The University of New South Wales

Engineering

1992 Faculty Handbook
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 4 November 1991, but may be amended without notice by the University Council.

Contents

<table>
<thead>
<tr>
<th>Calendar of Dates</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff List</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Faculty Information</td>
<td>12</td>
</tr>
<tr>
<td>Some People Who Can Help You</td>
<td>12</td>
</tr>
<tr>
<td>Entrance Requirements</td>
<td>12</td>
</tr>
<tr>
<td>Enrolment Procedures</td>
<td>13</td>
</tr>
<tr>
<td>Equal Opportunity in Education</td>
<td>13</td>
</tr>
<tr>
<td>Library Facilities</td>
<td>13</td>
</tr>
<tr>
<td>Student Clubs and Societies</td>
<td>13</td>
</tr>
<tr>
<td>Students with Disabilities</td>
<td>14</td>
</tr>
<tr>
<td>IAESTE</td>
<td>14</td>
</tr>
<tr>
<td>Professional Institutions</td>
<td>14</td>
</tr>
<tr>
<td>General Information</td>
<td>14</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td>15</td>
</tr>
<tr>
<td>Co-op Program</td>
<td>16</td>
</tr>
<tr>
<td>Transfer Courses</td>
<td>16</td>
</tr>
<tr>
<td>Course Transfers</td>
<td>16</td>
</tr>
<tr>
<td>General Rules for Progression</td>
<td>16</td>
</tr>
<tr>
<td>Prerequisites and Co-requisites</td>
<td>17</td>
</tr>
<tr>
<td>Industrial Experience Requirements (Engineering Students)</td>
<td>17</td>
</tr>
<tr>
<td>Practical Experience Requirements (Surveying Students)</td>
<td>17</td>
</tr>
<tr>
<td>Subject Identification Scheme</td>
<td>17</td>
</tr>
<tr>
<td>General Education Requirement</td>
<td>17</td>
</tr>
<tr>
<td>Conditions for the Award of Degrees</td>
<td>18</td>
</tr>
<tr>
<td>Bachelor of Engineering</td>
<td>18</td>
</tr>
<tr>
<td>Bachelor of Surveying</td>
<td>18</td>
</tr>
</tbody>
</table>

Undergraduate Study: Course Outlines

<table>
<thead>
<tr>
<th>School of Civil Engineering</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>3620 Civil Engineering (BE) 20</td>
<td>19</td>
</tr>
<tr>
<td>3625 Environmental Engineering (BE) 20</td>
<td>20</td>
</tr>
<tr>
<td>Combined Courses</td>
<td>21</td>
</tr>
<tr>
<td>3730 BE BSc in Civil Engineering 21</td>
<td>21</td>
</tr>
<tr>
<td>4775 BE (Civil Engineering) LLB 22</td>
<td>22</td>
</tr>
<tr>
<td>School of Computer Science and Engineering</td>
<td>22</td>
</tr>
<tr>
<td>3645 Computer Engineering (BE) 24</td>
<td>23</td>
</tr>
<tr>
<td>School of Electrical Engineering</td>
<td>25</td>
</tr>
<tr>
<td>3640 Electrical Engineering (BE) 27</td>
<td>26</td>
</tr>
<tr>
<td>Full-time 27 Part-time 27 Sandwich 27</td>
<td>26</td>
</tr>
<tr>
<td>3645 Computer Engineering (BE) 28</td>
<td>27</td>
</tr>
</tbody>
</table>
Engineering

Technical Electives 28, Professional Electives 28
Prerequisites and Co-requisites 28

Combined Courses
3725 BE BSc in Electrical Engineering 29
3720 BE BA in Electrical Engineering 30

School of Mechanical and Manufacturing Engineering
3700 Naval Architecture (BE) Years 1 - 2 32
3610 Aerospace Engineering (BE) 33
3660 Manufacturing Management (BE) 34
3680 Mechanical Engineering (BE) Full-time Course 34
3680 Mechanical Engineering Technical Electives 35
3700 Naval Architecture (BE) Years 3 - 4 35

Combined Courses
3611 Aerospace Engineering (BE BSc) 36
3661 Manufacturing Management (BE BSc) 36
3681 Mechanical Engineering (BE BSc) 36
3701 Naval Architecture (BE BSc) 36
3612 Aerospace Engineering (BE BA) 38
3662 Manufacturing Management (BE BA) 38
3682 Mechanical Engineering (BE BA) 38
3702 Naval Architecture (BE BA) 38

School of Surveying
3740 Surveying (BSurv) 41

Combined Course
3745 Surveying (BSurv BSc in Computer Science)

Undergraduate Study: Subject Descriptions
Identification of Subjects by Number

Accounting 46
Aerospace Engineering 46
Anatomy 47
Biological Science 47
Chemical Engineering and Industrial Chemistry 47
Chemical Engineering 48
Chemistry 48
Civil Engineering 49
Computer Science and Engineering 54
Electrical Engineering 57
Environmental Engineering 62
Fuel Technology 62
Geography 63
Applied Geology 64
Industrial Chemistry 64
Law 64
Manufacturing Management 64
Mathematics 66
Materials Science and Engineering 69
Mechanical Engineering 70
Naval Architecture 75
Physiology and Pharmacology 76
Physics 77
Town Planning 79
Polymer Science 79
Surveying 79

Graduate Study: Course Outlines
Enrolment Procedures 83
Graduate School of Engineering 83
English Language Requirements 84
Research Degrees 85
Doctor of Philosophy (PhD) 85
Master of Engineering Master of Science Master of Surveying (ME/MSc/MSurv) 85
Course Work Masters Degrees 85
Master of Engineering Science, Master of Environmental Engineering Science, Master of Surveying Science (MEngSc/MEEngSc/MSurvSc) 85
Master of Biomedical Engineering (MBiomedE) 86
Master of Information Science, Master of Computer Science (MInfSc/MCompSc) 86
<table>
<thead>
<tr>
<th>Scholarships and Prizes</th>
<th>151</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships</td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>151</td>
</tr>
<tr>
<td>Graduate</td>
<td>153</td>
</tr>
<tr>
<td>Prizes</td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>157</td>
</tr>
<tr>
<td>Graduate</td>
<td>160</td>
</tr>
</tbody>
</table>
Calendar of Dates

The academic year is divided into two sessions, each containing 67 days for teaching. There is a recess of approximately six weeks between the two sessions and there are short recesses of one week within each of the sessions.

Session 1 commences on the Monday nearest 1 March.

<table>
<thead>
<tr>
<th>1992</th>
<th>1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1 (67 teaching days)</td>
<td>Session 1 (67 teaching days)</td>
</tr>
<tr>
<td>Recess:</td>
<td>Recess:</td>
</tr>
<tr>
<td>2 March to 16 March</td>
<td>1 March to 8 April</td>
</tr>
<tr>
<td>17 April to 26 April</td>
<td>9 April to 18 April</td>
</tr>
<tr>
<td>27 April to 12 June</td>
<td>19 April to 11 June</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>Study Recess:</td>
</tr>
<tr>
<td>13 June to 18 June</td>
<td>12 June to 17 June</td>
</tr>
<tr>
<td>Examinations</td>
<td>Examinations</td>
</tr>
<tr>
<td>19 June to 7 July</td>
<td>18 June to 6 July</td>
</tr>
<tr>
<td>Midyear Recess:</td>
<td>Midyear Recess:</td>
</tr>
<tr>
<td>8 July to 26 July</td>
<td>7 July to 25 July</td>
</tr>
<tr>
<td>Session 2 (67 teaching days)</td>
<td>Session 2 (67 teaching days)</td>
</tr>
<tr>
<td>Recess:</td>
<td>Recess:</td>
</tr>
<tr>
<td>27 July to 25 September</td>
<td>26 July to 24 September</td>
</tr>
<tr>
<td>26 September to 5 October</td>
<td>25 September to 4 October</td>
</tr>
<tr>
<td>6 October to 6 November</td>
<td>5 October to 5 November</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>Study Recess:</td>
</tr>
<tr>
<td>7 November to 12 November</td>
<td>6 November to 11 November</td>
</tr>
<tr>
<td>Examinations</td>
<td>Examinations</td>
</tr>
<tr>
<td>13 November to 1 December</td>
<td>12 November to 30 November</td>
</tr>
</tbody>
</table>

Important Dates for 1992

January
- W 1 New Year's Day - Public Holiday
- F 10 Last day for acceptance of applications by office of the Admissions Section for transfer to another undergraduate course within the University
- M 13 Term 1 begins - Medicine IV
- M 20 Term 1 begins - Medicine V
- M 27 Australia Day - Public Holiday

February
- T 4 Enrolment period begins for new undergraduate students and undergraduate students repeating first year
- M 10 Re-enrolment period begins for second and later year undergraduate and graduate students enrolled in formal courses
- F 28 Last day for acceptance of enrolment by new and re-enrolling students. (Late fee payable thereafter if enrolment approved)

March
- M 2 Session 1 begins - all courses except Medicine IV and V
- Su 8 Term 1 ends - Medicine IV
- M 9 Term 2 begins - Medicine IV
- F 13 Last day applications are accepted from students to enrol in Session 1 or whole year subjects
- Su 22 Term 1 ends - Medicine V
- M 30 Term 2 begins - Medicine V
- T 31 HECS Census Date for Session 1

April
- F 17 Good Friday - Public Holiday
- Mid-session Recess begins
- M 20 Easter Monday - Public Holiday
- S 25 Anzac Day - Public Holiday
- Su 26 Term 2 ends - Medicine IV
- Mid-session Recess ends

May
- S 2 May Recess begins - University College, ADFA
- M 4 Term 3 begins - Medicine IV
- F 8 Term 1 ends - AGSM
- T 12 Publication of Provisional Timetable for June examinations
- Su 17 May Recess ends - University College, ADFA
- W 20 Last day for students to advise of examination clashes
- Su 31 Term 2 ends - Medicine V
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>Term 2 begins – AGSM</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>Publication of Timetable for June examination</td>
</tr>
<tr>
<td>M</td>
<td>8</td>
<td>Queen's Birthday – Public Holiday</td>
</tr>
<tr>
<td>T</td>
<td>9</td>
<td>Term 3 begins – Medicine V</td>
</tr>
<tr>
<td>F</td>
<td>12</td>
<td>Session 1 ends</td>
</tr>
<tr>
<td>S</td>
<td>13</td>
<td>Study Recess begins</td>
</tr>
<tr>
<td>Su</td>
<td>14</td>
<td>College of Fine Arts Assessment Week begins</td>
</tr>
<tr>
<td>M</td>
<td>15</td>
<td>Term 4 begins – Medicine IV</td>
</tr>
<tr>
<td>Th</td>
<td>18</td>
<td>Study Recess ends</td>
</tr>
<tr>
<td>F</td>
<td>19</td>
<td>Examinations begin</td>
</tr>
<tr>
<td>S</td>
<td>20</td>
<td>Session 1 ends – University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>22</td>
<td>Midyear Recess begins</td>
</tr>
<tr>
<td>Su</td>
<td>26</td>
<td>Midyear Recess ends</td>
</tr>
<tr>
<td>M</td>
<td>27</td>
<td>Session 2 begins</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>7</td>
<td>Examinations end</td>
</tr>
<tr>
<td>W</td>
<td>8</td>
<td>Midyear Recess begins</td>
</tr>
<tr>
<td>S</td>
<td>11</td>
<td>Examinations end – University College, ADFA</td>
</tr>
<tr>
<td>Su</td>
<td>19</td>
<td>Midyear Recess ends</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>Session 2 begins – University College, ADFA</td>
</tr>
<tr>
<td>Su</td>
<td>26</td>
<td>Midyear Recess ends</td>
</tr>
<tr>
<td>M</td>
<td>27</td>
<td>Session 2 begins</td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>Last day applications are accepted from students to enrol in Session 2 subjects.</td>
</tr>
<tr>
<td>Su</td>
<td>9</td>
<td>Term 3 and 4 ends – Medicine IV and V</td>
</tr>
<tr>
<td>M</td>
<td>17</td>
<td>Term 4 and 5 begins – Medicine IV and V</td>
</tr>
<tr>
<td>M</td>
<td>31</td>
<td>HECS Census Day for Session 2.</td>
</tr>
<tr>
<td>September</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>Closing date for applications to the Universities Admission Centre</td>
</tr>
<tr>
<td>S</td>
<td>26</td>
<td>Mid-session Recess begins</td>
</tr>
<tr>
<td>S</td>
<td>26</td>
<td>September Recess begins – University College, ADFA</td>
</tr>
<tr>
<td>October</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td>4</td>
<td>September Recess ends</td>
</tr>
<tr>
<td>M</td>
<td>5</td>
<td>Labour Day – Public Holiday</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>Mid-session Recess ends</td>
</tr>
<tr>
<td>W</td>
<td>14</td>
<td>Publication of provisional timetable for November examinations</td>
</tr>
<tr>
<td>Su</td>
<td>18</td>
<td>Last day for students to advise of examination dashes</td>
</tr>
<tr>
<td>F</td>
<td>23</td>
<td>Session 2 ends – University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>Examinations begin</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>Session 2 ends</td>
</tr>
<tr>
<td>S</td>
<td>7</td>
<td>Term 3 ends – AGSM</td>
</tr>
<tr>
<td>Su</td>
<td>8</td>
<td>Study Recess begins</td>
</tr>
<tr>
<td>Th</td>
<td>12</td>
<td>College of Fine Arts Assessment Week begins</td>
</tr>
<tr>
<td>F</td>
<td>13</td>
<td>Term 6 ends – Medicine IV</td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>Examinations end</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>Christmas Day – Public Holiday</td>
</tr>
<tr>
<td>S</td>
<td>26</td>
<td>Boxing Day – Public Holiday</td>
</tr>
<tr>
<td>M</td>
<td>28</td>
<td>Public Holiday</td>
</tr>
</tbody>
</table>
Staff

Comprises Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, Mechanical and Manufacturing Engineering (incorporating Aerospace Engineering and Naval Architecture), and Surveying; and Centres for Biomedical Engineering, Photovoltaic Devices and Systems, and Wastewater Treatment. The Faculty is also associated with the Centres for Groundwater Management and Hydrogeology and with the Co-operative Research Centres for Waste Management, and Pollution Control and Aerospace Structures.

Dean
Mark Sebastian Wainwright, MAppSc Adel., PhD McM., CEng, FRACI, FIEAust.

Presiding Member
Professor C. Patterson

Senior Administrative Officer
Robin Christine Horwood, BA DipEd N.S.W.

Administrative Assistant
Maureen Ellen Noonan

Visiting Professor
Emeritus Professor Peter Thomas Fink, AO, CB, CBE, BE Syd., CEng, FTS, Hon.FIEAust, FIMechE, FRAeS, FRINA, MAIAA, MSNAME

School of Civil Engineering

Professor of Civil Engineering and Head of School
Robin Fell, BE MEngSc Qld., CEng, FIEAust

Professor of Civil Engineering and Head of Department of Engineering Construction and Management
David Gordon Carmichael, BE MEngSc Syd., PhD Cant., CEng, MIEAust

Associate Professor and Head of Department of Geotechnical Engineering
Brian Shackel, BE Sheff., MEngSc PhD N.S.W., CEng, MIEAust

Professor of Civil Engineering and Head of Department of Structural Engineering
Raymond Ian Gilbert, BE PhD N.S.W., CEng, MIEAust

Professor of Transport Engineering and Head of Department of Transport Engineering
John Andrew Black, BA Manc., MTCP Syd., PhD Brad., CEng, FIEAust

Professor of Civil Engineering and Head of Department of Water Engineering
David Herbert Pilgrim, AM, BE PhD DSc N.S.W., CEng, FIEAust

Senior Administrative Officer
George John Harris, BA N.S.W.

Administrative Assistant
Gillian Carmichael, BA N.E.

Computer Systems Officer
Robert Peter Hegedus, BSc N.S.W., MACS, MACM
Department of Engineering Construction and Management
Includes Systems Engineering, Engineering Economy, Project Planning and Management.

Senior Lecturers
Jonathan Brian O'Brien, BE N.S.W., MASc Tor., CPEng, MIEAust
Victor John Summersby, BE MEngSc MCom N.S.W., ASTC, CPEng, PEng, MIEAust

Lecturers
George Nawar, BScEng MEngSc N.S.W., CPEng, MIEAust
Ronald Richard Wakefield, BE N.S.W., MSE Prin., CPEn, MIEAust

Engineering

Department of Geotechnical Engineering
Includes Foundation Engineering, Soil Mechanics, Rock Mechanics, Concrete Technology, Pavement Engineering.

Associate Professors
Somasundaram Valliappan, BE Annam., MS Northeastern, PhD DSc Wales, CPEng, FIEAust, FASCE
William Otho Yandell, ME PhD N.S.W., CPEng, MIEAust

Senior Lecturers
Arthur William Manton-Hall, BE MEngSc PhD N.S.W., CPEng, MIEAust, LGE
Gary Robert Mostyn, BE MEngSc N.S.W., BA Macq., CPEng, MIEAust
Viriyawan Murti, BSc BE PhD N.S.W., MACS
Bruce John Francis Patten, BE Syd., PhD N.S.W., DIC Lond.

Professional Officer
Peter Kenneth Maguire BS N.E., GradDip N.S.W.

Department of Structural Engineering

Associate Professors
Donald John Fraser, MEngSc PhD N.S.W., ASTC
Peter Walder Kneen, BE Malb., PhD Wat., CPEng, MIEAust, IASS
Victor Andrada Pulmano, BSCE Philippines, MEng A.I.T., PhD Northwestern

Senior Lecturers
Mark Andrew Bradford, BSc BE PhD Syd., CPEng, MASCE, MIEAust
Alexander Cuthbert Heaney, BE MEngSc Malb., PhD Wat., CPEng, MIEAust, MASCE, AMICE
Raymond Eric Lawther, BE PhD N.S.W.
Neil Colin Mickleborough, MEng Car., PhD Tas., DipCE HobartT.C., CPEng, MIEAust, MASCE, MScECE, RPEQ
Ian James Somervaille, BE PhD N.S.W., ASTC
Francis Shay Khiet Tin Loi, BE PhD Monash, CPEng, MIEAust

Lecturer
Stephen James Foster, BE N.S.W.I.T., MEngSc N.S.W.

Department of Transport Engineering
Senior Lecturer
Theo ten Brummelaar, BE MEngSc N.S.W., CPEng, MIEAust

Lecturers
Michael Clarence Dunne, BSc PhD Adel.
Peter Hidas, MEng DipArch PhD Bud.
Upali Vandebona, BSc Eng Ceylon, MEng A.I.T., PhD Monash

Professional Officer
Tu That Ton, BE Saigon Polytech., BE C.I.T., MEngSc N.S.W.

Department of Water Engineering

Associate Professor and Director, Water Research Laboratory
Colin Raymond Dudgeon, ME PhD N.S.W., CPEng, MIEAust, MASCE

Associate Professors
Ian Cordery, ME PhD N.S.W., CPEng, FIEAust
David Lyon Wilkinson, BE Sydney, PhD N.S.W., CPEng, MIEAust

Senior Lecturers
Peter John Bliss, BE N.S.W., MSc DIC Lond., ASTC, CPEng, MIEAust
Brian Selby Jenkins, BE PhD N.S.W., ASTC, CPEng, MIEAust, LGE
Stephen James Moore, BE N.S.W., CPEng, MIEAust

Lecturers
Penelope Anne FitzGerald, BSc Syd., CPEng, MIEAust, MIWES, MASM, MAWWA, ARACI
James Edward Ball, ME PhD N’cle.(N.S.W.), CPEng, MIEAust, MASCE

Professional Officers
David George Doran, BE DipCompSc Qld., MEngSc N.S.W., CPEng, MIEAust, MACS
Kenneth Brian Higgs, MSc Aston, MAIP
Vir Abhimanyu Sardana, BScEng Rour., MTECH IITD, PhD N.S.W., MISB, CPEng, MIEAust

Centre for Wastewater Treatment
Director
Professor D. H. Pilgrim
Manager
Terrence John Schulz, BE Sydney.
Deputy Manager
Ralph Kaye, BSc Newmark

School of Computer Science and Engineering

Professor of Computer Science and Head of School
John Hillier, BE MCom PhD N.S.W., FIEAust, FIREE, MACM
Professor of Computer Science
Graham Reginald Hellestrand, BSc PhD N.S.W., MIEEE

Executive Assistant to Head of School
Dr G. R. Whale

Associate Professor
John Lions, BSc Syd., PhD Camb., FACS, MACM

Senior Lecturers
Adnan Amin, BSc DipCompSc Baghdad, DSc Nancy
Anthony Keith Burston, MSc PhD Manc.
Pranay Chaudhuri, BSc BTech Calc., ME PhD Jadavpur
Paul Justin Compton, MSc N.S.W.
William Stephen Matheson, BE MEngSc Melb., PhD Br.Col.,
CEng, MIEEE, MIEEE
Nandan Parameswaran, BE Madr., ME Kanpur I.T., PhD Bangalore I.T.T.
Arthour Ramer, MS Warsaw, PhD S.U.N.Y.
Keith Arthur Robinson, BSc BE Syd.
Claude Anthony Sammut, BSc PhD N.S.W.
William Hulme Wilson, MSc A.N.U., PhD Syd., DipCompSc
Qu., MACM, MACS

Lecturers
Man-Chung Chan, BA Chinese H.K., PhD LaT., CUHK
Tamas Domonkos Gedeon, BSc PhD W.Aust.
Gernot Heise, BSc PhD E.T.H.
Timothy David Lambert, BMath, N'cle.(N.S.W.), MSc Manit.
Hee Hiong Anne Ngu, Bsc PhD W.Aust.
Jacek Olszewski, MSc DSc Warsaw, PhD Wrolaw, MACS
Jerzy Piotrowski, MSc PhD Warsaw T.U.
Clark Quinn, MA PhD U.C. San Diego
Arco Sowmya, BSc Madr., MSc MTech I.T.Bomb.
Geoffrey Robert Whale, BE PhD N.S.W., MIEEE

Senior Tutor
Anne Lorraine Inkster, BA E.Anglia

Tutors
Ashesh Mahidadia, BE MEngSc N.S.W.
Linda Milne, BSc Fin.
Tanya Maria Warmenhoven, BSc N.S.W.,
Chee Wai Yeung, BSc N.S.W.

Visiting Professor
Donald Michie, FRSEd, FBCS, FAAAI

Visiting Fellows
Jafarbai Hasambhai Mansuri, BE Baroda, MTech Bombay I.T.T.
Stephen James Payne, PhD Sheff.
Phillip J. Plauger, BA Princ., PhD Mich. State
Stephen Michael Russell, BSc Syd.
Jeffrey Tobias, BSc PhD N.S.W.

Manager, School Computing Facility and Executive Officer
Peter Ivanov, BE MEngSc N.S.W.

Administrative Assistants
Vanessa Joubert
Young Kim, MA Ewha Women's

Computer Systems Officers
Neil Frances Brown, BSc N.S.W.,
Martin Dennis, BSc N.S.W.
John David Nicholls, BE N.S.W.
Geoffrey Morris Oakley, BSc N.S.W.
Matthew David Pancino, BSc N.S.W.
Adam John Radford, BSc N.S.W.

Zain Rahmat, BSc N.S.W.
Cameron Alexander Simpson

Professional Officers
Serge Poplavsky, Dipl Ing Bratislava, ME N.S.W.
Jeffrey Stanley Skebe, BS Case-Western Reserve, MEngSc N.S.W.
Keith William Titmuss, BScTech MEngSc N.S.W.

School of Electrical Engineering

Professor of Electrical Engineering, Head of School and Head of Department of Electronics
Graham Austin Rigby, MSc Syd., Calif., CEng, CPeng, FTS, FIEEE, MIEEE, FIEAust

Professor of Electrical Engineering
Ian Francis Morrison, BSc BE PhD Syd., CPeng, FIAE, MIAust, MIEEE

Head of Department of Electrical Power Engineering
Dr H.R. Outhred

Professor and Head of Department of Systems and Control
Neville Waller Rees, BSc PhD Wales, CPeng, FIEEE, FIEAust

Associate Professor and Head of Department of Communications
T.B. Vu

Professors of Electrical Engineering
Pak Lim Chu, ME PhD N.S.W., CPeng, FIEEE, SIREE, MIEEE, MOSA
Martin Andrew Green, BE MEngSc Qld., PhD McM., CPeng, FAA, FIEEE, FIEEE, FIEAust

Executive Assistant to Head of School
Dr C.J.E. Phillips

Executive Officer
Kevin John Flynn, BE MEngSc N.S.W., ASTC

Administrative Assistant
Ann Gabrielle Mary Johnson, BSc N.S.W.,

Principal Tutor
Bohsra Dawoud Farah, BScEng Alexandria, DrIng K.M.Stadt.,
CPeng, MIEEE

Tutors
Sukhbir Singh Sethi, MEngSc N.S.W.
James Douglas Woods, BE N.S.W.

Professional Officer
Peiyan Chen, BE XIBEI Telecom.Eng.Univ.,China

Department of Communications

Associate Professors
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD Camb.,
SMIEEE, SMIEEE, MAES, EtaKappaNu
Israel Kom, MSc DSc Technion, Haifa, SMIEEE
The Bao Vu, BE PhD Adel., SMIEEE
Senior Lecturers
Edward Henry Fooks, BSc PhD Lond., CEng, FIEE, MIEEE
Christopher John Elliott Phillips, BSc BE PhD Syd., CEng, MIEEE, SMIEEE
Robert Radzyner, BE Melb., MEngSc PhD N.S.W., SMIEEE, MIEEE, SMIEEE
Ramutis Anthony Zakarevicius, BSc BE MEngSc PhD Syd., CPEng, MIEAust, SMIEEE, SMIEEE

Lecturers
William John Dewar, MScEng Qu., PhD N.S.W., MIEEE
Douglas Hamilton Irving, BE PhD N.S.W.
Grang-Ding Peng, BSc Fudan, MSc PhD Jiao Tong, MOSA
Iain Murray Skinner, BSc Qld., PhD A.N.U.

Professional Officers
Philip Martin Alien, BE N.S.W., MIEEE
Thomas Millett, BAppSc N.S.W.I.T.

Project Scientist
Trevor Wayne Whitbread, BE BSc N.S.W., MIEEE

Department of Electric Power Engineering
Associate Professor
Colin Grantham, BSc PhD N'cle.(U.K.), CEng, FIEE

Senior Lecturers
Trevor Robert Blackburn, BSc Adel., PhD Flin., CEng. MAIP, MIEE, MIEEE
Kevan Charles Daly, BSc BE PhD N.S.W., CEng, MIEEE, MIEEE
Roland John Kaye, BE MEngSc Melb., PhD Calif., MIEEE
Hugh Ronald Outhred, BSc BE PhD Syd., AMIEEE, FIEAust, MIEEE
Fazlur Muhammed Rahman, MSc PhD Mancl.Inst.Sci.&Tech., MIEEE, MISA, AMI
Darmawan Sutanto, BE PhD W.Aust., CPEng, SMIEEE, MIEAust

Project Scientist
Edward Douglas Spooner, ME N.S.W.

Professional Officers
Erik Maria Keller, DipLIng C.V.U.T. Prague
Bao Ton Phung, BE W'gong., MEngSc N.S.W.

Visiting Fellow
Ronald Edward James, BScEng PhD Lond., CEng, CPEng, FIEAust, MIEEE, MIMechE, SMIEEE

Department of Electronics
Senior Lecturers
Christopher Max Horwitz, MSc PhD Syd.
Ruey Shing Huang, BSc Natl.Cheng Kung, MS Natl.Chiao Tung, PhD N.S.W., SMIEEE
Chee Yee Kwok, BSc BE PhD N.S.W., MIEEE

Lecturer
Stuart Ross Wenham, BE BSc PhD N.S.W.

Professional Officer
Eric Gauja, BSc BE PhD N.S.W., MIEEE

Department of Systems and Control
Associate Professors
Branko George Celler, BSc BE PhD N.S.W., MIEEE, MIEEE, MAPPS

Centre for Photovoltaic Devices and Systems
Director
Professor M. A. Green

School of Mechanical and Manufacturing Engineering

Incorporates Aerospace Engineering and Naval Architecture.

Nuffield Professor of Mechanical Engineering and Head of School
Brian Edward Milton, BE PhD N.S.W., MSc Birm., CEng, CPEng, FIEAust, MRAeS

Professor of Mechanical Engineering and Director of Laboratories
Noel Levin Svensson, AM, MMechE PhD Melb., CEng, CPEng, FIEAust, MI MechE.

Professor of Mechanical Engineering and Director of Programs
Clifford Patterson, MA PhD Camb., FIEAust, CEng, CPEng, FI MechE, CPhys, FinstP, FIMA, MIEEE

Associate Professor and Director of Undergraduate Studies
John Edward Baker, MSc Syd., BE MEngSc PhD N.S.W.

Associate Professor and Director of Graduate Studies
Donald Wainwright Kelly, BE Syd., PhD Lond.

Heads of Disciplines

Applied Mechanics
Associate Professor Eric Joseph Hahn, BE BSc PhD N.S.W., CPEng, FIEAust, MASME

Design
Associate Professor Alexander Eric Churches, BE PhD N.S.W., ASTC, FIEAust, CPEng, FRSA

Fluid and Thermal Engineering
Professor of Mechanical Engineering Graham de Vahl Davis, AM, BE Syd., PhD Camb., CEng, CPEng, FI MechE, FIEAust, MASME

Industrial Technology and Management
Sir James Kirby Professor of Manufacturing Engineering
Hartmut Kaebemick, Dipl-Ing Dr-Ing T.U. Berlin, CPEng, FIEAust, SMSME, VDI
Mechatronics
Richard Adrian Willgoss, BSc PhD S’ton., CEng, MIEE, MinstP, MIEEE, CPhys

Executive Assistant to Head of School
Eleonora Maria Kopalinsky, BE PhD N.S.W.

Applied Mechanics Discipline

Professor
Clifford Patterson

Associate Professors
John Edward Baker
Kerry Patrick Byrne, BE MEngSc Qld., BSc Melb, PhD S’ton.
Eric Joseph Hahn
Donald Wainwright Kelly

Senior Lecturers
Mahiuddin Chowdhury, BSc Bangl.U.T., PhD N’dne.(U.K.), CEng, CEng, FRINA, FIE, MIEAust
Robin Arthur Julian Doctors, BE MEngSc Qld., BSc Melb., CEng, ACII, MIEAust
Robert Bond Randall, BTech Adel., BA Melb., CEng, FDIage, MIEAust, MAAs
Hugh Lithgow Stark, BSc PhD Strath., CEng, CEng, FIMechE, MIEAust

Lecturer
See Seng Leong, BE PhD N.S.W., CEng, MIEAust

Design Discipline

Professor
Noel Levin Svensson

Associate Professor
Alexander Eric Churches

Senior Lecturers
John Michael Challen, BE MEngSc Syd., PhD N.S.W., FIEAust
George Crawford, BE BSc N.S.W., ASTC, CEng, FIEAust, MAIE, ARACI, CChem
Richard Butler Frost, BE N.S.W., CEng, FIEAust, FRSA
John Randall Page, BSc Hat., MSc Cran.I.T., CEng, FBIS, MRAES, MAIA
Prabhakar Kumar Pal, BME N.C.E., Bengal, BTech PhD I.I.T. Kharagpur, CEng, FRINA, FIEAust, MIIMA, MSTG Hamburg

Fluid and Thermal Engineering Discipline

Professors
Graham de Vahl Davis
Brian Edward Milton

Associate Professors
Lawrence Julian Doctors, BE MEngSc Syd., PhD Mich., CEng, FRINA, MSNAME, FIEAust
Graham Lindsay Morrison, BE PhD Melb.
John Arthur Reizes, ME PhD N.S.W., CEng, FIEAust

Senior Lecturers
Noor-e-Alam Ahmed, BSc Strath., PhD Cran.I.T., CEng, MAIA
Masud Behnia, BSME, MSME PhD Purdue, CEng, MASME, MIEAust, MIIMA, MIEEE
Eleonora Maria Kopalinsky

Eddie Leonardi, BScEng PhD N.S.W., CEng, MASME, MIEAust, MAIRAI, MASHRAE
Ian Lachlan Maclaine-cross, BE Melb., PhD Monash, MIEAust

Industrial Technology and Management Discipline

Professor
Hartmut Kaebemick

Senior Lecturers
Leonard Edward Farmer, BE MEngSc PhD N.S.W., CEng, MIEAust
Khoi Hoang, BE Saigon, PhD N.S.W.
Roger Malcolm Kerr, BSc Lond., MSc Bath., DPhil Oxr.
Philip Mathew, BE PhD N.S.W., CEng, MIEAust
Yu-xin Lawrence Yao, BE Shanghai Jiaotong, Ms PhD Wisconsin-Madison, CEng, MIEAust, MASME, MSME

Lecturers
Ka Ching Chan, MASc Tor.
Aiyene Berman Kayis, MS Middle East T.U., PhD Istanbul T.U.

Mechatronics Discipline

Senior Lecturer
Richard Adrian Willgoss

Lecturers
Jayantha Katupitiya, BScEng Sri Lanka, PhD Leuven, CEng, MIEAust, MASME, MIEE
Michal John Tordon, Dipl Ing Bratislava, PhD Prague, MIEE

Heads of Programs

Energy and Power Systems
Associate Professor J.A. Reizes

Machine Systems Design
Mr R.B. Frost

Maintenance Engineering
Mr R.B. Randall

Manufacturing and Automation
(Centre for Manufacturing and Automation)
Dr S.S. Leong

Mechanical Building Services
Dr E. Leonard

Vehicle and Transport Systems
Mr J.R. Page

Senior Tutors
Sangarapillai Kanapathipillai, BSc Eng Sri Lanka, MEngSc Adel., CEng, CEng, MIEAust, MIESriLanka
Mahinda Dharmasiri Kuruppa, BScEng Sri Lanka, PhD H.K., CEng, CEng, MIME, MIEAust

Tutor
Min Hu, BE China Text.U., PhD N.S.W.

Administrative Officer
Amos Dimitrius Bauman, AEd BA Bed Qld., MEd N.E.

Administrative Assistant
Audrey Muriel Cokuhoun

Senior Project Scientists
Peter Yo Pin Chen, BSc MEngSc ME PhD N.S.W., ASTC

Professional Officers
James Beck, ME Prague
Eric Arthur Carter, BE MEngSc N.S.W., ASTC
Anthony Gordon Harris, BSc Exe.
Engineering

Alfred Win Lin Hu, BE Rangoon I.T., MIEEE, AIEEE
Philip Chi Bong Kwok, BE BeijingInst.Aer.& Astro., CEng, MIEAust, MIEEE
Alexander Lev Litvak, DiplIng Odessa, MEngSc N.S.W., CEng, MIEAust
Barrie Clifford Motson, BE N.S.W., ASTC, CEng, MIEAust
Jason Trinhung Nhieu, BSc Nat Cheng Kung, MEngSc N.S.W., CEng, MIEAust
Kenneth Norcross, BScEng N.S.W.
Russell Norman Overhall, BE N.S.W., CEng, MIEAust
Charles James Sanderson, BE Syd., MScEng N.S.W.,

Computer Systems Officer
David Alexander Herd, BSc Syd.

Post Doctoral Fellow
Hansheng Wu, MS Northeast U.T., P.R.C., PhD Hiroshima

Honorary Research Professor
Peter Louis Brennan Oxley, BSc PhD Leeds, CEng, CPEng, FTS, FIProdE, FIProdE, FIEAust, FIMechE

Visiting Professors
George Bennett, BA Syd., PhD N.S.W., ASTC, CEng, FIProdE
Henry Ethikpehale Enahoro, BSc MScTech Manc., PhD Shaff., CEng, FIMechE, MIProdE, FAS
Zdenek Josef Holy, DiplIng Prague, MSc Birm., MEngSc PhD N.S.W., CEng, MIEAust

Visiting Fellows
Frances Herbert Carr, BE ME W.A., PhD N.S.W., CEng, CPEng, FAIE, FIAust, MACS
Leslie George Kemény, BE Syd., CPEng, FAIE, FIEAust, MACS
Gerhart Claus Lowenthal, BA BSc DipPubAdm Melb., MSc PhD N.S.W., FAIP, MinStP

School of Surveying

Professor and Head of School
John Charles Trinder, BSurv PhD N.S.W., MSc I.T.C. Delft, RegSurfNSW, FIASAust

Professor of Surveying
Friedrich Karl Brunner, DiplIng Drtech T.U. Vienna

Associate Professors
Bruce Crosby Forster, BSc PhD N.S.W., MSc R’dg., PhD N.S.W., MISAust, LSVis, MIEEE
Arthur Harry William Kearsley, BSc PhD N.S.W., MISAust
Jean Marc Rueger, DiplIng E.T.H. Zurich, PhD N.S.W., SIA, ACSM, LSSwitz, MISAust
Artur Stolz, BS Surv PhD N.S.W., RegSurfNSW

Senior Lecturers
Bruce Raymond Harvey, BS Surv PhD N.S.W., RegSurvNSW
Christopher Fizos, BS Surv PhD N.S.W.
Anthony John Robinson, BS Surv MBA PhD N.S.W., RegSurvNSW, MISAust, MAIC

Lecturers
Pratap Shivabhai Amin, BSc I.T.C. Delft, MSc Lond., MISK, CLSEA, ARICS
Sabapathy Ganeshan, BSc Ceyl.
Ewan Gerald Masters, BServ PhD N.S.W., MISAust
John Richard Pollard, BSc Qld., BTech.S.A.I.T.

Administrative Assistant
Leon Daras, BS N.S.W.

Professional Officers
Brian Edward Donnelly, BServ N.S.W., MSc M’cle.(N.S.W.), GradDipCompStud C.C.A.E., RegSurvNSW
Karl David Sippel, BServ N.S.W.
William Zhong, BS Shanghai

Computer Systems Officer
Bemd Hirsch, BA ApplSc Mitchell C.C.A.E.

Centre for Biomedical Engineering

Associate Professor and Director
Klaus Schindhelm, BE PhD N.S.W., MISAust, MASAIO

Associate Professor
Christopher David Bertram, MA DPhil Oxf.

Visiting Professor
Peter Craig Farrell, BE Syd., SM M.I.T., PhD Wash., DSc N.S.W., MASAIO, MISAIO

Senior Lecturers
Alberto Pompeo Avolio, BE PhD N.S.W.
Bruce Kenneth Milthorpe, BA Macq., PhD A.N.U.

Lecturer
Ross Alexander Ode, BSE Prin., PhD M.I.T.

Professional Officer
Laura Anne Poole-Warren, BSc PhD N.S.W.

Administrative Assistant
Rhonwen Cuningham, BA DipSoC Wyd.

Centre for Groundwater Management and Hydrogeology

In association with the Faculty of Applied Science.

Director
Associate Professor M. J. Knight

Deputy Director
Associate Professor C. R. Duke

Senior Lecturers
William Alexander Milne-Home, BServ Leic., MSc Lond., PhD Alba., FGS
Richard Ian Acworth, BServ Leic., MSc PhD Birm., FGS

Senior Research Fellow
Jerzy Jankowski, MSc PhD Crac.

Project Scientist
David Ronald Cohen, BServ Syd., MSc Qu. PhD N.S.W.

Professional Officers
Robert Gregor McLaughlan, BServ Leic., MAAppSc GradDip N.S.W.
Staff

Administrative Assistant
Areerom Romy Peters

Centre for Remote Sensing

In association with the Faculty of Applied Science.

Director
Associate Professor B. C. Forster

Deputy Director
Associate Professor A. K. Milne

Professional Officer
Arthur Mark Hall, BSc N.E.

Laboratory Manager
John Charles Klingberg, BSc Darling Downs I.A.E., GradDip N.S.W.

Research Assistant
John Lambert Steer, BAppSc N.S.W.I.T.
Introduction

This handbook provides information on courses of study offered by the Faculty of Engineering, at both undergraduate and graduate levels, together with descriptions of subjects available and areas in which research may be undertaken.

The Faculty consists of the Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, Mechanical and Manufacturing Engineering, Surveying and the Centres for Biomedical Engineering, Photovoltaic Devices and Systems and Wastewater Treatment. The Faculty is also closely associated with the Centres for Groundwater Management and Hydrogeology, and Remote Sensing which are multidisciplinary in nature.

The Faculty is also actively involved with two of the 15 Cooperative Research Centres (CRCs) established under the Commonwealth Government's program of CRCs announced in 1991. These are the CRC for Waste Management and Pollution Control and the CRC for Aerospace Structures.

The Faculty is dedicated to the achievement of excellence in scholarship, teaching and research in technology and its application for the benefit of the community. The goals of the Faculty are to:

1. provide undergraduate, graduate and continuing education programs, and to undertake research, in the professional fields of engineering and surveying;
2. provide formal and continuing education programs, and to undertake research, in interdisciplinary fields in which engineering science and practice play a prominent role;
3. aid the advancement, development and practical application of science and technology to satisfy the needs of industry, commerce, the infrastructure of society and the efficient management of resources.

Achievement of these goals will develop the attitudes and skills required of professional engineers operating into the twenty-first century.

Schools within the Faculty offer undergraduate courses leading to the award of the degree of Bachelor of Engineering (BE) in Aerospace Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Environmental Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture and Bachelor of Surveying (BSurv). Combined degree courses are also available which lead to the award of two degrees: Bachelor of Engineering and Bachelor of Science (BE BSc), Bachelor of Engineering and Bachelor of Arts (BE BA), Bachelor of Engineering (Civil Engineering) and Bachelor of Laws (BE LLB) and Bachelor of Surveying and Bachelor of Science in Computer Science (BSurvBSc).

Through its schools and centres, the Faculty offers an active graduate program. Formal graduate courses are available which lead to the award of the degrees of Master of Biomedical Engineering, Master of Computer Science, Master of Engineering Science, Master of Environmental Engineering Science, Master of Information Science, Master of Surveying Science and to the award of Graduate Diplomas. Supervision is also available for candidates undertaking research degrees leading to the awards of Master of Engineering, Master of Science and Doctor of Philosophy.

The Faculty's engineering and surveying courses seek to develop in students:

1. The technical, scientific and creative skills required to solve all aspects of engineering problems.
2. An understanding of human interaction with the environment so that the impact of engineering activity can be assessed.
3. The ability to direct and manage engineering activities.
4. The ability to communicate with other members of the profession, with industrial personnel, administrators and with members of the public.
5. The desire and ability for continuing self-education and reappraisal of current practice including the ability to innovate.
6. The ability to evaluate independently and to criticise constructively their own work and the work of other engineers.

As part of their training for the profession, students are required to write reports and make verbal presentations. Therefore a high level of competence in written and spoken English expression is expected.

It is also important for students to join in the development of themselves as professional engineers. Engineering is a cooperative profession where teamwork is very important. Whilst at university, students should take as many opportunities as possible to join in the activities which help to develop the whole person. Student clubs and professional institutions provide many opportunities for gaining knowledge and experience which will be valuable in later years.

Dean
Faculty of Engineering
Faculty Information

Some People Who Can Help You

If you require advice about enrolment, degree requirements, progression within courses, subject content and requirements, contact the appropriate school/centre representative listed below:

School of Civil Engineering: Mr G. J. Harris, Room 406, Civil Engineering Building.

School of Computer Science and Engineering: Dr G.R. Whale or Ms V. Joubert, School Office, Room 313, Electrical Engineering Building.

School of Electrical Engineering: Dr C. J. E. Phillips, Room G6, or Ms A. G. M. Johnson, School Office, Electrical Engineering Building.

School of Mechanical and Manufacturing Engineering: Dr E.M. Kopalinsky, Room 105B, or Mr A.D. Bauman, Room 112, Mechanical and Manufacturing Engineering Building.

School of Surveying: Mr L. Daras, School Office, Room 529, Geography and Surveying Building.

Centre for Biomedical Engineering: Associate Professor K. Schindhelm, 5th Floor, New Research Building.

Centre for Groundwater Management and Hydrogeology: Dr M. J. Knight, Room 810, Applied Science Building.

Centre for Remote Sensing: Associate Professor B.C. Forster Room 247, Geography and Surveying Building.

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboards of the schools and the official noticeboards of the University.

Entrance Requirements

Students are selected for courses offered by the Faculty according to the Tertiary Entrance Rank obtained in the New South Wales Higher School Certificate (NSW HSC). Other students are admitted on the basis of their previous academic mark. In addition, students are expected to have reached the following standards (or equivalent) in the NSW HSC subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>NSW HSC Prerequisites For First-Year Subjects</th>
<th>NSW HSC Score</th>
<th>Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering:</td>
<td>2U Mathematics or 3U Mathematics or 4U Mathematics</td>
<td>60-100</td>
<td>1-100</td>
</tr>
<tr>
<td>Aerospace</td>
<td>2U Science (Physics) or 3U Science or 4U Science</td>
<td>53-100</td>
<td>90-150</td>
</tr>
<tr>
<td>Civil</td>
<td>2U Mathematics or 3U Mathematics or 4U Mathematics</td>
<td>53-100</td>
<td>1-100</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>2U Science (Physics) or 3U Science or 4U Science</td>
<td>49-100</td>
<td>1-50</td>
</tr>
<tr>
<td>Naval Architecture</td>
<td>2U English (General) or 3U English or 4U Contemporary English</td>
<td>53-100</td>
<td>49-100</td>
</tr>
<tr>
<td>Surveying</td>
<td>2U English (General) or 3U English or 4U Contemporary English</td>
<td>60-100</td>
<td>1-50</td>
</tr>
</tbody>
</table>

Students are advised that the lack of specified subject prerequisite/s do not preclude their selection to any course but the required standard must be achieved before enrolment in the University subject is permitted.

The University conducts Bridging Courses to assist in remedying deficiencies in subject levels. Further details are available from the Students' Information Guide published annually by the Universities Admissions Centre (UAC).
Introductory subjects are also available to students who do not have the New South Wales Higher School Certificate prerequisite/s in Mathematics or Physics. It should be noted that inclusion of these subjects in first-year programs could extend the duration of a course.

Faculty of Engineering Enrolment Procedures

All students re-enrolling in 1992 or enrolling in graduate courses should obtain a copy of the free leaflet Re-Enrolling 1992 available from School offices and the Admissions Office. This leaflet provides detailed information on enrolment procedures and fees, enrolment timetables, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Equal Opportunity in Education (EOE)

The Faculty of Engineering is committed to the principles that course design, curriculum content, classroom environment, assessment procedures and other aspects of engineering education provide equality of educational opportunity to all students enrolled in subjects offered within the Faculty.

It is nevertheless expected of students that they possess prerequisite knowledge and manipulative skills and obtain the relevant practical experience necessary to satisfactorily complete a degree course in Engineering or Surveying. The University provides bridging and remedial courses to overcome prerequisite deficiencies, counselling services to help with problems of a personal or a psychological nature and support services to assist with obtaining mandatory industrial experience during the undergraduate course.

It is Faculty and University policy to promote equal opportunity in Education: refer to EOE Policy Statement, University of New South Wales Calendar, and the Guide for Students.

Faculty of Engineering Library Facilities

Although any of the university libraries may meet specific needs, the staff and students of the Faculty of Engineering are served mainly by the Physical Sciences Library and the Undergraduate Services.

The Physical Sciences Library

The library, located on Levels 6 and 7 of the Library tower, caters for the information needs of staff, graduate students and undergraduates in the pure and applied sciences, engineering and architecture.

Physical Sciences Library materials are listed in the Library’s online catalogue, microfiche book finding list or microfiche serials catalogue.

This Library provides reference, reader assistance and reader education services including interlibrary loan, online search and CD-ROM facilities. Photocopying facilities are also available.

Trained Library staff are always available on Level 7 to assist readers with their enquiries.

Physical Sciences Librarian Rhonda Langford

Undergraduate Services

- The Open Reserve Section houses books and other materials which are required reading. Level 2.
- The Audio Visual Section contains multimedia videos and cassette tapes of lectures. The section has wired study carrels and cassette players for student use. The map collection is also located here. Level 3.
- The Reader Education program provides orientation tours and introductory library research method lectures to students.

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Academic Registrar for approval by the University Council.

The following societies serve the interests of students in the various courses in the Faculty of Engineering: Biomedical Engineering Society (BioEngSoc); Civil Engineering Society (CIVSOC); Computing Science Association (CSA); Electrical Engineering Society (ELSOC); Mechanical Engineering Society (MECHSOC); Naval Architecture Students’ Association (NASA); Surveying Society (SURVSOC).

Students are encouraged to participate in the activities of their societies. Enquiries should be directed initially to the general offices of the respective Schools.
Engineering Students With Disabilities

The University of New South Wales has a policy of equal opportunity in education and seeks wherever possible to ensure maximum participation of students with disabilities. The University offers a range of assistance: examination support; specialized equipment; educational support; parking provisions; library assistance.

A Resource Guide for students and staff with disabilities and a map showing wheelchair access is available from the Advisor to students with Disabilities, the EEO Unit, the Library and the Students' Union.

It is advisable to make contact with the Adviser to Students with Disabilities prior to, or immediately following enrolment, to discuss your support needs.

The Adviser can be contacted on 697 5418 or at Building F15 (Careers and Counselling Unit).

International Association for the Exchange of Students for Technical Experience – IAESTE

IAESTE is an organization to facilitate overseas work in technical areas in 53 different countries throughout the world for students or recent graduates. It organizes visas, work periods for as little as 6 weeks or up to 12 months, lodging and an initial welcome.

Further information may be obtained from the Association, c/-The Graduate Careers Council of Australia, PO Box 28, Parkville, Vic 3052. Telephone (03) 347 4644.

Professional Institutions

1. The Institution of Engineers, Australia

The professional body for engineering in Australia is the Institution of Engineers, Australia (IEAust), which has as its first objective 'to promote the science and practice of engineering in all its branches'.

The IEAust has its national headquarters in Canberra and functions through a series of divisions, the local one being the Sydney Division. Within each division are branches representing the main interests within the profession, eg civil, mechanical, electrical, engineering management and environmental engineering.

Students of an approved school of engineering may join the Institution as a student member (StudIAust). Student members receive the fortnightly publication Engineers, Australia and for a small fee they also receive The Transactions which contains articles on a particular branch of engineering.

Student members are invited to participate in the Excellence Award for Work Experience, the National Young Engineer of the Year Award and to avail themselves of other IEAust services including the Mentor Scheme and industrial experiences guidance.

For more information and membership application forms, write to The Secretary, The Institution of Engineers, Australia, Sydney Division, 1st Floor, 118 Alfred Street, Milson's Point 2061.

