
2 unit Mathematics* or 67-100
2 and 3 unit Mathematics or 100-150
3 and 4 unit Mathematics or 100-200

Excluded MATH1042, MATH1011, MATH1021
Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing. (Old No. 10.001)

MATH1042 Higher Mathematics 1 F L4 T2
Prerequisite: HSC Exam Score
Range Required
2 and 3 unit Mathematics or 145-150
3 and 4 unit Mathematics or 186-200

Excluded MATH1032, MATH1011, MATH1021
As for MATH1032 Mathematics 1, but in greater depth. (Old No. 10.011)
MATH1081 Discrete Mathematics S1 L4 T2

Co-requisite: MATH1032 or MATH1042

Role of proof in mathematics, logical reasoning and implication, different types of proofs. Sets, algebras of sets, operations on sets. Mathematical logic, truth tables, syntax, induction. Graphs and directed graphs, basic graph algorithms. Counting, combinatorial identities, binomial and multinomial theorems. Binary operations and their properties, groups and semigroups, ordered structures. Recursion relations. Application to network theory, assignment problems and population growth. (Old No. 10.081)

MATH1090 Discrete Mathematics for Electrical Engineers S1 L2 T1

Co-requisites: MATH1032 or MATH1042. Excluded: MATH1081.

The role of proof in mathematics, logical reasoning and implication, different types of proofs. Sets, algebra of sets, operations on sets, mathematical logic, truth tables, syntax, induction. Recursion, recursive logic, recurrence relations. (Old No. 10.0911)

MATH2009 Engineering Mathematics 2 F L2 T2

Prerequisite: MATH1032.

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory. (Old No. 10.022)

MATH2021 Mathematics F L1 T1

Prerequisite: MATH1032 or MATH1042 or MATH1021 CR or MATH1042 CR.

Note A: A unit, together with MATHY3021 which is available to Faculty of Science students as one of a sequence of two units constituting a terminating service course in mathematics. As such it is mutually exclusive to any other Level II or Level III unit in Pure and/or Applied Mathematics except that MATH3261 may be taken with MATH2021 and MATH3021.

Note B: Mathematics MATH2021 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics or Applied Mathematics are taken, MATH2021 Mathematics will not be counted.

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods. (Old No. 10.031)

MATH2100 Applied Mathematics 2 S1 or S2 L1.5 T.5

Prerequisite: MATH1032 Excluded: MATH2110.

Vector Calculus

Properties of vectors and vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss and Stokes' theorems. Curvilinear co-ordinates. (Old No. 10.2111)

MATH2110 Higher Applied Mathematics 2 S1 L2 T.5

Vector Analysis

Prerequisite: MATH1042 or MATH1032 CR. Excluded: MATH2100.

As for MATH2100 but in greater depth. (Old No. 10.2211)

MATH2120 Applied Mathematics 2 S1 or S2 L1.5 T.5

Prerequisite: MATH1032. Excluded: MATH2130.

MATH2130 Higher Applied Mathematics 2 S2 L2 T.5

Prerequisite: MATH1042 or MATH1032 CR. Excluded: MATH2120.

As for MATH2120 but in greater depth. (Old No. 10.2212)

MATH2160 Applied Mathematics 2 Linear Programming S1 L1.5 T.5

Prerequisite: MATH1032. Co-requisite: MATH2501. Excluded: 10.2113

A first course in mathematical modelling and solution techniques for problems. The revised simplex and dual simplex methods, theory and application of sensitivity analysis, duality theory. Networks, transportation and assignment problems. Examples, applications and computing methods are prominent features. (Old No. 10.2113)

MATH2200 Applied Mathematics 2 S2 L1.5 T.5

Discrete-Dynamical Systems

Prerequisite: MATH1032. Excluded: MATH2200.

The study of dynamical systems whose states change at discrete points in time, difference equations, general properties. Linear systems, stability, oscillations, Z-transforms. Nonlinear systems, critical points, periodic cycles, chaotic behaviour. Applications selected from engineering, biological, social and economic contexts. (Old No. 10.2115)

MATH2220 Applied Mathematics 2 Continuous-Dynamical Systems S2 L1.5 T.5

Prerequisite: MATH1032. Excluded: MATH2220.

The study of continuous dynamical systems. One-dimensional systems, kinematic waves, applications include traffic flow and waves in fluids. An introduction to the modelling of physical, biological and ecological systems, stability, oscillations and resonance. (Old No. 10.2116)

MATH3150 Electrical Engineering Mathematics 3 Transform Methods S2 L1.5 T.5

Prerequisites: MATH2100, MATH2520. Excluded: 10.033, 10.2921

The mathematics of signals and linear systems. General Fourier series, Fourier, Laplace and related transforms. Delta-distributions and others and their transforms, Discrete Fourier and Z-transforms. Applications to spectral analysis, autocorrelation, uncertainty and sampling, linear analog and digital filters, partial differential equations. (Old No. 10.0331)

MATH2400 Pure Mathematics 2 S1 L1.5 T.5

Finite Mathematics

Prerequisite: MATH1032 or MATH1042

Positional number systems, floating-point arithmetic, rational arithmetic, congruences. Euclid's algorithm, continued fractions, Chinese remainder theorem, Fermat's theorem.
MATH2410 Pure Mathematics 2 – Automata and Algorithms
Prerequisite: MATH1032 or MATH1042

Finite automata, regular languages and Kleene’s theorem. Analysis of fast algorithms for matrix, integer and polynomial manipulation, sorting, etc. Discrete and Fast Fourier Transform and applications. (Old No. 10.1115)

MATH2501 Pure Mathematics 2 – Linear Algebra
Prerequisite: MATH1032 or MATH1042 or Excluded MATH2601.

MATH2510 Pure Mathematics 2 – Real Analysis
Prerequisite: MATH1032 or MATH1042 or Excluded MATH2610.

Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables. (Old No. 10.1113)

MATH2520 Pure Mathematics 2 – Complex Analysis
Prerequisite: MATH1032 or MATH1042 or Excluded MATH2620.

Analytic functions, Taylor and Laurent series, integrals. Cauchy’s theorem, residues, evaluation of certain real integrals. (Old No. 10.1114)

MATH2601 Higher Pure Mathematics 2 – Algebra
Prerequisite: MATH1042 or MATH1032 CR. Excluded MATH2501, MATH3500.

Linear algebra: vector spaces, commutative rings, polynomials, modules, linear transformations, eigenvectors, invariant subspaces, canonical forms, linear functions, bilinear and multi-linear algebra. Group theory; subgroups, quotient groups, isomorphisms. Lagrange’s theorem, Sylow’s theorem. (Old No. 10.1211A)

MATH2610 Higher Pure Mathematics 2 – Real Analysis
Prerequisite: MATH1042 or MATH1032 CR. Excluded MATH2510.

As for MATH2510 Pure Mathematics 2 Real Analysis but in greater depth. (Old No. 10.1213)

MATH2620 Higher Pure Mathematics 2 – Complex Analysis
Prerequisite: MATH1042 or MATH1032. Excluded MATH2520.

As for MATH2520 Pure Mathematics 2 Complex Analysis, but in greater depth. (Old No. 10.1214)

MATH2801 Probability and Random Variables S1 L3 T1
Prerequisite: MATH1032 or MATH1042 or MATH1021 (CR).
Excluded: MATH2901, MATH2819, MATH2841, BIO2041

Probability, random variables, standard discrete and continuous distributions, multivariate distributions, transformations, random sampling, sampling distributions, limit theorems. (Old No. 10.3111A)

MATH2810 Statistical Computing and Simulation
Prerequisite: MATH1032 or MATH1042 or MATH1021(CR).
Co-requisite: MATH2801.

Introduction to APL, random variables, univariate transformation, simulation of random variables, APL programming, integer value random variables, random walks – theory and simulation, introduction to Markov chains. (Old No. 10.3111B)

MATH2821 Basic Inference S2 L3 T1
Prerequisite: MATH2801. Excluded: MATH2921, MATH2819, MATH2841, BIO2041.

Point estimation: general theory, estimation by moments, maximum likelihood, interval estimation with general theory and application, hypothesis testing using Neyman Pearson theory, linear regression and prediction, analysis of variance. (Old No. 10.341)

MATH2829 Statistics SU SI L2.5 T.5
Prerequisite: MATH1032 or MATH1042.

For students in the School of Surveying.

Introduction to probability theory, random variables and distribution functions, sampling distributions, including those of t, chi² and F. Estimation procedures, including confidence interval estimation with an emphasis on least squares and surveying problems, and computer based exercises. (Old No. 10.341)

MATH2830 Nonparametric Statistical Inference S2 L1.5 T.5
Prerequisite: MATH2801. Co-requisite: MATH2821.

Order statistics, exact and approximate distributions, multinomial distributions, goodness of fit, contingency tables, one-sample and two-sample estimation and inference problems. (Old No. 10.3112)

MATH2839 Statistics SM F L1.5 T.5
Prerequisite: MATH1032 or MATH1042.

For students in Aeronautical, Industrial and Mechanical Engineering and Naval Architecture.

Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, chi² and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard test of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to
regression and the bivariate normal distribution. (Old No. 10.351)

MATH2841 Statistics SS S1 or S2 L1.5 T.5
Prerequisite: MATH1032 or MATH1021(CR). Excluded: MATH2801, MATH2821, MATH2901, MATH2921, MATH2819, BIOS2041.

An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions: binomial, Poisson and normal, an introduction to multivariate distributions. Standard sampling distributions, including those of chi², t and F. Estimation by moments and maximum likelihood; confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models, involving multiple comparisons and estimation of variance components. (Old No. 10.331)

MATH2849 Statistics SE1 S1 or S2 L1.5 T.5
Prerequisite: MATH2849

For students in the School of Electrical Engineering.

Introduction to probability theory, random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions including those of chi-square and t.

MATH2859 Statistics SE2 S1 or S2 L1.5 T.5
Prerequisite: MATH2849

For students in the School of Electrical Engineering.

Estimation by moments and maximum likelihood; confidence interval estimation. The standard tests of significance with a discussion of power where appropriate.

MATH2869 Statistics SC S1 or S2 L1.5 T.5
Prerequisite: MATH2869

For students in the School of Civil Engineering.

MATH2901 Probability and Random Variables S1 L3 T1
Prerequisite: MATH1032 or MATH1042. Excluded: MATH2801, MATH2819, MATH2841, BIOS2041.

As for MATH2901 but in greater depth. (Old No. 10.321A)

MATH2910 Statistical Computing and Simulation S1 L1.5 T.5
Prerequisite: MATH1032 or MATH1042. Co-requisite: MATH2901.

As for MATH2910 but in greater depth. (Old No. 10.3211)

MATH2921 Basic Inference S2 L3 T1
Prerequisite: MATH2901. Excluded: MATH2821, MATH2819, MATH2841, BIOS2041

As for MATH2921 but in greater depth. (Old No. 10.321B)

MATH2930 Nonparametric Statistical Inference S2 L1.5 T.5
Prerequisite: MATH2901. Co-requisite: MATH2921.

As for MATH2930 but in greater depth. (Old No. 10.3212)

MATH3101 Applied Mathematics 3 – Numerical Analysis S1 L3 T1
Prerequisite: At least two level 11 mathematics units, including any course prerequisites. Excluded: MATH3141, 10.222A

Analysis of some common numerical methods. Iterative methods for solving nonlinear equations; interpolation using polynomials, splines and trigonometric functions; least-squares approximation and orthogonal function; numerical differentiation and integration: extrapolation; finite difference methods for initial value problems for ordinary differential equations; iterative techniques for large systems of linear equations. (Old No. 10.212A)

MATH3141 Electrical Engineering – Mathematics 3 Numerical and Mathematical Methods S2 L2.5 T1
Prerequisites: MATH2501, MATH2510, MATH2100. Excluded: MATH2120, MATH2130, MATH3101, 10.222A

MATH3181 Applied Mathematics 3 – Optimal Control S2 L3 T1
Prerequisites: A total of 2 level II mathematics units which must include either MATH2100 or MATH2510. Excluded: 10.222M.

Examples and applications are selected from biological, economical and physical systems. (Old No. 10.212M)

Materials Science and Engineering

MATS1042 X-Ray Diffraction and Electron Microscopy S1 L2 T2
Prerequisite: 4.412A or 4.212

X-ray diffraction, electron optics, and analysis. Production, absorption and diffraction of X-rays. Powder and single crystal X-ray methods. Stereographic projections and crystal geometry. Applications of diffraction methods to solid solutions and solubility limit, thermal analysis, stress measurement, chemical analysis. X-ray fluorescence spectroscopy and analysis, on-stream analysis. Electron
optics and analysis, transmission and scanning electron microscopy. Energy-loss spectrometers, microanalysis. (Old No. 4.713)

MATS1062 Mechanical Properties of Materials S1 L2 T2
Pre-requisite: 5.0011. Co-requisite: 4.412A.
Mechanical properties of solids. Nature and significance of mechanical properties. Mechanical testing: the tension test, hardness testing and impact testing. Stress-strain-time relationships. Analysis of stress and strain, stress and strain transformation relationships. Mohr's circle, elastic stress-strain relationships, application to various types of loading and metal working processes. Failure and yielding criteria. Influence of stress state, temperature, strain rate and environment on mechanical behaviour. (Old No. 4.732)

MATS1072 Physics of Materials S2 L2 T1
Pre-requisite: PHYS1002.
Interatomic bonding in solid materials. Types of interatomic bonds, metallic, covalent, ionic. Introductory quantum mechanics in one dimension, free electron theory, effects of periodic potential, density of states curves. Effect of electron to atom ratio on conductivity and crystal structure; semiconductors; intrinsic, extrinsic. Exchange energy; ferromagnetism, antiferromagnetism. Elementary perturbation theory, covalent bond; crystal structures, properties. Ionic bond, crystal structures, force models, properties. (Old No. 4.742)

MATS1083 Non-ferrous Alloys S2 L1 T2
Metallography of non-ferrous alloys. Structure/property relationships in non-ferrous alloys. Hardening mechanisms. Metallography and properties of copper, aluminium, nickel, magnesium, lead, tin and titanium based alloys. (Old No. 4.573)

MATS1253 Ferrous Alloys S1 L1 T2

MATS1263 S2 L1 T1
Alloy steels. Ternary equilibria involving iron and carbon. Metallography and properties of alloy steels. Effects of alloying elements on austenite formation and decomposition under equilibrium and non-equilibrium conditions. Heat treatment of alloy steels. Metallography and properties of alloy cast irons. (Old No. 4.563)

MATS4053 Metallographic Techniques S1 L1 T1
Metallographic techniques. Principles of optical microscopy. Quantitative microscopy and stereology. (Old No. 4.543)

MATS9130 Materials Science F L2 T1

MATS9193 Origin of Microstructure Unit 2 Diffusion S1 L1 T1
Fick's first and second laws. Solutions for short and long times be analytical and numerical methods. Boundary conditions for solid-fluid and solid-solid interfaces. Diffusion couples. Atomic level diffusion theory.

MATS9323 Mechanical Behaviour of Materials (Units 1,2,3)
Unit 1 Deformation S1 L2
Atomic and molecular description of deformation. Introduction to dislocation theory and its application to mechanical properties. Chain dynamics under stress.

Unit 2 Fractographic analysis S2 L1 T1
Classification of macroscopic and microscopic fracture mechanisms. Initiation and propagation of ductile, brittle, fatigue, creep, stress corrosion, and corrosion fatigue fractures. Effect of material defects, design deficiencies and incorrect processing on the origin and cause of fracture. Analysis of various modes of fracture using fractographic techniques involving optical microscopy and scanning and transmission electron microscopy.

Unit 3 Deformation and Strengthening Mechanisms S2 L1 T1
Strengthening mechanisms, creep, fracture, grain size dependence of strength. Introduction to generation of deformation and recrystallization textures. Measurements of age-hardening, activation energy of strain ageing. (Old No. 4.523)

MATS9520 Engineering Materials L2 L/T1
Microstructure and structure-property relationships of the main types of engineering materials (Metals, Ceramics, Polymers and Composites). Micromechanisms of elastic and plastic deformation. Fracture mechanisms for ductile, brittle, creep and fatigue modes of failure in service; corrosion. Metal forming by casting and wrought processes. Phase Equilibria of alloys; microstructural control by thermomechanical processing and application to commercial engineering materials. Laboratory and tutorial work includes experiments
Mechanical Engineering

Mechanical Engineering is a course offered by the School of Mechanical and Manufacturing Engineering.

MECH1000 Professional Studies 1 S1 L/T1
Prerequisite:
HSC Exam Score
Range Required
2 unit English (General) or 53-100
2 unit English 49-100
3 unit English or 1-50
2 unit Contemporary English 60-100
Excluded 5.061.

NOTE: If these prerequisites are not met, other remedial English studies can be taken concurrently.

To assess abilities in written expression; to develop a consciousness of the importance of written, pictorial and oral expression in engineering life; to begin to develop these skills, emphasising the significance of logical structure; to begin to develop an awareness of the professional attitude. (Old No. 5.0011)

MECH1100 Mechanical Engineering Design 1 S1 L/T S2 L/T2
Co-requisite: MECH1000.

Introduction to hardware. Studies of a range of engineering components, considering: what they do, how they do it, how they were made, the range of possible forms for each item, why each item has its particular form. Design philosophy. Design as the formulation and implementation of practical ways of fulfilling needs, including: recognising the need, generalising the question, considering a range of solutions, selecting a short-list, analysing the selected range, making a final choice. Commercial philosophy. Impetus for design, market competition, significance of innovation, intellectual property, financing, manufacturing, marketing, etc. (Old No. 5.1010)

MECH1110 Graphical Analysis and Communication S2 L1 T2
Excluded MECH0160, MECH0130.

Descriptive geometry as the basis of analysis and synthesis of spatial relationships: points, lines, planes, solids, intersections. Orthographic and other projection systems. Engineering drawing as a means of definition and communication, selection of views, construction of drawings, conventions, dimensions and tolerancing. Introduction to computer-based drafting systems. (Old No. 5.0300)

MECH1300 Engineering Mechanics 1 S1 or S2 L2 T2
Prerequisite:
HSC Exam Score
Range Required
Either 53-100
2 unit Science (Physics) or 90-150
3 unit Science or 1-50
4 unit Science multistrand

2 unit Industrial Arts (Engineering Science) or 53-100
3 unit Industrial Arts (Engineering Science) 1-50
Excluded 5.010, 5.0101, 5.0201.

Note: Students who wish to enrol in this subject in courses other than the full-time courses in Aerospace Engineering, Electrical Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of the first year.

MECH1400 Mechanics of Solids 1 S1 or S2 L2 T1
Co-requisite: MECH1300.

Stress and strain. Bars under axial loading. Stresses and deformation due to bending. Strain energy. Flexibility and stiffness. Stress and deformation due to torsion. Helical springs. (Old No. 5.421)

MECH1500 Computing 1 M S2 L/T3

Introduction: history, applications, hardware, software, a model of a computer system, editors, operating systems. Program design and development: programming objectives, data structures, algorithms, symbolic names, translation of algorithms, steps in programming, programming style, syntax charts, errors and debugging. Data: data types, declarations, input output, file control. Programming constructs: arithmetic expressions, assignment, relational and logical expressions, selection, iteration, intrinsic functions, statement functions, subprograms, common, communication. Applications using existing programs: sorting, word processing, graphics and plotting, simultaneous linear algebraic equations. (Old No. 5.5010)

MECH2000 Professional Studies 2 4 contact hours total
Prerequisite: MECH1000.

To introduce the student to the engineering working environment. To get the student curious about the engineering environment. To give further practice in report writing. Preparation for Industrial Training; Industrial Training, report on Industrial Training. (Old No. 5.0020)

MECH2100 Mechanical Engineering Design 2 F L1 T2
Prerequisites: MECH1300, MECH1110, MANF1110, MECH1400.
Co-requisites: MECH1000, MECH2300, MATS9520, MECH2400, MECH2600, MECH2700.

Design of basic engineering elements and simple systems. Selection and specification of materials and manufacturing processes for engineering items. Communication by means of engineering drawings (including tolerances) of manufacturing information for simple structures and assemblies. Application of standards and trade literature to design. Simple design-and-make project to meet a published specification and to demonstrate the product's performance. (Old No. 5.122)
MECH2300 Engineering Mechanics 2A S1 or S2 L2 T1
Prerequisites: PHYS1002, PHYS1919, MECH1300, MATH1032 or MATH1042.

Kinetics of systems of particles; plane steady mass flow. Plane kinematics and kinetics of rigid bodies: moment of inertia; motion relative to translating and rotating frames of reference; equations of motion; work and energy, impulse and momentum. Virtual work for static and dynamic systems. Kinematics and kinetics of simple mechanisms. (Old No. 5.3021)

MECH2310 Engineering Mechanics 2B S1 or S2 L/T2
Co-requisite: MECH2300.

MECH2400 Mechanics of Solids 2 F L1.5 T2
Prerequisites: MECH1400, MATH1032 or MATH1042.

Mechanical properties of materials: tensile and compressive behaviour; hardness; testing machines. Analysis of stress and strain at a point (2D, 3D, Mohr’s Circles); generalised Hooke’s Law; modulus of rigidity; bulk modulus; interdependence of elastic moduli; strain energy (total, volumetric and distortion); yield criteria; combined loads in beams; fatigue; stress concentrations, Miner’s Rule; membrane stresses; bending of composite beams; bending and unsymmetrical beams; direct shear stresses in beams; shear centre; elastic and inelastic buckling of columns. (Old No. 5.4221)

MECH2600 Fluid Mechanics 1 F L1 T1
Prerequisites: PHYS1002 or 1.951, MECH1300, MATH1032 or MATH1042. Co-requisite: MECH2300.

Units. Fluid properties; fluid statics. Flow fields; unsteady and compressible flow. Bernoulli’s equation. Momentum equations. Ideal flow. Flow measurement. Dimensional analysis: similitude; dimensionless numbers; methods of analysis. Steady one dimensional flow in ducts: laminar and turbulent; pressure loss; friction factor; losses in bends and fittings. Elementary boundary layer flow; skin friction and drag. Pumps and turbines. (Old No. 5.620)

MECH2700 Thermodynamics 1 F L1 T1
Prerequisites: PHYS1002 or 1.951, MECH1300, MATH1032 or MATH1042.

MECH3000 Professional Studies 3 S2 L/T2

MECH3010 Industrial Training 1 S1
Practical work in industry at the process or shop floor level to gain experience of people, industrial problems and relations, and process equipment. (Report submitted in Week 1 of session detailing involvement and experience gained prior to Year 3.)

For details contact Mr. G. Crawford, Industrial Training Officer. (Old No. 5.043)

MECH3100 Mechanical Engineering Design 3 F L2 T1
Prerequisite: MECH2100. Co-requisites: MECH3300, MECH3400.

Mathematical modelling in design with applications. More advanced design analyses, component and assembly design and drawing with individual and group projects of an interdisciplinary nature. (Old No. 5.123)

MECH3200 Engineering Experimentation F L/T1.5
Prerequisites: MECH1110, 2400, 2600, 2700, ELEC0805. Excluded: 5.034.

Scientific method, engineering method; report writing; error analysis; principles of transducers; dynamic response of instruments; digital data acquisition; interfacing sensors to computers; computer control of experiments; signal processing.

MECH3211 Linear Systems Analysis S1 L2 T1
Prerequisites: MECH1300, MATH2001.

Models of physical systems; differential equations for physical systems including mechanical, electrical, hydraulic, thermal and pneumatic systems; linearisation. System analysis techniques: solution by Laplace transform method. Transfer functions and block diagrams. System response; response of first and second order systems to impulse step, ramp, sinusoidal and periodic inputs; higher order system response; system stability, applications. (Old No. 5.343)

MECH3212 Principles of Control of Mechanical Systems S1 L2 T2
Prerequisite: MECH3211.

Introduction to modern systems analysis. Review of modelling; nonlinear systems. Digital and analogue representations. Stability; regulation; control and optimal control. Instrumentation; actuators; interfaces; control computers; programmable logic controllers. Implementation; various case studies, including microprocessor applications. (Old No. 5.350)

MECH3300 Engineering Mechanics 3 S2 L/T2
Prerequisites: MECH2300, MATH2001.

Kinematics of gear tooth profiles; standard and non-standard gear proportions. Gear trains; epicyclic gears. Static and dynamic balancing of rotating and reciprocating mass systems. Three-dimensional kinematics and kinetics of a rigid body: co-ordinate transformations, general screw motion, angular momentum, inertia tensor, kinetic energy, Euler's
equations of motion, planetary and satellite motions, gyroscope. (Old No. 5.3030)

MECH3310 Vibration Analysis S2 L/T2
Prerequisites: MECH2310, MATH2001.

Lagrange's equations of motion. Linear vibrations of multi-degree-of-freedom systems; normal modes; simple applications. Finite elements for structural dynamics; mass matrix; natural frequency and normal mode determinations; convergence; engineering applications. (Old No. 5.3130)

MECH3400 Mechanics of Solids 3 S1 L3 T1
Prerequisites: MECH2400, MATH2001.

Deflections of beams and structures. Statically indeterminate beams and structures. Introduction to theory of elasticity; stress, strain, torsion. Membrane analogy. Finite element stress analysis. Basic concepts: structural stiffness method; bar, triangular and rectangular finite elements. (Old No. 5.423)

MECH3500 Computing 2M S1 L/T2
Prerequisites: MECH1500. Excluded: MECH4509.

Techniques for writing, debugging and documenting elegant, portable, robust and reliable programs quickly and economically. Material on the programming environment, programming style, numerical precision, storage and management, database processing and program libraries.

MECH3600 Fluid Mechanics 2 S1 L/T2
Prerequisites: MATH2001, MECH2300, MECH2600, MECH2700. Excluded: 5.630, 5.653, 5.663.

Dimensional Analysis, dynamic similarity, turbomachines; incompressible, inviscid flow; compressible flow.

MECH3701 Thermodynamics 2 S1 L/T2
Prerequisites: MECH2300, MECH2600, MECH2700. Excluded: 5.623, 5.624, 5.636.

Availability - open and closed systems; general thermodynamic relations; kinetic theory of gases; non-reactive ideal gas mixtures; high-temperature gas properties; combustion.

MECH3702 Heat Transfer S2 L/T2
Prerequisites: MECH3600, MECH3701. Excluded: 5.636.

Basic concepts of heat transfer, units, dimensions; conduction, convection, radiation, boiling and condensation; heat exchangers.

MECH3800 Numerical Methods F L T0.5
Prerequisites: MECH1500, MATH2001.

Numerical methods for solution of non-linear equations, linear and non-linear systems, ordinary and partial differential equations. (Old No. 5.079)

MECH4000 Thesis F T6
Co-requisite: MECH4019.

To be taken in year of completion of course.

For students in the BE degree courses in the School of Mechanical and Industrial Engineering. (Old No. 5.051)

MECH4002 The Engineer In Society S2 L/T2
Prerequisites: MANF3619, MECH4019. Co-requisite: 5.062.

Reading, instruction and project work concerned with the organisational, environmental and social aspects of engineering.

The subject is intended to integrate a student's prior and current studies over the range of scientific, technological and contextual areas and general education. Students will undertake socially directed projects in large groups and follow them up with more reflective individual tasks.

This subject satisfies the requirements of Category C of the General Education Program.

MECH4010 Industrial Training 2 S1
Practical work in industry at the professional level to gain experience in design, development, investigation or management control systems areas in collaboration with professional engineers. (Report submitted in Week 1 of session detailing responsibilities and experience gained in vacation period between Years 3 and 4.)

For details contact Mr. G. Crawford, Industrial Training Officer. (Old No. 5.044)

MECH4019 Communications F L2
Co-requisite: MECH4000.

Development of skill in the use of the various media of communication. Effective interpersonal and mass communication using visual and oral transmission. Dynamics and performance of groups. Organising and directing conferences. Chairmanship. Professional ethics and etiquette. (Old No. 5.062)

MECH4110 Design Project F L1 T2
Prerequisite: MECH2100.

Creative design and development leading to the detail design and possible building and testing of systems and devices to satisfy specified objectives of set projects. (Old No. 5.1240)

MECH4120 Design Technology SS L2 T1
Prerequisite: MECH2100.

Aspects of mechanical engineering technology which form the basis for machinery design including: performance matching; hydraulic power components and circuits. Fluid couplings and torque converters; power flow analysis in multi-path machinery, and other selected topics. (Old No. 5.1242)

MECH4130 Computer-Aided Engineering Design SS L2 T1
Prerequisite: MECH2100. Excluded MANF3819, MANF9630.

Mathematical modelling and analysis of component and system designs using the computer as a tool to optimise and investigate design solutions. Use of available algorithms and computer packages. (Old No. 5.1245)

MECH4301 Plane Mechanism Kinematics S1 or S2 L2 T1
Prerequisites: MECH2300. Excluded: MECH9301.

Algebraic displacement, velocity and acceleration analyses of simple and complex planar mechanisms. Instantaneous
kinematics: centroides; inflection and Bresse circles; acceleration centre; Euler-Savary equation; cubic of stationary curvature; centre point curve. Coupler curves and their properties; curve cognates. Constraint and freedom; mobility; velocity closure of a loop; special configurations; singularities. Various methods of synthesis. (Old No. 5.3040)

MECH4310 Advanced Vibration Analysis SS L2 T1
Prerequisites: MECH310, MECH400. Excluded: MECH9310.
Introduction to experimental vibration analysis using Fast Fourier Transform (FFT) techniques. Typical sources of vibration in machines. Analysis of continuous systems via classical and finite element techniques. Experimental modal analysis. Torsional vibrations including geared shaft systems. (Old No. 5.3140)

MECH4321 Engineering Noise 1 SS L2 T1
Excluded MECH9321.
Acoustic plane wave equation, standing waves, energy density, intensity, decibel scales. Human response, annoyance and damage criteria. Transmission between media, absorbing materials. Mufflers. Three dimensional wave equation. Transmission in ducts. Room acoustics. (Old No. 5.3541)

MECH4322 Engineering Noise 2 SS L2 T1
Prerequisite: MECH4321. Excluded MECH9322.
Noise measurement, microphones, frequency analysis, transient and average measurement. Frequency weightings. Flow noise, noise from jets, fans, propellers. Noise of machines, modal response, damping. (Old No. 5.3542)

MECH4361 Lubrication SS L/T3
Prerequisites: MECH2600, MATH2001. Excluded: MECH9361.
History of lubrication, types of bearings and bearing operation, nature of surfaces and their contact, modes of lubrication, properties of lubricants, viscous flow in pipes and channels, measurement of viscosity, infinitely long and short bearing approximations, one-dimensional analysis of short bearing, other slider bearing geometries, the effect of end leakage, hydrostatic or externally pressurised bearings, squeeze films. (Old No. 5.6342)

MECH4400 General Mechanics of Solids SS L2 T1
Prerequisite: MECH3400. Excluded: 18.413.
Inelastic behaviour of bars, beams, shafts and columns. Thick cylinders and composite cylinders loaded by internal and external pressures; rotating discs; contact stresses. Elementary concepts of fracture mechanics; stress intensity factor; fracture toughness; crack propagation. (Old No. 5.424)

MECH4410 Engineering Applications of Finite Elements SS L2 T1
Prerequisite: MECH3400. Excluded MECH9410, AERO4000.
Introduction to finite element and associated graphics packages.

MECH4420 Plates and Shells SS L2 T1
Prerequisite: MECH3400. Excluded: MECH9421.
Bending of rectangular and circular plates under normal loading; thermal stresses. Shells; membrane stresses; bending stresses, discontinuities at junction of ends; design of pressure vessels. (Old No. 5.434)

MECH4430 Theory of Elasticity SS L2 T1
Prerequisites: MECH2300, MECH400.
Mathematical foundations; analysis of stress; deformation and strain; equilibrium, motion and flow; fundamental laws of continuum mechanics; linear elasticity; viscoelasticity; applications. (Old No. 5.444)

MECH4440 Theory of Plasticity SS L2 T1
Prerequisite: MECH3400 or 18.413.
Analysis of stress, strain, strain rate; plastic stress strain relations with description of experimental verification. Application of plasticity theory to a selection of problems including metal working processes such as extrusion and rolling and metallic friction and wear. (Old No. 5.454)

MECH4450 Structural Instability S1 L1.5 T0.5
Prerequisite: MECH3400.
Buckling of perfect and imperfect columns; bending and buckling of thin flat plates; local instability and crippling of thin-walled columns. Buckling of monocoque cylinders and curved panels. Stiffened panels. Tension field beams. (Old No. 5.464)

MECH4509 Computing Science for Mechanical Engineers S1 L2 T1
Prerequisite: MECH1500.
Hardware and software: Peripheral devices and communications equipment. Program documentation, debugging and testing. Improved programming techniques. Text editors, preprocessors and debugging systems. Computer graphics. Data acquisition. Programming languages. (Old No. 5.074)

MECH4600 Viscous Flow Theory F L/T1.5
Prerequisites: MECH2600, MECH2700, MATH2001.

MECH4610 Hydraulic Transients SS L2 T1
Prerequisites: MECH3600, MATH2001.
Mass oscillations in surge systems with various types of surge tanks. Stability of surge systems, comparison with experiment.
Allievi’s theory of water hammer, fast and slow closures, waterhammer in pumping systems, circle diagrams. (Old No. 5.654)

MECH4700 Turbomachines and Engines SS L/T3
Prerequisites: MECH3600, MECH3701.

MECH4710 Convection Heat Transfer SS L2 T1
Prerequisite: MECH3701. Excluded: MECH9710.

MECH4720 Solar Energy SS L2 T1

MECH4730 Multiphase Flow SS L2 T1
Prerequisites: MECH3600, MECH3701, 10.022.

MECH4740 Thermal Power Plants SS L2 T1
Prerequisites: MECH2600, MECH2700. Excluded: MECH9740.

MECH4759 Turbomachines SS L2 T1
Dimensional analysis and experience charts, cavitation, thermodynamics of a stage, blade element theory of axial machines, thin wing theory, cascade data and design procedures, aerodynamic design of an axial machine, theory of centrifugal machines, design of a centrifugal machine. (Old No. 5.633)

MECH4769 Energy, Combustion and Engines SS L2 T1
Prerequisites: 5.636, MATH2001. Excluded: 5.616G.
General thermodynamic relations, ideal and non-ideal gases, statistical thermodynamic derivations of internal energy and entropy, ideal gas mixtures. Combustible fuels, combustion equations, internal energy and enthalpy of reaction. First law analysis of combustion, adiabatic flame temperatures. Second law analysis of combustion, chemical equilibrium, chemical kinetics and rate controlled reactions. Application of chemical equilibrium and reaction rate methods to combustion and emission problems. Deflagration, detonation and diffusion flames, mixing controlled reaction. (Old No. 5.643)

MECH4800 Optimal Engineering Strategies F L1 T0.5
Optimisation: the calculus of variations and its applications; Euler-Lagrangian equations and Hamilton's principle; introduction to geometric programming and network analysis. Strategies for design and analysis: system structure; variable classification; procedure generation; recycle optimisation; the adjacency matrix. (Old No. 5.070)

Servicing Subjects
These are subjects taught within courses offered by other schools and faculties.

MECH0130 Engineering Drawing and Descriptive Geometry
S1 or S2 L1 T3
Graphic communication. First and third angle orthographic projection and isometric projection. Descriptive geometry fundamentals and their application to engineering problems with special emphasis on visualisation of problems and development of methods for their solution. Australian standard engineering drawing practice. Applications involving detail and assembly drawings, functional dimensioning and tolerancing. (Old No. 5.0302)

MECH0160 Introductory Engineering Design and Drawing Practice
S1 L/T2
Excluded MECH1110, MECH0130.
This subject is intended specifically for Electrical Engineering students, and is to be taken in conjunction with MECH1300. Introduction to engineering design: Engineering method, problem identification, creative thinking, mathematical modelling; computer-aided design; materials and processes; communication of ideas; the place of engineering in society.
Naval Architecture

Naval Architecture is a course offered by the School of Mechanical and Manufacturing Engineering.

NAVL3100 Principles of Ship Design 1 S2 L2 T1

NAVL3400 Ship Structures 1 F L1.5 T0.
Prerequisites: MATS9520, MECH2400, MATH2001.