2. The Institution of Surveyors, Australia

During their years as undergraduates, students in the surveying course are encouraged to take the first steps in joining in the activities of the professional body which represents surveyors, The Institution of Surveyors, Australia. The aims of the Institution are to promote scientific, technical and educational aspects of surveying and to maintain high professional standards of practice and conduct. Student members receive the quarterly journal of the Institution, The Australian Surveyor and Azimuth which is published by the New South Wales Division of the Institution. Membership also entitles the student to attend all meetings of the Institution and to attend the annual Congress at a special concessional rate. Membership application forms are available at the office of the School of Surveying and from the Institution Office, Third Floor, Guild House, 363 Pitt Street, Sydney 2000.

General Information

While this Handbook has been specially designed as a detailed source of reference in all matters related to the Faculty, the University's Student Guide is intended to provide general information on some of the most important rules and procedures and introduces students to many of the services available to them. The Guide, which helps to put the Faculty into perspective within the University as a whole, is issued free of charge to all enrolled students. For fuller details about some aspects of the University and its activities students might need to consult the University Calendar.
Undergraduate Study

The Faculty of Engineering offers the following courses:

Bachelor of Engineering (BE) in:
Aerospace Engineering
Civil Engineering
Computer Engineering
Electrical Engineering
Environmental Engineering
Mechanical Engineering
Manufacturing Management
Naval Architecture

These full-time courses are designed to be taken over a period of four years. They may also be taken on a part-time basis which usually involves a combination of mainly day-time study together with some evening attendance over a period of six or seven years. It may not be possible to offer evening classes in the later year subjects.

*Courses in sandwich form after the first year are also available.

Bachelor of Surveying (BSurv)
This course is available on a full-time basis and in sandwich form, the latter providing for alternate periods of full-time study and full-time employment with part-time study.

Combined Degree Courses
Full-time courses are available for the award of the following degrees:

Bachelor of Engineering Bachelor of Science (BE BSc)
(5 years' duration) in:
Aerospace Engineering
Civil Engineering
Electrical Engineering
Manufacturing Management
Mechanical Engineering
Naval Architecture

Bachelor of Engineering Bachelor of Arts (BE BA)
(5 years' duration) in:
Aerospace Engineering
Electrical Engineering
Manufacturing Management
Mechanical Engineering
Naval Architecture

Bachelor of Engineering Bachelor of Laws (BE LLB)
(6 years' duration) in:
Civil Engineering

Bachelor of Surveying Bachelor of Science in Computer Science (BSurv BSc)
(5 years' duration)

Subject Areas
The three major subject areas in engineering and surveying courses are basic sciences, engineering sciences and engineering applications. The basic sciences area is emphasised in Year 1 since it forms the foundation for the remainder of the course. Engineering sciences form the link between the basic sciences and engineering applications. The engineering applications area provides the opportunity for applying knowledge to the solution of problems and is consequently emphasised later in the course. A feature of the courses at the University of New South Wales is the inclusion of a program of General Education, the requirements for which are set out below.

Basic Sciences consist of Mathematics, Physics and some Chemistry. Engineering Science subjects are those which provide the theoretical basis for engineering applications. These include Applied Mechanics, Fluid Mechanics, Electronics, Electricity, Thermodynamics, Structural Mechanics, Materials Science. Engineering Applications involve Innovation and Design, Systems and Control,
Production, Technical Communication, Energy Conversion, Management. General Education subjects serve to provide both an introduction to the environments in which humans function — physical, biological, socio-economic, and technological — and an introduction to the cultural bases of knowledge and belief.

Co-op Program

The University's Co-op Program in the Faculty of Engineering consists of industry-linked, five-year courses in Aerospace Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Environmental Engineering, Mechanical Engineering, Manufacturing Management and Naval Architecture.

Co-op scholars are selected largely on the basis of academic attainment, personal skills and motivation as well as on non-academic achievements.

Further information is available from the University's Office of Industry-Linked Education, telephone (02) 697 5116.

Transfer Courses

The University of Melbourne has guaranteed entry for up to three students in the Bachelor of Engineering (Agriculture) degree course who successfully complete the first year of an engineering degree course at the University of New South Wales. Application should be made during the year in which first-year studies are undertaken. Further information may be obtained from the Professor of Agricultural Engineering, Department of Civil and Agricultural Engineering, University of Melbourne, Parkville, Vic 3052.

Students transferring to the University of New South Wales after successful completion of the first year of an engineering degree course at an Australian university would normally be admitted with advanced standing into the degree courses offered by the Faculty of Engineering. Students transferring from related courses at an Australian university are granted exemptions based on parity of all junior courses.

Formal advanced standing procedures apply for entry into the following Bachelor of Engineering (BE) courses at the University of New South Wales with full credit.

BE in Electrical Engineering

Students studying at the University of Western Sydney, Macarthur, who complete at their first attempt the first year of the Science Program are granted enrolment in the second year of the BE course. Entry is restricted to applicants who are residents of the South-Western Region of Sydney.

BE in Aerospace Engineering

BE in Manufacturing Management
BE in Mechanical Engineering
BE in Naval Architecture

Students studying at the Charles Sturt University, Wagga Wagga, may be admitted to the second year of the above course after satisfactorily completing the one-year Bachelor of Engineering Transfer Program (KSZ) at Wagga Wagga.

BE in Aerospace Engineering

Students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian university may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering. (The first and second years of this course are identical with the first two years of the course in Mechanical Engineering.)

BE in Naval Architecture

Students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian university may be admitted to the final two years of the Bachelor of Engineering degree course in Naval Architecture. (The first and second years of this course are identical with the first two years of the course in Mechanical Engineering.)

Further information regarding entry into the above listed courses may be obtained from the Dean's Office, Faculty of Engineering.

Course Transfers

Students who have completed the first year of an undergraduate course in one school may apply for a transfer to a course in another school of the Faculty with credit for relevant subjects completed. However, as there are considerable differences in the various Year 1 programs, students are not granted complete exemption from Year 1 of the course to which the transfer is made.

General Rules for Progression

Progression in all undergraduate courses in the Faculty of Engineering is permitted by subject. However:

1. Course programs will continue to be stated and timetabled by year or stage and it cannot be guaranteed that non-standard programs can be completed in the minimum number of years.

2. Students must satisfy the rules governing re-enrolment: in particular, these require students enrolled in the first year of a degree program to pass in at least half that program. Students are also required to show cause why they should be allowed to repeat a subject which has been failed more than once. Students are also required to show cause why they should be allowed to continue with their course if their average mark in a year of study falls below 50%.

3. Students must satisfy the relevant prerequisite and co-requisite requirements. This will usually necessitate students completing or attempting all subjects of a particular year or stage before proceeding to a subject in the next part of a course. Further details are available from the appropriate school.

4. Only in exceptional circumstances will students be permitted to enrol in subjects extending over more than two years of the course or for more than twenty-eight hours of course work per week if a full-time student or fourteen hours per week if a part-time student. Students repeating subjects are required to choose a program which limits their hours of course work to twenty-two hours per week if a full-time student, and to eleven per week if a part-time student, unless they have the express permission of the Head of School to exceed these hours.

5. Notwithstanding the above, before students can enrol in any non-standard program such program must meet with the approval of the Head of School. A non-standard program is one which involves enrolment in subjects from more than one year
or stage, or comprises subjects which do not normally constitute a particular year's course work.

Prerequisites and Co-requisites

- A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.
- A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.

Industrial Experience Requirements (Engineering Students)

The Faculty of Engineering endorses the requirement of The Institution of Engineers, Australia, in that all students must complete at least 60 working days of approved industrial experience prior to enrolment in the final year of their course. The staff of the Faculty will, where possible, assist students to obtain this employment, but it is emphasized that the primary responsibility for obtaining suitable industrial experience rests with each student. The award of the degree is dependent on the completion of the requisite periods of industrial employment at a standard approved by the University. Students enrolled in Bachelor of Engineering courses in the Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering and Mechanical and Manufacturing Engineering are required to enrol in Industrial Training subjects. Schools' entries under Course Outlines should be consulted for details of subject requirements.

Practical Experience Requirements (Surveying Students)

All students in BSurv course must gain at least 60 days of recognised professional practice after the completion of Session 1 in Year 2 as part of the requirements for subject SURV8711. Special instructions will be given before commencement of professional practice.

Subject Identification Scheme

An alpha-numeric subject identification scheme was introduced by the University in 1991. Please locate Subject Descriptions: Identification of Subjects in the Contents for further information.

In the Faculty of Engineering, Schools and Centres have allocated the first digit in the numeric suffix of all subject identifiers as indicating the level of the subject. Please note that the value '9' in this position is reserved for graduate subjects.

General Education Requirement

The University requires that all undergraduate students undertake a structured program in General Education as an integral part of studies for their degree. Among its objectives, the General Education program provides the opportunity for students to address some of the key questions they will face as individuals, citizens and professionals.

The program requires students to undertake studies in three categories of the program:

- CATEGORY A. An introduction in non-specialist terms to an understanding of the environments in which humans function.
- CATEGORY B. An introduction to, and a critical reflection upon, the cultural bases of knowledge, belief, language, identity and purpose.
- CATEGORY C. An introduction to the development, design and responsible management of the systems over which human beings exercise some influence and control. This category is required only of students in four-year professional and honours programs.

There are differing requirements for general education for students commencing before, in, and after 1988. Students must complete a program of general education in accordance with the requirements in effect when they commenced their degree program. Students should consult the appropriate course authority or the Centre for Liberal and General Studies in Morven Brown Building, Room G58.

The key questions addressed by the Program are:

Category A: The External Context

Course requirement: 56 hours

1. How do we, can we, generate wealth? (Australia and the Development of the World Economy) 28 hours
2. How can we, ought we, distribute wealth, status and power? (Human Inequality) 28 hours
3. What steps should we take, and what policies should we adopt, in science and technology? (Science and Civilization) 56 hours
4. What effects do our wealth generating and techno-scientific activities have on the environment? (Ecosystems, Technology and Human Habitation) 28 hours
5. What are the effects of the new mass media of communication? (Mass Media and Communications) 28 hours
6. What are the key social and cultural influences on Australia today? (Australian Society and Culture) 28 hours

Category B: The Internal Context of Assumptions and Values

Course requirement: 56 hours

1. How do we define ourselves in relation to the larger human community? (The Self and Society) 56 hours
2. How do our conceptions of human nature and well-being influence both individual and social behaviour? (Changing Conceptions of Human Nature and Well-Being) 28 hours
3.
3. What are the prevailing conceptions of and challenges to human rationality? (The Pursuit of Human Rationality) 28 hours
4. How do language, images and symbols function as means and media of communications (The Use of Language, Images and Symbols) 28 hours
5. What is the impact of the computer on human society and culture? (The Computer: Its Impact, Significance and Uses) 28 hours
6. Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth? (Beliefs, Values and the Search for Meaning) 28 hours

Category C: An Introduction to the design and responsible management of the human and planetary future
The central question to be addressed by students in a systematic and formal way is:
For what purpose or purposes will I use my intellectual skills, my expertise, or my technological prowess?
Will these abilities be used, for example:
(i) in a creative and innovative way?
(ii) to widen the circle of human participation in the benefits they bring?
(iii) to break down the barriers of exclusion and discrimination?
(iv) to enhance the prospects for survival of the human species?
(v) to enhance the capacity of the planet earth to sustain life?
The manner in which the Category C requirement is satisfied varies with each of the Schools and courses in the Faculty. The particular details are shown under each School’s handbook entry.

Conditions for the Award of the Degree of Bachelor of Surveying

Conditions for the Award of the Degree of Bachelor of Surveying.
1. A candidate for the award of the degree of Bachelor of Surveying shall:
(1) comply with the requirements for admission;
(2) follow the prescribed course of study in the School of Surveying and satisfy the examiners in the necessary subjects;
(3) complete an approved program of professional practice for such periods as are prescribed. In general, this training must be completed before 31 January in the year in which the degree is to be awarded.
2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations, excursions and field camps to such an extent and in such a manner as is prescribed from time to time by the Academic Board on the recommendation of the Faculty. Those students who are required to undertake field work for any subject must be prepared to pay the appropriate costs and be in attendance at all scheduled examinations except in abnormal circumstances.
3. A student may be granted advanced standing by the Academic Board on the recommendation of the appropriate Faculty, but in each case must complete an adequate period of approved industrial training before being eligible for the degree. In addition to the above requirements a student coming from another institution must comply with the conditions laid down by the Academic Board for admission with advanced standing.
4. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
Honours Class I
Honours Class II, Division I
Honours Class II, Division II
5. In special cases the Faculty may approve the variation of any of the preceding conditions.

Conditions for the Award of the Degree of Bachelor of Engineering

Conditions for the Award of the Degree of Bachelor of Engineering.
1. A candidate for the award of the degree of Bachelor of Engineering shall:
(1) comply with the requirements for admission;
(2) follow the prescribed course of study in the appropriate School, and satisfy the examiners in the necessary subjects;
(3) complete an approved program of industrial training for such periods as are prescribed. In general, this training must be completed before 31 January in the year in which the degree is to be awarded.
2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations, excursions and field camps to such an extent and in such a manner as is prescribed from time to time by the Academic Board on the recommendation of the Faculty. Those students who are required to undertake field work for any subject must be prepared to pay the appropriate costs and be in attendance at all scheduled examinations except in abnormal circumstances.
3. A student may be granted advanced standing by the Academic Board on the recommendation of the Faculty of Engineering. In addition to the above requirements a student coming from another institution must comply with the conditions laid down by the Academic Board for admission with advanced standing.
4. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
Honours Class I
Honours Class II, Division I
Honours Class II, Division II
5. In special cases the Faculty may approve the variation of any of the preceding conditions.
The School consists of five departments: Geotechnical Engineering (foundation engineering, soil mechanics, rock mechanics, concrete technology, and pavement engineering); Engineering Construction and Management (civil engineering systems, engineering economy, project planning and management and civil engineering construction); Structural Engineering (structural analysis and structural design); Transport Engineering (planning, design and operation of transport systems, statistical analysis, land use and transport modelling, economic evaluations and environmental impact studies); Water Engineering (hydraulics, hydrology, water resources, waste management and public health engineering).

Within the five departments the School has a broad spectrum of expertise in the disciplines of Environmental Engineering.

In addition to extensive laboratory facilities on the Kensington campus, the School operates laboratories at Govett Street and King Street, Randwick and King Street, Manly Vale. The latter complex houses the School's Water Research Laboratory and the associated Water Reference Library. The School also uses the Fowlers Gap Arid Zone Research Station for construction camps and data collection for arid zone hydrology.

The School offers courses (3620) and (3625) leading to the award of degrees of Bachelor of Engineering (Civil) (BE) and Bachelor of Engineering (Environmental) (BE), at pass or honours level, which can be taken on a four-year full-time basis, on a part-time basis or on a combined full-time part-time basis subject to the approval of the Head of School. Intending part-time students are advised that most subjects are offered only in the daytime. Part-time students will normally take two years for each equivalent full-time year.

Alternatively, the courses may be taken in a sandwich form in which a student, after completing the first year of the course on a full-time basis, gains industrial experience during one or more periods of employment by taking leave of absence for one academic year.

A six-year full-time course (4775) leading to the award of the degrees of Bachelor of Engineering and Bachelor of Laws (BE LLB) is offered.

The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For details of the requirements, please locate General Education in the Contents.

The requirements for the award of the BE degrees include a period of at least sixty working days of approved industrial training prior to enrolment in the final year.

The degree of Bachelor of Engineering (Civil or Environmental) may be conferred as a Pass degree or as an Honours degree. There are two classes of Honours, Class I, and Class II in two divisions, and the award and grade of Honours are made in recognition of superior performance throughout the course with a greater weighting on subjects in the later years.

The award of the degree of Bachelor of Engineering (Civil or Environmental) is recognized by the Institution of Engineers, Australia, as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is accorded to the BE course by overseas engineering institutions.
General Education Program

The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For further details, please locate General Education in the Contents.

Requirements for General Education elective and prescribed subjects in courses offered by the School of Civil Engineering are: Years 2 and 3 - one 56 hour or two 28 hour subject/s from each of Categories A and B, respectively. The subject to be studied in Course 3620 in Year 4 in order to satisfy the Category C requirements, is CIVL4306 Engineering and the Environment. The Category C requirements for Course 3625 are yet to be determined.

3620

Civil Engineering – Full-time Course

Bachelor of Engineering BE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>CHEM1808 Chemistry 1CE</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CIVL1106 Computing and Graphics</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL1203 Engineering Mechanics 1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CIVL1301 Civil Engineering Practice</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GEOL1009 Geology for Civil and Environmental Engineers</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1032 Mathematics</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PHYS1989 Physics</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*Students are advised to attempt PHYS1989 Physics 1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt PHYS1002 Physics 1. Students who intend to apply for transfer to the Combined BE BSc degree program involving Level 2/3 Physics subjects must enrol in PHYS1002.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Hours per week</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>CIVL2106 Systems Engineering</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL2203 Engineering Mechanics 2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CIVL2301 Engineering Construction</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CIVL2402 Materials Engineering 1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CIVL2505 Hydraulics 1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH2009 Engineering Mathematics 2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH2869 Statistics SC</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SURV0441 Surveying for Engineers</td>
<td>0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>SURV0491 Survey Camp*</td>
<td>0</td>
<td>0(3)</td>
<td></td>
</tr>
<tr>
<td>General Education Category A</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

24 23.5 (+3)

* Students are required to attend a one week Survey Camp which is equivalent to 3 class contact hours per week in Session 2.

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Hours per week</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>CIVL3106 Engineering Computations</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CIVL3203 Structural Analysis</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL3303 Structural Design</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CIVL3402 Geotechnical Engineering 1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL3505 Hydraulics 2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL3601 Engineering Management 1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CIVL3705 Water Resources</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL3804 Transport Engineering</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Education Category B</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

24 24

3625

Environmental Engineering – Full-time Course

Bachelor of Engineering BE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>CHEM1002 Chemistry 1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CIVL1007 Engineering Practice</td>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CIVL1203 Engineering Mechanics</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOG1031 Environmental Processes</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOL5100 Geology for Civil and Environmental Engineers</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MATH1032 Mathematics</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PHYS1989 Physics</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

25 25

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Hours per week</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>BIOS1021 Biology B</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CIVL1106 Computing and Graphics</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL2007 Engineering Mechanics and Materials</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CIVL2017 Data Survey and Analysis</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CIVL2106 Systems Engineering</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL2505 Hydraulics 1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>INDIC120 Chemistry of the Industrial Environment</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MATH2009 Engineering Mathematics 2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH2869 Statistics SC</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>General Education Category A</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

24 24

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Hours per week</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>BIOS3111 Population and Community Ecology</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEIC0010 Mass Transfer and Material Balance</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CIVL3007 Environmental Fluid Mechanics</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL3106 Engineering Computations</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The combined course consists of the Civil Engineering program (3620), and at least fourteen units of the Science and Mathematics Course (3970) within an approved program.

There are three approved programs but additional ones may be approved if they are relevant. Approval may be given to change the programs listed below to allow for timetabling and the student’s academic interests.

Although transfer from Course 3620 to Course 3730 is normally made at the end of Year 1, first year students who are considering to apply for transfer should note the requirements for PHYS1002 Physics 1 in the second program.

The prerequisite for CHEM1002 and CHEM1391 will be waived for students in Course 3730.

Approved Programs

Geography and Environmental Chemistry

\[\text{Year 1} \]

- PHYS1989
- CHEM1808
- CIVL1106, CIVL1203, CIVL1301
- MATH1032
- GEOL5100

\[\text{Year 2} \]

- CHEM2011, CHEM2031, CHEM2041, CIVL2203, CIVL2301, CIVL2402
- MATH2009
- GEOG1031 and any other Year 1 Geography subject
- One 56-hr or two 28-hr General Education subject/s (Cat A)

\[\text{Year 3} \]

- CIVL2106, CIVL2505, CIVL3106, CIVL3203, CIVL3303
- GEOG3021, GEOG2032
- SURV0441, SURV0491
- One 56-hr or two 28-hr General Education subject/s (Cat B)

\[\text{Year 4} \]

- CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804, GEOG3011, GEOG3021, GEOG3032, GEOG3051, GEOG3062
- Two of the following subjects:
 - CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855

\[\text{Note: All material not in italic typeface refers to the BE degree component of this combined course.} \]

\[\text{*See footnote at end of Course Outline.} \]

\[\text{†Two field tutorials, equivalent to 16 tutorial hours, are compulsory.} \]

\[\text{‡ General Education (Cat C).} \]
Physics with Mathematics

Year 1
PHYS1002
CHEM1808
CIVL1106, CIVL1203, CIVL1301
MATH1032
GEOL5100

Year 2
PHYS2011, PHYS2021, PHYS2031
CIVL2203, CIVL2301, CIVL2402
MATH2510, MATH2520, MATH2100, MATH2120
MATH2869
One 56-hr or two 28-hr General Education subject/s (Cat A)

Year 3
PHYS2001, PHYS3021, PHYS3041
CIVL2106, CIVL2505, CIVL3203, CIVL3303
MATH2501
SURV0441, SURV0491
One 56-hr or two 28-hr General Education subject/s (Cat B)

Year 4
PHYS3030
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
Choose 1 unit from: PHYS3631, PHYS3110, PHYS3010, PHYS3050
Choose 2 Level II or Level III Mathematics units from Table 1 in the Sciences Handbook.

Choose 1/2 Level II or Level III Mathematics unit from Table 1 in the Sciences Handbook.

Year 5
CIVL4006, CIVL4101, CIVL4203, CIVL4306†, CIVL4403, CIVL4502, CIVL4605, CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from Table 1 in the Sciences Handbook at Level II or higher

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.
† Students are advised to attempt PHYS1989 Physics 1E but if time-tabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt PHYS1002 Physics 1
General Education (Cat C).

Choose 3 units, at least one of which is a Computer Science Unit, from COMP3211, COMP3231, COMP3311 or Level II or Level III Mathematics units from Table 1 in the Sciences Handbook.

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.

Computer with some Mathematics

Year 1
PHYS1989*
CHEM1808
CIVL1106, CIVL1203, CIVL1301
MATH1032
GEOL5100

Year 2
COMP1011, COMP1021
CIVL2106, CIVL2203, CIVL2301, CIVL2402
MATH2501†, MATH2520†, MATH2520†, MATH2869
One 56-hr or two 28-hr General Education subject/s (Cat A)

Year 3
COMP2011, COMP2021, COMP2031
CIVL2505, CIVL3203, CIVL3303
MATH2100†,
MATH2120†,
SURV0441, SURV0491
One 56-hr or two 28-hr General Education subject/s (Cat B)

Choose Level II or Level III Mathematics unit from Table 1 in the Sciences Handbook.

School of Computer Science and Engineering

Head of School
Professor J Hiller

Executive Assistant to Head of School
Dr G R Whale

Executive Officer
Mr P Ivanov

Administrative Assistant
Ms V Joubert

The School, which was formerly the Department of Computer Science in the School of Electrical Engineering and Computer Science, was established on 1 January 1991. At the same time, the School of Electrical Engineering and Computer Science with its remaining four departments was restructured to form the School of Electrical Engineering. There are still very close ties between the schools, including research interests that cross the school boundaries, and joint responsibility for the curriculum of the Computer Engineering course.
The staff of the School are grouped around the activity areas of Artificial Intelligence, Formal Methods and Software Engineering, Computer Architecture and VLSI Design, Information Science, Algorithms and Programming Techniques, Networks and Operating Systems and Human-computer interaction. Subjects in these areas are offered to students taking major studies in computer science or computer engineering, while introductory-level computing subjects are available more generally to students studying Science, Arts or Engineering. Computer science has links with discrete mathematics, which furnishes the theory behind the algorithms that computer software implements, and electrical engineering, which supplies the present technology underlying physical computing devices.

Summary of Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Degree(s)</th>
<th>Normal full-time Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3645</td>
<td>BE in Computer Engineering</td>
<td>4 years</td>
</tr>
<tr>
<td>3725</td>
<td>BE BSc in Electrical Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3730</td>
<td>BE BSc in Civil Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3611</td>
<td>BE BSc in Aerospace Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3661</td>
<td>BE BSc in Manufacturing Management</td>
<td>5 years</td>
</tr>
<tr>
<td>3681</td>
<td>BE BSc in Mechanical Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3701</td>
<td>BE BSc in Naval Architecture</td>
<td>5 years</td>
</tr>
<tr>
<td>3745</td>
<td>BSurv BSc in Surveying</td>
<td>5 years</td>
</tr>
</tbody>
</table>

Majors

- **3970 BSc**: 3 years (Pass), 4 years (Hons)
- **3400 BA**: 3 years (Pass), 4 years (Hons)
- **3420 BSocSc**: 3 years (Pass), 4 years (Hons)
- **4770 BSc LLB**: 5 years

For a description of the combined BE BSc and BSurv BSc courses, see the entries in this Handbook for the schools conducting the engineering/surveying major. For a description of the Computer Science major in the BSc degree course, see the Sciences Handbook; for the BA and BSocSc degree courses, see the Arts Handbook and for the BSc LLB course, see the Law Handbook.

The computer science content of all undergraduate programs is in the latter stages of substantial review following the introduction of the Computer Engineering course in 1989. The first intake of this course reaches its final year in 1992: computing subjects from the earlier years are incorporated into the other courses where appropriate.

Computer Engineering

The Computer Engineering course (3645) is presently the joint responsibility of the Schools of Computer Science and Engineering and Electrical Engineering. For convenience, day-to-day administration of the course is conducted through the Computer Science and Engineering School Office, Room 313, to which enquiries should be directed. The course description is detailed below.

Honours

In the Computer Engineering course the same formal program is offered to both pass students and to those students aiming at honours. Honours will be awarded for meritorious performance over the course; special attention is paid to a candidate’s record in the final year subjects and thesis project.

The award of the BSc, BA or BSocSc at honours level requires an additional full-time year of study. See the handbooks governing those degree courses for details.

General Education Program

All students in the BE courses are required to complete a program of General Education comprising 56 hours each of Category A, B and C subjects (4 hours per week for a session, or 2 hours per week for the whole year). The program is normally taken over years 2, 3 and 4. Category A and B subjects are selected from a large group of electives; a single Category C subject (Managing People) is proposed for year 4. For details of the elective program, see the General Education Handbook.

Industrial Experience

All students in the BE degree courses must complete at least 60 days of approved industrial experience prior to completing their final year (see subject description for COMP4903 Industrial Training). Students will formally enrol in the subject in year 4, although they are strongly encouraged to complete as much industrial experience as possible in the breaks between the early years of the course.

Course Rules

It is the responsibility of students to meet the course requirements applicable at the date of application for the degree.

- Programs and timetables are arranged in preferred year/stage groupings. Progression is, however, by subject.
- Students are not permitted to enrol in subjects that have a timetable clash.
- In addition to specific subject prerequisites a general understanding of the material in the preceding year is assumed. Students are not normally permitted to enrol in subjects spread beyond two years of the course.
- Students who do not pass their full programs in any session will be limited to a reduced load (typically 20 hours per week) in the subsequent session. Previously failed subjects must be included, except that a failed elective may be replaced by another elective.

Re-enrolment

Students must collect enrolment information from the School Office (Room 313, Electrical Engineering building) before the end of session 2. Re-enrolment forms giving details of proposed programs for the year must be lodged by the first week in January. Students not intending to re-enrol should advise the School. Leave of absence for up to one year is usually granted to students in good standing.

It is the responsibility of students to enrol in a program consistent with the rules governing re-enrolment and admission to the degree.
Computer Engineering – Full-time Course
(Jointly administered by the Schools of Computer Science and Engineering and Electrical Engineering)

Bachelor of Engineering BE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9001 Introduction to Accounting A</td>
<td>1.5</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>ACCT9002 Introduction to Accounting B</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>COMP1011 Computing 1A</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>COMP1021 Computing 1B</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>ELEC1011 Electrical Engineering 1</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MATH1042 Higher Mathematics 1</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MATH1081 Discrete Mathematics</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PHYS1969 Physics 1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.5</td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>

* Students may attempt similar material at a lower level.

Year 2

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2011 Data Organization</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>COMP2021 Digital System Structures</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>COMP2031 Concurrent Computing</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>ELEC2010 Circuit Theory</td>
<td>2.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ELEC2011 System Theory</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>ELEC2020 Analog Electronics</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>ELEC2130 Electrical Engineering Laboratory 2A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ELEC2131 Electrical Engineering Laboratory 2B</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>ELEC4532 Integrated Digital Systems</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>MATH2400 Pure Mathematics 2 - Finite Mathematics</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MATH2610 *Higher Pure Mathematics 2 - Real Analysis</td>
<td>2.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MATH2620 *Higher Pure Mathematics 2 - Complex Analysis</td>
<td>2.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MATH2849 Statistics SE1</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>MATH3150 Transform Methods</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>PHYS2959 Introductory Semiconductor Physics</td>
<td>1.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(an Economics subject to be determined)</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>General Education Category A</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.5</td>
<td>23.5</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Options for the four streams are listed below:

Communications Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3013 Communications Systems

Electronics Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3016 Electronic Signal Processing

Systems and Control Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3014 Systems and Control

Students who elect the Communications, Electronics or Systems and Control Stream must also take the following subjects in Year 3 or Year 4:

- COMP3131 Parsing and Translation
- COMP3231 Operating Systems
- COMP3331 Computer Networks and Applications
- ELEC4351 Digital Communication and Computer Networks

Computing Stream
Option A: Any level 3/4 Computer Science subjects or ELEC3031 Integrated Electronics + Laboratory
Option B: Any level 3/4 Computer Science subject

Students undertaking the computing elective only must complete at least two Level 4 Computer Science subjects in Year 4.

Year 3

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3141 Numerical and Mathematical Methods</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>(a Management subject to be determined)</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Option A†</td>
<td>5†</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Option B†</td>
<td>-</td>
<td>5†</td>
<td></td>
</tr>
<tr>
<td>General Education, Category B</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.5†</td>
<td>24†</td>
<td></td>
</tr>
</tbody>
</table>

† Options A and B enable students to choose appropriate prerequisite subjects for a major in one of four streams: Communications, Electronics, Computing or Systems and Control. Depending on subject choice the hours per week may be up to one hour less.

Year 4

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Professional Electives ¹</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>COMP4903 Industrial Training ²</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>COMP4910 Thesis Part A</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>COMP4911 Thesis Part B</td>
<td>0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Managing People ³</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

¹ Students may attempt similar material at a lower level.

² Students undertaing the computing elective only must complete at least two Level 4 Computer Science subjects in Year 4.

³ Students who elect the Computing Stream must take the following subjects in Year 3 or Year 4:

- COMP3131 Parsing and Translation
- COMP3231 Operating Systems
- COMP3331 Computer Networks and Applications

A complete list of the level 3 and level 4 Computer Science subjects is given later in this section.
Notes:
1. Professional Electives may be chosen from level 3/4 Computer Science Subjects and the Electrical Engineering Professional Elective Subjects listed below. Students should also note the compulsory subjects, which must be taken in Year 3 or Year 4, listed in the previous section.
2. All students in the BE Computer Engineering course must complete at least 60 days of approved industrial training before the end of Year 4.
3. This subject satisfies the requirements for General Education, Category C.

Computer Engineering Professional Electives

Communications Stream
- ELEC3016 Electronic Signal Processing
- ELEC4042 Signal Processing
- ELEC4313 Optical Communications
- ELEC4323 Digital and Analogue Communications
- ELEC4351 Digital Communication and Computer Networks
- ELEC4503 Advanced Electronic Circuits
- ELEC4512 Semiconductor Devices
- ELEC4532* Integrated Digital Systems
 * For 1992 only.

Electronics Stream
- ELEC4042 Signal Processing
- ELEC4503 Advanced Electronic Circuits
- ELEC4512 Semiconductor Devices
- ELEC4522 Microelectronics Design and Technology
- ELEC4532* Integrated Digital Systems
- ELEC4540 Applied Photovoltaics
- ELEC9215 VLSI Systems Design
 * For 1992 only.

Systems and Control Stream
- ELEC4042 Signal Processing
- ELEC4412 Systems and Control 2
- ELEC4413 Digital Control
- ELEC4432 Instrumentation and Control
- ELEC4503 Advanced Electronic Circuits
- ELEC4512 Semiconductor Devices

Computing Stream
- COMP3131† Parsing and Translation
- COMP3231† Operating Systems
- COMP3311 Database Systems
- COMP3331† Computer Networks and Applications
- COMP3411 Artificial Intelligence
- COMP3421 Computer Graphics
- COMP3511 Human-Computer Interaction

Level 3 Computer Science Subjects
- COMP3101 Artificial Intelligence: Knowledge-Based Systems
- COMP3112 Artificial Intelligence: Interacting with the World

Level 4 Computer Science Subjects
- COMP4011* Occasional Elective S1 (Computer Engineering)
- COMP4012* Occasional Elective S2 (Computer Engineering)
- COMP4121 Parallel Algorithms and Architectures
- COMP4131 Programming Language Semantics
- COMP4211 Advanced Architectures and Algorithms
- COMP4215 VLSI Systems Architecture and Design
- COMP4216 Distributed Operating Systems
- COMP4411 Artificial Intelligence: Knowledge-Based Systems
- COMP4412 Artificial Intelligence: Interacting with the World
 † Some of these subject must be taken in Year 3 or Year 4 depending on the chosen stream — see the list under the Year 3 program.

Award of Honours
Honours will be awarded to students who have achieved superior grades in subjects over the whole course, including the successful completion of a thesis at a sufficient standard. Weighted average marks required for Honours grades are given below.

Honours Class 1: WA ≥ 75
Honours Class 2:
Division 1: 70 ≤ WA < 75
Division 2: 65 ≤ WA < 70

School of Electrical Engineering

Head of School
Professor G A Rigby
Executive Assistant to Head of School
Dr C J E Phillips
Executive Officer
Mr K J Flynn
Administrative Assistant
Miss A G M Johnson

The School comprises four departments and a Special Research Centre: Communications (all aspects of theory, applied electronics and engineering relating to communication systems and networks such as telephones, broadcasting and television); Electric Power (electrical machines and generation, distribution and utilisation of electric energy); Electronics (electronic circuits, devices, micro-electronics and application of electronics to such areas as solar power generation); Systems and Control (development of theories for the control of complex systems and the application of these theories including computer simulation). The Centre for Photovoltaic Devices and Systems conducts research into energy efficient silicon solar cells for electricity generation.

Electrical Engineering has close links with the pure sciences and mathematics. Its technology is changing rapidly, and the School's teaching and research programs are constantly under review to meet the ever changing challenges of present and future needs.

The School offers undergraduate and graduate training in all branches of the profession of electrical engineering. A number of inter-departmental and specialised groups (such as Digital Systems, Biomedical Engineering, Measurement, Microelectronics, etc.) are also active.

Summary of Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Degree(s)</th>
<th>Usual Duration (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3640</td>
<td>BE</td>
<td>4 full-time</td>
</tr>
<tr>
<td>3645</td>
<td>BE</td>
<td>4 full-time</td>
</tr>
<tr>
<td>3720</td>
<td>BE and BA</td>
<td>5 full-time</td>
</tr>
<tr>
<td>3725</td>
<td>BE and BSc</td>
<td>5 full-time</td>
</tr>
</tbody>
</table>
Engineering

1 Course 3640 Full-time/Part-time Sandwich
Current sandwich students may complete their sandwich pattern but no new students are being accepted into the sandwich pattern.

2 Course 3645
This new course is jointly administered by the Schools of Computer Science and Engineering, and Electrical Engineering.

The undergraduate curriculums are being progressively revised to provide a flexible training to suit the needs of today and tomorrow. Individual student needs can be further met by quite extensive substitution provisions within the course programs.

Recognition
The degree of Bachelor of Engineering (BE) is recognised by the Institution of Engineers, Australia and the Institution of Radio and Electronics Engineers, Australia, as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is also accorded to the BE courses by overseas engineering institutions.

Honours
In the Bachelor of Engineering degree course the same formal program is offered to both pass students and to those aiming at honours. Honours will be awarded for meritorious performance over the course; special attention is paid to a candidate's performance in the final year subjects and thesis project.

The award of the BA or BSc degree at honours level requires two additional sessions of study. See the Arts and Sciences Handbooks for details.

Substitution of Subjects

General Education
Students must apply to the Director, Centre for Liberal and General Studies, for permission to substitute a subject for part, or all, of their General Studies (old rules) or General Education (new rules) requirement.

Other Subjects
To suit the special abilities or needs of individual students a limited amount of substitution is permitted within each course. Any such substitution must have prior approval of the Head of School who will ensure that:

1. The replacement subject is at least the same length and level as the prescribed subject it replaced; and
2. The resulting overall program of study is suited to the award of the degree as applicable.

Substitution is not permitted in Year 1.

Examples
(i) The normal Year 4 of the BE degree program includes 5 Professional Electives. Students may substitute for one of these electives, a subject of suitable level and difficulty from an area outside the School relevant to the profession of Electrical Engineering. A graduate subject of the School may also be substituted in this way, provided that the student has passed the Year 3 Electrical Engineering subjects at an adequate level.

(ii) Part-time BE students in full-time employment may request substitution of Industrial Electives (ELEC0931, ELEC0932, ELEC0933) for up to three subjects in the BE degree course. See Industrial Elective subject descriptions for details.

General Education Program
All students enrolled in the BE degree courses are required to complete a program of General Education from Categories A, B and C. These are normally taken during years 2, 3 and 4 respectively (or their equivalent). One 56 hour or two 28 hour subjects are selected from each of Categories A and B. The Category C requirement is satisfied by the Year 4 subjects ELEC4010 and ELEC4011. For further details, please locate General Education Program in the Contents.

Students commencing prior to 1988 complete requirements under the General Studies rules established by the Board of Studies in General Education.

Industrial Experience
All students enrolled in the BE degree courses must complete at least 60 days of industrial experience prior to completing their final year (subject ELEC4903 Industrial Training; see subject description for more details). Students will formally enrol in this subject as part of the program for year 4.

Course Rules
It is the responsibility of students to meet the course requirements applicable at the date of application for the degree.

• Programs and timetables are arranged in preferred year or stage groupings. Progression is, however, by subject.

• Students are not permitted to enrol in subjects with clashing timetables.

• In addition to the specific subject prerequisites a general understanding of the material in the preceding Year or Stage is assumed. Students are not normally permitted to enrol in subjects spread beyond two Years or Stages.

• Students who do not pass their full programs in any year will be limited to a reduced load in the following year. Typically, this is 20 hours per week.

• Previously failed subjects must be included, except that a failed elective may be replaced by another elective.

Course Revision
Following each course revision students are assessed on the basis of the new program but retain credit for any subject already completed and are not liable for the increased requirements if progression is normal.

Re-enrolment
Students must collect enrolment information from the School Office before the end of Session 2. Re-enrolment forms, giving details of students' proposed programs must be lodged with the School Office by the start of the third week in the preceding December. Enrolment at the University will not be authorised until the re-enrolment form has been checked and the program approved. Students not intending to re-enrol should advise the School. Leave of absence for up to one year is usually granted to students in good standing.

It is the responsibility of students to enrol in a program consistent with the rules governing re-enrolment and admission to the degree.
Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>S1 Hours</th>
<th>S2 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1806</td>
<td>Chemistry 1EE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COMP1011</td>
<td>Computing 1A</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ELEC1010</td>
<td>Introduction to Electrical Engineering</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>ELEC1011</td>
<td>Electrical Engineering 1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MATH1090</td>
<td>Discrete Mathematics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH0160</td>
<td>Introductory Engineering Design and Drawing Practice</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH0360</td>
<td>Introductory Engineering Mechanics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>PHYS1969</td>
<td>Physics 1</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Hours per week:

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25.5</td>
<td>24</td>
</tr>
</tbody>
</table>

One 56-hr or two 28-hr General Education subject/s (Cat A)

**Students who intend to major in particular disciplines should note that certain subjects are prerequisites for the Professional Electives they choose in Year 4.

**A mark of 70CR or better in either MATH1032 or MATH1042 is required to do the higher level subjects.

†See list of Technical Electives later this section.

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>S1 Hours</th>
<th>S2 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC4010</td>
<td>Introduction to Management for Electrical Engineers†</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4011</td>
<td>Ethics and Electrical Engineering Practice†</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ELEC4903</td>
<td>Industrial Training†</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4910</td>
<td>Thesis Part A**</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4911</td>
<td>Thesis Part B**</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

* Normally 3 electives are taken in Session 1 and 2 in Session 2. See list of Professional Electives later in this section.

†Subjects ELEC4010, ELEC4011 satisfy the requirements of General Education, Category C.

†All students in the BE degree course must complete at least 60 days of industrial training before the end of Year 4.

3640 Electrical Engineering – Part-time Course

Bachelor of Engineering BE

Note: As from 1989 no formal part-time course is being offered. However, after completing Year 1 full-time it is possible for students to progress on a semi-part-time basis with a reduced program. It should also be noted that very few undergraduate subjects are offered in the evenings.

3640 Electrical Engineering – Sandwich Course

Bachelor of Engineering BE

Note: No new enrolments will be accepted into the Sandwich course from 1990.
Engineering

3645
Computer Engineering – Full-time course

Bachelor of Engineering BE
This course commenced in 1989, and is jointly administered by the Schools of Electrical Engineering, and Computer Science and Engineering. For course details refer to the entry under the School of Computer Science and Engineering.

Technical Electives – all courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
<td>S1 1.5, S2 1.5</td>
</tr>
<tr>
<td>CIVL0626</td>
<td>Civil Engineering</td>
<td>S1 4, S2 0</td>
</tr>
<tr>
<td>COMP2011</td>
<td>Data Organization*</td>
<td>S1 5 or 5</td>
</tr>
<tr>
<td>COMP2031</td>
<td>Concurrent Computing*</td>
<td>S1 0, S2 5</td>
</tr>
<tr>
<td>ELEC3401</td>
<td>Reliability Engineering in Design and Development</td>
<td>S1 0, S2 4</td>
</tr>
<tr>
<td>ELEC3402</td>
<td>Introductory Physiology for Engineers</td>
<td>S1 4, S2 0</td>
</tr>
<tr>
<td>FUEL0020</td>
<td>Fuels and Energy</td>
<td>S1 0, S2 4</td>
</tr>
<tr>
<td>MATS9640</td>
<td>Materials Science and Engineering for Electrical Engineers</td>
<td>S1 4, S2 0</td>
</tr>
<tr>
<td>MECH0760</td>
<td>Mechanical Engineering</td>
<td>S1 4, S2 0</td>
</tr>
<tr>
<td>PHYS2999</td>
<td>Mechanics and Thermal Physics</td>
<td>S1 2, S2 2</td>
</tr>
<tr>
<td>SAFE9533</td>
<td>Electrical Safety</td>
<td>S1 0, S2 4</td>
</tr>
</tbody>
</table>

* Professional Elective subjects in the computer science area require either COMP2011 or COMP2021 as a prerequisite.

A free choice may not be possible.

Electrical Engineering Professional Electives – all courses

Each elective is 5 hours per week for one session.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC4042</td>
<td>Signal Processing</td>
</tr>
<tr>
<td>ELEC4202</td>
<td>Power Systems</td>
</tr>
<tr>
<td>ELEC4215</td>
<td>Industrial Electrical Systems</td>
</tr>
<tr>
<td>ELEC4216</td>
<td>Electric Drive Systems</td>
</tr>
<tr>
<td>ELEC4240</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>ELEC4303</td>
<td>Electromagnetic Wave Propagation</td>
</tr>
<tr>
<td>ELEC4313</td>
<td>Optical Communications</td>
</tr>
<tr>
<td>ELEC4323</td>
<td>Digital and Analog Communications</td>
</tr>
<tr>
<td>ELEC4333</td>
<td>Communication Systems 2</td>
</tr>
<tr>
<td>ELEC4351</td>
<td>Data Communications and Computer Networks</td>
</tr>
<tr>
<td>ELEC4352</td>
<td>Data Networks 2</td>
</tr>
<tr>
<td>ELEC4412</td>
<td>Systems and Control 2</td>
</tr>
<tr>
<td>ELEC4413</td>
<td>Digital Control</td>
</tr>
<tr>
<td>ELEC4432</td>
<td>Computer Control and Instrumentation</td>
</tr>
<tr>
<td>ELEC4483</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>ELEC4503</td>
<td>Advanced Electronic Circuits</td>
</tr>
<tr>
<td>ELEC4512</td>
<td>Semiconductor Devices</td>
</tr>
<tr>
<td>ELEC4522</td>
<td>Microelectronics Design and Technology</td>
</tr>
<tr>
<td>ELEC4532</td>
<td>Integrated Digital Systems</td>
</tr>
<tr>
<td>ELEC4540</td>
<td>Applied Photovoltaics</td>
</tr>
<tr>
<td>COMP3211</td>
<td>Computer Organization and Design</td>
</tr>
<tr>
<td>COMP3231</td>
<td>Operating Systems</td>
</tr>
</tbody>
</table>

COMP3311 Database Systems
COMP3411 Artificial Intelligence

Because of timetable clashes not all combinations of subjects are possible.

The program selected by each student must be approved by the Head of School. Not all electives are offered each session, nor is the full range available to part-time students. Students are advised each year of the timetable of available electives. Substitution is not permitted if it unduly restricts the range of subjects studied to only one area of electrical engineering or computer science.

Prerequisites and Co-requisites (Course 3640)

Arranged in order of full-time Bachelor of Engineering Degree Course

Year 1

<table>
<thead>
<tr>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1969, MATH1032</td>
<td>See Matriculation and Admission Requirements</td>
<td></td>
</tr>
<tr>
<td>MATH1090 CHEM1806</td>
<td>See Matriculation and Admission Requirements</td>
<td></td>
</tr>
<tr>
<td>MECH0360, MECH0160</td>
<td>See Matriculation and Admission Requirements</td>
<td></td>
</tr>
<tr>
<td>ELEC1011</td>
<td>PHYS1969</td>
<td>MATH1032</td>
</tr>
<tr>
<td>ELEC1010 COMP1011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1969, ELEC1011</td>
<td>MATH2100</td>
<td></td>
</tr>
<tr>
<td>PHYS1969, MATH1032</td>
<td>MATH2100</td>
<td></td>
</tr>
<tr>
<td>COMP1021 COMP1011</td>
<td>MATH2620</td>
<td></td>
</tr>
<tr>
<td>ELEC2010 ELEC1011, MATH1032</td>
<td>MATH2620</td>
<td></td>
</tr>
<tr>
<td>ELEC2011 ELEC2010, MATH2610</td>
<td>MATH2620</td>
<td></td>
</tr>
<tr>
<td>ELEC2012 ELEC1011</td>
<td>MATH2520</td>
<td></td>
</tr>
<tr>
<td>ELEC2015 PHYS2979</td>
<td>MATH2100</td>
<td></td>
</tr>
<tr>
<td>ELEC2016 PHYS1969, ELEC1011, ELEC1010</td>
<td>MATH2100, ELEC2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELEC2010, ELEC2020, ELEC2012,</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Subject(s)</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS2999 PHYS1969, MATH1032</td>
<td>MATH2100</td>
<td></td>
</tr>
<tr>
<td>MATH9640 PHYS2989</td>
<td>MATH2100</td>
<td></td>
</tr>
<tr>
<td>MECH0760 MATH2100, PHYS1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3141 MATH2501*, MATH2520, MATH2100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2501 MATH1032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2859 MATH1032, MATH2849</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Study: Course Outlines

Subject(s)
- COMP2011
- COMP2031
- ELEC3401
- ELEC3015
- ELEC3016
- ELEC3020
- ELEC3010
- ELEC3011
- ELEC3012

Prefquisites
- MATH2849
- ELEC3010
- ELEC2012
- ELEC2015
- ELEC2020
- ELEC2011
- MATH3150

Co-requisites
- MATH2859
- ELEC2016
- ELEC3110
- ELEC3110
- ELEC3110
- MATH2849
- ELEC3010
- ELEC3011
- ELEC3012

Combined Courses

Students in Electrical Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. (The two degrees referred to here are the Bachelor of Engineering/Bachelor of Science BE BSC and the Bachelor of Engineering/Bachelor of Arts BE BA).

Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Electrical Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate. Students wishing to enrol in, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisites study, sequencing and academic attainment (a creditable performance, ie 65%) average of both the Course Authorities concerned.

Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. AUSTUDY support is available for the five years of the combined degree courses.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However, the choice of subjects and the time taken to complete the program can be seriously affected by this. Thus, students considering course 3725 or course 3720 should contact the Electrical Engineering School before completing their Year 2 enrolment. Application for transfer to a combined course must be made in writing to the Head of School by the start of the third week of December in the year that they complete of Year 2 of the BE degree course.

Students wishing to gain a degree at honours level in Arts or Science as part of their combined degree program shall meet all the relevant requirements of the Faculty concerned and of the appropriate Schools. Such students may enrol for the Honours year only on the recommendation of the Head of School of Electrical Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate.

Re-enrolment of students in Courses 3720 and 3725 each year is arranged by the School of Electrical Engineering.

3725

BE BSc In Electrical Engineering

Changes were made to the double degree program in 1991 due to the introduction of revisions to the BE degree course 3640. Students who commenced course 3640 in 1988 or later, and who wish to study for the double degree, should consult with the School of Electrical Engineering.

Having completed Years 1 and 2 of course 3640 prior to 1990 students in their third year complete a specific course of study consisting of four Level III Science units chosen from related disciplines, the appropriate General Education electives and no less than four other Level II or Level III units, and otherwise
accord with the rules of course 3970 leading to a major in Computer Science, Mathematics or Physics. Students may open up a wider choice of subjects in their Science Year by including additional Computer Science (viz COMP2011), Physics (viz PHYS2989) or Mathematics (viz MATH2501) in their Year 2 Electrical Engineering program. Any subject omitted will be required to be taken later in the course. The extra subject in Year 2 may be credited towards either the BE or BSc requirements, but not both. Students who commence their BE degree in 1989 or later and wish to do the combined degree program, should consult the School Office at enrolment time before year 2 and before year 3 of their BE degree program.

Students wishing to gain a degree at honours level in Science as part of their combined degree program shall meet all the relevant requirements of the Board of Studies in Science and Mathematics and of the School concerned. Such students may enrol for the honours year only on the recommendation of the Head of the School of Electrical Engineering and with the approval of the Head of the appropriate Science School, the Faculty of Engineering and the Board of Studies in Science and Mathematics. AUSTUDY support is available for the six years of the combined degree programs including honours level Science.

In their fourth and fifth years, for students who commenced the BE prior to 1990, students do Year 3 and Year 4 of course 3640. Depending on the program followed in their year of Science they may have already completed parts of the normal third and fourth year programs of the Electrical Engineering course, and they will be required to omit these from their program and to include an equivalent amount of other courses chosen with the approval of the Head of School.

Year 1
PHYS1969
CHEM1806
MECH0360
MECH0160
ELEC1010
ELEC1011
COMP1011
MATH1032
MATH1090

Year 2†
COMP1021
MATH2610, MATH2620, MATH2110, MATH3150, MATH2849, PHYS2989, PHYS2979
One 56 hr or two 28-hr General Education subject/s (Cat A).

Year 3††‡
Either
Computer Science
One 56 hr or two 28-hr General Education subject/s (Cat B).
Choose at least 8 Level II or Level III units including at least 4 Computer Science units at Level III, the balance to be chosen from Level III Computer Science units and other Level II or Level III units in Table 1 or Tables 2 for program 0600** or
Mathematics
One 56 hr or two 28-hr General Education subject/s (Cat B).
Choose at least 5 Mathematics units, 4 of which are Level III Choose at least 3 Level II or Level III units from Table 1 or Table

2 for program 1000
or
Physics
One 56 hr or two 28-hr General Education subject/s (Cat B).
Choose 7 Level II or Level III units from Table 1 of which four must be Level III Physics units, chosen to include PHYS3010, PHYS3050, PHYS3021 and PHYS3030.

Year 4‡
Year 3 of Electrical Engineering course, modified as required by Head of School

Year 5
Year 4 of Electrical Engineering course
† Students intending to major in Computer Science should include COMP2011 in their Year 2 enrolment. Students intending to major in Physics are required to take unit PHYS2999 in Year 2. Students intending to major in Mathematics are required to take MATH2501 in year 2.
‡ For Years 3 refer to course 3970 and the Science Handbook.
§ For students in year 1 in 1989 or later, Years 3 and 4 will most likely be interchanged. Consult the School of Electrical Engineering.

3720
BE BA in Electrical Engineering
The combined course should include
• the requirements of a normal BE degree program in Electrical Engineering less one subject approved by the Head of School. Students should consult the Centre for Liberal and General Studies regarding the General Education requirement;
• subjects equivalent to 108 credit points in accordance with the regulations of the Faculty of Arts provided that this includes a major sequence of subjects available within the Faculty of Arts in addition to the studies in the School of Mathematics and the Department of Computer Science. These include the subjects in Table A or their equivalents.

Table A

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1032</td>
<td>Mathematics 1</td>
</tr>
<tr>
<td>MATH2501</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MATH2510</td>
<td>Real Analysis</td>
</tr>
<tr>
<td>MATH2520</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MATH2100</td>
<td>Vector Calculus</td>
</tr>
<tr>
<td>MATH3141</td>
<td>Numerical and Mathematical Methods</td>
</tr>
<tr>
<td>MATH2849</td>
<td>Statistics SE1</td>
</tr>
<tr>
<td>MATH2859</td>
<td>Statistics SE2</td>
</tr>
<tr>
<td>PHYS1969</td>
<td>Physics 1</td>
</tr>
<tr>
<td>PHYS2979</td>
<td>Electromagnetic Theory</td>
</tr>
<tr>
<td>PHYS2989</td>
<td>Solid-State Physics</td>
</tr>
<tr>
<td>COMP1021</td>
<td>Computing 1B</td>
</tr>
<tr>
<td>ELEC2012</td>
<td>Digital Circuits</td>
</tr>
<tr>
<td>ELEC2015</td>
<td>Electromagnetic Applications</td>
</tr>
</tbody>
</table>

Guidance should be sought from the School of Electrical Engineering, the relevant schools in the Faculty of Arts and the Arts Faculty office. After four years of study a student will normally have completed the BA degree requirements of study, together with subjects selected from course 3640 in accordance with an acceptable program loading and in the fifth year will complete requirements for a BE degree.
It is necessary for each individual student entering the course to lodge for approval a complete program of study: changes in detail are usual from year to year. Students should choose their Arts Major early so as to start the sequence in Year 1 if possible.

School of Mechanical and Manufacturing Engineering*

*Incorporating Aerospace Engineering and Naval Architecture

Head of School
Professor B.E. Milton
Executive Assistant to Head of School
Dr E.M. Kopalinsky
Administrative Officer
Mr A.D. Bauman

Following the re-consideration of the needs of mechanical and manufacturing engineering, and in order to better represent the orientation of the School, the name of the School has been changed from Mechanical and Industrial Engineering to Mechanical and Manufacturing Engineering. At the same time, a new management structure has been instituted whereby the School operates with five Disciplines which underpin the fundamental areas of the profession. In addition, six Directed Programs of industry-oriented cross-disciplinary activity have been introduced.

The Disciplines are: Applied Mechanics (engineering mechanics and mechanics of solids); Design (conceptual design, machine systems design, optimization and failure analysis); Fluid and Thermal Engineering (energy utilization and power generation, refrigeration and air conditioning, gas and liquid handling); Industrial Technology and Management (economic analysis, production planning and control, product and process design, methods engineering and operations research); Mechatronics (interface between mechanical engineering and electronic engineering).

The Directed Programs are: Manufacturing and Automation; Mechanical Building Services; Maintenance Engineering; Energy and Power Systems; Vehicle and Transport Systems; Machine Systems Design.

Please consult the Staff List in the forward section of this handbook for information concerning the Discipline Heads and Program Heads.

The School offers courses in Aerospace Engineering, Mechanical Engineering, Manufacturing Management and Naval Architecture, either singly or in combination with Science or Arts degree courses.

The Co-operative Program

In addition, the School offers the 'Co-op Program', an industry-linked course, for each of the above 4 degrees. In the Co-op Program, students are funded from scholarships awarded by Australia's premier industries.

Co-operative scholars are selected largely on the basis of academic attainment, personal skills and motivation, as well as on non-academic achievements. Together with receiving a rigorous and broadly-based academic education, scholars gain first-hand experience in a wide variety of industries during 4 industrial training periods. These take place at the end of Year 1, end of Year 2 through S1 of Year 3, end of Year 3 and S2 of Year 4 through to the end of Year 4. Hence, the total duration of the course is 5 years, comprising the normal 4 academic years and more than 1 year of experience in industry.

Because of this pattern, the normal third academic year is not taken over consecutive sessions but is incorporated into years 3 and 4 of the program, twelve months of the period being spent in two different industries. Scholars must be prepared to sacrifice leisure during non-academic periods to gain the considerable practical training available.

Summary of Courses

The courses, which lead to the award of the degree of Bachelor of Engineering (BE) are planned to provide the appropriate academic training for the professional engineer in the fields of aerospace, manufacturing and mechanical engineering, and for the naval architect.

The School also offers combined courses in conjunction with other faculties of the University, leading to the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc) or Bachelor of Engineering and Bachelor of Arts (BE BA). These combined courses enable students to major in the area of computer science, materials science, mathematics, physics, statistics or another relevant field, in addition to studying their chosen engineering specialty.

For the four BE courses, the study of the basic sciences — mathematics, physics and chemistry — together with an introduction to engineering, comprise Year 1. In Year 2 further mathematical studies are undertaken, together with a study of the engineering sciences — thermodynamics, fluid mechanics, engineering mechanics, mechanics of solids — and their application in the field of design.

The first halves of the courses of Mechanical Engineering, Manufacturing Management and Aerospace Engineering and of Naval Architecture are identical, and students attend classes together. The latter halves of these four courses contain a number of common core subjects together with specific disciplinary requirements. In the final years, in addition to core subjects and disciplinary requirements, provision is made for a limited degree of specialization in one or more elective subjects. A student with a good academic record in the Mechanical Engineering course may take, subject to the approval of the Head of School, some graduate subjects offered by the School in lieu of an equivalent quantity of final year undergraduate electives. Each student is required to submit a thesis at the end of the final year and to deliver a short paper on the subject of the thesis.

General Education Program

The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For further details, please locate General Education in the Contents.

Requirements for General Education elective and prescribed subjects are as follows: Year 2 - one 56 hour or two 28 hour subject/s from Category A; Year 3 - one 56 hour or two 28 hour subject/s from Category B. The key questions and issues to be addressed in Category C will be considered in the following subjects: MECH1000/MECH2000/MECH3000/MECH4001 Professional Studies 1-4, MECH1100/MECH2100/MECH3100 Mechanical Engineering Design 1-3, MANF3400 Engineering
Economics, MANF4400 Engineering Management, MECH4002 The Engineer in Society.

Industrial Experience
Industrial experience is an integral part of the courses. Full-time students must complete forty working days of approved industrial experience between both Years 2 and 3 and Years 3 and 4. Students are strongly recommended to gain as much industrial experience as possible between Years 1 and 2. Students taking the course on a full-time/part-time basis must complete an equivalent amount of industrial training. Students who have had suitable experience in industry may qualify for exemption from certain subjects. The Head of School should be contacted for details.

Honours
All BE degree course students are considered for the award of Honours which is granted for meritorious performance in the course with particular emphasis on the later years. Honours in Science or Arts in the BE BSc or BE BA combined degree course require an extra year of study.

Recognition
The Institution of Engineers, Australia, recognizes the degree of BE in any of the undergraduate courses offered by the School as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is accorded to the BE degree courses by overseas engineering institutions.

The award of the BE degree in Aerospace Engineering is recognized by the Royal Aeronautical Society as giving exemption from the formal examination requirements for corporate membership. Advancement from graduate membership to associate membership grade is awarded on a case by case basis after a further period of some years of professional experience.

The award of the BE degree in Naval Architecture is recognized by the Royal Institution of Naval Architects (RINA), London, as the academic qualification for corporate membership of that body.

Course Progression Guidelines
It is the responsibility of each student to have met the course requirements by the date of application for the degree. In this context, the student's attention is directed to the Faculty's General Rules for Progression contained in the preceding chapter of this Handbook. As well, the following points should be noted:

- Progression in the School's courses is by subject, although programs and timetables are arranged by year.
- In addition to the specific subject prerequisites for a particular year of a course, a general understanding of the material in the preceding year is assumed.
- Previously failed subjects must be included in a student's current program, except that a failed elective may be replaced by another elective.
- A student who is faced with compiling a mixed year's program must give preference to subjects from the lower year of the course.
- In the event of a student dropping one or more subjects from a mixed year's program, the discarded subjects must be chosen from the higher year's selection.
- The subjects MECH4000 Thesis and MECH4001 Professional Studies 4 can be taken only in the final year of a student's program.

Revision of Courses
An extensive review of all the courses in the School will be completed in 1992. Only those students who commenced their courses before 1989 might not have adopted the pattern now displayed in the Handbook.

The object of the revision has been to modernise the courses, so that a greater emphasis is now placed on electronics, microprocessors, instrumentation, robotics and computing, all of which are important to Mechanical and Manufacturing Engineering. In first year this has resulted in a revised Physics course, emphasising in part the fundamentals of the above areas, and a new, more extensive Computing subject. Subject areas are streamed throughout the courses so that discontinuities in the teaching of material are minimised.

In addition, owing to the increased emphasis in Australia on Manufacturing, the previous Industrial Engineering course has been replaced by a course in Manufacturing Management.

3610 Aerospace Engineering
3660 Manufacturing Management
3680 Mechanical Engineering
3700 Naval Architecture

Bachelor of Engineering BE

Years 1 and 2 of all courses

Note: The program as presented is for full-time study. Alternative programs are available for a combination of full-time and part-time study. Students wishing to commence studies on a part-time basis must, in Year 1, study the subjects: PHYS1919, CHEM1507, MECH1000, MECH1300, MATH1032.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>CHEM1807 Chemistry 1ME</td>
<td>6</td>
</tr>
<tr>
<td>MANF1100 Workshop Technology</td>
<td>3</td>
</tr>
<tr>
<td>MANF1110 Manufacturing Technology</td>
<td>0</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
</tr>
<tr>
<td>MECH1000 Professional Studies 1</td>
<td>1</td>
</tr>
<tr>
<td>MECH1100 Mechanical Engineering Design 1</td>
<td>1</td>
</tr>
<tr>
<td>MECH1110 Graphical Analysis and Communication</td>
<td>0</td>
</tr>
<tr>
<td>MECH1300 Engineering Mechanics 1</td>
<td>4</td>
</tr>
<tr>
<td>MECH1400 Mechanics of Solids 1</td>
<td>0</td>
</tr>
<tr>
<td>MECH1500 Computing 1M</td>
<td>0</td>
</tr>
<tr>
<td>PHYS1919 Physics 1 (Mechanical Engineering)</td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

32
An alternative 'Science Arts compatible' course which can be undertaken by all students, and which must be undertaken by potential combined degree students, is:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1807 Chemistry 1ME</td>
<td>S1 6</td>
</tr>
<tr>
<td>MANF1100 Workshop Technology</td>
<td>3 0</td>
</tr>
<tr>
<td>MANF1110 Manufacturing Technology</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH1000 Professional Studies 1</td>
<td>1 0</td>
</tr>
<tr>
<td>MECH1100 Mechanical Engineering</td>
<td>2 2</td>
</tr>
<tr>
<td>MECH1110 Graphical Analysis and Communication</td>
<td>0 6</td>
</tr>
<tr>
<td>MECH1300 Engineering Mechanics 1</td>
<td>4 0</td>
</tr>
<tr>
<td>MECH1400 Mechanics of Solids 1</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH1500 Computing 1M</td>
<td>0 3</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6 6</td>
</tr>
</tbody>
</table>

1 relevant level I unit from the School of Physics, Chemistry, Computer Science and Engineering, or Mathematics offerings in Table 1 of Sciences Handbook+

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC0805 Electronics for Measurement and Control</td>
<td>0 6</td>
</tr>
<tr>
<td>MATH2009 Engineering Mathematics 2**</td>
<td>4 4</td>
</tr>
<tr>
<td>MATH2839 Statistics SM</td>
<td>3 2</td>
</tr>
<tr>
<td>MATS9520 Engineering Materials</td>
<td>0 6</td>
</tr>
<tr>
<td>MECH2000 Professional Studies 2*</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH2100 Mechanical Engineering Design 2</td>
<td>3 3</td>
</tr>
<tr>
<td>MECH2300 Engineering Mechanics 2A</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH2310 Engineering Mechanics 2B</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH2400 Mechanics of Solids 2</td>
<td>2 2</td>
</tr>
<tr>
<td>MECH2600 Fluid Mechanics 1</td>
<td>2 2</td>
</tr>
<tr>
<td>MECH2700 Thermodynamics 1</td>
<td>2 2</td>
</tr>
<tr>
<td>General Education subject/s (Cat A)</td>
<td>2 2</td>
</tr>
</tbody>
</table>

24.5 23.5

*The total contact hours are 4. This subject is prepartory to MECH3010 Industrial Training 1.
**Students may substitute MATH2501, MATH2510, MATH2100 and MATH2120 for MATH2009. Also, if they satisfy prerequisites, they may take one or more of these at the higher level.

3610 Aerospace Engineering

Bachelor of Engineering BE

Years 3 and 4

The Aerospace Engineering course covers the analysis, design and operation of aircraft and spacecraft. Graduates work mainly on the design and manufacture of flight vehicles, their operation with major or satellite airlines and research for civil and military aerospace organisations. Owing to the international nature of the aerospace industry, the topics studied cover a similar area and to, in general, the same depth of understanding as professional training programmes in aerospace in other industrial countries. The aerospace industry is one of Australia's major exporters of high value added manufactured goods.

Subject to the Head of the School being satisfied that the present extent of equivalences is maintained, and on his recommendation, Faculty has approved an arrangement by which students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering.

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO3100 Aerospace Design 1</td>
<td>4 2</td>
</tr>
<tr>
<td>AERO3400 Analysis of Aerospace Structures 1</td>
<td>0 4</td>
</tr>
<tr>
<td>AERO3601 Aerodynamics 1</td>
<td>4 0</td>
</tr>
<tr>
<td>AERO3602 Flight Dynamics 1</td>
<td>2 0</td>
</tr>
<tr>
<td>ELEC0802 Electrical Power Engineering</td>
<td>0 3</td>
</tr>
<tr>
<td>MANF3400 Engineering Economics</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH3000 Professional Studies 3</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3010 Industrial Training 1*</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH3200 Engineering Experimentation</td>
<td>1.5 1.5</td>
</tr>
<tr>
<td>MECH3211 Linear Systems‡</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH3212 Principles of Control of Mechanical Systems</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH3310 Vibration Analysis</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3400 Mechanics of Solids 3</td>
<td>4 0</td>
</tr>
<tr>
<td>MECH3500 Computing 2M</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH3800 Numerical Methods+ General Education subject/s (Cat B)</td>
<td>0 3</td>
</tr>
</tbody>
</table>

24.5 22.5

*Report to be submitted by end of Session 1 detailing involvement and experience gained prior to Year 3.
+Combined degree course students who have taken MATH2220 Applied Mathematics 2 - Continuous Time Systems or 10.2216 Higher Applied Mathematics 2 - Continuous Time Systems or MATH3101 or 10.222A Numerical Analysis should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook for this subject.
‡Combined degree course students who have taken MATH3181 or 10.222M Optimal Control Theory should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook-

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO4100 Aerospace Design 2</td>
<td>3 3</td>
</tr>
<tr>
<td>AERO4201 Aerospace Systems</td>
<td>2 0</td>
</tr>
<tr>
<td>AERO4202 Space Engineering</td>
<td>0 2</td>
</tr>
<tr>
<td>AERO4400 Analysis of Aerospace Structures 2</td>
<td>3 3</td>
</tr>
<tr>
<td>AERO4601 Aerodynamics 2</td>
<td>2 2</td>
</tr>
<tr>
<td>AERO4602 Flight Dynamics 2</td>
<td>3 0</td>
</tr>
<tr>
<td>AERO4700 Aerospace Propulsion</td>
<td>2 2</td>
</tr>
<tr>
<td>MANF4400 Engineering Management</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH4001 Thesis</td>
<td>6 6</td>
</tr>
<tr>
<td>MECH4001 Professional Studies 4</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH4002 The Engineer in Society</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH4010 Industrial Training 2 *</td>
<td>0 0</td>
</tr>
</tbody>
</table>

23 22

+ This subject completes the General Education (Cat C) requirement.
*Report to be submitted by end of Session 1 detailing involvement and experience gained between Years 3 and 4.
3660
Manufacturing Management

Bachelor of Engineering BE
Years 3 and 4
The Manufacturing Management course is designed for students with engineering ability whose interests lie in the planning, developing and control of manufacturing or service operations.

In the Manufacturing Management subjects, the problems associated with the practical economics of manufacturing operations are stressed. The aim is to provide the student with the education necessary to carry out an industrial job and to examine it critically in the light of economic efficiency. Traditional engineering courses do not embrace the problems which are characteristic of Manufacturing Management. These problems include the analysis of a product to ensure satisfactory functioning with regard to methods and sequence of manufacturing operations; the disposition of buildings and of equipment within them to permit efficient handling of materials; the avoidance of bottlenecks; the related problems of quality and cost control, testing and inspection; labour and personnel relations; and, finally, the problem of distribution and sales.

The financial and economic aspects are studied as the problem in manufacturing has not been solved until the final translation of the product into money has been accomplished successfully. While it is not intended to develop an expert in accounting practice or economics, it is intended to produce an engineer with an appreciation of the problems of cost and one who can apply considerations of ultimate economy to all industrial problems. The techniques of operations research may be applied here, where mathematical models of real-life situations are constructed and manipulated to yield optimal solutions as guides to management.

An engineer trained in Manufacturing Management may initially be employed in any of the following major areas of industrial activity: industrial economic analysis; planning and control of production; product and process design; methods engineering; operations research.

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF3200</td>
<td>Product Design and Manufacturing Technology</td>
<td>4 0</td>
</tr>
<tr>
<td>MANF3300</td>
<td>Design of Manufacturing Facilities 1</td>
<td>0 4</td>
</tr>
<tr>
<td>MANF3400</td>
<td>Engineering Economics</td>
<td>2 0</td>
</tr>
<tr>
<td>MANF3410</td>
<td>Quality Systems 1</td>
<td>4 0</td>
</tr>
<tr>
<td>MANF3500</td>
<td>Computers in Manufacturing 1</td>
<td>0 4</td>
</tr>
<tr>
<td>MANF3600</td>
<td>Information and Decision Making Technology 1</td>
<td>4 2</td>
</tr>
<tr>
<td>MANF3800</td>
<td>Introduction to Numerical Methods†</td>
<td>0 1.5</td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training 1*</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems+</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td>2 0</td>
</tr>
<tr>
<td></td>
<td>General Education subjects (Cat B)</td>
<td>2 2</td>
</tr>
</tbody>
</table>

ACCT9001/2 Introduction to Accounting A/B | 1.5 1.5

Hours per week

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF4010</td>
<td>Manufacturing Systems Design</td>
<td>0 4</td>
</tr>
<tr>
<td>MANF4300</td>
<td>Design of Manufacturing Facilities 2</td>
<td>2 0</td>
</tr>
<tr>
<td>MANF4410</td>
<td>Quality Systems 2</td>
<td>2 0</td>
</tr>
<tr>
<td>MANF4420</td>
<td>Management of Manufacturing Systems</td>
<td>6 2</td>
</tr>
<tr>
<td>MANF4500</td>
<td>Computers in Manufacturing 2</td>
<td>2 0</td>
</tr>
<tr>
<td>MANF4600</td>
<td>Information and Decision Making Technology 2</td>
<td>4 0</td>
</tr>
<tr>
<td>MECH4000</td>
<td>Thesis</td>
<td>6 6</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Professional Studies 4</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society *</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH4010</td>
<td>Industrial Training 2+</td>
<td>0 0</td>
</tr>
</tbody>
</table>

†Combined degree course students who have taken MATH3101 or 10.221A Numerical Analysis should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Science Handbook for this subject.
+Combined degree course students who have taken MATH3101 or 10.222M Optimal Control Theory should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook.
*Report to be submitted detailing involvement and experience gained prior to Year 3.

20 20

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training 1*</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH3100</td>
<td>Mechanical Engineering Design 3</td>
<td>3 3</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td>1.5 1.5</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems‡</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH3300</td>
<td>Engineering Mechanics 3</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids 3</td>
<td>4 0</td>
</tr>
</tbody>
</table>

‡Report to be submitted by end of Session 1 detailing involvement and experience gained between Years 3 and 4.
*This subject completes the General Education (Cat C) requirement.

3680
Mechanical Engineering

Bachelor of Engineering BE
Years 3 and 4
The Mechanical Engineering course provides a versatile, comprehensive coverage of areas involving the conception and design of machinery and mechanical plant, the supervision of its construction, operation and maintenance, the planning and supervision of large engineering projects, and general engineering management. Due to its wide range, a number of options are provided as Technical Electives in the final year. These are preferentially linked to provide a direction appropriate to the needs of Australian industry and to the specific interests of students, although some flexibility is available if required. Typical fields which may be encompassed by the course include building services, computer-aided design, power generation, energy and environmental systems, gas and liquid handling, bio-mechanics, materials handling, control systems, mechatronics and robotics, and transport. An emphasis is placed on the application of engineering science, development and management in these fields.

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training 1*</td>
<td>0 0</td>
</tr>
<tr>
<td>MECH3100</td>
<td>Mechanical Engineering Design 3</td>
<td>3 3</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td>1.5 1.5</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems‡</td>
<td>3 0</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0 3</td>
</tr>
<tr>
<td>MECH3300</td>
<td>Engineering Mechanics 3</td>
<td>2 0</td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis</td>
<td>0 2</td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids 3</td>
<td>4 0</td>
</tr>
</tbody>
</table>

‡Report to be submitted by end of Session 1 detailing involvement and experience gained between Years 3 and 4.
*This subject completes the General Education (Cat C) requirement.
The Faculty of Engineering has approved an arrangement whereby, upon the recommendation of the Head of School, students who satisfy the requirements for the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to the final two years of the BE degree course in Naval Architecture. The Faculty of Engineering has also approved an arrangement whereby, upon the recommendation of the Head of School, students who satisfy the requirements for the first two years of the Naval Architecture full-time degree course at any other Australian tertiary institution may be admitted to the final two years of the BE degree course in Naval Architecture.
Combined Courses

Bachelor of Engineering/Bachelor of Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Year</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVL3100</td>
<td>Principles of Ship Design 1</td>
<td>3</td>
<td>S1: 1.5, S2: 1.5</td>
</tr>
<tr>
<td>NAVL3400</td>
<td>Ship Structures 1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>NAVL3600</td>
<td>Ship Hydrostatics</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>NAVL3610</td>
<td>Ship Hydrodynamics</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training 1+</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems**</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids 3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MECH3800</td>
<td>Numerical Methods+</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training 1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH3800</td>
<td>Numerical Methods+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Report to be submitted by end of Session 1 detailing involvement and experience gained prior to Year 3.

+Combined degree course students who have taken MATH2220 Applied Mathematics 2 – Continuous Time Systems or 10.2216 Higher Applied Mathematics 2 – Continuous Time Systems or MATH3101 or 10.222A Numerical Analysis, should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook for this subject.

**Combined degree course students who have taken MATH3181 10.222M Optimal Control theory should substitute a Technical Elective or a half Level II or Level III unit from Table 1 of the Sciences Handbook.

Year 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVL4000</td>
<td>Ship Management Economics</td>
<td>2</td>
</tr>
<tr>
<td>NAVL4100</td>
<td>Principles of Ship Design 2</td>
<td>4</td>
</tr>
<tr>
<td>NAVL4110</td>
<td>Ship Design Project</td>
<td>3</td>
</tr>
<tr>
<td>NAVL4400</td>
<td>Ship Structures 2</td>
<td>2</td>
</tr>
<tr>
<td>NAVL4700</td>
<td>Ship Propulsion and Systems</td>
<td>4</td>
</tr>
<tr>
<td>MECH4000</td>
<td>Thesis</td>
<td>6</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Professional Studies 4</td>
<td>2</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society+</td>
<td>2</td>
</tr>
<tr>
<td>MECH4010</td>
<td>Industrial Training 2*</td>
<td>2</td>
</tr>
<tr>
<td>MECH4500</td>
<td>Computing 3M</td>
<td>2</td>
</tr>
</tbody>
</table>

*Report to be submitted by end of Session 1 detailing involvement and experience gained between Years 3 and 4.

+This subject completes the General Education (Cat C) requirement.

3611

BE BSc in Aerospace Engineering

3661

BE BSc in Manufacturing Management
Undergraduate Study: Course Outlines

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH1500</td>
<td>Computing 1M</td>
<td>0</td>
</tr>
<tr>
<td>MECH2300</td>
<td>Engineering Mechanics 2A</td>
<td>3</td>
</tr>
<tr>
<td>MECH2400</td>
<td>Mechanics of Solids 2</td>
<td>3.5</td>
</tr>
<tr>
<td>MATH2100</td>
<td>Applied Mathematics 2 – Vector</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2120</td>
<td>Applied Mathematics 2 – Mathematical Methods for Differential Equations</td>
<td>0</td>
</tr>
<tr>
<td>MATH2501</td>
<td>Pure Mathematics 2 – Linear Algebra</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2510</td>
<td>Pure Mathematics 2 – Multivariable Calculus</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2520</td>
<td>Pure Mathematics 2 – Complex Analysis</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4.5 appropriate Level II units from</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 1* or Table 2* for course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3681^</td>
<td>9+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23+</td>
</tr>
<tr>
<td>MECH2600</td>
<td>Fluid Mechanics 1</td>
<td>2</td>
</tr>
<tr>
<td>MECH2700</td>
<td>Thermodynamics 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>At least 5 appropriate Level II or III units from Table 1* or Table 2* for course 3681 of which at least 4 must be Level III</td>
<td>10+</td>
</tr>
<tr>
<td></td>
<td>One 56-hour or two 28-hour General Education subject/s (Cat A)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19+</td>
</tr>
</tbody>
</table>

Subject selections which satisfy the specific requirements for the various majors are summarised below. Provided co- and prerequisites are satisfied, there is scope for some subjects to be taken either in Year 2 or Year 3.

Materials Science Majors

<table>
<thead>
<tr>
<th>Year 2</th>
<th>CHEM2011^12, CHEM2021^12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2400, MATH2500, MATH2600, MATH2700</td>
<td>3681^</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH), MATH2120 (or MATH2130)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2501, MATH2510, MATH2520, MATH2600, MATH2700, MATH2841 (or MATH2839)</td>
<td>3681^</td>
</tr>
</tbody>
</table>

Mathematics Majors

<table>
<thead>
<tr>
<th>Year 2</th>
<th>MATS9520, MECH2300, MECH2400, MECH1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2100, MATH2120, MATH2130, MATH2600, MATH2700, MATH2841 (or MATH2839)</td>
<td>3681^</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH), MATH2120 (or MATH2130)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2501, MATH2510, MATH2520, MATH2600, MATH2700, MATH2841 (or MATH2839)</td>
<td>3681^</td>
</tr>
</tbody>
</table>

Computer Science Majors

<table>
<thead>
<tr>
<th>Year 2</th>
<th>MATS9520, MECH2300, MECH2400, MECH1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2100, MATH2120, MATH2130, MATH2600, MATH2700, MATH2841 (or MATH2839)</td>
<td>3681^</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>MECH2000, MECH2100, MECH2310, MECH2600, MECH2700, MATH2841 (or MATH2839)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2501, MATH2510, MATH2520, MATH2600, MATH2700, MATH2841 (or MATH2839)</td>
<td>3681^</td>
</tr>
</tbody>
</table>

Physics Majors

<table>
<thead>
<tr>
<th>Year 2</th>
<th>PHYS2001, PHYS2011, PHYS2021, PHYS2031</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2100, MATH2120, MATH2130, MATH2600, MATH2700, MATH2841 (or MATH2839)</td>
<td>3681^</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>PHYS3010^10, PHYS3021, PHYS3030^10, PHYS3041^10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2501, MATH2510, MATH2520, MATH2600, MATH2700, MATH2841 (or MATH2839)</td>
<td>3681^</td>
</tr>
</tbody>
</table>

Subject selections which satisfy the specific requirements for the various majors are summarised below. Provided co- and prerequisites are satisfied, there is scope for some subjects to be taken either in Year 2 or Year 3.

* Tables refer to the Sciences Handbook.
* The total number of contact hours is 4. This subject is preparatory to MECH3010 Industrial Training 1.
Statistics Majors

Year 2
MATS9520
MECH2300, MECH2400, MECH1500
ELEC0805
MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH), MATH2120 (or MATH2130), MATH2801 (or MATH2901), MATH2821 (or MATH2921), MATH2810 (or MATH2910), MATH2830 (or MATH2930)
1/2 appropriate Level 2 unit from Table 1* or Table 2* for course 3681

Year 3
MECH2000, MECH2100, MECH2310, MECH2600, MECH2700
4 Level 3 units from Statistics offerings in Table 1*
1 Level 2 or III unit from School of Mathematics or School of Physics offerings in Table 1*
One 56 hour or two 28 hour General Education subject(s) (Cat A)*
* Tables refer to the Sciences Handbook.

Notes
1. Years 2 and 3 are requirements pertaining to students who commenced Year 1 in 1989, or later. Students who commenced in earlier years should consult the Handbook appropriate to their year.
2. The following considerations pertain to the choice of additional units in Years 2 and 3:
 (a) The Level 3 units satisfy the relevant major requirements.
 (b) They be from the Schools of Chemistry, Computer Science and Engineering, Electrical Engineering, Mathematics, Materials Science and Engineering and/or Physics.
 (c) They include MATH2841 Statistics or MATH2839 Statistics SM or MATH2821 Basic Inference.
 (d) They include PHYS2031 Laboratory or ELEC0805 Electronics for Measurement and Control.
 (e) They include MATS9520 Engineering Materials or MATS1253 Ferrous Alloys.
 (f) They exclude MATH2301 Mathematical Computing.
 (g) All pre and co-requisites are satisfied.
3. Quota restrictions apply to certain Computer Science Level 3 units and application must be made in writing to the Head of the School of Computer Science and Engineering before the end of Session 2 in the preceding year. Prospective Computer Science Majors should aim for a creditable academic attainment (65%) over Years 1 and 2.
4. With permission of the School of Mechanical and Manufacturing Engineering, students may delay this subject til Year 3.
5. Provided MECH2400 is taken concurrently or has been taken, the pre or co-requisite requirement of MATS1062 is assumed to be satisfied.
6. General Education requirements correspond to whatever is required in the second year of the normal Mechanical Engineering, Manufacturing Management, Aerospace Engineering or Naval Architecture degree course.

7. These Mathematics Majors need to add ELEC0805 Electronics for Measurement and Control to Year 3.
8. These Mathematics Majors should substitute 1 Level 2 or 3 units from the Schools of Physics, Chemistry or Mathematics offerings in Table 1 for MATH2841 Statistics in Year 3.
9. Students may substitute PHYS2031 Laboratory for ELEC0805 plus a .5 Level 2 unit.
10. Under special circumstances, with permission of the Head of the School of Physics, a student may substitute alternative Physics Level 3 offerings of equivalent unit value.
11. The Mathematics units are also offered at higher level.
12. Students who have satisfactorily completed CHEM1807 Chemistry 1ME and CHEM1201 Chemistry 1B will be considered to have satisfied the prerequisites for CHEM2011 Physical Chemistry and CHEM2021 Organic Chemistry.

Combined Courses
Bachelor of Engineering/Bachelor of Arts

3612
BE BA in Aerospace Engineering

3662
BE BA in Manufacturing Management

3682
BE BA in Mechanical Engineering

3702
BE BA in Naval Architecture

Introduction
The Bachelor of Engineering and Bachelor of Arts combined degree course provides the opportunity of taking one of the normal accredited Engineering courses offered by the School together with a normal Arts degree course. Common content between the two courses makes it possible to complete the combined degree course in 5 years, although the minimum time required could be longer, depending upon the choice of Arts subjects. The course is administered by the Faculty of Engineering.

The Engineering content follows that of the standard courses offered by the School. It includes the Science Arts compatible first year program which provides a wide range of course options at the end of Year 1. The options include, in addition to the BE BA combined program, a BE BSc combined program and a normal BA degree program, a normal BSc degree program and a normal BA degree program. (The Science/Arts
compatible first year provides up to 30 Arts credit points towards a BA degree program.)

The Arts content is to be chosen from the Faculty of Arts offerings in the usual way and would depend upon the interests of each individual student. Refer to the Faculty of Arts handbook for further details.

Requirements
The broad requirements of the BE BA course are given below. The details of a particular student's program will depend upon the student's interests and the Arts content which is chosen. Sample programs are available on request to show typical arrangements. Students should consult the Centre for Liberal and General Studies for advice regarding the General Education requirement.

Engineering
The program is to contain the Science/Arts compatible first year segment followed by the full program for one of the strands offered by the School of Mechanical and Manufacturing Engineering. Course variations may be permitted in some cases on application to the Head of School.

Arts
The Arts component of the program is to contain at least 60 Arts credit points in addition to Arts credit points allocated to components of the Engineering strand. (A session-length Arts subject normally carries 6 credit points.) The 60 must include:

* no more than 30 First Level credit points (typically 5 one session subjects)
* at least 24 Upper Level credit points forming a major sequence (typically 4 one-session subjects)
* at least 6 Upper Level credit points in a school other than that in which the major is taken. Computing and mathematics majors are not permitted. The combined BE BSc program would be more appropriate in these cases.

Honours
In the Engineering component, Honours are awarded for superior performance in the standard program. In the Arts components, the award of Honours requires at least one further year of study devoted exclusively to the Honours subject(s). Consult the Faculty of Arts for further details.

General
A BE BA proposal should be discussed with representatives of the School and the Faculty of Arts as early as possible. In many cases this will be at (or preferably before) first year enrolment, but a student who has satisfactorily completed the Science/Arts compatible first year will normally be able to transfer to the second year of a combined BE/BA program, and the discussions could then take place at any time before second year enrolment. Enquiries should be directed to the Executive Assistant to the Head of the School and the Executive Assistant to the Dean of Faculty of Arts.

Undergraduate Study: Course Outlines

School of Surveying

Head of School
Professor J.C. Trinder

Administrative Assistant
Mr L. Daras

What is Surveying?
Surveying is a professional science dealing with measuring processes and the handling and computation of data. Traditionally, surveyors measure land and water areas and produce maps for use in development projects such as land subdivision, town planning, building construction, engineering works (eg dams and railways), mining and navigation.

Today in Australia, a surveyor may choose to work in one of the specialised areas of: Satellite Surveying (position determination techniques using satellite signals); Geodetic Surveying (determining the mathematical model of the Earth, and its gravity field, and the practice of surveying on the Earth's surface); Hydrographic Surveying (mapping the seabed and waterways for navigation and off-shore resource management); Engineering Surveying (the precise surveying for engineering projects); Cadastral Surveying (knowledge of the laws and practices for survey of property boundaries); Land Management and Development (environmental assessment for resource management and change of land use); Land Information Management (the use of computer-based information systems of spatially related data for planning purposes); Photogrammetry and Remote Sensing (the use of photographs and remotely sensed images for mapping and resource surveys).

Modern technology is playing an increasingly important role in the professional life of the surveyor. For example, the use of computers and small electronic distance measuring devices is common. The next generation of surveyors will be able to determine accurate positions on the Earth from radio signals transmitted from satellites. Field survey techniques are being revolutionised through the use of satellite systems which are due to come into full operation in the 1990s.

Who should become a Surveying Professional?
New technology and techniques have paved the way for surveying to be a career suited to both men and women who have an aptitude for computing, mathematics and environmental sciences.

Because of the unique nature of the profession, surveying offers opportunities to satisfy a wide range of individual preferences.

A professional qualification in surveying will provide a start towards realising the ambitions of students whether they would like to:

* work in the field or in the office,
* work on their own or as a member of a multi-disciplinary team,
* work in private industry or in government service,
* work as a self-employed consultant,
* work in Australia or overseas.
What can a student look forward to in a surveying course at University?

- A well-rounded education enabling him or her to enter the surveying profession.
- A challenging and rewarding course.
- An awareness of many related areas such as town planning, engineering, land law, optics and computing technology.
- On completion, a degree which is recognised and respected throughout the world.
- The chance to enter a career with excellent prospects.
- The chance to choose a career with a combination of indoor and outdoor lifestyles and the opportunity to travel.
- A degree which can lead to further studies towards a higher degree in one of the specialist areas.

How to become a surveyor?
The method of entry to a professional career in surveying is by completion of a university degree.

The Bachelor of Surveying Course

The School offers a full-time course of four years duration leading to the award of the degree of Bachelor of Surveying (BSurv). Alternatively, the course may be taken in a sandwich form in which a student may, after completing the first year of the course on a full-time basis, alternate his or her studies with one or more periods of employment by taking leaves of absence of two consecutive sessions. The BSurv degree course is a well rounded course aimed at preparing the graduate for a broad range of career opportunities in the various branches of Surveying and in associated fields referred to above. The course recognises that its graduates may be called on to act as survey practitioners, consultants, managers, teachers or researchers, and indeed a single graduate may take on several of these roles during his or her career. To this end, the BSurv degree course covers general scientific principles comprising subjects from the BSc In Computer Science and geographic information systems, remote sensing, digital satellite positioning, spatial data handling for land and ten'ain analysis. The content of the course is also a range of prizes available for the graduating class.

The Bachelor of Surveying/Bachelor of Science in Computer Science Course

This new combined degree course of five years full-time study enables a student to qualify for the award of the two degrees of Bachelor of Science in Computer Science and Bachelor of Surveying. The course authority for the combined degree is the School of Surveying. All students admitted to the combined course will be part of the Surveying UAC quota (NSU Code) but must also have achieved a level equivalent to the Computer Science cut-off (NCS) for the year of admission. The course is specifically designed for students wishing to enter a career in computer science specializing in surveying, satellite positioning, spatial data handling for land and geographic information systems, remote sensing, digital mapping and terrain analysis. The content of the course comprises subjects from the BSc in Computer Science and BSurv degree courses with some variations to accommodate the requirements of both degrees. It should be possible to complete the requirements for the award of the BSc degree after four years study and the BSurv degree after five years.

Recognition

The degree of Bachelor of Surveying is recognised by the New South Wales Surveyors' Board as meeting all examination requirements for registration as a Registered Surveyor in New South Wales, and is recognised by the Institution of Surveyors, Australia for admission as corporate members. Students wishing to become Registered Surveyors with the New South Wales Surveyors' Board after graduation are advised to gain practical experience under a Registered Surveyor during their course. Some reduction in the period of practical experience required before registration may be granted because of practical experience gained during the University course, provided the New South Wales Surveyors' Board is informed in the prescribed manner. Details are obtainable from the Registrar, Surveyors' Board, Department of Lands, Bridge Street, Sydney 2000.

Honours

In the BSurv degree course the same formal program is offered to both pass students and to those aiming for an honours grading. Honours will be awarded for meritorious performance throughout the course.

Scholarships and Prizes

Please locate Scholarships and Prizes in the Contents. In addition, substantial prizes are offered for the best performance by a woman student at the end of Year 1 and the best performance by all students at the end of Years 2 and 3. There is also a range of prizes available for the graduating class.

Professional Practice

All students in BSurv degree course must gain at least 60 days of recognised professional practice after the completion of Session 1 in Year 2 as part of the requirements for subject SURV8711. Special instructions will be given before commencement of professional practice.

Field Excursions

Students must complete all necessary fieldwork for any subject and be prepared to pay all the appropriate costs, and must be in attendance at all scheduled examinations except in exceptional circumstances.

Course Rules

- Students are not permitted to enrol in subjects with clashing timetables.-
- In addition to the specific subject prerequisites and co-requisites a general understanding of the material in the preceding year is assumed. Students are not normally permitted to enrol in subjects spread beyond two years.
- Students who do not pass their full programs in any year will be limited to a reduced load in the following year. Typically, this is 20 hours per week.
- Previously failed subjects must be included, except that a failed elective may be replaced by another elective.

Course Revision

Following each course revision, students are assessed on the basis of the new program but retain credit for any subjects already completed and are not liable for the increased requirements if progression is normal.
It is the responsibility of students to enrol in a program consistent with the rules governing re-enrolment and admission to the degree.

The BSurv degree course was recently revised. Years 1 and 2 of the new course have been introduced in 1989, while year 3 was introduced in 1990, and year 4 in 1991.

Students with broken programs will have their status in the new course determined according to a table of equivalent subjects in the new and old courses.

Re-enrolment
Students must collect enrolment information from the School Office before the end of Session 2 (or re-enrolment in the following February). Students not intending to re-enrol should advise the School. Leave of absence for up to one year is usually granted to students in good standing.

General Education Program
The University requires that undergraduate students undertake a structured program in General Education as an integral part of their degree. For further details, please refer to General Education in the Contents.

Requirements for General Education elective and prescribed subjects are as follows: Year 2 - one 56 hour or two 28 hour subject/s from Category A; Year 3 - one 56 hour or two 28 hour subject/s from Category B. The key questions and issues to be addressed in Category C will be considered in the following subjects: SURV1711 Introduction to Surveying, SURV7711 Land Management and Development Project and SURV8711 Professional Practice.

3740
Surveying

Bachelor of Surveying
BSurv

Year 1

<table>
<thead>
<tr>
<th></th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
</tr>
<tr>
<td>PHYS1929 Physics 1</td>
<td>4</td>
</tr>
<tr>
<td>MECH0130 Engineering Drawing and Descriptive Geometry</td>
<td>4</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
</tr>
<tr>
<td>SURV1111 Introduction to Computing*</td>
<td>4</td>
</tr>
<tr>
<td>SURV1711 Introduction to Surveying*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
</tr>
<tr>
<td>PHYS1929 Physics 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
</tr>
<tr>
<td>SURV1711 Introduction to Surveying*</td>
<td>3</td>
</tr>
<tr>
<td>SURV2041 Survey Data Presentation</td>
<td>3</td>
</tr>
<tr>
<td>SURV2111 Principles of Computer Processing</td>
<td>4</td>
</tr>
<tr>
<td>SURV2221 Introduction to Geodetic Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th></th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
</tr>
<tr>
<td>PHYS2069 Physics of Measurements</td>
<td>3</td>
</tr>
<tr>
<td>MATH2009 Engineering Mathematics 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH2829 Statistics SU</td>
<td>3</td>
</tr>
<tr>
<td>SURV3011 Surveying Instruments</td>
<td>4</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
</tr>
<tr>
<td>SURV3111 Survey Computations</td>
<td>3</td>
</tr>
<tr>
<td>SURV3231 Geodetic Computations</td>
<td>3</td>
</tr>
<tr>
<td>28-hr General Education subject (Cat A)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 2</td>
<td></td>
</tr>
<tr>
<td>MATH2009 Engineering Mathematics 2</td>
<td>4</td>
</tr>
<tr>
<td>SURV4051 Survey Camp 1*</td>
<td>3</td>
</tr>
<tr>
<td>SURV4011 Surveying Techniques</td>
<td>6</td>
</tr>
<tr>
<td>SURV4111 Data Analysis and Computing 1</td>
<td>3</td>
</tr>
<tr>
<td>SURV4221 Geodetic Positioning 1</td>
<td>3</td>
</tr>
<tr>
<td>SURV4721 Project Management 1</td>
<td>2</td>
</tr>
<tr>
<td>28-hr General Education subject (Cat A)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

*Students are required to attend a one-week survey camp, which is equivalent to 3 class contact hours per week.

Year 3

<table>
<thead>
<tr>
<th></th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
</tr>
<tr>
<td>CIVL0646 Engineering for Surveyors 1</td>
<td>3</td>
</tr>
<tr>
<td>PLAN9111 Town Planning</td>
<td>2</td>
</tr>
<tr>
<td>SURV5011 Engineering Surveying</td>
<td>4</td>
</tr>
<tr>
<td>SURV5111 Data Analysis and Computing 2</td>
<td>3</td>
</tr>
<tr>
<td>SURV5221 Geodetic Positioning 2</td>
<td>3</td>
</tr>
<tr>
<td>SURV5621 Cadastral Surveying 1</td>
<td>3</td>
</tr>
<tr>
<td>SURV5721 Project Management 2</td>
<td>2</td>
</tr>
<tr>
<td>28-hr General Education subject (Cat B)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 2</td>
<td></td>
</tr>
<tr>
<td>CIVL0656 Engineering for Surveyors 2</td>
<td>3</td>
</tr>
<tr>
<td>SURV6051 Survey Camp 2*</td>
<td>4</td>
</tr>
<tr>
<td>SURV6121 Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>SURV6511 Photogrammetry and Mapping 1</td>
<td>3</td>
</tr>
<tr>
<td>SURV6621 Cadastral Surveying 2</td>
<td>3</td>
</tr>
<tr>
<td>SURV6721 Project Management 3</td>
<td>2</td>
</tr>
<tr>
<td>SURV6811 Land Economics and Valuation</td>
<td>3</td>
</tr>
<tr>
<td>28-hr General Education subject (Cat B)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

*Students are required to attend a one week Survey Camp which is equivalent to 3 class contact hours per week together with one hour per week evaluation on campus for preparation of report.

Year 4

<table>
<thead>
<tr>
<th></th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
</tr>
<tr>
<td>SURV7051 Survey Camp 3*</td>
<td>7</td>
</tr>
<tr>
<td>SURV7311 Offshore Surveying</td>
<td>3</td>
</tr>
<tr>
<td>SURV7511 Photogrammetry and Mapping 2</td>
<td>3</td>
</tr>
<tr>
<td>SURV7521 Remote Sensing and Resource Surveys</td>
<td>3</td>
</tr>
<tr>
<td>SURV7531 Spatial Information Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>SURV7711 Land Management and Development Project*</td>
<td>2</td>
</tr>
<tr>
<td>SURV7811 Land Subdivision and Development</td>
<td>3</td>
</tr>
<tr>
<td>SURV8001 Project</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURV7711</td>
<td>Land Management and Development Project</td>
<td>2</td>
</tr>
<tr>
<td>SURV8011</td>
<td>Project Surveying</td>
<td>3</td>
</tr>
<tr>
<td>SURV8221</td>
<td>Advanced Geodesy</td>
<td>3</td>
</tr>
<tr>
<td>SURV8531</td>
<td>Spatial Information Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>SURV8711</td>
<td>Professional Practice**</td>
<td>2</td>
</tr>
<tr>
<td>SURV8001</td>
<td>Project</td>
<td>8</td>
</tr>
</tbody>
</table>

21

* Students are required to attend 2 weeks of Survey Camp, equivalent to 6 class contact hours per week, together with one hour per week evaluation on campus for preparation of report.

** 60 days approved professional practice required as part of this subject together with two hours per week seminar and field work.

+ The subject/s contribute to fulfilment of the Category C General Education requirement.

Combined Course
Bachelor of Surveying/Bachelor of Science in Computer Science

3754
BSurv BSc in Computer Science

The structure of this new course is flexible to accommodate timetabling but a recommended program which will satisfy prerequisites throughout the course is:

Year 1
PHYS1929, MATH1032, SURV1711+, MECH0130, SURV1111, SURV2041, SURV2221, SURV3011, SURV4011

Year 2
PHYS2969, MATH2841, MATH2501, MATH2510, MATH2520, COMP1011, COMP1021, SURV3111, SURV3231, SURV4051*, SURV4111, SURV4221, SURV4721, General Ed. Cat. A

* Students are required to attend one week Survey Camp, which is equivalent to 3 class hours per week.

Year 3
SURV5011, SURV5111, SURV5221, SURV5721, SURV6051*, SURV6511, SURV6721, SURV6811, PLAN9111, MATH2100, MATH2120, COMP2011, COMP2021, COMP2031, General Ed. Cat. B.

* Students are required to attend one week Survey Camp, which is evaluated to 3 class hours per week together with one hour per week evaluation on campus for preparation of report.

Year 4
CIVL6140, CIVL6150, SURV5621, SURV6621, COMP3111, COMP3121, COMP3421, Plus 2 units (4 or 5 hours per week each) at level 2 or higher either from Table 1 of the Sciences Handbook, or from Table 2 for Program 0600.

Year 5
SURV7051**, SURV7311, SURV7511, SURV7521, SURV7531, SURV7711, SURV7711+, SURV7811, SURV8001, SURV8011, SURV8221, SURV8531, SURV8711**
Subject Descriptions

Identification of Subjects

A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'. Each approved subject of the University is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subject identifiers are approved by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the four character alphabetical prefix.
2. Each subject identifier is unique and is not used for more than one subject title.
3. Subject numbers which have previously been used are not used for new subject titles.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Appropriate subjects for each school appear at the end of each school section.