NAVL3600 Ship Hydrostatics F L2 T0.5
Prerequisites: PHYS1919, MECH1500, MATH1032.
Basic concepts and integration methods. Hydrostatic particulars and approximate formulae. Intact stability, cross curves and righting arm, stability at small angles and free surface effects, the wall-sided formula, flooding and water tight subdivision. Damaged stability. Launching calculations and docking. Representation of hull surfaces for computer applications. Analysis of hull hydrostatics and stability by an integrated computer package. (Old No. 5.911)

NAVL3610 Ship Hydrodynamics S1 L2 T1 S2 L1.5 T0.5
Prerequisites: MECH2300, MECH2310, MECH2600, MATH2001, 10.022.
Kinematics of irrotational flow and equations of continuity for an incompressible fluid. Stream function and use of distributed singularities to generate arbitrary body shapes. Airfoils and hydrofoils. Added mass for simple two dimensional shapes. Plane progressive wave waves in both deep water and in water of finite depth. Motion of a spar buoy and derivation of coefficients in equation of motion. Linearised uncoupled motion of a ship. Coupled heave and pitch motion of a ship. Ocean waves and their properties. (Old No. 5.953)

NAVL4000 Ship Management Economics S2 L1.5 T0.5
Prerequisite: MATH2001.
NAVL4100 Principles of Ship Design 2 S1 L3 T1
 S2 L1.5 T0.5
Prerequisite: NAVL3100.

NAVL4110 Ship Design Project S1 T3 S2 T4
Prerequisites: NAVL3600, NAVL3610, NAVL4000. Co-requisites: NAVL3100, NAVL4100.

Each student is required to perform the following design tasks and submit the results: 1. Rationale, specifications, weights, inboard profile. 2. Power, capacities, freeboard, trim, stability, stern gear. 3. Sectional area curve, lines drawing, prelim midship section. 4. Hydrostatics, floodable length and stability curves. 5. Powering, propeller, systems-schematic drawing, detailed capacity. 6. Section modulus calculation, bulkhead, midship section, module concept. 7. Final weights, capacity drawing, operational data, and evaluation. 8. Specification. (Old No. 5.937)

NAVL4400 Ship Structures 2 F L1.5 T0.5
Prerequisites: MECH3400, NAVL3400.

NAVL4700 Ship Propulsion and Systems F L/T4
Prerequisites: NAVL3600, NAVL3610.

Undergraduate Study: Subject Descriptions

Physiology and Pharmacology

PHPH2112 Physiology 1 F L2 T4
*Prerequisites: BIOS1011 and BIOS1021; CHEM1112 and CHEM1113 or CHEM1114; MATH1032 or MATH1042 or MATH1011 and MATH1021. Excluded: PHPH2122. Co-requisite: BIOC2312.

In exceptional cases Chemistry 1T will be accepted as a prerequisite in the absence of Physics 1 with the permission of the Head of School.

Introduction to fundamental physiological principles, dealing first with basic cellular function in terms of chemical and physical principles, and, second, with the operation of the various specialised systems in the body, for example, the cardiovascular system, whose function it is to transport materials to and from the tissues of the body; the respiratory system which must maintain the exchange of oxygen and carbon dioxide between the atmosphere and the blood; the gastrointestinal system which enables food materials to be modified by digestion and absorbed into the circulation; the kidney which is involved in the regulation of body fluid and electrolyte balance and with the excretion of the waste products of metabolism; the endocrine system which releases chemical messengers, called hormones, that are carried in the blood stream to regulate a great variety of body functions, eg metabolism and reproductive activity; the nervous system which by means of very rapidly propagated electrical impulses is responsible for all our movements, sensations, memories, emotions and consciousness itself. A substantial series of practical class experiments on these different areas of physiology is included in the course. This subject is taken by students enrolled in any of the Physiology program. (Old No. 73.111)

Physics

The School of Physics has introduced the specialised units PHYS1919, PHYS1969, PHYS1999, PHYS1989, PHYS2969, and PHYS5989 for students in the Faculty of Engineering. The first-year units PHYS1919, PHYS1969, PHYS1999 and PHYS1989 are not available at night. Part-time students will be catered for by the Science Course unit PHYS1002.

All first year full-time students, including repeat students, should enrol in PHYS1919, PHYS1969, PHYS1999 and PHYS1989 according to their schools.

All first year part-time students, including repeats, should enrol in PHYS1002.

Physics Level I Units

PHYS1002 Physics 1 F L3 T3
HSC Exam Score

<table>
<thead>
<tr>
<th>Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-100</td>
</tr>
<tr>
<td>1-50</td>
</tr>
<tr>
<td>1-100 or</td>
</tr>
<tr>
<td>10.021B</td>
</tr>
<tr>
<td>57-100</td>
</tr>
<tr>
<td>60-100</td>
</tr>
<tr>
<td>90-150</td>
</tr>
</tbody>
</table>

Prerequisites:

2 unit Mathematics* or
3 unit Mathematics or
4 unit Mathematics
and (for PHYS1002 only) 10.021B
2 unit Science (Physics) or
2 unit Science (Chemistry) or
3 unit Science or

(Old No. 5.941)
Aim and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertial mass, energy, momentum, charge, potential fields. Application of the conservation principles to solution of problems involving charge, energy and momentum. Electrical circuit theory, application of Kirchoff’s laws to AC and DC circuits. Uniform circular motion, Kepler’s laws and rotational mechanics. Properties of matter: solids, liquids, gases. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization. (Old No. 1.001)

PHYS1919 Physics 1 (Mechanical Engineering) F L2 T2
Prerequisites: As for PHYS1002 Physics 1. Excluded PHYS1002.
For students in the School of Mechanical and Industrial Engineering.

PHYS1929 Physics 1 (Surveying) F L2 T2
Prerequisites: As for PHYS1002 Physics 1.

PHYS1969 Physics 1 (Electrical Engineering) F L3 T3
Prerequisites: As for PHYS1002 Physics 1.
For students in the School of Electrical Engineering.
Electrostatics in vacuum, electrostatics in dielectrics, steady state currents, magnetostatics in vacuum, ferromagnetism, electromagnetic induction, transient currents. Vectors motion in one dimension, motion in a plane, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, collisions, rotational kinematics, rotational dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics, kinetic theory of gases. Waves in elastic media, sound waves, geometrical optics, interference, diffraction, gratings and spectra, polarization. (Old No. 1.961)

PHYS1989 Physics 1 (Civil Engineering) S1 L2 T2 and S2 L2 T1
Prerequisites: As for PHYS1002 Physics 1.
For students in the School of Civil Engineering.
Aim of physics and its relation to civil engineering. Mechanical concepts, properties of matter, atomic structure, elasticity, plasticity, fracture of solids; surface tension and viscosity of fluids, electrical and magnetic forces, electromagnetism, DC and AC circuits, digital electronics. Simple harmonic motion and its relation to wave motion. Acoustic and mechanical waves, attenuation, velocity of propagation. Elastic moduli. Non-destructive testing. Instrumentation, techniques and theory. Emphasis on the physics involved in non-destructive testing and the aspects of vibration important to civil engineering. (Old No. 1.981)
Physics Level III Units

PHYS3010 Quantum Mechanics S1 L.5 T.5
Prerequisites: PHYS2021, MATH2120.
Revision of basic concepts, harmonic oscillator systems, spherically symmetric systems, angular momentum, H atom, first-order perturbation theory, identical particles, Exclusion Principle, atomic structure, spin-orbit coupling, Helium atom, introductory quantum theory of molecules. (Old No. 1.0133)

PHYS3021 Statistical Mechanics and Solid State Physics S1 L3 T1
Prerequisites: PHYS2011, PHYS2021, 10.2120.
Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations. (Old No. 1.023)

PHYS3030 Electromagnetism S1 L.5 T.5
Prerequisites: PHYS2011, MATH2100, MATH2120.
Electromagnetic fields; Maxwell's equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Maxwell's equations, waveguides, radiation fields, dipoles and antenna theory. (Old No. 1.0333)

PHYS3041 Experimental Physics A F T4
Prerequisite: PHYS2031.
Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems. (Old No. 1.043)

PHYS3050 Nuclear Physics S2 L.5 T.5
Co-requisite: PHYS3010.
Nuclear shell model; theory of beta decay; the deuteron, nucleon-nucleon scattering; theories of nuclear reactions, resonances; mesons and strange particles, elementary particle properties and interactions; symmetries and quark models; strong and weak interactions. (Old No. 1.0143)

PHYS3110 Experimental Physics B1 S1 T4
Prerequisite: PHYS2031.
Selected experiments and projects. Advanced experimental techniques and open ended projects in the areas covered in PHYS.043 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and super-conductivity. Fourier optics, holography. (Old No. 1.0533)

PHYS3631 Electronics S1 L2 T4
Prerequisites: PHYS2920 or PHYS2031.
SURV1111 Introduction to Computing S1 L2 T2

Revision of plane trigonometry and co-ordinate systems. Join, polar, area calculations using hand calculators. Spherical trigonometry. Principles of calculation; representation of numbers, round-off errors, significant figures, orders of magnitude. Introduction to computers; computer hardware, computer software, operating systems, programs. Program design and documentation. Introduction to FORTRAN; constant types, data elements, selection control, loop control, input and output, program modules. (Old No. 29.3011)

SURV1711 Introduction to Surveying F L1.5 T.5

Historical development of surveying. Principles of survey observations and the control of observation errors. Introduction to geodetic positioning, photogrammetry and remote sensing; cadastral surveying and land information management; engineering, mining, geophysical and hydrographic surveying; mapping. Discussion of the purpose, methods and products of these surveying disciplines. Survey data; structures, collection, storage, processing and presentation. The key values of the surveying profession. The profile and role of a surveyor in practice; knowledge, skill management and professional ethics. Current and future challenges of the changing surveying profession. (Old No. 29.1711)

SURV2041 Survey Data Presentation S2 L2 T1

SURV2111 Principles of Computer Processing S2 L2 T2

Co-requisite: SURV1111.

Operating systems; VAX/VMS, MS-DOS, command languages. Third party software; word processing, spreadsheets, compilers. Program structure; subroutines, functions, control structures. Program libraries; creation, system libraries. Data structures; organisation types, structures, arrays, stacks, lists, queues, trees. Data files; types and organisations. Sorting, searching, merging. Data bases; concepts, types, information access. (Old No. 29.2111)

SURV2221 Introduction to Geodetic Science S2 L2.5 T.5

Historical development of geodesy. Scope and goals of contemporary geodesy. The Earth's gravity field. The Earth's motions in space; the role of time in geodesy, co-ordinate systems and transformations. Near-earth satellite motion. Principles of terrestrial and space geodetic positioning. Integrated geodesy. (Old No. 29.2221)

SURV3011 Surveying Instruments S1 L2.5 T1.5

Prerequisite: SURV1111.

Survey tapes and bands; measurement, calibration, reductions. Levelling instruments; principles, construction, testing and adjustment, ancillary equipment. Optical and electronic theodolites; principles, construction, testing and adjustment. (Old No. 29.3011)
SURV3111 Survey Computations S1 L 2 T 1
Prerequisite: SURV2111.

Intersection, resection, trilateration, with and without redundant data, semigraphic solutions. Missing data problems, road intersections. Traverse computations, algorithm development of Bowditch's traverse adjustment. Computer communications, hardware and software standards, file transfer, protocols. (Old No. 29.3111)

SURV3231 Geodetic Computations S1 L 2 T 1

Principles of map projections. Surveying and mapping projections; transverse Mercator projection. Geometry of the ellipsoid; ellipsoidal computations. Corrections to field observations; arc-to-chord, scale factor and grid convergence. (Old No. 29.3231)

SURV4011 Surveying Techniques S2 L 4.5 T 1.5
Prerequisite: SURV2041. Co-requisite: SURV3111, SURV3113.

Principles, reduction of observations and errors in survey techniques of levelling, horizontal and zenith angle measurement, trigonometric heighting, traversing, vertical staff tacheometry. Electronic distance measurement; principles, corrections, reductions, calibration, electro-optical distance meters. (Old No. 29.4011)

SURV4051 Survey Camp 1 S2 T 3
Co-requisite: SURV3011, SURV4011.

Theodolite and steel band traverse between control points. Contour survey by stadia. Line levelling. Setting out with theodolite and steel band. Calibration of electronic distance meter. (Old No. 29.4051)

SURV4111 Data Analysis and Computing 1 S2 L 2 T 1
Prerequisite: SURV2111. Co-requisite: SURV3111.

Least squares theory; modelling of observations; general, parametric and condition methods. Solution of equations and inverses. Treatment of singular equations and datum problems. Law of propagation of variances. Statistical testing; confidence intervals, error ellipses. Applications in surveying, geodesy, photogrammetry and other sciences. Software design and coding for least squares analysis. Use of personal computers. (Old No. 29.4111)

SURV4221 Geodetic Positioning 1 S2 L 2 T 1
Prerequisite: SURV2221. Co-requisite: SURV3231.

SURV4721 Project Management 1 S2 L 1.5 T 5
Prerequisite: SURV4051. Co-requisite: SURV5011.

Types of business. Organisational and management principles. Goals, strategies and actions. Phases of a project: feasibility study, pilot project, contract work, final report, and control. Principles of project management: organisation, management, planning responsibilities, information, control. Communication: meeting, negotiation, conflict, dialectic for managers. (Old No. 29.4721)

SURV5011 Engineering Surveying S1 L 3.5 T 5
Prerequisites: MATH2009, MATH2829. Co-requisite: SURV3111.

Design and computation of horizontal and vertical curves, volume determination, route surveys. Setting out surveys: techniques, setting out of roads, buildings and large structures. Introduction to mine surveying: height and azimuth transfer. (Old No. 29.5011)

SURV5111 Data Analysis and Computing 2 S1 L 2 T 1
Co-requisite: SURV4111.

Applications of least squares analysis in surveying, geodesy and photogrammetry. Statistical testing. Detection of outliers. Use of software packages. Software design and optimisation. (Old No. 29.5111)

SURV5221 Geodetic Positioning 2 S1 L 2 T 1
Co-requisite: SURV4111.

Introduction to satellite positioning; review of reference systems in satellite geodesy; absolute and relative positioning; ranging methods and review of satellite technology. Introduction to the GPS system; measurement modes. Surveying with GPS; planning a survey, instrumentation, field and office procedures. Modelling the observations; principles of data processing. Combination of terrestrial and GPS data. Height determination using GPS. Case studies. (Old No. 29.5221)

SURV5621 Cadastral Surveying 1 S1 L 2 T 1
Prerequisite: SURV2221. Co-requisite: SURV3111.

The legal system in Australia and NSW; the nature of land law including land tenure, estates in land, interests in land. Land title systems. Land administration in Australia and NSW. Boundary surveying principles. Cadastral mapping in NSW. (Old No. 29.5621)

SURV5721 Project Management 2 S1 L 1.5 T 5
Co-requisite: SURV4721.

Aims and forms of project organisation. Preparation of contracts and specifications: contract law, subcontracting, contract work, bidding. Project scheduling, control and documentation. Management of the project resources. Budgeting (financial, personnel, equipment), personnel planning. Financial management reporting, accounting systems, cash flow, cash flow analysis. (Old No. 29.5721)

SURV6051 Survey Camp 2 S2 T 4
Prerequisite: SURV4051. Co-requisite: SURV5011.

One week survey project of substantial extent, followed by one hour per week computations, plan and report preparation at the School of Surveying. (Old No. 29.6051)

SURV6121 Computer Graphics S2 L 2 T 1
Prerequisite: SURV4051. Co-requisite: SURV5011.

Overview of graphics systems and their relation to computer assisted mapping and information systems. Acquisition, processing, presentation of data. Graphics data structures, algorithms and transformations. Graphics programming using a high level language and graphics language. Use of interactive graphics display terminals. (Old No. 29.6121)
SURV511 Photogrammetry and Mapping I S2 L2 T2
Properties of photogrammetric and remotely sensed images; photography, electro-optical, linear array, microwave systems. Photograph geometry; camera calibration, inner orientation, collinearity equations, deviations from collinearity. Stereoscopic vision; Principles of instrumentation for analogue and analytical photogrammetry. Exterior orientation; relative and absolute orientation, ground control point selection. (Old No. 29.6511)

SURV621 Cadastral Surveying 2 S2 L2 T1
Co-requisite: SURV5621.
Survey investigation for both artificial and natural boundaries; survey and title searching. Field note preparation for cadastral surveying. Survey marking and preparation of plans of survey. Study of appropriate statutes and regulations. Cadastral survey techniques for urban and rural properties; the status of roads in NSW, strata plan surveys, identification surveys, consents for MHWM, railways, rivers, kerbs in Sydney. The role of coordinates in cadastral surveying. (Old No. 29.6621)

SURV671 Project Management 3 S2 L1.5 T.5
Co-requisite: SURV571.
Project teams in a corporation. Psychology of professionals. Qualifications of a project manager. Decision making process in project management: authority, power, interaction, leadership, assignments. Human resource management: small group behaviour, learning curve, management of teams in professional practice, professional liabilities and responsibilities. Short term field planning. Logistics of field work. Case studies in the application of project management to surveying projects. (Old No. 29.681)

SURV681 Land Economics and Valuation S2 L2 T1
The surveyor's role in the economic use of land. Variation of land use and land value. Temporal change in land use due to supply and demand, and its effect on land development and urbanisation. Location theory, public measures for directing land use, introduction to valuation; factors affecting value of land, valuation principles and practice. (Old No. 29.6811)

SURV701 Survey Camp 3 S1 T7
Prerequisites: SURV511, SURV621
Two weeks survey camp for projects selected from areas of cadastral, engineering and geodetic surveying, followed by (one hour per week) computations, plan and report preparation at the School of Surveying.

SURV731 Offshore Surveying S1 L2 T1

SURV751 Photogrammetry and Mapping 2 S1 L2 T1
Prerequisite: SURV 6511
Aerial triangulation; semi and analytical methods, block adjustment by models and bundles, control requirements for block adjustment. Differential rectification; orthophotos. Map production; map compilation by photogrammetric techniques, map production processes. Project planning. Non-topographic methods of photogrammetry.

SURV752 Remote Sensing and Resources S1 L2 T1
Surveys

SURV753 Spatial Information Systems S1 L2 T1
Overview and background of Spatial Information Systems. Explanation of definitions and terminology; LIS, GIS, MPC. Management and institutional issues; land information as maps and records; existing systems; problems. Technological issues; digital maps and data base management; data acquisition; data storage; editing; raster and vector representations; topology. Modelling and analysis.

SURV771 Land Management and Development Project S1 L1 T1 S2 L2 T1
Prerequisite: SURV681
Design project for a residential neighbourhood development, illustrating the interactions between a registered surveyor, design engineer and town planner. Critical site analysis, including environmental and physical constraints and the use of thematic land use maps. Structure plan design and presentation showing the broader cultural aims of the development. Plan of detailed lot layout; considerations of access, grades, building locations and environmental protection. Preparation of engineering design and plans to local government specifications and standards.

SURV781 Land Subdivision and Development S1 L2 T1
Prerequisite: SURV 681
Subdivision and development control in New South Wales. Administration of subdivision and development under Local Government and environmental planning and assessment legislation; procedures and legal controls. Statutory requirements for land development and subdivision of land, particularly as they apply to broad-acre subdivisions.

SURV801 Project S1 T1 S2 T8
The project is undertaken in the final year of the BSurv Course with one hour per week in the first session and 8 hours per week in the second session. Students must undertake surveying projects or research tasks in the field or laboratory on a topic approved by the Head of School, under the guidance of academic staff. Each student is required to submit a written report in prescribed format by a specific date at the end of the second session.
SURV8011 Project Surveying S2 L2.5 T0.5
Selected topics from: monitoring of deformations and settlement of terrain, structures and machines; design and optimization of precise engineering networks; high precision distance measurement; 3-D measuring systems; computer controlled surveying; length transducers; alignment surveys; interferometer applications; collimation and auto-collimation techniques; optical tooling; principal and use of gyrotheodolite; electronic tiltmeters; inertial surveys.

SURV8221 Advanced Geodesy S2 L2 T1
Prerequisite: SURV 5221
Selected topics from: space technologies including GPS for high precision positioning; satellite altimetry analysis; gravimetric geodesy; 4-D geodesy; inertial positioning technology; methods of kinematic positioning.

SURV8531 Spatial Information Systems 2 S2 L2 T1
Management of Land Information Systems; system lifecycle; development; costs and benefits; examples in Australia and overseas. Data management; combination of attribute and graphical data; continuous mapping; indexing; computer considerations; standards for cartography, software, hardware and communications. Future developments. Modelling and analysis with a GIS software system.

SURV8711 Professional Practice S2 T2
Students must complete 60 days of approved professional practice prior to the commencement of this subject. Professional practice is to be taken during the vacation periods. Students are required to provide evidence of this practice in a special log-book (available from the School). A detailed report must be submitted and a seminar must be presented summarising the work done and the experience gained during the professional practice period. Students are required to perform several practical surveying tasks (including instrument adjustment, levelling, traversing and resection) which will be examined.

SURV0411 Surveying for Builders S1 L1 T1.5 C2
A compulsory subject. Prerequisites: nil.

SURV0441 Surveying for Engineers S2 L2 T2.5
Principles of surveying; co-ordinate systems, levelling, linear and angular measurement. Traversing, tacheometry and electronic distance measurement. Areas and Volumes. Horizontal and vertical curves. Control, underground and construction surveys. Outline of photogrammetry. (Old No. 29.441)

SURV0491 Survey Camp
A one-week field camp for students studying SURV0441 Surveying for Engineers. (Old No. 29.491)

SURV0580 Mining Surveying S1 L2 T1
Prerequisite: SURV0441.

SURV0752 Remote Sensing Techniques S1 L3 T1
and Applications
The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; infra-red remote sensing techniques; side-looking airborne radar; theory and applications of Landsat imagery; interpretation of Landsat photographic products. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

SURV0901 Introduction to Mapping S1 L1 T.5
All students re-enrolling in 1991 or enrolling in graduate courses should obtain a copy of the free leaflet Re-Enrolling 1991 available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

The Graduate School of Engineering is concerned with the co-ordination and development of the graduate activities of the Faculty and provides opportunities for well-qualified graduates to engage in advanced studies and research.

The School of Civil Engineering consists of five departments: Geotechnical Engineering (foundation engineering, soil mechanics, rock mechanics, concrete technology, and pavement engineering); Engineering Construction and Management (civil engineering systems, engineering economy, project planning and management and civil engineering construction); Structural Engineering (structural analysis and design, solid mechanics, bridge engineering, concrete structures and numerical methods); Transport Engineering (planning, design, and operation of transport systems, statistical analysis, land use and transport modelling, economic evaluations and environmental impact studies); Water Engineering (hydraulics, hydrology, water resources, waste management and public health engineering). The Centre for Wastewater Treatment is also located within the School. In addition to extensive laboratory facilities on the Kensington campus, the School operates laboratories at King Street, Randwick and King Street, Manly Vale. The latter complex houses the School's Water Research Laboratory and the associated Water Reference Library. The School also uses the Fowlers Gap Arid Zone Research Station for construction camps and data collection for arid zone hydrology.

The School of Electrical Engineering and Computer Science comprises five departments: Communications (all aspects of theory, applied electronics and engineering relating to communication systems such as telephones, broadcasting and television); Electric Power (electrical machines and generation, distribution and utilisation of electric energy); Electronics (electronic circuits, devices, micro-electronics and application of electronics to such areas as solar power generation); Computer Science (design of computer devices and the handling of information in all forms, e.g. numeric alphabetic, pictorial, verbal); Systems and Control (development of theories for the control of complex systems and the application of these theories including computer simulation). The Centre for Photovoltaic Devices and Systems, which was established in August 1990 as a Special
The School of Mechanical and Manufacturing Engineering consists of five Disciplines, which underpin the fundamental areas of the profession, and six Programs of industry-oriented cross-disciplinary activity.

The Disciplines are: Applied Mechanics (engineering mechanics and mechanics of solids; Design (conceptual design, machine systems design, optimization and failure-analysis); Fluid and Thermal Engineering (energy utilization and power generation, refrigeration and air conditioning, gas and liquid handling); Industrial Technology and Management (economic analysis, production planning and control, product and process design, methods engineering and operations research); Mechatronics (interface between mechanical engineering and electronic engineering).

The Programs are: Manufacturing and Automation; Mechanical Building Services; Maintenance Engineering; Energy and power Systems; Transport Engineering; Machine Systems Design.

The School of Surveying areas of study: Satellite Surveying (position determination techniques using satellite signals); Geodetic Surveying (determining the mathematical model of the Earth, and its gravity field, and the practice of surveying on the Earth's surface); Hydrographic Surveying (mapping the seabed and waterways for navigation and off-shore resource management); Engineering Surveying (the precise surveying for engineering projects); Cadastral Surveying (knowledge of the laws and practices for survey of property boundaries); Land Management and Development (environmental assessment for resource management and change of land use); Land Information Management (the use of computer-based information systems of spatially related data for planning purposes); Photogrammetry and Remote Sensing (the use of photographs and remotely sensed images for mapping and resource surveys).

The Centre for Biomedical Engineering is an interdisciplinary unit which promotes and co-ordinates biomedical engineering studies and research being conducted by a number of schools within the University and teaching hospitals. Biomedical engineering involves the application of engineering techniques to biomedical problems with particular emphasis on clinical medicine.

The Centre for Safety Science promotes and co-ordinates teaching and research in the multidisciplinary field of occupational health and safety. The major areas of study include occupational health control, safety engineering and management for safety, with an emphasis being placed on the engineering of a safe working environment.

The Centre for Groundwater Management and Hydrogeology was established early in 1987 as a research and training unit within the Faculties of Applied Science and Engineering. Its general aims are to research the groundwater problems of strategic national importance and to co-ordinate and develop postgraduate courses and continuing education programs, and to liaise with industry.

The Centre for Membrane and Separation Technology is a Commonwealth Special Research Centre established in 1988 to explore the use of synthetic membranes for separating liquid gaseous mixtures. Its laboratories are in the School of Chemical Engineering and Industrial Chemistry and the School of Physics, with the administrative centre being in the Faculty of Engineering.

The Centre for Remote Sensing is a joint enterprise of the Faculties of Applied Science, and Engineering which promotes and co-ordinates remote sensing studies and research being conducted by various schools within the University. Remote sensing is the science of obtaining information about the earth's surface (in particular) using electro-magnetic imaging systems mounted on aircraft and space platforms.

The Centre for Wastewater Treatment was established with a grant provided by the Australian Water Advisory Council. The Centre conducts research in the field of wastewater treatment and offers short courses and a consultancy service for industry.

The Faculty awards seven higher degrees as follows: Research – Doctor of Philosophy, Master of Engineering and Master of Surveying; Course Work Masters – Master of Engineering Science (available in a number of areas of specialisation), Master of Surveying Science, Master of Safety Science and Master of Biomedical Engineering. In addition, the degrees of Doctor of Science and Master of Science may be awarded for research conducted in, or in association with, the Faculty of Engineering.

The administration of the various awards including admission, progress and assessment of all higher degree and diploma candidates is conducted by the Higher Degree Committee of the Faculty under the general supervision of the Faculty of Engineering.

Conditions governing the award of higher degrees and graduate diplomas are set out later in this handbook in Conditions for the Award of Higher Degrees. However, conditions for the award of the degree of Doctor of Science may be found in the University Calendar.

English Language Requirements

Applicants whose first language is not English or who have not undertaken a previous degree where English was the primary language of instruction are required to provide proof of their competence by presenting acceptable results from one of the following tests or by satisfying the course authority as to their level of proficiency.

<table>
<thead>
<tr>
<th>Minimum Acceptable Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Test of English as a Foreign Language (TOEFL) 550</td>
</tr>
<tr>
<td>2. International English Language Testing Service (IELTS) 6</td>
</tr>
<tr>
<td>3. Combined Universities Language Test (CULT) 65%</td>
</tr>
<tr>
<td>4. Indonesia-Australia Language Foundation (IALF) * Cat 1 or 2</td>
</tr>
</tbody>
</table>

*Cat 3 may be accepted if concurrent English Program available.
Research Degrees

Doctor of Philosophy
PhD

This degree is awarded for a thesis considered to be a substantially original contribution to the subject concerned. The degree is becoming a prerequisite for research appointments in government and industrial research and development laboratories.

Admission Guidelines A candidate for registration for the degree of Doctor of Philosophy should hold an honours degree from the University of New South Wales or an honours degree of equivalent standing from another approved university. See also English Language Requirements as detailed earlier under Graduate School of Engineering. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Period of Candidature The normal period is six academic sessions (full-time) and six academic sessions (part-time) from the date of enrolment. In special cases the minimum period of registration may be reduced by up to two academic sessions. The maximum period of registration is ten academic sessions (full-time) and twelve academic sessions (part-time). In special cases an extension of these times may be granted.

Master of Engineering/Master of Science/
Master of Surveying
ME/MSc/MSurv

These are research degrees in which a thesis embodies the result of an original investigation, or design, or engineering surveying development. Candidates for the degree of ME and MSurv may be required to carry out a program of advanced study.

Admission Guidelines A candidate for registration for the degree of Master of Engineering, Master of Science or Master of Surveying should hold a Bachelor’s degree from the University of New South Wales or from another approved university. See also English Language Requirements as detailed earlier under Graduate School of Engineering. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Period of Candidature The normal period is four academic sessions (full-time) and six academic sessions (part-time) from the date of enrolment. In special cases the minimum period of registration may be reduced by up to two academic sessions. The maximum period of registration is six academic sessions (full-time) and ten academic sessions (part-time). In special cases extensions may be granted.

Research degrees may be undertaken in the Faculty of Engineering as follows:

<table>
<thead>
<tr>
<th>Degree</th>
<th>School/Course</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Civil Engineering</td>
<td>1630</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering and</td>
<td>1641</td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree</th>
<th>School/Course</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>Civil Engineering</td>
<td>2650</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering and</td>
<td>2661</td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical and Manufacturing</td>
<td>2662</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td>2692</td>
</tr>
<tr>
<td></td>
<td>Safety Science</td>
<td>2695</td>
</tr>
<tr>
<td></td>
<td>Surveying</td>
<td>2720</td>
</tr>
<tr>
<td>MSurv</td>
<td>Civil Engineering</td>
<td>2750</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td>2761</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Manufacturing</td>
<td>2775</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td>2781</td>
</tr>
<tr>
<td>MSc</td>
<td>Biomedical Engineering</td>
<td>2795</td>
</tr>
</tbody>
</table>

Course Work Masters Degrees

Master of Engineering Science/Master of Surveying Science
MEngSc/MSurvSc

These are Faculty-wide degrees allowing for flexibility of choice between formal course work and research. The schools in the Faculty have developed recommended programs of study leading to specialisation in certain areas.

New candidates enrolled from 1990 are required to complete a program totalling 30 credits* (except in the area of information science which requires 36 credits). Those who first enrolled prior to 1990 including those who are upgrading from a graduate diploma must complete 36 credits. A degree may be awarded for formal coursework only or for the completion of formal coursework and a report on a project. The number of credits for project reports varies from school to school and between departments within schools and are 9, 12 or 18.

Candidates may undertake interdisciplinary studies and, subject to approval, are able to take subjects from any school in the Faculty, other faculties of the University and other universities or institutions. By means of this system, programs of study best suited to the needs of the candidates may be selected.

Before enrolment an applicant should submit an intended program for approval by the school division offering the majority of the credits to ensure that the prerequisite background held is adequate for all subjects including those taken in other schools or institutions.

Admission Guidelines An acceptable qualification is a degree at Honours level, or at Pass level to a superior standard in a four-year course in an approved discipline. The latter is defined as an average of 65% over the last two years of a full-time course (or last three stages of a part-time course) taken in minimum time. If the degree concerned is not in an acceptable

*See definition of 'credit' under Graduate Subjects later in this section.
discipline, or was of less than four years full-time study, a bridging or qualifying program is required. This is normally arranged by enrolment in the appropriate graduate diploma with the possibility of transferring to the Masters program after completion of requirements prescribed by the Faculty. See also English Language Requirements as detailed earlier under Graduate School of Engineering.

Applicants for admissions to a course of study leading to the award of a course work Masters degree should apply to the Registrar on the prescribed form at least two calendar months before the commencement of the session in which registration is to begin. It may be necessary to limit entry to some formal courses because of available resources. In such cases, an application may be provisionally accepted 'subject to a place being available'. When a firm offer is made, it is subject to acceptance within one month.

Period of Candidature The normal period is two academic sessions (full-time) or four academic sessions (part-time) from the date of enrolment. The maximum period of candidature is four academic sessions (full-time) and eight academic sessions (part-time). In special cases an extension of time may be granted. A candidate is not permitted to continue in a course if the credit value of the subjects failed totals more than six.

Master of Biomedical Engineering MBiomedE

This degree is primarily obtained through course work but includes a project report conducted in either a hospital or other institution. The course of study offers scope for original research into the application of engineering principles and technology to medical problems. Candidates must complete a program totalling 60 credits, 40 of which must be for the study of subjects at graduate level.

Admission Guidelines An acceptable qualification is a degree at Honours level, or at Pass level to a superior standard in a four-year course in an approved discipline. The latter is defined as an average of 65% over the last two years of a full-time course (or last three stages of a part-time course) taken in minimum time. If the degree concerned is not in an acceptable discipline, or was of less than four years full-time study, a bridging or qualifying program is usually required. This is normally arranged by enrolment in the appropriate graduate diploma with the possibility of transferring to the Masters program after completion of requirements prescribed by the Faculty. See also English Language Requirements as detailed earlier under Graduate School of Engineering.

Applicants for admission to a course of study leading to the award of a course work Masters degree should apply to the Registrar on the prescribed form at least two calendar months before the commencement of the session in which registration is to begin. It may be necessary to limit entry to some subjects because of available resources. In such cases, an application may be provisionally accepted 'subject to a place being available'. When a firm offer is made, it is subject to acceptance within one month.

Period of Candidature The normal period is three academic sessions (full-time) and six academic sessions (part-time) from the date of enrolment. The maximum period of candidature is six academic sessions (full-time) and ten academic sessions (part-time). In special cases an extension of time may be granted. A candidate is not permitted to continue in a course if the credit value of the subjects failed totals more than six.

Courses of Study

Courses of study leading to the award of course work Masters degrees may be undertaken in the Faculty as follows:

Please note that it was necessary to introduce new codes for some MEngSc and the MSurvSc courses in 1990. Students enrolled in programs from 1990 have been transferred to the new codes while those enrolled in programs prior to 1990 have remained in pre-1990 codes.

<table>
<thead>
<tr>
<th>Degree</th>
<th>School/Course</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEngSc</td>
<td>Electrical Engineering</td>
<td>8501</td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td>8504</td>
</tr>
<tr>
<td></td>
<td>Computer Engineering/</td>
<td>8507</td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td>8531</td>
</tr>
<tr>
<td></td>
<td>Information Science</td>
<td>8541</td>
</tr>
<tr>
<td></td>
<td>Industrial Engineering</td>
<td>8641</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering</td>
<td>8612</td>
</tr>
<tr>
<td></td>
<td>Remote Sensing</td>
<td>8675</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering</td>
<td>8676</td>
</tr>
<tr>
<td></td>
<td>Waste Management</td>
<td>(To be determined)</td>
</tr>
<tr>
<td></td>
<td>Surveying</td>
<td>8640</td>
</tr>
<tr>
<td></td>
<td>Industrial Safety</td>
<td>8675</td>
</tr>
<tr>
<td>MSurvSc</td>
<td>Surveying</td>
<td>8651</td>
</tr>
<tr>
<td>MBiomedE</td>
<td>Biomedical Engineering</td>
<td>8660</td>
</tr>
<tr>
<td>MSafetySc</td>
<td>Safety Science</td>
<td>8671</td>
</tr>
</tbody>
</table>

The program in Remote Sensing is offered in both the Faculty of Engineering and the Faculty of Applied Science. Entry into either Faculty depends upon the background of the applicant and the orientation of the proposed program.
The program in Arid Lands Management, to which the Faculty of Engineering contributes, is available in the Faculty of Applied Science (course code 8025). Details are available from the Faculty of Applied Science Handbook.

Subjects available in the Faculty of Engineering are listed toward the end of this section. However, not all electives are offered in any particular year. Subject descriptions appear in the following section of the handbook.

Subject Identification Scheme

The first digit in the numeric suffix of all new subject identifiers for subjects offered by the Schools and Centres in the Faculty of Engineering indicates the level of the subject and the value '9' in this position is reserved for graduate subjects. A list of old and new subjects is available (contact Schools) for reference purposes. Please locate Subject Description: Identification of Subjects in the index for further information.