The identifying alphabetical prefixes for each organizational unit are set out on the following pages.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information which may be supplied about each subject:

- S1 session 1, S2 session 2
- F session 1 plus session 2, ie full year
- S1 or S2 session 1 or session 2, ie choice of either session
- SS single session, but which session taught is not known at the time of publication
- CCH class contact hours
- P/T part-time
- L lecture, followed by hours per week
- T laboratory/tutorial, followed by hours per week
- hpw hours per week
- wks weeks of duration
- C credit or credit units
- CR Credit level
- DN Distinction
- HD High Distinction
- X External
In the Faculty of Engineering, Schools and Centres have allocated the first digit in the numeric suffix of all new subject identifiers as indicating the level of the subject. Please note that the value '9' in this position is reserved for graduate subjects.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIO</td>
<td>School of Applied Bioscience</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACHM</td>
<td>Department of Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>ACMA</td>
<td>Department of Civil Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ACSC</td>
<td>Department of Computer Science</td>
<td>University College</td>
</tr>
<tr>
<td>ADSC</td>
<td>Australian Defence Studies Centre</td>
<td>University College</td>
</tr>
<tr>
<td>AECM</td>
<td>Department of Economics & Management</td>
<td>University College</td>
</tr>
<tr>
<td>AELE</td>
<td>Department of Electrical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AENG</td>
<td>Department of English</td>
<td>University College</td>
</tr>
<tr>
<td>AERO</td>
<td>Aerospace Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>AGOG</td>
<td>Department of Geography & Oceanography</td>
<td>University College</td>
</tr>
<tr>
<td>AHIS</td>
<td>Department of History</td>
<td>University College</td>
</tr>
<tr>
<td>AINT</td>
<td>University College (Interdisciplinary)</td>
<td>University College</td>
</tr>
<tr>
<td>AMAT</td>
<td>Department of Mathematics</td>
<td>University College</td>
</tr>
<tr>
<td>AMEC</td>
<td>Department of Mechanical Engineering</td>
<td>Medicine</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>University College</td>
</tr>
<tr>
<td>APHY</td>
<td>Department of Physics</td>
<td>University College</td>
</tr>
<tr>
<td>APOL</td>
<td>Department of Politics</td>
<td>University College</td>
</tr>
<tr>
<td>APSC</td>
<td>Faculty of Applied Science</td>
<td>University College</td>
</tr>
<tr>
<td>APSE</td>
<td>Faculty of Applied Science</td>
<td>University College</td>
</tr>
<tr>
<td>ARTCH</td>
<td>School of Architecture</td>
<td>University College</td>
</tr>
<tr>
<td>ARTS</td>
<td>Faculty of Arts and Social Sciences</td>
<td>University College</td>
</tr>
<tr>
<td>ASIA</td>
<td>Asian Studies</td>
<td>University College</td>
</tr>
<tr>
<td>ATAX</td>
<td>Board of Studies in Taxation</td>
<td>University College</td>
</tr>
<tr>
<td>AUST</td>
<td>Australian Studies</td>
<td>University College</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry</td>
<td>University College</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>University College</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>University College</td>
</tr>
<tr>
<td>BLDG</td>
<td>School of Building</td>
<td>University College</td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science & Mathematics</td>
<td>University College</td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese</td>
<td>University College</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>CMed</td>
<td>School of Community Medicine</td>
<td>University College</td>
</tr>
<tr>
<td>COFA</td>
<td>College of Fine Arts</td>
<td>University College</td>
</tr>
<tr>
<td>COMM</td>
<td>Faculty of Commerce and Economics</td>
<td>University College</td>
</tr>
</tbody>
</table>

Prefix | Organizational unit | Faculty |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>School of Computer Science and Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Economics and Econometrics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>EDST</td>
<td>School of Education Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ENGL</td>
<td>School of English</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>EURO</td>
<td>European Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>EXPA</td>
<td>School of Arts and Music Education</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>FIBR</td>
<td>School of Fibre Science & Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FILM</td>
<td>Department of Theatre and Film Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking & Finance</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>FOOD</td>
<td>Department of Food Science and Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FREN</td>
<td>School of French</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal & General Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GERS</td>
<td>Department of German Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GREK</td>
<td>Modern Greek</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GSBE</td>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
</tr>
<tr>
<td>HEAL</td>
<td>School of Health Services Management</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>HIST</td>
<td>School of History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>HOSP</td>
<td>School of Marketing</td>
<td>Architecture</td>
</tr>
<tr>
<td>IDES</td>
<td>Department of Industrial Design</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDA</td>
<td>Industrial Arts</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDO</td>
<td>Indonesian</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INFS</td>
<td>School of Information Systems</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INTD</td>
<td>Interdisciplinary Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organizational Behaviour</td>
<td>Applied Science</td>
</tr>
<tr>
<td>JAN</td>
<td>Asian Studies Unit</td>
<td>Applied Science</td>
</tr>
<tr>
<td>KCME</td>
<td>Key Centre for Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LAND</td>
<td>School of Landscape Architecture</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies & Taxation</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LING</td>
<td>Linguistics</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Librarianship</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MARK</td>
<td>School of Marketing</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science and Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational unit</td>
<td>Faculty</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>MDCN</td>
<td>School of Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>MDSG</td>
<td>Medicine Surgery Clinical Studies</td>
<td>Medicine</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MEED</td>
<td>School of Medical Education</td>
<td>Medicine</td>
</tr>
<tr>
<td>MFAC</td>
<td>Medical Faculty (Administration)</td>
<td>Medicine</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MNGT</td>
<td>Australian Graduate School of Management</td>
<td></td>
</tr>
<tr>
<td>MSCS</td>
<td>Board of Studies and Mathematics</td>
<td>Board of Studies</td>
</tr>
<tr>
<td>MUSI</td>
<td>Department of Music</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>NAVL</td>
<td>Naval Architecture</td>
<td>Engineering</td>
</tr>
<tr>
<td>OBST</td>
<td>School of Obstetrics & Gynaecology</td>
<td>Medicine</td>
</tr>
<tr>
<td>OCEA</td>
<td>Faculty of Science</td>
<td>Science</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Science</td>
</tr>
<tr>
<td>PAED</td>
<td>School of Paediatrics</td>
<td>Medicine</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PDCS</td>
<td>Professional Development Centre</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology & Pharmacology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PROF</td>
<td>Faculty of Professional Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Medicine</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>PTRL</td>
<td>Department of Petroleum Engineering Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>RUSS</td>
<td>Department of Russian Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SAFE</td>
<td>Department of Safety Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>SSTS</td>
<td>School of Science & Technology Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>HPST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLSP</td>
<td>Department of Social Science & Policy</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SLST</td>
<td>School of Sport & Leisure Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SOCI</td>
<td>School of Sociology</td>
<td></td>
</tr>
<tr>
<td>SOCW</td>
<td>School of Social Work</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish & Latin American Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SURG</td>
<td>School of Surgery</td>
<td>Medicine</td>
</tr>
<tr>
<td>SURV</td>
<td>School of Surveying</td>
<td>Engineering</td>
</tr>
<tr>
<td>TEDG</td>
<td>School of Teacher Education (graduate)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TEED</td>
<td>School of Teacher Education (undergraduate)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TESL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TESOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXT</td>
<td>Department of Textile Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>THFI</td>
<td>Department of Theatre and Film Studies</td>
<td>Arts and Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>THST</td>
<td>Department of Theatre and Film Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>USOM</td>
<td>School of Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>WOMS</td>
<td>Women Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool & Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>

AERO3602 Flight Dynamics 1

AER04100 Aerospace Design 2
The students are formed into project teams to carry out initial design of an aerospace vehicle. A lecture program supports this work, along with tutorials and project team meetings.

AERO4201 Aerospace Systems
Prerequisites: AERO3601, AERO3602, MECH3212, MECH3310. Corequisite: AERO4602.
A basic understanding of information, power and mass transport systems used on current craft; how the systems interface with the flight management on the vehicle.

AERO4202 Space Engineering
Prerequisites: AERO3602. Co-requisite: AERO4201.
Introduction to the particular problems in vehicles that operate outside the sensible atmosphere. The dynamics of such vehicles, their on-board systems and their management and control.

AERO4400 Analysis of Aerospace Structures 2
Prerequisites: AERO3400, MECH3400. Excluded: AERO4409, MECH4410, MECH4910.
Introduction to finite element and associated graphic packages. Principles of mechanical design and validation, including cost assessment. Selection of applications from linear and non-linear elasticity, 3-D solids, plates and shells, buckling and post-buckling behaviour, thermal stresses and aero-elasticity.

AERO4601 Aerodynamics 2
Prerequisite: AERO3601. Excluded: AERO4609.
Concentrates on high-speed flow and viscous compressible flows. As well as obtaining a good theoretical grounding, the student is introduced to the measurement of the properties of these flows in the laboratory and the use of computer modelling techniques (CFD).

AERO4602 Flight Dynamics 2
Prerequisites: AERO3602, MECH3211. Excluded: AERO4609.
An introduction to the dynamic stability and control of atmospheric vehicles, including an understanding of the characteristics of such vehicles, and their testing in flight and evaluation.
AER04700 Aerospace Propulsion F L1.5 T0.5
Prerequisites: MECH2600, MECH2700 or AER03601

Anatomy

ANAT2111 Introductory Anatomy S1 L2 T4
Prerequisites: BIOS1011, BIOS1021.
Introduction to gross anatomy, based on a study of prosected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy.

Biological Science

BIOS1021 Biology B S2 L2 T4
Prerequisite: BIOS1011 (however, students without this prerequisite may seek the permission of the Co-ordinator of First Year Biology to enrol). Excluded 17.021.
The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes which will include dissection of a toad and a rat.

BIOS3111 Population and Community Ecology S1 L2 T4
Prerequisite: BIOS1021 and MATH1032 or both MATH1011 and MATH1021. Excluded: 45.152.
Factors regulating dynamics of interacting populations, renewable resource management, ecosystem stability, cycles and chaos, simulation modelling in ecology, niche theory, competition, habitat selection, community structure, species diversity, island biogeography, ecological gradients. Succession in following disturbance (fire, mining, or logging). Participation in field work is essential.

Chemical Engineering and Industrial Chemistry

CEIC0010 Mass Transfer and Material Balances FL1T1
Prerequisites: CHEM101, CHEM1201, CIVL2505.

CEIC0020 Fluid/Solid Separation SS L1.5 T.5

CEIC0030 Environmental Protection in the Process Industries SS L3 T3
Prerequisites: CEIC0010, INDC3070, INDC4120.
Selection of 3 topics from:

Environmental Pollutants
The characteristics of pollutants in air and water. Consequences of pollutants by aqueous, gaseous and solid wastes; case histories. Standards and regulations; legislative aspects. Measurement, analysis and sampling - modern techniques of environmental chemical analysis.

Pollution Control Techniques

Water Pollution Control Engineering

Air Pollution Control

Laboratory for Environmental Analysis
14 hour laboratory unit developing techniques in modern environmental analysis.

Advanced Environmental Protection
This comprises a series of elective strands which build upon the core subject as follows:
1. Advanced treatment methods (water)
2. Advanced treatment methods (air)
3. Hazardous wastes
4. Computer-aided risk assessment
5. Advanced laboratory
6. Occupational Health Laboratory
Chemical Engineering

Chemical Engineering is a department within the School of Chemical Engineering and Industrial Chemistry.

CHEN3070 Process Control F L1
Prerequisites: CEIC2010, CEIC2020, MATH2021.

Chemistry

Level 1 Units

CHEM1002 Chemistry 1 F L3T3
Prerequisites: HSC Exam Score
Range required
2 unit Mathematics or 55-100
3 unit Mathematics or 1-50
4 unit Mathematics 1-100
and
2 unit Chemistry or 53-100
3 unit Science or 90-150
4 unit Science or 1-50
2 unit Physics 53-100

Note: CHEM1002 is the normal prerequisite for Level II Chemistry.

CHEM1201 Chemistry 1B S2 L3T3
Prerequisites: CHEM1101, Chemistry 1A.

Molecular geometry, hybridization of orbitals. Periodicity of physical and chemical properties of elements and compounds. Organic chemistry, including stereoisomerism.

Note: The two subjects CHEM1101 and CHEM1201, taken sequentially, are equivalent to CHEM1002.

CHEM1501 Introductory Chemistry B S2 L3T3
Prerequisites: HSC Exam Score
Range required
CHEM1401 Introductory Chemistry A or
2 unit Mathematics or 55-100
3 unit Mathematics or 1-50
4 unit Mathematics 1-100
and
2 unit Chemistry or 53-100
3 unit Science or 90-150

Level II Units

CHEM2011 Physical Chemistry S1 or S2 L3 T3
Prerequisites: CHEM1002 or CHEM1101 and CHEM1201 and MATH1042, or MATH1032, or MATH1011 and MATH1021. Excluded 2.002A.

CHEM2021 Organic Chemistry F or S2 L3 T3
Prerequisite: CHEM1002 or CHEM1101. Excluded 2.002B.

Discussion of the major types of organic reaction mechanisms eg addition, substitution, elimination, free-radical, molecular rearrangement within context of important functional groups. Introduction to application of spectroscopic methods to structure determination.

CHEM2031 Inorganic Chemistry and Structure S1 or S2 L3 T3
Prerequisites: CHEM1002 and CHEM1101 and CHEM1201. Excluded 2.042C.

CHEM2041 Chemical and Spectroscopic Analysis S1 or S2 L3 T3
Prerequisites: CHEM1002 or both CHEM1101 and CHEM1201 and MATH1042, or MATH1032, or MATH1011 and MATH1021. Excluded 2.002D and 2.003H.

Level III Units

CHEM3311 Environmental Chemistry S2 L3 T3
Prerequisites: CHEM2011 and CHEM2041. Excluded 2.043A.

Civil Engineering

CIVL1007 Engineering Practice S1 L1 T1
S2 L1 T1
Prerequisites:
HSC Exam Score

CIVL1106 Computing and Graphics F L1 T2
Introduction to programming and development of skills for solving problems and rapid calculation. Computing elements, input-output, data and program structures. Useful and correct algorithms. The use of Pascal and control languages.

Australian Drawing Standards. Descriptive geometry and orthographic projections. Perspective drawing. Introduction to computer aided drafting. Introduction to graphics - primitives, attributes, windows, layers, etc. Elementary graphics programming. Tutorials include supervised and free practice at computing, testing algorithms, data manipulation. Drawing practice includes graphs, systems diagrams; road, concrete and steel work; perspective drawing; pseudo computer aided drafting and a graphics plot.

CIVL1203 Engineering Mechanics F L2 T2
Co-requisite: MATH1032.

Confidence limits and reliability. Analysis of time series. Sample survey design and analysis.

CIVL2106 Systems Engineering S1 L1 T1 S2 L2 T1
Prerequisites: CIVL1106, MATH1302. Co-requisite: MATH2869.

The solution of Civil Engineering problems involving probabilistic and statistical aspects. Problems examined include hydrological data fitting, traffic data analysis, structural reliability, limit state design, quality control, geomechanics site investigations and field data gathering and reduction. Regression. Decision processes associated with indefinite information; the modelling of the associated Civil Engineering systems.

CIVL2203 Engineering Mechanics 2 F L2 T1.5
Prerequisite: CIVL1203.

Bars subject to axial force; stress, strain and deformation. Homogeneous and non-homogeneous bars. Linear and non-linear material behaviour (elastic and plastic deformation). Strain energy. Bars in bending; stresses and deformations. Deflection calculations; step functions; moment area methods. Concepts of stiffness and flexibility. Stability and buckling of compression members. Shear and torsional stresses and deformations. Stresses and strain at a point; Mohr's circle. Combined stresses. Effects of temperature, strain rate, static and dynamic loading, and creep on material behaviour.

Metals Technology: Relationship of properties to microstructure, dislocation mechanisms of plastic deformation; micro-mechanism of creep and fracture. Property control by strain hardening, alloying and heat treatment of steel and aluminium.

CIVL2017 Data Survey and Analysis S2 L1 T.5
Prerequisite: MATH2869.
non-destructive testing. Special concrete making materials and techniques.

Behaviour of metals and other engineering materials. Response of materials to forces in tension, compression, bending, shear and torsion; elastic and plastic deformation strength brittleness, hardness etc. Effects of temperature and strain rates, static and dynamic loading, fatigue, brittle fracture and creep failures.

Metals Technology Relationship of properties to microstructure, dislocation mechanisms of plastic deformation; micro-mechanism of creep and fracture. Property control by strain hardening, alloying and heat treatment of steel and aluminium.

CIVL2505 Hydraulics 1 F L1 T1
Prerequisite: CIVL1203, MATH1032.

Fluid properties: definition of a fluid, density, unit weight, specific volume, relative density, bulk modulus, vapour pressure, surface tension, viscosity, properties of gases. Fluid statics: pressure at a point, absolute and gauge pressure, manometers, forces on plane and curved surfaces, buoyancy, stability of floating bodies, accelerated bodies of fluid.

Kinematics of Fluid Flow: streamlines, pathlines, continuity.

Fluid dynamics: the energy equation, the momentum equation, application of the concepts of flow resistance, energy loss and fluid momentum to steady flows in closed conduits and to steady uniform free-surface flows. Hydrodynamics: the stream function and velocity potentials, rotation, basic flow patterns, flow nets.

CIVL3007 Environmental Fluid Mechanics FL2 T1
Prerequisite: CIVL2505.

CIVL3106 Engineering Computations F L1 T1
Prerequisite: CIVL1106, MATH2009.

CIVL3203 Structural Analysis F L2 T1
Prerequisite: CIVL2203.

CIVL3303 Structural Design F L3 T1
Prerequisite: CIVL2203.

Loads on structures; dead, live, wind, earthquake, etc. Reinforced concrete beams and one-way slabs; service load and ultimate behaviour; moment-curvature relationships.

Design of steel girders; lateral and local buckling, web buckling. Steel beam-columns, slenderness effects. Plastic design of continuous steel beams.

CIVL3402 Geotechnical Engineering 1 F L2 T1
Prerequisite: CIVL2203, GEOL5100.

CIVL3505 Hydraulics 2 F L2 T1
Prerequisite: CIVL2505.

CIVL3601 Engineering Management 1 F L1.5 T.5
Prerequisite: CIVL3001, CIVL2106.

Basic techniques used in the management of engineering works; purpose and principles of management; management of people, plant, materials, money and sites; management of safety. Planning techniques used in management: networks, critical path method, and PERT. Operations research in management: methodologies for problem solving including simulation and queuing theory. Theory of the management of humans. Theory of the management of organisations. Use and management of information systems. Law and the law of contract.

CIVL3705 Water Resources F L2 T1
Prerequisite: MATH2869. Co-requisite: CIVL3505.

CIVL3804 Transport Engineering F L1 T1
Prerequisites: CIVL2106, MATH2569.

CIVL4006 Industrial Training
Students are required to complete a minimum of 60 working days of approved industrial training, submit a report on this training before the fourth week of Session 1 of fourth year, and to present a seminar during the first session of fourth year outlining their industrial training experiences.

CIVL4007 Waste Management S1 L2 T1
Prerequisite: INDC4120.
Chemical fixation, acid waste treatment, metals removal, landfill site selection, leachate testing, toxicity testing, hydrogeological sampling. Transportation of hazardous materials. Legal aspects of hazardous waste.

CIVL4017 Water Engineering S2 L4 T2
Prerequisites: CIVL3402, CIVL3007.
Selection of 4 topics from:
Water Resources
The evaluation of water resources planning and management alternatives (the "rational" approach). Water and politics. Water and law.
Hydrology
Numerical Modelling of Free Surface Flow
An introduction to one-dimensional and two-dimensional numerical models of unsteady gradually varied canal, river and flood plain flows.
Public Health Engineering
Advanced Hydraulics
Hydraulic modelling. Introduction to unsteady flow in open channels.
Coastal Engineering

CIVL4027 Geotechnical and Transport Engineering S2 L3 T3
Prerequisites: CIVL3402, CIVL3804.
Four topics selected from:

CIVL4037 Communications and Ethics S2 L5 T1.5
Written and verbal communication skills in engineering practice. Preparation of proposals and reports. Relations to the media. Engineering ethics.

CIVL4101 Engineering Management 2 S1 L1.5 T.5
Prerequisite: CIVL3601.
Contract management and administration. Business and financial management: corporate entities; basic accounting to trial balance; income statements; balance sheets; accounting for fixed assets; taxation aspects; financial report. Management of large projects; management of international projects.

CIVL4203 Structural Engineering S1 L3 T1
Prerequisites: CIVL3203, CIVL3303.
Slab design: two-way edge-supported slabs and flat slab design; idealised frame and simplified design methods, punching shear, moment transfer at column connections, serviceability approach, detailing. Design of reinforced concrete footings and retaining walls. Plastic analysis and design of steel frames. Approximate analysis and structural form. Variational theorems. Brief discussions of cable structures, arches, plates and shells.

CIVL4306 Engineering and the Environment S1 L2 T2
Prerequisite: CIVL3601.

CIVL4403 Materials Engineering 2 S1 L3
Prerequisites: CIVL2402, CIVL3303.
Metals used in structures: types, applications and developments in steels, aluminium alloys etc. Corrosion: causes, prevention and control in structural, reinforcing and piling steels. Fatigue and brittle fracture: factors leading to increased risk, significance of welding; empirical and fracture mechanics approaches to design against failures in service.
in domestic construction. Pre-fabricated structural members.
Design of a glue laminated beam.

CIVL4502 Geotechnical Engineering 2
Prerequisite: CIVL3402.
Theoretical and presumptive bearing capacity of shallow foundations. Allowable settlement and foundations on sand and rock. Lateral earth pressures and retaining wall design. Single axially and laterally loaded piles, pile groups. Reactive soils, residential slabs and footings.

CIVL4605 Water Supply and Wastewater Disposal
Prerequisite: CIVL2505.

CIVL4704 Highway and Pavement Engineering
Prerequisites: CIVL3402, CIVL3804.

CIVL4811 Construction Major
Prerequisites: CIVL2301, CIVL4101, CIVL4306.
Construction camp: a one week field camp involving several construction procedures and associated performance measurements. Construction planning and design: organisation, management and control to support the conduct of the construction camp. Advanced construction technology and construction management topics. Construction and/or management project.

CIVL4822 Geotechnical Major
Prerequisites: CIVL4306, CIVL4502, CIVL4704.
Advanced pavement engineering including concrete technology. Rock engineering, slopes and tunnels. Foundation engineering. Soil engineering including site characterization, critical state theory and liquefaction. A two and a half day field trip is included as part of the subject.

CIVL4833 Structures Major
Prerequisites: CIVL4203, CIVL4403.
Specialisation in each of the following strands of structural engineering: Bridge engineering. Concrete structures. Structural analysis and stability. Structural dynamics.

CIVL4844 Transport Major
Prerequisite: CIVL4306.
Application of computer aided methods for geometric design of roads. Design for traffic management and control: efficiency, safety, environmental factors, information systems, lighting. Environmental and social impact of transport design. Transport system design and operations.

CIVL4855 Water Major
Prerequisites: CIVL3505, CIVL3705, CIVL4605.
Specialisation in six of the following strands (only six topics are offered each year): Water resources. Hydrology. Advanced hydraulics. Coastal engineering. Public health engineering. Environmental and social issues. Special topic.

CIVL4906 Project/Thesis
Prerequisites: All third year subjects. Corequisite: The appropriate major.
Directed laboratory, investigatory, design, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.

CIVL4907 Project/Thesis
Prerequisites: All third year subjects. Corequisite: The appropriate major.
Directed laboratory, investigatory, design, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.

Servicing Subjects
These are subjects taught within courses offered by other schools and faculties.
For further information regarding the following subjects see the Faculty of Applied Science Handbook.

CIVL0616 Structures
Prerequisite: CIVL4306.
CIVL0626 Civil Engineering for Electrical Engineers
Includes an introduction to the various branches of civil engineering, the nature and organisation of the profession. Relationship between clients and design consultants. The historical development of civil engineering. Theory of beams and trusses, resultant forces, structural action, stress and strain. Relation between load, shear force and bending moments, geometric properties of sections, deflection of beams. Properties of materials used in structures; various steels, concrete plain, reinforced and prestressed, aluminium and timber. Brittle fracture. Introduction to buckling. Engineering failures. Introduction to design of transmission lines and towers.

CIVL0636 Properties of Materials F L1 T1

CIVL0646 Engineering for Surveyors 1 SS L1.5 T1.5

CIVL0656 Engineering for Surveyors 2 SS L3
Municipal engineering. Soil mechanics: Soil forming processes; pedological classification; engineering classification of soils; pavement design based on engineering classification; effective stress concept for saturated and unsaturated soils, shear strength, flow of water through soils, consolidation; slope stability and earth pressures. Public utilities: Relationship between urban development and each of water supply, wastewater and stormwater drainage, transport.

Computer Science and Engineering

COMP1011 Computing 1A S1 or S2 L3 T3
Prerequisite: as for MATH1032. Co-requisite: MATH1032. Excluded: 6.611.

COMP1021 Computing 1B S1 or S2 L3 T3
Prerequisite: COMP1011. Excluded 6.620, 6.621, 6.021D.
Expansion of the functional approach to computing in 6.711. Introduction to procedural and logic programming styles. Data structure implementation. Control structures: recursion and interaction. The software development process. Program efficiency and complexity – time and space analysis. Practical experience in using a procedural language. The basic structure of a computer, the layered model of a computer, instruction execution, assembly language, computer building blocks, the function of the operation system.

COMP1811 Computing 1 (Procedural) S1 or S2 L3 T3
Prerequisites: as for MATH1032. Co-requisite: MATH1032. Excluded: 6.800, 6.611, COMP1011, 6.620, 8.021D.

COMP1821 Computing 2 S1 or S2 L3 T3
Prerequisite: COMP1811. Excluded: COMP1021, 6.621, 6.021D.

COMP1910 Introduction to Computer Engineering F L1 T.5
Prerequisites:

<table>
<thead>
<tr>
<th>HSC Exam Score</th>
<th>Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>53-100</td>
<td></td>
</tr>
<tr>
<td>49-100</td>
<td></td>
</tr>
<tr>
<td>1-50</td>
<td></td>
</tr>
<tr>
<td>60-100</td>
<td></td>
</tr>
</tbody>
</table>

Introduction to the nature, history and scope of computer engineering (including computer architecture, digital systems, software engineering, information processing, electronics, and communications). The roles of computer engineering in industry, government and public utilities. Development of organisation, communication and research skills in engineering.

COMP2011 Data Organisation S1 or S2 L3 T3
Prerequisite: COMP1021. Excluded: 6.641.

COMP2021 Digital System Structures S1 or S2 L3 T2
Prerequisites: COMP1021 or COMP1821. Excluded: ELEC2012.
Analysis, design, and realisation of modest digital subsystems, and the organisation and design of major subsystems in a model computer: data path, instruction decode, address generation, arithmetic algorithms, and the fetch-execute cycle of a typical computer. Timing, minimisation techniques. The translation of higher level programming abstractions and data structures to a real computer using a macro assembler as the target; study of the relationships between a hardware
model, a programming model, and the I/O subsystem of a
computer. An understanding of the inter-relationships between
the fundamental layers of a modern digital computer system.

COMP3211 Concurrent Computing S1 or S2 L3 T2
Prerequisite: COMP3021.
The process model – sequential versus parallel computation.
Interprocess communication and synchronisation
mechanisms: coroutines, message passing, buffers, pipes,
remote procedure calls, semaphores, monitors. Resource
sharing, exclusion, deadlock, lifelock, scheduling. Distributed
algorithms: detection of deadlock, detection of termination.
Protocols for data transfer.

COMP3111 Software Engineering S1 L3 T2
Prerequisites: COMP2011, COMP2031. Excluded: 6.642, 6.660G.
Informal specification: Data flow diagram methodology,
analysis, design, testing, management and documentation of
software. Formal specification: set theory, logic, schema
calculus, case studies. The Z specification notation. Managing
the project lifecycle. CASE tools. A major group project will be
undertaken.

COMP3121 Algorithms and Programming Techniques S2 L3 T2
Computability theory. Deterministic and non-deterministic
algorithms. Stochastic algorithms. Computational complexity:
time and space bounds. Algorithms for parallel computation
and their hardware implementation. Game playing. Branch
and bound. Discrete event simulation. Linear programming.
Dynamic programming.

COMP3131 Parsing and Translation S2 L3 T2
This subject covers some of the common theories and
techniques used for syntax-directed parsing and translation.
These techniques are adequate for parsing many
well-structured objects encountered in computing, but are not
intended for natural language parsing.

Grammar: terminal symbols, non-terminal symbols, productions,
phrase structure grammars. Chomsky classification, context-free grammars, finite state grammars,
logic grammars. Parsing: LL(k) grammars, top-down parsing;
LR(k) grammars, bottom-up parsing; parser generators.
Translation: action symbols, translation grammars, syntax-directed translation, attributed-grammars, abstract
syntax, unparsing. Lexical analysis: finite-state grammars,
finitestate machines, regular expressions, lexical analyser
generators.

COMP3211 Computer Organization and Design S1 L3 T2
Prerequisites: COMP2021 or ELEC2012 Excluded: 6.654G.
Topics will be chosen from: Advanced Design Strategies:
combinational and sequential circuit design and realisation;
synchronisation, communication and arbitration; register
Memory Organisation: physical and virtual address space:
memory hierarchy; operating system and compiler support;
memory mapping and caching. Communications Organisation:
shared memory, memory mapping; network systems.
Processor Design: the instruction pipeline; hardwired and
micro-programmed control; instruction sets; RISC and
object-based processor organisation. Error

Detection/Correction and Fault Tolerance: testing and
testability; faults, errors, and failures; coding theory;
diagnosing and correcting errors.

COMP3221 Microprocessors and Interfacing S2 L3 T2
Prerequisites: COMP2021. Excluded: 6.0318, 6.060G, 6.613,
ELEC3020
The concept of a microprocessor system, busses, address
spaces, memory devices, bus timing, bus standards, the VME
bus, I/O device interfacing, polling, interrupts, DMA interfaces,
the 68000 processor family, the C programming language,
device drivers, the device driver software environment, other
microprocessors, advanced topics. Laboratory work involves
interfacing to and programming MC68000-series
microprocessor-based systems.

COMP3231 Operating Systems S1 L3 T2
Services provided by operating systems. System calls and user
commands (command languages, menus, etc). Virtual
machines. Efficient techniques and methods of process
management, memory management, input/output and
communication handling. Performance evaluation and tuning.
Protection and security.

COMP3311 Database Systems S2 L3 T2
The relational database model, object data bases, 4GL query
languages, database design and implementation, deductive
databases. Concurrency, optimisation, distribution. A major
project involving both design and realisation is included.

COMP3321 Business Systems Organization S1 L3 T2
Prerequisites: COMP2011 Excluded: 6.647, 6.661G.
Review of the organisation of accounting systems - journals,
accruals, merchandising. The structure, design, development,
and integration of various business systems selected from the
following: general ledger; financial reporting; debtors,
creditors; stock control; invoicing; purchasing and receiving;
fixed assets; payroll. Systems for generating application
systems and packages. User interfaces. File specifications
and B-tree index files. Distributed commercial systems. The partial
implementation of a business systems is undertaken as a
group project.

COMP3331 Computer Networks and Applications S2 L3 T2
Prerequisites: COMP2011, COMP2031. Excluded: 6.633, 6.659G.
History of digital communication and early computer networks.
Circuit and packet switching. Digital data transmission. Error
detection and recovery. Protocols for message transmission.
Decomposition of network designs: the seven layer OSI model.
Standards and standards organisations. The data link layer;
character-oriented and bit-oriented channels; common
channel systems, local area networks. Network configurations;
the OSI network layer; internetworking: repeaters, bridges,
gateways; Transport layer protocols: the OSI transport layer;
the TCP protocol family. Other OSI layers: the session layer;
the presentation layer. Data encoding, compression,
encryption. Network management: security, privacy, integrity,
synchronisation, recovery from failures. Studies of network
applications, eg file transfer, electronic mail, remote procedure
calls, remote program execution, distributed file systems,

Undergraduate Study: Subject Descriptions
distributed computing, electronic funds transfer, windowing systems.

COMP3411 Artificial Intelligence S1 L2T3
Prerequisites: COMP2011. Excluded: 6.666G.

COMP3421 Computer Graphics S1 L3T2
Prerequisites: COMP2011. Excluded: 6.666G.

COMP3511 Human-Computer Interaction S1 L3T2
Prerequisites: COMP2011. Excluded 6.006G.

Communication between computing systems and their users, with an emphasis on applications related to high-level query languages and searching techniques. Cognitive issues will figure prominently in the treatment. Topics include: theories and principles of interface design, interaction styles, interactive devices, interface and language testing, the null value problem, natural language systems.

COMP4011 Occasional Elective S1 L3 T2
(Computer Engineering)
Prerequisites: any 4 level 3 Computer Science subjects.

A program of advanced coursework offered by a new or visiting staff member in an area of computer science/engineering. Syllabus details will be available from the School Office before the start of session.

COMP4012 Occasional Elective S2 L3 T2
(Computer Engineering)
Prerequisites: any 4 level 3 Computer Science subjects.

A program of advanced coursework offered by a new or visiting staff member in an area of computer science/engineering. Syllabus details will be available from the School Office before the start of session.

COMP4121 Parallel Algorithms and Architectures SS L3 T2
Prerequisites: COMP3211 or COMP9101.

COMP4131 Programming Language Semantics SS L3 T2
Prerequisites: any 4 level 3 Computer Science subjects.

The main objective of this subject is the study of methods for specifying the semantics of programming languages, and the semantics of programs that can be expressed in those languages. One important method, known as Denotational Semantics, captures the meaning of a language by defining semantic functions that map the syntactic components of the language into a mathematical domain. Denotational semantics provides insight into the design of languages, for the implementation of compilers, and also wherever it is necessary to give a formal meaning to some notion that has a formal syntax. The subject will also discuss semantics that are useful to the users of a language, for example by programmers to show that a program correctly realizes its specification. Methods discussed here are axiomatic semantics, weakest pre-condition semantics and refinement.

Topics covered in this subject will include: concrete syntax, abstract syntax, the lambda calculus, semantic functions, denotations, recursion, axiomatic semantics, weakest pre-conditions, and refinement.

COMP4211 Advanced Architecture and Algorithms SS L3 T2
Prerequisite: COMP3211. Excluded: COMP9214.

COMP4215 VLSI Systems Architecture and Design S1 L2 T3
Prerequisites: COMP3221 or ELEC3020. ELEC4532.
Excluded: COMP9215.

Review of electronics and technology. Integrated digital sysbystems. Analog functions in VLSI. Testing and testability. Integrated digital systems. VLSI design tools. Project work involves specification and simulation of a significant subsystem in the MODAL hardware description language, followed by fabrication and testing.

COMP4216 Distributed Operating Systems and Architecture S2 L2 T3
Prerequisites: COMP3211, COMP3231, COMP3331.
Excluded: COMP9216.

Architectural Support: virtual addressing, caching, exception handling, communications; multiprocessor systems; capability-based architectures. Communication Models: IPC, RPC and Session models; broadcast, multicast; distributed virtual memory; typed versus untyped data. Naming and Security; Naming in distributed systems; Cryptographic authentication and capability-based protection schemes; Accounting and resource control. Distributed File Systems: File services, Sharing and cache consistency; transaction services; availability, scaling, replication, recoverability. Object-Orientation: weak, supportive and strong models; remote invocation versus server-based interaction; naming of operations; persistence models; inheritance models. Fault Tolerance: transaction processing systems; models of failure and tolerance; reliable broadcast protocols.
COMP4411 Artificial Intelligence: Knowledge-Based Systems
Prerequisite: COMP3411. Excluded: COMP9414, COMP9416.
Topics will be selected from Expert Systems (applications of expert systems; the expert system life cycle; knowledge representation; reasoning for expert systems; knowledge acquisition; knowledge maintenance; expert system project) and Machine Learning (learning as search; concept description languages; reinforcement learning; induction; learning theories; theory revision; learning project).

COMP4412 Artificial Intelligence: Interacting with the World
Prerequisite: COMP3411. Excluded: COMP9414, COMP9416.
Topics will be selected from Intelligent Robotics (image processing and computer vision; simulation; programming languages for robots; path and motion planning under constraints; design and control models; planning and learning; Robotics Project) and Natural Language Processing (overview of linguistics; grammars and languages; basic parsing techniques; semantic analysis and representation structures; cognitive modelling; natural language generation; natural language systems; natural language project).

COMP4914 Computing Science Honours Full time
COMP4913 Computing Science Honours Part time

Electrical Engineering

ELEC0802 Electrical Power Engineering
Prerequisite: PHYS1002 or equivalent (PHYS2920 or 6.851 for students in Course 3140).
The course deals with the principles and practice of electrical power apparatus, particularly the transformer, the dc motor and the ac motor. It also covers some of the electronic power converters for power supplies and for control of electrical machinery. The course commences with the basic circuit theory and phasor algebra relevant to the analysis of the above systems and then proceeds to the consideration of distribution of electrical power. It then covers the operation, analyses and characteristics of transformers, dc motors, ac motors and a few semiconductor power converter circuits. Rating and thermal consideration electrical apparatus are also treated.

ELEC0805 Electronics for Measurement and Control
The use of electronics in mechanical systems and the processing of signals by analog and digital techniques. Revision of basic circuit theory, operational amplifier circuits and filtering. Digital logic using integrated circuits. Microcomputers and Microprocessors. Techniques for A/D and D/A conversion, measurement system interfacing to microprocessors.

ELEC0931 Industrial Elective
ELEC0932 Industrial Elective
ELEC0933 Industrial Elective
Prerequisites for ELEC0931, ELEC0932, ELEC0933: Students must be in at least the third stage of part-time BE degree course and be in full-time approved employment or be pursuing an approved sandwich course. New enrolments in the part-time BE or sandwich course are not accepted, as those courses are no longer offered.

Each Industrial Elective represents one year of appropriate quality concurrent industrial experience for students in approved full-time employment. Students must submit evidence and a written report to the satisfaction of the Head of School. Some attendance at the University for verbal reporting may also be required.

A maximum of three such electives can be taken and they may be substituted for certain subjects in course 3640 requirements. The substitution is not available for work done during the first year of employment if this coincides with the first year of part-time enrolment. The period of employment claimed must precede the completion of the thesis ELEC4911. An Industrial Elective cannot be claimed for work submitted for credit as ELEC4911 Thesis. Details of the procedure for registering and the requirements to be met can be obtained from the School of Electrical Engineering.

ELEC1010 Introduction to Electrical Engineering
Prerequisite: HSC Exam Score Range Required
2 unit English (General) or 53-100
2 unit English or 49-100
3 unit English or 1-50
2 unit Contemporary English 60-100
Introduction to the nature and scope of electrical engineering, including communications, computing, electrical energy, electronics and systems. Careers for electrical engineers in public and private enterprise. Organisation, verbal and written communication and research skills in engineering.

ELEC1011 Electrical Engineering
Co-requisite: PHYS1969 or equivalent.

ELEC2010 Circuit Theory
Prerequisites: ELEC1011, MATH1032. Co-requisite: MATH2620 or MATH2520.
Dynamic response of linear circuits: 1st and 2nd order circuits with DC sources, introduction to higher order circuits. Sinusoidal steady state operation: phasors, impedance and admittance; dynamic response of circuits driven by sinusoidal sources; linearity, network theorems; resonance, bandwidth, and quality factor. Two-port network: parameters, circuits as filters. Power in steady-state circuits; average and reactive power, power factor, power factor correction. Three-phase circuits: balanced and unbalanced steady-state operation; real and reactive power in balanced circuits, transient analysis. Operational amplifiers and ideal transformers.

ELEC2011 Systems Theory
Prerequisites: ELEC2010, MATH2610 or MATH2510. Co-requisites: MATH3150, MATH2620, MATH2520.
Continuous and discrete signals and their transformations. Properties of continuous and discrete systems. Linear time
invariant systems. Low order differential and difference equations. Diagrammatic representations of systems. Impulse responses, step responses, convolution. Frequency responses, poles, zeros. Introduction to feedback, stability. Examples of systems will be taken from areas of circuits, analog and digital electronics, power and mechanical engineering, communications and control.

ELEC212 Digital Circuits

Prerequisite: ELEC1011.

ELEC2015 Electromagnetic Applications

Prerequisite: PHYS2979. Excluded: ELEC2113.

Rotating magnetic fields and electromagnetic principles of machines. Transformers. Transmission lines from circuit and electromagnetic viewpoints. Electromagnetic radiation and electromagnetic interference.

ELEC2130 Electrical Engineering - LAB2A

Experiments in electric circuits. The use of the computer aided circuit analysis package SPICE. Laboratory Technique.

ELEC2131 Electrical Engineering – LAB2B

Experimental work on digital and analogue circuits, devices and systems. Computer aided experimental work.

ELEC3010 Introduction to Electrical Energy

Prerequisite: ELEC2010.

ELEC3011 Integrated Electronics

Prerequisite: ELEC2020.

ELEC3012 Signals, Spectra and Filters

Prerequisites: ELEC2011, MATH3150. Co-requisite: MATH2849, MATH2859.

ELEC3013 Communication Systems 1

Prerequisite: ELEC3012 or ELEC3032.

Overview of information acquisition, transmission and processing. Aims to enable students not specialising in this field to understand the communication problems they are likely to meet in their career, and to provide a background if they intend to specialise in communications. Topics: analogue to digital conversion (sampling, quantising, aliasing, pulse code modulation, delta modulation, time and frequency division multiplexing). Modulation and demodulation (amplitude, frequency and phase modulation, signal to noise ratio, noise figure, error probability, bandwidth, spectrum, intersymbol interference). Communication systems (radio wave propagation, antennas and arrays, modems, repeaters, equalisers, line coding).

ELEC3014 Systems and Control 1

Prerequisite: ELEC3012 or ELEC3032.

Consolidation and extension of basic material on continuous-time and discrete-time systems, and the relationships between them. Includes dynamic systems modelling, block diagrams, signal flow graphs, frequency and time domain relationships, stability criteria, Nyquist diagrams.
ELEC3015 Electrical Energy S2 L2/T2
Prerequisite: ELEC3010.

ELEC3016 Electronic Signal Processing S2 L2/T2
Prerequisites: ELEC3011 or ELEC3031, ELEC3012 or ELEC3032.

ELEC3020 Microprocessors and Interfacing S1 L2 T0.5
Prerequisite: ELEC2012. Excluded: COMP3221.
Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The 68000 family and assembly programming language. Other microprocessors.

ELEC3031 Integrated Electronics S2 L2 T2.5
Prerequisite: ELEC2020.
Analysis and design of bipolar and field effect transistor amplifiers. Applications of negative feedback. Differential amplifiers. Properties and applications of operational amplifiers. Analysis and design of sinusoidal oscillators. Includes the appropriate laboratory component from ELEC3110 Electrical Engineering Laboratory 3.

ELEC3032 Signals, Spectra and Filters + Laboratory S1 L2 T1.5
Prerequisites: ELEC2011, MATH3150. Co-requisites: MATH2849, MATH2859.

ELEC3110 Electrical Engineering Laboratory 3 S1 T6
Prerequisite: ELEC2016. Co-requisites: ELEC3020, ELEC3010, ELEC3011, ELEC3012.
A programme of experiments and laboratory-based design exercises in electrical energy, electronic devices and circuits, signal processing and microprocessors.

Undergraduate Study: Subject Descriptions

ELEC3041 Reliability Engineering for Design S2 L2 T2

ELEC3042 Introductory Physiology for S1 L2 T2 Engineers
An introduction to biophysics and physiology for engineers. Cells, tissues and organ systems with emphasis on their functional and regulatory characteristics and their interaction. An introduction to computer models of physiological control systems demonstrating their value in understanding the dynamics of complex neural, hormonal and circulatory responses to changes in homeostasis.

ELEC4010 Introduction to Management for S1 L3 T1 Electrical Engineers
Prerequisite: ELEC2016.
The purpose of this subject is to introduce students to key management concepts and techniques in the content of electrical engineering. Topics to be discussed will be taken from accounting, economics, finance, marketing, decision-making techniques, operations research, project and strategic management, human resources, industrial relations and law.

ELEC4011 Ethics and Electrical Engineering S2 L1 T1 Practice
Prerequisite: ELEC4010.
An introduction to the ethical issues associated with electrical engineering practice. The role of the professional expert in society will be discussed and the nature of the decision making process will be examined. Social, political, environmental and economic considerations in decision making will be explored using case studies.

ELEC4042 Signal Processing SS L2 T3
Prerequisite: ELEC3012.
ELEC4202 Power Systems SS L2 T3
Prerequisite: ELEC3015.
Review of basic concepts used in power systems analysis: phasors, complex power, systematic network analysis, three phase systems, the per-unit methodology. Some aspects of power systems analysis, including load flow and fault analysis. Distribution systems. An introduction to power system protection. Power systems planning: electricity pricing, demand side options, co-ordinated pricing and planning, practical tariffs.

ELEC4215 Industrial Electrical Systems SS L2 T3
Prerequisite: ELEC3015
The design, operation, maintenance and efficiency of large industrial electric power systems. Protection and detailed fault calculations. Choice and use of protective equipment, including circuit breakers. Surge diverters and personnel protection. Testing of equipment and relevance of Standards (including loading specifications, safety and general wiring procedures). Insulation systems, their design and practical limitations. High voltage testing techniques and their use in insulation assessment of high, medium and low voltage industrial systems.

ELEC4216 Electrical Drive Systems SS L2 T3
Prerequisite: ELEC3010

ELEC4240 Power Electronics SS L2 T3
Prerequisites: ELEC2020, ELEC3010, MATH3150. Excluded: 8.212.
The course will be of interest to intending electronic specialists who want to know about techniques of designing high current electronic circuits using devices in the switching mode rather than in the linear mode as well as to power specialists who want to know of techniques of power conversion by other than electromechanical means. The course starts with coverage of the full spectrum of modern power semiconductor devices, their characteristics - both static and switching, their drive circuit design and protection techniques including the snubber. Topologies of power electronic circuits for applications in controlled rectification, inversion, dc-dc conversion and ac-ac conversion, their control techniques and characteristics will then be treated. Effects of power electronic circuits on supply systems will also be covered.

ELEC4303 Electromagnetic Wave Propagation SS L2 T3
Prerequisite: ELEC2015.

ELEC4313 Optical Communications SS L2 T3
Prerequisite: ELEC4303.

ELEC4323 Digital and Analog Communications SS L2 T3
Prerequisites: ELEC3013, MATH3150, MATH2859.

ELEC4333 Communications Systems 2 SS L2 T3
Prerequisites: ELEC3013, ELEC3016.
Modern communications systems from a systems point of view. Topics selected from: radar: Fundamentals of radio systems, CW radar, MTI and Pulse Doppler radar, tracking radar, synthetic aperture radar, electronic navigation aids, radio direction finding, VOR and doppler VOR, DME, hyperbolic systems of navigation aids, television systems: Monochrome and colour television systems, teletext, terrestrial and satellite TV transmission, the MAC transmission format and HDTV systems; satellite communications systems: satellite channel, antenna systems, effect of rainfall and atmospheric losses, receiver noise, link analysis, satellite transponders, FDMA, TDMA, CDMA, mobile satellite communications systems.

ELEC4351 Data Communication and Computer Networks SS L3 T2
Prerequisites: ELEC3013, ELEC3020.

ELEC4352 Data Networks 2 SS L3 T3
Prerequisite: ELEC4351.

ELEC4412 Systems and Control 2 SS L2 T3
Prerequisites: ELEC3012, ELEC3014.
This subject discusses the analysis and design of control systems using both classical and state-space design methods. The emphasis will be discussed where appropriate. The course covers: Process modelling by physical analysis. Experimental methods and systems identification. Classical PID control and discrete PID implementation. Classical frequency response and root locus design for continuous systems. Discrete and

ELEC4413 Digital Control SS L2 T3
Prerequisites: ELEC3014, MATH2849, MATH2859.

Covers the design and implementation of digital control systems. The topics covered include: identification of discrete-time model parameters; pole placement and linear-quadratic controller design; observers; noise models and stochastic systems; minimum variance controllers; Kalman filtering; LQG control; introduction to ideas of adaptive control and robustness. Aspects of implementation are constantly emphasized.

ELEC4432 Computer Control and Instrumentation SS L2 T3
Prerequisites: ELEC3014, ELEC3020, ELEC3016.

Design, evaluation and implementation of computer and microprocessor based control systems and instrumentation. The program is laboratory intensive. Topics covered include software systems for process control, the organisation of hardware systems for computer control, programmable logic controllers, robust implementation of digital controllers, smart sensors and instrumentation networks.

ELEC4483 Biomedical Engineering SS L2 T3
Prerequisites: ELEC3402, ELEC3014, ELEC3016.

Application of signals and systems theory to the analysis and computer modelling of dynamic properties of physiological systems. Topics include descriptions of typical biomedical signals, statistical properties of signals, optimal filtering of physiological signals, ARIMA stochastic models of time series, forecasting or prediction methods, estimation of transfer function - noise models using least squares procedures, identification of multivariable nonlinear systems, computer modelling of stochastic signals and dynamic systems, and physiological adaptive control processes. Several laboratory experiments will be run concerned with computer simulation and analysis of models of cardiac, respiratory and nervous systems.

ELEC4503 Advanced Electronic Circuits SS L2 T3
Prerequisites: ELEC2020, ELEC3011 (ELEC3016 recommended).

Electronic devices circuits and subsystems for use in communications and signal processing. The emphasis is on high performance applications which require an understanding of device behaviour and advance circuit design techniques. Topics include: high frequency models for bipolar and field effect devices, noise in systems, tuned amplifiers, power amplifiers, controlled gain amplifiers, AGC, multipliers, modulators and phase-locked loops.

ELEC4512 Semiconductor Devices SS L2 T3
Prerequisite: ELEC3011.

Principles of operation and circuit characteristics of a range of semiconductor devices including bipolar diodes and transistors, MOS devices and circuits, charge-coupled devices, solar cells, light-emitting diodes, and semiconductor lasers. The lectures are supplemented by experimental work with a selection of these devices.

ELEC4522 Microelectronics Design and Technology SS L2 T3
Prerequisites: ELEC3011, ELEC3016.

ELEC4532 Integrated Digital Systems SS L2 T3
Prerequisites: ELEC2012 or COMP2021

Integrated circuit logic families with emphasis on MOS technologies, structured chip design, custom and semi-custom approaches, system architecture, computer aided design, layout considerations, timing estimates, circuit failures, faults, fault modelling, testing, design for testability.

ELEC4540 Applied Photovoltaics SS L2 T3

The use of solar cells (photovoltaic devices) as electrical power supplies based on the direct conversion of sunlight into electricity. The emphasis is placed on applications including system design and construction, although the properties of sunlight, the operating principles of solar cells and the interaction between sunlight and the cells are also treated.