Course Work Programs

Detailed information is available from the schools offering the courses.

8501

Electrical Engineering and Computer Science

Master of Engineering Science

MEngSc

- Candidates may commence in Session 1 or Session 2 and must possess an appropriate level of knowledge for the program subjects chosen.
- All candidates elect to study in at least one of the specific programs offered by the School of Electrical Engineering and Computer Science: each Program Co-ordinator will advise if applicants are adequately qualified to undertake the proposed subjects and must approve the chosen program.

All candidates must register in one of the following major areas and in at least one of its programs:

Major Area

Communications

Program Co-ordinator: Dr R.A. Zakarevicius

Programs:
1. Communication Electronics
2. Digital Communication and Systems
3. Microwave and Optical Communications
4. Signal Processing

Electric Power

Program Co-ordinator: Dr T.R. Blackburn

Programs:
1. Power Systems Engineering
2. Electrical Power Technology

Electronics

Program Co-ordinator: Dr R.S. Huang

1. Solid State Devices
2. Microelectronics

Computer Science

Program Co-ordinator: Professor J. Hiller

1. Computer Science/Computer Engineering
2. Information Science

Systems and Control

Program Co-ordinator: Professor N.W. Rees

Programs:
1. Digital Systems and Control
2. Cybernetic Engineering and Advanced Robotics
3. Biomedical Engineering (see co-ordinator)

Programs listed would normally consist of 12 or 18 credits of course work and correspondingly an 18 or 12 credit project. However, other appropriate programs or subjects in the same major area or other areas may be substituted for the project allowing completion of the 30 credits by course work only (except in Information Science which requires 36).

Specialist Programs

Communications

1. Communication Electronics
- Normally 12 credits of course work and an 18 credit project.
- One of the five elective subjects may be chosen from outside this program.

Compulsory subject

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9340</td>
<td>Communication Electronics</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9221</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9353</td>
<td>Microwave Circuits: Theory and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9354</td>
<td>Microwave and Optical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9338</td>
<td>Television Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1—Fundamental Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343</td>
<td>Digital and Analogue Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9403</td>
<td>Real Time Computing and Control</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9503</td>
<td>Integrated Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>CPMP9215</td>
<td>VLSI System Architecture and Design</td>
<td>3</td>
</tr>
</tbody>
</table>
2. Digital Communication and Systems
- Normally 12 credits of coursework and an 18 credit project.
- At least three subjects must be taken from the following list and the remaining subjects from other graduate programs within the Department and School.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9336</td>
<td>Digital Communication Networks 1</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9337</td>
<td>Digital Communication Networks 2</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9338</td>
<td>Television Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343</td>
<td>Digital and Analogue Communications</td>
<td></td>
</tr>
<tr>
<td>ELEC9347</td>
<td>Digital Modulation and Coding</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Microwave and Optical Communications
- Normally 12 credits of course work and an 18 credit project.
- One of the three elective subjects may be chosen from outside this program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9350</td>
<td>Theory of Optical Fibres and Optical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9351</td>
<td>Propagation and Transmission of Electromagnetic Waves</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9354</td>
<td>Microwave and Optical Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects
- ELEC9352 Antenna Design and Applications
- ELEC9353 Microwave Circuits: Theory and Techniques
- ELEC9355 Optical Communications Systems

4. Signal Processing
- Normally 12 credits of course work and an 18 credit project.
- One of the four elective subjects may be chosen from outside the program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1 - Fundamental Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9342</td>
<td>Signal Processing 2 - Advanced Techniques</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects
- ELEC9340 Communications Electronics
- ELEC9343 Digital and Analogue Communications
- ELEC9350 Theory of Optical Fibres and Optical Signal Processing
- ELEC9370 Digital Image Processing Systems
- MATH5054 Advanced Mathematics for Electrical Engineers

Electric Power
1. Power Systems Engineering
- Normally 12 or 18 credits of course work and either an 18 or 12 credit project or a program in another area offered by the School.
- Three elective subjects to be chosen.

2. Electrical Power Technology
- Normally 12 or 18 credits of course work and either an 18 or 12 credit project or a program in another area offered by the School.
- Four elective subjects to be chosen.

Electronics
- Normally 12 or 18 credits coursework and correspondingly 18 or 12 credit project.
- There are no compulsory subjects, but at least 3 subjects should be chosen from one of the programs shown below.
- The remaining three subjects may be chosen from the alternative program list or outside these lists.

1. Solid State Devices
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9354</td>
<td>Microwave and Optical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9501</td>
<td>Advanced Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9502</td>
<td>Integrated Circuit Technology</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9504</td>
<td>Solar Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9505</td>
<td>Technology and System Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Microelectronics
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9215</td>
<td>VLSI Systems Architecture Design</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9340</td>
<td>Communication Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9501</td>
<td>Advanced Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9502</td>
<td>Integrated Circuit Technology</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9503</td>
<td>Integrated Circuit Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional elective subjects for both programs:
Computer Science

1. Computer Science/Computer Engineering

- Normally 30 credits of coursework or 12 or 18 credits of coursework and correspondingly a 18 or 12 credit project.
- At least four elective subjects (coursework only program) or at least two elective subjects (12 credit thesis program) to be chosen as appropriate.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9221</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC4532</td>
<td>Integrated Digital Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1 - Fundamental Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9342</td>
<td>Signal Processing 2 - Advanced Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343</td>
<td>Digital and Analog Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9353</td>
<td>Microwave Circuits: Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects
- **COMP9114** Formal Specification
- **COMP9115** Programming Languages: Fundamental Concepts
- **COMP9211** Digital Systems
- **COMP9214** Computer Organisation and Architecture
- **COMP9215** VLSI System Architecture and Design
- **COMP9216** Parallel and Distributed Computing Systems
- **COMP9314** Advanced Data Base Management 1
- **COMP9315** Advanced Data Base Management 2
- **COMP9414** Artificial Intelligence
- **COMP9415** Computer Graphics
- **COMP9416** Expert Systems and Deductive Data Bases

These subjects are normally only available during the day.

2. Information Science

A student may undertake this interdisciplinary program in one of two ways:

- 18 credit project and at least 18 credits of coursework.
- 36 credits of coursework with one of the compulsory subjects involving a minor project.
- 18 Credit Project Structure (MEngSc only)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9314</td>
<td>Advanced Data Base Management 1</td>
<td>3</td>
</tr>
<tr>
<td>COMP9315</td>
<td>Advanced Data Base Management 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Systems and Control

1. Digital Systems and Control

- Normally 18 credits of coursework and a 12 credit project.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9401</td>
<td>Computer Control Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9402</td>
<td>Computer Control Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9403</td>
<td>Real Time Computing and Control</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9404</td>
<td>Topics in Digital Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects
- **COMP9221** Microprocessor Systems
- **ELEC9342** Signal Processing 2 - Advanced Techniques
- **ELEC9405** Advanced Control Topics
- **ELEC9408** Computer Display Systems and Interactive Instrumentation
- **ELEC9410** Robotics, Automation and Productivity Technology

2. Cybernetic Engineering and Advanced Robotics

- Normally 9 credits of coursework plus 12 credit project.
- Remaining 9 credits may be taken from the elective list or other programs and subjects.
Engineering

Compulsory subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9407</td>
<td>Cybernetic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9409</td>
<td>Cybernetic, Machine and Robot Vision</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9410</td>
<td>Robotics, Automation and Productivity Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9221</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9342</td>
<td>Signal Processing 2 – Advanced Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9370</td>
<td>Digital Image Processing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9403</td>
<td>Real Time Computing and Control</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9405</td>
<td>Human Movement Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9408</td>
<td>Computer Display Systems and Interactive Instrumentation</td>
<td>3</td>
</tr>
</tbody>
</table>

8531 Industrial Engineering

8541 Mechanical Engineering

Master of Engineering Science MEngSc

A major field of study is required to be nominated and two-thirds of the 30 credits required for the degree must be taken in that major field. (Examples of major fields are applied mechanics, fluid mechanics, manufacturing management, mechatronics and design. Consult School Advisers for further details.)

All candidates take a 12 credit project on a topic in their major field.

Formal lecture subjects are not restricted to the School of Mechanical and Manufacturing Engineering, Faculty of Engineering or this University, but two-thirds of all credits must be taken at the University of New South Wales.

In consultation with their School Adviser, candidates at enrolment put together a program which is based on these requirements, but which may be modified from time to time in the light of changes in availability of subjects. These requirements also apply to a number of specialist courses which are offered by the School of Mechanical and Manufacturing Engineering and which are described below. Some of these specialist programs may not run if the resources are not available. The structure of the programs is currently under review.

Specialist Programs

1. Computer Integrated Manufacturing

12 credits of core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF9400</td>
<td>Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9520</td>
<td>Computer Aided Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MANF9541</td>
<td>Computer Aided Design for Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MANF9460</td>
<td>Computer Integrated Manufacturing</td>
<td>3</td>
</tr>
</tbody>
</table>

and 12 credit project

MANF9010 Research Project

The remaining 6 credits may be selected from

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH9221</td>
<td>Industrial Robotics</td>
<td>3</td>
</tr>
<tr>
<td>MECH9410</td>
<td>Finite Element Applications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9403</td>
<td>Real Time Computing and Control</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9409</td>
<td>Robot Vision</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9410</td>
<td>Robotics, Automation and Productivity Technology</td>
<td>3</td>
</tr>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MANF9410</td>
<td>Inspection and Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>MANF9500</td>
<td>Computer Aided Programming for Numerical Control</td>
<td>3</td>
</tr>
<tr>
<td>MANF9601</td>
<td>Economic Decisions in Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9340</td>
<td>Flexible Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>MANF9542</td>
<td>Computer Aided Design for Manufacture</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Industrial Management

3 credits of core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF9400</td>
<td>Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9040</td>
<td>Industrial Management Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

and 12 credit project

MANF9010 Research Project

At least 6 credits must be selected from the following list of priority subjects:

ACCT9062 Accounting for Engineers | 3 |
MANF9650 Decision Support Systems | 3 |
MANF9620 Operations Research | 6 |

and the remaining 9 credits may be selected from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4509</td>
<td>Computing Science for Mechanical Engineers</td>
<td>2</td>
</tr>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>IROB5701</td>
<td>Industrial Relations A</td>
<td>3</td>
</tr>
<tr>
<td>MANF9811</td>
<td>Industrial Experimentation 1</td>
<td>3</td>
</tr>
<tr>
<td>MANF9650</td>
<td>Decision Support Systems</td>
<td>3</td>
</tr>
<tr>
<td>MANF9410</td>
<td>Inspection and Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>MANF9320</td>
<td>Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>MANF9310</td>
<td>Factory Design and Layout</td>
<td>3</td>
</tr>
<tr>
<td>MANF9210</td>
<td>Value Analysis and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MANF9620</td>
<td>Operations Research 1</td>
<td>6</td>
</tr>
<tr>
<td>MANF9610</td>
<td>Decision Theory for Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9601</td>
<td>Economic Decisions in Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9440</td>
<td>Management of Distribution Systems</td>
<td>2</td>
</tr>
<tr>
<td>MANF9420</td>
<td>Production and Inventory Control</td>
<td>2</td>
</tr>
</tbody>
</table>

Before enrolling in the program, a student should have had one year’s relevant industrial experience and have access to industry for his/her project topic.

3. Operations Research

Prerequisites

(i) 2 years of university level mathematics

(ii) minimum 28 hours university level course in Probability and Statistics (or enrolment in MATH2839 Statistics SM or equivalent as a co-requisite)

(iii) minimum 40 hours university level course in Engineering Economic Analysis (or enrolment in MANF9601 Economic Decisions in Industrial Management as a co-requisite)
(iv) competence in computer programming (or enrolment in MECH1500 Computing 1M as a co-requisite).

9 credits of core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 9062</td>
<td>Accounting for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MANF 9620</td>
<td>Operations Research 1</td>
<td>6</td>
</tr>
<tr>
<td>MANF 9049</td>
<td>Operations Research Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

and 12 credit project

MANF 9010 Research Project

The remaining 9 credits may be selected from

MANF9400 Industrial Management 3
MANF9650 Decision Support Systems 3
MANF9320 Ergonomics 3
MANF9310 Factory Design and Layout 3
MANF9300 Methods Engineering 4
MANF9210 Value Analysis and Engineering 3
MANF9450 Management Simulation 3
MANF9610 Decision Theory for Industrial Management 3
MANF9660 Energy Modelling, Optimization and Energy Accounting 3
MANF9601 Economic Decisions in Industrial Management 3
MANF9330 Simulations in Operations Research 2
MANF9420 Production and Inventory Control 2
MANF9840 Linear Programming 2
MANF9650 Nonlinear Programming 2
MANF9630 Large Scale Optimization in Industry 3
MANF9670 Dynamic Programming 2

4. Refrigeration and Air Conditioning

12 credits of core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH9751</td>
<td>Refrigeration and Air Conditioning 1</td>
<td>3</td>
</tr>
<tr>
<td>MECH9752</td>
<td>Refrigeration and Air Conditioning 11</td>
<td>3</td>
</tr>
<tr>
<td>MECH9753</td>
<td>Refrigeration and Air Conditioning</td>
<td>3</td>
</tr>
<tr>
<td>MECH9754</td>
<td>Refrigeration and Air Conditioning</td>
<td>3</td>
</tr>
</tbody>
</table>

and 12 credit project

MECH9010 Research Project

The remaining 6 credits may be selected from

MECH9710 Numerical Fluid Dynamics and Heat Transfer 3
MECH9321 Acoustic Noise 1 2
MECH9322 Acoustic Noise 11 2
MECH9741 Energy Conservation and System Design 3
MECH9730 Two Phase Flow and Heat Transfer 3
MECH9720 Solar Thermal Energy Design 3
MECH9711 Analysis of Heat Transfer 4
MECH9757 Ambient Energy Air Conditioning 2
SAFE9232 Introduction to Occupational Health and Safety Law 3
SAFE9573 Ventilation 3

or such other subjects (based on availability) as may be approved by the Head of School.

5. Industrial Automation

9 credits of subjects must be selected from

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH9201</td>
<td>Digital Fundamentals for Mechanical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MECH9202</td>
<td>Microprocessor Fundamentals</td>
<td>3</td>
</tr>
</tbody>
</table>

MECH9402 Industrial Applications for Microprocessors 3
MECH9221 Industrial Robots 3
MECH9222 Artificially Intelligent Machines 3
MANF9500 Computer Aided Programming for Numerical Control 3

and 12 credit project

MECH9010 Research Project

The remaining 9 credits may be selected from the above list or from other subjects as approved by the Head of School.

6. Advanced Analysis for Design

12 credits of core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH9410</td>
<td>Finite Element Applications</td>
<td>3</td>
</tr>
<tr>
<td>MECH9421</td>
<td>Stress Analysis for Mechanical Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>MECH9400</td>
<td>Mechanics of Fracture and Fatigue</td>
<td>3</td>
</tr>
<tr>
<td>MANF9320</td>
<td>Ergonomics</td>
<td>3</td>
</tr>
</tbody>
</table>

and 12 credit project

MECH9010 Research Project

The remaining 6 credits may be selected from

MECH4120 Design Technology 2
MECH4130 Project Management 2
MECH4130 Computer-Aided Engineering Design (or MANF9630) 2
MECH9460 Experimental Stress Analysis 3
CIVL9731 Project Management (or CIVL9732) 3
CIVL9732 Advanced Project Management (or CIVL9731) 3
MANF9210 Value Analysis and Engineering 3
MANF9601 Economic Decisions in Industrial Management 3
MANF9630 Large Scale Optimisation in Industry 3

or other subjects approved by the Head of School.

8612

Civil Engineering

Master of Engineering Science
MEngSc

The School of Civil Engineering offers a large number of graduate subjects which allow the flexibility of many combinations to provide relevant groupings both in an academic and professional sense. The main technical groupings are:

- engineering construction and management
- geotechnical engineering
- structural engineering
- transport engineering
- water engineering

All candidates are required to undertake a project with the other credits being obtained from formal course work. Full details of preferred programs in the various specialisms areas are available from the School.
Waste Management
(Code No. to be determined)
Master of Engineering Science
MEngSc

Waste Management
8085
Master of Applied Science
MAppSc

Candidates are required to complete a course totalling at least 30 credits, made up of compulsory subjects, elective subjects and a project. The degree may be obtained internally on a full time (normally 2 sessions) or part time (normally 4 sessions) basis. An external course program is also offered (normally over 4 sessions) to students outside Sydney with resource material posted to students and evaluation made on written assignments and examinations.

Candidates are enrolled as MEngSc or MAppSc depending on their previous qualification experience and course content.

Compulsory subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9872</td>
<td>Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9873</td>
<td>Waste and Wastewater Analysis and</td>
<td></td>
</tr>
<tr>
<td>CIVL8873*</td>
<td>Environmental Requirements</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9874</td>
<td>Waste Management Science</td>
<td></td>
</tr>
<tr>
<td>CIVL8874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9863</td>
<td>Sources of Waste and</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8863</td>
<td>Landfill Disposal</td>
<td></td>
</tr>
<tr>
<td>FUEL5880*</td>
<td>Unit Operations in Wastewater Sludge</td>
<td></td>
</tr>
<tr>
<td>FUEL5881*+</td>
<td>and Solids Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Project (MEngSc)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9909</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>CIVL8909</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project (MAppSc)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL9504</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>GEOL9604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects

For a graduate degree specialising in Waste Management a candidate would normally complete 15 credits of core subjects plus 6 credits selected from the list of elective subjects and a project.

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINE1524</td>
<td>Mining Conservation</td>
<td>3</td>
</tr>
<tr>
<td>MINE5355</td>
<td>Mine Fill Technology</td>
<td>2</td>
</tr>
<tr>
<td>FUEL5920/</td>
<td>Atmospheric Pollution Control</td>
<td></td>
</tr>
<tr>
<td>FUEL5921*</td>
<td>Practical Aspects</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9857</td>
<td>Sewage Treatment and Disposal</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8857</td>
<td>Sewage Treatment and Disposal</td>
<td></td>
</tr>
<tr>
<td>CIVL9870</td>
<td>Hydraulics and Design of Water and Wastewater Treatment Plants</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9881</td>
<td>Hazardous Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8881</td>
<td>Hazardous Waste Management</td>
<td></td>
</tr>
<tr>
<td>CIVL9882</td>
<td>Industrial Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8882</td>
<td>Industrial Waste Management</td>
<td></td>
</tr>
<tr>
<td>GEOL9010</td>
<td>Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9020</td>
<td>Geopollution Management</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9060</td>
<td>Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9320</td>
<td>Geopollution Management</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9543</td>
<td>Management of Dangerous Materials</td>
<td></td>
</tr>
</tbody>
</table>

SAFE9242 | Human Behaviour and Safety Science | 3 |

CEIC5630 | Industrial Water and Wastewater Engineering | 3 |

* Internal students take CIVL9855
+ Internal students take CIVL8851
Cannot be taken in conjunction with CIVL9882/CIVL8882

8641
Remote Sensing

Master of Engineering Science
MEngSc

Candidates are required to complete a course totalling at least 30 credits, made up of compulsory subjects, elective subjects and a project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject, approved by the appropriate Head of School. The degree will normally comprise one year of full-time study (two sessions of 15 credits) or two years of part-time study.

Candidates who are not exempted from any of the compulsory subjects and who opt for the Research Project (12 credits), will achieve the required 30 credits without any elective subjects.

Compulsory subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE0G9150</td>
<td>Remote Sensing Applications</td>
<td>3</td>
</tr>
<tr>
<td>SURV9600</td>
<td>Principles of Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>SURV9602</td>
<td>Remote Sensing Procedures</td>
<td></td>
</tr>
<tr>
<td>SURV9605</td>
<td>Ground Investigations for Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>REMO9580</td>
<td>Image Analysis in Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>REMO9581</td>
<td>Microwave Remote Sensing</td>
<td>3</td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Project in Remote Sensing†</td>
<td>12</td>
</tr>
</tbody>
</table>

†The subject number for these subjects varies according to the school in which the candidate is enrolled.

Elective subjects

Candidates may include additional subjects selected from the following listed elective subjects, or from other relevant subjects offered within the University, as approved by the appropriate Head of School.

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9370</td>
<td>Digital Image Processing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9408</td>
<td>Computer Display Systems and Interactive Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>COMP1011</td>
<td>Computing 1A</td>
<td>4</td>
</tr>
<tr>
<td>COMP1021</td>
<td>Computing 1A</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9170</td>
<td>Remote Sensing in Applied Geology</td>
<td>2</td>
</tr>
<tr>
<td>GEOG9210</td>
<td>Remote Sensing Instrumentation and Satellite Programs</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9240</td>
<td>Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9110</td>
<td>Soil Erosion and Conservation</td>
<td>6</td>
</tr>
<tr>
<td>GEOG9140</td>
<td>Terrain Evaluation</td>
<td>6</td>
</tr>
<tr>
<td>SURV9213</td>
<td>Physical Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>SURV9604</td>
<td>Land Information Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
Master of Surveying Science
MSurvSc

Programs of study leading to the degree of MSurvSc are offered by the School of Surveying in a range of topics including:
- advanced surveying
- geodesy
- photogrammetry
- land development and management
- land and geographic information systems

Candidates are allowed a wide choice in selecting programs. Subjects can be selected to suit individual student needs and typical programs can be supplied by the School on request. The program of study must total at least 30 credits. One credit is normally equal to attendance for one hour per week for one session but some senior undergraduate subjects may be taken for partial credit towards the degree. The program normally includes a Project of 12 credits. Examples of suitable external subjects are electronic computing, statistics, oceanography, and a range of others.

Master of Surveying Science
MSurvSc In Land and Geographic Information Systems

Candidates are required to complete a course totalling at least 30 credits made up of compulsory subjects, elective subjects and a project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject approved by the appropriate Head of School. The course will normally comprise one year of full-time study or two years of part-time study.

Compulsory subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9311</td>
<td>Data Base Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9240</td>
<td>Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>SURV9532</td>
<td>Computer-Assisted Mapping</td>
<td>3</td>
</tr>
<tr>
<td>SURV9604</td>
<td>Land Information Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG9150</td>
<td>Remote Sensing Applications</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9210</td>
<td>Computer Mapping and Data Display</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9250</td>
<td>Special Topic in Geography</td>
<td>3</td>
</tr>
<tr>
<td>REMO9580</td>
<td>Image Analysis in Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>LIBS9015</td>
<td>Economics of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>LIBS9017</td>
<td>Information Storage and Retrieval Systems</td>
<td>6</td>
</tr>
<tr>
<td>ELEC9336</td>
<td>Digital Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>SURV9107</td>
<td>Special Topic in Surveying B</td>
<td>3</td>
</tr>
<tr>
<td>SURV9608</td>
<td>Cadastral Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td>12</td>
</tr>
</tbody>
</table>

The Masters degree program in Land and Geographic Systems is offered in both the Faculty of Engineering and the Faculty of Applied Science. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.

Master of Biomedical Engineering
MBiomedE

The program of study must total 60 credits and include at least 40 credits at graduate level.

Strand A subjects are directed to candidates with an engineering/physical sciences background and Strand B to those with a medical/biological sciences background. Selection of subjects is not limited to those listed below: relevant approved subjects from other areas may be undertaken. A research project is compulsory and may be undertaken concurrently with other subjects. An 18 credit Project Report is the normal requirement.

Session 1 (March-June)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPH2112</td>
<td>Physiology 1 (full year) (Strand A)</td>
<td>12</td>
</tr>
<tr>
<td>ANAT2111</td>
<td>Introductory Anatomy (Strand A)</td>
<td>6</td>
</tr>
<tr>
<td>BIOM9101</td>
<td>Mathematical Modelling for Biomedical Engineers (Strand B)</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9501</td>
<td>Computing for Biomedical Engineers (Strand B)</td>
<td>4</td>
</tr>
<tr>
<td>ELEC9411</td>
<td>Introductory Physiology for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9028</td>
<td>Radiation Physics</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9040</td>
<td>Analogue Electronics for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9060</td>
<td>Biomedical Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9551</td>
<td>Biomechanics of Physical Rehabilitation</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9561</td>
<td>Mechanical Properties of Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9601</td>
<td>Biomedical Applications of Microcomputers</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9621</td>
<td>Biological Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9701</td>
<td>Dynamics of the Cardiovascular System</td>
<td>3</td>
</tr>
<tr>
<td>BIOT7100</td>
<td>Biological Principles</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9224</td>
<td>Principles of Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>PATH9003</td>
<td>Principles of Disease Processes</td>
<td>3</td>
</tr>
</tbody>
</table>

Session 2 (July-November)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPH2112</td>
<td>Physiology 1 (continued)</td>
<td></td>
</tr>
<tr>
<td>BIOM9010</td>
<td>Biomedical Engineering Practice HR</td>
<td>2</td>
</tr>
<tr>
<td>BIOM9012</td>
<td>Biomedical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9027</td>
<td>Medical Imaging</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9050</td>
<td>Microprocessors and Circuit Design for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9311</td>
<td>Mass Transfer in Medicine</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9321</td>
<td>Physiological Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9332</td>
<td>Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9541</td>
<td>Mechanics of the Human Body</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9602</td>
<td>Biomedical Applications of Microcomputers</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9603</td>
<td>Image and Flow Cytometry</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9611</td>
<td>Medical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9533</td>
<td>Electrical Safety</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9018</td>
<td>Project Report</td>
<td>18</td>
</tr>
<tr>
<td>BIOM9030</td>
<td>Project Report</td>
<td>30</td>
</tr>
</tbody>
</table>
For part-time students, ONLY, who are unable to do PHPH2112.

These 3 electives vary according to Session in which offered. Only 1 is offered per year. Prerequisite for BIOM9541 and BIOM9551: ANAT2111 or equivalent.

For non-medical graduates only. Prerequisite: PHHP2111 or equivalent; pre- or co-requisite: ANAT2111.

Prerequisite: BIOM9501 and BIOM9540 or equivalents.

Subject follows on from BIOM9901.

Research project may be done concurrently with course work during the other sessions. An 18-credit Project Report is the normal requirement.

8670 Safety Science

Master of Safety Science MSafetySc

Candidates are required to complete a program of 45 credits made up of 24 credits of compulsory subjects, 12 credits of electives, and a 9 credit Project. Students are also required to demonstrate either a satisfactory standard of understanding of all the preliminary subjects listed below or to pass those subjects in addition to the 45 credit program.

This enables students from a wide range of disciplines (such as engineering, science, medicine, physiotherapy and education) to reach an adequate standard of comprehension for studying the compulsory subjects. When undertaking a project, each candidate is expected to attend seminars and to report progress on the project.

Preliminary subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAL9011 Quantitative Methods and Statistics</td>
<td>12</td>
</tr>
<tr>
<td>SAFE9122 Computing for Safety Science</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9142 Organisational Communication for Safety</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9011 Principles of Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ANAT6151 Introductory Functional Anatomy</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Subjects

SAFE9211 Introduction to Safety Engineering 3

or

SAFE9213 Introduction to Safety Engineering M 3

SAFE9224 Principles of Ergonomics 3

SAFE9232 Introduction to Occupational Health and Safety Law 3

SAFE9242 Human Behaviour and Safety Science 3

SAFE9342 Management for Safety 3

SAFE9352 Hazard and Risk Analysis 3

SAFE9261 Occupational Health and Hygiene 3

CMED9701 Occupational Disease 3

Electives

CHEM7325 Toxicology, Occupational and Public Health 6

GSBE1101 Community Noise Control 2

SAFE9424 Applied Ergonomics 3

SAFE9523 Machines and Structures Safety 3

SAFE9533 Electrical Safety 3

SAFE9543 Management of Dangerous Materials 3

SAFE9544 Transport Safety 3

SAFE9553 Radiation Protection 3

SAFE9561 Occupational Health Practice 3

SAFE9573 Fire and Explosion 3

SAFE9583 Ventilation 3

CMED9617 Occupational Medicine Practice 6

LAWS9541 Occupational Safety and Health Law 4

BIOM9541 Mechanics of the Human Body 3

Project

SAFE9609 Project 9

or

SAFE9618 Project Report 18

Graduate Diplomas

Courses of study leading to the award of a Graduate Diploma in Engineering provide graduates with opportunities to extend their professional knowledge. In most cases, candidates may choose from a range of subjects in the special area of their choice. There are also opportunities to select subjects from other professional areas in which candidates may be interested.

Before enrolment, an applicant should submit an intended program for approval by the school or centre offering the majority of the credits. Candidates enrolling for the first time in 1990 must complete a program totalling 24 credits (except for Biomedical Engineering (30) and Safety Science (30)) while those enrolled prior to 1990 must still complete the original requirement of 30 credits. In both cases 12 credits may be derived from approved undergraduate subjects and the program may contain subjects from other schools of the Faculty, other faculties of the University and other universities or institutions subject to meeting the prerequisite requirements. If an applicant nominates a course of study taken from the list below, at least half of the credits should come from the subjects taken in that area.

It should be noted that some candidates who have partially completed or who have completed the requirements but not taken out the diploma may be considered for upgrading to the relevant Master program with advanced standing. Since the policy on upgrading varies between different schools and centres, further enquiries should be made with the school or centre concerned.

Admission Guidelines: An applicant for admission to a graduate diploma course should be a graduate of the University of New South Wales or other approved university or have other qualifications as may be approved by the Faculty of Engineering. Applicants should apply to the Academic Registrar on the prescribed form at least two calendar months before the commencement of the session in which registration is to begin. It may be necessary to limit entry because of available resources. In such cases, an application may be provisionally accepted 'subject to a place being available'. When a firm offer is made, it is subject to acceptance within one month.

Period of Candidature: The normal period is two academic sessions (full-time) or four academic sessions (part-time) from the date of enrolment. The maximum period of candidature is four academic sessions (full-time) and six academic sessions (part-time). In special cases extensions may be granted. A
The subjects which may be available for a candidate proceeding to the award of the degree of Master of Engineering Science, Master of Safety Science, Master of Surveying Science, Master of Biomedical Engineering and Graduate Diploma are listed below. Not all electives are necessarily offered in any particular year.

Under the credit system in operation in the Faculty, one credit is normally equal to one hour's attendance per week for one session. The qualification 'normally' is required because of the varying ways in which credits are distributed for course work, design, critical review or research in the different schools.

Many graduate subjects assume that students have prior, or preliminary, knowledge of the area of study. It is the responsibility of students to acquaint themselves with this level of assumed prior knowledge and take steps, if necessary, to obtain it. This may, for example, involve a course of preparatory reading before commencing the subject.

In some cases the assumed level of knowledge for a specific subject is indicated in this Handbook by the statement of assumed knowledge. This is intended as a guide to the assumed prior knowledge and often uses the description of other subjects in the Handbook (graduate and undergraduate) to indicate the content and level which the lecturer will assume. Students who are in doubt as to the adequacy of their preparation should contact the lecturer concerned and discuss the matter. The lecturer in charge of a subject has the authority to decide whether or not the student has the appropriate level of assumed knowledge.

Civil Engineering

Department of Transport Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9402</td>
<td>Transport, Environment, Community Interaction 3</td>
</tr>
<tr>
<td>CIVL9403</td>
<td>Theory of Land Use Transport Interaction 3</td>
</tr>
<tr>
<td>CIVL9405</td>
<td>Urban Transport Planning Practice 3</td>
</tr>
<tr>
<td>CIVL9407</td>
<td>Transport System Design Non-Urban 3</td>
</tr>
<tr>
<td>CIVL9408</td>
<td>Transport System Design Urban 3</td>
</tr>
<tr>
<td>CIVL9410</td>
<td>Highway Engineering Practice 3</td>
</tr>
<tr>
<td>CIVL9412</td>
<td>Economics for Transportation Studies 3</td>
</tr>
<tr>
<td>CIVL9414</td>
<td>Transport Systems Part 1 3</td>
</tr>
<tr>
<td>CIVL9415</td>
<td>Transport Systems Part 2 3</td>
</tr>
<tr>
<td>CIVL9416</td>
<td>Traffic Engineering 6</td>
</tr>
<tr>
<td>CIVL9417</td>
<td>Transport and Traffic Flow Theory 6</td>
</tr>
<tr>
<td>CIVL9418</td>
<td>Statistics for Transport Studies Part 13</td>
</tr>
<tr>
<td>CIVL9419</td>
<td>Statistics for Transport Studies Part 23</td>
</tr>
<tr>
<td>CIVL9420</td>
<td>Special Topic in Transport Engineering 3</td>
</tr>
</tbody>
</table>

Department of Engineering Construction and Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9701</td>
<td>Economic Decision Making in Engineering 3</td>
</tr>
<tr>
<td>CIVL9702</td>
<td>Project Planning and Control 3</td>
</tr>
<tr>
<td>CIVL9704</td>
<td>Quantitative Engineering Management 3</td>
</tr>
<tr>
<td>CIVL9705</td>
<td>Engineering Management Practice 3</td>
</tr>
<tr>
<td>CIVL9706</td>
<td>Management of People 3</td>
</tr>
<tr>
<td>CIVL9710</td>
<td>Engineering Risk Management 3</td>
</tr>
<tr>
<td>CIVL9714</td>
<td>Special Topic in Engineering Management 3</td>
</tr>
<tr>
<td>CIVL9723</td>
<td>Construction Design 3</td>
</tr>
<tr>
<td>CIVL9724</td>
<td>Construction Engineering and Technology 3</td>
</tr>
<tr>
<td>CIVL9725</td>
<td>Engineering Financial Management 3</td>
</tr>
<tr>
<td>CIVL9726</td>
<td>Legal Studies and Professional Practice 3</td>
</tr>
<tr>
<td>CIVL9727</td>
<td>Construction Planning and Estimating 6</td>
</tr>
<tr>
<td>CIVL9728</td>
<td>Special Topic in Construction 6</td>
</tr>
<tr>
<td>CIVL9731</td>
<td>Project Management 3</td>
</tr>
<tr>
<td>CIVL9732</td>
<td>Masonry construction, Design and Materials 3</td>
</tr>
</tbody>
</table>
Department of Geotechnical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9753</td>
<td>Soil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9776</td>
<td>Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9777</td>
<td>Numerical Methods in Geomechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9781</td>
<td>Advanced Concrete Technology 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9783</td>
<td>Pavement Materials</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9784</td>
<td>Pavement Design</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9785</td>
<td>Pavement Evaluation and Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9786</td>
<td>Industrial and Heavy Duty Pavements</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9788</td>
<td>Site Investigations</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9790</td>
<td>Stability of Slopes</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9791</td>
<td>Foundation Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9792</td>
<td>Foundation Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9793</td>
<td>Geomechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Department of Structural Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9802</td>
<td>Elastic Stability 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9803</td>
<td>Elastic Stability 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9804</td>
<td>Vibration of Structures 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9805</td>
<td>Vibration of Structures 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9806</td>
<td>Prestressed Concrete 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9807</td>
<td>Prestressed Concrete 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9809</td>
<td>Reinforced Concrete 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9810</td>
<td>Reinforced Concrete 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9812</td>
<td>Plastic Analysis and Design of Steel Structures 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9813</td>
<td>Plastic Analysis and Design of Steel Structures 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9814</td>
<td>Analysis of Plates and Shells</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9817</td>
<td>Experimental Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9818</td>
<td>Bridge Design 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9819</td>
<td>Bridge Design 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9820</td>
<td>Structural Analysis and Finite Elements 1 (SAFE 1)</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9821</td>
<td>Structural Analysis and Finite Elements 2 (SAFE 2)</td>
<td>3</td>
</tr>
</tbody>
</table>

Department of Water Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9830</td>
<td>Hydromechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9831</td>
<td>Closed Conduit Flow</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9832</td>
<td>Pipe Network and Transients</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9833</td>
<td>Free Surface Flow</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9835</td>
<td>Coastal Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9836</td>
<td>Coastal Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9847</td>
<td>Water Resources Policy</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9848</td>
<td>Water Resource System Design</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9849</td>
<td>Irrigation</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9851</td>
<td>Unit Operations in Public Health Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9852</td>
<td>Water Distribution and Sewage Collection</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9855</td>
<td>Water and Wastewater Analysis and Quality Requirements</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9856</td>
<td>Water Treatment**</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9857</td>
<td>Sewage Treatment and Disposal**</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9858</td>
<td>Water Quality Management**</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9860</td>
<td>Investigation of Groundwater Resources 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9861</td>
<td>Investigation of Groundwater Resources 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9862</td>
<td>Fluvial Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9863</td>
<td>Estuarine Hydraulics</td>
<td>3</td>
</tr>
</tbody>
</table>

Department of Communications

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9330</td>
<td>Special Topic</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9370</td>
<td>Digital Image Processing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9350</td>
<td>Theory of Optical Fibres and Optical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9352</td>
<td>Antenna Design and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9351</td>
<td>Propagation and Transmission of Electromagnetic Waves</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9353</td>
<td>Microwave Circuits: Theory and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9354</td>
<td>Microwave and Optical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9336</td>
<td>Digital Communication Networks 1</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9337</td>
<td>Data Networks 2</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9338</td>
<td>Television Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9340</td>
<td>Communication Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1-Fundamental Signal Processing Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9342</td>
<td>Signal Processing 2-Advanced Signal Processing Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343</td>
<td>Digital and Analogue Communications</td>
<td>3</td>
</tr>
</tbody>
</table>
Graduate Study: Course Outlines

Credits
ELEC9347 Digital Modulation 3
ELEC9348 Optical Communication Systems 3

Department of Electric Power Engineering
ELEC9201 Power System Planning and Economics 3
ELEC9202 Power System Operation, Control and Protection 3
ELEC9211 High Voltage Technology 3
ELEC9212 Partial Discharges in Electrical Insulation 3
ELEC9213 Insulation Performance in Electrical Plant 3
ELEC9214 Power System Equipment 3
ELEC9215 Fields and Materials 3
ELEC9220 Power Systems Analysis 3
ELEC9221 Special Topic in Power 3
ELEC9222 Special Topic in Power 3

Department of Electronics
ELEC9506 Special Topic in Electronics 3
ELEC9501 Advanced Semiconductor Devices 3
ELEC9502 Integrated Circuit Technology 3
ELEC9503 Integrated Circuit Design 3
ELEC9504 Solar Energy Conversion 3
ELEC9505 Solar Cells - Operating Principles, Technology and System Applications 3

Department of Systems and Control
ELEC9401 Computer Control Systems 1 3
ELEC9402 Computer Control Systems 2 3
ELEC9403 Real Time Computing and Control 3
ELEC9404 Topics in Digital Control 3
ELEC9405 Advanced Control Topics 3
ELEC9406 Design of Advanced Microprocessor Systems 3
ELEC9407 Cybernetic Engineering 3
ELEC9408 Computer Display Systems and Interactive Instrumentation 3
ELEC9409 Robot Vision 3
ELEC9410 Robotics, Automation and Productivity Technology 3
ELEC9412 Biological Signal Analysis 3

Department of Computer Science
COMP9114 Formal Specification 3
COMP9115 Programming Languages: Fundamental Concepts 3
COMP9211 Digital Systems 3
COMP9214 Computer Organisation and Architecture 3
COMP9215 VLSI System Design 3
COMP9216 Parallel and Distributed Computing Systems 3
COMP9311 Data Base Systems 6
COMP9314 Advanced Data Base Management 1 3
COMP9315 Advanced Data Base Management 3
COMP9414 Artificial Intelligence 3
COMP9415 Computer Graphics 3
COMP9416 Expert Systems and Deductive Data Base 3
COMP9511 Human-Computer Interaction 3

COMP9514 Advanced Decision Theory for Information Science 3
COMP9596 Advanced topics in Information Science 6
COMP9614 Linguistics 3

Other subjects
MATH5054 Advanced Mathematics for Electrical Engineers 3

Project
COMP9612 Project 12
ELEC9612 Project 12
COMP9618 Project 18
ELEC9618 Project 18

Mechanical and Manufacturing Engineering

Credits
MECH9010 Project 12
MECH9019 Project 9
MECH9029 Project Report+ 18
MECH9039 Thesis+ 36
MECH9201 Digital Logic Fundamentals for Mechanical Engineers 3
MECH9202 Microprocessor Fundamentals for Mechanical Engineers‡ 3
MECH9203 Industrial Applications of Microprocessors 3
MECH9204 Elements of Industrial Automation‡ 3
MECH9205 The Analysis and Use of Integrated CAD/CAM Systems 3
MECH9211 & Control and Modelling 3
MECH9212 of Mechanical Systems 1,2‡ 3,3
MECH9221 Industrial Robotics 3
MECH9222 Artificially Intelligent Machines 3
MECH9301 & Advanced Mechanism Analysis 3
MECH9302 and Synthesis 1, 2 3,3
MECH9310 Advanced Vibration Analysis 3
MECH9320 Random Vibrations 2
MECH9321 & Acoustic Noise 1,2 2,2
MECH9322 2,2
MECH9361 & Lubrication Theory and Design 1,2 2,2
MECH9362 2,2
MECH9400 Mechanics of Fracture and Fatigue 3
MECH9410 Finite Element Applications 3
MECH9421 & Stress Analysis for Mechanical 3
MECH9422 Engineering Design 1,2 3,3
MECH9460 Experimental Stress Analysis 3
MECH9620 Computational Fluid Dynamics 3
MECH9631 & Gasdynamics 1,2 2,2
MECH9632 2,2
MECH9710 Numerical Fluid Dynamics and Heat Transfer 3
MECH9711 Analysis of Heat Transfer* 4
MECH9720 Solar Thermal Energy Design 3
MECH9730 Two Phase Flow and Heat Transfer* 4
MECH9740 Power Plant Engineering 3
MECH9741 Energy Conservation and System Design 3
MECH9751 & Refrigeration and Air Conditioning 1, 2* 3, 3
MECH9752 Refrigeration and Air Conditioning Design 1, 2* 3, 3
MECH9753 Refrigeration and Air Conditioning Applications 3
MECH9754 Refrigeration and Air Conditioning Experimentation 3
MECH9755 Ambient Energy Air Conditioning 2
MECH9761 & Internal Combustion Engines 1, 2
MECH9762
MECH9800 Ordinary Differential Equations in Mechanical Engineering 3
MECH9900- Special Topics in Mechanical Engineering 2, 2
MECH9910 Special Topic in Mechanical Engineering 3, 3
MANF9010 Research Project 12
MANF9019 Project† 9
MANF9029 Project Report† 18
MANF9039 Thesis† 36
MANF9040 Industrial Management Seminar 0
MANF9049 Operations Research Seminar 0
MANF9191 Special Topic in Production Engineering 2
MANF9192 Special Topic in Production Engineering 2
MANF9193 Special Topic in Production Engineering 2
MANF9200 Design for Production 4
MANF9210 Value Analysis Engineering 3
MANF9220 Product Design and Technological Innovation 3
MANF9300 Methods Engineering 4
MANF9310 Factory Design and Layout 3
MANF9320 Ergonomics 3
MANF9330 Simulation in Operations Research 3
MANF9340 Flexible Manufacturing Systems 3
MANF9400 Industrial Management 3
MANF9410 Inspection and Quality Control 3
MANF9420 Production and Inventory Control 2
MANF9430 Scheduling and Sequencing 2
MANF9440 Management of Distribution Systems 2
MANF9460 Computer Integrated Manufacturing 3
MANF9491 Special Topic in Industrial Engineering 3
MANF9492 Special Topic in Industrial Engineering 3
MANF9500 Computer Aided Programming for Numerical Control 3
MANF9510 Computer Automation 3
MANF9520 Computer-Aided Manufacturing 3
MANF9530 Discrete Event Simulation Languages 3
MANF9540 Management Simulation 3
MANF9541 Computer Aided Design for Manufacture 3
MANF9542 CAD for Manufacture 2 3
MANF9601 Economic Decisions in Industrial Management 3

MANF9610 Decision Theory for Industrial Management 3
MANF9620 Operations Research 1 6
MANF9630 Large Scale Optimisation in Industry 3
MANF9640 Industrial Applications of Mathematical Programming 3
MANF9650 Decision Support Systems 3
MANF9660 Energy Modelling, Optimisation and Energy Accounting 3
MANF9691 Special Topic in Operations Research 2
MANF9692 Special Topic in Operations Research 2
MANF9693 Special Topic in Operations Research 2
MANF9811 Industrial Experimentation 1 3
MANF9812 Industrial Experimentation 2 3
MANF9820 Time Series and Forecasting 2
MANF9840 Linear Programming 2
MANF9850 Non-Linear Programming 2
MANF9860 Networks and Graphs 2
MANF9870 Dynamic Programming 2
MANF9880 Optimal Control Research 2

*Candidates wishing to specialise in Refrigeration and Air Conditioning should select this subject.
†Candidates wishing to specialise in Industrial Automation should select this subject.
‡A 9, 18 and 36 credit Thesis or Project are not normally approved in the School of Mechanical and Manufacturing Engineering.

Note 1: Candidates taking their Projects in Industrial Management are generally required to take MANF9400 and MANF9404 plus at least 11 credits from MANF9300, MANF9620, MANF9640 and ACCT9062 Accounting for Engineers. Before enrolling in the Projects they must have had one year's relevant industrial experience and have access to industry for their project topics.

Note 2: Candidates taking their projects in Operations Research are generally required to take the MANF9620, MANF9450, MANF9049 and ACCT9062 Accounting for Engineers.

Note 3: All Master of Engineering Science candidates in the Industrial Technology and Management Discipline must include MANF9010 Research Project (12cr) in their programs.

Surveying

SURV9106 Special Topic in Surveying A 3
SURV9107 Special Topic in Surveying B 3
SURV9121 Network and Deformation Analysis 3
SURV9122 Elements of Geodetic Equipment 3
SURV9161 Advanced Estimation Techniques 3
SURV9162 Mathematical Methods 3
SURV9210 Satellite Surveying 3
SURV9211 Introduction to Geodesy 3
SURV9213 Physical Meteorology 3
SURV9217 Gravimetric Geoid Evaluations 3
SURV9530 Analytical Photogrammetry 3
SURV9532 Computer Assisted Mapping 3
SURV9600 Principles of Remote Sensing 3
SURV9602 Remote Sensing Procedures 3
SURV9604 Land Information Systems 3
SURV9605 Ground Investigations for Remote Sensing 3

...
Centre for Biomedical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9090</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>BIOM9010</td>
<td>Biomedical Engineering Practice</td>
<td>2</td>
</tr>
<tr>
<td>BIOM9012</td>
<td>Biomedical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9018</td>
<td>Project Report</td>
<td>18</td>
</tr>
<tr>
<td>BIOM9027</td>
<td>Medical Imaging</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9028</td>
<td>Radiation Physics</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9030</td>
<td>Project Report</td>
<td>30</td>
</tr>
<tr>
<td>BIOM9040</td>
<td>Analogue Electronics for Biomedical Engineers†</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9050</td>
<td>Microprocessors and Circuit Design for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9060</td>
<td>Biomedical Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9101</td>
<td>Mathematical Modelling for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9311</td>
<td>Mass Transfer in Medicine</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9312</td>
<td>Physiological Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9332</td>
<td>Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9501</td>
<td>Computing for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9541</td>
<td>Mechanics of the Human Body‡</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9551</td>
<td>Biomechanics of Physical Rehabilitation‡</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9561</td>
<td>Mechanical Properties of Biomaterials‡</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9601</td>
<td>Biomedical Applications of Microprocessors 1**</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9602</td>
<td>Biomedical Applications of Microprocessors 2 ††</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9603</td>
<td>Image and Flow Cytometry</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9611</td>
<td>Medical Instrumentation*</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9621</td>
<td>Biological Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9701</td>
<td>Dynamics of the Cardiovascular System</td>
<td>3</td>
</tr>
<tr>
<td>PATH9003</td>
<td>Principles of Disease Processes ††</td>
<td>3</td>
</tr>
</tbody>
</table>

†Prerequisite BIOM9501 and BIOM9604 or equivalents.
‡These 3 electives vary according to session offered. Only one is offered each year.
**Prerequisite BIOM9040 or equivalent.
††For non-medical graduates only. Prerequisite PHPH2112 or equivalent; pre- or co-require ANAT2111.

Safety Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFE9011</td>
<td>Principles of Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9122</td>
<td>Computing for Safety Science</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9142</td>
<td>Organisational Communication for Safety</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9211 or SAFE9213</td>
<td>Introduction to Safety Engineering</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9213</td>
<td>Introduction to Safety Engineering M</td>
<td>3</td>
</tr>
</tbody>
</table>

Graduate Diploma Subjects

Graduate Diploma programs in all schools of the Faculty may include subjects from the above list, subject to the approval of the Head of School responsible for the subject.

In addition the following subjects are offered specially for Graduate Diploma candidates. Not all electives are necessarily offered in any particular year.

School of Electrical Engineering and Computer Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9011</td>
<td>Literacy and Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP9012</td>
<td>Software Engineering and Tools</td>
<td>3</td>
</tr>
<tr>
<td>COMP9013</td>
<td>Data Bases and Expert Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP9221</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(a Computer Organisation and Interfacing subject to be determined)</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9411</td>
<td>Introductory Physiology for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

School of Mechanical and Manufacturing Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH9201</td>
<td>Digital Logic Fundamentals for Mechanical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MANF9300</td>
<td>Methods Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MANF9602</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MANF9629</td>
<td>Operations Research</td>
<td>6</td>
</tr>
<tr>
<td>ACCT9001</td>
<td>Introduction to Accounting A</td>
<td>3</td>
</tr>
<tr>
<td>ACCT9002</td>
<td>Introduction to Accounting B</td>
<td>3</td>
</tr>
</tbody>
</table>
Projects and Research

Supervision of projects and research will generally be available in the following areas of research interest in the Schools of the Faculty. Alternatively, design and other topics may be chosen by arrangement. Contact staff members are listed within disciplines.

Civil Engineering

Engineering Construction and Management

Prof Carmichael

Prof Carmichael

Geotechnical Engineering

A/Prof Shakel

A/Prof Shakel

Numerical Methods in Geomechanics

A/Prof Shakel

Finite element techniques and their applications in geotechnical engineering including static and dynamic loading. Theoretical and numerical studies of rock blasting Numerical techniques in static and dynamic fracture mechanics. Application of artificial intelligence and fuzzy-sets in geotechnical engineering.

A/Prof Shakel

Pavement Engineering

A/Prof Shakel

Civil Engineering Materials

A/Prof Shakel

Groundwater

Dr Acworth

Hydrology

Prof Pilgrim

Hydraulics

A/Prof Dudgeon

Prestressed Concrete Structures

A/Prof Gilbert

Public Health Engineering

Mr Bliss

Reinforced Concrete Structures

A/Prof Gilbert

Structural Analysis

Dr Lawther

Dr Mickleborough

Analysis of dynamic response of off-shore structures and buildings.

Dr Tin Loi

Shakedown analysis of structures.

Transport Engineering

Prof Black

Water Resources Engineering

Prof Pilgrim

Waste Management

Mr Moore

Electrical Engineering and Computer Science

Communications

A/Prof Chu, Dr Betts, Dr Ruhl, Dr Zakarevicius

Optical communications

A/Prof Chu, Dr Betts, Dr Ruhl

Optical fibres and integrated optics

A/Prof Chu

Electro-optic devices and sensors

Digital Communications

A/Prof Kom, Dr Zakarevicius, Dr Radzyner, Dr Irving

Digital radio and modulation methods

Computer communication and local area networks

New architectures for local area networks

Switching and stores program control systems

UHF and microwave circuits and devices

Microwave measurements and electronics

Antennas and phased arrays

Radar and navigational aids

Land & Satellite Mobile Communications

Mobile satellite communications

Signal processing and analysis

Active and adaptive filtering

Digital Filters

Digital Signal Processor Chip applications

Acoustic and seismic signal processing

Digital image processing

Electronic music

SAW Signal Processing

Computer Science

Artificial intelligence

Artificial intelligence in teaching and training

Cognitive modelling

Combinatorial algorithms

Complexity

Computational geometry

Computer aided design

Computer aided design

Computer aided instruction projects (C.A.I.)

Dr Sammut

Mr Chan

Dr Piotrowski

Dr Wilson

Dr Wilson

Dr Whale

Mr Lambert

Dr Ng

Prof Hellestrand

Dr Mathsson
Computer architecture
Computer arithmetic
Computer assisted instruction (C.A.I.)
Computer assisted learning
Computer graphics
Computer managed learning (C.M.L.)
Computer organization
Data base management
Decision making under uncertainty
Electronic publishing
Expert systems
Expert systems
Fault tolerant computer systems
Fourth generation languages
Functional programming
Human interface computing
Information retrieval
Integrated circuit design and logic testing
Knowledge representation using conceptual graphs
Languages
Logic programming
Logic programming
Logic programming
Logic of questions
Machine learning
Man-machine interfaces
Mechanical theorem proving
Microprocessor based equipment
Microprocessor based equipment
Multiparadigm programming environments
Natural language processing
Natural language understanding
Neural networks
Non-standard logics (modal and temporal logics)
Office automation
Operating systems
Operating systems
Parallel and distributed systems
Parsing and compiling
Plagiarism detection
Program correctness
Program generators
Program verification
Query language testing
Software engineering
Software engineering
Specification and variation
String matching
VLSI Systems

Dr Matheson
Dr Ng
Dr Baker
Dr Piotrowski
Dr Sammut
Mr Lamber
Dr Piotrowski
Dr Matheson
Prof Hiller
Prof Hiller
A/Prof Lions
Dr Sammut
Mr Chan
Prof. Hellestrand
Dr Baker
Dr Piotrowski
Prof Hiller
Prof Hiller
Dr Matheson
Dr Piotrowski
Dr Sammut
Dr Matheson
Mr Chan
Dr Matheson
Dr Ng
Dr Ng
Dr Whale
Dr Wilson
Dr Wilson
Mr Chan
A/Prof Lions
A/Prof Lions
Dr Ng
Dr Olszewski
Prof Hellestrand
Dr Baker
Dr Whale
Dr Linsay
Dr Baker
Dr Piotrowski
Prof Hiller
Dr Linsay
Prof Hellestrand
Dr Linsay
Dr Whale
Prof Hellestrand
Dr Matheson
Dr Ng
Dr Baker
Dr Piotrowski
Dr Sammut
Mr Lamber
Dr Piotrowski
Dr Matheson
Prof Hiller
Prof Hiller
A/Prof Lions
Dr Sammut
Mr Chan
Prof. Hellestrand
Dr Baker
Dr Piotrowski
Prof Hiller
Prof Hiller
Dr Matheson
Dr Piotrowski
Dr Sammut
Dr Matheson
Mr Chan
Dr Matheson
Dr Ng
Dr Ng
Dr Whale
Dr Wilson
Dr Wilson
Mr Chan
A/Prof Lions
A/Prof Lions
Dr Ng
Dr Olszewski
Prof Hellestrand
Dr Baker
Dr Whale
Dr Linsay
Dr Baker
Dr Piotrowski
Prof Hiller
Dr Linsay
Prof Hellestrand
Dr Linsay
Dr Whale
Prof Hellestrand

Dr Outhred, Dr Sutanto
Prof Morrison
Prof Morrison, Dr Sutanto
Dr Kaye
Dr Sutanto
Dr Outhred, Dr Kaye
Dr Outhred, Dr Sutanto
Dr Outhred, Dr Sutanto

(i) Power Systems
Power Systems analysis
Power System Protection
Stability, Dynamics and Control of Power Systems
Distribution System Planning and Operation
Electromagnetic Transient Analysis
Static VAR Compensation
Power System Planning and Economics
Load Management and Control
Alternative Power Sources - Remote Area Supply

Dr Outhred, Dr Sutanto
Prof Morrison
Prof Morrison, Dr Sutanto
Dr Kaye
Dr Sutanto
Dr Outhred, Dr Kaye
Dr Outhred, Dr Sutanto

(ii) Electrical Power Equipment and Utilization
High Voltage and High Current Phenomena
Insulating Material Application
Electrical Testing
Transformer Design
Voltage Disturbances in LV and MV Systems
Electrical Measurements and Data Acquisition
Electrical Machines and Drives
Arcing Fault Characteristics
Partial Discharge Detection and Location
Distribution System Protection
Gaseous Discharges and Insulation
Equipment for Hazardous Atmospheres
Synthetic Loading of Machines
Computer Aided Teaching

Dr Outhred, Dr Sutanto
Prof Morrison
Prof Morrison, Dr Sutanto

(iii) Power Electronics
DC/DC Converters
High Frequency Power Transformers
Inverters for Machine Drives
Microprocessor Control of Power Electronics
Variable Speed Drives
Power Electronics Simulation Studies
Electronic Commutation
Remote Area Supplies

Dr Daly
Dr Daly
Dr Daly, Dr Rahman, Mr Spooner
Dr Daly, Dr Rahman, Mr Spooner
Dr Daly, Dr Rahman, Mr Spooner
Dr Rahman
Mr Spooner

Dr Green, Dr Kwok, Dr Huang
Prof Green
Prof Rigby
Dr Horwitz, Dr Huang, Dr Kwok

Electronics
Semiconductor device physics
Novel Semiconductor Devices
Integrated circuit design
Integrated circuit technology

Prof Green, Dr Kwok, Dr Huang
Prof Green
Prof Rigby
Dr Horwitz, Dr Huang, Dr Kwok
Optical & Infrared Detector Arrays
Microelectronic sensors
Photovoltaic solar energy conversion
Silicon Solar Cells
Computer-aided IC design
Plasma processing
Integrated Circuits for Advanced Signal processing
High-Speed Bipolar Logic

Prof Green

Dr Huang, Prof Green
Prof Green, Dr Wenham
Prof Green, Dr Wenham
Prof Rigby
Prof Rigby
Dr Horwitz

Graduate Study: Course Outlines

Systems and Control
Multivariable Control, stimulation, modelling, expert systems in control design, advanced control of power plant, computer aided design and adaptive control.
Cybernetic engineering and advanced robotics: signal, pattern, image and scene, analysis and processing, brain modelling, neural computing and learning machines, vision robotics and assembly, adaptive control, hierarchical control, formal systems and functional representation.
Robust control, computation issues in control, adaptive control.
Adaptive and multivariable systems, multitrate control, robust digital control, motion control systems.
Digital and adaptive control, real-time computing, multivariable control.
Biomedical engineering, biological signal analysis, physiological systems modelling and analysis, computer hardware and software, data acquisition, signal processing, ecg analysis.
Control and simulation, digital system and digital signal processing, physiological system modelling, biological signal processing, computer modelling of information, processing, neural computing and learning machines, adaptive control.

Prof Rees

A/Prof Tait

Dr Clements

Dr Lim

Dr Hesketh

Dr Celler

Dr Nielsen

Mechanical and Manufacturing Engineering

Applied Mechanics
Mechanics of solids
Dr Stark, Prof Patterson, A/Prof Kelly, Dr Chowdhury
Stress analysis
Dr Stark, A/Prof Kelly, Prof Patterson
Impact mechanics
A/Prof Byrne
Spatial and planar mechanisms
A/Prof Baker
Dynamics of machines
A/Prof Baker, A/Prof Hahn, Dr Ford
Rotor bearing dynamics
A/Prof Hahn, Mr Rnadall
Vibrations
Mr Randall, Dr Ford, A/Prof Hahn, A/Prof Byrne, Prof Patterson, A/Prof Kelly
Lubrication and wear
A/Prof Hahn, Dr Challen, Prof Oxley, Dr Kopolinsky
Hydrodynamic dampers
A/Prof Hahn
Acoustics
A/Prof Byrne, Mr Randall

Design
Biomechanics
A/Prof Churches, Mr Frost, Prof Svensson
Design of surgical equipment
Mr Frost, A/Prof Churches, Mr Crawford
Computer-aided design
Mr Frost, Dr Challen, Mr Crawford
Development of engineering design courses
A/Prof Churches, Prof Svensson, Mr Frost
Design Methodology
Mr Frost
Crash protection devices
Prof Svensson, A/Prof Churches
Design projects: analysing testing and development for industry
Mr Frost, A/Prof Churches

Computer-aided ship design

Ships design methodology
Dr Pal

Fluid Mechanics and Thermodynamics
Two-phase flow with and without heat transfer
Dr Behnia, A/Prof de Vahl Davies
Slurries
A/Prof Reizes
Conveying of solid dusts by gases
A/Prof Reizes
Hydraulic transients
A/Prof Doctors
Hydrodynamics
A/Prof Reizes
Water hammer
A/Prof Morrison, A/Prof de Vahl Davies, Dr Leonardi, Dr Behnia, A/Prof Reizes, Dr Madhusuda
Conduction, convection and radiation

Natural convection
A/Prof de Vahl Davies, Dr Leonardi, Dr Behnia, A/Prof Reizes, A/Prof Morrison

Computational fluid dynamics and heat transfer
A/Prof de Vahl Davies, Dr Leonardi, Dr Behnia, A/Prof Reizes, A/Prof Morrison
Engineering

Refrigeration and air conditioning
Dr Leonardi,
Dr Maclaine-cross,
Dr Behnia

Energy conversion and conservation
A/Prof Reizes, Dr Behnia

Solar energy and emissions
Dr Maclaine-cross,
Prof Milton, Dr Behnia

Engine performance and emissions
Prof Milton

Gas dynamics, transonic flow and shock waves
A/Prof Morrison, Dr Behnia,
A/Prof Reizes

Optical measuring methods
A/Prof Doctors

Hydrodynamics of planning surfaces
A/Prof Doctors

Problems in wave resistance
A/Prof Doctors

Finite element methods

Industrial Technology and Management
Engineering economic analysis
Dr Lin

Efficiency of production lines
Dr Kerr

Optimum shearing policies for rolled bars
Dr Smith

Application of probability theory in the allocation of engineering tolerance
Dr Smith

Computer generation of timetables
Dr Smith

Job shop scheduling
Dr Kerr

Least-cost tolerance
Dr Smith

Operational simulation
Dr Mathew

Variety reduction

Probabilistic networks
Dr Kerr

Optimization techniques relevant to information processing systems
Dr Kerr

Statistical decision theory
Dr Smith

Production scheduling for variable demand
Dr Kerr

Inventory and production control

Optimum control
Dr Smith

Mathematical programming
A/Prof Murtagh

Dynamic Programming
A/Prof Murtagh

Geometric programming
A/Prof Murtagh

Integer programming
A/Prof Murtagh

Large scale optimization
Dr Kerr

Applications of operations research to real world problems
Dr Kerr

Stochastic processes
A/Prof Murtagh

Applications of optimisation techniques
Dr Mathew

Experimental and theoretical investigations of the following processes: machining, extrusion, indentation, compression, rolling, drawing

Performance of single and multipoint cutting tools including tool life and economics of machining
Dr Mathew

Properties of materials at high rates of strain
Dr Mathew

Materials handling studies
Dr Mathew

Factory design and location studies
Dr Mathew

Plant layout by computer
Dr Mathew

Ergonomics
Dr Mathew

Occupational health and safety
Dr Mathew

Production design studies
Dr Farmer

Engineering design analysis and tolerance technology
Dr Farmer

Metrology studies
Dr Farmer

Group technology studies
Dr Mathew

Mechatronics
Applications of AI in engineering
Dr Willgoss

Applications of AI in engineering
Dr Tordon

Computer interfacing
Dr Willgoss

Computer interfacing
Dr Tordon

Electromagnetic systems in manufacturing
Dr Willgoss

Electromagnetic systems in manufacturing
A/Prof Morrison

Electromagnetic systems in manufacturing
Dr Willgoss

Logic programming
Dr Willgoss

Logic programming
Dr Tordon

Microcomputer control
Dr Willgoss

Neural nets
Dr Willgoss

Reliability engineering
Dr Tordon

Robotics & manufacturing
Dr Willgoss

Sensors
A/Prof Morrison

Sensors
Dr Willgoss

Sensors
Dr Tordon

Welding research
Dr Willgoss

Surveying

Analysis of deformation measurements
Dr Harvey, Dr Rüeger

Applications of inertial technology
Dr Rüeger

Cadastral surveys
Dr Robinson

Cadastral systems
Dr Robinson

Computer assisted mapping
A/Prof Trinder

Computer controlled surveying
Dr Rüeger

Coordinate transformation
Dr Harvey

Database technology for geodetic analysis
Dr Masters

Electronic distance measurement
Dr Rüeger

Geoid determination
Dr Kearsley

Geopotential model testing
Dr Kearsley
Geodesy
GPS geodynamics
GPS geodetic positioning
GPS surveying
High-precision surveying
Image analysis
Land altimetry
Land information management
Land information systems
Least squares estimation
Metrology and dimensional measurement
Monitoring of structures and terrain
Photogrammetry
Precise orbit determination
Precise GPS navigation
Quality issues in land information systems
Remote sensing
Satellite geodesy
Spatial query languages
Survey network adjustment
Wave propagation effects

A/Prof Stolz
A/Prof Brunner, Prof Stolz
Prof Brunner
Dr Rizos
Dr Rüeger
A/Prof Trinder
Dr Kearsley
Dr Robinson
Dr Robinson
Dr Harvey
Dr Harvey, Dr Rüeger
A/Prof Trinder
Dr Rizos
Dr Rizos
Dr Masters
Dr Rizos
A/Prof Forster,
A/Prof Trinder
Dr Rizos, A/Prof Stolz
Dr Masters
Dr Harvey
Prof Brunner

Monitoring land use change using remotely sensed data
Determining the characteristics of surface reflectance
Analysis of image quality
Application of satellite imagery to small scale mapping
Multispectral linear transformations
Application of spaceborne synthetic aperture radar data
Application of aircraft and satellite data to arid land studies
Application of satellite data to geological studies
Synergism of radar, visible and infrared remotely sensed data
Analysis of high resolution SPOT and Landsat TM data
Application to pollution and environmental monitoring.

Biomedical Engineering

Modelling of respiratory function, cardiovascular function, nervous system, artificial kidney therapy, extracorporeal heart-lung support, endocrine system and other body systems
Development of biomaterials
Investigation of physiological fluid mechanics
Microprocessor control of medical equipment
Limb and joint dynamics studies
Development of implantable electrodes
Development of rehabilitation devices
Statistical analysis of patient therapy and modes of patient treatment
Development and evaluation of new hospital equipment and treatment procedures
Signal analysis of wave forms from medical diagnostic equipment
Implants for fracture support and joint replacement
Improved drug administration
Arterial haemodynamics and ventricular-vascular interaction
Mechanisms of age-related arterial degeneration and hypertension
Isolated heart studies of the coronary circulation and electrophysiology

Remote Sensing

Incorporation of auxiliary data into classification procedures
Application of satellite data to Urban Area studies

Safety Science

Safety engineering
Occupational ergonomics
Biomechanics
Fires and explosions
Slips and falls
Machine guarding
Radiation safety (ionising & non-ionising radiation)
Electrical safety
Air quality, measurement, ventilation systems
Human computer interaction
Safety equipment
Lock out and other safety control systems
Occupational hygiene
Occupational disease
Epidemiology
Risk Management
Management of safety
Human behaviour
Accident reporting & analysis
Subject Descriptions

Identification of Subjects

A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

In 1991 a new system of subject identification is introduced. Each approved subject of the University is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subject identifiers are approved by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the four character alphabetical prefix.
2. Each subject identifier is unique and is not used for more than one subject title.
3. Subject numbers which have previously been used are not used for new subject titles.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Appropriate subjects for each school appear at the end of each school section.

The identifying alphabetical prefixes for each organizational unit are set out on the following pages.

Servicing Subjects are those taught by a school or department outside its own faculty. Their subject descriptions are published in the handbook of the faculty which originates the subject and are also published in the handbook of the faculty in which the subject is taught. The following pages contain descriptions for most of the subjects offered for the courses described in this book, the exception being General Education subjects. For General Education subjects see the General Education Handbook which is available free of charge.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

<table>
<thead>
<tr>
<th>Information Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following is the key to the information which may be supplied about each subject:</td>
</tr>
<tr>
<td>S1 Session 1, S2 Session 2</td>
</tr>
<tr>
<td>F Session 1 plus Session 2, ie full year</td>
</tr>
<tr>
<td>S1 or S2 Session 1 or Session 2, ie choice of either session</td>
</tr>
<tr>
<td>SS single session, but which session taught is not known at the time of publication</td>
</tr>
<tr>
<td>CCH class contact hours</td>
</tr>
<tr>
<td>P/T part-time</td>
</tr>
<tr>
<td>L Lecture, followed by hours per week</td>
</tr>
<tr>
<td>T Laboratory/tutorial, followed by hours per week</td>
</tr>
<tr>
<td>hpw hours per week</td>
</tr>
<tr>
<td>wks weeks of duration</td>
</tr>
<tr>
<td>C credit or Credit units</td>
</tr>
<tr>
<td>CR Credit level</td>
</tr>
<tr>
<td>DN Distinction</td>
</tr>
<tr>
<td>HD High Distinction</td>
</tr>
</tbody>
</table>
In the Faculty of Engineering, Schools and Centres have allocated the first digit in the numeric suffix of all new subject identifiers as indicating the level of the subject. Please note that the value '9' in this position is reserved for graduate subjects.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIO</td>
<td>School of Applied Bioscience</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ACHM</td>
<td>Department of Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>ACMA</td>
<td>Department of Civil Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ACSC</td>
<td>Department of Computer Science</td>
<td>University College</td>
</tr>
<tr>
<td>AECM</td>
<td>Department of Economics & Management</td>
<td>University College</td>
</tr>
<tr>
<td>AELE</td>
<td>Department of Electrical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AENG</td>
<td>Department of English</td>
<td>University College</td>
</tr>
<tr>
<td>AERO</td>
<td>Aerospace Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AGOC</td>
<td>Department of Geography & Oceanography</td>
<td>University College</td>
</tr>
<tr>
<td>AHIS</td>
<td>Department of History</td>
<td>University College</td>
</tr>
<tr>
<td>AIRT</td>
<td>University College (Interdisciplinary)</td>
<td>University College</td>
</tr>
<tr>
<td>AMAT</td>
<td>Department of Mathematics</td>
<td>University College</td>
</tr>
<tr>
<td>AMEC</td>
<td>Department of Mechanical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>APHY</td>
<td>Department of Physics</td>
<td>University College</td>
</tr>
<tr>
<td>APOL</td>
<td>Department of Politics</td>
<td>University College</td>
</tr>
<tr>
<td>APSE</td>
<td>Faculty of Applied Science</td>
<td>University College</td>
</tr>
<tr>
<td>ARCH</td>
<td>School of Architecture</td>
<td>University College</td>
</tr>
<tr>
<td>ARTS</td>
<td>Faculty of Arts</td>
<td>Arts</td>
</tr>
<tr>
<td>ASIA</td>
<td>Asian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>AUST</td>
<td>Australian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BOS</td>
<td>School of Biological Science</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BLDG</td>
<td>School of Building</td>
<td>Architecture</td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science & Mathematics</td>
<td></td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese</td>
<td>Arts</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>COFA</td>
<td>College of Fine Arts</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>COMM</td>
<td>Faculty of Commerce</td>
<td>Engineering</td>
</tr>
<tr>
<td>COMP</td>
<td>Computer Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Economics and Econometrics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>EDST</td>
<td>School of Education Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering & Computer Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>ENGL</td>
<td>School of English</td>
<td>Arts</td>
</tr>
<tr>
<td>EURO</td>
<td>European Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>EXPA</td>
<td>School of Arts & Music Education</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>FIBR</td>
<td>School of Fibre Science & Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking & Finance</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>FOOD</td>
<td>Department of Food Science and Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FREN</td>
<td>School of French</td>
<td>Arts</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal & General Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GERS</td>
<td>School of German Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>GREK</td>
<td>Modern Greek</td>
<td>Arts</td>
</tr>
<tr>
<td>GSBE</td>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
</tr>
<tr>
<td>HEAL</td>
<td>School of Health Services Management</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>HIST</td>
<td>School of History</td>
<td>Arts</td>
</tr>
<tr>
<td>HOSP</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>IDES</td>
<td>Department of Industrial Design</td>
<td>Architecture</td>
</tr>
<tr>
<td>INDC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDO</td>
<td>Indonesian</td>
<td>Arts</td>
</tr>
<tr>
<td>INFS</td>
<td>School of Information Systems</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>INTD</td>
<td>Interdisciplinary Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organ. Behaviour</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>JAPN</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>KCME</td>
<td>Key Centre for Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LAND</td>
<td>School of Landscape Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Law</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies & Taxation</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Librarianship</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Engineering</td>
</tr>
<tr>
<td>MARK</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science and Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MDCN</td>
<td>School of Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>MDSG</td>
<td>Med/Surg. Clinical Studies</td>
<td>Medicine</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MEED</td>
<td>School of Medical Education</td>
<td>Medicine</td>
</tr>
<tr>
<td>MFAC</td>
<td>Medical Faculty (Admin)</td>
<td>Medicine</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MNGT</td>
<td>Australian Graduate School of Management</td>
<td></td>
</tr>
<tr>
<td>MUSI</td>
<td>Department of Music</td>
<td>Arts</td>
</tr>
<tr>
<td>NAVL</td>
<td>Naval Architecture</td>
<td>Engineering</td>
</tr>
<tr>
<td>OBST</td>
<td>School of Obstetrics & Gynaecology</td>
<td>Medicine</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Science</td>
</tr>
<tr>
<td>PAED</td>
<td>School of Paediatrics</td>
<td>Medicine</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational unit</td>
<td>Faculty</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology & Pharmacology</td>
<td>Law</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Law</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>PTRL</td>
<td>Department of Petroleum Engineering Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>RUSS</td>
<td>Department of Russian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SAFE</td>
<td>Centre for Safety Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>SCTSA</td>
<td>School of Science & Technology Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>HPST.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLP</td>
<td>Department of Social Science & Policy</td>
<td>Arts</td>
</tr>
<tr>
<td>SLST</td>
<td>School of Sport & Leisure Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SOCI</td>
<td>School of Sociology</td>
<td>Arts</td>
</tr>
<tr>
<td>SOCW</td>
<td>School of Social Work</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish & Latin American Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SURG</td>
<td>School of Surgery</td>
<td>Medicine</td>
</tr>
<tr>
<td>SURV</td>
<td>School of Surveying</td>
<td>Engineering</td>
</tr>
<tr>
<td>TEDG</td>
<td>School of Teacher Education (grad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TEED</td>
<td>School of Teacher Education (undergrad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TESL</td>
<td>TESOL</td>
<td>Arts</td>
</tr>
<tr>
<td>TEXT</td>
<td>Department of Textile Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>THST</td>
<td>Department of Theatre Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>USOM</td>
<td>School of Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>WOMS</td>
<td>Women Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool & Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Engineering