ELEC4903 Industrial Training

Students enrolled in courses 3640, 3725 and 3720 must complete a minimum of 60 days' industrial training. At least some of this must be obtained in Australia. Overseas employment must have prior approval. Students are required to submit to the School evidence from their employers confirming completion of the prescribed training and a report, typically 500 words long, summarising the work done and training received. Experience claimed as an industrial elective covers requirements for this subject.

ELEC4910 Thesis Part A

ELEC4911 Thesis Part B

This is done in the last two sessions of the BE degree course. For full-time students, six hours per week in the first session, and twelve hours per week in the second session are devoted to directed laboratory and research work on an approved subject under guidance of members of the lecturing staff. Part-time students may need to attend the University full-time in their final session or attend for one further part-time session, if facilities are not available for the thesis to be done at work. Generally, the thesis involves the design and construction of experimental apparatus together with laboratory tests. Each student is required to present a seminar, and a written thesis must be submitted on each project by the Tuesday of the fourteenth week of Session 1 or Session 2.
Environmental Engineering is a course offered by the School of Civil Engineering.

Majors: Two of the following Majors (other subject descriptions are to be found elsewhere in the Handbook).

CIVL4017 Water Engineering S2 L4T2
Prerequisites: CIVL3402, CIVL3007.
Selection of 4 topics from:

Water Resources
The evaluation of water resources planning and management alternatives (the "rational" approach). Water and politics. Water and law.

Hydrology

Numerical Modelling of Free Surface Flow
An introduction to one-dimensional and two-dimensional numerical models of unsteady gradually varied canal, river and flood plain flows.

Public Health Engineering

Advanced Hydraulics
Hydraulic modelling. Introduction to unsteady flow in open channels.

Coastal Engineering

CEIC0030 Environmental Protection in the Process Industries S2 L3T3
Prerequisites: CIEC0010, CHEN3070, CEIC0020.
Selection of 3 topics from:

Environmental Pollutants
The characteristics of pollutants in air and water. Consequences of pollution by aqueous, gaseous and solid wastes; case histories. Standards and regulations; legislative aspects. Measurement, analysis and sampling - modern techniques of environmental chemical analysis.

Pollution Control Techniques

Water Pollution Control Engineering

Filtration technologies - deep bed filtration. Biological treatment plant design - trickling filters - activated sludge processes (and variants) - anaerobic digesters. Sludge processing and disposal.

Air Pollution Control

Laboratory for Environmental Analysis
14 hour laboratory unit developing techniques in modern environmental analysis.

Advanced Environmental Protection
This comprises a series of elective strands which build upon the core subject as follows:

1. Advanced treatment methods (water)
2. Advanced treatment methods (air)
3. Hazardous wastes
4. Computer-aided risk assessment
5. Advanced laboratory
6. Occupational Health Laboratory

GEOG9110 Soil Erosion and Conservation
S L2T4

CIVL4027 Geotechnical and Transport Engineering S2 L3T3
Prerequisites: CIVL3402, CIVL3804.
Four topics selected from:

Fuel Technology
Fuel Technology is a department within the School of Chemical Engineering and Industrial Chemistry.

FUEL0020 Fuels and Energy S2 L2 T2
A servicing subject for students in Electrical Engineering which deals with sources and properties of fuels and energy, energy use patterns, principles of combustion, combustion calculation, the technology of boilers and other fuel plant, thermodynamic cycles, new and emerging energy technologies, including solar, wind and nuclear energy.
Undergraduate Study: Subject Descriptions

Geography

GEOG1031 Environmental Processes S1 L2 T2
Excluded: GEOG1051, GEN54240.
Essential and continuing links between components of the physical environment. Movement of energy and matter in the physical environment, including consideration of Earth's energy balance, the hydrological cycle, nutrient cycles in vegetation and soil, imbalances leading to land degradation and instability, to and movement of materials.

GEOG2021 Introduction to Remote Sensing S2 L2 T2
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts or equivalent as approved by the Head of School.
Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airphoto interpretation techniques relevant to environmental assessment. Introduction to principles of the electromagnetic spectrum, photometry and radiometry. Sensor types, image formation and end products associated with selected satellite programs, including Landsat. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement.

GEOG2032 Geomorphology S2 L2 T3
Prerequisites: GEOG1031 or GEOG1051 or GEOL1201.
Hillslope materials, processes and form; models of slope and landscape evolution. Fluvial geomorphology including water movement and sediment transport in river channels, hydraulic geometry, channel patterns, river types, flood plain formation, alluvial fans, river channel changes. Erosional and depositional landforms in coastal, arid, humid and glacial environments. Field work in fluvial and hillslope geomorphology, and laboratories on field measurements of geomorphic processes, sediment analyses and airphoto interpretation.

GEOG3011 Pedology S2 L2 T3
Prerequisites: GEOG1031 or GEOG1051 and one of CHEN1101 or CHEM1401 or both GEOL1101 and GEOL1201 or both BIOS1011 or BIOS1021.
Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology.

GEOG3021 Biogeography S1 L2 T3
Prerequisites: GEOG1031 or GEOG1051 or both BIOS1011 and BIOS1021.

GEOG3032 Remote Sensing Applications S2 L2 T2
Prerequisite: GEOG2021 or SURV8711.
Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multitemporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

GEOG3042 Environmental Impact Assessment S2 L2 T2
Prerequisites: GEOG1031 or GEOG1051 or by permission from Head of School.
Rationale and basic objectives; standardized types of environmental impact assessment EIA, including matrix approach, adopted methods of EIA in Australia. Frequently used assessment and predictive techniques for meteorological, hydrological, biological, socio-economic impacts. Techniques of impact evaluation in terms of socio-economic criteria. Environmental decision making and planning under conditions of uncertainty. Case studies exemplifying procedures, techniques and issues. Trends, changes and possible future developments in EIA. Practical exercises representing components of typical EIA.

GEOG3051 Soils and Landforms S1 L2 T2
Prerequisite: GEOG3011 or GEOG2032 or GEOG2081 or by permission from Head of School.

GEOG3062 Environmental Change S2 L2 T2
Prerequisite: Successful completion of a Year 2 Programme in Applied Science, Science, or Arts or equivalent as approved by the Head of School.

GEOG3211 Australian Environment and Natural Resources S1 L2 T2
Prerequisite: GEOG2032 or GEOG1051.
Continental and regional patterns of land, water and energy resources in Australia and its territorial waters, and natural factors affecting their development, including climate, soils and...
Engineering

terrain; problems of limited surface and underground water resources and of conflicting demands, exemplified through particular basin studies; comparable reviews of energy, minerals and forest resources, human resources and development.

Applied Geology

GEOL5100 Geology for Civil and Environmental Engineers
An introduction to mineralogy, petrology, structural geology, stratigraphy and geomorphology. Weathering of rocks and development of soils. The role of the geologist in civil and environmental engineering.

Industrial Chemistry

Industrial Chemistry is a department within the School of Chemical Engineering and Industrial Chemistry.

INDC4120 Chemistry of the Industrial Environment
Prerequisites: CHEM1101, CHEM1201

Law

LAWS3410 Environmental Law
Statutory and common law regulation of access to, and use and management of, natural resources, and the theories and policies underlying such regulation. The focus is upon land, water and air, involving a detailed treatment of pollution and land use control, attempting to draw out the techniques (for example, licensing and standards setting) which are common to attempts at legal regulation of resources. Emphasis is on the law as it operates in practice. Students are encouraged to take an interest in ongoing environmental debates and to carry out fieldwork. Specific attention to the part played by the exercise of political and administrative discretion in this field, the tension which exists between the various levels of government and the potential role of public participation in the decision-making process.

Manufacturing Management

Manufacturing Management is a course offered by the School of Mechanical and Manufacturing Engineering.

MANF1100 Workshop Technology
The implementation of design and its interaction with manufacturing equipment and processes. Manufacturing capabilities and tolerancing. Approximately 30 hours of practical training including welding, fitting and machining. Students who have done Industrial Arts for the HSC, have an appropriate trade or certificate course qualification, or are suitably employed, may qualify for exemption from this subject.

MANF1110 Manufacturing Technology
Co-requisites: MECH1300, MECH1100, MECH1400.
Description of the processes classified as: forming from liquid or solid, material removal, material joining. Elementary mechanics of forming and cutting processes. Analysis of the primary functions of machine tool structures and their operation. Relationship between product design and manufacture processes. Elementary functional analysis of product designs, including linear loop equations, limits and fits, dimensional accuracy of processes and alternate design and manufacturing strategies.

MANF3200 Product Design and Manufacturing Technology
Design of products so that they can be manufactured economically. Material on: geometric analysis of product designs and the technology and economics of manufacturing, assembly, storage and transportation processes provides a basis for rational process selection and the refinement of product design to suit the chosen manufacturing methods.

MANF3300 Design of Manufacturing Facilities 1
The design of workplace elements in which operations such as assembly, measurement and loading/unloading are performed by a human operator or robot. Material on: documentation of manufacturing processes, characteristics of human operators and robots, workplace and methods design, measurement of workplace element characteristics.

MANF3400 Engineering Economics
Prerequisite: MECH1500. Excluded: 18.603.
An analytic framework for decision making from an economic viewpoint which included: cost information, engineering and investment decision, cost/benefit analysis, replacement analysis, capital recovery models, breakeven analysis and decision trees.

MANF3410 Quality Systems 1
Prerequisites: MANF1110, MATH2839, MECH3000. Excluded: 18.003, MANF4429.
An introduction to the role of national and international standards in manufacturing, the principle and technology underlying dimensional metrology. The design and analysis of
experiments to investigate the performance of manufacturing processes and introductory statistical process control.

MANF3500 Computers in Manufacturing 1
Prerequisites: MANF1110, MECH1500, ELEC0805. Excluded: 18.224.
The selection and use of computer-controlled devices such as robots, machines and vehicles in manufacturing systems: components of computerized systems. Control of devices by PLCs and computers is also examined.

MANF3600 Information and Decision Making Technology 1
Prerequisites: MECH1500, MATH2839. Excluded: MANF3609, MANF4610, MANF9620, MANF9629.
An introduction to the quantitative aspects of decision making and relevant computing tools including: decision theory, data modelling and data base management systems, operations research, spreadsheets, fourth generation languages and decision support systems.

MANF3800 Introduction to Numerical Methods
Prerequisites: MECH1500, MATH2009. Excluded: 18.003.
An introduction to the processes, data structures and numerical algorithms required for the solution of engineering problems including: numerical solution of equations, sets of simultaneous equations interpolation, differentiation and integration.

MANF4010 Manufacturing Systems Design
Prerequisites: MANF1110, MECH1500, ELEC0805. Excluded: 18.224.
Students will work in project teams to perform a complete manufacturing system design, involving activities such as: selection of a product for manufacture, engineering and industrial design, design for manufacture, process selection, tolerance optimization, manufacturing system system design, including selection of production elements, workplace design, factory layout, production control system, detailed budget, containing discounted cash flow analysis, projected position and income statements.

MANF4300 Design of Manufacturing Facilities 2
Prerequisite: MANF3300.
Introduction to plant layout design; strategies and criteria for locating a manufacturing facility; process locations, safety aspects. Materials handling system: automatic guided vehicles, conveyor systems, robots. Storage and retrieval systems: palletization, warehousing, containers, overhead cranes, forklifts, robots. Simulation of various systems: computerized manufacturing facilities planning, including simulation and associated data acquisition and manipulation.

MANF4400 Engineering Management
Prerequisite: MANF3400. Excluded: 18.603
Engineering and management, summary of macro- and micro-economic issues from an engineering management perspective, management science models, marketing management, the legal environment of business, industrial relations, engineering project management, quality assurance and total quality management, entrepreneurship and management of technical change and innovation.

MANF4410 Quality Systems 2
Prerequisites: MANF3410, MANF4420, MANF9410.
Management and philosophies of quality systems; quality planning in design and manufacture; selection of quality systems and statistical process control; total quality - quality circles and zero defects; accreditation for quality; economic selection of quality systems; preparation and use of quality manuals - national and international standards; legal aspects of product design and quality; some experiments and analyses for statistical process control; case studies/project.

MANF4420 Management of Manufacturing Systems
Prerequisites: MANF3400, MANF3410, MANF3600. Excluded: MANF4429.
Nature and scope of manufacturing management, key bases for competition, Porter's model, manufacturing performance factors and their strategic significance; meaning of waste, value added and total quality; design for manufacture and the market; basic dynamics of materials flow in an organization. Demand forecasting and master planning, role of inventory, production smoothing. Production control, bottlenecks and capacity constraining resources, product and layout rationalization, mechanics of scheduling. Purchasing, vendor selection, vendor performance monitoring; physical distribution, warehouse location and operations. Maintenance management: planning and control, total preventative maintenance. Role and fit of packaged approaches: MRP, JIT, OPT.

MANF4500 Computers in Manufacturing 2
Prerequisite: MANF3500.
Introduction to computer integrated manufacture (CIM): what is CIM, skills required when designing and implementing CIM, unsolved problems in CIM. Integration: CAD, CAM, CAD/CAM integration technology, MAP/TOP. Flexible Manufacturing Systems (FMS): FMS system architecture, material handling and storage systems in FMS, auxiliary devices in FMS, FMS operation control. Project on computer integration with data acquisition and control.

MANF4600 Information and Decision Making Technology 2
Prerequisites: MECH1500, MATH2839. Excluded: MANF3609, MANF4610, MANF9620, MANF9629.
Combinatorial optimization; integer and dynamic programming; branch and bound technique; elementary multiple-criteria decision analysis; goal programming; examples from production planning and scheduling. Data, information and knowledge; problem decomposition; techniques for knowledge representation; rule-based systems; examples from manufacturing process planning, scheduling, and diagnostic maintenance. Intelligent DSS: deductive databases; integration of algorithmic and knowledge-based problem solving approaches; examples from process planning and scheduling. More advanced simulation topics; discrete event simulation languages; factory simulation packages; simulation model and experimental design. Organizational issues; distributed vs centralized decision making, knowledge bases and data bases; goal integration; importance of common
data and procedural semantics for coordinated decision making; examples from CIM environments.

MANF4610 Operations Research
F L2 T1
Prerequisites: MECH1500, MATH2009, MATH2839. Excluded: 6.646.

The formulating and optimisation of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queuing theory, inventory models, replacement and reliability models; simulation. These techniques applied to situations drawn from industrial fields, eg production planning and inventory control. Practical problems of data collection, problem formulation and analysis.

Servicing Subjects

These are subjects taught within courses offered by other schools and faculties.

MANF0400 Production Management
F L2 T1
Prerequisites: MATH2021, MATH2841.

Engineering economy: Economic objectives of the firm.
Economic measure of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment.
The use of human and physical resources: Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout. Production and quality control: Control of jobbing, repetitive batch and continuous production. Manufacturing organisations, functions, inter-relationships and information flow. Sampling techniques in quality control, control charts. Introduction to inventory control: Analysis of some engineering planning decisions.

MANF0401 Production Management A
S1 L3
Prerequisites: MATH2021, MATH2841 or MATH1011, MATH1021, FIBR2201.

Use of human and physical resources: Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout. Production and quality control: Control of jobbing, repetitive batch and continuous production. Manufacturing organisations, functions, inter-relationships and information flow. Sampling techniques in quality control, control charts. Introduction to inventory control: Analysis of some engineering planning decisions.

MANF0402 Production Management B
S2 L3
Prerequisites: MANF0401.

Engineering economy: Economic objectives of the firm.
Economic measure of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment.
Introduction to operational research: Formation and optimisation of mathematical models of industrial processes. Development of decision rules. Some techniques of operational research and applications, eg mathematical programming, queuing theory, inventory models, simulation.

MANF0410 Industrial Management
S1 L/T5
Prerequisites: MATH2120, MATH2849, MATH2859.

This subject is intended primarily for Electrical Engineering students.

Engineering economy: economic objectives of the firm.
Economic measures of performance: net present value, annual equivalent value and the DCF rate of return (including the incremental rate of return) and their application in the selection and replacement of processes and equipment.
Introduction to operational research: The formation and optimisation of mathematical models of industrial processes. The development of decision rules. Some techniques of operational research and applications, eg mathematical programming, queuing theory, inventory models, simulation, critical path networks.
The use ofhuman and physical resources: Methods engineering, ergonomics, motion and time study, financial incentives, applications to machine controlled processes, work sampling and data collection. Plant location, factory layout. Production and quality control: Control of jobbing, repetitive batch and continuous production. Manufacturing organisations, functions, inter-relationships and information flow. Sampling techniques in quality control, control charts.
Introduction to inventory control: Analysis of some engineering planning decisions.

MANF0600 Operations Research

Introduction to operational research: The formation and optimisation of mathematical models of industrial processes. The development of decision rules. Some techniques of operational research and applications, eg mathematical programming, queuing theory, inventory models, simulation.

Mathematics

MATH1032 Mathematics 1
F L4 T2

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam Score</th>
<th>Range Required†</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics</td>
<td>67-100</td>
</tr>
<tr>
<td>2 and 3 unit Mathematics</td>
<td>100-150</td>
</tr>
<tr>
<td>3 and 4 unit Mathematics</td>
<td>100-200</td>
</tr>
</tbody>
</table>

*This refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject. It does not refer to the subjects Mathematics in Society or Mathematics in Practice.

†These numbers may vary from year to year.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.
MATH1042 Higher Mathematics 1 F L4 T2
Prerequisite: HSC Exam Score Range Required†
2 and 3 unit Mathematics 145-150
or
3 and 4 unit Mathematics 186-200
*This refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject. It does not refer to the subjects Mathematics in Society or Mathematics in Practice.
†These numbers may vary from year to year.
As for MATH1032 Mathematics 1, but in greater depth.

MATH1081 Discrete Mathematics S1 L4 T2
Co-requisite: MATH1032 or MATH1042.

MATH1090 Discrete Mathematics for Electrical Engineers S1 L2T1
Co-requisite: MATH1032 or MATH1042. Excluded: MATH1081.
The role of proof in mathematics, logical reasoning and implication, different types of proofs. Sets, algebra of sets, operation on sets, mathematical logic, truth tables, syntax, induction. Recursion, recursive logic, recurrence relations.

MATH2009 Engineering Mathematics 2 F L2 T2
Prerequisite: MATH1032.
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.

MATH2100 Applied Mathematics 2 – S1 or S2 L1.5 T.5
Vector Calculus
Prerequisite: MATH1032 Excluded: MATH2110.
Properties of vectors and vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss and Stokes' theorems. Curvilinear co-ordinates.

MATH2110 Higher Applied Mathematics 2 – S1 L2 T.5
Vector Analysis
Prerequisite: MATH1042 or MATH1032 CR. Excluded: MATH2100.
As for MATH2100 but in greater depth.

MATH2120 Applied Mathematics 2 S1 or S2 L1.5 T.5
Mathematical Methods for Differential Equations
Prerequisite: MATH1032. Excluded: MATH2130.
Introduction to qualitative and quantitative methods for ordinary and partial differential equations. The following topics will be treated by example. Ordinary differential equations: linear with constant coefficients, first order systems, singularities, boundary-value problems, eigenfunctions, Fourier series. Partial differential equations: characteristics, classification, wave equation, heat equation, Laplace equations, separation of variables methods.

MATH2130 Higher Applied Mathematics 2 – S2 L2 T.5
Mathematical Methods for Differential Equations
Prerequisite: MATH1042 or MATH1032 CR. Excluded: MATH2120.
As for MATH2120 but in greater depth.

MATH2200 Applied Mathematics 2 S2 L1.5 T.5
Discrete Dynamical Systems
Prerequisite: MATH1032. Co-requisite: MATH2501, Excluded: 10.2215.
The study of dynamical systems whose states change at discrete points in time. Difference equations, general properties. Linear systems, stability, oscillations, z-transforms. Nonlinear systems, critical points, periodic cycles, chaotic behaviour. Applications selected from engineering, biological, social and economic contexts.

MATH2220 Applied Mathematics 2 – S2 L1.5 T.5
Continuous Dynamical Systems
Prerequisite: MATH1032. Excluded: 10.2216.
The study of continuous dynamical systems. One-dimensional systems, kinematic waves, applications include traffic flow and waves in fluids. An introduction to the modelling of physical, biological and ecological systems, stability, oscillations and resonance.

MATH2400 Pure Mathematics 2 – S1 L1.5 T.5
Finite Mathematics
Prerequisite: MATH1032 or MATH1042.
Positional number systems, floating-point arithmetic, rational arithmetic, congruences. Euclid's algorithm, continued fractions, Chinese remainder theorem, Fermat's theorem, applications to computer arithmetic. Polynomial arithmetic, division algorithm, factorization, interpolation, finite field. Codes, error-correcting codes, public-key cryptography.

MATH2501 Pure Mathematics 2 – F L1.5 T1
Linear Algebra
or S1 or S2 L3 T2
Prerequisite: MATH1032 or MATH1042 or Excluded MATH2601.

MATH2510 Pure Mathematics 2 – S1 or S2 L1.5 T1
Real Analysis
Prerequisite: MATH1032 or MATH1042 or Excluded MATH2610.
Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

MATH2520 Pure Mathematics 2 – S1 or S2 L1.5 T1
Complex Analysis
Prerequisite: MATH1032 or MATH1042 or Excluded MATH2620.
Analytic functions, Taylor and Laurent series, integrals. Cauchy's theorem, residues, evaluation of certain real integrals.
MATH2601 Higher Pure Mathematics 2 – Linear Algebra
Prerequisite: MATH1042 or MATH1032 CR. Excluded MATH2501, MATH2500.
As for MATH2510, but in greater depth, and with additional material on unitary, self-adjoint and normal transformations.

MATH2610 Higher Pure Mathematics 2 – Real Analysis
Prerequisite: MATH1042 or MATH1032 CR. Excluded MATH2510.
As for MATH2510 Pure Mathematics 2 Real Analysis but in greater depth.

MATH2620 Higher Pure Mathematics 2 – Complex Analysis
Prerequisite: MATH1042 or MATH1032. Excluded MATH2520.
As for MATH2520 Pure Mathematics 2 Complex Analysis, but in greater depth.

MATH2801 Theory of Statistics 2 – Probability and Random Variables
Prerequisite: MATH1032 or MATH1042 or MATH1021 (CR). Excluded: MATH2901, MATH2819, MATH2841, BIOS2041
Probability, random variables, standard discrete and continuous distributions, multivariate distributions, transformations, random sampling, sampling distributions, limit theorems.

MATH2810 Theory of Statistics 2 – Statistical Computing and Simulation
Prerequisite: MATH1032 or MATH1042 or MATH1021 (CR). Co-requisite: MATH2801.
Introduction to APL, random variables, univariate transformation, simulation of random variables, APL programming, integer value random variables, random walks – theory and simulation, introduction to Markov chains.

MATH2821 Theory of Statistics 2 – Basic Inference
Prerequisite: MATH2801. Excluded: MATH2921, MATH2819, MATH2841, BIOS2041.
Point estimation: general theory, estimation by moments, maximum likelihood, interval estimation with general theory and application, hypothesis testing using Neyman Pearson theory, linear regression and prediction, analysis of variance.

MATH2829 Statistics SU
Prerequisite: MATH1032 or MATH1042.
Introduction to probability theory, random variables and distribution functions, sampling distributions, including those of t, chi^2 and F. Estimation procedures, including confidence interval estimation with an emphasis on least squares and surveying problems, and computer based exercises.

MATH2830 Theory of Statistics 2 – Nonparametric Statistical Inference
Prerequisite: MATH2801. Co-requisite: MATH2821.
Order statistics, exact and approximate distributions, multinomial distributions, goodness of fit, contingency tables, one-sample and two-sample estimation and inference problems.

MATH2839 Statistics SM
Prerequisite: MATH1032 or MATH1042.
Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, chi^2 and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard tests of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

MATH2841 Statistics SS
Prerequisite: MATH1032 or MATH1021(CR). Excluded: MATH2901, MATH2821, MATH2901, MATH2921, MATH2819, BIOS2041.
An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions: binomial, Poisson and normal, an introduction to multivariate distributions. Standard sampling distributions, including those of X^2, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models.

MATH2849 Statistics SE1
Prerequisite: MATH1032 or MATH1042. Excluded: 10.361.
Introduction to probability theory, random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions including those of X^2 and t.

MATH2859 Statistics SE2
Prerequisite: MATH2849.
Estimation by moments and maximum likelihood; confidence interval estimation. The standard tests of significance with a discussion of power where appropriate.

MATH2869 Statistics SC
Prerequisite: MATH1032 or MATH1042.

MATH2901 Higher Theory of Statistics 2 – Probability and Random Variables
Prerequisite: MATH1032 or MATH1042. Excluded: MATH2801, MATH2819, MATH2841, BIOS2041.
As for MATH2801 but in greater depth.

MATH2910 Higher Theory of Statistics 2 – Statistical Computing and Simulation
Prerequisite: MATH1032 or MATH1042. Co-requisite: MATH2901.
As for MATH2810 but in greater depth.
MATH2921 Higher Theory of Statistics 2 — Basic Inference
Prerequisite: MATH2901. Excluded: MATH2821, MATH2819, MATH2841, BIOS2041.
As for MATH2821 but in greater depth.

MATH2930 Higher Theory of Statistics 2 — Nonparametric Statistical Inference
Prerequisite: MATH2901. Co-requisite: MATH2921.
As for MATH2830 but in greater depth.

MATH3101 Applied Mathematics 3 — Numerical Analysis
Prerequisite: At least two level 11 mathematics units, including any course prerequisites. Excluded: MATH3141, 10.222A
Analysis of some common numerical methods. Iterative methods for solving nonlinear equations; interpolation using polynomials, splines and trigonometric functions; least-squares approximation and orthogonal function; numerical differentiation and integration: extrapolation; finite difference methods for initial value problems for ordinary differential equations; iterative techniques for large systems of linear equations.

MATH3141 Electrical Engineering — Mathematics 3 — Numerical and Mathematical Methods
Prerequisites: MATH2501, MATH2510, MATH2100. Excluded: MATH2120, MATH2130, MATH3101, 10.222A.

MATH3150 Electrical Engineering — Mathematics 3 — Transform Methods
Prerequisites: MATH2100, MATH2520. Excluded: 10.033, 10.2921.

MATH3181 Applied Mathematics 3 — Optimal Control
Prerequisites: A total of 2 level II mathematics units which must include either MATH2100 or MATH2510. Excluded: 10.222M.
Examples and applications are selected from biological, economical and physical systems.
MECH1110 Graphical Analysis and Communication
S2 L1 T2
Excluded: MECH0160, MECH1110, MECH0130.
Descriptive geometry as the basis of analysis and synthesis of spatial relationships: points, lines, plans, solids, intersections. Orthographic and other projection systems. Engineering drawing as a means of definition and communication, selection of views, construction of drawings, conventions, dimensions and tolerancing. Introduction to computer-based drafting systems.

MECH1300 Engineering Mechanics S1 or S2 L2 T2
Prerequisite:
HSC Exam Score
Range Required
Either
2 unit Science (Physics) or
3 unit Science or
4 unit Science multidiscipline
or
2 unit Industrial Arts
(Engineering Science) or
3 unit Industrial Arts
(Engineering Science)
53-100
90-150
1-50

Note: Students who wish to enrol in this subject in courses other than the full-time courses in Aerospace Engineering, Electrical Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of the first year.

MECH1400 Mechanics of Solids 1 S1 or S2 L2 T1
Co-requisite: MECH1300.

MECH1500 Computing 1 M S2 L/T3
Introduction: history, applications, hardware, software, a model of a computer system, editors, operating systems. Program design and development: programming objectives, data structures, algorithms, symbolic names, translation of algorithms, steps in programming, programming style, syntax charts, errors and debugging. Data: data types, declarations, input output, file control. Programming constructs: arithmetic expressions, assignment, relational and logical expressions, selection, iteration, intrinsic functions, statement functions, subprograms, common, communication. Applications using existing programs: sorting, word processing, graphics and plotting, simultaneous linear algebraic equations. The computer language employed in this subject is FORTRAN.

MECH2000 Professional Studies 2 4 contact hours total
Prerequisite: MECH1000.
To introduce the student to the engineering working environment. To get the student curious about the engineering environment. To give further practice in report writing. Preparation for Industrial Training; Industrial Training, report on Industrial Training.

MECH2100 Mechanical Engineering Design 2 F L1 T2
Prerequisites: MECH1300, MECH1100, MECH1400, MECH1110, MANF1110. Co-requisites: MECH1000, MECH2300, MECH2400, MECH2600, MECH2700, MATS9520
Design of basic engineering elements and simple systems. Selection and specification of materials and manufacturing processes for engineering items. Communication by means of engineering drawings (including tolerances) of manufacturing information for simple structures and assemblies. Application of standards and trade literature to design. Simple design and make project to meet a published specification and to demonstrate the product’s performance.

MECH2300 Engineering Mechanics 2A S1 or S2 L2 T1
Prerequisites: MECH1300, PHYS1002 or PHYS1919, MATH1032 or MATH1042.
Kinetics of systems of particles; plane steady mass flow. Plane kinematics and kinetics of rigid bodies: moment of inertia; motion relative to translating and rotating frames of reference; equations of motion; work and energy, impulse and momentum. Virtual work for static and dynamic systems. Kinematics and kinetics of simple mechanisms.

MECH2310 Engineering Mechanics 2B S1 or S2 L/T2
Co-requisite: MECH2300.

MECH2400 Mechanics of Solids 2 F L1.5 T2
Prerequisites: MECH1400, MATH1032 or MATH1042.
Mechanical properties of materials: tensile and compressive behaviour; hardness; testing machines. Analysis of stress and strain at a point (2D, 3D, Mohr’s Circles); generalised Hooke’s Law; modulus of rigidity; bulk modulus; interdependence of elastic moduli; strain energy (total, volumetric and distortion); yield criteria; combined loads in beams; fatigue, stress concentrations, Miner’s Rule; membrane stresses; bending of composite beams; bending and unsymmetrical beams; direct shear stresses in beams, shear centre; elastic and inelastic buckling of columns.

MECH2600 Fluid Mechanics 1 F L1 T1
Prerequisites: MECH1300, PHYS1002 or PHYS1919, MATH1032 or MATH1042. Co-requisite: MECH2300.

MECH2700 Thermodynamics 1 F L1 T1
Prerequisites: MECH1300, PHYS1002 or PHYS1919, MATH1032 or MATH1042.

MECH3000 Professional Studies 3 S2 L/T2

MECH3100 Industrial Training 1 S1
Practical work in industry at the process or shop floor level to gain experience of people, industrial problems and relations, and process equipment. (Report submitted in Session 1 detailing involvement and experience gained prior to Year 3.)

For details contact Mr. G. Crawford, Industrial Training Officer.

MECH3200 Engineering Experimentation F/L/T1.5
Prerequisites: MECH1110, MECH2400, MECH2600, MECH2700, ELEC0905. Excluded: 5.034.

Scientific method, engineering method; report writing; error analysis; principles of transducers; dynamic response of instruments; digital data acquisition; interfacing transducers to computers; computer control of experiments; signal processing.

MECH3211 Linear Systems Analysis S1 L2 T1
Prerequisites: MECH1300, MATH2009.
Models of physical systems: differential equations for physical systems including mechanical, electrical, hydraulic, thermal and pneumatic systems; linearisation. System analysis techniques: solution by Laplace transform method. Transfer functions and block diagrams. System response: response of first and second order systems to impulse step, ramp, sinusoidal and periodic inputs; higher order system response; system stability, applications.

MECH3212 Principles of Control of Mechanical Systems S1 L2 T1
Prerequisite: MECH3211.
Introduction to modern systems analysis. Review of modelling; nonlinear systems. Digital and analogue representations. Stability; regulation; control and optimal control. Instrumentation; actuators; interfaces; control computers; programmable logic controllers. Implementation; various case studies, including microprocessor applications.

MECH3300 Engineering Mechanics 3 S2 L/T2
Prerequisites: MECH2300, MATH2009.
Kinematics of gear tooth profiles; standard and non-standard gear proportions. Gear trains; epicyclic gears. Static and dynamic balancing of rotating and reciprocating mass systems.

Three-dimensional kinematics and kinetics of a rigid body: co-ordinate transformations, general screw motion, angular momentum, inertia tensor, kinetic energy, Euler's equations of motion, planetary and satellite motions, gyroscope.

MECH3310 Vibration Analysis S2 L/T2
Prerequisites: MECH2310, MATH2009.
Lagrange's equations of motion. Linear vibrations of multi-degree-of-freedom systems; normal modes; simple applications. Finite elements for structural dynamics; mass matrix; natural frequency and normal mode determinations; convergence; engineering applications.

MECH3400 Mechanics of Solids 3 S1 L3 T1
Prerequisites: MECH2400, MATH2009.

MECH3500 Computing 2M S1 L/T2
Prerequisites: MECH1500. Excluded: MECH4509.

Techniques for writing, debugging and documenting elegant, portable, robust and reliable programs quickly and economically. Material on the programming environment, programming style, numerical precision, storage management, database processing and program libraries. The computer languages employed in this subject are FORTRAN and C.

MECH3600 Fluid Mechanics 2 S1 L/T2
Prerequisites: MECH2300, MECH2600, MECH2700, MATH2009
Excluded: 5.630, 5.653, 5.663.

Dimensional Analysis, dynamic similarity, turbomachines; incompressible, inviscid flow; compressible flow.

MECH3701 Thermodynamics 2 S1 L/T2
Prerequisites: MECH2300, MECH2600, MECH2700. MATH2009
Excluded: 5.623, 5.624, 5.636.

Availability - open and closed systems; general thermodynamic relations; kinetic theory of gases; non-reactive ideal gas mixtures; high-temperature gas properties; combustion.

MECH3702 Heat Transfer S2 L/T2
Prerequisites: MECH3600, MECH3701. Excluded: 5.636.

Basic concepts of heat transfer, units, dimensions; conduction, convection, radiation, boiling and condensation; heat exchangers.

MECH3800 Numerical Methods S2 L2 T1
Prerequisites: MECH1500, MATH2009.

MECH4000 Thesis F T6
Co-requisite: MECH4001.

To be taken in year of completion of course.

For students in the BE degree courses in the School of Mechanical and Manufacturing Engineering.
MECH4001 Professional Studies 4 S2 L/T2
Prerequisites: MECH3000. Corequisite: MECH4000, MECH4002.
Excluded: MECH4019.

Development of skills in the use of various media of communication. Presenting oral and written reports.
Conference organization and participation. Group projects in communications.

MECH4002 The Engineer In Society S2 L/T2
Prerequisite: MANF4400. Co-requisite: MECH4001.
Reading, instruction and project work concerned with the organisational, environmental and social aspects of engineering.
The subject is intended to integrate a student's prior and current studies over the range of scientific, technological and contextual areas and general education. Students will undertake socially directed projects in large groups and follow them up with more reflective individual tasks.

This subject satisfies the requirements of Category C of the General Education Program.

MECH4010 Industrial Training 2 S1
Practical work in industry at the professional level to gain experience in design, development, investigation or management control systems areas in collaboration with professional engineers. (Report submitted in Session 1 detailing responsibilities and experience gained in vacation period between Years 3 and 4.)
For details contact Mr. G. Crawford, Industrial Training Officer.

MECH4020 Group Engineering Project S1 L/T6 or F L/T3
Group approach. Subject integrates the engineering science and creativity aspects of previous years. Students work in groups on an engineering project selected via the School's Program structure in conjunction with industry. Aspects of the project include, where appropriate, a basic assessment of the market development of the design and other engineering features, consideration of environmental and safety impacts, procedures for manufacture and/or construction and the industrial design (presentation and packaging of the completed item). Management skills are to be promoted with students' participation in a manner similar to those used in industry teams. Industry participation is to be used where possible in assessment.

MECH4110 Design Project F L1 T2
Prerequisite: MECH3100.
Creative design and development leading to the detail design and possible building and testing of systems and devices to satisfy specified objectives of set projects.

MECH4120 Design Technology SS L2 T1
Prerequisite: MECH2100.
Aspects of mechanical engineering technology which form the basis for machinery design including: performance matching; hydraulic power components and circuits. Fluid couplings and torque converters; power flow analysis in multi-path machinery, and other selected topics.

MECH4130 Computer-Aided Engineering SS L2 T1
Design
Prerequisite: MECH2100. Excluded MANF3819, MANF9630.
Mathematical modelling and analysis of component and system designs using the computer as a tool to optimise and investigate design solutions. Use of available algorithms and computer packages.

MECH4301 Plane Mechanism Kinematics S1 or SS L2 T1
Prerequisites: MECH2300. Excluded: MECH9301.
Algebraic displacement, velocity and acceleration analyses of simple and complex planar mechanisms. Instantaneous kinematics: centroids; inflection and Bresse circles; acceleration centre; Euler-Savary equation; cubic of stationary curvature; centring point curve. Coupler curves and their properties; curve cognates. Constraint and freedom; mobility; velocity closure of a loop; special configurations; singularities. Various methods of synthesis.

MECH4310 Advanced Vibration Analysis SS L2 T1
Prerequisites: MECH310, MECH3400. Excluded: MECH9310.

MECH4321 Engineering Noise 1 SS L2 T1
Excluded: MECH9321.

MECH4322 Engineering Noise 2 SS L2 T1
Prerequisite: MECH4321. Excluded MECH9322.

MECH4361 Lubrication SS L/T3
Prerequisites: MECH2600, MATH2009. Excluded: MECH9361.
History of lubrication, types of bearings and bearing operation, nature of surfaces and their contact, modes of lubrication, properties of lubricants, viscous flow in pipes and channels, measurement of viscosity, infinitely long and short bearing approximations, one-dimensional analysis of short bearing, other slider bearing geometries, the effect of end leakage, hydrostatic or externally pressurised bearings, squeeze films.

MECH4400 General Mechanics of Solids SS L2 T1
Prerequisite: MECH3400. Excluded: MECH4361.
Inelastic behaviour of bars, beams, shafts and columns. Thick cylinders and composite cylinders loaded by internal and external pressures; rotating discs; contact stresses. Elementary concepts of fracture mechanics; stress intensity factor; fracture toughness; crack propagation.

MECH4410 Engineering Applications of Finite Elements SS L2 T1
Prerequisite: MECH3400. Excluded MECH4410, AER04400.
Introduction to finite element and associated graphics packages.
Assessment of the accuracy of the results. Convergence. Applications using commercial finite element programs.

MECH4420 Plates and Shells

Prerequisite: MECH3400. Excluded: MECH4921.

Bending of rectangular and circular plates under normal loading; thermal stresses. Shells; membrane stresses, bending stresses, discontinuities at junction of ends; design of pressure vessels.

MECH4430 Theory of Elasticity

Prerequisite: MECH2300, MECH3400.

Mathematical foundations; analysis of stress; deformation and strain; equilibrium, motion and flow; fundamental laws of continuum mechanics; linear elasticity; viscoelasticity; applications.

MECH4440 Theory of Plasticity

Prerequisite: MECH3400 or MANIF3219.

Analysis of stress, strain, strain rate; plastic stress strain relations with description of experimental verification. Application of plasticity theory to a selection of problems including metal working processes such as extrusion and rolling and metallic friction and wear.

MECH4450 Structural Instability

Prerequisite: MECH3400.

Buckling of perfect and imperfect columns; bending and buckling of thin flat plates; local instability and crippling of thin-walled columns. Buckling of monocoque cylinders and curved panels. Stiffened panels. Tension field beams.

MECH4500 Computing 3M

Prerequisite: MECH3500.

Computer environments; PC and mainframe. User and machine interfacing with terminal controls, menus, mouse and I/O hardware. Use of graphics and special packages, e.g., spreadsheets for man/machine interaction. Communications protocol, serial and parallel transmission, interrupts polling and general housekeeping routines. Use of C language and comparison with other high level languages.

MECH4600 Viscous Flow Theory

Prerequisites: MECH2600, MECH2700, MATH2009.

MECH4610 Hydraulic Transients

Prerequisites: MECH3600, MATH2009.

Mass oscillations in surge systems with various types of surge tanks. Stability of surge systems, comparison with experiment. Allievi's theory of water hammer, fast and slow closures, waterhammer in pumping systems, circle diagrams.

MECH4700 Turbomachines and Engines

Prerequisites: MECH3600, MECH3701.

MECH4710 Convection Heat Transfer

Prerequisite: MECH3701. Excluded: MECH9710.

MECH4720 Solar Energy

MECH4730 Multiphase Flow

Prerequisites: MECH3600, MECH3701, MATH2009.

MECH4740 Thermal Power Plants

Prerequisites: MECH2600, MECH2700. Excluded: MECH9740.

MECH4751 Refrigeration and Air Conditioning S1 L/T3
Prerequisite: MECH3702.
Psychrometry and air conditioning calculations; heating and cooling load calculations; refrigerants; vapour compression refrigeration; multipressure systems; air conditioning systems; components of refrigeration and air conditioning systems; air distribution; refrigeration and air conditioning controls.

MECH4800 Optimal Engineering Strategies S1 L2 T1
Optimization: a selection of techniques and their applications from the calculus of variations, geometric programming, network analysis, linear programming, non-linear programming, etc. Strategies for design and analysis: system structure; variable classification; procedure generation; recycle optimisation; the adjacency matrix.

Servicing Subjects

These are subjects taught within courses offered by other schools and faculties.

MECH0130 Engineering Drawing and Descriptive Geometry S1 or S2 L1 T3

MECH0160 Introductory Engineering Design and Drawing Practice S1 L/T2
Excluded: MECH1110, MECH0130
This subject is intended specifically for Electrical Engineering students, and is to be taken in conjunction with MECH1300.

Introduction to engineering design: Engineering method, problem identification, creative thinking, mathematical modelling; computer-aided design; materials and processes; communication of ideas; the place of engineering in society.

MECH0330 Engineering Mechanics SS L2 T2
Prerequisites: As for MECH1300 Engineering Mechanics 1. Exclusions: MECH1300, MECH0360

MECH0360 Introductory Engineering Mechanics
This subject is intended specifically for Electrical Engineering students, and is to be taken in conjunction with MECH0160.

Prerequisite: HSC Exam Score Range Required.

MECH0440 Engineering Statics S1 or S2 L2 T1
Prerequisites: As for MECH1300 Engineering Mechanics 1. Excluded: MECH1300, MECH0330, MECH0360

MECH0760 Mechanical Engineering SS L3 T1
Prerequisites: PHYS1969, MATH2100, MATH2120 or equivalent.
This subject is intended specifically for Electrical Engineering students.

Naval Architecture

Naval Architecture is a course offered by the School of Mechanical and Manufacturing Engineering.

NAVL3100 Principles of Ship Design 1 S2 L2 T1

NAVL3400 Ship Structures 1 F L1 T0.5
Prerequisites: MECH2400, MATH2009, MATS9520
NAVLS000 Ship Hydrostatics
F L2 T0.5
Prequisites: MECH1300, MECH1500, MATH1032, PHYS1919
Basic concepts and integration methods. Hydrostatic particulars and approximate formulae. Intact stability, cross curves and righting arm, stability at small angles and free surface effects, the wallsided formula, flooding and water tight subdivision. Damaged stability. Launching calculations and docking. Representation of hull surfaces for computer applications. Analysis of hull hydrostatics and stability by an integrated computer package.

NAVLS100 Ship Hydrodynamics
F L2 T0.5
Prequisites: MECH2300, MECH2310, MECH2600, MATH2009,

NAVLS4000 Ship Management Economics
S2 L1.5 T0.5
Prequisite: MATH2009.

NAVLS4100 Principles of Ship Design
S1 L3 T1
Prequisite: NAVLS100.

NAVLS4110 Ship Design Project
S1 T3 S2 T4
Each student is required to perform the following design tasks and submit the results: 1. Rationale, specifications, weights, inboard profile. 2. Power, capacities, freeboard, trim, stability, stern gear. 3. Sectional area curve, lines drawing, prelim midship section. 4. Hydrostatics, floodable length and stability curves. 5. Powering, propeller, systems-schematic drawing, detailed capacity. 6. Section modulus calculation, bulkhead, midship section, module concept. 7. Final weights, capacity drawing, operational data, and evaluation. 8. Specification.

NAVLS4400 Ship Structures
F L1.5 T0.5
Prequisites: MECH3400, NAVLS3400.

NAVLS4700 Ship Propulsion and Systems
F L/T4
Prequisites: NAVLS3000, NAVLS3610.

Physiology and Pharmacology

PHPH2112 Physiology 1
F L2 T4
Prequisites: BIOS1011 and BIOS1021; CHEM1112 and CHEM1113 or CHEM1114; MATH1032 or MATH1042 or MATH1011 and MATH1021. Excluded: PHPH2122. Co-requisite: BIOC2312.
In exceptional cases Chemistry 1T will be accepted as a prerequisite in the absence of Physics 1 with the permission of the Head of School.

Introduction to fundamental physiological principles, dealing first with basic cellular function in terms of chemical and physical principles, and, second, with the operation of the various specialised systems in the body, for example, the cardiovascular system, whose function it is to transport materials to and from the tissues of the body; the respiratory system which must maintain the exchange of oxygen and carbon dioxide between the atmosphere and the blood; the gastrointestinal system which enables food materials to be modified by digestion and absorbed into the circulation; the kidney which is involved in the regulation of body fluid and electrolyte balance and with the excretion of the waste products of metabolism; the endocrine system which releases chemical messengers, called hormones, that are carried in the blood stream to regulate a great variety of body functions, eg metabolism and reproductive activity; the nervous system which by means of very rapidly propagated electrical impulses is responsible for all our movements, sensations, memories, emotions and consciousness itself. A substantial series of practical class experiments on these different areas of physiology is included in the course. This subject is taken by students enrolled in any of the Physiology program.
survey techniques for urban and rural properties; the status of roads in NSW, strata plan surveys, identification surveys, consents for MHWM, railways, rivers, kerbs in Sydney. The role of coordinates in cadastral surveying.

SURV6721 Project Management 3 S2 L1.5 T.5 Co-requisite: SURV5721.

Project teams in a corporation. Psychology of professionals. Qualifications of a project manager. Decision making process in project management: authority, power, interaction, leadership, assignments. Human resource management: small group behaviour, learning curve, management of teams in professional practice, professional liabilities and responsibilities. Short term field planning. Logistics of field work. Case studies in the application of project management to surveying projects.

SURV6811 Land Economics and Valuation S2 L2 T1
The surveyor’s role in the economic use of land. Variation of land use and land value. Temporal change in land use due to supply and demand, and its effect on land development and urbanisation. Location theory, public measures for directing land use, introduction to valuation; factors affecting value of land, valuation principles and practice.

SURV7051 Survey Camp 3 S1 T7
Prerequisites: all Year 3 subjects.
Two weeks survey camp for projects selected from areas of cadastral, engineering and geodetic surveying, followed by (one hour per week) computations, plan and report preparation at the School of Surveying.

SURV7311 Offshore Surveying S1 L2 T1

SURV7511 Photogrammetry and Mapping 2 S1 L2 T1 Prerequisite: SURV6511.
Aerial triangulation; semi and analytical methods, block adjustment by models and bundles, control requirements for block adjustment. Differential rectification; orthophotos. Map production; map compilation by photogrammetric techniques, map production processes. Project planning. Non-topographic methods of photogrammetry.

SURV7521 Remote Sensing and Resources S1 L2 T1 Prerequisite: SURV6511.

SURV7531 Spatial Information Systems 1 S1 L2 T1 Overview and background of Spatial Information Systems. Explanation of definitions and terminology; LIS, GIS, MPC, Management and institutional issues; land information as maps and records; existing systems; problems. Technological issues; digital maps and data base management; data acquisition; data storage; editing; raster and vector representations; topology. Modelling and analysis.

SURV7711 Land Management S1 L1 T1 S2 L1 T1 and Development Project Co-requisite: SURV7811.
Design project for a residential neighbourhood development, illustrating the interactions between a registered surveyor, design engineer and town planner. Critical site analysis, including environmental and physical constraints and the use of thematic land use maps. Structure plan design and presentation showing the broader cultural aims of the development. Plan of detailed lot layout; considerations of access, grades, building locations and environmental protection. Preparation of engineering design and plans to local government specifications and standards.

SURV7811 Land Subdivision and Development S1 L2 T1
Subdivision and development control in New South Wales. Administration of subdivision and development under Local Government and environmental planning and assessment legislation; procedures and legal controls. Statutory requirements for land development and subdivision of land, particularly as they apply to broad-acre subdivisions.

SURV8001 Project S1 T1 S2 T8 Prerequisite: all Year 3 subjects.
The project is undertaken in the final year of the BSurv Course with one hour per week in the first session and 8 hours per week in the second session. Students must undertake surveying projects or research tasks in the field or laboratory on a topic approved by the Head of School, under the guidance of academic staff. Each student is required to submit a written report in prescribed format by a specific date at the end of the second session.

SURV8011 Project Surveying S2 L2.5 T0.5 Co-requisites: SURV5011.
Selected topics from: monitoring of deformations and settlement of terrain, structures and machines; design and optimization of precise engineering networks; high precision distance measurement; 3-D measuring systems; computer controlled surveying; length transducers; alignment surveys; interferometer applications; collimation and auto-collimation techniques; optical tooling; principal and use of gyroodolite; electronic tiltmeters; inertial surveys.

SURV8221 Advanced Geodesy S2 L2 T1 Prerequisite: SURV 5221.
Selected topics from: space technologies including GPS for high precision positioning; satellite altimetry analysis; gravimetric geodesy; 4-D geodesy; inertial positioning technology; methods of kinematic positioning.

SURV8531 Spatial Information Systems 2 S2 L2 T1
Management of Land Information Systems; system lifecycle; development; costs and benefits; examples in Australia and overseas. Data management; combination of attribute and graphical data; continuous mapping; indexing; computer considerations; standards for cartography, software, hardware and communications. Future developments. Modelling and analysis with a GIS software system.
SRV8711 Professional Practice S2 T2
Students must complete 60 days of approved professional practice prior to the commencement of this subject. Professional practice is to be taken during the vacation periods. Students are required to provide evidence of this practice in a special log-book (available from the School). A detailed report must be submitted and a seminar must be presented summarising the work done and the experience gained during the professional practice period. Students are required to perform several practical surveying tasks (including instrument adjustment, levelling, traversing and resection) which will be examined.

Servicing Subjects
These are subjects taught within courses offered by other schools and faculties.

SURV0411 Surveying for Builders S1 L1 T1.5 C2
A compulsory subject. Prerequisites: nil.

SURV0441 Surveying for Engineers S2 L2 T2.5

SURV0491 Survey Camp
A one-week field camp for students studying SURV0441 Surveying for Engineers.

SURV0580 Mining Surveying S1 L2 T1
Prerequisite: SURV0441.
Revision of traverse, set out and levelling (14 hours field work).