Accounting

ACCT9062 Accounting for Engineers F L1.5
Problems related to industrial situations, and their relevance
in decision-making. Manufacturing and cost accounts,
budgeting and budgetary control, cost analysis and control
and profit planning. (Old No. 14.062G)

Anatomy

ANAT5151 Introductory Functional Anatomy
An overview of basic human anatomy and physiology with an
emphasis on structures and systems such as the eye, ear and
skin, which are most vulnerable to chemical and physical
trauma under industrial conditions. Other systems studied
include the musculo skeletal system, central and peripheral
nervous systems, circulatory, respiratory, gastrointestinal,
dermocrine and urogenital systems. (Old No. 70.201G)

Biomedical Engineering

BIOM9009 Project C9
(Old No. 32.009G)
BIOM9010 Biomedical Engineering Practice S2 L2 C2
Introduction to clinical situations in hospitals. Presentation of
guest lectures by eminent people working in this field. Lecture
topics include cardiology, neurology, orthopaedics,
rehabilitation, etc. Visits to various biomedical engineering
units. (Old No. 32.010G)
BIOM9012 Biomedical Statistics S2 L2.5 T1.5 C4
Probability and distributions. Estimation and hypothesis
testing. Associations between disease and risk factors. Linear
models; analysis of variance, simple and multiple regression,
discriminant analysis. Distribution-free methods. Analysis of
survival data. Experiment design. (Old No. 32.012G)
BIOM9018 Project Report C18
(Old No. 32.018G)
BIOM9027 Medical Imaging S2 L2 T2 C4
Fundamentals of producing a medical image, image
collection techniques, image reconstruction algorithms. Four
main areas of medical imaging will then be examined in detail:
Nuclear Medicine, Ultrasound, Diagnostic Radiology,
Magnetic Resonance Imaging. Clinical application of each
area. (Old No. 32.027G)

BIOM9028 Radiation Physics S1 L2 T1 C3
Basic physics of interaction of photons and particles with
matter. Nuclear/atomic structure, nuclear reactions,
radioactivity counting statistics, dosimetry, detectors.
Radiation biology, interaction of ionising radiation with water
and tissues. X-ray therapy. Medical uses of non-ionising
electro-magnetic radiation. (Old No. 32.026G)

BIOM9030 Project Report C30
(Old No. 32.030G)

BIOM9040 Analogue Electronics for Biomedical Engineers S1 L2 T2 C4
Basic theory of passive components, simple network analysis,
small signal amplifiers, feedback and oscillators, operational
amplifiers and their uses, analogue integrated circuits.
Transistors as logic devices, gates. Safety requirements for
medical instruments, circuit diagram analysis and component
identification. Laboratory work involves both design and
construction of analogue circuits. (Old No. 32.040G)

BIOM9050 Microprocessors and Circuit Design for Biomedical Engineers S2 L2 T2 C4
Prerequisite: 32.040G and 32.501G or equivalents.
Examination of the fundamental digital and analogue signal
conditioning circuits commonly found in medical applications.
Emphasis is given to project-oriented practical experience
involving aspects of biological signal acquisition by
microcomputers. Fundamentals of microprocessor hardware
and software. (Old No. 32.050G)

BIOM9060 Biomedical Systems Analysis S1 L2 T1 C3
Compartmental analysis serves to unify modelling and
analysis in many diverse fields. It has wide application in
pharmacokinetics, metabolic, ecosystem and chemical
kinetic modelling, and in the future will be applied increasingly
to engineering systems. Topics include: classes of
compartmental structure; fundamental properties; rate
processes; inferred parameters; input-dependent kinetics;
optimal input design; algorithms for identification and control.
(Old No. 32.060G)

BIOM9101 Mathematical Modelling for Biomedical Engineers S1 L3 T1 C4
Model formulation and validation, solution of ordinary and
partial differential equations by analytical and numerical
techniques. (Old No. 32.101G)

BIOM9311 Mass Transfer in Medicine S2 L2 T2 C4
Material and energy balances, modelling of intrabody mass
transfer, elementary treatment of diffusion, convection,
hydraulic permeability and osmosis in biological and synthetic
membranes. Applications to hemodialysis, blood oxygenators,
artificial pancreas and slow release drug delivery systems.
(Old No. 32.311G)

BIOM9321 Physiological Fluid Mechanics S2 L2 T2 C4
Fundamentals of biological fluid flow by way of the governing
equations. Kinematics and dynamics, viscous and inertial flow,
boundary layers, separation, physiological flows (cardiac, vascular, pulmonary, urinary, etc.) and flow in artificial organs. (Old No. 32.321G)

BIOM9332 Biocompatibility S2 L2 T1 C3
Interaction of biological fluids and cells with foreign surfaces, in vitro tests to assess biocompatibility and thrombogenicity, current status of biocompatible materials as applied to extracorporeal systems, surgical implants and prosthetic devices. (Old No. 32.332G)

BIOM9501 Computing for Biomedical Engineers S1 L2 T2 C4
Problem of definition; algorithm design and documentation; definition of data structures, structured program development; realisation of program development through the Pascal and C programming languages; application to biomedical problems. (Old No. 32.501G)

BIOM9510 Introductory Biomechanics S1 L2 T1 C3
The principles of the mechanics of solid bodies: force systems; kinematics and kinetics of rigid bodies; stress-strain relationships; stress analysis of simple elements application to musculoskeletal system. (Old No. 32.510G)

BIOM9541 Mechanics of the Human Body SS L2 T1 C3
Prerequisite: 32.510G or equivalent.
Statics and dynamics of the musculoskeletal system: mathematical modelling and computer simulation, analysis of pathological situations. (Old No. 32.541G)

BIOM9551 Biomechanics of Physical Rehabilitation SS L2 T1 C3
Prerequisite: 32.510G or equivalent.
The application of biomechanics principles to the areas of: performance testing and assessment, physical therapy, design of rehabilitation equipment, design of internal and external prostheses and orthoses. (Old No. 32.551G)

BIOM9561 Mechanical Properties of Biomaterials SS L2 T1 C3
Prerequisite: 32.510G or equivalent.
The physical properties of materials having significance to biomedical engineering; human tissues; skin; soft tissues; bone; metals; polymers and ceramics: the effects of degradation and corrosion. (Old No. 32.561G)

BIOM9601 Biomedical Applications of Microcomputers 1 S1 L3 C3
Assumed knowledge: 32.050G or equivalent.
Microcomputer architecture; physiological data acquisition systems: input/output signals and devices; assembly language programming; interfacing to higher level languages; the numeric data co-processor; interrupts; graphics; practical sessions on use of Debug, Assembler, familiarisation with interrupt vector table and I/O ports. Major assignment on specific biomedical application (e.g. bedside ECG monitor). (Old No. 32.601G)

BIOM9602 Biomedical Applications of Microcomputer 2 S2 L3 C3
Prerequisite: 32.601G or equivalent.
Data communication; serial and parallel ports; BIOS and DOS interrupts; interfacing to external devices; DMA and interval timer; control systems and devices; stepper motor control. Implementation and analysis of a range of microcomputer-based biomedical applications, e.g. variable rate infusion pump, physiological reaction-time monitoring system; measurement of coronary sinus flow, temperature control; position control; operation of intra-aortic balloon pump. (Old No. 32.602G)

BIOM9603 Static and Flow Cytometry S2 L3 C3
Technology, techniques and uses of flow and static cytometry. Flow cytometers analysis and cell sorting, image analysis and cell counting from slides. Preparation and staining of cells. Data acquisition and analysis. Applications in medical research and diagnosis. (Old No. 32.603G)

BIOM9611 Medical Instrumentation S2 L2 T1 C3
Prerequisite: 32.040G or equivalent.
A critical survey of the theory and practical applications of medical transducers and electromedical equipment in common use in hospitals and research laboratories. (Old No. 32.611G)

BIOM9621 Biological Signal Analysis S1 L3 C3
Use of digital computers to extract information from biological signals. Signal processing using filtering, averaging, curve-fitting and related techniques, and analysis using model simulations, correlation, spectral analysis etc. (Old No. 32.621G)

BIOM9701 Dynamics of the Cardiovascular System S1 L2 T1 C3
Structure of the heart; organization of the mammalian vasculature; mechanical, electrical and metabolic aspects of cardiac pumping; the solid and fluid mechanics of blood vessels; rheology of blood. (Old No. 32.701G)

Biotechnology

Biotechnology is a department within the School of Applied Bioscience.

BIOT7030 Biotechnology SS L2 T1
The selection, maintenance and genetics of industrial organisms; metabolic control of microbial synthesis; fermentation kinetics and models of growth; batch and continuous culture; problems of scale-up and fermenter design; control of the microbial environment; computer/fermentor interactions. Industrial examples will be selected from: antibiotic and enzyme production, alcoholic beverages, single cell protein (SCP), microbial waste disposal and bacterial leaching. Tutorial practical sessions include:
problem solving, instrumentation, continuous culture techniques, and mathematical modelling and simulation of industrial processes. (Old No. 42.214G)

BIOT7100 Biological Principles S1 L3

Chemical Engineering and Industrial Chemistry

CEIC5630 Industrial Water and Wastewater Engineering S1 or S2 L3
Environmental consequences of water pollution. Water quality criteria and regulations related to industrial use and disposal. Water sources and requirements of industry. Theoretical and practical aspects of treatment methods, including screening, sedimentation, oil separation, coagulation and flocculation, filtration, biological treatment, adsorption, ion exchange, membrane processes. Strategies for industry including waste surveys, prevention at source, correction before discharge water reuse. Economic aspects. Seminars. Factory visits/labouratory. (Old No. 48.063G)

Chemistry

CHEM7325 Toxicology, Occupational and Public Health F L T3
Important classes of toxic materials found in the environment; treatment of pesticide residues, industrial chemicals of various types, toxic gases, mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals, etc. Effects of these substances on living organisms, particularly man. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling and analysis, trace metal determination and experiments on the animal metabolism of toxic substances. (Old No. 2.251G)

Civil Engineering

CIVL9402 Transport, Environment, Community F C6
Effect of transport on public health, environment and communities. Analysis of unwanted effects of transport activity: accidents, noise, pollution, intrusion; causation, measurement, preventative and remedial action. Community reaction to transport activity; government, bureaucracy and public involvement in transport policy and environment impact statements. (Old No. 8.402G)

CIVL9403 Theory of Land Use Transport Interaction S1 C3
Theoretical aspects of land use transport planning. Basic concepts, data collection methods, systems models and equation of state function (behavioural, optimizing). Introduction to land use-transport modelling (land use, generation, distribution, modal assignment, network assignment, evaluation). Planning methodologies (short-, medium-, long-term; action planning, strategic planning; local, urban, regional national). (Old No. 8.403G)

CIVL9405 Urban Transport Planning Practice SS C3
Analytical techniques for urban land use/transport planning practice. Planning methodology: traffic generation, trip distribution, modal-choice, traffic assignment, evaluation. Land use forecasting: calibration and verification of behavioural models, application of mathematical programming models, case studies, public transport problems. (Old No. 8.405G)

CIVL9407 Transport Systems Design (Non-Urban) S1 C3
Process of location of road, railway and airport facilities. Data collection, alternative routes, public discussion, methods, techniques, aids, plans and diagrams produced. Geometric form; differences between road, railway and airport carriageway layout. Optical guidance, design models, landscape, provision for surface-water signposting, fencing and posts. (Old No. 8.407G)

CIVL9408 Transport Systems Design (Urban) S2 C3
Types of urban transport facilities. Distributors, streets, bicycle routes, walk-oriented areas, bus lanes and rapid transit lanes, stops and change terminals, noise control. Minimum geometric form; speed range controls, provision for surface water on urban roads, landscape. Design of intersection and parking areas. (Old No. 8.408G)

CIVL9410 Highway Engineering Practice Part 1 SS C3
CIVL9412 Economics for Transportation Studies SS C3
Introductory macro and micro economic theory. The pricing mechanism in transport and distinctive characteristics of transport demand and costs. National income and social accounts with particular reference to the transport sector. Economics of public enterprise. Cost-benefit analysis and modelling. Engineering economics (compound interest) and budget determination. Econometrics. Selected special problems in the economics of transport modes. (Old No. 8.412G)

CIVL9414 Transport Systems Part 1 S1 C3

CIVL9415 Transport Systems Part 2 S2 C3
Historical introduction to transport systems and development of various transport modes, road (vehicles, pedestrians, cycles), conveyor, rail, sea and air. Analysis of the operational characteristics of vehicles in the transport modes of road, rail and air. Analysis of the requirements of the rights of way for each transport mode. Development of optimum criteria for the distribution of cargo and passenger traffic. Terminals and mode transfer facilities. Development of system operational models. Energy consideration, new systems. (Old No. 8.415G)

CIVL9416 Traffic Engineering F C6

CIVL9417 Transport and Traffic Flow Theory F C6
Analysis of deterministic and stochastic models of the traffic stream. Topics covered include the following: Definition and measurement of traffic stream parameters. Space and time distribution of speed. Overtaking models and the moving-observer method. Fundamental diagram of traffic. Car-following theory. Headway and counting distributions. Introduction to queueing theory. Simulation techniques. Signalized and unsignalized intersections. (Old No. 8.417G)

CIVL9418 Statistics for Transport Studies Part 1 SS C3

CIVL9419 Statistics for Transport Studies Part 2 SS C3
Assumed knowledge: CIVL9418
Linear models. Analysis of variance and co-variance. Simple and multiple regression. Design of experiments, interpretation of results. Sample survey design and analysis. (Old No. 8.419G)

CIVL9420 Special Topic in Transport Engineering SS C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 8.420G)

CIVL9701 Economic Decision Making in Engineering SS C3
Review of practical engineering decision-making problems and relevant techniques. Engineering economics, benefit/cost analysis, consideration of inflation and taxation in investment decisions, bidding, decision theory, microeconomic theory, objectives and multiple objective planning. (Old No. 8.701G)

CIVL9702 Project Planning and Control S1 C3
The critical path method, PERT, arrow diagrams, precedence diagrams, resource levelling, resource constrained scheduling, network compression, overlapping relationships, applied cpm, cost control, cash flow, project control, legal considerations, simulation in networks, stochastic networks, project management, applications.

CIVL9704 Quantitative Engineering Management S2 C3
Models and techniques to assist the manager in making decisions; modelling and regression, forecasting; job planning, layout planning, capacity planning; work measurement; optimization (linear programming, non-linear programming, dynamic programming), inventory models, transportation, assignment and allocation, heuristic techniques, multiple and single objectives, applications. Techniques dealing with uncertainty and variability in management situations, including a review of probability theory, reliability, availability, quality control, decision analysis, queuing, simulation, applications.

CIVL9705 Engineering Management Practice SS C3
Management theory and processes, the structure and function of organizations; decision making, gaming behaviours in management, interpersonal skills, conflict management, management of group action, management information; marketing; negotiating; quality.

CIVL9706 Management of People SS C3
The development of skills for the management of people and their workplaces; industrial relations, health and safety issues; the recognition of people as the basic unit of engineering productivity and engineering organizations.
CIVL9710 Engineering Risk Management SS C3
Introduction to the concept of risk and decision making under conditions of uncertainty; project objectives and planning, risk identification in engineering processes; human error, natural hazards and unforeseen risks; risk evaluation and quantification methods; relevant statistical techniques; risk avoidance and minimization; financial risk, portfolio theory, risk sharing and financing; ambient and acceptable risk levels; insurances.

CIVL9714 Special Topic in Engineering Management SS C3
A series of lectures from industry experts or visiting specialists in current and advanced engineering management.

CIVL9723 Construction Design S2 C3
Design theory as applied to construction processes; application to selected areas of the construction industry such as temporary works design, formwork and флæспæрк, dewatering systems, ground support systems and mixed construction activities such as tunnelling and high rise building construction.

CIVL9724 Construction Engineering and Technology S1 C3
Construction engineering theory, construction processes: methods engineering, automation and mechanization concepts; modelling, design and analysis; problem solving; task analysis; adaptive systems and control concepts; experimental studies of construction processes. Construction technologies; construction robotics, applications of expert and knowledge based systems. Studies to be selected from: drilling, blasting techniques, tunnelling, rock-bolting and other ground support, earth/rock transport, harbours, railways, dams, bridges, structural steelwork techniques, pipeline construction, foundation grouting compressed air work.

CIVL9725 Engineering Financial Management S1 C3

CIVL9726 Legal Studies and Professional Practice S1 C3
Nature and sources of law, court procedures, interpretation of documents, evidence, technical opinions, expert witness; contract law, contract administration; company law; arbitration; duties of an engineer; professional liability.

CIVL9727 Construction Planning and Estimating F C6
Project initiation and development, feasibility studies, planning and estimating procedures, contract administration; estimating cost of labour plant and materials, indirect cost and overheads, profit; construction administration. Preparation of cost estimate for a major civil engineering project. (Old No. 8.727G)

CIVL9728 Special Topic in Construction SS C3
A construction topic presented in depth by industry experts or visiting specialists.
Statistical principles, applications to specification and quality control of concrete non-destructive testing. Accelerated curving and special high strength concretes for column and prestressed construction. Recent developments in constituent materials, special cements and admixtures. Workability, mix design theories and practical applications. (Old No. 8.781G)

CIVL9788 Site Investigations S1 C3 Engineering geology mapping and terrain classification. Drilling, trenching and sampling of rock and soil. In-situ testing of soil and rock. Laboratory testing of soil and rock. Assessment of design parameters. Instrumentation to measure pore pressure, stress, displacement. (Old No. 8.788G)

CIVL9790 Stability of Slopes S1 C3 Stability of natural and constructed slopes in civil and mining engineering. Stability analysis; stabilization methods and design; monitoring. Design of slopes in soft ground, soil and rock, and in partially saturated slopes; design of open cut mines. Probabilistic methods. (Old No. 8.790G)

CIVL9791 Foundation Engineering 1 S1 C3 Stress distribution beneath foundations, settlement analysis, design of shallow footings, design of pile foundations, cast in situ piles, foundation on shrink-swell soils, lateral earth pressures, foundations on rock, site investigations. (Old No. 8.791G)

CIVL9792 Foundation Engineering 2 S2 C3 Advanced consolidation theory, non-linear behaviour, soil structure interaction, design of rafts and piled rafts, analysis and construction of piled foundations, steel piles, braced cuts, temporary support of excavations, design of foundations for dynamic loading, machine foundations. (Old No. 8.792G)

CIVL9793 Geomechanics S1 C3 The fundamentals of the effective stress concept, clay mineralogy, seepage analysis and Laplace equation, method of fragments, fundamentals of liquefaction and cyclic mobility, basic and advanced consolidation theory including Terzaghi's 1D theory, nonlinearity and Biot's theorem, critical state soil mechanics theory, hyperbolic model, fundamentals of continuum stress analysis, theory of elasticity, constitutive relationships and failure criteria for real soils and rocks and soil plasticity. (Old No. 8.793G)

CIVL9802 Elastic Stability 1 SS C3 Euler strut; uniform and non-uniform cross sections. Eccentric loading; stressing beyond the elastic limit. Struts continuous over several supports. Stability of frames. (Old No. 8.802G)

CIVL9803 Elastic Stability 2 SS C3 Energy methods of formation of stability problems. Approximate methods. Thin-walled open section struts; lateral buckling of beams; bending and buckling of thin plates. (Old No. 8.803G)

CIVL9804 Vibration of Structures 1 SS C3 Review of basic aspects. Analysis of lumped mass systems with various degrees of freedom. Vibration in beams and other continuous structures. (Old No. 8.804G)

Generalized dynamics and Lagrange's Equations. (Old No. 8.805G)

CIVL9806 Prestressed Concrete 1 S1 C3
Historical development. Methods of prestressing. Elastic analysis and design. Flexural capacity and shear capacity of prestressed elements. (Old No. 8.806G)

CIVL9807 Prestressed Concrete 2 S2 C3

CIVL9809 Reinforced Concrete 1 S1 C3
Historical development. Methods of analysis and design, including limit state concepts. Analysis and design for bending, compression and combined bending and compression. Slenderness effects in columns. Shear and torsion. Serviceability requirements. (Old No. 8.809G)

CIVL9810 Reinforced Concrete 2 S2 C3
Application of limit theorems to structural concrete. Lower bound methods of design. Analysis and design of plates and slabs. Detailing of members and connections for strength and serviceability. Joints. (Old No. 8.810G)

CIVL9812 Plastic Analysis and Design of Steel Structures 1 S1 C3
The perfectly plastic material, the plastic hinge; plastic collapse of beams and frames; upper and lower bound theorems; introduction to design principles and methods. (Old No. 8.812G)

CIVL9813 Plastic Analysis and Design of Steel Structures 2 S2 C3
Estimation of deflections; factors affecting plastic moment; shakedown; three-dimensional plastic behaviour; minimum weight design. (Old No. 8.813G)

CIVL9814 Analysis of Plates and Shells S1 C3
Stress and strain in thin elastic plates bent by transverse loads. Solutions of the plate equation. Application. Stress and strain in thin plates loaded in the plane of the plate. Applications. (Old No. 8.814G)

CIVL9817 Experimental Structural Analysis SS C3
Dimensional analysis and principles of similitude, model analysis and design of models. Instrumentation and special methods of measurement. Evaluation of data. (Old No. 8.817G)

CIVL9818 Bridge Design 1 S1 C3

CIVL9819 Bridge Design 2 S2 C3

CIVL9820 Structural Analysis and Finite Elements 1 S1 C3

CIVL9821 Structural Analysis and Finite Elements 2 S2 C3

CIVL9830 Hydromechanics SS C3
General equation of fluid motion, potential flow, conformal mapping, laminar flow, Navier-Stokes equations; turbulence, shear flows, jets and wakes, boundary layers, turbulent mixing, diffusion, air entrainment, cavitation, stratification. (Old No. 8.830G)

CIVL9831 Closed Conduit Flow SS C3
Theories for energy loss in conduit flows, roughness at pipe walls and tunnels, design applications. Cavitation in conduits, transport of waterborne mixtures in pipes, accuracy of flow measurement in pipe lines. (Old No. 8.831G)

CIVL9832 Pipe Network and Transients SS C3

CIVL9833 Free Surface Flow S1 C3
Theory of waterflow in open channels. Application of theory to design of hydraulic structures, spillways, control gates, energy dissipators, channel transitions. Use of hydraulic models. (Old No. 8.833G)

CIVL9835 Coastal Engineering 1 S1 C3
Theory of periodic waves as applied to tides and wind generated waves in water of varying depths. Wave and tide prediction. (Old No. 8.835G)

CIVL9836 Coastal Engineering 2 S1 C3
Wave forces on structures, shore processes and beach erosion. Estuarine hydraulics, wave and tide models. (Old No. 8.836G)

CIVL9847 Water Resources Policy SS C3
Resource economics, water supply, water demand, multiple objective planning, multiple purpose projects, water law, water administration, case studies. (Old No. 8.847G)
Graduate Study: Subject Descriptions

CIVL9848 Water Resource System Design SS C3
Principles of the optimal design and operation of multiple purpose, multiple component, water resource system; evaluation of cost and benefits in complex and simple systems. (Old No. 8.848G)

CIVL9849 Irrigation S1 C3
Soils, soil-water relationships, plants, climate, crop requirements; water budgets, sources, quality, measurement; irrigation efficiency. Design of irrigation systems, appurtenant works, distribution. (Old No. 8.849G)

CIVL9851 Unit Operations In Public Health Engineering
Theory of physical, chemical, biological, and hydraulic processes used in both water and wastewater treatment. Applications where these are common to both water and wastewater treatment. (Old No. 8.851G)

CIVL9852 Water Distribution and Sewage Collection SS C3
Water collection, transmission and distribution systems - layout design and analysis, reservoirs, pumping. Sewage collection design and analysis - capacities, corrosion, pumping. (Old No. 8.852G)

CIVL9855 Water and Wastewater Analysis and Quality Requirements
The effects of impurities in water and wastewater on its suitability for various beneficial uses, and methods used for detecting impurities. Analytical methods used in water and wastewater treatment for monitoring and process control. (Old No. 8.855G)

CIVL9856 Water Treatment S2 C3
Application of processes and process variations used to upgrade the quality of water for specified uses, with particular reference to the treatment of water for municipal use. (Old No. 8.856G)

CIVL9857 Sewage Treatment and Disposal S2 C3
(Old No. 8.857G)

CIVL8857 Sewage Treatment and Disposal S2 C3
(external)
Application of processes and process variations used to improve the quality of sewage effluent, and the disposal of the effluent. Re-use of effluents where applicable. Sludge treatment and disposal. (Old No. 8.857X)

CIVL9858 Water Quality Management SS C3
Fundamental concepts; systems approach to quality aspects of water resource systems; quality interchange systems; quality changes in estuarine, surface, and ground water. Quality management by engineered systems. Economic criteria relating to water use and re-use systems. (Old No. 8.858G)

CIVL9860 Investigation of Groundwater Resources 1 SS C3
Occurrence and extraction of groundwater, investigation and drilling methods, systems approach, optimization techniques, conjunctive use studies, quality of groundwater. (Old No. 8.860G)

CIVL9861 Investigation of Groundwater Resources 2 S1 C3
Geophysical methods, remote sensing, photo-interpretation, arid-environment studies, analogue models, case studies. (Old No. 8.861G)

CIVL9862 Fluval Hydraulics S2 C3
Unsteady and varied flow in non-uniform channels, secondary currents, sediment transport, channel morphology, scour and shoaling, river control works, modelling of fluvial processes. (Old No. 8.862G)

CIVL9863 Estuarine Hydraulics SS C3
Classification of estuary types and their characteristics. Tides, their origin, prediction and effect on estuarine circulation. Entrainment and mixing process in estuaries. Salinity intrusion, tidal flushing, dispersion of pollutants. Sediment transport, channel stability. (Old No. 8.863G)

CIVL9864 Arid Zone Hydrology SS L1.5 T1.5 C3
Arid zone rainfall characteristics, data collection and instrumentation, runoff processes, infiltration, transmission loss, recharge processes, flood characteristics and design; water yield, storage of water; evaporation and evaporation suppression; sediment transport and measurements. (Old No. 8.864G)

CIVL9866 Public Health Science S1 C3
Impact of water and wastewater treatment on disease transmission. Monitoring methods used for pathogens and indicator organisms, structure and degradation of large molecules, biochemical pathways of anabolism and catabolism and the characterization of micro-organisms. (Old No. 8.866G)

CIVL9870 Hydraulics and Design of Water and Wastewater Treatment Plants SS C3
Corequisites: CIVL9856, CIVL9857 or equivalent.
Application of hydraulic principles to flows within treatment plants. Selection and integration of unit processes required for water and wastewater treatment, plant layout, plant design including hydraulic profiles, the influence of flow and load variability, instrumentation and control strategies. (Old No. 8.870G)

CIVL9871 Water Supply and Sanitation In Developing Countries SS C3
Prerequisites: CIVL9851, CIVL9855, CIVL9868 or equivalent.
Selection of appropriate technology for water supply and wastewater treatment and disposal to account for hot climates.
and low per capita incomes. Design basis for systems and the operating requirements. (Old No. 8.871G)

CIVL9872 Solid Waste Management S2 L2 T1 C3
(Old No. 8.872G)

CIVL8872 Solid Waste Management (external) S2 C3
Economics of all elements of solid waste management. Collection: route design, equipment, labour. Transfer and transport, recycling, processing, incineration. Planning of solid waste systems. Fundamentals of management. (Old No. 8.872X)

CIVL8873 Waste and Wastewater Analysis and Environmental Requirements (external)
Principles of analytical methods used in chemical analysis of wastes and wastewaters, sampling schemes, statistical evaluation of data, environmental requirements to prevent pollution. (Old No. 8.873X)

CIVL9874 Waste Management Science S1 L2 T1 C3
(Old No. 8.874G)

CIVL8874 Waste Management Science (external) S1 C3
Aspects of chemistry, biology and geology relevant to waste management, equilibrium and kinetic approaches, cell structure and metabolisms, formation and classification of rocks and soils. (Old No. 8.874X)

CIVL9875 Hydrological Processes S1 C3
Hydrological cycle, water and energy balances and circulation, precipitation process, interception, infiltration, storm runoff process, evaporation and transpiration, surface groundwater interactions, land use effects. (Old No. 8.875G)

CIVL9876 Applied Hydrological Modelling S1 C3
Introduction to hydrological models, deterministic catchment models, model calibration and verification, stochastic models, storage yield analysis for reservoir design, extension of records, stochastic reservoir analysis or identification of groundwater systems, conjunctive use systems. (Old No. 8.876G)

CIVL9877 Flood Design 1 S1 C3
Introduction to flood estimation, frequency analysis of hydrological data, design rainfall data, hydrograph analysis, storm rainfall-runoff relations, design flood estimation for small to medium sized catchments including the rational method, introduction to urban drainage design. (Old No. 8.877G)

CIVL9878 Flood Design 2 S2 C3
Introductory flood routing, loss rates, linear and nonlinear response, unit hydrographs, runoff routing, choice of method of flood estimation, urban drainage design. (Old No. 8.878G)

CIVL9880 Groundwater Modelling S1 C3
Groundwater modelling of porous media, fractured rock and low permeability materials. Analogue, numerical analytical models. Matrix structure and inverse methods, stochastic modelling and characterization of variability, Modelling Multiphase Fluids and regional groundwater flow. Applications to borefield management, salt water intrusion, mine dewatering, geotechnical problems. (Old No. 8.880G)

CIVL9881 Hazardous Waste Management S2 C3
(Old No. 8.881G)

CIVL8881 Hazardous Waste Management (external) S1 C3
Characteristics of hazardous wastes, such as dioxins, PCB's, chlorinated organic pesticides, explosives, heavy metals, arsenic and cyanide.

Transportation, treatment and disposal of hazardous wastes, incineration, secure landfill, risk assessment, social issues relating to hazardous waste management. (Old No. 8.881X)

CIVL9882 Industrial Waste Management S1 C3
(Old No. 8.882G)

CIVL8882 Industrial Waste Management (external) S1 C3
Atmospheric Pollution Control: Meteorology, effects of air pollutants, characteristics of specific air pollutants (particulates, sulphur oxides, nitrogen oxides), air pollution control techniques. Liquid and Solid Wastes: low and medium toxicity wastes, oily and greasy wastes from the petro-chemical and food industries, organic wastes, mining wastes, plating and metal working wastes, nitrogenous wastes. (Old No. 8.882X)

CIVL9883 Sources of Waste and Landfill Disposal S2 C3
(Old No. 8.883G)

CIVL8883 Sources of Waste and Landfill Disposal (external) S2 C3
Sources, quantities and characteristics of residential, commercial and industrial solid waste. Landfill: site selection, design, operation, equipment selection, leachate, gas protection, legal guidelines. (Old No. 8.883X)

CIVL9901 Special Topic in Civil Engineering SS C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 8.901G)

CIVL9902 Special Topic in Civil Engineering SS C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 8.902G)

CIVL9909 Project C9
(Old No. 8.909G)

CIVL8909 Project (external)
A minor research investigation involving analysis and interpretation of data, or a critical review and interpretation of literature on a selected topic, or a design project. (Old No. 8.909X)
CIVL9918 Project Report
(Old No. 8.918G)
CIVL9936 Thesis
(Old No. 8.936G)

Community Medicine

CMED9617 Occupational Medicine Practice
Prerequisite: Approved medical degree, CMED9702 and CMED9616 or equivalent.

Provides experiential learning for those medical graduates undertaking the MSafetySc course who intend to join the College of Occupational Medicine. Students visit industrial sites and centres for occupational health control. A comprehensive series of reports on investigations at these visits is required. It is expected that this subject will be taken towards the end of the MSafetySc course.
(Old No. 79.617G)

CMED9701 Occupational Disease
Prerequisite: ANAT5151 or equivalent.

Physical environment and disease: Musculoskeletal system, physical trauma; heat and cold, burns, electric shock; radiation; pressure, vibration, noise, hearing. Chemical environment and disease: Metallic poisons, toxic compounds, gaseous poisons, carcinogens, allergens. Microbial environment and disease. Systems approach: Gastrointestinal tract; renal system; central and peripheral nervous systems; visual system, respiratory system, airbone particulates; skin.
(Old No. 80.701G)

Computer Science

Computer Science is a department within the School of Electrical Engineering and Computer Science.

COMP9011 Literacy and Programming
In this subject the student will be introduced to a number of the packages such as: spreadsheets, word processing, data base systems, hypertext, graphics, networking. It will be necessary that skills be acquired with these systems.

There will also be an introduction given to both procedural and functional programming.
(Old No. 6.714G)

COMP9012 Software Engineering and Tools
This subject introduces the Data Flow/Process Interaction model of software specification and architecture. The techniques of Software Engineering involved in specification, analysis, design, implementation, testing, debugging, maintenance, and modification are discussed. Modern CASE tools are discussed and used.

In the second part of this subject Software Tools are introduced. The concepts of: reusability, packages, libraries, processes, concurrency, intercommunication channels, windows, graphics, data bases, translators, pattern matchers, sorters, and user interfaces are discussed and used in the context of a programmers' shell.
(Old No. 6.715G)

COMP9013 Data Bases and Expert Systems
This subject will introduce some basic material on data structures. It will provide experience with commercial relational data base systems and an application generator. Some of the notions of data base design and the redundancy: efficiency tradeoff will be discussed.

There will be an overview given of expert systems, artificial intelligence, knowledge based systems and decision support systems.
(Old No. 6.713G)

COMP9114 Formal Specification
Assumed knowledge: Background to final year Computer Science Level, equivalent to subjects COMP3111, COMP3121, and COMP3131.

Introduction to formal specification techniques; use of predicate logic and modern set theory to describe computing systems; Schema notation for structuring large specifications; Schema calculus to prove properties of specifications: Refinement techniques for transformation of specifications into executable programs; refinement of abstract data types.
(Old No. 6.669G)

COMP9115 Programming Languages: Fundamental Concepts
Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121 and COMP3131.

Fundamental aspects of programming language definition, semantics and implementation models. The current approach uses denotational semantics. Denotational semantics is a formal method for describing the abstract meaning of programming languages.
(Old No. 6.667G)

COMP9211 Digital Systems

Computer architecture, implementation and realization. Use of hardware description languages for the analysis, design and specification of arithmetic units, storage and control Microprogramming techniques.
(Old No. 6.554G)

COMP9214 Computer Organization and Architecture
Assumed knowledge: ELEC 3020.

Review of conventional computer architectures, description methods and performance evaluation. Alternative approaches to CPU, memory, communication, busses and I/O organization. Influences on computer architecture, including technological innovation, new application areas and other developments in information technology. Case studies of specialised machines for particular application areas, including array, associative, and functional processors, and
The material to be covered will include a selection from: the normalisation and the problems of redundancies; views and relational, hierarchic/network, and inverted file data elements; deductive data bases; data definitions; application generators. (Old No. 6.655G)

COM9215 VLSI System Design C3

Assumed knowledge: Background in electronic design equivalent to ELEC4532.

The design and implementation of very large scale integrated systems, using both nMOS and CMOS technologies. The use and construction of CAD tools, including simulators, layout generators, and plot utilities; MOS failure modes, testing and design for testability. A study of some digital subsystems, digital architectures and design styles will be carried out. An integral part of the course is an MSI LSI design project. Selected project designs will be submitted for fabrication and returned to students for testing. (Old No. 6.665G)

COM9216 Parallel and Distributed Computing Systems C3

Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121 and COMP3131.

Parallelism concurrency in functionally coupled and distributed communicationally coupled, hardware and software, computing systems. Topics will be selected from: Synchronisation, communication and arbitration; Computational paradigms - s; concurrent synchronous processing, lists, trees; Computational paradigms - p: vectors, arrays, APL tables, associative look-up structures; Synchronous bit-serial architectures; n-operands arithmetic, n-operands comparison; Pure pipeline and Systolic architectures and problems; Pipelined ALUs - multiple bus data path architectures; Memory-Processor architecture; super-imposed code-word processors, image identifiers, inner product processors; Object based systems; Languages with communication and processes; CSP, ADA C; Locally and geographically distributed systems: Failure tolerant computer systems. (Old No. 6.670G)

COM9221 Microprocessor Systems S2 C3

Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The MC68000 family and assembly programming language. Other microprocessors. The subject includes two hours per week of laboratory work involving interfacing to and programming MC68000-series microprocessor-based systems. (Old No. 6.060G)

COM9311 Data Base Systems C3

Prerequisites: Knowledge of storage structures. Excluded: 6.659G, 55.823G

A first subject on data base management systems to be presented at a level appropriate for a graduate subject. The material to be covered will include a selection from: the relational, hierarchic/network, and inverted file data models; normalisation and the problems of redundancies; views and their updates; high level query languages; distributed systems; deductive data bases; data definitions; application generators. (Old No. 6.005G)

COM9314 Advanced Data Base Management 2 C3

Assumed knowledge corresponds to the treatment in COM9311.

This subject will examine in detail some of the commercially oriented issues associated with recent developments in data base management systems. Topics to be treated may include: functional analysis and data base design, object data bases, application generators, and office data systems. The subject will involve the students in performance of a significant data base design task. (Old No. 6.007G)

COM9315 Advanced Data Base Management 1 C3

Assumed knowledge corresponds to the treatment in COM9311.

This subject will examine in details some of the technical issues associated with recent developments in data base management systems. Topics to be treated may include: query optimisation, concurrent processing and its control, recovery and restart, and distributed dbms. (Old No. 6.002G)

COM9414 Artificial Intelligence C3

Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121, COMP3131.

Overview of current research in Artificial Intelligence. Some of the topics are: the representation of knowledge, search techniques, problem solving, machine learning, expert systems, natural language understanding, and languages for Artificial Intelligence. Students are also required to prepare a report and give a seminar on one aspect of A.I. such as: robotics, vision, language understanding, speech recognition, A.I. languages, learning. (Old No. 6.666G)

COM9415 Computer Graphics C3

Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121, COMP3131.

Background to use and evaluate existing graphics packages, or to write a graphics package of your own. Topics include graphics hardware - raster, random scan, and storage tube displays, graphical input devices, scan conversion of lines and polygons, basic 2D transformations, windowing, clipping, viewports, display segmentation, the user interface for graphics, basic 3D transformations, perspective transformation, 3D clipping, hidden line and surface removal, shading and lighting, modelling curves and surfaces with splines and fractals. Existing graphics standards will be examined - GKS, PostScript, CGM, PHIGS. Use will be made of the Apollo packages GPR, GMR-2D GMR-3D and Dialog. (Old No. 6.668G)

COM9416 Expert Systems and Deductive Data Bases C3

Prerequisites: COM9311 or equivalent. Knowledge of rule based systems and reasoning procedures.

Introduction to Expert Systems including knowledge representation, inference, reasoning under uncertainty, qualitative modelling and knowledge acquisition. Students will build an expert system using a shell. Introduction to deductive database including logic programming, clause
indexing and query optimisation, integration of deductive databases and expert systems.

COMP9511 Human-Computer Interaction C3
Corequisites: Knowledge of data base query languages. Excluded: 55.821G
This subject will discuss man-machine communication with an emphasis on applications related to use of high level query languages and searching techniques.
Topics to be covered include: theories and principles of interface design; interaction styles; interaction devices; interface and language testing; approaches to the null value problem; information overload. (Old No. 6.006G)

COMP9514 Advanced Decision Theory for Information Science C3
Prerequisites: A graduate level in expert systems or D55, 55.821G or equivalent.
This subject will link results from fields such as information theory, the economics of information, the theory of judgement and choice, certainty theory and the theory of evidence. There will be a review of maximum utility theory decision making and the associated axioms. Developments of maximum expected utility theory including prospect theory, regret theory and duality theory will be introduced. The results will be linked to system design. (Old No. 6.003G)

COMP9596 Advanced Topics in Information Science C6
Prerequisites: 55.821G or equivalent.
This subject will integrate information science skills in an experimental situation involving software development and assessment. The subject will be project oriented. There may be a lecture portion that relates to statistical aspects of experimental design and hypothesis testing. (Old No. 6.004G)

COMP9912 Project C12
The project is done in a program major, in which it is offered, under the supervision of an academic member of staff. Where the work is carried out externally a suitable co-supervisor may be required. Projects can take many forms such as the design and construction of experimental equipment or a theoretical investigation. At the end of the work a comprehensive project report giving an account of the student's own research must be submitted. Information on the preparation of project reports is contained in the University Calendar. The 12 credit project is not available in all program majors.

COMP9918 Project Report C18

Electrical Engineering

ELEC9201 Power System Planning and Economics C3
Review of conventional planning techniques and their limitations. Introduction of a novel approach based on welfare maximisation. Examples of its application to coordinated supply and demand side planning in problems such as demand forecasting, supply reliability, maintenance scheduling, transmission planning and demand management. (Old No. 6.245G)

ELEC9202 Power System Operation, Control and Protection C3
Control of system frequency: system frequency dynamics, load frequency control of interconnected systems, automatic generation control. Unit commitment and economic despatch. Control of system voltage and reactive power. Problems of power system operation: security of supply, load forecast, power flow control, fault level containment, stability. Protection of power system and transmission lines: main protection, back up protection, system protection under emergency. Protection in distribution systems. (Old No. 6.206G)

ELEC9203 Power System Analysis S2 C3
Assumed knowledge: ELEC4202 or equivalent. Excluded 6.203.

ELEC9211 High Voltage Technology C3
Assumed knowledge: ELEC4202 or equivalent.
Introduction to the technology involved in the design and testing of high voltage power system equipment. Study of the practical applications of relevant materials, with emphasis on properties of insulation systems (gases, liquids and solids) and the interaction of the materials in non-uniform fields. Methods of testing under steady state, AC and DC, and surge conditions are incorporated in the laboratory work. Design examples are taken from insulator, bushing, cable, power capacitor, transformer, rotating machine and switchgear technologies. (Old No. 6.221G)

ELEC9212 Partial Discharges in Electrical Insulation C3
Assumed knowledge: ELEC4202 or ELEC4215 or equivalent.
Aspects of partial discharge phenomena and their effect on electrical insulation. The physical processes involved in partial discharges plus the interpretation of results from measurements on simple and complex apparatus, such as power cables, power capacitors, rotating machines and transformers. Techniques studied include digital based systems with particular emphasis being given to practical applications, in order to relate theoretical concepts to measurements which are subject to laboratory or on-site limitations. (Old No. 6.224G)

ELEC9213 Insulation Performance in Electrical Plant C3
Assumed knowledge: ELEC4202 or ELEC4215 or equivalent.
Design test requirements. Forms of high voltage works test: alternating, impulse, switching surge and direct. Non-destructive tests: dielectric loss angle, partial discharge and insulation resistance. Methods of determining material condition: moisture content, gas in oil, liquid chromatography,
impurities, statistical breakdown tests, determination of aging and residual life. Commissioning and site tests.

Demonstrations and projects to support the lecture material. (Old No. 6.227G)

ELEC9214 Power System Equipment C3
Assumed knowledge: ELEC4202 or equivalent.

Operating characteristics and design features of the major equipment components of a power system. Includes a general treatment of equipment rating, thermal design, electrodynamic forces, equipment protection and data acquisition. Specific items of equipment include power transformers, instrument transformers, switchgear, overhead lines and underground cables, surge arrestors, gas insulated systems, power factor correction equipment and alternators. Protection of electrical equipment. Effects of electromagnetic fields on personnel. (Old No. 6.228G)

ELEC9215 Fields and Materials C3
General description of the inter-relationship between the different types of fields (electric, magnetic and thermal) and materials when used in various areas of electric power engineering. Topics include: a general coverage of dielectric, conducting, magnetic and thermal materials; solution of Poisson's Laplace's and Fourier's equations for simple geometries and calculation of electric, magnetic and thermal fields, including boundary effects; a selection of typical applications from thermal rating, electric heating, contact effects, laser action, surface electron emission, etc; a brief outline of some measurement techniques applicable to the above. (Old No. 6.229G)

ELEC9221 Special Topic In Power C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 6.250G)

ELEC9222 Special Topic In Power C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 6.251G)

ELEC9330 Special Topic C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 6.050G)

ELEC9336 Digital Communication Networks C3
Excluded ELEC9337, ELEC4351, ELEC4352.

Introduction to data communication. Analog versus digital transmission. Transmission media. LAN's; WAN's, ISDN. Protocols: IEEE standards for LAN's; fibre optic networks; satellite networks. OSI reference model. Some design issues and examples: topics include error detection and correction; routing and congestion control; internetworking; connection management; data representation and coding; file management; electronic mail. (Old No. 6.336G)

ELEC9337 Data Networks 2 C3
Prerequisites: ELEC4351.

Data transmission on telephone networks. Data in mixed traffic environment. Local area network interconnection. Analysis of protocols for data link, network and transport layers. TCP/IP protocols. Operating system views of communications; network protocol drivers, network servers. Case studies: ARPAnet and ACSnet. Laboratory work covers experiments on network layer to application layer protocols in a practical network. (Old No. 6.337G)

ELEC9338 Television Systems C3
Prerequisites: ELEC9351, ELEC9341. Excluded ELEC4333.

ELEC9340 Communication Electronics C3
Assumed knowledge: ELEC3016 or similar.

Electronic aspects of modern analogue and digital communication systems. Topics selected from: electronic systems design; electromagnetic compatibility and interference; electronic system noise; analogue modulators, demodulators, frequency conversion circuits, AM and FM transmitters and receivers; television electronics; phase locked loops; switched capacitor and other practical filter technologies; surface acoustic wave devices. (Old No. 6.340G)

ELEC9341 Signal Processing 1 – Fundamental Methods C3
Excluded ELEC4042.

Fundamental principles of the analysis and processing of analogue and digital signals with emphasis on digital methods. Generalized Fourier analysis; convolution, correlation, energy and power density spectra for signals and linear systems. Sampling, the discrete Fourier transform (DFT) and fast Fourier transform (FFT) algorithms. Fundamentals of filter design and realization including programmable digital signal processors. Digital processing of analogue signals, filter stability, sensitivity and finite word length effects in the realization of digital filters. (Old No. 6.341G)

ELEC9342 Signal Processing 2 – Advanced Techniques C3
Prerequisites: ELEC9341 or similar.

Advanced techniques of digital signal processing with applications in communications and control, radar and sonar and the processing of speech, seismic signals and images. Topics selected from: digital methods for sampling rate changes, advanced FFT algorithms and the chirp z-transform algorithm. Advanced digital filtering methods. Analysis of random signals and noise in linear systems and non-linear devices. Estimation and measurement of power density.
spectra. Linear prediction and parameter estimation for speech analysis and spectrum estimation. Mean-square estimation and adaptive filtering for the detection and estimation of signals in noise, equalization, echo and noise cancelling and deconvolution. Nonlinear techniques; homomorphic signal processing and cepstral analysis, median filtering, etc. Short-time spectral analysis and time-frequency distributions. Two-dimensional signal processing. (Old No. 6.342G)

ELEC9343 Digital and Analogue Communications C3
Corequisite: ELEC4042 or ELEC9341 or similar. Excluded ELEC4323 or similar. Prerequisite or co-requisite for ELEC9347.

Fundamentals of modern telecommunications systems, including theoretical and practical aspects of linear and non-linear analogue modulation (AM, SSB, FM, etc), digital signal transmission, pulse code modulation, computer communication, effects of noise in analogue and digital systems, error control, multichannel systems (FDM, TDM, etc), synchronization, relay systems, optimum transmitters and receivers. (Old No. 6.343G)

ELEC9347 Digital Modulation C3
Prerequisite: ELEC9343 or similar.
A research orientated, advanced treatment of digital modulation and detection in Gaussian and fading channels. Modulation includes: M-dry ASK, PSK, DPSK, QASK, OQASK, FSK and CPM (including MSK). Detection includes: coherent, partially coherent and non-coherent like differential phase detection for DPSK, FSK and CPM and limiter-discriminator detection and limiter-discriminator-integrator detection for FSK and CPM. Channels include: Gaussian, Pician (Satellite Mobile), Rayleigh (Land Mobile) with frequency selective fading and Doppler frequency shifts. Analysis and design includes: Probability of error formulas and bounds; Power spectral density and bandwidth; effect of intersymbol, cochannel and adjacent channel interference; symbol constellations, eye diagrams, equalization; partial response, full response and Nyquist signals; complexity and comparisons. (Old No. 6.347G)

ELEC9350 Theory of Optical Fibres and Optical Signal Processing C3

ELEC9351 Propagation and Transmission of Electromagnetic Waves C3
Fundamental concepts and analytical techniques of guided wave propagation. Waveguide theory; coaxial lines, rectangular and circular waveguides and surface wave propagation. Poynting theorem, power flow, impedances.

ELEC9352 Antenna Design and Applications C3
Prerequisite: ELEC9351.
Principles of phased arrays and reflector antennas with some emphasis on space-borne and ground-terminal antennas for satellite communications. Analysis and synthesis of phased array, null steering theory. Single and dual reflector antennas, offset-reflector systems, optimization techniques. Effects of satellite orbital saturation on design of ground terminal antennas. Monopulse tracking antennas. Antenna tolerance theory. (Old No. 6.164G)

ELEC9353 Microwave Circuits: Theory and Techniques C3

ELEC9354 Microwave and Optical Devices C3
Principles and applications of microwave amplifying and control devices. Includes microwave transistors, Gunn and impact diodes and recent developments in ultra high speed transistors. Principles and applications of optical sources and detectors. Includes lasers, LEDs, electro-optic and acoustic-optic modulators and switches, optical detectors. (Old No. 6.170G)

ELEC9355 Optical Communications Systems C3
Prerequisites: ELEC9350, ELEC9354.

ELEC9370 Digital Image Processing Systems C3
Excluded ELEC9407.
The fundamentals of digital image processing with topics selected from the following: Visual perception and the image model, transforms, enhancement, sharpening and smoothing, restoration, encoding, segmentation, reconstruction of images from projections and tomography, satellite imaging and imaging in remote sensing; image processing hardware
and systems; picture processing; measurement and inspection. (Old No. 6.070G)

ELEC9401 Computer Control Systems 1 C3
An introduction to the use of CAD packages and coverage of the control theory necessary to understand the design of fundamental control systems. Selected computer packages, sampling and conversion, difference equation models, polynomial forms, z-transforms, differential equation models, operator forms, s-transforms, block diagrams, flow diagrams and state space models, connections between discrete and continuous models, classical continuous design, Root locus, Nyquist, Bode, classical discrete design, w-transforms, PID controllers, simple controller design schemes (time polynomial), Dahlin Higham, pole placement, approximations, Smith predictor, deadbeat, stochastic observers, pre-whitening, stochastic processes, time domain, frequency domain, correlation, identification, moving average models. (Old No. 6.401G)

ELEC9402 Computer Control Systems 2 C3
Prerequisite: ELEC9401.
Builds on the material of 6.401G, completing coverage of basic material considered necessary for modern control system synthesis and design. Revision of model forms: discrete-continuous, polynomial-state space. Observability, controllability, observers—deterministic, stochastic processes, stochastic models, innovation models, prediction, multivariable PI tuning, linear quadratic regulator design, Kalman filtering, stochastic control, LOG, disturbances, measured disturbances, feedback control, estimated disturbances, identification, simultaneous estimation of states and parameters, simple adaption, servomechanism problems, cascade control, multiple sampling rates, non-linear elements. (Old No. 6.403G)

ELEC9403 Real Time Computing and Control C3
Prerequisites: ELEC9401 or assumed knowledge equivalent to ELEC4432 or ELEC4413.
Examines the implementation of modern control techniques and associated instrumentation using distributed computers. Practical hardware aspects, including measurement and actuation, data conditioning, acquisition and transmission, microprocessor devices, and other distributed computing components. Commercial realisations ranging from PLCs to full process control computing systems. Software: executive operating systems, concurrency, control algorithms, numerical problems, languages and development tools in the real-time context. Design of the man-machine interface using interactive computer display systems. The role of simulation and other CAD tools. Steps of engineering development from concept to commissioning. The viewpoint of industrial design is maintained throughout. (Old No. 6.404G)

ELEC9404 Topics in Digital Control C3
Prerequisites: ELEC9401, ELEC9402.
Possible modules include: identification, estimation, multivariable systems, robust control, optimization, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, non-linear identification, non-linear control, variable structure systems, expert systems and others to be decided. (Old No. 6.405G)

ELEC9405 Advanced Control Topics C3
Prerequisites: ELEC9401, ELEC9402.
From one to three models, covering advanced control theory, with an emphasis on applications. The modules are not limited to digital control. Typical modules include: identification, estimation, multi-variable systems, robust control, optimization, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, non-linear identification, non-linear control, variable structure systems, expert systems and others to be decided. (Old No. 6.406G)

ELEC9406 Design of Advanced Microprocessor C3 Systems
Prerequisite: COMP9221.
Aims to familiarize the systems designer with the architecture and applications of the rapidly expanding family of microprocessor hardware support devices for dedicated control functions. Topics include: review and comparison of bus protocols of common systems: architecture, programming and applications of specialized system support devices and peripheral control chips; single chip microprocessors, architecture and applications to dedicated control tasks. Laboratory work includes individual design projects involving typical systems application of these devices. (Old No. 6.433G)

ELEC9407 Cybernetic Engineering C3
The genesis of cybernetics: fundamentals of cybernetic engineering; machines modelled on life and their evolution to robots. Topics include: biological information transmission, memory and efficiency with aspects of biochemical coding and control, genetic and neural; basics of brain models and the development of pattern recognition techniques, learning machines and syntactic structures; includes the Perceptron view and brain modelling; neural networks and neural computing; the abls approach to robotics, anthropomorphic robots, the social consequences of the dual evolution of robots. (Old No. 6.457G)

ELEC9408 Computer Display Systems and Interactive Instrumentation C3
Prerequisite: COMP9221.
Man-machine-process communication and control, and associated microprocessor based instrumentation. Review of appropriate analog and digital technology. Microcomputer hardware and programming for interactive communication using both machine and high-level languages. Display devices, operating principles and performance limitations. Hardware and software techniques for computer generation and processing of pictures. Colour and movement. Interactive design and graphics creation. The geometry of transformations and projections. Light pens and other input devices. (Old No. 6.468G)

ELEC9409 Cybernetic, Machine and Robot Vision C3
Assumed knowledge: ELEC9370 or equivalent.
Material oriented towards image understanding, scene analysis and world models for robots incorporating vision; including imaging techniques and geometries for vision, modelling the imaging process and image understanding, edges, range information, surface orientation, boundaries and regions, motion and optic, flow, texture, structural description, matching and inference, vision robotics. (Old No. 6.469G)
ELEC9410 Robotics, Automation and Productivity C3 Technology
Principles of Robotics relevant to trends in automating the manufacturing process. Such aspects as arm configurations, dynamics and control with relevant sensing methods; assembly and control together with trends in artificial intelligence for Robotics are discussed. (Old No. 6.470G)

ELEC9411 Introductory Physiology for Engineers S1 L2 T2 C3
Excluded ELEC3402.
This subject is intended primarily for Biomedical Engineering students.
An introduction to biophysics and physiology for Engineers. Cells, tissues and organ systems with emphasis on their functional and regulatory characteristics and their interaction. An introduction to computer models of physiological control systems demonstrating their value in understanding the dynamics of complex neural, hormonal and circulatory responses to changes in homeostasis. (Old No. 6.481G)

ELEC9412 Biological Signal Analysis C3
Excluded ELEC9341.
Digital computer methods of extracting information from biological signals using filtering and averaging, expectation density functions, correlation functions, spectral analysis and other techniques. Methods of constructing models of biological systems. (Old No. 6.484G)

ELEC9501 Advanced Semiconductor Devices C3
Excluded ELEC4512.
Theory and operating characteristics of a range of semiconductor devices including bipolar diodes and transistors, MOS devices and circuit connections, charge coupled devices, solar cells, light emitting diodes and semiconductor lasers. (Old No. 6.573G)

ELEC9502 Integrated Circuit Technology C3
Technologies for the fabrication of bipolar, CMOS, and BiCMOS VLSI integrated circuits. Includes technology modules of Crystal growth, wafer preparation, maskmaking, photolithography, oxidation, diffusion, ion implantation, plasma processing, thin film deposition and metallization. Advanced technologies such as GaAs high speed IC and SOI for radiation hard or 3-D integration are briefly discussed. Process integration and the link of device physics, circuit design to technology development are emphasized. (Old No. 6.575G)

ELEC9503 Integrated Circuit Design C3
Assumed knowledge: ELEC3016 or 6.322.
An advanced treatment of the design of integrated circuits with emphasis on the relationships between technology, device characteristics and circuit design. Includes properties and modelling of bipolar and MOS circuit components, circuit analysis and simulation, layout rules, analog functions such as operational and power amplifiers; multipliers, D A and A D converters. Analog MOS circuits. Digital circuits include gates, compound functions, RAM, ROM, speed and power analysis. Economics and yield analysis for MSI, LSI and VLSI devices. (Old No. 6.577G)

ELEC9504 Solar Energy Conversion C3

ELEC9505 Solar Cells – Operating Principles, Technology, and System Applications C3
Excluded: ELEC4540
Harnessing of sunlight by using solar cells to convert it directly to electricity. The properties of sunlight and of the semiconductors used in solar cells are reviewed and their interaction described. Factors important in the design of solar cells and the current technology used to produce cells. Likely future developments in this technology. System applications ranging from systems which are currently viable economically to residential and central power systems which may be a possibility for the future. (Old No. 6.579G)

ELEC9506 Special Topic in Electronics C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 6.550G)

ELEC9912 Project C12
The project is done in a program major, in which it is offered under the supervision of an academic member of staff. Where the work is carried out externally a suitable co-supervisor may be required. Projects can take many forms such as the design and construction of experimental equipment or a theoretical investigation. At the end of the work a comprehensive project report giving an account of the student's own research must be submitted. Information on the preparation of project reports is contained in the University Calendar. The 12 credit project is not available in all program majors.

Fuel Technology
Fuel Technology is a department within the School of Chemical Engineering and Industrial Chemistry.

FUEL5881 Unit Operations in Wastewater, Sludge and Solid Waste Management

FUEL5920 Practical Aspects of Air Pollution Measurement and Control
Prerequisite: FUEL5910 or equivalent.
Laboratory and tutorial programs in the measurement and analysis of ambient and industrial air pollutants. Computation
Engineering
tutorials in advanced dispersion models, aerosol dynamics and control equipment design parameters. (Old No. 3.392G)

Geography

GEOG9110 Soil Erosion and Conservation
Climatic, vegetational, geomorphic and pedologic controls of erosion. Physical processes of sediment transport and deposition. Conservational measures for the prevention of erosion including constructional and management practices. Methods of assessing soil loss risk and erosion hazard evaluation. (Old No. 27.911G)

GEOG9140 Terrain Evaluation
Principles and techniques for natural resource surveys and land evaluation including: land systems, terrain patterns, land capability and economic aspects of evaluation; examination of mapping, taxonomic and descriptive units; the problem of map scale and accuracy; styles of presentation for practitioners and other uses. Application of principles in selected other contexts. (Old No. 27.914G)

GEOG9150 Remote Sensing Applications
The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials; multitemporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in the coastal zone. Use of remote sensing in environmental management and in environmental impact assessment. (Old No. 27.043G)

GEOG9170 Remote Sensing Instrumentation and Satellite Programs
Aircraft and satellite platforms; sensor types; image formation and end products including panchromatic, colour, colour IR and thermal IR photographic products, microwave monitoring and computer tape products. The organization, acquisition, processing and analysis of imagery obtained from the following satellite programs: Landsat, Skylab, Heat Capacity Mapper Mission, Nimbus Coastal Zone Color Scanner, Seasat, Space Shuttle, Spot and Soyuz-Salyut.

GEOG9210 Computer Mapping and Data Display
Introduction to automated cartography and thematic mapping; theoretical and practical problems in displaying and mapping data by computer; review and application of selected computer mapping packages. INFO is used for database management, and ARC-INFO and GIMMS for cartographic manipulation and output. (Old No. 27.644G)

GEOG9240 Geographic Information Systems
Study of selected geographic information systems; problems of data capture and display, data storage and manipulation, system design and development; cartographic displays and computer mapping. INFO is used for database management, and ARC-INFO and MAP for spatial data manipulation and display. (Old No. 27.672G)

GEOG9512 Project
An investigation of a problem in remote sensing or geographical information systems which involves an identifiable research-component. Such an investigation should be related to the research interests of particular Schools within the Faculty of Applied Science. (Old No. 46.102G)

Applied Geology

Applied Geology is a Department within the School of Mines.

GEOL0110 Geological Remote Sensing
The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; Infra-red remote sensing techniques; side looking airborne radar; theory and applications of Landsat imagery; enhancement techniques for satellite imagery; interpretation of Landsat photographic products and application to several case history areas. Integration of remote sensing information with the overall data base as applied to exploration. (Old No. 25.816G)

GEOL9010 Hydrogeology
Surface and sub-surface methods of geological and geophysical investigation; ground water exploration of confined and unconfined aquifers. Geological and hydraulic characteristics of rocks; aquifer boundaries, groundwater storage and quality. Hydraulics of wells. Hydrogeological systems analysis, including computer methods, mapping techniques and groundwater resources evaluation. Hydrogeology of arid and semi-arid zones. Case history studies of groundwater fields. (Old No. 25.702G)

GEOL9020 Geopollution Management
Industrial Relations and Organizational Behaviour

IROB5701 Industrial Relations A S1 L3
Prerequisite: Nil.
Concepts and issues in Australia industrial relations at the macro or systems level, with overseas comparisons where appropriate. Labour movements and the evolution of employee-employer relations in the context of industrialization and change; origins and operations of industrial tribunals at the national and state levels; their instrumentalties; nature of industrial conflict and procedures for conflict resolution such as arbitration and bargaining; and national wage policy. (Old No. 30.701G)

Librarianship

LIBS0815 Economics of Information Systems S1
Use of surveys, user studies and market research to determine demand. Costing, financial planning, control and forecasting. Cost-benefit analysis. Economics of networks. Economic implications of new technologies. (Old No. 55.815G)

LIBS0817 Information Storage and Retrieval Systems

Industrial Technology and Management

Industrial Technology and Management is a Discipline within the School of Mechanical and Manufacturing Engineering.

MANF9200 Design Production C4
Influence of manufacturing processes on design; design simplification and standardization; value engineering; economics of process selection; case studies; planning experiments; significance testing; simple comparative experiments; accelerated experiments; fatigue testing, tool life. (Old No. 18.461G)

MANF9210 Value Analysis and Engineering C3
Cost reduction through value analysis engineering illustrated by case studies. Selection of projects to be studied, collection of information, creative problem solving, development of
alternatives, functional analysis system technique, functional evaluation, cost-function relationship, decision making, communication and implementation of the proposal. Applications to engineering design and services. (Old No. 18.464G)

MANF9300 Methods Engineering C4

MANF9310 Factory Design and Layout C3

Assumed knowledge: MANF3309 or MANF9300 or equivalent.

Production requirements: processes, machines and storage; optimum factory size, multiple factories. Plant location: single and multiple factories and warehouses; location models and economic analysis. Factory design: function; appearance; economic factors; environmental factors. Materials handling systems: influence on layout; economic choice between alternatives; long-distance transport. Layout design: by product: types of production line, means of line balancing, queueing theory applications. By process: travel charts and computer programs for optimization. Group technology. Practical aspects; provision of services and amenities; layout visualization methods.

Note: A project forms a substantial proportion of the assessment for this subject. (Old No. 18.371G)

MANF9320 Ergonomics C3

Applied anatomy and kinesiology, anthropometry; application to work place arrangement, seating and bench design, tool and equipment design, lifting techniques, consumer product and architectural design. Physiological and psychological aspects of work and fatigue; measurement of energy consumption, limits to energy expenditure at work, static muscular fatigue, boredom. Environment effects: natural and artificial lighting arrangements, problems of perception, colour; noise and vibration, preventive measures; heat and ventilation, thermal regulation in humans, criteria for comfort, effects of pollutants. Man-machine interface. Displays, machine controls, reaction times, vigilance. Applications of ergonomics to occupational safety and health. Ergonomic research methodology.

Note: A project forms a substantial proportion of the assessment for this subject. (Old No. 18.360G)

MANF9330 Simulation in Operations Research C3

Excluded MANF3609, 6.646.

MANF9400 Industrial Management C3

Definitions of management; evolution of management thought, classical, quantitative and behavioural schools; interactions between organizations and their environment. The planning process: strategic and tactical planning, developing planning premises, nature of managerial decision making, qualitative aids, management by objectives. Organizational structures; coordination and spans of control, the informal organization, authority delegation and decentralization, groups and committees, managing organizational change and conflict. Motivation, performance and satisfaction; leadership, interpersonal and organizational communication, staffing and the personnel function. The control process; budgetary and non-budgetary methods of control, use of management information systems. (Old No. 18.074G)

MANF9410 Inspection and Quality Control C3

Economics of measurement; advanced measuring and inspection methods; non-destructive testing; quality control systems; sampling by attributes and variables; standardization; case studies; process capability and variability; machine tools acceptance testing; alignment procedures. (Old No. 18.171G)

MANF9420 Production and Inventory Control C2

Excluded MANF4429

Overview of basic issues of production planning and control; use of inventory as a buffer; Economic Batch Quantities and their limitations; simple re-order point systems; statistical inventory control and its limitations. Material Requirements Planning: the basic material requirements explosion process; capacity planning and control, Master Production Scheduling; structuring the Bill of Materials for MRP; cycle counting; lot sizing techniques; implementation of MRP in practice; limitations of MRP. OPT (Optimised Production Technology), its basic philosophy and approach to production scheduling. Just in Time Production; basic philosophy of JIT; prerequisites for JIT; planning a JIT product mix; the Kan Ban System. Comparative evaluation of alternative Production Management Approaches and their relationship to manufacturing strategy. (Old No. 18.776G)

MANF9430 Scheduling and Sequencing C2

Criteria for evaluation schedules. Scheduling of single machines. Job-shop scheduling with two, three or more machines. Permutation schedules. Groups of machines. Scheduling constrained resources. (Old No. 18.778G)

MANF9440 Management of Distribution Systems C2

Assumed knowledge: MANF3609.

The distribution system: single depot location, multi-depot location, vehicle scheduling, vehicle loading, fleet size, case studies. (Old No. 18.764G)

MANF9450 Management Simulation C3

Operations. Research case studies and seminars. (Old No. 18.574G)

MANF9500 Computer Aided Programming for Numerical Control C3

Assumed knowledge: MECH1500 or equivalent. Excluded MANF4509.

MANF9510 Computer Automation C3

Computer architecture including central processor, randomaccess memory, read only memory, input output ports, peripherals, and the relationships between each. A systematic study of the requirements for interfacing computers to the real world. Machine code, assembly language, and high level languages such as BASIC or FORTRAN with a comparison of each for particular applications. Development of small computer system for machine tool control, automated inspection, supervision, stock control, etc. (Old No. 18.281G)

MANF9520 Computer-Aided Manufacturing C3

MANF9530 Discrete-Event Simulation Languages C3

Assumed knowledge: MANF3609 or 6.648 or equivalent.

Basic elements of simulation languages: random number generation, process generation, list and set processing, data structures, time advance and event scanning, gathering and resetting statistics, graphics, Simulation language world views. Comparative review of commercially available simulation languages such as Simscript, GPSS, ECSL, and Simula, and a study of one of them in depth. Simulation using personal computers. Simulation language preprocessors. (Old No. 18.760G)

MANF9601 Economic Decisions in Industrial Management C3

Excluded MANF3619.

General aspects: the economic objective, the single-period investor's model, economic criteria, the mathematics of finance. Deterministic models: project evaluation using discounted cash flow analysis; capital structure; debt and equity financing; cost of capital and the minimum acceptable rate of return; taxation; inflation and its effects. Probabilistic models: multiple objectives and multi-attribute value systems based on means and variances of cash flows. Particular applications of economic decision-making: venture and risk analysis, risk management, static and dynamic replacement models, rent-or-buy decisions, breakeven analysis, expansion and economic package concepts, analysis of projects with public financing. (Old No. 18.675G)

MANF9602 Engineering Economics Analysis C3

Price-output decisions under various competitive conditions. The time-value of money, net present worth and DCF rate of return, and their application in the selection and replacement of processes and equipment. Construction and optimization of particular models, eg replacement, capital rationing. Measures of profitability. (Old No. 18.681G)

MANF9610 Decision Theory for Industrial Management C3

MANF9620 Operations Research 1 C6

Excluded 6.646, 18.503, MANF4610, MANF9629.

The formation and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queueing theory, inventory models, replacement and reliability models and simulation. These techniques applied to situations drawn from industrial fields, for example, production planning and control. Practical problems of data collection, problem formulation and analysis. (Old No. 18.571G)

MANF9629 Operations Research C6

Excluded 6.646, MANF3609, MANF4610, MANF9620.

The formulating and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queueing theory, inventory models, replacement and reliability models and simulation. These techniques applied to situations drawn from industrial fields, for example, production planning and inventory control. Practical problems of data collection, problem formulation and analysis. (Old No. 18.580G)

MANF9630 Large Scale Optimization In Industry C3

Excluded MECH4130.

Large-scale linear programming; sparse constraint matrices, updating basis factorizations. Large-scale nonlinear programming: the limitations of classical quasi-Newton and conjugate gradient methods, sparse Hessian approximations, superbasic variables, augmented Lagrangian methods for sparse nonlinear constraints. Applications, examples and case studies from industry: optimal power flow, steam and power plant design, pipeline network optimization and other. (Old No. 18.870G)

MANF9640 Industrial Applications of Mathematical Programming C3

Problem formulation: development of objective and constraints. Conventions for large-scale matrix construction; list and table processing. Matrix generator languages; the MGG package. Data organization, interpretation of output,
MANF9650 Decision Support Systems
Perspectives on individual and organisational decision making; definitions and basic philosophy of DSS; DSS classification and architectures. DSS technology: spreadsheet and multi-dimensional array modelling; data models, databases and database management system; normalisation and query languages; data information and knowledge; knowledge based systems in DSS; basic knowledge representation techniques; forward and backward chaining; integration of knowledge based systems in DSS architecture; user interfaces (including natural language). Design of a DSS (project). (Old No. 18.076G)

MANF9660 Energy Modelling, Optimization and Energy Accounting
The analysis of energy systems using computer models. Applications of such models range from policy analysis at government level investment analysis within individual industries. Covers both the formulation of energy models and the techniques used to obtain optimized solutions, with examples from actual studies. Effects of uncertainty and the use of energy accounting as an analytical tool. (Old No. 18.673G)

MANF9811 Industrial Experimentation 1 C3
Excluded: MANF9809 or equivalent.
Design of experiments with reference to industrial problems; planning experiments; significance testing; simple comparative experiments, accelerated experiments; economic aspects of experimental design; analysis of variance or randomized block, latin square and factorial experiment designs. (Old No. 18.061G)

MANF9812 Industrial Experimentation 2 C3
Regression analysis; use of orthogonal polynomials in regression analysis and analysis of variance; confounding in factorial design; response surfaces and determination of optimum conditions. (Old No. 18.062G)

MANF9820 Time Series Forecasting C2

MANF9840 Linear Programming C2

MANF9850 Nonlinear Programming C2

MANF9860 Networks and Graphs C2
Basic concepts. Application of Hamiltonian paths, Euler cycles, trees, planar graphs, dominating and independent sets to operations research problems. Shortest route algorithms. Concept of maximum flow in a network applied to transportation assignment and scheduling problems. (Old No. 18.775G)

MANF9870 Dynamic Programming C2

MANF9880 Optimal Control in Operations Research C2
Brief survey of dynamic optimization techniques. Introduction to the calculus of variations and the maximum principle for both continuous and discrete systems. Applications to operations research problems drawn from the areas of production and inventory control, machine maintenance, investment and natural resource utilization. (Old No. 18.773G)

MANF9901 Project C9
(Old No. 18.909G)

MANF9902 Project Report C18
(Old No. 18.918G)

MANF9903 Thesis C36
(Old No. 18.936G)

MANF9904 Seminar Industrial Management C0
(Old No. 18.965G)

MANF9905 Seminar Operations Research C0
(Old No. 18.970G)

MANF9910 Special Topic in Production Engineering C2
(Old No. 18.967G)

MANF9913 Special Topic in Production Engineering C2
(Old No. 18.968G)

MANF9920 Product Design and Technological Innovation C3
MANF9340 Flexible Manufacturing Systems C3
Prerequisite: MANF9520.