SURV0752 Remote Sensing Techniques and Applications S1 L3 T1
The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; Infra-red remote sensing techniques; side-looking airborne radar; theory and applications of Landsat imagery; interpretation of Landsat photographic products. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

SURV0901 Introduction to Mapping S1 L1 T.5
Faculty of Engineering

Enrolment Procedures

All students re-enrolling in 1992 or enrolling in graduate courses should obtain a copy of the free leaflet *Re-Enrolling 1992* available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Graduate School of Engineering

The Graduate School of Engineering is concerned with the co-ordination and development of the graduate activities of the Faculty and provides opportunities for well-qualified graduates to engage in advanced studies and research.

The Faculty awards nine higher degrees as follows: Research - Doctor of Philosophy, Master of Engineering and Master of Surveying; Course Work Masters - Master of Biomedical Engineering, Master of Computer Science, Master of Engineering Science (available in a number of areas of specialisation), Master of Environmental Engineering Science, Master of Information Science and Master of Surveying Science. In addition, the degrees of Doctor of Science and Master of Science may be awarded for research conducted in, or in association with, the Faculty of Engineering.

The administration of the various awards including admission, progress and assessment of all higher degree and diploma candidates is conducted by the Higher Degree Committee of the Faculty under the general supervision of the Faculty of Engineering.

Conditions governing the award of higher degrees and graduate diplomas are set out later in this handbook in *Conditions for the Award of Higher Degrees*. However, conditions for the award of the degree of Doctor of Science may be found in the University Calendar.

The Faculty consists of the Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, Mechanical and Manufacturing Engineering, Surveying and the Centres for Biomedical Engineering, and Wastewater Treatment. The Faculty is also closely associated with the following which are joint enterprises of the Faculties of Engineering and Applied Science: Centre for Groundwater Management and Hydrogeology, and Centre for Remote Sensing.

The Faculty is also actively involved with the following research centres: The Special Research Centre for Photovoltaic Devices and Systems, the Cooperative Research Centre for Aerospace Structures and the Cooperative Research Centre for Waste Management and Pollution Control.

The School of Civil Engineering consists of five departments: Geotechnical Engineering (foundation engineering, soil mechanics, rock mechanics, concrete technology, and pavement engineering); Engineering Construction and Management (civil engineering systems, engineering economy, project planning and management and civil engineering construction); Structural Engineering (structural analysis and design, solid mechanics, bridge engineering, concrete structures and numerical methods); Transport Engineering (planning, design, and operation of transport systems, statistical analysis, land use and transport modelling,
economic evaluations and environmental impact studies); Water Engineering (hydraulics, hydrology, water resources, waste management and public health engineering). The Centre for Wastewater Treatment is also located within the School. In addition to extensive laboratory facilities on the Kensington campus, the School operates laboratories at King Street, Randwick and King Street, Manly Vale. The latter complex houses the School's Water Research Laboratory and the associated Water Reference Library. The School also uses the Fowlers Gap Arid Zone Research Station for construction camps and data collection for arid zone hydrology.

The School of Computer Science and Engineering is grouped around the following activity areas: Artificial Intelligence, Formal Methods and Software Engineering, Computer Architecture and VLSI Design, Information Science, Algorithms and Programming Techniques, Networks and Operating Systems and Human-Computer Interaction.

The School of Electrical Engineering comprises four departments: Communications (all aspects of theory, applied electronics and engineering relating to communication systems such as telephones, broadcasting and television); Electric Power (electrical machines and generation, distribution and utilisation of electric energy); Electronics (electronic circuits, devices, micro-electronics and application of electronics to such areas as solar power generation); Systems and Control (development of theories for the control of complex systems and the application of these theories including computer simulation).

The School of Mechanical and Manufacturing Engineering consists of five disciplines, which underpin the fundamental areas of the profession and six Directed Programs of industry-oriented cross-disciplinary activity.

The disciplines are: Applied Mechanics (engineering, mechanics and mechanics of solids); Design (conceptual design, machine systems design, optimization and failure-analysis); Fluid and Thermal Engineering (energy utilisation and power generation, refrigeration and air conditioning, gas and liquid handling); Industrial Technology and Management (economic analysis, production planning and control, product and process design, methods engineering and operations research); Mechatronics (interface between mechanical engineering and electronic engineering).

The Directed Programs are: Manufacturing and Automation; Mechanical Building Services; Maintenance Engineering; Energy and Power Systems; Vehicle and Transport Systems; Machine Systems Design.

The School of Surveying areas of study: Satellite Surveying (position determination techniques using satellite signals); Geodetic Surveying (determining the mathematical model of the earth, and its gravity field, and the practice of surveying on the earth’s surface); Hydrographic Surveying (mapping the seabed and waterways for navigation and offshore resource management); Engineering Surveying (the precise surveying for engineering projects); Cadastral Surveying (knowledge of the laws and practices relating to survey of property boundaries); Land Management and Development (environmental assessment for resource management and change of land use); Land Information Management (the use of computer-based information systems of spatially related data for planning purposes); Photogrammetry and Remote Sensing (the use of photographs and remotely sensed images for mapping and resource surveys).

The Centre for Biomedical Engineering is an interdisciplinary unit which promotes and co-ordinates biomedical engineering studies and research being conducted by various schools and departments within the University and its teaching hospitals. Biomedical engineering involves the application of engineering techniques to biomedical problems with particular emphasis on clinical medicine.

The Centre for Groundwater Management and Hydrogeology was established early in 1987 as a research and training unit within the Faculties of Applied Science and Engineering. Its general aims are to research the groundwater problems of strategic national importance and to co-ordinate and develop postgraduate courses and continuing education programs, and to liaise with industry.

The Centre for Photovoltaic Devices and Systems was established in 1991 under the Commonwealth Special Research Centres Scheme. Its function is to carry out research into improved performance, lower cost photovoltaic solar cells and develop a co-ordinated set of activities in the photovoltaic systems area. The Centre is housed in the School of Electrical Engineering.

The Centre for Remote Sensing is a joint enterprise of the Faculties of Applied Science, and Engineering which promotes and co-ordinates remote sensing studies and research being conducted by various schools within the University. Remote sensing is the science of obtaining information about the earth's surface (in particular) using electro-magnetic imaging systems mounted on aircraft and space platforms.

The Centre for Wastewater Treatment was established with a grant provided by the Australian Water Advisory Council. The Centre conducts research in the field of wastewater treatment and offers short courses and a consultancy service for industry. The Faculty is also closely associated with two of the 15 Cooperative Research Centres established under the Commonwealth Government's program of Cooperative Research Centres (CRCs) in 1991.

The CRC for Aerospace Structures provides an Australian focus for the generation of advanced aerospace technologies which fosters the development of an efficient and internationally competitive Australian aerospace industry. (Contact person: Mr J.R. Page, School of Mechanical and Manufacturing Engineering)

The CRC for Waste Management and Pollution Control is developing new approaches which aim to lessen the threat to the environment caused by urban, industrial and agricultural wastes and in the process establish the basis for an environmental management industry. (Contact person: Professor D.H. Pilgrim, School of Civil Engineering).

English Language Requirements

Applicants whose first language is not English or who have not undertaken a previous degree where English was the primary language of instruction are required to provide proof of their competence by presenting acceptable results from one of the following tests or by satisfying the course authority as to their level of proficiency.

<table>
<thead>
<tr>
<th>Minimum Acceptable Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Test of English as a Foreign Language (TOEFL)</td>
<td>550</td>
</tr>
<tr>
<td>2. International English Language Testing Service (IELTS)</td>
<td>5.5</td>
</tr>
<tr>
<td>3. Combined Universities Language Test (CULT)</td>
<td>65%</td>
</tr>
<tr>
<td>4. Indonesia-Australia Language Foundation (IALF)*</td>
<td>Cat 1 or 2</td>
</tr>
</tbody>
</table>

*Cat 3 may be accepted if current English program available.
Research Degrees

Doctor of Philosophy
PhD
This degree is awarded for a thesis considered to be a substantially original contribution to the subject concerned. The degree is becoming a prerequisite for research appointments in government and industrial research and development laboratories. Research for this degree may be taken at, or externally to, the University. However the Faculty recommends that periods of residency at the University totalling at least six months be included in the candidate's research program.

Admission Guidelines: A candidate for registration for the degree of Doctor of Philosophy should hold an honours degree from the University of New South Wales or an honours degree of equivalent standing from another approved university. See also English Language Requirements as detailed earlier under Graduate School of Engineering. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Period of Candidature: The normal period is six academic sessions (full-time) and eight academic sessions (part-time) from the date of enrolment. In special cases the minimum period of registration may be reduced by up to two academic sessions. The maximum period of registration is ten academic sessions (full-time) and twelve academic sessions (part-time). In special cases an extension of these times may be granted.

Master of Engineering/Master of Science/
Master of Surveying
ME/MSc/MSurv
These are research degrees in which a thesis embodies the result of an original investigation, or design, or engineering surveying development. Candidates for the award of the degree of ME and MSurv may be required to carry out a program of advanced study.

Admission Guidelines: A candidate for registration for the degree of Master of Engineering, Master of Science or Master of Surveying should hold a Bachelor's degree from the University of New South Wales or from another approved university. See also English Language Requirements as detailed earlier under Graduate School of Engineering. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Period of Candidature: The normal period is four academic sessions (full-time) and six academic sessions (part-time) from the date of enrolment. In special cases the minimum period of registration may be reduced by up to two academic sessions. The maximum period of registration is six academic sessions (full-time) and ten academic sessions (part-time). In special cases extensions may be granted.

Research degrees may be undertaken in the Faculty of Engineering as follows:

<table>
<thead>
<tr>
<th>Degree</th>
<th>School/Course</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Civil Engineering</td>
<td>1630</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering</td>
<td>1640</td>
</tr>
<tr>
<td></td>
<td>Computer Science and Engineering</td>
<td>1650</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Manufacturing Engineering</td>
<td>1662</td>
</tr>
<tr>
<td></td>
<td>Surveying</td>
<td>1660</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering</td>
<td>1710</td>
</tr>
<tr>
<td>ME</td>
<td>Civil Engineering</td>
<td>2650</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering</td>
<td>2660</td>
</tr>
<tr>
<td></td>
<td>Computer Science and Engineering</td>
<td>2665</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Manufacturing Engineering</td>
<td>2692</td>
</tr>
<tr>
<td>MSurv</td>
<td>Surveying</td>
<td>2720</td>
</tr>
<tr>
<td>MSc</td>
<td>Civil Engineering</td>
<td>2750</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering</td>
<td>2760</td>
</tr>
<tr>
<td></td>
<td>Mechanical and Manufacturing Engineering</td>
<td>2781</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering</td>
<td>2795</td>
</tr>
</tbody>
</table>

Course Work Masters Degrees

Master of Engineering Science/
Master of Environmental Engineering Science/
Master of Surveying Science
MEngSc/MEEnEngSc/MSurvSc
The Master of Environmental Engineering Science allows for a degree to be taken in a specific area of specialisation. The Master of Engineering Science and Master of Surveying Science are Faculty-wide degrees allowing for flexibility of choice between formal course work and research. The schools in the Faculty have developed recommended programs of study leading to specialisation in certain areas.

Candidates who enrolled from 1990 are required to complete a program totalling 30 credits*. Those who first enrolled prior to 1990 including those who are upgrading from a Graduate Diploma must complete 36 credits. A degree may be awarded for formal course work only or for the completion of formal course work and a report on a project depending on the program being offered. The number of credits for a project reports varies amongst schools and centres and between departments within schools and are 9, 12, 15 or 18.

Candidates may undertake interdisciplinary studies and, subject to approval, are able to take subjects from any school in the Faculty, other faculties of the University and other universities or institutions. By means of this system, programs of studies best suited to the needs of the candidates may be selected.

Before enrolment an applicant should submit an intended program for approval by the school or division offering the majority of the credits to ensure that the prerequisite background held is adequate for all subjects including those taken in other schools or institutions.

Admission Guidelines: An acceptable qualification is a degree at Honours level, or at Pass level to a superior standard in a four-year course in an approved discipline. The latter is defined

*See definition of 'credit' under Graduate Subjects later in this section.
as an average of 65% over the last two years of a full-time course (or last three stages of a part-time course) taken in minimum time. If the degree concerned is not in an acceptable discipline, or was of less than four years full-time study, a bridging or qualifying program is required. This is normally arranged by enrolment in the appropriate graduate diploma with the possibility of transferring to the Masters program after completion of requirements prescribed by the Faculty. See also English Language Requirements as detailed earlier under Graduate School of Engineering.

Applicants for admissions to a course of study leading to the award of a Masters degree by course work should apply to the Registrar on the prescribed form at least two calendar months before the commencement of the session in which registration is to begin. It may be necessary to limit entry to some formal courses because of available resources. In such cases, an application may be provisionally accepted 'subject to a place being available'. When a firm offer is made, it is subject to acceptance within one month.

Period of Candidature: The normal period is two academic sessions (full-time) or four academic sessions (part-time) from the date of enrolment. The maximum period of candidature is four academic sessions (full-time) and eight academic sessions (part-time). In special cases an extension of time may be granted. A candidate is not permitted to continue in a course if the credit value of the subjects failed totals more than six.

Master of Biomedical Engineering MBlimedE

This degree is primarily obtained through course work but includes a project report conducted in either a hospital or other institution. The course of study offers scope for original research into the application of engineering principles and technology to medical problems. Candidates must complete a program totalling 60 credits, 40 of which must be for the study of subjects at graduate level.

Admission Guidelines: An acceptable qualification is a degree at Honours level, or at Pass level to a superior standard in a four-year course in an approved discipline. The latter is defined as an average of 65% over the last two years of a full-time course (or last three stages of a part-time course) taken in minimum time. If the degree concerned is not in an acceptable discipline, or was of less than four years full-time study, a bridging or qualifying program is usually required. This is normally arranged by enrolment in the appropriate graduate diploma with the possibility of transferring to the Masters program after completion of requirements prescribed by the Faculty. See also English Language Requirements as detailed earlier under Graduate School of Engineering.

Applicants for admission to a course of study leading to the award of a coursework Masters degree should apply to the Registrar on the prescribed form at least two calendar months before the commencement of the session in which registration is to begin. It may be necessary to limit entry to some formal courses because of availability of resources. In such cases, an application may be provisionally accepted 'subject to a place being available'. When a firm offer is made, it is subject to acceptance within one month.

Period of Candidature: The normal period is four academic sessions (full-time) or six academic sessions (part-time) from the date of enrolment. The maximum period of candidature is eight academic sessions (full-time) and ten academic sessions (part-time). In special cases extensions may be granted.

Master of Information Science/ Master of Computer Science MInfSc/MCompSc

These degrees allow for flexibility of choice between formal coursework and research.

Candidates are required to complete a program totalling 36 and 48 credits* for formal coursework for the MInfSc, MCompSc degrees respectively. Alternatively, a degree may be awarded for the completion of formal coursework and a report on a project. The number of credits for a project report is 18.

Candidates may undertake interdisciplinary studies after having met the requirements of the specialisation and, subject to approval, are able to take subjects from any school in the Faculty, other faculties of the University and other universities or institutions. By means of this system, programs of studies best suited to the needs of the candidate may be selected.

Admission Guidelines: An acceptable qualification is a degree at Honours level, or at Pass level to a superior standard in a four-year course in an approved discipline. The latter is defined as an average of 65% over the last two years of a full-time course (or last three stages of a part-time course) taken in minimum time. Candidates for admission are selected on merit. If the degree concerned is not in an acceptable discipline, or was of less than four years full-time study, a bridging or qualifying program may be required. This is normally arranged by enrolment in the appropriate graduate diploma with the possibility of transferring to the Masters program after completion of requirements prescribed by the Faculty. See also English Language Requirements as detailed earlier under Graduate School of Engineering.

In the case of the degree of MCompSc, students who consider that they have an extensive knowledge of computing may request exemption of 12 credits of coursework.

Applicants for admission to a course of study leading to the award of a coursework Masters degree should apply to the Registrar on the prescribed form at least two calendar months before the commencement of the session in which registration is to begin. It may be necessary to limit entry to some formal courses because of availability of resources. In such cases, an application may be provisionally accepted 'subject to a place being available'. When a firm offer is made, it is subject to acceptance within one month.

Period of Candidature: The normal period for the degrees are three sessions full-time for the degree of MInfSc and 4 sessions full-time for the degree of MCompSc if the full 48 credits are required. The maximum period of candidature is six academic sessions for both degrees. In special cases an extension of time may be granted. A candidate is not permitted to continue in a course if the credit value of the subjects failed totals more than six.

*See definition of ‘credit’ under Graduate Subjects later in this section.

Courses of Study

Courses of study leading to the award of course work Masters degrees may be undertaken in the Faculty as follows:

<table>
<thead>
<tr>
<th>Degree/Code</th>
<th>School/Course</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCompSc</td>
<td>Electrical Engineering</td>
<td>8501</td>
</tr>
<tr>
<td></td>
<td>Industrial Engineering</td>
<td>8531</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering</td>
<td>8541</td>
</tr>
</tbody>
</table>

86
Subject Identification Scheme

The first digit in the numeric suffix of all subject identifiers for subjects offered by the schools and centres in the Faculty of Engineering indicates the level of the subject and the value ‘9’ in this position is reserved for graduate subjects.

Course Work Programs

Detailed information is available from the schools offering the courses.

8501

Electrical Engineering

Master of Engineering Science (MEngSc)

- Candidates may commence in Session 1 or Session 2 and must possess an appropriate level of knowledge for the program subjects chosen.
- All candidates must be registered in at least one of the specific programs offered by the School of Electrical Engineering. Each Program Co-ordinator will advise if applicants are adequately qualified to undertake the proposed subjects and must approve the chosen program.

All candidates must register in one of the following major areas and in at least one of its programs:

Communications

<table>
<thead>
<tr>
<th>Compulsory subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9340 Communication Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ELECTRIC9353 Microwave Circuits: Theory and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9354 Microwave and Optical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9338 Television Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9341 Signal Processing 1 — Fundamental Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Specialist Programs

Communications

1. Communication Electronics
 - Normally 12 credits of course work and an 18 credit project.
 - One of the five elective subjects may be chosen from outside this program.
2. Digital Communication and Systems
- Normally 12 credits of coursework and an 18 credit project.
- At least three subjects must be taken from the following list and the remaining subjects from other graduate programs within the Department and School.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9336 Digital Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9337 Data Networks 2</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9338 Television Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343 Principles of Digital Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9347 Digital Modulation</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Microwave and Optical Communications
- Normally 12 credits of coursework and an 18 credit project.
- One of the three elective subjects may be chosen from outside this program.

Compulsory subjects
- ELEC9350 Theory of Optical Fibres and Optical Signal Processing 3
- ELEC9351 Propagation and Transmission of Electromagnetic Waves 3
- ELEC9354 Microwave and Optical Devices 3

Elective subjects
- ELEC9352 Antenna Design and Applications 3
- ELEC9353 Microwave Circuits: Theory and Techniques 3
- ELEC9355 Optical Communications Systems 3

4. Signal Processing
- Normally 12 credits of coursework and an 18 credit project.
- One of the four elective subjects may be chosen from outside the program.

Compulsory subjects
- ELEC9341 Signal Processing 1 – Fundamental Methods 3
- ELEC9342 Signal Processing 2 – Advanced Techniques 3

Elective subjects
- ELEC9340 Communications Electronics 3
- ELEC9343 Principles of Digital Communications 3
- ELEC9350 Theory of Optical Fibres and Optical Signal Processing 3
- ELEC9370 Digital Image Processing Systems 3
- MATH5054 Advanced Mathematics for Electrical Engineers 3

5. Relevant Subjects from other areas and disciplines

Relevant coursework subjects from other areas and disciplines are listed below. A limited number of credits from this group may be taken as part of an Electric Power program. Subject to the approval of the Postgraduate Advisor, a limited number of other elective subjects offered in the School of Electrical Engineering may also be included in the program.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9201 Power System Planning and Economics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9202 Power System Operation, Control and Planning</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9222 Power Engineering Seminars (Occasional Elective)</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9221 Protection of Power Equipment (Occasional Elective)</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9215 Fields and Materials</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9214 Power System Equipment</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9222 Power Engineering Seminars (Occasional Elective)</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9221 Protection of Power Equipment (Occasional Elective)</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9216 Electrical Drive Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9240 Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9221 Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9504 Solar Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9505 Solar Cells</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9401 Computer Control Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9351 Propagation and Transmission of EM Radiation</td>
<td>3</td>
</tr>
<tr>
<td>MECH9740 Power Plant Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MECH9741 Energy Conservation and Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>MECH9742 Power Production Assessment</td>
<td>3</td>
</tr>
<tr>
<td>MANF9400 Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9660 Energy Modelling, Optimization and Accounting</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9213 Introduction to Safety Engineering M</td>
<td>3</td>
</tr>
</tbody>
</table>

Electronics
- Normally 12 or 18 credits coursework and correspondingly 18 or 12 credit project.

There are no compulsory subjects, but at least 3 subjects should be chosen from one of the programs shown below.

- The remaining three subjects may be chosen from the alternative program list or outside these lists.
1. Solid State Devices

ELEC9354 Microwave and Optical Devices 3
ELEC9501 Advanced Semiconductor Devices 3
ELEC9502 Integrated Circuit Technology 3
ELEC9504 Solar Energy Conversion 3
ELEC9505 Solar Cells – Operating Principles, Technology and System Applications 3

2. Microelectronics

COMP9215 VLSI Systems Architecture Design 3
ELEC9340 Communication Electronics 3
ELEC9501 Advanced Semiconductor Devices 3
ELEC9502 Integrated Circuit Technology 3
ELEC9503 Integrated Circuit Design 3

Additional elective subjects for both programs:

COMP9221 Microprocessor Systems 3
ELEC4532 Integrated Digital Systems 3
ELEC9341 Signal Processing 1 – Fundamental Methods 3
ELEC9342 Signal Processing 2 – Advanced Techniques 3
ELEC9343 Principles of Digital Communications 3
ELEC9353 Microwave Circuits: Theory and Techniques 3

3. Systems and Control

1. Digital Systems and Control

- Normally 18 credits of course work and a 12 credit project.

Compulsory subjects

ELEC9401 Computer Control Systems 1 3
ELEC9402 Computer Control Systems 2 3
ELEC9403 Real Time Computing and Control 3
ELEC9404 Topics in Digital Control 3

Elective subjects

COMP9221 Microprocessor Systems 3
ELEC9342 Signal Processing 2 – Advanced Techniques 3
ELEC9405 Advanced Control Topics 3
ELEC9410 Robotics, Automation and Productivity Technology 3
ELEC9415 Optimization and Optimal Control 3
ELEC9416 Non-Linear Systems and Simulation 3

2. Cybernetic Engineering and Advanced Robotics

- Normally 9 credits of course work and a 12 credit project.
- Remaining 9 credits may be taken from the elective list or other programs and subjects.

Compulsory subjects

ELEC9407 Cybernetic Engineering 3
ELEC9409 Cybernetic, Machine and Robot Vision 3
ELEC9410 Robotics, Automation and Productivity Technology 3

Elective subjects

COMP9221 Microprocessor Systems 3
ELEC9342 Signal Processing 2 – Advanced Techniques 3

8508

Computer Science and Engineering

Master of Information Science

Candidates are required to complete a program totalling at least 36 credits and this may be taken in one of two ways:

i. Major Project Option – 18 credits of coursework and an 18 credit Project, or

ii. Coursework Option – 36 credits all of which will be associated with subjects although 6 credits will relate to a minor project or design.

The typical duration of the course is three sessions full-time or five sessions part-time.

i. Major Project Option

Compulsory Subjects

At least one of:

COMP9314 Advanced Data Base Management 1 3
COMP9315 Advanced Data Base Management 2 3

and

COMP9511 Human Interface Computing 1 3
COMP9514 Advanced Decision Theory for Information Science 3

Students will take at least one of:

LIBS0817 Information Storage and Retrieval 3
COMP9614 Linguistics 3

Students will take at least one of:

GEOG9240 Geographic Information Systems 3
SURV9604 Land Information Systems 3
REMO9580 Design Analysis in Remote Sensing 3

It is necessary that subjects of at least three credits be taken in one of the areas of expert systems, knowledge-based systems, artificial intelligence, or decision support systems.

ii. Coursework Option

Compulsory subjects:

At least one subject from each of the above subject groupings plus:

COMP9311 Introduction to Data Base Systems (For students with limited knowledge of Data Bases) 3
COMP9596 Advanced Topics in Information Science 6
ELEC9336 Digital Communication Networks 1 3

The remaining three subjects may be chosen from subjects offered in the specialisations:

Computer Science/Computer Engineering
Digital Communications and Systems
Signal Processing
Cybernetic Engineering and Advanced Robotics
Engineering

It could also be appropriate to select subjects dealing with behavioural aspects of judgement and choose from the programs offered by other schools.

8531
Industrial Engineering

8541
Mechanical Engineering

Master of Engineering Science
MEngSc

A major field of study is required to be nominated and two-thirds of the 30 credits required for the degree must be taken in that major field. (Examples of major fields are applied mechanics, fluid mechanics, manufacturing management, mechatronics and design. Consult School Advisers for further details.)

All candidates take a 12 credit project on a topic in their major field.

Formal lecture subjects are not restricted to the School of Mechanical and Manufacturing Engineering, Faculty of Engineering or this University, but two-thirds of all credits must be taken at the University of New South Wales.

In consultation with their School Adviser, candidates at enrolment put together a program which is based on these requirements, but which may be modified from time to time in the light of changes in availability of subjects. These requirements also apply to a number of specialist courses which are offered by the School of Mechanical and Manufacturing Engineering and which are described below. Some of these specialist programs may not run if the resources are not available. The structure of the programs is currently under review.

Specialist Programs

1. Computer Integrated Manufacturing

12 credits of core subjects:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF9400</td>
<td>Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9520</td>
<td>Computer Aided Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MANF9541</td>
<td>Computer Aided Design for Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MANF9460</td>
<td>Computer Integrated Manufacturing</td>
<td>3</td>
</tr>
</tbody>
</table>

and 12 credit project

MANF9010 Research project

The remaining six credits may be selected from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH9221</td>
<td>Industrial Robotics</td>
<td>3</td>
</tr>
<tr>
<td>MECH9410</td>
<td>Finite Element Applications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9403</td>
<td>Real Time Computing and Control</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9409</td>
<td>Robot Vision</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9410</td>
<td>Robotics, Automation and Productivity Technology</td>
<td>3</td>
</tr>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MANF9410</td>
<td>Inspection and Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>MANF9500</td>
<td>Computer Aided Programming for Numerical Control</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Industrial Management

3 credits of core subjects:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF9400</td>
<td>Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9040</td>
<td>Industrial Management Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

and 12 credit project

MANF9010 Research project

At least 6 credits selected from the following list of priority subjects:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MANF9640</td>
<td>Decision Support Systems</td>
<td>3</td>
</tr>
<tr>
<td>MANF9650</td>
<td>Operations Research</td>
<td>6</td>
</tr>
</tbody>
</table>

and the remaining 9 credits may be selected from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF9601</td>
<td>Economic Decisions in Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>MANF9440</td>
<td>Management of Distribution Systems</td>
<td>3</td>
</tr>
<tr>
<td>MANF9420</td>
<td>Production and Inventory Control</td>
<td>2</td>
</tr>
</tbody>
</table>

Before enrolling in the program, a student should have had one year's relevant industrial experience and have access to industry for his/her project topic.

3. Operations Research

Prerequisites:

i. 2 years of University level Mathematics

ii. minimum 28 hours University level course in Probability and Statistics (or enrolment in MATH2839 Statistics SM or equivalent as a co-requisite)

iii. minimum 40 hours University level course in Engineering Economic Analysis (or enrolment in MANF9601 Economic Decisions in Industrial Management as a co-requisite)

iv. competence in computer programming (or enrolment in MECH1500 Computing IM as a co-requisite).

9 credits of core subjects:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MANF9620</td>
<td>Operations Research</td>
<td>6</td>
</tr>
</tbody>
</table>
MANF9049 Operations Research Seminar and 12 credit project
MANF9010 Research project
The remaining 9 credits may be selected from:
MANF9000 Industrial Management
MANF9650 Decision Support Systems
MANF9320 Ergonomics
MANF9310 Factory Design and Layout
MANF9300 Methods Engineering
MANF9210 Value Analysis Engineering
MANF9450 Management Simulation
MANF9610 Decision Theory for Industrial Management
MANF9660 Energy Modelling, Optimisation and Energy Accounting
MANF9601 Economic Decisions in Industrial Management
MANF9330 Simulations in Operations Research
MANF9420 Production and Inventory Control
MANF9840 Linear Programming
MANF9850 Nonlinear Programming
MANF9630 Large Scale Optimization in Industry
MANF9870 Dynamic Programming

4. Refrigeration and Air Conditioning
12 credits of core subjects:
MECH9751 Refrigeration and Air Conditioning 1
MECH9752 Refrigeration and Air Conditioning 2
MECH9753 Refrigeration and Air Conditioning Design 1
MECH9754 Refrigeration and Air Conditioning Design 2

and 12 credit project
MECH9010 Research project

The remaining 6 credits may be selected from:
MECH9710 Numerical Fluid Dynamics and Heat Transfer
MECH9321 Acoustic Noise 1
MECH9322 Acoustic Noise 2
MECH9741 Energy Conservation and System Design
MECH9730 Two Phase Flow and Heat Transfer
MECH9720 Solar Thermal Energy Design
MECH9711 Analysis of Heat Transfer
MECH9757 Ambient Energy Air Conditioning
SAFE9232 Introduction to Occupational Health and Safety Law
SAFE9583 Ventilation
or such other subjects (based on availability) as may be approved by the Head of School.

5. Industrial Automation
9 credits of core subjects must be selected from:
MECH9201 Digital Fundamentals for Mechanical Engineers
MECH9202 Microprocessor Fundamentals
MECH9203 Industrial Applications for Microprocessors
MECH9221 Industrial Robots

6. Advanced Analysis for Design
12 credits of core subjects:
MECH4120 Design Technology
MECH4130 Computer Aided Engineering Design (or MANF9630)
MECH9460 Experimental Stress Analysis
CIVL9731 Project Management (or CIVL9732)
CIVL9732 Advanced Project Management Theory (or CIVL9731)
MANF9210 Value Analysis Engineering
MANF9601 Economic Decisions in Industrial Management
MANF9630 Large Scale Optimization in Industry (or MECH4130)
or other subjects approved by the Head of School.

8612 Civil Engineering

Master of Engineering Science MEngSc

The School of Civil Engineering offers a large number of graduate subjects which allow the flexibility of many combinations to provide relevant groupings both in an academic and professional sense. The main technical groupings are:

- engineering construction and management
- geotechnical engineering
- structural engineering
- transport engineering
- water engineering

All candidates are required to undertake a project with the other credits being obtained from formal course work. Full details of preferred programs in the various specialist areas are available from the School.
Master of Engineering Science
MEngSc

8085 Waste Management

Candidates are required to complete a course totalling at least 30 credits, made up of compulsory subjects, elective subjects and a project. The degree may be obtained internally on a full time (normally 2 sessions) or part time (normally 4 sessions) basis. An external course program is also offered (normally over 4 sessions) to students outside Sydney with resource material posted to students and evaluation made on written assignments and examinations.

Candidates are enrolled as MEngSc or MAppSc degree students depending on their previous qualifications, experience and course content.

Internal Program

<table>
<thead>
<tr>
<th>Compulsory Subjects</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9872 Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9881 Hazardous Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9884 Environmental Engineering Science 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9886 Environmental Engineering Science 2</td>
<td>3</td>
</tr>
<tr>
<td>FUEL5880 Unit Operations in Wastewater Sludge and Solids Management</td>
<td>3</td>
</tr>
</tbody>
</table>

| Project (MEngSc) | CIVL9909 | 9 |

| Elective Subjects | GEOL9054 | 9 |

(2 of the following for MEngSc, 3 for GradDip)

<table>
<thead>
<tr>
<th>Subject Name and Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9887 Advanced Topics in Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9857 Sewage Treatment and Disposal</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9020 Geopollution Management</td>
<td>3</td>
</tr>
<tr>
<td>MINE1524 Mining Conservation</td>
<td>3</td>
</tr>
<tr>
<td>MINE5355 Mine Fill Technology</td>
<td>2</td>
</tr>
<tr>
<td>FUEL5920 Atmospheric Pollution Control</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9870 Hydraulics and Design of Water and Wastewater Treatment Plants</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9011 Hydrology G</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9060 Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9543* Management of Dangerous Materials</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9242 Human Behaviour and Safety Science</td>
<td>3</td>
</tr>
<tr>
<td>CEIC5630 Industrial Water and Wastewater Engineering</td>
<td>3</td>
</tr>
<tr>
<td>GEOG3042 Environmental Impact Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

| Project (MAppSc) | CIVL8803 | 3 |

Notes: MEngSc students undertake a 9 credit project to make 30 credits and GradDip students complete a 3 credit project to make 24 credits.

Civil subjects starting with 8 are the external equivalents of the internal subjects starting with a 9.

* Subject to approval of course coordinator.

External Program

| Subject Name and Code | CIVL8855 | 3 |

<table>
<thead>
<tr>
<th>Subject Name and Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL8857 Sewage Treatment and Disposal</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8884 Environmental Engineering Science 1</td>
<td>3</td>
</tr>
<tr>
<td>FUEL5881 Unit Operations in Wastewater, Sludge and Solids Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8872 Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8881 Hazardous Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9320 Geopollution Management</td>
<td>3</td>
</tr>
</tbody>
</table>

| Project | CIVL9909 | 9 |

8615 Civil Engineering

Master of Environmental Engineering Science
MEnvEngSc

Candidates are required to complete a program totalling 30 credits. The program is made up of compulsory subjects, selective subjects and a 9 credit project.

<table>
<thead>
<tr>
<th>Compulsory Subjects</th>
<th>CIVL9884</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9885 Environmental Engineering Science 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9888 Environmental Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9889 Environmental Law and Economics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9909 Project</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Subject Groupings</th>
<th>CIVL9851</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Management (Liquids)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9857 Sewage Treatment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9858 Water Quality Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEIC5630 Industrial Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste Management (Solids)</th>
<th>CIVL9872</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9881 Hazardous Waste Treatment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9887 Advanced Topics in Waste Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAFE9543 Management of Dangerous Materials</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Engineering</th>
<th>CIVL9858</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9875 Hydrological Processes</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9876 Applied Hydrological Modelling</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9880 Groundwater Modelling</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9835 Coastal Engineering 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9836 Coastal Engineering 2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geotechnical Engineering</th>
<th>GEOL9030</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL9060 Environmental Geology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOL9080 Groundwater Geophysics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Graduate Study: Course Outlines

GEOL9320 Geopollution Management 3
CIVL9788 Site Investigation 3

Transport Engineering
CIVL9407 Transport Systems Design (Non-Urban) 3
CIVL9408 Transport Systems Design (Urban) 3

Management
CIVL9702 Project Planning and Control 3
CIVL9704 Quantitative Engineering Management 3
CIVL9705 Engineering Management Practice 3
CIVL9706 Management of People 3
CIVL9710 Engineering Risk Management 3
CIVL9731 Project Management 3

Land and River Management
GEOG9310 River Management
GEOG9320 Soil Degradation and Conservation
GEOG9300 Vegetation Management

Subjects offered within the MEngSc degree program are also available to students enrolled for a MEnvEngSc degree, subject to the approval of the course coordinator.

8641 Remote Sensing

Master of Engineering Science
MEngSc
Candidates are required to complete a course totalling at least 30 credits, made up of compulsory subjects, elective subjects and a project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject, approved by the appropriate Head of School. The degree will normally comprise one year of full-time study (two sessions of 15 credits) or two years of part-time study.

Compulsory subjects
GEOG9150 Remote Sensing Applications 3
SURV9600 Principles of Remote Sensing 3
SURV9605 Ground Investigations for Remote Sensing 3
REMO9580 Image Analysis in Remote Sensing 3

Project in Remote Sensing† 12

†The subject number for these subjects varies according to the school in which the candidate is enrolled.

Elective subjects
Candidates may include additional subjects selected from the following listed elective subjects, or from other relevant subjects offered within the University, as approved by the appropriate Head of Schools.
REMO9581 Microwave Remote Sensing 3
ELEC9370 Digital Image Processing Systems 3
ELEC9408 Computer Display Systems and Interactive Instrumentation 3
COMP1011 Computing 1A 4
COMP1021 Computing 1A 3
GEOG9210 Computer Mapping and Data Display 3
GEOG9240 Geographic Information Systems 3
SURV9602 Remote Sensing Procedures 3
SURV9213 Physical Meteorology 3
SURV9604 Land Information Systems 3

8651 Surveying

Master of Surveying Science
MSurvSc
Programs of study leading to the degree of MSurvSc are offered by the School of Surveying in a range of topics including:
- advanced surveying
- geodesy
- photogrammetry
- land development and management
- land and geographic information systems
Candidates are allowed a wide choice in selecting programs. Subjects can be selected to suit individual student needs and typical programs can be supplied by the School on request. The program of study must total at least 30 credits. One credit is normally equal to attendance for one hour per week for one session but some senior undergraduate subjects may be taken for partial credit towards the degree. The program normally includes a Project of 12 credits. Examples of suitable external subjects are electronic computing, statistics, oceanography, and a range of others.

Master of Surveying Science
MSurvSc in Land and Geographic Information Systems
Candidates are required to complete a course totalling at least 30 credits made up of compulsory subjects, elective subjects and a project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject approved by the appropriate Head of School. The course normally comprises one year of full-time study or two years of part-time study.

Compulsory subjects
COMP9311 Data Base Systems 3
GEOG9240 Geographic Information Systems 3
SURV9532 Computer-Assisted Mapping 3
SURV9604 Land Information Systems 3

Elective subjects
GEOG9150 Remote Sensing Applications 3
GEOG9210 Computer Mapping and Data Display 3
GEOG9250 Special Topic in Geography 3
REMO9580 Image Analysis in Remote Sensing 3
LIBS0815 Economics of Information Systems 3
LIBS0817 Information Storage and Retrieval Systems 6
ELEC9336 Digital Communication Networks 3
SURV9107 Special Topic in Surveying B 3
The Masters degree program in Land and Geographic Systems is offered in both the Faculty of Engineering and the Faculty of Applied Science. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.

8660 Biomedical Engineering

Master of Biomedical Engineering MBiomedE

The program of study must total 60 credits and include at least 40 credits at graduate level.

Strand A subjects are directed to candidates with an engineering/physical sciences background and Strand B to those with a medical/biological sciences background. Selection of subjects is not limited to those listed below: relevant approved subjects from other areas may be undertaken. A research project is compulsory and may be undertaken concurrently with other subjects. An 18 credit Project Report is the normal requirement.

Session 1 (March-June)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPH2112</td>
<td>Physiology (1 full year) (Strand A)</td>
<td>C 12</td>
</tr>
<tr>
<td>ANAT2111</td>
<td>Introductory Anatomy (Strand A)</td>
<td>HR 6</td>
</tr>
<tr>
<td>BIOM9101</td>
<td>Mathematical Modelling for Biomedical Engineers (Strand B)</td>
<td>C 4</td>
</tr>
<tr>
<td>BIOM9501</td>
<td>Computing for Biomedical Engineers (Strand B)</td>
<td>HR 4</td>
</tr>
<tr>
<td>ELEC9411</td>
<td>Introductory Physiology for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9028</td>
<td>Radiation Physics</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9040</td>
<td>Analogue Electronics for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9060</td>
<td>Biomedical Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9510</td>
<td>Introductory Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9551</td>
<td>Biomechanics of Physical Rehabilitation</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9561</td>
<td>Mechanical Properties of Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9601</td>
<td>Biomedical Applications of Microcomputers 1</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9621</td>
<td>Biological Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9701</td>
<td>Dynamics of the Cardiovascular System</td>
<td>3</td>
</tr>
</tbody>
</table>

Session 2 (July-November)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPH2112</td>
<td>Physiology 1 (continued)</td>
<td>C 2</td>
</tr>
<tr>
<td>BIOM9010</td>
<td>Biomedical Engineering Practice</td>
<td>2</td>
</tr>
<tr>
<td>BIOM9012</td>
<td>Biomedical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9027</td>
<td>Medical Imaging</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9050</td>
<td>Microprocessors and Circuit Design for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9311</td>
<td>Mass Transfer in Medicine</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9321</td>
<td>Physiological Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9332</td>
<td>Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9541</td>
<td>Mechanics of the Human Body</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9602</td>
<td>Biomedical Applications of Microcomputers 2</td>
<td>3</td>
</tr>
</tbody>
</table>

8680 Computer Science and Engineering

Master of Computer Science MCompSc

Candidates are required to complete a course totalling at least 48 credits but those who consider that they have extensive knowledge of computing may request exemption from 12 credits of Level 1 subjects.

The program of study may be taken in one of two ways:

Project Option

- 18 credit project COMP9918
- 12 credits from Level 1 subjects
- at least 9 credits from Level 2 subjects
- remaining subjects to be chosen from Computer Science Level 3 electives

Coursework Option

- 12 credit Level 1 subjects
- 12 credits from Level 2 subjects
- 12 credits from Computer Science Level 3 subjects
- remaining subjects to be chosen from Computer Science or other specialisations subject to approval

Level 1 Subjects

- COMP9021 Introduction to Computer Science
- COMP9022 Digital System Structures
- COMP9023 Concurrent and Functional Programming
- COMP9024 Data Structures, File Systems and Data Bases

Level 2 Subjects

- COMP9101 Design and Analysis of Algorithms
- COMP9102 Compiling Techniques and Programming Languages
- COMP9211 Computer Organisation and Design
- COMP9221 Microprocessor Systems
- COMP9415 Computer Graphics
There may be necessary to limit entry because of available resources. In such cases, an application may be provisionally accepted 'subject to a place being available'. When a firm offer is made, it is subject to acceptance within one month.

Period of Candidature: The normal period is two academic sessions (full-time) or four academic sessions (part-time) from the date of enrolment with the exception of the Computer Science Graduate Diploma specialisation where the normal period is three academic sessions (full-time) or six academic sessions (part-time). The maximum period of candidature is four academic sessions (full-time) and six academic sessions (part-time). In special cases extensions may be granted. A candidate is not permitted to continue in a course if the credit value of the subjects failed totals more than six.

Courses of study leading to the award of a graduate diploma may be undertaken in the Faculty of Engineering as follows:

School/Course

<table>
<thead>
<tr>
<th>Graduate Diploma in Engineering:</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering</td>
<td>5462</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>5459</td>
</tr>
<tr>
<td>Waste Management**</td>
<td>5459*</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>5458</td>
</tr>
<tr>
<td>Computer Science</td>
<td>5452</td>
</tr>
<tr>
<td>Information Science</td>
<td>5453</td>
</tr>
<tr>
<td>Computer Education</td>
<td>5464</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>5455</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>5456</td>
</tr>
<tr>
<td>Graduate Diploma in Surveying*</td>
<td>5496</td>
</tr>
<tr>
<td>Graduate Diploma in Remote Sensing**</td>
<td>5491</td>
</tr>
</tbody>
</table>

*The Graduate Diploma in Waste Management is offered in both the Faculty of Engineering and the Faculty of Applied Science. Entry into either Faculty depends upon the background of the applicant and the orientation of the proposed program. Graduate Diploma is available as an external course program to students living outside Sydney, with course material posted to students and evaluation made on written assignments and examinations.

**The Graduate Diploma in Remote Sensing is offered in both the Faculty of Engineering and the Faculty of Applied Science. Entry into either Faculty depends upon the background of the applicant and the orientation of the proposed program.

Further details of the recommended programs of study may be obtained from the course authorities concerned.

Subjects available in the Faculty of Engineering are listed at the end of this section. However, not all electives are offered in any particular year. Subjects available by tape correspondence as well as all subject descriptions, appear later in this handbook.

Graduate Subjects

The subjects which may be available for a candidate proceeding to the award of the degree of Master of Biomedical Engineering, Master of Computer Science, Master of Engineering Science, Master of Environmental Engineering
Many graduate subjects assume that students have prior, or preliminary, knowledge of the area of study. It is the responsibility of students to acquaint themselves with this level of assumed prior knowledge and take steps, if necessary, to obtain it. This may, for example, involve a course of preparatory reading before commencing the subject.

In some cases the assumed level of knowledge for a specific subject is indicated in this Handbook by the statement of assumed knowledge. This is intended as a guide to the assumed prior knowledge and often uses the description of other subjects in the Handbook (graduate and undergraduate) to indicate the content and level which the lecturer will assume. Students who are in doubt as to the adequacy of their preparation should contact the lecturer concerned and discuss the matter. The lecturer in charge of a subject has the authority to decide whether or not the student has the appropriate level of assumed knowledge.

Civil Engineering

Department of Transport Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9402</td>
<td>Transport, Environment, Community Interaction</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9403</td>
<td>Theory of Land Use Transport Interaction</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9405</td>
<td>Urban Transport Planning Practice</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9407</td>
<td>Transport System Design Non-Urban</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9408</td>
<td>Transport System Design Urban</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9410</td>
<td>Highway Engineering Practice</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9412</td>
<td>Economics for Transportation Studies</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9414</td>
<td>Transport Systems Part 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9415</td>
<td>Transport Systems Part 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9416</td>
<td>Traffic Engineering</td>
<td>6</td>
</tr>
<tr>
<td>CIVL9417</td>
<td>Transport and Traffic Flow Theory</td>
<td>6</td>
</tr>
<tr>
<td>CIVL9418</td>
<td>Statistics for Transport Studies Part 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9419</td>
<td>Statistics for Transport Studies Part 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9420</td>
<td>Special Topic in Transport Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Department of Engineering

Construction and Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9701</td>
<td>Economic Decision Making in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9702</td>
<td>Project Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9704</td>
<td>Quantitative Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9705</td>
<td>Engineering Management Practice</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9706</td>
<td>Management of People</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9710</td>
<td>Engineering Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9714</td>
<td>Special Topic in Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9723</td>
<td>Construction Design</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9724</td>
<td>Construction Engineering and Technology</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9725</td>
<td>Engineering Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9726</td>
<td>Legal Studies and Professional Practice</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9727</td>
<td>Construction Planning and Estimating</td>
<td>6</td>
</tr>
<tr>
<td>CIVL9728</td>
<td>Special Topic in Construction</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9731</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9732</td>
<td>Masonry Construction Design and Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Department of Geotechnical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9753</td>
<td>Soil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9776</td>
<td>Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9777</td>
<td>Numerical Methods in Geomechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9781</td>
<td>Advanced Concrete Technology</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9783</td>
<td>Pavement Materials</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9784</td>
<td>Pavement Design</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9785</td>
<td>Pavement Evaluation and Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9786</td>
<td>Industrial and Heavy Duty Pavements</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9788</td>
<td>Site Investigations</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9790</td>
<td>Stability of Slopes</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9791</td>
<td>Foundation Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9792</td>
<td>Foundation Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9793</td>
<td>Geomechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Department of Structural Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9802</td>
<td>Elastic Stability 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9803</td>
<td>Elastic Stability 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9804</td>
<td>Vibration of Structures 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9805</td>
<td>Vibration of Structures 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9806</td>
<td>Prestressed Concrete 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9807</td>
<td>Prestressed Concrete 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9809</td>
<td>Reinforced Concrete 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9810</td>
<td>Reinforced Concrete 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9814</td>
<td>Analysis of Plates and Shells</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9817</td>
<td>Experimental Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9818</td>
<td>Bridge Design 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9819</td>
<td>Bridge Design 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9820</td>
<td>Structural Analysis and Finite Elements 1 (SAFE 1)</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9821</td>
<td>Structural Analysis and Finite Elements 2 (SAFE 2)</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9822</td>
<td>Steel Structures 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9823</td>
<td>Steel Structures 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Department of Water Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9830</td>
<td>Hydromechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9831</td>
<td>Closed Conduit Flow</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9832</td>
<td>Pipe Network and Transients</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9833</td>
<td>Free Surface Flow</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9835</td>
<td>Coastal Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9836</td>
<td>Coastal Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9847</td>
<td>Water Resources Policy</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9848</td>
<td>Water Resource System Design</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9849</td>
<td>Irrigation</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9851</td>
<td>Unit Operations in Public Health Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9852</td>
<td>Water Distribution and Sewage</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9855</td>
<td>Water and Wastewater</td>
<td>3</td>
</tr>
</tbody>
</table>

Credits

96
CIVL9856 Water Treatment* Credits
CIVL9857 Sewage Treatment and Disposal* 3
CIVL9858 Water Quality Management 3
CIVL9860 Investigation of Groundwater Resources 1 3
CIVL9861 Investigation of Groundwater Resources 2 3
CIVL9862 Fluvial Hydraulics 3
CIVL9863 Estuarine Hydraulics 3
CIVL9868 Public Health Science 3
CIVL9870 Hydraulics and Design of Water and Wastewater Treatment Plants 3
CIVL9871 Water Supply and Sanitation in Developing Countries 3
CIVL9872 Solid Waste Management 3
CIVL9875 Hydrological Processes 3
CIVL9876 Applied Hydrological Modelling 3
CIVL9877 Flood Design 1 3
CIVL9878 Flood Design 2 3
CIVL9880 Groundwater Modelling 3
CIVL9881 Hazardous Waste Management 3
CIVL9884 Environmental Engineering Science 1 3
CIVL9885 Environmental Engineering Science 2 3
CIVL9886 Environmental Engineering Science 3 3
CIVL9887 Advanced Topics in Waste Management 3
CIVL9888 Environmental Management and Economics 3
CIVL9889 Legislative Aspects of the Environment 3

Other Subjects
CIVL9901 Special Topic in Civil Engineering 3
CIVL9902 Special Topic in Civil Engineering 3
CIVL9909 Project 9
CIVL9915 Project Report 15

*Students specialising in Public Health Engineering normally study BIOT7100 Biological Principles and BIOT7030 Biotechnology in the School of Biotechnology.

Computer Science and Engineering

COMP9021 Introduction to Computer Science 3
COMP9022 Digital System Structures 3
COMP9023 Concurrent and Functional Programming 3
COMP9024 Data Structures, File Systems and Data Bases 3
COMP9101 Design and Analysis of Algorithms 3
COMP9102 Compiling Techniques and Programming Languages 3
COMP9114 Formal Specification 3
COMP9115 Programming Languages Fundamental Concepts 3
COMP9201 Operating Systems 3
COMP9211 Computer Organisation and Design 3
COMP9214 Computer Architectures 3
COMP9215 VLSI System Design 3
COMP9216 Parallel and Distributed Computing Systems 3
COMP9221 Microprocessor Systems 3
COMP9231 Integrated Digital Systems 3

COMP9311 Data Base Systems 3
COMP9314 Advanced Data Base Management 1 3
COMP9331 Computer Networks and Applications 3
COMP9315 Advanced Data Base Management 2 3
COMP9414 Artificial Intelligence 3
COMP9415 Computer Graphics 3
COMP9416 Expert Systems and Deductive Data Base 3
COMP9511 Human-Computer Interaction 3
COMP9514 Advanced Decision Theory for Information Science 3
COMP9596 Advanced Topics in Information Information Science 6
COMP9614 Linguistics 3
COMP9918 Project 18

Electrical Engineering

Department of Communications

ELEC9330 Special Topic 3
ELEC9370 Digital Image Processing Systems 3
ELEC9350 Theory of Optical Fibres and Optical Signal Processing 3
ELEC9352 Antenna Design and Applications 3
ELEC9351 Propagation and Transmission of Electromagnetic Waves 3
ELEC9353 Microwave Circuits: Theory and Techniques 3
ELEC9354 Microwave and Optical Devices 3
ELEC9336 Digital Communication Networks 1 3
ELEC9337 Data Networks 2 3
ELEC9338 Television Systems 3
ELEC9340 Communication Electronics 3
ELEC9341 Signal Processing 1- Fundamental Methods 3
ELEC9342 Signal Processing 2- Advanced Techniques 3
ELEC9343 Principles of Digital Communications 3
ELEC9347 Digital Modulation 3
ELEC9355 Optical Communication Systems 3

Department of Electric Power Engineering

ELEC9201 Power System Planning and Economics 3
ELEC9202 Power System Operation, Control and Protection 3
ELEC9211 High Voltage Technology 3
ELEC9212 Partial Discharges in Electrical Insulation 3
ELEC9213 Insulation Performance in Electrical Plant 3
ELEC9214 Power System Equipment 3
ELEC9215 Fields and Materials 3
ELEC9203 Power Systems Analysis 3
ELEC9221 Special Topic in Power 3
ELEC9222 Special Topic in Power 3

97
Engineering

Department of Electronics
- ELEC9506 Special Topic in Electronics 3
- ELEC9501 Advanced Semiconductor Devices 3
- ELEC9502 Integrated Circuit Technology 3
- ELEC9503 Integrated Circuit Design 3
- ELEC9504 Solar Energy Conversion 3
- ELEC9505 Solar Cells - Operating Principles, Technology and System Applications 3

Department of Systems and Control
- ELEC9401 Computer Control Systems 1 3
- ELEC9402 Computer Control Systems 2 3
- ELEC9403 Real Time Computing and Control 3
- ELEC9404 Topics in Digital Control 3
- ELEC9405 Advanced Control Topics 3
- ELEC9407 Cybernetic Engineering 3
- ELEC9409 Cybernetic, Machine and Robot Vision 3
- ELEC9410 Robotics, Automation and Productivity Technology 3
- ELEC9412 Biological Signal Analysis 3
- ELEC9415 Optimization and Optimal Control 3
- ELEC9416 Non-linear Systems and Simulation 3

Other subjects
- MATH5054 Advanced Mathematics for Electrical Engineers 3

Project
- ELEC9912 Project Report 12
- ELEC9918 Project Report 18

Mechanical and Manufacturing Engineering

MECH9010 Project 12
- MECH9201 Digital Logic Fundamentals for Mechanical Engineers 3
- MECH9202 Microprocessor Fundamentals for Mechanical Engineers 3
- MECH9203 Industrial Applications of Microprocessors 3
- MECH9204 Elements of Industrial Automation 3
- MECH9205 The Analysis and Use of Integrated CAD/CAM Systems 3
- MECH9211 & Control and Modelling 3
- MECH9212 of Mechanical Systems 1,2 3
- MECH9221 Industrial Robotics 3
- MECH9222 Artificially Intelligent Machines 3
- MECH9301 & Advanced Mechanism Analysis 3
- MECH9302 & Synthesis 1, 2 3
- MECH9310 Advanced Vibration Analysis 3
- MECH9320 Random Vibrations 2
- MECH9321 & Acoustic Noise 1,2 2
- MECH9322 2
- MECH9361 & Lubrication Theory and Design 1,2 2
- MECH9662 2
- MECH9400 Mechanics of Fracture and Fatigue 3
- MECH9410 Finite Element Applications 3
- MECH9421 & Stress Analysis for Mechanical Design 2 3
- MECH9422 Engineering Design 1,2 3
- MECH9460 Experimental Stress Analysis 3
- MECH9620 Computational Fluid Dynamics 3
- MECH9631 & Gasdynamics 1,2 2
- MECH9632 2
- MECH9710 Numerical Fluid Dynamics and Heat Transfer 3
- MECH9711 Analysis of Heat Transfer 4
- MECH9720 Solar Thermal Energy Design 3
- MECH9730 Two Phase Flow and Heat Transfer 4
- MECH9740 Power Plant Engineering Design 3
- MECH9742 Power Production Assessment 3
- MECH9751 & Refrigeration and Air Conditioning 3
- MECH9752 & Conditioning 1, 2 3
- MECH9753 & Refrigeration and Air Conditioning Applications 3
- MECH9754 Design 1, 2 3
- MECH9755 Refrigeration and Air Conditioning 3
- MECH9756 Refrigeration and Air Conditioning Experimentation 3
- MECH9757 Ambient Energy Air Conditioning 3
- MECH9761 & Internal Combustion Engines 1, 2 3
- MECH9762 3
- MECH9800 Ordinary Differential Equations in Mathematical Engineering 3
- MECH9900- Special Topics in Mechanical Engineering 2
- MECH9910 Engineering 2
- MECH9920- Special Topic in Mechanical Engineering 3
- MECH9930 Engineering 3
- MANF9010 Research Project 12
- MANF9019 Project 9
- MANF9029 Project Report 18
- MANF9039 Thesis 36
- MANF9040 Industrial Management Seminar 0
- MANF9049 Operations Research Seminar 0
- MANF9191 Special Topic in Production Engineering 2
- MANF9192 Special Topic in Production Engineering 2
- MANF9193 Special Topic in Production Engineering 2
- MANF9200 Design for Production 4
- MANF9210 Value Analysis Engineering 3
- MANF9220 Product Design and Technological Innovation 3
- MANF9300 Methods Engineering 4
- MANF9310 Factory Design and Layout 3
- MANF9320 Ergonomics 3
- MANF9330 Simulation in Operations Research 3
- MANF9340 Flexible Manufacturing Systems 3
- MANF9400 Industrial Management 3
- MANF9410 Inspection and Quality Control 3
- MANF9420 Production and Inventory Control 2
- MANF9430 Scheduling and Sequencing 2
- MANF9440 Management of Distribution Systems 2
- MANF9450 Management Simulation 3
- MANF9460 Computer Integrated Manufacturing 3
- MANF9491 Special Topic in Industrial Engineering 3
- MANF9492 Special Topic in Industrial Engineering 3
- MANF9500 Computer Aided Programming for Numerical Control 3
- MANF9510 Computer Automation 3
Biomedical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9009</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>BIOM9010</td>
<td>Biomedical Engineering Practice</td>
<td>2</td>
</tr>
<tr>
<td>BIOM9012</td>
<td>Biomedical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9018</td>
<td>Project Report</td>
<td>18</td>
</tr>
<tr>
<td>BIOM9027</td>
<td>Medical Imaging</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9028</td>
<td>Radiation Physics</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9030</td>
<td>Project Report</td>
<td>30</td>
</tr>
<tr>
<td>BIOM9040</td>
<td>Analogue Electronics for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9050</td>
<td>Microprocessors and Circuit Design for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9060</td>
<td>Biomedical Systems Analysis</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9071</td>
<td>Mathematical Modelling for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9311</td>
<td>Mass Transfer in Medicine</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9321</td>
<td>Physiological Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9332</td>
<td>Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9501</td>
<td>Computing for Biomedical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9510</td>
<td>Introductory Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9541</td>
<td>Mechanics of the Human Body</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9551</td>
<td>Biomechanics of Physical Rehabilitation</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9561</td>
<td>Mechanical Properties of Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9601</td>
<td>Biomedical Applications of Microcomputers 1*</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9602</td>
<td>Biomedical Applications of Microcomputers 2††</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9603</td>
<td>Image and Flow Cytometry</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9611</td>
<td>Medical Instrumentation*</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9621</td>
<td>Biological Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9701</td>
<td>Dynamics of the Cardiovascular System</td>
<td>3</td>
</tr>
</tbody>
</table>

*Prerequisite BIOM9040 or equivalents.
†These 3 electives vary according to session offered. Only one is offered each year.
*Prerequisite BIOM9040 or equivalent.
††Follows on from BIOM9601.

Surveying

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURV9106</td>
<td>Special Topic in Surveying A</td>
<td>3</td>
</tr>
<tr>
<td>SURV9107</td>
<td>Special Topic in Surveying B</td>
<td>3</td>
</tr>
<tr>
<td>SURV9112</td>
<td>Network and Deformation Analysis</td>
<td>3</td>
</tr>
<tr>
<td>SURV9122</td>
<td>Elements of Geodetic Equipment</td>
<td>3</td>
</tr>
<tr>
<td>SURV9161</td>
<td>Advanced Estimation Techniques</td>
<td>3</td>
</tr>
<tr>
<td>SURV9162</td>
<td>Mathematical Methods</td>
<td>3</td>
</tr>
<tr>
<td>SURV9210</td>
<td>Satellite Surveying</td>
<td>3</td>
</tr>
<tr>
<td>SURV9211</td>
<td>Introduction to Geodesy</td>
<td>3</td>
</tr>
<tr>
<td>SURV9213</td>
<td>Physical Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>SURV9217</td>
<td>Gravimetric Geoid Evaluations</td>
<td>3</td>
</tr>
<tr>
<td>SURV9530</td>
<td>Analytical Photogrammetry</td>
<td>3</td>
</tr>
<tr>
<td>SURV9532</td>
<td>Computer Assisted Mapping</td>
<td>3</td>
</tr>
<tr>
<td>SURV9600</td>
<td>Principles of Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>SURV9602</td>
<td>Remote Sensing Procedures</td>
<td>3</td>
</tr>
<tr>
<td>SURV9604</td>
<td>Land Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>SURV9605</td>
<td>Ground Investigations for Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>SURV9606</td>
<td>Major Assignment</td>
<td>6</td>
</tr>
<tr>
<td>SURV9608</td>
<td>Cadastral Systems</td>
<td>3</td>
</tr>
<tr>
<td>SURV9909</td>
<td>Project</td>
<td>9</td>
</tr>
<tr>
<td>SURV9912</td>
<td>Project Report</td>
<td>12</td>
</tr>
<tr>
<td>SURV9918</td>
<td>Project Report</td>
<td>18</td>
</tr>
</tbody>
</table>
Graduate Diploma Subjects

Graduate Diploma programs in all schools of the Faculty may include subjects from the above list, subject to the approval of the Head of School responsible for the subject.

In addition the following subjects are offered specially for Graduate Diploma candidates. Not all electives are necessarily offered in any particular year.

School of Computer Science and Engineering
<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9011 Literacy and Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP9012 Software Engineering and Tools</td>
<td>3</td>
</tr>
<tr>
<td>COMP9013 Data Bases and Expert Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP9014 Computer Organisation and Interfacing</td>
<td>3</td>
</tr>
<tr>
<td>COMP9015 Issues in Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP9018 Computer Graphics and Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

School of Electrical Engineering

ELEC9411 Introductory Physiology for Engineers

3

School of Mechanical and Industrial Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH9201 Digital Logic Fundamentals for Mechanical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MANF9300 Methods Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MANF9602 Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MANF9629 Operations Research</td>
<td>6</td>
</tr>
<tr>
<td>ACCT9001 Introduction to Accounting A</td>
<td>3</td>
</tr>
<tr>
<td>ACCT9002 Introduction to Accounting B</td>
<td></td>
</tr>
</tbody>
</table>

Project Reports and Theses

Supervision of project reports and theses will generally be available in the following areas of research interest in the Schools of the Faculty. Alternatively, design and other topics may be chosen by arrangement. Contact staff members are listed within disciplines.

Civil and Environmental Engineering

Engineering Construction

Prof Camichael and Management

Environmental Engineering

A/Prof Wilkinson

Geotechnical Engineering

A/Prof Shackel

Numerical Methods in Geomechanics

A/Prof Shackel

Finite element techniques and their applications in geotechnical engineering including static and dynamic loading. Theoretical and numerical studies of rock blasting. Numerical techniques in static and dynamic fracture mechanics. Application of artificial intelligence and fuzzy-sets in geotechnical engineering.

Pavement Engineering

A/Prof Shackel

Civil Engineering Materials

A/Prof Shackel

Groundwater

Dr Acworth

Hydrology

Prof Pilgrim

Hydraulics

A/Prof Dudgeon

Hydraulic transportation of solids.
Coastal engineering and breakwater stability.
Closed conduit flow.

Prestressed Concrete Structures
Prof Gilbert
- Partially prestressed concrete beams.
- Analysis and design of end blocks for post-tensioned beams.
- Strength of precast prestressed concrete planks.
- Continuous prestressed concrete structures.

Public Health Engineering
Mr Bliss
- Sewage sludge conditioning and filtration.
- Clarifiers and sedimentation in water and waste water treatment.
- Filtration.
- Fluidised bed aerobic and anaerobic treatment.
- Aerobic digestion.
- Nutrient control.
- Treatment of high strength waste waters.
- Chemical fixation of hazardous wastes.

Reinforced Concrete Structures
Prof Gilbert
- Behaviour of slabs in the vicinity of columns.
- Reinforced concrete deep beams.
- Creep and shrinkage effects in reinforced concrete structures.

Structural Analysis
Dr Lawther
- Development and application of finite element techniques.
- Investigation of elastic stability.

Transport Engineering
Prof Black
- Problems of land use and transport interaction.
- Theories of traffic structure and flow.
- Measurements, planning and control of traffic.
- Transport systems analysis.
- Transport and the environment – accidents, energy, intrusion, noise and pollution.
- Economic evaluation of transport investments.
- Transport planning – local, urban, and regional systems.
- Investigations into transport economics, policy and decision making.
- Investigations of the geometric shape of the road alignment on the driver’s view of the road.
- Study of road alignment design in three dimensions.

Water Resources Engineering
Prof Pilgrim
- Multi-objective water resources planning.
- Hydro-economic studies.
- Optimisation problems in water resource systems design.
- Drought studies.
- Flood plain management.
- Arid lands management.

Waste Management
Mr Moore
- Landfill site selection.
- Leachate testing.
- Chemical fixation.
- Domestic solid waste collection routing.
- Hydrogeological sampling.
- Acid Waste treatment.
- Metals removal.
- Toxicity testing.
- Legal aspects of hazardous waste.

Computer Science and Engineering
- Artificial intelligence
- Cognitive engineering
- Cognitive modelling
- Combinatorial algorithms
- Complexity
- Computational Geometry
- Computer aided design
- Computer Organisation
- Computer architecture
- Computer assisted learning
- Computer assisted learning
- Computer assisted learning
- Computer assisted learning
- Computer graphics
- Computer vision for robotics
- Data base management
- Decision making under uncertainty
- Distributed operating systems
- Distributed synchronisation and load balancing
- Electronic publishing
- Expert systems
- Expert systems
- Expert systems
- Fault tolerant computer systems
- Formal methods
- Functional programming
- Graph Theory
- Human interface computing
- Human interface computing
- Human interface computing
- Information retrieval
- Integrated circuit design and logic testing
- Knowledge acquisition
- Knowledge based systems
- Knowledge representation using conceptual graphs
- Languages
- Learning algorithms
- Logic Programming
- Logic Programming
- Logic Programming
- Logic Programming

Mr Sowmya
Dr Parameswaran
Dr Sammut
Mr Chan
Mr Compton
Mr Quinn
Dr Wilson
Dr Wilson
Dr Whale
Mr Lambert
Prof Hellestrand
Dr Matheson
Dr Matheson
Dr Matheson
Dr Piotrowski
Dr Sammut
Dr Quinn
Mr Lambert
Dr Sowmya
Prof Hiller
Prof Hiller
Dr Heiser
Dr Chaudhuri
A/Prof Lions
Dr Sammut
Mr Chan
Dr Parameswaran
Prof Hellestrand
Mr Robinson
Mr Robinson
Dr Chaudhuri
Prof Hiller
Dr Matheson
Dr Quinn
Prof Hiller
Prof Hellestrand
Mr Compton
Mr Compton
Mr Chan
Mr Robinson
Dr Gedeon
Dr Piotrowski
Mr Chan
Engineering

Machine learning Dr Sammut
Mechanical theorem proving Mr Chan
Microprocessor based equipment Dr Matheson
Model based reasoning Mr Compton
Natural language processing Dr Whale
Natural language understanding Dr Wilson
Natural language Dr Amin
Neural networks Dr Gedeon
Non-standard logics (modal and temporal logics) Mr Chan
Office automation A/Prof Lions
Operating systems A/Prof Lions
Operating systems Dr Olszewski
Parallel and distributed algorithms Dr Chaudhuri
Parallel and distributed systems Prof Hellestrand
Parallel languages Dr Olszewski
Parsing and translation Mr Robinson
Plagiarism detection Dr Whale
Persistent objects Dr Olszewski
Programming languages and implementation Mr Robinson
Program verification Dr Piotrowski
Parallel and distributed algorithms Dr Chaudhuri
Parallel and distributed systems Dr Heiser
Pattern recognition Dr Amin
Production systems Dr Parameswaran
Program similarity Dr Whale
Program transformation Dr Gedeon
Programming environments Dr Gedeon
Query language testing Prof Hiller
Reverse engineering Dr Gedeon
Software engineering Mr Robinson
Software engineering Prof Hellestrand
Specification and refinement Mr Robinson
Specification & verification of reactive systems Dr Sowmya
String matching Dr Whale
Temporal logic Dr Sowmya
VLSI systems Prof Hellestrand

Computer communications and local area networks Prof Karbowiak, Dr Dewar
New architectures for local area networks Prof Karbowiak
Switching and stored program control systems Dr Fooks, Dr Zakarevicius, A/Prof Vu
UHF and microwave circuits and devices Dr Fooks, Dr Zakarevicius, A/Prof Vu
Microwave measurements and electronics Dr Fooks, Dr Zakarevicius, A/Prof Vu
Antennas and phased arrays Dr Zakarevicius, A/Prof Vu, Dr Dewar
Radar and navigational aids Dr Dewar, Dr Fooks A/Prof Kom

Land & Satellite Mobile Communications Dr Fooks, Dr Zakarevicius, A/Prof Kom
Mobile satellite communications A/Prof Vu, Dr Zakarevicius, Dr Phelps
Signal processing and analysis A/Prof Kom, Dr Zakarevicius
Active and adaptive filtering Dr Zakarevicius
Digital filters Dr Zakarevicius
Digital signal processor chip applications A/Prof Vu, Dr Zakarevicius
Acoustic and seismic signal processing A/Prof Vu, Dr Zakarevicius
Digital image processing A/Prof Kom
Electronic music A/Prof Kom
SAW Signal Processing A/Prof Kom

Electric Power

i. Power Systems
- Power systems analysis Dr Outhred, Dr Sutanto, Dr Kaye
- Power System Protection Prof Morrison
- Stability, Dynamics and Control of Power Systems Prof Morrison, Dr Sutanto
- Distribution System Planning and Operation Dr Kaye
- Organization of Load Management and Control Dr Sutanto
- Renewable Energy Sources - Remote Area Supply Dr Outhred, Dr Sutanto, Dr Kaye

ii. Electrical Power Equipment and Utilization
- High Voltage and High Current Phenomena Dr Blackburn
- Insulating Material Application Dr Blackburn
- Electrical Testing Dr Blackburn
- Voltage Disturbances in LV and MV Systems Dr Blackburn
- Electrical Measurements and Data Acquisition Dr Blackburn, Mr Spooner, Dr Rahman

Communications
- Optical communications Prof Chu, Dr Zakarevicius
- Optical fibres and integrated optics Prof Chu
- Electro-optic devices including sensors Prof Chu
- Digital communications A/Prof Kom, Dr Zakarevicius, Dr Radzynier, Dr Irving, A/Prof Holmes
- Digital radio and modulation methods A/Prof Kom, Dr Zakarevicius, Dr Radzynier

Electrical Engineering

Communications
- Optical communications Prof Chu, Dr Zakarevicius
- Optical fibres and integrated optics Prof Chu
- Electro-optic devices including sensors Prof Chu
- Digital communications A/Prof Kom, Dr Zakarevicius, Dr Radzynier, Dr Irving, A/Prof Holmes
- Digital radio and modulation methods A/Prof Kom, Dr Zakarevicius, Dr Radzynier

Electrical Power

i. Power Systems
- Power systems analysis Dr Outhred, Dr Sutanto, Dr Kaye
- Power System Protection Prof Morrison
- Stability, Dynamics and Control of Power Systems Prof Morrison, Dr Sutanto
- Distribution System Planning and Operation Dr Kaye
- Organization of Load Management and Control Dr Sutanto
- Renewable Energy Sources - Remote Area Supply Dr Outhred, Dr Sutanto, Dr Kaye

ii. Electrical Power Equipment and Utilization
- High Voltage and High Current Phenomena Dr Blackburn
- Insulating Material Application Dr Blackburn
- Electrical Testing Dr Blackburn
- Voltage Disturbances in LV and MV Systems Dr Blackburn
- Electrical Measurements and Data Acquisition Dr Blackburn, Mr Spooner, Dr Rahman
Graduate Study: Course Outlines

Electrical Machines and Drives
Dr Rahman, A/Prof Grantham, Mr Spooner, Dr Blackburn, Dr Blackburn

Arcing Fault characteristics
Dr Blackburn, Dr Blackburn

Partial Discharge Detection and Location
A/Prof Grantham, Mr Spooner

Distribution System Protection
Dr Grantham, Mr Spooner

Gaseous discharges and insulation
A/Prof Grantham, Mr Spooner

Equipment for Hazardous Atmospheres
A/Prof Grantham, Mr Spooner

Synthetic Loading of Machines
Dr Rahman, Mr Spooner

Computer Aided Teaching
Dr Rahman, Dr Rahman, Mr Spooner

iii. Power Electronics

DC/DC Converters
Dr Daly

High Frequency Power Transformers
Dr Daly

Inverters for Machine Drives
Dr Daly, Dr Rahman, Mr Spooner

Microprocessor Control of Power Electronics
Dr Daly, Dr Rahman, Mr Spooner

Variable Speed Drives
A/Prof Grantham, Mr Spooner, Dr Rahman

Power Electronic Simulation Studies
Dr Rahman, Mr Spooner

Electronic Commutation

Remote area supplies

Electronics

Semiconductor device physics
Prof Green, Dr Kwok, Dr Huang

Novel Semiconductor Devices
Prof Green

Integrated circuit design
Prof Rigby

Integrated circuit technology
Dr Horwitz, Dr Huang, Dr Kwok

Optical & Infrared Detector Arrays
Prof Green, Dr Wenham

Microelectronic sensors
Dr Huang, Prof Green

Photovoltaic solar energy conversion
Prof Green, Dr Wenham

Silicon Solar Cells

Computer-aided IC design
Prof Green

Plasma Processing
Prof Rigby

Integrated Circuits for Advanced Signal processing
Dr Horwitz, Dr Wenham

High-Speed Bipolar Logic
Prof Rigby

Systems and Control

Multivariable Control, stimulations, modelling, expert systems in control design, advanced control of power plant, computer aided design and adaptive control.

Cybernetic engineering and advanced robotics: signal, pattern, image and scene, analysis and processing, brain modelling, neural computing and learning
A/Prof Tait

Microprocessor Control of Power Electronics
Prof Rees

Variable Speed Drives

Power Electronic Simulation Studies

Electronic Commutation

Remote area supplies

Electronics

Semiconductor device physics
Prof Green, Dr Kwok, Dr Huang

Novel Semiconductor Devices
Prof Green

Integrated circuit design
Prof Rigby

Integrated circuit technology
Dr Horwitz, Dr Huang, Dr Kwok

Optical & Infrared Detector Arrays
Prof Green, Dr Wenham

Microelectronic sensors
Dr Huang, Prof Green

Photovoltaic solar energy conversion
Prof Green, Dr Wenham

Silicon Solar Cells

Computer-aided IC design
Prof Green

Plasma Processing
Prof Rigby

Integrated Circuits for Advanced Signal processing
Dr Horwitz, Dr Wenham

High-Speed Bipolar Logic
Prof Rigby

Systems and Control

Multivariable Control, stimulations, modelling, expert systems in control design, advanced control of power plant, computer aided design and adaptive control.

Cybernetic engineering and advanced robotics: signal, pattern, image and scene, analysis and processing, brain modelling, neural computing and learning
A/Prof Tait

iv. Mechanical Engineering

Applied Mechanics

Mechanics of solids
Dr Stark, Prof Patterson, A/Prof Kelly, Dr Chowdhury

Stress analysis
Dr Stark, A/Prof Kelly, Prof Patterson

Impact mechanics
A/Prof Byrne

Spatial and planar linkages
A/Prof Baker, A/Prof Hahn, Dr Ford

Dynamics of machines
A/Prof Hahn, A/Prof Byrne, Prof Patterson, A/Prof Kelly

Rotor bearing dynamics
A/Prof Hahn, Mr Randall

Vibrations
Mr Randall, A/Prof Hahn, A/Prof Byrne

Lubrication and wear
Prof Oxley, Dr Kopalinsky

Hydrodynamic dampers
A/Prof Hahn

Acoustics
A/Prof Byrne, Mr Randall

Design

Biomechanics
A/Prof Churches, Mr Frost, Prof Svensson

Design of surgical equipment
Mr Frost, A/Prof Churches, Mr Crawford

Computer aided design
Mr Frost, Dr Challenger, Mr Crawford
Engineering

Development of engineering design courses	A/Prof Churches, Prof Svensson, Mr Frost	Applications of operations research to real-world problems	Dr Kerr
Design methodology	Prof Svensson, Mr Frost	Stochastic processes	Dr Kerr
Crash protection devices	A/Prof Churches	Experimental and theoretical investigations of the following process: machining, extrusion, indentation, compression, rolling, drawing	Dr Mathew
Design projects: analysing testing and development for industry	Mr Frost, A/Prof Churches	Performance of single and multipoint cutting tools including tool life and economics of machining	Dr Mathew
Computer-aided ship design	Dr Pal	Properties of materials at high rates of strain	Dr Mathew
Ships design methodology	Dr Pal	Materials handling studies	Dr Mathew

Fluid and Thermal Engineering

Two-phase flow with and without heat transfer	Dr Behnia, Prof de Vahl Davis A/Prof Reizes	Factory design and location studies	Dr Mathew
Slurries	A/Prof Reizes	Plant layout by computer	Dr Mathew
Conveying of solid dusts by gases	A/Prof Reizes	Ergonomics	Dr Mathew
Hydraulic transients	A/Prof Reizes	Occupational health and safety	Dr Mathew
Hydrodynamics	A/Prof Reizes	Engine design analysis and tolerance technology	Dr Farmer
Water hammer	A/Prof Morrison, Prof de Vahl Davis, Dr Leonardi, Dr Behnia, A/Prof Reizes, Dr Madhusudana	Metrology studies	Dr Farmer
Conduction, convection, and radiation	A/Prof Reizes, Dr Behnia	Group technology studies	Dr Mathew

Natural convection

Computational fluid dynamics and heat transfer	Prof de Vahl Davis, Dr Leonardi, Dr Behnia, A/Prof Reizes, A/Prof Morrison	Dr Willgoss	
Refrigeration and air conditioning	Prof de Vahl Davis, Dr Leonardi, Dr Behnia, A/Prof Reizes, A/Prof Morrison	Dr Tordon	
Energy conversion and conservation	Dr Leonardi, Dr Maclaine-cross, Dr Behnia	Dr Willgoss	
Solar energy and emissions	A/Prof Reizes, Dr Behnia, Dr Maclaine-cross	Dr Willgoss	
Engine performance and emissions	A/Prof Morrison, Dr Maclaine-cross, Prof Milton, Dr Behnia	Logic programming	Dr Willgoss
Gas dynamics, transonic flow, shock waves	Prof Milton	Logic programming	Dr Tordon
Optical measuring methods	A/Prof Morrison, Dr Behnia, A/Prof Reizes, A/Prof Doctors	Microcomputer control	Dr Willgoss
Hydrodynamics of planing surfaces	A/Prof Doctors	Neural nets	Dr Willgoss
Problems in wave resistance	A/Prof Doctors	Reliability engineering	Dr Tordon
Finite element methods	A/Prof Doctors	Robotics & manufacturing	Dr Willgoss
Welding research	Dr Willgoss		

Industrial Technology and Management

Efficiency of production lines	Dr Kerr	Logic programming	Dr Willgoss
Job shop scheduling	Dr Kerr	Logic programming	Dr Tordon
Least-cost tolerance	Dr Farmer	Microcomputer control	Dr Willgoss
Operational simulation	Dr Mathew	Neural nets	Dr Willgoss
Variety reduction	Dr Kerr	Reliability engineering	Dr Tordon
Probabilistic networks	Dr Kerr	Robotics & manufacturing	Dr Willgoss
Optimisation techniques relevant to information processing systems	Dr Kerr	Sensors	A/Prof Morrison
Production scheduling for variable demand	Dr Kerr	Sensors	Dr Willgoss
Inventory and production control	Dr Kerr	Sensors	Dr Tordon

Industrial Technology and Management

Analysis if deformation measurements	Dr Harvey, A/Prof Rüeger
Applications of inertial technology	A/Prof Rüeger
Cadastral surveys	Dr Robinson
Cadastral systems	Dr Robinson
Computer assisted mapping	Prof Trinder

Surveying

Analysis if deformation measurements	Dr Harvey, A/Prof Rüeger
Applications of inertial technology	A/Prof Rüeger
Cadastral surveys	Dr Robinson
Cadastral systems	Dr Robinson
Computer assisted mapping	Prof Trinder
Computer controlled surveying
Coordinate transformation
Database technology for geodetic analysis
Electronic distance measurement
Geoid determination
Deopotential model testing
Geodesy
GPS geodynamics
GPS geodetic positioning
GPS surveying
High-precision surveying
Image analysis
Land altimetry
Land information management
Least squares estimation
Metrology and dimensional measurement
Monitoring of structures and terrain
Photogrammetry
Precise orbit determination
Precise GPS navigation
Quality issues in land information systems
Radar altimetric analysis for oceanography
Remote sensing
Satellite geodesy
Spatial query languages
Survey network adjustment
Wave propagation effects

A/Prof Rüeger
Dr Harvey
Dr Masters
A/Prof Kearsley
A/Prof Kearsley
Prof Brunner, A/Prof Stolz
Prof Brunner
Dr Rizos
A/Prof Rüeger
Prof Trinder
A/Prof Kearsley
Dr Robinson
Dr Harvey
Dr Harvey, A/Prof Rüeger
A/Prof Rüeger
Prof Trinder
Dr Rizos
Dr Rizos
Dr Masters
Dr Rizos
A/Prof Forster, Prof Trinder
Dr Rizos, A/Prof Stolz
Dr Masters
Dr Harvey
Prof Brunner

Remote Sensing

Incorporation of auxiliary data into classification procedures
Application of satellite data to Urban Area studies
Monitoring land use change using remotely sensed data
Determining the characteristics of surface reflectance
Analysis of image quality
Application of satellite imagery to small scale mapping
Multispectral linear transformations
Application of spaceborne synthetic aperture radar data
Application of aircraft and satellite data to arid land studies
Application of satellite data to geological studies
Synergism of radar, visible and infrared remotely sensed data
Analysis of high resolution SPOT and Landsat TM data
Application to pollution and environmental monitoring

Biomedical Engineering

Modelling of respiratory function, cardiovascular function, nervous system, artificial kidney therapy, extracorporeal heart-lung support, endocrine system and other body systems
Development of biomaterials
Investigation of physiological fluid mechanics
Microprocessor control of medical equipment
Limb and joint dynamics studies
Development of implantable electrodes
Development of rehabilitation devices
Statistical analysis of patient therapy and modes of patient treatment
Development and evaluation of new hospital equipment and treatment procedures
Signal analysis of wave forms from medical diagnostic equipment
Implants for fracture support and joint replacement
Improved drug administration
Arterial haemodynamics and ventricular-vascular interaction
Mechanisms of age-related arterial degeneration and hypertension
Isolated heart studies of the coronary circulation and electrophysiology
Subject Descriptions

Identification of Subjects

A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

Each approved subject of the University is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subject identifiers are approved by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the four character alphabetical prefix.
2. Each subject identifier is unique and is not used for more than one subject title.
3. Subject numbers which have previously been used are not used for new subject titles.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Appropriate subjects for each school appear at the end of each school section.

The identifying alphabetical prefixes for each organizational unit are set out on the following pages.

Servicing Subjects are those taught by a school or department outside its own faculty. Their subject descriptions are published in the handbook of the faculty which originates the subject and are also published in the handbook of the faculty in which the subject is taught. The following pages contain descriptions for most of the subjects offered for the courses described in this book, the exception being General Education subjects. For General Education subjects see the Centre for Liberal and General Studies Handbook which is available free of charge.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information which may be supplied about each subject:

- S1 session 1, S2 session 2
- F session 1 plus session 2, ie full year
- S1 or S2 session 1 or session 2, ie choice of either session
- SS single session, but which session taught is not known at the time of publication
- CCH class contact hours
- P/T part-time
- L lecture, followed by hours per week
- T laboratory/tutorial, followed by hours per week
- hpw hours per week
- wks weeks of duration
- C credit or credit units
- CR Credit level
- DN Distinction
- HD High Distinction
- X External
In the Faculty of Engineering, Schools and Centres have allocated the first digit in the numeric suffix of all new subject identifiers as indicating the level of the subject. Please note that the value '9' in this position is reserved for graduate subjects.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIO</td>
<td>School of Applied Bioscience</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ACHM</td>
<td>Department of Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>ACMA</td>
<td>Department of Civil Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ASCC</td>
<td>Department of Computer Science</td>
<td>University College</td>
</tr>
<tr>
<td>ADSC</td>
<td>Australian Defence Studies Centre</td>
<td>University College</td>
</tr>
<tr>
<td>AECM</td>
<td>Department of Economics & Management</td>
<td>University College</td>
</tr>
<tr>
<td>AELE</td>
<td>Department of Electrical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AENG</td>
<td>Department of English</td>
<td>University College</td>
</tr>
<tr>
<td>AERO</td>
<td>Aerospace Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>AGOC</td>
<td>Department of Geography & Oceanography</td>
<td>University College</td>
</tr>
<tr>
<td>AHIS</td>
<td>Department of History</td>
<td>University College</td>
</tr>
<tr>
<td>AINT</td>
<td>University College (Interdisciplinary)</td>
<td>University College</td>
</tr>
<tr>
<td>AMAT</td>
<td>Department of Mathematics</td>
<td>University College</td>
</tr>
<tr>
<td>AMEC</td>
<td>Department of Mechanical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>APHY</td>
<td>Department of Physics</td>
<td>University College</td>
</tr>
<tr>
<td>APOL</td>
<td>Department of Politics</td>
<td>University College</td>
</tr>
<tr>
<td>APSC</td>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>APSE</td>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ARCH</td>
<td>School of Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>ARTS</td>
<td>Faculty of Arts and Social Sciences</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>ASIA</td>
<td>Asian Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>ATAX</td>
<td>Board of Studies in Taxation</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>AUST</td>
<td>Australian Studies</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Architecture</td>
</tr>
<tr>
<td>BLDG</td>
<td>School of Building</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science & Mathematics</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>COFA</td>
<td>College of Fine Arts</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>COMM</td>
<td>Faculty of Commerce and Economics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>COMP</td>
<td>School of Computer Science and Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Economics and Econometrics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>EDST</td>
<td>School of Education Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ENGL</td>
<td>School of English</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>EURO</td>
<td>European Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>EXPA</td>
<td>School of Arts and Music Education</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>FIBR</td>
<td>School of Fibre Science & Technology</td>
<td>Engineering</td>
</tr>
<tr>
<td>FILM</td>
<td>Department of Theatre and Film Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking & Finance</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>FOOD</td>
<td>Department of Food Science and Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FREN</td>
<td>School of French</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal & General Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GERM</td>
<td>Department of Applied Geology</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>GERS</td>
<td>Department of German Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>GREK</td>
<td>Modern Greek</td>
<td></td>
</tr>
<tr>
<td>GSBE</td>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
</tr>
<tr>
<td>HEAL</td>
<td>School of Health Services Management</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>HIST</td>
<td>School of History</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>HOSP</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>IDES</td>
<td>Department of Industrial Design</td>
<td>Architecture</td>
</tr>
<tr>
<td>INDA</td>
<td>Industrial Arts</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDO</td>
<td>Indonesian</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>INFH</td>
<td>School of Information Systems</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>INTD</td>
<td>Interdisciplinary Studies</td>
<td>Architecture</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organizational Behaviour</td>
<td>Applied Science</td>
</tr>
<tr>
<td>JAPN</td>
<td>Key Centre for Mines</td>
<td>Architecture</td>
</tr>
<tr>
<td>LAND</td>
<td>School of Landscape Architecture</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies & Taxation</td>
<td>Engineering</td>
</tr>
<tr>
<td>LING</td>
<td>Linguistics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Librarianship</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>MARK</td>
<td>School of Marketing</td>
<td>Science</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science and Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational unit</td>
<td>Faculty</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>MDCN</td>
<td>School of Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>MDSG</td>
<td>Medicine Surgery Clinical Studies</td>
<td>Medicine</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MEED</td>
<td>School of Medical Education</td>
<td>Medicine</td>
</tr>
<tr>
<td>MFAC</td>
<td>Medical Faculty (Administration)</td>
<td>Medicine</td>
</tr>
<tr>
<td>MCR</td>
<td>School of Microbiology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MNGT</td>
<td>Australian Graduate School of Management</td>
<td></td>
</tr>
<tr>
<td>MSCI</td>
<td>Board of Studies and Mathematics</td>
<td>Board of Studies</td>
</tr>
<tr>
<td>MUSI</td>
<td>Department of Music</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>NAVL</td>
<td>Naval Architecture</td>
<td>Engineering</td>
</tr>
<tr>
<td>OBST</td>
<td>School of Obstetrics & Gynaecology</td>
<td>Medicine</td>
</tr>
<tr>
<td>OCEA</td>
<td>Faculty of Science</td>
<td>Science</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Science</td>
</tr>
<tr>
<td>PAED</td>
<td>School of Paediatrics</td>
<td>Medicine</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PDCS</td>
<td>Professional Development Centre</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology & Pharmacology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PROF</td>
<td>Faculty of Professional Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Medicine</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>PTRL</td>
<td>Department of Petroleum Engineering Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>RUSS</td>
<td>Department of Russian Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SAFE</td>
<td>Department of Safety Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>SCTSI</td>
<td>School of Science & Technology Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>HPST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLSG</td>
<td>Department of Social Science & Policy</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SLST</td>
<td>School of Sport & Leisure Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SOCI</td>
<td>School of Sociology</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SOCW</td>
<td>School of Social Work</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish & Latin American Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SURG</td>
<td>School of Surgery</td>
<td>Medicine</td>
</tr>
<tr>
<td>SURV</td>
<td>School of Surveying</td>
<td>Engineering</td>
</tr>
<tr>
<td>TEDG</td>
<td>School of Teacher Education (graduate)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TEED</td>
<td>School of Teacher Education (undergraduate)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TESL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXT</td>
<td>Department of Textile Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>THFI</td>
<td>Department of Theatre and Film Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>THST</td>
<td>Department of Theatre and Film Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>USOM</td>
<td>School of Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>WOMS</td>
<td>Women Studies</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool & Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Accounting

ACCT9062 Accounting for Engineers F L1.5
Problems related to industrial situations, and their relevance in decision-making. Manufacturing and cost accounts, budgeting and budgetary control, cost analysis and control and profit planning.

Biomedical Engineering

BIOM9009 Project C9

Introduction to clinical situations in hospitals. Presentation of guest lectures by eminent people working in this field. Lecture topics include cardiology, neurology, orthopaedics, rehabilitation, etc. Visits to various biomedical engineering units.

BIOM9010 Biomedical Engineering Practice S2 L2 C2

Prerequisite: 32.040G and 32.501G or equivalents.

BIOM9012 Biomedical Statistics S2 L2.5 T1.5 C4

BIOM9018 Project Report C18

BIOM9027 Medical Imaging S2 L2 T2 C4

Fundamentals of producing a medical image, image collection techniques, image reconstruction algorithms. Four main areas of medical imaging will then be examined in detail: Nuclear Medicine, Ultrasound, Diagnostic Radiology, Magnetic Resonance Imaging. Clinical application of each area.

BIOM9028 Radiation Physics S1 L2 T1 C3

BIOM9030 Project Report C30

BIOM9040 Analogue Electronics for Biomedical Engineers S1 L2 T2 C4

Basic theory of passive components, simple network analysis, small signal amplifiers, feedback and oscillators, operational amplifiers and their uses, analogue integrated circuits. Transistors as logic devices, gates. Safety requirements for medical instruments, circuit diagram analysis and component identification. Laboratory work involves both design and construction of analogue circuits.

BIOM9050 Microprocessors and Circuit Design for Biomedical Engineers S2 L2 T2 C4

Prerequisite: 32.040G and 32.501G or equivalents.

Examination of the fundamental digital and analogue signal conditioning circuits commonly found in medical applications. Emphasis is given to project-oriented practical experience involving aspects of biological signal acquisition by microcomputers. Fundamentals of microprocessor hardware and software.

BIOM9060 Biomedical Systems Analysis S1 L2 T1 C3

Compartmental analysis serves to unify modelling and analysis in many diverse fields. It has wide application in pharmacokinetics, metabolic, ecosystem and chemical kinetic modelling, and in the future will be applied increasingly to engineering systems. Topics include: classes of compartmental structure; fundamental properties; rate processes; inferred parameters; input-dependent kinetics; optimal input design; algorithms for identification and control.

BIOM9101 Mathematical Modelling for Biomedical Engineers S1 L3 T1 C4

Model formulation and validation, solution of ordinary and partial differential equations by analytical and numerical techniques.

BIOM9311 Mass Transfer in Medicine S2 L2 T2 C4

Material and energy balances, modelling of intrabody mass transfer, elementary treatment of diffusion, convection, hydraulic permeability and osmosis in biological and synthetic membranes. Applications to hemodialysis, blood oxygenators, artificial pancreas and slow release drug delivery systems.

BIOM9321 Physiological Fluid Mechanics S2 L2 T2 C4

Fundamentals of biological fluid flow by way of the governing equations. Kinematics and dynamics, viscous and inertial flow, boundary layers, separation, physiological flows (cardiac, vascular, pulmonary, urinary, etc.) and flow in artificial organs.

BIOM9331 Biocompatibility S2 L2 T1 C3

Interaction of biological fluids and cells with foreign surfaces, in vitro tests to assess biocompatibility and thrombogenicity, current status of biocompatible materials as applied to extracorporeal systems, surgical implants and prosthetic devices.

BIOM9501 Computing for Biomedical Engineers S1 L2 T2 C4

Prerequisite: 32.040G and 32.501G or equivalents.

Problem of definition; algorithm design and documentation; definition of data structures, structured program development; realisation of program development through the Pascal programming language; application to biomedical problems.

BIOM9510 Introductory Biomechanics S1 L2 T1 C3

The principles of the mechanics of solid bodies: force systems; kinematics and kinetics of rigid bodies; stress-strain relationships; stress analysis of simple elements application to musculoskeletal system.

BIOM9541 Mechanics of the Human Body SS L2 T1 C3

Prerequisite: 32.510G or equivalent.

Statics and dynamics of the musculoskeletal system: mathematical modelling and computer simulation, analysis of pathological situations.
Biomechanics of Physical Rehabilitation
Prerequisite: 32.510G or equivalent.
The application of biomechanics principles to the areas of: performance testing and assessment, physical therapy, design of rehabilitation equipment, design of internal and external prostheses and orthoses.

Mechanical Properties of Biomaterials
Prerequisite: 32.510G or equivalent.
The physical properties of materials having significance to biomedical engineering; human tissues; skin; soft tissues; bone; metals; polymers and ceramics: the effects of degradation and corrosion.

Biomedical Applications of Microcomputers 1
Assumed knowledge: 32.050G or equivalent.
Microcomputer architecture; physiological data acquisition systems: input/output signals and devices; assembly language programming; interfacing to higher level languages; the numeric data co-processor; interrupts; graphics; practical sessions on use of Debug, Assembler; familiarisation with interrupt vector table and I/O ports. Major assignment on specific biomedical application (e.g. bedside ECG monitor).

Biomedical Applications of Microcomputers 2
Prerequisite: 32.601G or equivalent.
Data communication; serial and parallel ports; BIOS and DOS interrupts; interfacing to external devices; DMA and interval timer; control systems and devices; stepper motor control. Implementation and analysis of a range of microcomputer-based biomedical applications, e.g. variable rate infusion pump, physiological reaction-time monitoring system; measurement of coronary sinus flow, temperature control, position control; operation of intra-aortic balloon pump.

Image and Flow Cytometry
Technology, techniques and uses of flow and image cytometry. Flow and cytometers analysis and cell sorting, image analysis and cell counting from slides. Preparation and staining of cells. Data acquisition and analysis. Applications in medical research and diagnosis.

Medical Instrumentation
Prerequisite: 32.040G or equivalent.
A critical survey of the theory and practical applications of medical transducers and electromedical equipment in common use in hospitals and research laboratories.

Biological Signal Analysis
Use of digital computers to extract information from biological signals. Signal processing using filtering, averaging, curve-fitting and related techniques, and analysis using model simulations, correlation, spectral analysis etc.

Dynamics of the Cardiovascular System
Structure of the heart; organization of the mammalian vasculature; mechanical, electrical and metabolic aspects of cardiac pumping; the solid and fluid mechanics of blood vessels; rheology of blood.
Introduction to land use-transport modelling (land use, generation, distribution, modal assignment, network assignment, evaluation). Planning methodologies (short-, medium-, long-term; action planning, strategic planning; local, urban, regional, national).

CIVL9405 Urban Transport Planning Practice SS C3

CIVL9407 Transport Systems Design S1 C3
(Non-Urban)
Process of location of road, railway and airport facilities. Data collection, alternative routes, public discussion, methods, techniques, aids, plans and diagrams produced. Geometric form; differences between road, railway and airport carriageway layout. Optical guidance, design models, landscape, provision for surface-water, signposting, fencing and posts.

CIVL9408 Transport Systems Design (Urban) S2 C3
Types of urban transport facilities. Distributors, streets, bicycle routes, walk-oriented areas, bus lanes and rapid transit lanes, stops and change terminals, noise control. Minimum geometric form; speed range controls, provision for surface water on urban roads, landscape. Design of intersection and parking areas.

CIVL9410 Highway Engineering Practice S1 C3

CIVL9412 Economics for Transportation Studies SS C3

CIVL9414 Transport Systems Part 1 S1 C3

CIVL9415 Transport Systems Part 2 S2 C3
Historical introduction to transport systems and development of various transport modes, road (vehicles, pedestrians, cycles), conveyor, rail, sea and air. Analysis of the operational characteristics of vehicles in the transport modes of road, rail and air. Analysis of the requirements of the rights of way for each transport mode. Development of optimum criteria for the distribution of cargo and passenger traffic. Terminals and mode transfer facilities. Development of system operational models. Energy consideration, new systems.

CIVL9416 Traffic Engineering F C6

CIVL9417 Transport and Traffic Flow Theory F C6
Analysis of deterministic and stochastic models of the traffic stream. Topics covered include the following. Definition and measurement of traffic stream parameters. Space and time distribution of speed. Overtaking models and the moving-observer method. Fundamental diagram of traffic. Car-following theory. Headway and counting distributions. Introduction to queueing theory. Simulation techniques. Signalized and unsignalized intersections.

CIVL9418 Statistics for Transport Studies SS C3
Part 1

CIVL9419 Statistics for Transport Studies SS C3
Part 2
Assumed knowledge: CIVL9418.

CIVL9420 Special Topic in Transport Engineering S2 C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

CIVL9701 Economic Decision Making in Engineering SS C3
Review of practical engineering decision-making problems and relevant techniques. Engineering economics, benefit/cost analysis, consideration of inflation and taxation in investment decisions, bidding, decision theory, microeconomic theory, objectives and multiple objective planning.

CIVL9702 Project Planning and Control S1 C3
The critical path method, PERT, arrow diagrams, precedence diagrams, resource levelling, resource constrained scheduling, network compression, overlapping relationships, applied cpm, cost control, cash flow, project control, legal considerations, simulation in networks, stochastic networks, project management, applications.

CIVL9704 Quantitative Engineering Management S2 C3
Models and techniques to assist the manager in making decisions; modelling and regression, forecasting; job planning, layout planning, capacity planning; work measurement;
optimization (linear programming, non-linear programming, dynamic programming), inventory models, transportation, assignment and allocation, heuristic techniques, multiple and single objectives, applications.

Techniques dealing with uncertainty and variability in management situations, including a review of probability theory, reliability, availability, quality control, decision analysis, queuing, simulation, applications.

CIVL9705 Engineering Management Practice SS C3
Management theory and processes, the structure and function of organizations; decision making, gaming behaviours in management, interpersonal skills, conflict management, management of group action, management information, marketing, negotiating, quality.

CIVL9706 Management of People SS C3
The development of skills for the management of people and their workplaces; industrial relations, health and safety issues; the recognition of people as the basic unit of engineering productivity and engineering organizations.

CIVL9710 Engineering Risk Management S2 C3
Introduction to the concept of risk and decision making under conditions of uncertainty; project objectives and planning, risk identification in engineering processes; human error, natural hazards and unforeseen risks; risk evaluation and quantification methods; relevant statistical techniques; risk avoidance and minimization; financial risk, portfolio theory, risk sharing and financing; ambient and acceptable risk levels; insurances.

CIVL9714 Special Topic in Engineering Management SS C3
A series of lectures from industry experts or visiting specialists in current and advanced engineering management.

CIVL9723 Construction Design SS C3
Design theory as applied to construction processes; application to selected areas of the construction industry such as temporary works design, formwork and falsework, dewatering systems, ground support systems and mixed construction activities such as tunnelling and high rise building construction.

CIVL9724 Construction Engineering and Technology S2 C3
Construction engineering theory, construction processes: methods engineering, automation and mechanization concepts; modelling, design and analysis; problem solving; task analysis; adaptive systems and control concepts; experimental studies of construction processes. Construction technologies: construction robotics, applications of expert and knowledge based systems. Studies to be selected from: drilling, blasting techniques, tunnelling, rock-bolting and other ground support, earthrock transport, harbours, railways, dams, bridges, structural steelwork techniques, pipeline construction, foundation grouting compressed air work.