Technical aspects of FMS components, including automated material-handling devices, job selection design and their aggregation. Hierarchical structure of FMS; mathematical models of FMS. (Old No. 97.604G)

MANF9491 Special Topic in Industrial Engineering* C3
(Old No. 18.975G)

MANF9492 Special Topic in Industrial Engineering* C3
(Old No. 18.976G)

MANF9541 Computer Aided Design for Manufacture C3

Principles underlying the interactive computer graphics packages such as AUTOCAD, CADAM, CATIA. Applications to design and engineering processes. Projects on building packages for design or upgrading the existing packages. (Old No. 97.601G)

MANF9542 CAD for Manufacture 2 C3
Prerequisite: MANF9541.

Topics related to methods of geometric modelling for curves, surfaces and solid models, and their applications to computer-aided design problems in manufacturing industry. Finite element methods in CAD. Intelligent CAD systems: principles and applications. (Old No. 97.605G)

MANF9560 Computer Integrated Manufacturing C3
Prerequisite: MANF9520.

Systems analysis and design of computer integrated manufacturing, including flexible manufacturing systems and automated factories. (Old No. 97.602G)

MANF9691 Special Topic in Operations Research* C2
(Old No. 18.977G)

MANF9692 Special Topic in Operations Research* C2
(Old No. 18.978G)

MANF9693 Special Topic in Operations Research* C2
(Old No. 18.979G)

* These syllabi change to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

MARK5913 Marketing Management S1 L3
Prerequisites: MARK5911 and MARK5912 or co-requisite.

Conceptual framework relevant to the practice of marketing management developing an understanding of the market function. Emergence of a broader concept of marketing; relationship between corporate and marketing strategy; the marketing environment; market segmentation; marketing planning; determination of product, price channel, advertising and salesforce policies; marketing control. (Old No. 28.913G)

MATH5045 Advanced Mathematics for Electrical Engineers C3
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials. (Old No. 10.061G)

MECH9010 Project C2
(Old No. 5.912G)

MECH9019 Project C9
(Old No. 5.909G)

MECH9029 Project Report C18
(Old No. 5.918G)

MECH9039 Thesis C36
(Old No. 5.936G)

MECH9201 Digital Logic Fundamentals for Mechanical Engineers C3
Excluded 6.021E, 6.631 and equivalent.

MECH9202 Microprocessor Fundamentals for Mechanical Engineers
Prerequisite: MECH9201 or equivalent. Excluded 6.0318, ELEC4432, 6.613, COMP9221, ELEC9406, ELEC4351 and equivalent.

MECH9203 Industrial Applications of Microprocessors
Prerequisite: MECH9202 or equivalent. Excluded ELEC4432, ELEC9406, ELEC4351 and equivalent.

Coding and programming. Transducer selection. Information transfer. Data storage. Power output device control. Application to industrial automation and control. Laboratory complement to lectures. (Old No. 5.088G)

MECH9204 Elements of Industrial Automation
An introductory overview of the elements of Industrial Automation systems and the factors governing their use in industry. (Old No. 5.089G)

MECH9205 The Analysis and Use of Integrated CAD/CAM Systems
Prerequisite: MECH9204.

MECH9211 Control and Modelling of Mechanical Systems 1
As for MECH9212. (Old No. 5.328G)

MECH9212 Control and Modelling of Mechanical Systems 2
Prerequisite: MECH9211 or equivalent.

Development of modelling techniques using both digital and analogue computation, with special emphasis on the representation of non-linearities. Typical examples of mechanical systems. (Old No. 5.329G)

MECH9221 Industrial Robotics

MECH9222 Artificially Intelligent Machines
The principles of operation of machines into which limited powers of decision making have been delegated. The grouping of intelligent machines. Cognition; sensor technology; parsing; information representation; convolutions; software and hardware environments. (Old No. 5.320G)

MECH9301 Advanced Mechanism Analysis and Synthesis 1
Assumed knowledge: MECH2300 or 5.333 or equivalent. Excluded: MECH4301.

Algebraic displacement, velocity and acceleration analyses of simple and complex planar mechanisms. Instantaneous kinematics: centroids; inflection and Bresse circles; acceleration centre; Euler-Savary equation; cubic of stationary curvature; centring point curve. Coupler curves and their properties; curve cognates. Constraint and freedom; mobility; velocity closure of a loop; special configurations; singularities. Various methods of synthesis. (Old No. 5.318G)

MECH9302 Advanced Mechanism Analysis and Synthesis 2
A selection of topics from Planar mechanisms: kinematic analysis of complex mechanisms; kinetic analysis; kinematic geometry; precision position synthesis. Cams: basic and common curves; equations of motion; development of profile; determination of system geometry and mechanical properties; noise, wear, backlash and manufacture. Spatial linkages: structural analysis; closure equations; screw system algebra; special configurations. (Old No. 5.319G)

MECH9310 Advanced Vibration Analysis
Assumed Knowledge: MECH3310 or equivalent. Exclusion: MECH4310.

Introduction to experimental vibration analysis using Fast Fourier Transform (FFT) techniques. Typical sources of vibration in machines. Analysis of continuous systems via classical and finite element techniques. Experimental modal analysis. Torsional vibrations, including geared shaft systems. (Old No. 5.314G)

MECH9320 Random Vibrations
Assumed knowledge: MECH3310.

Probability, vibration theory review, linear mechanical system response to random vibrations. Statistical characteristics: autocorrelation, spectral density, convolution, narrow band processing, consistency, applications. (Old No. 5.336G)

MECH9321 Acoustic Noise 1
Excluded MECH4341.

Acoustic plane wave equation, standing waves, energy density, intensity, decibel scales. Human response, annoyance and damage criteria. Transmission between media, absorbing materials. Mufflers, Three dimensional wave equation. Transmission in ducts. Room acoustics. (Old No. 5.653G)
MECH9322 Acoustic Noise 2 C2
Pre requisite: MECH4322 or equivalent. Excluded MECH9321.
Noise measurement, microphones, frequency analysis, transient and average measurement. Frequency weightings.
Flow noise, noise from jets, fans, propellers. Noise of machines, modal response, damping. (Old No. 5.654G)

MECH9361 Lubrication Theory and Design 1 C2
Excluded MECH4361.
History of lubrication, types of bearing and bearing operation, nature of surfaces and their contact, modes of lubrication, properties of lubricants, viscous flow in pipes and channels, measurement of viscosity, infinitely long and short bearing approximations, one dimensional analysis of short bearing, other slider bearing geometries, the effect of end leakage, hydrostatic or externally pressurised bearings, squeeze films. (Old No. 5.631G)

MECH9362 Lubrication Theory and Design 2 C2
Pre requisite: MECH9361 or equivalent.
Continuum equations of hydrodynamic lubrication, Journal bearing dynamics, Rolling contacts, Elastohydrodynamic lubrication, Grease lubrication, Plasto-elastohydrodynamic lubrication, Metal forming, cutting lubrication. (Old No. 5.632G)

MECH9400 Mechanics of Fracture and Fatigue C3
Excluded MECH4400.

MECH9410 Finite Element Applications C3
Excluded MECH4410, MECH4400.
Introduction to finite element and associated graphics packages. Principles of mesh design and validation. Specification of boundary conditions including use of symmetry. Estimation of the cost of solution. Interpretation of results. Assessment of the accuracy of the results. Convergence to the exact solution. Selection of applications from linear and non-linear elasticity: three dimensional solids, plates and shells, plasticity, buckling and post-buckling behaviour, thermal stresses, dynamics including natural and forced vibration. (Old No. 5.414G)

MECH9421 Stress Analysis for Mechanical Engineering Design 1 C3
Assumed knowledge: MECH3400 or equivalent.
Plates, shells: primary, secondary and peak stresses, relations to strength. Pressure vessels. Current design philosophies. (Old No. 5.415G)

MECH9422 Stress Analysis for Mechanical Engineering Design 2 C3
Assumed knowledge: MECH3400 or equivalent.

MECH9460 Experimental Stress Analysis C3
Strain gauging: practice, theory, instrumentation, data acquisition and processing, applications, load cell design. Photoelasticity: transmission and reflective. Brittle coatings, Dye penetrants. Practical laboratory classes throughout. (Old No. 5.403G)

MECH9620 Computational Fluid Dynamics C3

MECH9631 Gasdynamics 1 C2
Excluded: AERO3601.
One dimensional steady flow: isentropic channel flow, normal shock waves, supersonic wind tunnels and diffusers. Two dimensional steady flow: oblique shock waves, Prandtl-Meyer expansions, nozzles, airfoils. One dimensional unsteady flow: moving waves, reflections, explosions in ducts, shock tubes; method of characteristics, internal flows, piston and valve effects. (Old No. 5.621G)

MECH9632 Gasdynamics 2 C2
Pre requisite: MECH9631 or equivalent.

MECH9710 Numerical Fluid Dynamics and Heat Transfer C3
Assumed knowledge: MECH3800 or equivalent. Excluded: MECH2600 or equivalent.

MECH9711 Analysis of Heat Transfer C4
Assumed knowledge: MECH3701 or equivalent.
Steady-state and transient heat conduction in one, two and three dimensions with application of analytical, numerical and analogical techniques. Conduction in solids with a heat source. Heat transfer in moving fluid media. Free and forced convection for internal and external flows. Differential and integral treatments of boundary layer problems. Laminar and turbulent boundary layers. Heat exchange between two fluids separated by a wall. Radiation properties of surfaces and...
gases. Analysis of radiation exchange between real and idealized surfaces. Interaction of radiation with conduction and convection. Heat transfer analysis of selected problems. (Old No. 5.731G)

MECH9720 Solar Thermal Energy Design C3
Excluded MECH4720 and equivalent.

MECH9730 Two Phase Flow and Heat Transfer C3
Assumed knowledge: MECH3701 or equivalent. Excluded MECH4720.

MECH9740 Power Plant Engineering C3
Assumed knowledge: MECH2600, and MECH2700 or equivalent.

MECH9741 Energy Conservation and System Design C3

Examination of some existing systems, assessment of their energy losses and their improvement by tuning. Alternative energy sources and their availability, energy utilization and efficiency in various systems. Environmental aspects, assessment of emissions, means of improvement. Economically viable energy technology under present conditions. Expected trends in energy technology in the short and long term. A number of case studies. (Old No. 5.655G)

MECH9742 Power Production Assessment C3
Assumed knowledge: MECH3600 and MECH3701 or equivalent.

Components of hydro, coal and nuclear fuel power station designs. Economics of power production. Operation and maintenance of costs. Efficiency and heat balance calculations of thermal power stations. Comparison of electrical energy production costs of different power stations. (Old No. 5.700G)

MECH9751 Refrigeration and Air Conditioning 1 C3

MECH9752 Refrigeration and Air Conditioning 2 C3

Assumed knowledge: MECH9751 or equivalent

Psychrometrics; application to air conditioning design. Direct contact heat and mass transfer; application to the design of cooling towers and air washers. Cooling of dehumidifying coils. Properties of homogeneous binary solutions; steady flow processes with binary mixtures. Rectification of a binary mixture. Analysis of absorption systems. Production of low temperatures. Liquefaction and rectification of gases. Magnetic cooling. (Old No. 5.756G)

MECH9753 Refrigeration and Air Conditioning Design 1 C3

Assumed Knowledge: MECH9730, MECH9751, MECH9752 or equivalent. (Old No. 5.151G)

MECH9754 Refrigeration and Air Conditioning Design 2 C3

Prerequisite: MECH9753 or equivalent.

Design of refrigeration equipment compressors; throttling devices; condensers; evaporators. Cooling towers: evaporative condensers; air conditioning coils. Generators and absorbers for absorption systems. Piping systems. Air ducts. Steam raising and water heating equipment. Calculation of transient heating and cooling loads. Air conditioning systems. Load analysis and system capability. (Old No. 5.152G)

MECH9755 Refrigeration and Air Conditioning Applications C3

Industrial, commercial and domestic applications of refrigeration and air conditioning. Refrigeration technology. The science and technology of foods. Building design and construction. (Old No. 5.757G)

MECH9756 Refrigeration and Air Conditioning Experimentation C3

Prerequisites: MECH9751, MECH9752. Co-requisites: MECH9753, MECH9754.

Performance testing and system evaluation of multistage R22 brine system, R12 forced-draft cooler system and dual duct air conditioning plant. Instrumentation, data acquisition and control of refrigeration plant. Use of calorimeter rooms for testing and rating of equipment. Transient performance characteristics of direct expansion coil and system, under different ambient conditions. Group project involving the designing, building, commissioning, instrumenting and testing of refrigeration and air conditioning equipment. (Old No. 5.759G)

MECH9757 Ambient Energy Air Conditioning C2

Assumed knowledge: MECH3701 or equivalent.

Prediction of heat storage effects in air conditioned structures. Performance of passive and active ambient energy heating.
and cooling systems using correlations and simulation. Use of TRNSYS program package. Simple evaporative cooling. Open cooling cycles: single and double regenerative evaporative cooling and applications; nearly reversible evaporative cooling; adiabatic desiccant open cooling cycles.

(Old No. 5.753G)

MECH9761 Internal Combustion Engines 1 C3

MECH9762 Internal Combustion Engines 2 C3
Prerequisite: MECH9761 or equivalent.

MECH9800 Ordinary Differential Equations In Mechanical Engineering C3
Solutions and their meaning, integration constants, linearity; special methods of solution; integration factors; variation of parameters; Euler, higher order linear equations; physical origins of ordinary differential equations and linear systems; linearization of engineering problems; stability of engineering systems. (Old No. 5.073G)

MECH9900 Special Topic in Mechanical Engineering C2
(Old No. 5.045G)

MECH9910 Special Topic in Mechanical Engineering C2
(Old No. 5.046G)

MECH9920 Special Topic in Mechanical Engineering C3
(Old No. 5.048G)

MECH9930 Special Topic in Mechanical Engineering C3
These syllabi change to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 5.049G)

Mines.

MINE1524 Mining Conservation
The reclamation of excavated land; integration with operational stages of mining. Mining cycles of alluvial, strip, and open cuts, land clearing, stabilizing the mined area, socio-economic aspects of mining, rehabilitation costs, government regulations. Examination and evaluation of a current operation. (Old No. 7.152G)

MINE5355 Mine Fill Technology F2

Pathology

PATH9003 Principles of Disease Processes S1 L3 C3
Prerequisites: PAED9101 or equivalent, ANAT2111 or equivalent.
The reaction of cells to injury, the inflammatory reaction; necrosis-vascular changes and infarction; reparative processes; fracture healing; neoplasia; reaction to implants; specific processes requiring prosthetic assistance. (Old No. 72.402G)

Remote Sensing

REMO9580 Image Analysis in Remote Sensing C3
Prerequisite: 10.361 or similar.
Techniques for extracting information from remotely sensed data with particular emphasis on satellite imagery. Topics taken from: nature and characteristics of earth resources and related satellites; satellite sensors and data formats; image enhancement techniques; image classification methods, including clustering, classification and feature selection; image classification methodologies; new horizons in remote sensing image analysis. (Old No. 97.580G)

REMO9581 Microwave Remote Sensing C3
Use of passive and active (radar) microwave techniques in remote sensing of earth resources. Topics include: real and synthetic aperture radar systems; passive microwave radiometry; energy-surface interactions; interpretation of microwave image data; applications in agriculture, geology, oceanography and hydrology; issues in signal and image
processing; characteristics of airborne and spaceborne microwave sensors. (Old No. 97.581G)

Safety Science

SAFE9011 *Principles of Engineering Mechanics* C3
Solid mechanics: Force systems, friction equilibrium and stability, linear and rotational motion, energy, momentum, collisions, simple machines, stress-strain relationships, bending stress, applications in safety and biomechanics. Fluid mechanics: properties of fluids, static and dynamic pressure in flowing systems, laminar and turbulent flow, friction losses. Forces on submerged objects, buoyancy, ship stability. Hydraulic and pneumatic systems. Applications in biomechanics, safety and ventilation. (Old No. 47.051G)

SAFE9122 *Computing for Safety Science* C3
Micro-computer hardware and software; the DOS operating system; creation and storage of data and files; fundamentals of word processing, data bases, and spreadsheets; management and analysis of occupational health and safety related data; the BASIC programming language; flow charts, program structure and errors; writing BASIC programs to analyse health and safety related problems and/or to calculate related parameters. (Old No. 47.030G)

SAFE9142 *Organisational Communication for Safety* Q3

SAFE9211 *Introduction to Safety Engineering* C3
The engineering improvement of potentially hazardous workplace situations with reference to the following: Basic safety practice; management of dangerous materials; fire and explosion; ventilation; noise control; radiation protection; electrical safety; biosafety, machine dangers and machine guarding; construction safety; transport safety; environmental safety; plant safety assessment. (Old No. 47.052G)

SAFE9213 *Introduction to Safety Engineering M* C3
The treatment of the following topics covers similar material as SAFE9211, but assumes a basic knowledge of differential calculus. The following workplace topics are considered; safety management, ergonomics, equipment design and task consideration, machine guarding and electrical safety, fire and explosion, management of dangerous materials, ventilation, radiation protection, noise and vibration control, environmental safety, transport safety, safety issues in different industries.

SAFE9224 *Principles of Ergonomics* C3
Applied anatomy and kinesiology, anthropometry; application to work place arrangement, seating and bench design, tool and equipment design, lifting techniques, consumer product and architectural design. Physiological and psychological aspects of work and fatigue; measurement of energy consumption, limits to energy expenditure at work, static muscular fatigue, boredom. Environment effects; natural and artificial lighting arrangements, problems of perception, colour; noise and vibration, heat and ventilation, thermal regulation in humans, criteria for comfort. Person-machine interfaces, displays, machine controls, reaction times, vigilance. Applications of ergonomics to occupational safety and health. Ergonomic research methodology.

Note: A project forms a substantial proportion of the assessment for this subject. (Old No. 47.061G)

SAFE9232 *Introduction to Occupational Health and Safety Law* C3
The concept of law; the creation and interpretation of statutes; the judicial and court systems; locus standi; common law and equity; basic principles of legal liability (civil and criminal); basic principles of administrative law and the liability of the Crown; the common law of employment; statutory regulation of employment; compulsory arbitration of industrial disputes. Outline of occupational health, safety and compensation legislation of the Australian States. Actions under the common law. (Old No. 47.090G)

SAFE9242 *Human Behaviour and Safety Science* C3
Human behaviour as a major system factor in occupational safety and health. Learning and safety programs. Attitudes and attitude change. Safety compliance — individual and group factors affecting compliance. Work motivation and safety practice. Accident proneness and personnel selection. Individual differences in attitudes to work. Planning and implementing organizational change. (Old No. 47.120G)

SAFE9261 *Occupational Health and Hygiene* C3
This subject deals with practical considerations of maintaining a healthy and injury free workforce. Topics to be covered include risk, codes of safe practice, personal protection from physical and chemical hazards, safe workplace, environmental sampling equipment and strategies, introduction to measurement of environmental hazards, medical screening and biological monitoring, surveys and data analysis. First Aid in the workplace, occupational safety program, accident and emergency preparedness.

SAFE9342 *Management for Safety* C3
Prerequisite: SAFE9242.
Management models and structure. The structure and responsibilities of a safety manager. Integrating safety into the organisation and management systems; cost effectiveness of safety programs. Selection and training of personnel. Comparison and evaluation of occupational health and safety 'off the shelf' data management systems. The safety practitioner as change agent. (Old No. 47.180G)

SAFE9343 *Innovation, Productivity and Safety* C3
This subject is designed to equip engineers with the knowledge and skills needed to combine good project design
and management at a technical level with positive leadership and effective person management at the human interaction level. The emphasis will be on the integration of human and technical capabilities and constraints into a total operating system in which safety, quality and productivity have been incorporated as system goals and functions. Topics to be covered include: Behaviour of people in organisation, Individuals, groups and organisations: Attitudes; Motivation; Leadership and morale; Conflict and its resolution; Group dynamics; Planning for innovation and change; Dealing with human problems, including resistance to change; Human capabilities and limitations in the physical, perceptual and cognitive reactions with the operating system.

The cost benefit of fail-safe design (in relation to human operators) vs post design training. Operator efficiency and training systems. Recent advances in defining and controlling human error and their implications for equipment design and for management and training systems.

SAFE9352 Hazard and Risk Analysis C3
Assumed knowledge: MATH2841 or equivalent.
Causes of accidents and defensive strategies; energy storage and transfer; epidemiology of accidents; reduction of loss from accidental injury; human factors; the environment and accidents; introduction to risk management, quantification of risk; risk benefit concepts; system reliability and fault-tree analysis in the study and control of accidents; Hazan, Hazop and Mort. Study of some major accidents; accident investigation and analysis; case studies in transport, industry, recreation and the home. (Old No. 47.330G)

SAFE9424 Applied Ergonomics C3
Prerequisite: SAFE9224 at credit level or equivalent.
Decision making, vigilance, effects of workload and stress, applications to screen-based equipment. Human error in relation to human/system interaction. Work systems: the systems approach, practical evaluation and re-design of work systems. Experimental methodology: experimental design in ergonomics, critical evaluation of the literature. (Old No. 47.062G)

SAFE9523 Machines and Structures Safety C3
Prerequisite: SAFE9011 or equivalent.

SAFE9533 Electrical Safety C3
Electric current; effects of current flow and electric fields; elementary circuit representation, typical supply situations; likely dangerous conditions; static electricity; hazardous locations; some special problem areas: codes of safe working; treatment of electric shock. Electrical causes of fire and explosion. (Old No. 47.060G)

SAFE9543 Management of Dangerous Materials C3
Introduction. Atmospheric dispersion of gaseous and particulate materials. Protection against dangerous materials for operators and other personnel. Storage, handling and transport of flammable liquids, dangerous goods and cryogenic material. Storage and transport of compressed gases. Disposal of dangerous materials; incinerators; flare stacks, landfill, dispersal. Treatment of wastewaters. Relevant legislation. Field excursion. (Old No. 47.481G)

SAFE9544 Transport Safety C3
This subject aims to provide students with an introduction to nature and scope of road safety and provide an understanding of the interdisciplinary and integrated approach required to implement improvements in roads and traffic safety. Subject areas include identification of road safety problems, strategic planning, road and road environment safety, ergonomics, signals, signs, lighting, road user safety, knowledge, attitudes, compliance and practices, vehicle and equipment safety, road safety school education, road safety campaigns and program evaluation.

SAFE9553 Radiation Protection C3
Radiation physics; radiation dosimetry and instrumentation; radiation biology; shielding and control of radiation; waste management; emergency procedures; environmental impact, non-ionizing radiation. Relevant legislation and codes of safe practice. Special topics; practical work and site visit. (Old No. 47.230G)

SAFE9561 Occupational Health Practice C3
This subject provides an opportunity for experiential learning in topics related to Occupational Health Practice. Students will visit six diverse industrial sites and centres for occupational health control. Before each visit the student must be aware of the possible health problems specific to that site or centre. A nominated preceptor will be available at each site or centre. Reports on each of these visits will be required; two reports must be substantial. Students enrolled in the Master of Safety Science or Diploma in Safety Science courses, who have paramedical qualifications will be best suited for this subject.

SAFE9563 Assessment of the Workplace Environment C3
Experimental design and practical measurements of the physical and chemical components of the workplace and general environment with reference to their impact upon health and safety. One quarter of the subject is allocated to formal lectures which outline measurement methods, experimental strategies and reporting procedures which are useful for constructing successful measurement programs. In the remaining time students design and carry out a number of practical measurement programs to access and report on the environment in terms of parameters such as noise, toxic dusts, flammable gases, floor friction, strength of materials forces associated with manual tasks, temperature, humidity and radiant heat, lighting, radiation, electromagnetic fields, and vibration.
SAF9573 Fire and Explosion

SAF9583 Ventilation

Prerequisite: SAF9011 or equivalent.

Nature of airborne contaminants: gases, vapours, dusts, heat and fumes. Assessment criteria. Ventilation systems for contaminant control: booths, enclosures, receiving and capture hoods, general dilution systems and natural ventilation. Design methods based on capture velocity, face velocity, control velocity and flow ratio principles. Properties of fan and duct systems. Alternatives to ventilation. Three laboratory sessions: air flow measurement, fans, capture hoods. (Old No. 47.070G)

SAFE9603 Special Report in Safety Science

Only for students enrolled in the Graduate Diploma course in Safety Science. (Old No. 47.903G)

SAFE9609 Project

(Old No. 47.909G)

SAFE9612 Project

C12

SAFE9618 Project Report

(Old No. 47.918G)

Surveying

SURV9106 Special Topic in Surveying A

This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic. (Old No. 29.106G)

SURV9107 Special Topic in Surveying B

A special subject taken by an individual student or a small group of students by private study in conjunction with tutorial sessions with the member(s) of staff in charge of the subject. (Old No. 29.107G)

SURV9121 Network and Deformation Analysis

Selected topics from: Geodetic datum and invariant quantities, measures of accuracy, testing of hypotheses, out-lier detection, internal and external reliability and sensitivity criteria, variance component estimation, design and optimisation of deformation monitoring networks, two-epoch analysis, multi-epoch analysis, case studies of monitoring networks. (Old No. 29.121G)

SURV9122 Elements of Geodetic Equipment

Selected topics from: Measuring system definition and design: principles of signal analysis, analogue to digital conversion, modulation techniques, phase and delay lock loops. Satellite receivers: design of satellite ranging systems, propagation effects, generation, reception and processing of GPS signals, GPS antenna and receiving design. Inertial sensors: principle and design of gyroscopes and accelerometers. Electronic theodolites: absolute and incremental angle encoders and electronic circle, tilt sensors, surveying robots. Electronic distance meters: principle of precision distance meters and laser interferometers, phase and time measuring techniques. (Old No. 29.122G)

SURV9161 Advanced Estimation Techniques

Selected topics from: Generalised least squares estimation, sequential least squares estimation, matrix partitioning techniques, Kalman Filtering, covariance analysis, management of large data sets, application in satellite geodesy, network analysis and analytical photogrammetry. (Old No. 29.161G)

SURV9162 Mathematical Methods

Selected topics from: Principles and applications of spectral analysis techniques, spherical harmonic expansion of the Earth's gravity field, methods of curve fitting, numerical methods of differentiation and integration, case studies in satellite orbit dynamics. (Old No. 29.162G)

SURV9210 Satellite Surveying

Concepts of satellite surveying: nomenclature, TRANSIT system, GPS for point and relative positioning, vertical control. Surveying with GPS: planning a survey, field and office procedures, case studies. Considerations for high-precision applications: aspects of satellite geodesy, modelling the observable, dual frequency observations, orbit determination, short-arc techniques. (Old No. 29.210G)

SURV9211 Introduction to Geodesy

SURV9213 Physical Meteorology

142
SURV9217 Gravimetric Geoid Evaluations SS L2 T1 C3

SURV9530 Analytical Photogrammetry SS L2 T1 C3
Fundamental relationship, image and object space. Interior orientation, deviations from collinearity. General orientation of one and two images by collinearity. Simultaneous block adjustment by bundles. Additional parameters. Calibration of metric and non-metric cameras. Control requirements in analytical photogrammetry. (Old No. 29.530G)

SURV9532 Computer-Assisted Mapping SS L2 T1 C3
Introduction to principles of Computer Assisted Mapping. Collection and editing of feature coded digital terrain data in vector and raster form. Digital elevation models; acquisition, interpolation and processing. Automation of mapping procedures. Archival of digital map data. Mapping systems based on computer assisted techniques. (Old No. 29.532G)

SURV9600 Principles of Remote Sensing S1 L2 T1 C3
History and development. Definition and physics of basic electromagnetic radiation quantities. Basic-energy matter relationship. Spectral signatures of surfaces. Atmospheric considerations and the reduction of atmospheric effects. Sensor concepts including film and electro-optical sensors. An introduction to data processing and enhancement, including image interpretation procedures. (Old No. 29.600G)

SURV9602 Remote Sensing Procedures S2 L2 T1 C3
Review of atmospheric correction procedures and application to multi-temporal Landsat MSS data. Review of image registration, enhancement and classification procedures with particular reference to multi-source remote sensing data sets. Analysis of techniques over a varied land use area. Land use change project and analysis using multi-source and multi-temporal remotely sensed imagery, including Landsat MSS, TM, SPOT and SAR. (Old No. 29.602G)

SURV9604 Land Information Systems SS L2 T1 C3
Land information as maps and records. Methods of data collection. Integrated surveys and coordinate systems. Legal boundaries. Land tenure. Identifiers. Computerization of land information. Data input methods. Data storage methods. Data processing and manipulation, including management, searching, existing data base languages, and interactive data editing. Data output, including computer graphics, line printer maps, and digital plotters. Application of Arc-Info LIS software. (Old No. 29.604G)

SURV9605 Ground Investigations for Remote Sensing SS L2 T1 C3
The spectral, temporal and spatial characteristics of various surfaces, and the available sensors to effect maximum differentiation. Ground and image comparisons. Instruments available for field measurements. Field investigation procedures including positioning and sampling considerations. (Old No. 29.605G)

SURV9608 Cadastral Systems SS L2 T1 C3
The cadastral concept. Cadastral surveying and mapping, land registration, valuation of land, land tenure and land administration. Cadastres and land information systems (L.I.S.). Strategies for improving cadastral systems. Cadastral systems in developing countries; legal, technical, administrative, economic and social issues. (Old No. 29.608G)

SURV9912 Project C12
(Old No. 29.909G)
Graduate Study: Conditions for the Award of Higher Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Table of Courses by Faculty (Undergraduate Study).

The following is the list of higher degrees and graduate diplomas of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see later in this section.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Medicine</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calender/Handbook</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td>MBEnv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Cognitive Science</td>
<td>MCogSc</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>Master of Community Health</td>
<td>MCH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Education</td>
<td>ME</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEdAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science Engineering University College</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Applied Science Engineering University College</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Planning</td>
<td>MLP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Management Economics</td>
<td>MMgtEc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Project Management</td>
<td>MPM</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Public Health</td>
<td>MPH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychology (Applied)</td>
<td>MPsychotherap</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Psychology (Clinical)</td>
<td>MPsychotherap</td>
<td>Science</td>
</tr>
<tr>
<td>Master of Psychotherapy</td>
<td>MPsychotherap</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science Architecture Engineering</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Applied Science Architecture Engineering</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Applied Science Architecture Engineering</td>
</tr>
</tbody>
</table>
1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

 (2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

 (3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

3. (1) An application to enrol as a candidate for the degree shall be lodged with the Registrar at least one month prior to the date at which enrolment is to begin.

 (2) In every case before making the offer of a place the Committee shall be satisfied that agreement has been reached between the School and the applicant on the topic area, supervision arrangements, provision of adequate facilities and any coursework to be prescribed and that these are in accordance with the provisions of the Bill of Rights for postgraduate research students.

 (3) The candidate shall be enrolled either as a full-time or a part-time student.

 (4) A full-time candidate will present the thesis for examination no earlier than three years and no later than five years from the date of enrolment and a part-time candidate will present the thesis for examination no earlier than four years and no later than six years from the date of enrolment, except with the approval of the Committee.
(5) The candidate may undertake the research as an internal student i.e. at a campus, teaching hospital, or other research facility with which the University is associated, or as an external student not in attendance at the University except for periods as may be prescribed by the Committee.

(6) An internal candidate will normally carry out the research on a campus or at a teaching or research facility of the University except that the Committee may permit a candidate to spend a period in the field, within another institution or elsewhere away from the University provided that the work can be supervised in a manner satisfactory to the Committee. In such instances the Committee shall be satisfied that the location and period of time away from the University are necessary to the research program.

(7) The research shall be supervised by a supervisor or supervisors or under other appropriate supervision arrangements approved by the Committee. Normally an external candidate within another organisation or institution will have a co-supervisor at that institution.

4. The progress of the candidate shall be considered by the Committee following report from the School in accordance with the procedures established within the School and previously noted by the Committee.

(i) The research proposal will be reviewed as soon as feasible after enrolment. For a full-time student this will normally be during the first year of study, or immediately following a period of prescribed coursework. This review will focus on the viability of the research proposal.

(ii) Progress in the course will be reviewed within twelve months of the first review. As a result of either review the Committee may cancel enrolment or take such other action as it considers appropriate. Thereafter, the progress of the candidate will be reviewed annually.

5. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall comply with the following requirements:

(a) it must be an original and significant contribution to knowledge of the subject;
(b) the greater proportion of the work described must have been completed subsequent to enrolment for the degree;
(c) it must be written in English except that a candidate in the Faculty of Arts may be required by the Committee to write a thesis in an appropriate foreign language;
(d) it must reach a satisfactory standard of expression and presentation;
(e) it must consist of an account of the candidate’s own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate’s part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

6. (1) There shall be not fewer than three examiners of the thesis, appointed by the Committee, at least two of whom shall be external to the University.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

(a) The thesis merits the award of the degree.
(b) The thesis merits the award of the degree subject to minor corrections as listed being made to the satisfaction of the head of school.
(c) The thesis requires further work on matters detailed in my report. Should performance in this further work be to the satisfaction of the higher degree Committee, the thesis would merit the award of the degree.
(d) The thesis does not merit the award of the degree in its present form and further work as described in my report is required. The revised thesis should be subject to re-examination.
(e) The thesis does not merit the award of the degree and does not demonstrate that resubmission would be likely to achieve that merit.

(3) If the performance at the further work recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further work, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

7. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Biomedical Engineering may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed, and shall submit a project report. The program of advanced study, including the preparation of the project report, shall total a minimum of 60 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the Director of the Centre for Biomedical Engineering (hereinafter referred to as the head of the school).

(3) The progress of the candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or five sessions in the case of a part-time candidate. The maximum period of candidature shall be five academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. (1) A candidate shall be required to undertake a project on an approved topic.

(2) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.

(3) The candidate shall give in writing to the Registrar two months notice of intention to submit a report on the project.

(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports for higher degrees.

(5) It shall be understood that the University retains three copies of the project report submitted for examination and is free to allow the project report to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report in whole or in part, in microfilm or other copying medium.

5. (1) There shall be not fewer than two examiners of the project report, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

* Or department where a department is not within a school, or schools or departments where the research is being undertaken in more than one school or department.
At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or
(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit in a revised form after a further period of study and/or research; or
(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

The Committee shall, after considering the examiners’ reports and the candidate’s results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering (ME) and Master of Science (MSc)

Qualifications

The degree of Master of Engineering or Master of Science by research may be awarded by the Council on recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of the thesis embodying the results of an original investigation.

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the degree.

(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work the Committee may prescribe.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

(2) In every case, before permitting a candidate to enrol, the head of the school* in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:

(a) full-time attendance at the University;
(b) part-time attendance at the University;
(c) external - not in regular attendance at the University and using research facilities external to the University.

(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

(5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school* in which the candidate is enrolled and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

* Or department where a department is not within a school, or schools or departments where the research is being undertaken in more than one school or department.
(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present, for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

4.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

(2) The candidate shall give in writing two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5.(1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

(c) the candidate be awarded the degree subject to further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Engineering or Master of Science or Master of Surveying without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor of the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

3. An application to enrol as candidate for the degree without supervision shall be made n the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should, in his or her own interest, seek at an early stage the advice of the appropriate head of school* with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available

*Or department where a department is not within a school or schools or departments where the research is being undertaken in more than one school or department.
4.(1) A candidate shall submit a thesis embodying the results of the investigation.
(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.
(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.
(4) The candidate may also submit any work previously published whether or not related to the thesis.
(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation an submission of theses for higher degrees.
(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5.(1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.
(2) Before the thesis is submitted to the examiners the head of the school* in which the candidate is enrolled shall certify that it is prima facie worthy of examination.
(3) At the conclusion of the examination each examiner shall submit to the Committee that:
(a) the candidate be awarded the degree without further examination; or
(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or
(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.
(4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.
(5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Engineering Science or Master of Surveying Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).
(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.
(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

*Or department where a department is not within a school or schools or departments where the research is being undertaken in more than one school or department.
(2) A candidate for the degree shall:

(a) undertake such formal subjects and pass such assessment as prescribed, or

(b) demonstrate ability to undertake research by the submission of a thesis embodying the results of an original investigation of an approved topic, or

(c) undertake an approved combination of the above in which case the thesis component shall be referred to as a project report.

(3) The program of advanced study shall total a minimum of 30 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school*.

(4) A candidate's proposed program shall be approved by the appropriate head of school* prior to enrolment. For the purposes of this requirement the appropriate head of school* shall normally be the head of the school* providing the major field of study.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. A candidate who undertakes an 18 credit project shall carry out the work on an approved topic under the direction of a supervisor appointed from the full-time academic members of the University staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report or thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.

5. (1) There shall be not fewer than two examiners of the project report, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school*; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

7. A candidate shall pay such fees as may be determined from time to time by the Council.
1. The degree of Master of Safety Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed. The program of advanced study shall total a minimum of 54 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the Course Director (hereinafter referred to as the head of the school).

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4.(1) The program of advanced study may include an 18 credit project on an approved topic.

(2) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.

(3) The candidate shall give in writing to the Registrar two months notice of intention to submit a report on the project.

(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports for higher degrees.

(5) It shall be understood that the University retains the three copies of the project report submitted for examination and is free to allow the project report to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report in whole or in part, in microfilm or other copying medium.

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Academic Board on the recommendation of the Committee.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners’ reports and the candidate's results of assessment in the prescribed formal subject, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.
1. The degree of Master of Surveying by research may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work as the Committee may prescribe.

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

(2) In every case, before permitting a candidate to enrol, the Head of the School of Surveying (hereinafter referred to as the head of the school) shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:

(a) full-time attendance at the University;
(b) part-time attendance at the University;
(c) external - not in regular attendance at the University and using research facilities external to the University.

(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

(5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

4.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

(2) The candidate shall give in writing two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.
Engineering Examination 5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination, or
(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or
(c) the candidate be awarded the degree subject to a further examination on questions posed in the report performance in this further examination being to the satisfaction of the Committee; or
(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees 6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Surveying without supervision (MSurv)
See Master of Engineering.

Master of Surveying Science (MSurvSc)
See Master of Engineering Science.

Graduate Diploma Qualifications 1. A Graduate Diploma may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the diploma.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe before permitting enrolment.

Enrolment and Progression 3. (1) An application to enrol as a candidate for the diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and six sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees 4. A candidate shall pay such fees as may be determined from time to time by the Council.

156
Scholarships and Prizes

The scholarships and prizes listed below are available to students whose courses are listed in this handbook. Each faculty handbook contains in its Scholarships and Prizes section the scholarships and prizes available with that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

Listed below is an outline only of a number of scholarships available to students. Full information may be obtained from the Student Centre located on the Lower Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar and Deputy Principal by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bursary Endowment Board*</td>
<td>$200 pa</td>
<td>Minimum period of approved degree/combined degree course</td>
<td>Merit in HSC and total family income not exceeding $6000</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa payable in fortnightly instalments</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need.</td>
</tr>
<tr>
<td>Girls Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress and continued demonstration of need</td>
<td>Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need.</td>
</tr>
</tbody>
</table>

*Apply to The Secretary, Bursary Endowment Board, PO Box 460, North Sydney 2060, immediately after sitting for HSC. Scholarships
Undergraduate Scholarships

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/S of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.S. and L.B. Robinson**</td>
<td>Up to $4200 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology, electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science. Available to students enrolled in any year of a full-time course. Candidates must be the children of Alumni of the University of NSW and may be either permanent residents of Australia or overseas students.</td>
</tr>
<tr>
<td>Alumni Association</td>
<td>Up to $1500 pa</td>
<td>1 year with the possibility of renewal</td>
<td></td>
</tr>
</tbody>
</table>

Applications close 30 September each year.

Engineering

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/S of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proctor & Gamble Australia Pty Ltd</td>
<td>Up to $2500</td>
<td>1 year</td>
<td>Permanent residence in Australia and in the final year of an Electrical, Computer, Mechanical, or Industrial Engineering course.</td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Tyree Westinghouse Electrical Company Pty Ltd</td>
<td>Up to $6720 over 4 years</td>
<td>1 year renewable for the duration of the course, subject to satisfactory progress</td>
<td>Eligibility for admission to the full-time degree course in Electrical Engineering.</td>
</tr>
<tr>
<td>OTC Ltd-Women in Electrical Engineering</td>
<td>Up to $2000 pa</td>
<td>1 year</td>
<td>Available to female students enrolled in Year 1 of the electrical engineering course, leading to the degree of Bachelor of Engineering. Candidates must be residents of Australia.</td>
</tr>
<tr>
<td>Proctor & Gamble Australia Pty Ltd</td>
<td>Up to $2500</td>
<td>1 year</td>
<td>Permanent residence in Australia and in the final year of the Computer Science program of the Bachelor of Science course.</td>
</tr>
</tbody>
</table>

Mechanical and Manufacturing Engineering

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/S of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheem Australia Ltd</td>
<td>Up to $2500 pa</td>
<td>1 year renewable for the duration of the course, subject to satisfactory progress</td>
<td>Permanent residence in Australia for a second and later year student enrolled in Mechanical or Manufacturing Engineering.</td>
</tr>
</tbody>
</table>

Surveying

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/S of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Institution of Surveyors NSW, Incorporated</td>
<td>Up to $500 pa</td>
<td>1 year renewable for the duration of the course, subject to satisfactory progress</td>
<td>Permanent residence in Australia and eligibility for admission to the full-time degree course in Surveying. Selection is based on academic merit, personal qualities and financial need. Available to female students entering Year 1 of the Surveying course, leading to the degree of Bachelor of Surveying. Candidates must be residents of Australia.</td>
</tr>
<tr>
<td>NSW Department of Lands - Women in Surveying</td>
<td>Up to $2000 pa</td>
<td>1 year</td>
<td></td>
</tr>
</tbody>
</table>
Scholarships and Prizes

Undergraduate Scholarships (continued)

The UNSW Co-op Program

The University of New South Wales has industry-linked education scholarship programs to the value of $8000 per annum in the following areas: Business Information Technology, Chemical Engineering, Civil Engineering, Electrical and Computer Engineering, Industrial Chemistry, Mechanical and Industrial Engineering, Mining, Mineral Engineering and Applied Geology. Further information can be obtained by writing to The Co-ordinator, UNSW Co-op Programs Industry-Linked Education Office, C/- Vice-Chancellors Division.

Graduate Scholarships

Application forms and further information are available from the Student Centre, located on the Ground Floor of the Chancellery unless an alternative contact address is provided. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

The following publications may also be of assistance: 1. Awards for Postgraduate Study in Australia and Awards for Postgraduate Study Overseas, published by the Graduate Careers Council of Australia. PO Box 28, Parkville, Victoria 3052; 2. Study Abroad, published by UNESCO; 3. Scholarships Guide for Commonwealth Postgraduate Students, published by the Association of Commonwealth Universities.

Details of overseas awards and exchanges administered by the Department of Employment, Education and Training can be obtained from: Awards and Exchanges Section, Department of Employment, Education and Training, PO Box 826, Woden, ACT 2606.

Where possible, the scholarships are listed in order of faculty.

*Available for reference in the University Library.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Postgraduate Research Scholarships</td>
<td>Living allowance of $13,504 pa.</td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates or equivalent. Applications to Dean of relevant Faculty.</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Research Awards</td>
<td>$13,504 to $17,427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commonwealth Postgraduate Course Awards</td>
<td>Living allowance of $10,903 pa.</td>
<td>1-2 years; minimum duration of course</td>
<td>Applicants must be graduates or scholars who will graduate in current academic year, and who have not previously held a Commonwealth Post-graduate Award. Applicants must be domiciled in Australia. Preference is given to applicants with employment experience. Applications to the Registrar by 28 September.</td>
</tr>
<tr>
<td>Overseas Postgraduate Research Scholarships</td>
<td>Tuition fees only</td>
<td>2 years for a Masters and 3 years for a PhD</td>
<td>Eligibility is confined to postgraduate research students who are citizens of overseas countries excluding citizens of countries which are covered by the Equity and Merit Scholarship Scheme (EMSS). Application to the Registrar by 28 September.</td>
</tr>
<tr>
<td>IDP-Korea/Taiwan Research Scholarships</td>
<td>Tuition fees and a stipend</td>
<td>2 years for a Masters and 3 years for a PhD</td>
<td>Eligibility is confined to postgraduate research students who are citizens of Korea or Taiwan. Application to the Registrar by 31 July.</td>
</tr>
</tbody>
</table>
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian American Educational Foundation Fulbright Award</td>
<td>Travel expenses and $2000</td>
<td>1 year, renewable</td>
<td>Applicants must be graduates who are domiciled in Australia and wish to undertake research or study for a higher degree in America. Applications close 30 September with The Secretary, DEET, AAEF Travel Grants, PO Box 826, Woden ACT 2606.</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td>Amount varies, depending on</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women</td>
</tr>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country.</td>
<td>Usually 2 years,</td>
<td>Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Tenable in Commonwealth countries other than Australia. Applications close with the Registrar in September or October each year.</td>
</tr>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$7000</td>
<td>1 year</td>
<td>Applications must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April with The Secretary, Ground Floor, Sydney School of Arts, 275 Pitt Street, Sydney NSW 2000.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowship tenable at Harvard University</td>
<td>Stipend of US$7000 pa plus</td>
<td>1, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with the Academic Registrar mid October.</td>
</tr>
<tr>
<td>Robert Gordon Menzies Scholarship to Harvard</td>
<td>Up to US $15,000</td>
<td>1 year</td>
<td>Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra ACT 2601.</td>
</tr>
<tr>
<td>Gowrie Scholarship Trust Fund</td>
<td>$6000 pa. Under. special</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with the Academic Registrar by 31 October.</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York</td>
<td>Living and travel allowances,</td>
<td>12 to 21 months</td>
<td>Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close 29 August with the Academic Registrar. Forms available from Mr J Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra ACT 2601.</td>
</tr>
</tbody>
</table>
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Packer, Shell and Barclays Scholarships to Cambridge University</td>
<td>Living and travel allowances, tuition expenses.</td>
<td>1-3 years</td>
<td>Applicants must be Australian citizens who are honours graduates or equivalent, and under 26 years of age. Applications close 15 October with The Secretary, Cambridge Commonwealth Trust, PO Box 252, Cambridge CB2 1TZ, England.</td>
</tr>
<tr>
<td>The Rhodes Scholarship to Oxford University</td>
<td>Approximately £4862 stg pa</td>
<td>2 years, may be extended for a third year.</td>
<td>Unmarried Australian citizens aged between 19 and 25 who have an honours degree or equivalent. Applications close in August each year with The Secretary, University of Sydney, NSW 2006.</td>
</tr>
</tbody>
</table>

Engineering

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Institute of Nuclear Science and Engineering Studentships</td>
<td>Basic stipend $11,103 pa plus allowances and some University expenses.</td>
<td>1-3 years</td>
<td>Applicants must be honours graduates in Science or Engineering. At least one quarter of the period of tenure must be spent at the Institute at Lucas Heights, NSW. Applications close late October with the Registrar.</td>
</tr>
<tr>
<td>Harold G. Conde Memorial Fellowship</td>
<td>$5000 pa</td>
<td>Maximum of 3 years</td>
<td>Applicants should be honours graduates permanently domiciled in Australia. The Fellowship is a supplementary award to be held in conjunction with another scholarship and is for graduate study or research in a field related to the electricity industry. Applications close with the Registrar by 10 April.</td>
</tr>
<tr>
<td>IBM Research Scholarship in Microelectronics</td>
<td>$12000 pa where only scholarship held. $5000 pa where it supplements another scholarship.</td>
<td>Up to 3 years</td>
<td>To enable a suitable graduate to undertake a research degree in the Joint Microelectronics Research Centre. Applications close 31 October with the Registrar.</td>
</tr>
<tr>
<td>The Joseph Barling Fellowship</td>
<td>Not less than $8500</td>
<td>Maximum of 3 years</td>
<td>Candidates should be electrical engineering graduates of the University of New South Wales in special circumstances mechanical and industrial engineering graduates may apply. The Fellowship is for full-time study for the award of the degree of Master of Business Administration or Doctor of Philosophy at the University. Applications close 31 December with the Registrar.</td>
</tr>
<tr>
<td>Medical Engineering Research Association</td>
<td>Variable</td>
<td>1-3 years</td>
<td>Awarded for postgraduate study or research in the field of Biomedical Engineering. Applications to The Secretary, MERA, PO Box 218, Lindfield NSW 2070.</td>
</tr>
</tbody>
</table>

Other Prizes

- Water Industry Research Award
- Shell Scholarship in Science or Engineering
- Australian Telecommunications and Electronics Research Board

See under Applied Science or Science.
Prizes

Undergraduate University Prizes

The following table summarizes the undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded.

Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor of the Chancellery.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| The Sydney Technical College Union Award | $400.00 & | Leadership in student affairs combined with marked academic proficiency by a graduand.
| | Bronze Medal| |
| The University of New South Wales Alumni Association Prize | Statuette | Achievement for community benefit by a student in the final or graduating year. |
| **Faculty of Engineering** | | |
| The Institution of Engineers Australia Award | $200.00 & | The best performance by a final or equivalent year student in the BE or BSc(Eng) degrees offered by the Schools of Civil Engineering, Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Chemical Engineering and Industrial Chemistry, and the Departments of Mining Engineering and Textile Technology (Engineering option only) and medal. |
| | $130.00 | |
| The John Fraser Memorial Award | | |
| **School of Civil Engineering** | | |
| The Association of Consulting Structural Engineers of New South Wales Prize | $225.00 | Best performance in CIVIL4203 Structural Engineering in the Bachelor of Engineering course in Civil Engineering |
| The Association of Consulting Structural Engineers of New South Wales Prize | $175.00 | The best performance in CIVIL3303 Structural Design in the Bachelor of Engineering Course in Civil Engineering |
| The Australian Conservation Foundation Prize | $50.00 | The best performance in the subjects which develop environmental management concepts for the Civil Engineer |
| The Australian Institute of Traffic Planning and Management Prize | $150.00 | The best performance in CIVIL4510 Transport major in the Bachelor of Engineering course in Civil Engineering |
| The Australian Welding Institute Prize | Books to the value of $60.00 & 1 years membership of the Institute. | The best design which incorporates a welding process for students in Years 2 to 4 of the Bachelor of Engineering in Civil Engineering |
| The Baulderstone Hornibrook Prize | $500.00 | The best performance in Engineering Construction and Management in the Bachelor of Engineering Course in Civil Engineering |
| The Crawford Munro Memorial Prize | $300.00 | The best performance in CIVIL3705 Water Resources in the Bachelor of Engineering Course in Civil Engineering |
Scholarships and Prizes

Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Civil Engineering (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The GAA Engineering Award</td>
<td>$500.00</td>
<td>The best performance in CIVIL3303 Structural Design in the Bachelor of Engineering Course (Civil)</td>
</tr>
<tr>
<td>The GAA Engineering Award</td>
<td>$500.00</td>
<td>The best essay on a topic relating to galvanising by a student proceeding to the degree of Bachelor of Engineering (Civil)</td>
</tr>
<tr>
<td>The Hardie’s Pipeline Award</td>
<td>$250.00</td>
<td>The best performance in CIVIL4605 Water Supply and Wastewater disposal in the Bachelor of Engineering course in Civil Engineering</td>
</tr>
<tr>
<td>The James Hardie Co Pty Ltd Prize</td>
<td>$225.00</td>
<td>The best performance in CIVIL2505 Hydraulics 1 in the Bachelor of Engineering course in Civil Engineering</td>
</tr>
<tr>
<td>The Jeffery and Katauskas Prize</td>
<td>$500.00</td>
<td>The best performance in CIVIL4822 Geotechnical Major in the Bachelor of Engineering course.</td>
</tr>
<tr>
<td>School of Electrical Engineering and Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Austral Crane Prize</td>
<td>$37.50</td>
<td>The best performance in Year 3 of the Bachelor of Engineering course in Electrical Engineering.</td>
</tr>
<tr>
<td>The Austral Crane Prize</td>
<td>$37.50</td>
<td>The best performance in a Power or Control elective in the Bachelor of Engineering course in Electrical Engineering</td>
</tr>
<tr>
<td>The Electricity Supply Engineers’ Association of New South Wales Prize</td>
<td>$100.00</td>
<td>The best overall performance including proficiency in electric power distribution in Year 3 full-time or equivalent part-time stages of the Bachelor of Engineering course in Electrical Engineering.</td>
</tr>
<tr>
<td>The IBM Prize</td>
<td>$200.00</td>
<td>The best performance in COMP1011 Computing 1</td>
</tr>
<tr>
<td>The Institution of Electrical Engineers Prize</td>
<td>$100.00</td>
<td>The best performance in Year 3 studies of the Bachelor of Engineering course in Electrical Engineering</td>
</tr>
<tr>
<td>The Institution of Electrical Engineers Prize</td>
<td>$100.00</td>
<td>The best performance in the final year thesis/project by a student proceeding to the degree of Bachelor of Electrical Engineering</td>
</tr>
<tr>
<td>The J. Douglas Maclurcan Prize</td>
<td>$60.00 book order</td>
<td>Outstanding performance in the field of Control Systems in the final year of the Bachelor of Engineering course in Electrical Engineering</td>
</tr>
<tr>
<td>The Logica Pty Limited Prize</td>
<td>$1000.00</td>
<td>The best performance by a graduand in a Computer Science Honours degree course.</td>
</tr>
<tr>
<td>The Telecom Australia Prize</td>
<td>$300.00</td>
<td>The best telecommunications related thesis by a final year student proceeding to the degree of Bachelor of Engineering (Electrical) or Computer Engineering.</td>
</tr>
</tbody>
</table>

School of Mechanical and Manufacturing Engineering

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ansett Airlines of Australia Prize</td>
<td>$200.00 and Bronze Medal</td>
<td>The best overall performance in the Bachelor of Engineering course in Aeronautical Engineering</td>
</tr>
<tr>
<td>The Atlas Copco Prize</td>
<td>$125.00</td>
<td>The best overall performance in the Bachelor of Engineering course in Mechanical Engineering</td>
</tr>
<tr>
<td>The Austral Crane Prize</td>
<td>$75.00</td>
<td>The best overall performance in full-time Year 3 of the Bachelor of Engineering course in Mechanical Engineering</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Australian Institute of Refrigeration, Air Conditioning and Heating Prize</td>
<td>Student membership of the Institute for one year, and Design Aid and Data book</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The Babcock Australia Limited Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The Carrier Air Conditioning Pty Limited Prize</td>
<td>$250.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The Computer-based Engineering Design Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The David Carment Memorial Prize</td>
<td>$500.00 and Bronze Medal</td>
<td>The best overall performance in the final year of the Bachelor of Engineering course in Naval Architecture</td>
</tr>
<tr>
<td>The Electricity Commission of NSW Award</td>
<td>$250.00</td>
<td>The best performance in MECH4740 Thermal Power Plants</td>
</tr>
<tr>
<td>The Harbin Polytechnical Alumni Association Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The Hawker de Havilland Ltd Prize</td>
<td>$500.00</td>
<td>The best thesis in the Bachelor of Engineering course in Aerospace Engineering</td>
</tr>
<tr>
<td>The Hawker de Havilland Victoria Limited Prize</td>
<td>$300.00 and Silver Medal</td>
<td>The best overall performance in the final year of the Bachelor of Engineering Course in Aerospace Engineering</td>
</tr>
<tr>
<td>The Jeremy Hirschhorn Prize in Mechanical Engineering</td>
<td>$100.00</td>
<td>The best performance by a final year student in Mechanics of Machines.</td>
</tr>
<tr>
<td>The John Harrison Prize</td>
<td>$100.00</td>
<td>The best performance in Mechanics of Machines in Year 3 of the Bachelor of Engineering course in Mechanical Engineering</td>
</tr>
<tr>
<td>The R.A.A. Bryant Prize</td>
<td>$1,000.00</td>
<td>A student graduating with first class honours and the University Medal in Mechanical Engineering</td>
</tr>
<tr>
<td>The Royal Institution of Naval Architects (Australian Division) Prize</td>
<td>$250.00</td>
<td>The best ship design by a student in the final year of the Bachelor of Engineering course in Naval Architecture</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best overall performance by a student in Year 1 of the Bachelor of Engineering course in Mechanical Engineering</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best undergraduate thesis by a student in the final year of the Bachelor of Engineering course in Mechanical Engineering</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in the subject MANF3619 Management/Economics by a student in the Bachelor of Engineering course.</td>
</tr>
<tr>
<td>The Staedtler (Pacific) Pty Ltd Prize</td>
<td>Products to the value of $350.00</td>
<td>The best overall performance by a student in Year 2 of the Bachelor of Engineering course in Mechanical Engineering</td>
</tr>
</tbody>
</table>
Scholarships and Prizes

Undergraduate University Prizes continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Austral Crane Prize</td>
<td>$75.00</td>
<td>The best overall performance in Year 3 of the Bachelor of Engineering course in Industrial Engineering.</td>
</tr>
<tr>
<td>The R.E. Jeffries Memorial Prize</td>
<td>$500.00</td>
<td>The best overall performance in the final year of the Bachelor of Engineering Degree course in Industrial Engineering.</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School.</td>
</tr>
<tr>
<td>The TRW Products Limited Prize</td>
<td>$100.00</td>
<td>The best overall performance in the Bachelor of Engineering course in Manufacturing Engineering.</td>
</tr>
</tbody>
</table>

Graduate University Prizes

The following table summarizes the graduate prizes awarded by the University.

<table>
<thead>
<tr>
<th>Donor/name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty of Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Centre for Safety Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Grace Bros Safety Science Merit Award</td>
<td>$250.00</td>
<td>The best performance in SAFE9352 Hazard & Risk Analysis in the Graduate Diploma in Safety Science Course.</td>
</tr>
<tr>
<td>The Grace Bros Safety Science Merit Award</td>
<td>$250.00</td>
<td>The best performance in SAFE9352 Hazard & Risk Analysis in the Master of Safety Science course.</td>
</tr>
<tr>
<td>The Manufacturers Mutual Insurance Prize for Ergonomics Principles</td>
<td>$200.00</td>
<td>The best performance in SAFE9224 Principles of Ergonomics by a student proceeding either to the degree of Master of Safety Science or to the Graduate Diploma in Ergonomics.</td>
</tr>
<tr>
<td>The Manufacturers Mutual Insurance Prize for Occupational Disease</td>
<td>$150.00</td>
<td>The best performance in CMED9701 Occupational Disease by a student proceeding either to the degree of Master of Safety Science or to the Graduate Diploma in Ergonomics.</td>
</tr>
<tr>
<td>The Manufacturers Mutual Insurance Prize for Occupational Health & Hygiene</td>
<td>$150.00</td>
<td>The best performance in SAFE9261 Occupational Health & Hygiene by a student in the Masters Degree or Graduate Diploma courses in Safety Science.</td>
</tr>
<tr>
<td>The National Safety Council Prize</td>
<td>$100.00</td>
<td>The best performance in SAFE9211 Introduction to Safety Engineering in the Masters Degree or Graduate Diploma in Safety Science.</td>
</tr>
<tr>
<td>The Safety Institute of Australia (NSW Division) Bill Lessels' Memorial Prize for Master of Safety Science</td>
<td>Books to the value of $200.00</td>
<td>The best overall performance by a student in the Master of Safety Science course.</td>
</tr>
<tr>
<td>The Safety Institute of Australia (NSW Division) Bill Lessels' Memorial Prize for Graduate Diploma in Safety Science</td>
<td>Books to the value of $200.00</td>
<td>The best overall performance by a student in the Graduate Diploma of Safety Science course.</td>
</tr>
</tbody>
</table>
Graduate University Prizes continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Institute of Advanced Motorists Prize</td>
<td>$50.00</td>
<td>The best performance in Traffic Planning and Control</td>
</tr>
<tr>
<td>The Maunsells Project Report Prize</td>
<td>$500.00</td>
<td>The best performance in CIVIL8909 or CIVIL9909 Project Report (9 credits) OR GEOL9504 or GEOL9604 Project Report (18 credits) by a student in the Master of Engineering Science or Master of Applied Science courses</td>
</tr>
<tr>
<td>The Maunsells Waste Management Prize</td>
<td>$500.00</td>
<td>The best aggregate performance in CIVIL8872 or CIVIL9872 Solid Waste Management, CIVIL8873 or CIVIL9873 Waste & Waste-Water Analysis & Environmental Requirements, CIVIL8874 or CIVIL9874 and Waste Management Science,</td>
</tr>
<tr>
<td>School of Mechanical and Manufacturing Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Computer-based Engineering Design Prize</td>
<td>$100.00</td>
<td>The best undergraduate or postgraduate thesis making a contribution to computer-based Engineering design in the School of Mechanical and Manufacturing Engineering</td>
</tr>
<tr>
<td>Time</td>
<td>Monday</td>
<td>Tuesday</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Monday</td>
<td>Tuesday</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Monday</td>
<td>Tuesday</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The University of New South Wales Kensington Campus

Buildings

<table>
<thead>
<tr>
<th>Affiliated Residential Colleges</th>
</tr>
</thead>
<tbody>
<tr>
<td>New (Anglican) L6</td>
</tr>
<tr>
<td>Shalom (Jewish) N9</td>
</tr>
<tr>
<td>Warrane M7</td>
</tr>
<tr>
<td>Applied Science F10</td>
</tr>
<tr>
<td>Architecture H14</td>
</tr>
<tr>
<td>Arts (Morven Brown) C20</td>
</tr>
<tr>
<td>Banks F22</td>
</tr>
<tr>
<td>Barker Street Gatehouse N11</td>
</tr>
<tr>
<td>Bassler College C18</td>
</tr>
<tr>
<td>Biological Sciences D26</td>
</tr>
<tr>
<td>Central Store B13</td>
</tr>
<tr>
<td>Chancellery C22</td>
</tr>
<tr>
<td>Chemistry (Dalton) F12</td>
</tr>
<tr>
<td>Robert Heffron E12</td>
</tr>
<tr>
<td>Civil Engineering H20</td>
</tr>
<tr>
<td>Commerce and Economics (John Goodsell) F20</td>
</tr>
<tr>
<td>Dalton (Chemistry) F12</td>
</tr>
<tr>
<td>Electrical Engineering G17</td>
</tr>
<tr>
<td>Geography and Surveying K17</td>
</tr>
<tr>
<td>Goldstein College D16</td>
</tr>
<tr>
<td>Golf House A27</td>
</tr>
<tr>
<td>Gymnasium B5</td>
</tr>
<tr>
<td>House at Pooh Corner N8</td>
</tr>
<tr>
<td>International House C8</td>
</tr>
<tr>
<td>Io Myers Studio D9</td>
</tr>
<tr>
<td>John Goodsell (Commerce and Economics) F20</td>
</tr>
<tr>
<td>Kanga's House O14</td>
</tr>
<tr>
<td>Kensington Colleges C17 (Office)</td>
</tr>
<tr>
<td>Bassler C18</td>
</tr>
<tr>
<td>Goldstein D16</td>
</tr>
<tr>
<td>Philip Baxter D14</td>
</tr>
</tbody>
</table>

Theatres

<table>
<thead>
<tr>
<th>Theatres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Theatres E27</td>
</tr>
<tr>
<td>Central Lecture Block E19</td>
</tr>
<tr>
<td>Classroom Block (Western Grounds) H3</td>
</tr>
<tr>
<td>Rex Vowels Theatre F17</td>
</tr>
<tr>
<td>Keith Burrows Theatre J14</td>
</tr>
<tr>
<td>Main Building (Physical Theatre) K14</td>
</tr>
<tr>
<td>Mathews Theatres D23</td>
</tr>
<tr>
<td>Parade Theatre E3</td>
</tr>
<tr>
<td>Science Theatre F13</td>
</tr>
<tr>
<td>Sir John Clancy Auditorium C24</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodation (off-campus) F15</td>
</tr>
<tr>
<td>Academic Staff Office C22</td>
</tr>
<tr>
<td>Accounting F20</td>
</tr>
<tr>
<td>Admissions C22</td>
</tr>
<tr>
<td>Adviser for Prospective Students C22</td>
</tr>
<tr>
<td>Anatomy C27</td>
</tr>
<tr>
<td>Applied Economic Research G14</td>
</tr>
<tr>
<td>Applied Geology F10</td>
</tr>
<tr>
<td>Applied Science (Faculty Office) F10</td>
</tr>
<tr>
<td>Architecture (including Faculty Office) H14</td>
</tr>
<tr>
<td>Arts (Faculty Office) C20</td>
</tr>
<tr>
<td>Audio Visual Unit F20</td>
</tr>
<tr>
<td>Australian Graduate School of Management G27</td>
</tr>
<tr>
<td>Banking and Finance F20</td>
</tr>
<tr>
<td>Biochemistry D28</td>
</tr>
<tr>
<td>Biological and Behavioural Sciences (Faculty Office) D26</td>
</tr>
<tr>
<td>Biomedical Engineering A28</td>
</tr>
<tr>
<td>Biomedical Library F23</td>
</tr>
<tr>
<td>Biotechnology D26</td>
</tr>
<tr>
<td>Bookshop G17</td>
</tr>
<tr>
<td>Building H14</td>
</tr>
<tr>
<td>Careers and Employment F15</td>
</tr>
<tr>
<td>Cashier’s Office C22</td>
</tr>
<tr>
<td>Chaplains E15</td>
</tr>
<tr>
<td>Chemical Engineering and Industrial Chemistry F10</td>
</tr>
<tr>
<td>Chemistry E12</td>
</tr>
<tr>
<td>Child Care Centres N8, O14</td>
</tr>
<tr>
<td>Civil Engineering H20</td>
</tr>
<tr>
<td>Commerce and Economics (Faculty Office) F20</td>
</tr>
<tr>
<td>Community Medicine D26</td>
</tr>
<tr>
<td>Computing Services Department F21, D26</td>
</tr>
<tr>
<td>Counselling and Careers Service F15</td>
</tr>
<tr>
<td>Economics F20</td>
</tr>
<tr>
<td>Education G2</td>
</tr>
<tr>
<td>Education Testing Centre E15</td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science G17</td>
</tr>
<tr>
<td>Energy Research, Development and Information Centre F10</td>
</tr>
<tr>
<td>Engineering (Faculty Office) K17</td>
</tr>
<tr>
<td>English C20</td>
</tr>
<tr>
<td>Ethics Committees Secretariat B8</td>
</tr>
<tr>
<td>Examinations C22</td>
</tr>
<tr>
<td>Fees Office C22</td>
</tr>
<tr>
<td>Food Science and Technology F10</td>
</tr>
<tr>
<td>French C20</td>
</tr>
<tr>
<td>General Staff Office C22</td>
</tr>
<tr>
<td>Geography K17</td>
</tr>
<tr>
<td>German Studies C20</td>
</tr>
<tr>
<td>Graduate Office and Alumni Centre E4</td>
</tr>
<tr>
<td>Graduate School of the Built Environment H14</td>
</tr>
<tr>
<td>Groundwater Management and Hydrogeology F10</td>
</tr>
<tr>
<td>Health Services Management C22</td>
</tr>
<tr>
<td>History C20</td>
</tr>
<tr>
<td>Industrial Arts H14</td>
</tr>
<tr>
<td>Industrial Design G15</td>
</tr>
<tr>
<td>Industrial Relations and Organizational Behaviour F20</td>
</tr>
<tr>
<td>Information Systems F20</td>
</tr>
<tr>
<td>International Student Centre F16</td>
</tr>
<tr>
<td>IPACE F23</td>
</tr>
<tr>
<td>Kanga’s House O14</td>
</tr>
<tr>
<td>Kindergarten (House at Pooh Corner) N8</td>
</tr>
<tr>
<td>Landscape Architecture K15</td>
</tr>
<tr>
<td>Law (Faculty Office) F21</td>
</tr>
<tr>
<td>Law Library F21</td>
</tr>
<tr>
<td>Legal Studies and Taxation F20</td>
</tr>
<tr>
<td>Liberal and General Studies C20</td>
</tr>
<tr>
<td>Librarships F23</td>
</tr>
<tr>
<td>Library E21</td>
</tr>
<tr>
<td>Lost Property C22</td>
</tr>
<tr>
<td>Marine Science D26</td>
</tr>
<tr>
<td>Marketing F20</td>
</tr>
<tr>
<td>Materials Science and Engineering E8</td>
</tr>
<tr>
<td>Mathematics F23</td>
</tr>
<tr>
<td>Mechanical and Industrial Engineering J17</td>
</tr>
<tr>
<td>Medical Education C27</td>
</tr>
<tr>
<td>Medicine (Faculty Office) B27</td>
</tr>
<tr>
<td>Microbiology D26</td>
</tr>
<tr>
<td>Mineral Processing and Extractive Metallurgy E8</td>
</tr>
<tr>
<td>Mining Engineering K15</td>
</tr>
<tr>
<td>Music B11</td>
</tr>
<tr>
<td>National Institute of Dramatic Art D2</td>
</tr>
<tr>
<td>News Service C22</td>
</tr>
<tr>
<td>Optometry J12</td>
</tr>
<tr>
<td>Pathology C27</td>
</tr>
<tr>
<td>Patrol and Cleaning Services C22</td>
</tr>
<tr>
<td>Petroleum Engineering D12</td>
</tr>
<tr>
<td>Philosophy C20</td>
</tr>
<tr>
<td>Physics K15</td>
</tr>
<tr>
<td>Physiological and Pharmacology C27</td>
</tr>
<tr>
<td>Political Science C20</td>
</tr>
<tr>
<td>Printing Unit C22</td>
</tr>
<tr>
<td>Psychology F23</td>
</tr>
<tr>
<td>Publications Section C22</td>
</tr>
<tr>
<td>Remote Sensing K17</td>
</tr>
<tr>
<td>Russian Studies C20</td>
</tr>
<tr>
<td>Safety Science J17</td>
</tr>
<tr>
<td>Science and Mathematics Course Office D21</td>
</tr>
<tr>
<td>Science and Technology Studies C20</td>
</tr>
<tr>
<td>Social Work G2</td>
</tr>
<tr>
<td>Sociology C20</td>
</tr>
<tr>
<td>Spanish and Latin American Studies C20</td>
</tr>
<tr>
<td>Sport and Recreation Centre B6</td>
</tr>
<tr>
<td>University Health Services E15</td>
</tr>
<tr>
<td>Student Records C22</td>
</tr>
<tr>
<td>Student Services F15</td>
</tr>
<tr>
<td>Students’ Union E4 and C21</td>
</tr>
<tr>
<td>Surveying K17</td>
</tr>
<tr>
<td>Professional Development Centre E15</td>
</tr>
<tr>
<td>Textile Technology G14</td>
</tr>
<tr>
<td>Theatre Studies B10</td>
</tr>
<tr>
<td>Town Planning K15</td>
</tr>
<tr>
<td>Union Shop (Upper Campus) D19</td>
</tr>
<tr>
<td>University Archives E21</td>
</tr>
<tr>
<td>University Press A28</td>
</tr>
<tr>
<td>University Union (Blockhouse) G6</td>
</tr>
<tr>
<td>Waste Management H20</td>
</tr>
<tr>
<td>WHO Regional Training Centre C27</td>
</tr>
</tbody>
</table>
This Handbook has been specifically designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University – its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce and Economics, Engineering, Law, Medicine, Professional Studies, Science (including Biological and Behavioural Sciences and the Board of Studies in Science and Mathematics), and the Australian Graduate School of Management (AGSM).

The Calendar and Handbooks, which vary in cost, are available from the Cashier's Office.