CIVL9725 Engineering Financial Management S1 C3

CIVL9726 Legal Studies and Professional Practice SS C3
Nature and sources of law, court procedures, interpretation of documents, evidence, technical opinions, expert witness; contract law, contract administration; company law; arbitration; duties of an engineer; professional liability.

CIVL9727 Construction Planning and Estimating S2 C3
Project initiation and development, feasibility studies, planning and estimating procedures, contract administration; estimating cost of labour plant and materials, indirect cost and overheads, profit; construction administration. Preparation of cost estimate for a major civil engineering project.

CIVL9728 Special Topic in Construction SS C3
A construction topic presented in depth by industry experts or visiting specialists.

CIVL9731 Project Management SS C3
A problem-oriented approach to project management; the nature of engineering and construction projects; the project team, organizational and behavioural aspects, team motivation; behavioural aspects of project management; the organization and management of project resources; short term field planning and management strategies; project success evaluation techniques; project management decision processes; fast track projects; work delegation across organizational boundaries, contract design, development and administration; management information and decision support systems; management control systems and large project cost and schedule control; case studies in project management.

CIVL9732 Masonry Construction, Design and Materials SS C3
Properties of masonry units, mortar, grout and accessories; advantages and limitations of masonry in construction; construction planning, methods and productivity; general design principles, details and performance limit states; structural design of masonry subject to axial, in-plane and out-of-plane lateral loads; reinforced and prestressed masonry; design for fire resistance; workmanship and site control; cleaning, maintenance and repair.

CIVL9753 Soil Engineering SS C3

CIVL9776 Rock Mechanics SS C3

CIVL9777 Numerical Methods in Geomechanics S1 C3
Fundamentals of finite element and boundary element methods; application to practical geotechnical design and case studies; deformation and flow problems; linear and non-linear...
analysis; application to underground opening, stability of slopes, foundations, mining excavation; seepage and consolidation soil-structure interaction problems; earth pressures, retaining walls and buried pipes, thermal stress analysis.

CIVL9781 Advanced Concrete Technology S1 C3

CIVL9783 Pavement Materials S1 C3

CIVL9803 Elastic Stability S2 C3

CIVL9805 Vibration of Structures 2 S3 C3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9855</td>
<td>Water and Wastewater Analysis and Quality Requirements</td>
<td>S1</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9856</td>
<td>Water Treatment</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9857</td>
<td>Sewage Treatment and Disposal</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9858</td>
<td>Water Quality Management</td>
<td>SS</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9860</td>
<td>Investigation of Groundwater Resources 1</td>
<td>SS</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9861</td>
<td>Investigation of Groundwater Resources 2</td>
<td>SS</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9862</td>
<td>Fluvial Hydraulics</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9863</td>
<td>Estuarine Hydraulics</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9868</td>
<td>Public Health Science</td>
<td>S1</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9870</td>
<td>Hydraulics and Design of Water and Wastewater Treatment Plants</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9871</td>
<td>Water Supply and Sanitation in Developing Countries</td>
<td>SS</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9872</td>
<td>Solid Waste Management</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>CIVL8872</td>
<td>Solid Waste Management (external)</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9857</td>
<td>Sewage Treatment and Disposal (external)</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9873</td>
<td>Hydrological Processes</td>
<td>S1</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9874</td>
<td>Flood Design 1</td>
<td>S1</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9875</td>
<td>Flood Design 2</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9880</td>
<td>Groundwater Modelling</td>
<td>S1</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL9881</td>
<td>Hazardous Waste Management</td>
<td>S2</td>
<td>C3</td>
</tr>
<tr>
<td>CIVL8881</td>
<td>Hazardous Waste Management (external)</td>
<td>S2</td>
<td>C3</td>
</tr>
</tbody>
</table>

Quality Requirements

The effects of impurities in water and wastewater on its suitability for various beneficial uses, and methods used for detecting impurities. Analytical methods used in water and wastewater treatment for monitoring and process control.

Application of processes and process variations used to upgrade the quality of water for specified uses, with particular reference to the treatment of water for municipal use.

Application of processes and process variations used to improve the quality of sewage effluent, and the disposal of the effluent. Re-use of effluents where applicable. Sludge treatment and disposal.

Fundamental concepts; systems approach to quality aspects of water resource systems; quality interchange systems; quality changes in estuarine, surface, and ground water. Quality management by engineered systems. Economic criteria relating to water use and re-use systems.

Occurrence and extraction of groundwater, investigation and drilling methods, systems approach, optimization techniques, conjunctive use studies, quality of groundwater.

Geophysical methods, remote sensing, photo-interpretation, arid-environment studies, analogue models, case studies.

Unsteady and varied flow in non-uniform channels, secondary currents, sediment transport, channel morphology, scour and shoaling, river control works, modelling of fluvial processes.

Impact of water and wastewater treatment on disease transmission. Monitoring methods used for pathogens and indicator organisms, structure and degradation of large molecules, biochemical pathways of anabolism and catabolism and the characterization of micro-organisms.

Application of hydraulic principles to flows within treatment plants. Selection and integration of unit processes required for water and wastewater treatment, plant layout, plant design including hydraulic profiles, the influence of flow and load variability, instrumentation and control strategies.

Selection of appropriate technology for water supply and wastewater treatment and disposal to account for hot climates and low per capita incomes. Design basis for systems and the operating requirements.

Characterisation of municipal solid waste; collection; transfer stations; waste minimisation and recycling; waste treatment, including size reduction, composting, incineration, emerging technologies; landfill disposal, including preparation of landfill management plans and operational aspects; introduction to planning of waste management systems.

Hydrological cycle, water and energy balances and circulation, precipitation process, interception, infiltration, storm runoff process, evaporation and transpiration, surface groundwater interactions, land use effects.

Introduction to hydrological models, deterministic catchment models, model calibration and verification, stochastic models, storage yield analysis for reservoir design, extension of record, stochastic reservoir analysis or identification of groundwater systems, conjunctive use systems.

Introduction to flood estimation, frequency analysis of hydrological data, design rainfall data, hydrograph analysis, storm rain-runoff relations, design flood estimation for small to medium sized catchments including the rational method, introduction to urban drainage design.

Introductory flood routing, loss rates, linear and nonlinear response, unit hydrographs, runoff routing, choice of method of flood estimation, urban drainage design.

Groundwater modelling of porous media, fractured rock and low permeability materials. Analogue, numerical analytical models. Matrix structure and inverse methods, stochastic modelling and characterization of variability, modelling multiphase fluids and regional groundwater flow. Applications to borefield management, salt water intrusion, mine dewatering, geotechnical problems.

Waste audits and characterisation of hazardous wastes in regions and industries; control of generation and transport of hazardous waste, manifest systems; waste minimisation; on-site treatment methods; integrated off-site treatment facilities; management of residues from treatment facilities; introduction to planning of regional hazardous waste management systems. Characteristics of individual waste types (dioxins, PCBS, pesticides, heavy metal, etc.) and waste management in individual industries (steel, pulp and paper, petro-chemical, food processing, etc.) covered by assignments.
A selection of at least 7 topics from the following to suit the needs, expertise of visiting academics and researchers in the Cooperative Research Centre for Waste Management and Pollution Control, and issues of current interest. Background and basis of solid and hazardous waste classification and control systems; legislative and economic (market) regional pollution control mechanisms; developing techniques for waste minimisation; site selection and EIS preparation for waste facilities; dispersion of contaminants in the atmosphere; community consultation; detailed legislative requirements; application of systems concepts in waste management; environmental management plans; risk assessment at waste facilities; contaminated site characterisation and remediation; topics of interest to visiting academics; case studies by way of assignments.

CIVL9887 Advanced Topics in Waste Management

Prerequisites or Co-requisites: CIVL9872, CIVL9881.

A selection of at least 7 topics from the following to suit the class needs, expertise of visiting academics and researchers in the Cooperative Research Centre for Waste Management and Pollution Control, and issues of current interest. Background and basis of solid and hazardous waste classification and control systems; legislative and economic (market) regional pollution control mechanisms; developing techniques for waste minimisation; site selection and EIS preparation for waste facilities; dispersion of contaminants in the atmosphere; community consultation; detailed legislative requirements; application of systems concepts in waste management; environmental management plans; risk assessment at waste facilities; contaminated site characterisation and remediation; topics of interest to visiting academics; case studies by way of assignments.

CIVL9888 Environmental Management and Economics

Spectrum of modern environmentalism, sustainable development and urban growth. The structure of the environmental regulatory process. Decision making and management systems; case studies; introduction to micro-economics with reference to environmental issues, sustainable economic growth and zero growth. Environmental costing.

CIVL9889 Legislative Aspects of the Environment

Statutory and common law regulation of access to, use and management of natural resources and waste disposal in the natural environment. Case studies from waste treatment and disposal, water resources management, disposal of mine wastes and other areas as appropriate.

CIVL8803 Project (GradDip)

A critical review of literature on a selected topic or a minor design project.

CIVL9901 Special Topic in Civil Engineering

This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

CIVL9902 Special Topic in Civil Engineering

This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

CIVL9909 Project

A minor research investigation involving analysis and interpretation of data, or a critical review and interpretation of literature on a selected topic, or a design project.

CIVL9915 Project Report

Computer Science and Engineering

COMP9011 Literacy and Programming

In this subject the student will be introduced to a number of the packages such as: spreadsheets, word processing, data base systems, hypertext, graphics, networking. It will be necessary that skills be acquired with these systems.

There will also be an introduction given to both procedural and functional programming.

COMP9012 Software Engineering and Tools

This subject introduces the Data Flow/Process Interaction model of software specification and architecture. The techniques of Software Engineering involved in specification, analysis, design, implementation, testing, debugging, maintenance, and modification are discussed. Modern CASE tools are discussed and used.

In the second part of this subject Software Tools are introduced. The concepts of: reusability, packages, libraries, processes, concurrency, intercommunication channels, windows, graphice, data bases, translators, pattern matchers, sorters, and user interfaces are discussed and used in the context of a programmers' shell.

COMP9013 Data Bases and Expert Systems

This subject will introduce some basic material on data structures. It will provide experience with commercial relational data base systems and an application generator. Some of the notions of data base design and the redundancy: efficiency tradeoff will be discussed.

There will be an overview given of expert systems, artificial intelligence, knowledge based systems and decision support systems.
Analysis, design, and realisation of modest digital subsystems, of computing systems and information systems in decision making. Topics that may be covered include: the human implications of computing systems, the affect of computing operations on organisational structure, software copyright, privacy, the role of computing systems and information systems in decision making, the significance of the timelines of information and its implication on the value of decision making and the requirements for a computing system.

COMP9015 Issues in Computing
A review of issues that affect the use of Computer Systems. Topics that may be covered include: the human implications of computing systems, the affect of computing operations on organisational structure, software copyright, privacy, the role of computing systems and information systems in decision making, the significance of the timelines of information and its implication on the value of decision making and the requirements for a computing system.

COMP9018 Computer Graphics and Applications
This subject will provide both a series of lectures on topics such as the basics of graphic systems and graphic devices. Application areas to be considered may include business, entertainment, computer-based training, mapping. The laboratory work will involve use of sophisticated hardware for drawing, animation, simulation and CAD operations.

COMP9021 Introduction to Computer Science
Defining and recognising problem classes. Reasoning about problems and abstracting solution skeletons, iteratively leading to the specification, analysis, design, and refinement of computing solutions. The representation of data and control in a procedural programming environment. Data types and abstractions, and mechanisms for manipulating data. The partitioning of control; statements, control structures, functions, procedures, and modules. Data structures; lists, queues, trees. Practical work will involve extensive reading of, modification to, and composing Modula-2 programs. A brief introduction to problem solving using a functional notation and the functional language Miranda.

COMP9022 Digital System Structures
Prerequisites: Assumed knowledge: COMP9021 or COMP1021. Excluded: COMP2021.
Analysis, design, and realisation of modest digital subsystems, and the organisation and design of major subsystems in a model computer; data path, instruction decode, address generation, arithmetic algorithms, and the fetch-execute cycle of a typical computer. Timing, minimisation techniques, switch and gate logic, combinational and sequential circuits, flip-flops, hardware description techniques, circuit schematics and simulation tools. The translation of higher level programming abstractions and data structures to a real computer using a macro assembler as the target; study of the relationships between a hardware model, a programming model, and the I/O subsystem of a computer. An understanding of the inter-relationships between the fundamental layers of a modern digital computer system.

COMP9023 Concurrent and Functional Programming
Prerequisites: Assumed knowledge: COMP9021 or COMP1021. Excluded: COMP2031.

COMP9024 Data Structures, File Systems and Data Bases
Prerequisites: COMP9021 or COMP1021. Excluded: COMP2011.
The abstraction and representation of information; fundamental types, sets and sequences, recursive sets (arrays and structures (lists, trees)); classes (structure and manipulation). Practical work will use in Modula-2 and Miranda. Internal (memory) and external (file system) representation of information (files and processes, state, scope and binding). Structured policies for packaging information (data bases (sets, hierarchy, network, relations), knowledge bases and frames). Efficiency and complexity of representation. Accessing information; virtual accessing, modes and protection, policy enforcement, sharing, distributing information, consistency. Efficiency and complexity of accessing. Practical work would be performed in Modula-2 and Miranda. Introduction to data bases and query languages. The manipulation of knowledge. Prolog as a query language.

COMP9101 Design and Analysis of Algorithms
Assumed knowledge: COMP9024 or COMP2011.
Techniques for design and performance analysis of algorithms for a number of classes of problems. Analysis of algorithms: order notation, recurrence equations, worst case and expected order statistics. Design of efficient algorithms: recursion, divide and conquer, balancing: backtracking algorithms, branch and bound, dynamic programming; set manipulation problems; fast search algorithms, balanced optimal and multiway trees; graph representations and algorithms, pattern matching algorithms. NP-complete problems. Design and specification of programs; modularization, interface design, introduction to formal specification techniques.

COMP9102 Compiling Techniques and Programming Languages
Language description; phrase structure grammars. Chomsky classifications, context-free grammars, finite state grammars, Backus Naur Form, syntactx graphs, LL(k), LR(K), LSL(k). Lexical analysis: translation of an input (source) string into a (machine independent) quasi-terminal symbol string Finite state recognisers. Syntax analysis: top-down compilation for LL1 grammars using context-free analysers or recursive descent. Bottom-up compilation for simple and weak-precedence and LR(k) grammars. Semantic analysis; program translation and code generation, attributed grammars. Compiler generators: automatic generation of compilers for LALR(1) grammars. Code optimization by systematic program transformation. Run-time organization; activation record stacks heap management.

COMP9114 Formal Specification
Assumed knowledge: Background to final year Computer Science Level, equivalent to subjects COMP3111, COMP3121, and COMP3131.
Introduction to formal specification techniques; use of predicate logic and modern set theory to describe computing systems; Schema notation for structuring large specifications;
COMP9115 Programming Languages: Fundamental Concepts

Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121 and COMP3131.

Fundamental aspects of programming language definition, semantics and implementation models. The current approach uses denotational semantics. Denotational semantics is a formal method for describing the abstract meaning of programming languages.

COMP9201 Operating Systems

Assumed knowledge: COMP9023 and COMP9024. Excluded: COMP3231.

Services provided by operating systems. System calls and user commands (command languages, menus, etc). Virtual machines. Efficient techniques and methods of process management, memory management, input/output and communication handling. Performance evaluation and tuning. Protection and security.

COMP9211 Computer Organization and Design

Prerequisites: Assumed knowledge: ELEC2012 or COMP9022. Excluded: COMP3211.

Topics will be chosen from: Advanced Design Strategies: combinational and sequential circuit design and realisation; synchronisation, communication and arbitration; register transfer specification (Modal), Arithmetic Design Strategies. Memory Organization: physical and virtual address space; memory hierarchy; operating system and compiler support; memory mapping and caching. Communications Organization: shared memory, memory mapping; network systems. Processor Design: the instruction pipeline; hardwired and micro-programmed control; instruction sets; RISC and object-based processor organization. Error Detection/Correction and Fault Tolerance; testing and testability; faults, errors and failures; coding theory; diagnosing and correcting errors.

COMP9214 Computer Architectures

Prerequisites: Assumed knowledge: ELEC2012 or COMP9022. Excluded: COMP3231.

Review of conventional computer architectures, description methods and performance evaluation. Alternative approaches to CPU, memory, communication, busses and I/O organization. Influences on computer architecture, including technological innovation and new application areas. Case studies of specialized machines, including array, associative and functional processors and general-purpose machines that aim for high performance, ultra-reliability or minimal cost.

COMP9215 VLSI System Design

Assumed knowledge: Background in electronic design equivalent to ELEC4532.

The design and implementation of very large scale integrated systems, using both nMOS and CMOS technologies. The use and construction of CAD tools, including simulators, layout generators, and plot utilities. MOS failure modes, testing and design for testability. A study of some digital subsystems, digital architectures and design styles will be carried out. An integral part of the course is an MSI LSI design project. Selected project designs will be submitted for fabrication and returned to students for testing.

COMP9216 Parallel and Distributed Computing Systems

Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121 and COMP3131.

Parallelism concurrency in functionally coupled and distributed communicationally coupled, hardware and software, computing systems. Topics will be selected from: Synchronisation, communication and arbitration; Computational paradigms - s; concurrent synchronous processing, lists, trees; Computational paradigms - p: vectors, arrays, APL tables, associative look-up structures; Synchronous bit-serial architectures: n-operand arithmetic, n-operand comparison; Pure pipeline and Systolic architectures and problems; Pipelined ALUs – multiple bus data path architectures; Memory-Processor architecture: super-imposed code-word processors, image identifiers, inner product processors; Object based systems; Languages with communication and processes; CSP, ADA C; Locally and geographically distributed systems: Failure tolerant computer systems.

COMP9231 Integrated Digital Systems

Prerequisites: Assumed knowledge: ELEC2012 or COMP9022. Excluded: ELEC4532.

Integrated circuit logic families with emphasis on MOS technologies, structured chip design, custom and semi-custom approaches, system architecture, computer aid design, layout considerations, timing estimates, circuit failures, faults, fault modelling, testing, design for testability.

COMP9221 Microprocessor Systems

Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The MC68000 family and assembly programming language. Other microprocessors. The subject includes two hours per week of laboratory work involving interfacing to and programming MC68000-series microprocessor-based systems.

COMP9311 Data Base Systems

Prerequisites: Knowledge of storage structures. Excluded: 6.659G, 55.823G

A first subject on data base management systems to be presented at a level appropriate for a graduate subject. The material to be covered will include a selection from: the relational, hierarchic/network, and inverted file data models; normalization and the problems of redundancies; views and their updates; high level query languages; distributed systems; deductive data bases; data definitions; application generators.

COMP9314 Advanced Data Base Management

Assumed knowledge: corresponds to the treatment in COMP9311.

This subject will examine in detail some of the commercially oriented issues associated with recent developments in database management systems. Topics to be treated may include: functional analysis and data base design, object data bases, application generators, and office data systems. The subject will involve the students in performance of a significant data base design task.
COMP9416 Expert Systems and Deductive Data C3
Prerequisites: COMP9311 or equivalent. Knowledge of rule based systems and reasoning procedures.
Introduction to Expert Systems including knowledge representation, inference, reasoning under uncertainty, qualitative modelling and knowledge acquisition. Students will build an expert system using a shell. Introduction to deductive database including logic programming, clause indexing and query optimisation, integration of deductive databases and expert systems.

COMP9511 Human-Computer Interaction C3
Co-requisites: Knowledge of data base query languages. Excluded: 55.821G.
This subject will discuss man-machine communication with an emphasis on applications related to use of high level query languages and searching techniques.
Topics to be covered include: theories and principles of interface design; interaction styles; interaction devices; interface and language testing; approaches to the null value problem; information overload.

ELEC9201 Power System Planning and Economics C3
Review of conventional planning techniques and their limitations. Introduction of a novel approach based on welfare maximisation. Examples of its application to coordinated supply and demand side planning in problems such as demand forecasting, supply reliability, maintenance scheduling, transmission planning and demand management.

ELEC9202 Power System Operation, Control and Protection C3
Control of system frequency: system frequency dynamics, load frequency control of interconnected systems, automatic generation control. Unit commitment and economic despatch. Control of system voltage and reactive power. Problems of power system operation: security of supply, load forecast, power flow control, fault level containment, stability. Protection of power system and transmission lines: main protection, back up protection, system protection under emergency. Protection in distribution systems.
ELEC9203 Power System Analysis S2 C3
Assumed knowledge: ELEC4202 or equivalent. Excluded 6.203.

ELEC9211 High Voltage Technology C3
Assumed knowledge: ELEC4202 or equivalent.
Introduction to the technology involved in the design and testing of high voltage power system equipment. Study of the practical applications of relevant materials, with emphasis on properties of insulation systems (gases, liquids and solids) and the interaction of the materials in non-uniform fields. Methods of testing under steady state, AC and DC, and surge conditions are incorporated in the laboratory work. Design examples are taken from insulator, bushing, cable, power capacitor, transformer, rotating machine and switchgear technologies.

ELEC9212 Partial Discharges in Electrical Insulation C3
Assumed knowledge: ELEC4202 or ELEC4215 or equivalent.
Aspects of partial discharge phenomena and their effect on electrical insulation. The physical processes involved in partial discharges plus the interpretation of results from measurements on simple and complex apparatus, such as power cables, power capacitors, rotating machines and transformers. Techniques studied include digital based systems with particular emphasis being given to practical applications, in order to relate theoretical concepts to measurements which are subject to laboratory or on-site limitations.

ELEC9213 Insulation Performance in Electrical Plant C3
Assumed knowledge: ELEC4202 or ELEC4215 or equivalent.
Design test requirements. Forms of high voltage works tests: alternating, impulse, switching surge and direct. Non-destructive tests: dielectric loss angle, partial discharge and insulation resistance. Methods of determining material condition: moisture content, gas in oil, liquid chromatography, impurities, statistical breakdown tests, determination of aging and residual life. Commissioning and site tests. Demonstrations and projects to support the lecture material.

ELEC9214 Power System Equipment C3
Assumed knowledge: ELEC4202 or equivalent.
Operating characteristics and design features of the major equipment components of a power system. Includes a general treatment of equipment rating, thermal design, electrodynamic forces, equipment protection and data acquisition. Specific items of equipment include power transformers, instrument transformers, switchgear, overhead lines and underground cables, surge arrestors, gas insulated systems, power factor correction equipment and alternators. Protection of electrical equipment. Effects of electromagnetic fields on personnel.

ELEC9215 Fields and Materials C3
General description of the inter-relationship between the different types of fields (electric, magnetic and thermal) and materials when used in various areas of electric power engineering. Topics include: a general coverage of dielectric, conducting, magnetic and thermal materials; solution of Poisson's Laplace's and Fourier's equations for simple geometries and calculation of electric, magnetic and thermal fields, including boundary effects; a selection of typical applications from thermal rating, electric heating, contact effects, laser action, surface electron emission, etc; a brief outline of some measurement techniques applicable to the above.

ELEC9221 Special Topic in Power
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9222 Special Topic in Power
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9330 Special Topic
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9336 Digital Communication Networks C3
Excluded: ELEC9337, ELEC4351, ELEC4352.
Introduction to data communication. Analog versus digital transmission. Transmission media. LAN's; WAN's, ISDN. Protocols: IEEE standards for LAN's; fibre optic networks; satellite networks. OSI reference model. Some design issues and examples: topics include error detection and correction; routing and congestion control; internetworking; connection management; data representation and coding; file management; electronic mail.

ELEC9337 Data Networks 2 C3
Prerequisite: ELEC4351.

ELEC9338 Television Systems C3
Prerequisites: ELEC9351, ELEC9341. Excluded: ELEC4333.

ELEC9340 Communication Electronics C3
Assumed knowledge: ELEC3016 or similar.
Electronic aspects of modern analogue and digital communication systems. Topics selected from: electronic systems design; electromagnetic compatibility and interference; electronic system noise; analogue modulators, demodulators, frequency conversion circuits, AM and FM transmitters and receivers; television electronics; phase locked loops; switched capacitor and other practical filter technologies; surface acoustic wave devices.
ELEC9341 Signal Processing 1 –
Fundamental Methods
Excluded: ELEC4042.
Fundamental principles of the analysis and processing of analogue and digital signals with emphasis on digital methods. Generalized Fourier analysis; convolution, correlation, energy and power density spectra for signals and linear systems. Sampling, the discrete Fourier transform (DFT) and fast Fourier transform (FFT) algorithms. Fundamentals of filter design and realization including programmable digital signal processors. Digital processing of analogue signals, filter stability, sensitivity and finite word length effects in the realization of digital filters.

ELEC9342 Signal Processing 2 –
Advanced Techniques
Prerequisite: ELEC9341 or similar.
Advanced techniques of digital signal processing with applications in communications and control, radar and sonar and the processing of speech, seismic signals and images. Topics selected from: digital methods for sampling rate changes, advanced FFT algorithms and the chirp z-transform algorithm. Advanced digital filtering methods. Analysis of random signals and noise in linear systems and non-linear devices. Estimation and measurement of power density spectra. Linear prediction and parameter estimation for speech analysis and spectrum estimation. Mean-square estimation and adaptive filtering for the detection and estimation of signals in noise, equalization, echo and noise cancelling and deconvolution. Nonlinear techniques; homomorphic signal processing and cepstral analysis, median filtering, etc. Short-time spectral analysis and time-frequency distributions. Two-dimensional signal processing.

ELEC9343 Principles of Digital and Analogue
Communications
Prerequisite: ELEC3012 or similar. Excluded: ELEC4323.

ELEC9347 Digital Modulation
Prerequisite: ELEC9343 or similar.
A research orientated, advanced treatment of digital modulation and detection in Gaussian and fading channels. Modulation includes: M-ary ASK, PSK, DPSK, QASK, OQASK, FSK and CPM (including MSK).
Detection includes: coherent, partially coherent and noncoherent like differential phase detection for DPSK, FSK and CPM and limiter-discriminator detection and limiter-discriminator-integrator detection for FSK and CPM. Channels include: Gaussian, Rician (Satellite Mobile), Rayleigh (Land Mobile) with frequency selective fading and Doppler frequency shifts. Analysis and design includes: probability of error formulas and bounds; power spectral density and bandwidth; effect of intersymbol, cochannel and adjacent channel interference; symbol constellations, eye diagrams, equalization; partial response, full response and Nyquist signals; complexity and comparisons.

ELEC9350 Theory of Optical Fibres and
Optical Signal Processing

ELEC9351 Propagation and Transmission of
Electromagnetic Waves

ELEC9352 Antenna Design and Applications
Prerequisite: ELEC9351.
Principles of phased arrays and reflector antennas with some emphasis on space-borne and ground-terminal antennas for satellite communications. Analysis and synthesis of phased array, null steering theory. Single and dual reflector antennas, offset- reflector systems, optimization techniques. Effects of satellite orbital saturation on design of ground terminal antennas. Monopulse tracking antennas. Antenna tolerance theory.

ELEC9353 Microwave Circuits: Theory and
Techniques

ELEC9354 Microwave and Optical Devices
Principles and applications of microwave amplifying and control devices. Includes microwave transistors, Gunn and impact diodes and recent developments in ultra high speed transistors. Principles and applications of optical sources and detectors. Includes lasers, LEDs, electro-optic and acoustic-optic modulators and switches, optical detectors.

ELEC9355 Optical Communications Systems
Prerequisites: ELEC9350, ELEC9354.
Calculation of bandwidth of single mode and multimode fibres. Review of transmitter and receiver circuits. Connection and launching efficiency between fibre and optical source. Fibre to fibre splicing and connection, losses due to fibre imperfection, fault location. Fibre cable, mechanical strength of fibre. Direct intensity modulation system, sensitivity of receiver, repeater design. Coherent optical communication system: laser frequency and intensity stability, polarization-maintaining

ELEC9370 Digital Image Processing Systems C3
Excluded: ELEC9407.

The fundamentals of digital image processing with topics selected from the following: Visual perception and the image model, transforms, enhancement, sharpening and smoothing, restoration, encoding, segmentation, reconstruction of images from projections and tomography, satellite imaging and imaging in remote sensing; image processing hardware and systems; picture processing; measurement and inspection.

ELEC9401 Computer Control Systems 1 C3
An introduction to the use of CAD packages and coverage of the control theory necessary to understand the design of fundamental control systems. Selected computer packages, sampling and conversion, difference equation models, polynomial forms, z-transforms, differential equation models, operator forms, s-transforms, block diagrams, flow diagrams and state space models, connections between discrete and continuous models, classical continuous design, Root locus, Nyquist, Bode, classical discrete design, w-transforms, PID controllers, simple controller design schemes (time polynomial), Dahl and Higham, pole place, approximations, Smith predictor, deadbeat, stochastic observers, pre-whitening, stochastic processes, time domain, frequency domain, correlation, identification, moving average models.

ELEC9402 Computer Control Systems 2 C3
Prerequisite: ELEC9401.

Builds on the material of 6.401G, completing coverage of basic material considered necessary for modern control system synthesis and design. Revision of model forms: discrete-continuous, polynomial-state space. Observability, controllability, observers - deterministic, stochastic processes, stochastic models, innovation models, prediction, multivariable PI tuning, linear quadratic regulator design, Kalman filtering, stochastic control, LQG, disturbances, measured disturbances, feedback control, estimated disturbances, identification, simultaneous estimation of states and parameters, simple adaption, servomechanism problems, cascade control, multiple sampling rates, non-linear elements.

ELEC9403 Real Time Computing and Control C3
Prerequisites: ELEC9401 or assumed knowledge equivalent to ELEC4432 or ELEC4413.

Examines the implementation of modern control techniques and associated instrumentation using distributed computers. Practical hardware aspects, including measurement and actuation, data conditioning, acquisition and transmission, microprocessor devices, and other distributed computing components. Commercial realisations ranging from PLCs to full process control computing systems. Software: executive operating systems, concurrency, control algorithms, numerical problems, languages and development tools in the real-time context. Design of the man-machine interface using interactive computer display systems. The role of simulation and other CAD tools. Steps of engineering development from concept to commissioning. The viewpoint of industrial design is maintained throughout.

ELEC9404 Topics in Digital Control C3
Prerequisites: ELEC9401, ELEC9402.

Possible modules include: identification, estimation, multivariable systems, robust control, optimization, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, non-linear identification, non-linear control, variable structure systems, expert systems and others to be decided.

ELEC9405 Advanced Control Topics C3
Prerequisites: ELEC9401, ELEC9402.

From one to three models, covering advanced control theory, with an emphasis on applications. The modules are not limited to digital control. Typical modules include: identification, estimation, multi-variable systems, robust control, optimization, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, non-linear identification, non-linear control, variable structure systems, expert systems and others to be decided.

ELEC9407 Cybernetic Engineering C3

The genesis of cybernetics; fundamentals of cybernetic engineering; machines modelled on life and their evolution to robots. Topics include biological information transmission, memory and efficiency with aspects of biochemical coding and control, genetic and neural; basics of brain models and the development of pattern recognition techniques, learning machines and syntactic structures; includes the Perceptron view and brain modelling; neural networks and neural computing; the abacus approach to robotics, anthropomorphic robots; the social consequences of the dual evolution of robots.

ELEC9409 Cybernetic, Machine and Robot Vision C3
Assumed knowledge: ELEC9370 or equivalent.

Material oriented towards image understanding, scene analysis and world models for robots incorporating vision; including imaging techniques and geometries for vision, modelling the imaging process and image understanding, edges, range information, surface orientation, boundaries and regions, motion and optic, flow, texture, structural description, matching and inference, vision robotics.

ELEC9410 Robotics, Automation and Productivity C3
Technology

Principles of Robotics relevant to trends in automating the manufacturing process. Such aspects as arm configurations, dynamics and control with relevant sensing methods; assembly and control together with trends in artificial intelligence for Robotics are discussed.

ELEC9411 Introductory Physiology for Engineers S1 L2 T2 C3

This subject is intended primarily for Biomedical Engineering students.

An introduction to biophysics and physiology for Engineers. Cells, tissues and organ systems with emphasis on their functional and regulatory characteristics and their interaction. An introduction to computer models of physiological control systems demonstrating their value in understanding the
dynamics of complex neural, hormonal and circulatory responses to changes in homeostasis.

ELEC9412 Biological Signal Analysis C3
Excluded: ELEC9041.

Digital computer methods of extracting information from biological signals using filtering and averaging, expectation density functions, correlation functions, spectral analysis and other techniques. Methods of constructing models of biological systems.

ELEC9415 Optimisation and Optimal Control SS C3
Prerequisites: 1 undergraduate Control subject plus MATH2501.

Constrained and unconstrained optimisation, Euler, Bernoulli, Lagrange. Linear quadratic and geometrical programming techniques, the simplex method, Kuhn-Tucker necessary conditions, gradient methods. Dynamic optimisation, dynamic programming, the optimum principle. Design control systems by optimisation methods, optimisation of parameters, decoupling and other methods. Introduction to integer programming.

ELEC9416 Non-linear Systems and Simulation SS C3
Prerequisites: 1 undergraduate Control subject plus MATH2501.

Dynamic and static non-linear systems; Non-linear control, phase plane, describing function, stability, Liapunov, Popov and the circle criterion, special systems. Simulation and Non-linear systems, numerical methods, simulation languages and shells, CACE, intelligent interfaces, discrete event simulation.

ELEC9501 Advanced Semiconductor Devices C3
Excluded: ELEC4512.

Theory and operating characteristics of a range of semiconductor devices including bipolar diodes and transistors, MOS devices and circuit connections, charge coupled devices, solar cells, light emitting diodes and semiconductor lasers.

ELEC9502 Integrated Circuit Technology C3
Technologies for the fabrication of bipolar, CMOS, and BiCMOS VLSI integrated circuits. Includes technology modules of Crystal growth, wafer preparation, maskmaking, photolithography, oxidation, diffusion, ion implantation, plasma processing, thin film deposition and metallization. Advanced technologies such as GaAs high speed IC and SOI for radiation hard or 3-D integration are briefly discussed. Process integration and the link of device physics, circuit design to technology development are emphasized.

ELEC9503 Integrated Circuit Design C3
Assumed knowledge: ELEC3016 or 6.322.

An advanced treatment of the design of integrated circuits with emphasis on the relationships between technology, device characteristics and circuit design. Includes properties and modelling of bipolar and MOS circuit components, circuit analysis and simulation, layout rules, analog functions such as operational and power amplifiers; multipliers, D A and A D converters. Analog MOS circuits. Switch capacitor filters. Digital circuits include gates, compound functions, RAM, ROM, speed and power analysis. Economics and yield analysis for MSI, LSI and VLSI devices.

ELEC9504 Solar Energy Conversion C3

ELEC9505 Solar Cells – Operating Principles, Technology, and System Applications
Excluded: ELEC4540.

Harnessing of sunlight by using solar cells to convert it directly to electricity. The properties of sunlight and of the semiconductors used in solar cells are briefly reviewed and their interaction described. Factors important in the design of solar cells and the current technology used to produce cells. Emphasis is placed on applications including system design and operation. System applications range from those which are currently viable economically to residential and central power systems which have considerable potential for the future. The role of small business within the photovoltaic industry is briefly considered.

ELEC9506 Special Topic in Electronics C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9912 Project Report C12
The project is done in a major area, in which it is offered under the supervision of an academic member of staff. Where the work is carried out externally a suitable co-supervisor may be required. Projects can take many forms such as the design and construction of experimental equipment or a theoretical investigation. At the end of the work a comprehensive project report giving an account of the student's own research must be submitted. Information on the preparation of project reports is contained in the University Calendar. The 12 credit project is not available in all areas.

ELEC9918 Project Report C18
As above. The 18 credit project is not available in all major areas.

Fuel Technology

Fuel Technology is a department within the School of Chemical Engineering and Industrial Chemistry.

FUEL5880 Please see subject description for FUEL5881.

FUEL5881 Unit Operations in Wastewater, Sludge and Solid Waste Management
FUEL5920 Practical Aspects of Air Pollution Measurement and Control S1 or S2 T3
Prerequisite: FUEL5910 or equivalent.
Laboratory and tutorial programs in the measurement and analysis of ambient and industrial air pollutants. Computation tutorials in advanced dispersion models, aerosol dynamics and control equipment design parameters.

Geography

GEOG9150 Remote Sensing Applications S1 L1 T2 C3
The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials; multitemporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in the coastal zone. Use of remote sensing in environmental management and in environmental impact assessment.

GEOG9210 Computer Mapping and Data Display C3
Introduction to automated cartography and thematic mapping; theoretical and practical problems in displaying and mapping data by computer; review and application of selected computer mapping packages. INFO is used for database management, and ARC/INFO and GIS for cartographic manipulation and output.

GEOG9240 Principles of Geographic Information Systems S1 L1 T3
Study of selected geographic information systems; problems of data capture and display, data storage and manipulation, system design and development; cartographic displays and computer mapping. INFO is used for database management, and ARC/INFO and MAP for spatial data manipulation and display.

GEOG9300 Vegetation Management S1 L2 T1 C3
The subject provides a background in theory and practice in vegetation management, particularly under Australian conditions. It covers the description and measurement of vegetation, vegetation dynamics, vegetation response to perturbation and human impacts, theories, and modelling of vegetation change. A third of the subject is devoted to management strategies of selected vegetation types.

GEOG9310 River Management S1 L2 T1 C3
The principles of river management including total or integrated catchment management, environment impact assessment, in-stream uses and hydrogeomorphic behaviour. Issues covered include regulls, interbasin diversions, extractive industries, urbanization, river engineering, legislative controls and institutional responsibilities. The course develops an understanding of how and why rivers respond to human activities and ways of ameliorating negative impacts. Field work is an essential part of the subject and the Nepean River will be used as a case study of management problems.

GEOG9320 Soil Degradation and Conservation S2 L2 T1 C3
Identification, assessment and analysis of the main processes of soil degradation, including the role of climate, vegetation, geomorphology and pedology in controlling the processes. Discussions of appropriate management strategies for reducing degradation and for reclaiming degraded landscapes. Topics include: surface wash, gully erosion, wind erosion, soil acidification, soil structure decline, salinization, accumulation of toxins and desertification.

GEOG9512 Project C12
An investigation of a problem in remote sensing or geographical information systems which involves an identifiable research component. Such an investigation should be related to the research interests of particular Schools within the Faculty of Applied Science.

Applied Geology

Applied Geology is a Department within the School of Mines.

GEOL9010 Hydrogeology S1 L1.5 T1.5 C3 S2 X C3
Surface and sub-surface methods of geological and geophysical investigation; ground water exploration of confined and unconfined aquifers. Geological and hydraulic characteristics of rocks; aquifer boundaries, groundwater storage and quality. Hydraulics of wells. Hydrogeological systems analysis, including computer methods, mapping techniques and groundwater resources evaluation. Hydrogeology of arid and semi-arid zones. Case history studies of groundwater fields.

GEOL9011 Hydrogeology G S1 L1.5 T1.5 C3
Hydrologic and hydrochemical cycles, catchment hydrogeology and principles of groundwater flow. Elements of groundwater chemistry, will hydraulics, pumping tests, hydrogeological environments and exploration for groundwater. Groundwater engineering, drilling technologies, geophysical bore logging, dewatering of excavation groundwater resource evaluation.

GEOL9020 Geopollution Management S1 L1 T1 C3
Please see subject description for GEOL9320

GEOL9110 Hydro and Environmental Geology S L3 T1
Prerequisite: GEOL5100

Geoengineering: Hydrology, climatology, and water resources. Groundwater Contaminant S1 L3 T1

Prerequisites: GEO/9110, CSIL3007.

Available at commencement of 1993 only.

Industrial Relations and Organizational Behaviour

IROB5701 Industrial Relations A S1 L3

Prerequisite: Nil.

Concepts and issues in Australia industrial relations at the macro or systems level, with overseas comparisons where appropriate. Labour movements and the evolution of employee-employer relations in the context of industrialization and change; origins and operations of industrial tribunals at the national and state levels; their instrumentalities; nature of industrial conflict and procedures for conflict resolution such as arbitration and bargaining; and national wage policy.

Librarianship

LIBS0815 Economics of Information Systems S1

Industrial Technology and Management

Industrial Technology and Management is a Discipline within the School of Mechanical and Manufacturing Engineering.

MANF9010 Research Project C12

MANF9040 Seminar Industrial Management C0

MANF9049 Seminar Operations Research C0

MANF9191 Special Topic In Production Engineering* C2

MANF9192 Special Topic In Production Engineering* C2

MANF9193 Special Topic In Production Engineering* C2

MANF9200 Design Production C4

Influence of manufacturing processes on design; design simplification and standardization; value engineering; economics of process selection; case studies planning
experiments; significance testing; simple comparative experiments, accelerated experiments; fatigue testing, tool life.

MANF9210 Value Analysis and Engineering C3
Cost reduction through value analysis engineering illustrated by case studies. Selection of projects to be studied, collection of information, creative problem solving, development of alternatives, functional analysis system technique, functional evaluation, cost-function relationship, decision making, communication and implementation of the proposal. Applications to engineering design and services.

MANF9220 Product Design and Technological Innovation C3

MANF9300 Methods Engineering C4

MANF9310 Factory Design and Layout C3

Note: A project forms a substantial proportion of the assessment for this subject.

MANF9320 Ergonomics C3
Applied anatomy and kinesiology, anthropometry; application to work place arrangement, seating and bench design, tool and equipment design, lifting techniques, consumer product and architectural design. Physiological and psychological aspects of work and fatigue; measurement of energy consumption, limits to energy expenditure at work, static muscular fatigue, boredom. Environment effects; natural and artificial lighting arrangements, problems of perception, colour; noise and vibration, preventive measures; heat and ventilation, thermal regulation in humans, criteria for comfort, effects of pollutants. Man-machine interface. Displays, machine controls, reaction times, vigilance. Applications of ergonomics to occupational safety and health. Ergonomic research methodology.

Note: A project forms a substantial proportion of the assessment for this subject.

MANF9330 Simulation in Operations Research C3
Excluded MANF3609, 6.646.

MANF9340 Flexible Manufacturing Systems C3
Prerequisite: MANF9520.
Technical aspects of FMS components, including automated material-handling devices, job selection design and their aggregation. Hierarchical structure of FMS; mathematical models of FMS.

MANF9400 Industrial Management C3
Definitions of management; evolution of management thought, classical, quantitative and behavioural schools; interactions between organizations and their environment. The planning process; strategic and tactical planning, developing planning premises, nature of managerial decision making, quantitative aids, management by objectives. Organizational structures; coordination and spans of control, the informal organization, authority delegation and decentralization, groups and committees, managing organizational change and conflict. Motivation, performance and satisfaction; leadership, interpersonal and organizational communication, staffing and the personnel function. The control process; budgetary and non-budgetary methods of control, use of management information systems.

MANF9410 Inspection and Quality Control C3
Economics of measurement; advanced measuring and inspection methods; non-destructive testing; quality control systems; sampling by attributes and variables; standardization; case studies; process capability and variability; machine tools acceptance testing; alignment procedures.

MANF9420 Production and Inventory Control C2
Excluded: MANF4429
Overview of basic issues of production planning and control; use of inventory as a buffer; Economic Batch Quantities and their limitations; simple re-order point systems; statistical inventory control and its limitations. Material Requirements Planning; the basic material requirements explosion process; capacity planning and control, Master Production Scheduling; structuring the Bill of Materials for MRP; cycle counting; lot sizing techniques; implementation of MRP in practice; limitations of MRP. OPT (Optimised Production Technology), its basic philosophy and approach to production scheduling. Just in Time Production; basic philosophy of JIT; prerequisites for JIT; planning a JIT product mix; the Kan Ban System. Comparative evaluation of alternative Production Management Approaches and their relationship to manufacturing strategy.

MANF9430 Scheduling and Sequencing C2
Criteria for evaluation schedules. Scheduling of single machines. Job-shop scheduling with two, three or more

MANF9440 Management of Distribution Systems C2
Assumed knowledge: MANF3609.
The distribution system: single depot location, multi-depot location, vehicle scheduling, vehicle loading, fleet size, case studies.

MANF9450 Management Simulation C3

MANF9491 Special Topic in Industrial Engineering* C3
MANF9492 Special Topic in Industrial Engineering* C3
MANF9500 Computer Aided Programming for Numerical Control C3
Assumed knowledge: MECH1500 or equivalent. Excluded: MANF4509.

MANF9510 Computer Automation C3
Computer architecture including central processor, random access memory, read only memory, input/output ports, peripherals, and the relationships between each. A systematic study of the requirements for interfacing computers to the real world. Machine code, assembly language, and high level languages such as BASIC or FORTRAN with a comparison of each for particular applications. Development of small computer system for machine tool control, automated inspection, supervision, stock control, etc.

MANF9520 Computer-Aided Manufacturing C3

MANF9530 Discrete-Event Simulation Languages C3
Assumed knowledge: MANF3609 or 6.646 or equivalent.
Basic elements of simulation languages: random number generation, process generation, list and set processing, data structures, time advance and event scanning, gathering and resetting statistics, graphics, Simulation language world views. Comparative review of commercially available simulation languages such as Simscript, GPSS, ECSL, and Simula, and a study of one of them in depth. Simulation using personal computers. Simulation language preprocessors.

MANF9541 Computer Aided Design for Manufacture C3
Principles underlying the interactive computer graphics packages such as AUTO CAD, CADAM, CATIA. Applications to design and engineering processes. Projects on building packages for design or upgrading the existing packages.

MANF9542 CAD for Manufacture 2 C3
Prerequisite: MANF9541.
Topics related to methods of geometric modelling for curves, surfaces and solid models, and their applications to computer-aided design problems in manufacturing industry. Finite element methods in CAD. Intelligent CAD systems: principles and applications.

MANF9560 Computer Integrated Manufacturing C3
Prerequisite: MANF9520.
Systems analysis and design of computer integrated manufacturing, including flexible manufacturing systems and automated factories.

MANF9601 Economic Decisions in Industrial Management C3
Excluded: MANF3619.
General aspects: the economic objective, the single-period investor's model, economic criteria, the mathematics of finance. Deterministic models: project evaluation using discounted cash flow analysis; capital structure; debt and equity financing; cost of capital and the minimum acceptable rate of return; taxation; inflation and its effects. Probabilistic models: multiple objectives and multi-attribute value systems based on means and variances of cash flows. Particular applications of economic decision-making: venture and risk analysis, risk management, static and dynamic replacement models, rent-or-buy decisions, breakeven analysis, expansion and economic package concepts, analysis of projects with public financing.

MANF9602 Engineering Economics Analysis C3
Price-output decisions under various competitive conditions. The time-value of money, net present worth and DCF rate of return, and their application in the selection and replacement of processes and equipment. Construction and optimization of particular models, eg replacement, capital rationing. Measures of profitability.

MANF9610 Decision Theory for Industrial Management C3

MANF9620 Operations Research 1 C6
Excluded: 6.646, 18.503, MANF4610, MANF9629.
The formation and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queuing theory, inventory models, replacement and reliability models and simulation. These techniques are applied to situations drawn from industrial fields, for example, production planning and control. Practical problems of data collection, problem formulation and analysis.

MANF9629 Operations Research C6
Excluded: 6.646, MANF3609, MANF4610, MANF9620.
The formulating and optimization of mathematical models. The development of decision rules. Some techniques of operations research such as mathematical programming, queuing theory,
inventory models, replacement and reliability models; simulation. These techniques applied to situations drawn from industrial trials, e.g. production planning and inventory control. Practical problems of data collection, problem formulation and analysis.

MANF9630 Large Scale Optimization In Industry
Excluded: MECH4130.
Large-scale linear programming: sparse constraint matrices, updating basis factorizations. Large-scale nonlinear programming: the limitations of classical quasi-Newton and conjugate gradient methods, sparse Hessian approximations, superbasic variables, augmented Lagrangian methods for sparse nonlinear constraints. Applications, examples and case studies from industry: optimal power flow, steam and power plant design, pipeline network optimization and other.

MANF9640 Industrial Applications of Mathematical Programming

MANF9650 Decision Support Systems
Perspectives on individual and organisational decision making; definitions and basic philosophy of DSS; DSS classification and architectures. DSS technology: spreadsheet and multi-dimensional array modelling; data models, databases and database management system; normalisation and query languages; data information and knowledge; knowledge based systems in DSS; basic knowledge representation techniques; forward and backward chaining; integration of knowledge based systems in DSS architecture; user interfaces (including natural language). Design of a DSS (project).

MANF9660 Energy Modelling, Optimization and Energy Accounting
The analysis of energy systems using computer models. Applications of such models range from policy analysis at government level investment analysis within individual industries. Covers both the formulation of energy models and the techniques used to obtain optimized solutions, with examples from actual studies. Effects of uncertainty and the use of energy accounting as an analytical tool.

MANF9691 Special Topic In Operations Research*
MANF9692 Special Topic In Operations Research*
MANF9693 Special Topic In Operations Research*
MANF9811 Industrial Experimentation 1 C3
Excluded: MANF9809 or equivalent.
Design of experiments with reference to industrial problems; planning experiments; significance testing; simple comparative experiments, accelerated experiments; economic aspects of experimental design; analysis of variance or randomized block, latin square and factorial experiment designs.

MANF9812 Industrial Experimentation 2
Regression analysis; use of orthogonal polynomials in regression analysis and analysis of variance; confounding in factorial design; response surfaces and determination of optimum conditions.

MANF9820 Time Series Forecasting

MANF9840 Linear Programming

MANF9850 Nonlinear Programming

MANF9860 Networks and Graphs
Basic concepts. Application of Hamiltonian paths, Euler cycles, trees, planar graphs, dominating and independent sets to operations research problems. Shortest route algorithms. Concept of maximum flow in a network applied to transportation assignment and scheduling problems.

MANF9870 Dynamic Programming

MANF9880 Optimal Control In Operations Research
Brief survey of dynamic optimization techniques. Introduction to the calculus of variations and the maximum principle for both continuous and discrete systems. Applications to operations research problems drawn from the areas of production and inventory control, machine maintenance, investment and natural resource utilization.

* These syllabi change to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

Mathematics

MATH5045 Advanced Mathematics for Electrical Engineers
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials.
MECH9010 Project C12

MECH9201 Digital Logic Fundamentals for Mechanical Engineers C3
Excluded: 6.021E, 6.631 and equivalent.

MECH9202 Microprocessor Fundamentals for Mechanical Engineers C3
Prerequisite: MECH9201 or equivalent. Excluded: 6.0318, ELEC4432, 6.613, COMP9221, ELEC4406, ELEC4351 and equivalent.

MECH9203 Industrial Applications of Microprocessors C3
Prerequisite: MECH9202 or equivalent. Excluded: ELEC4432, ELEC9406, ELEC4351 and equivalent.

MECH9204 Elements of Industrial Automation C3
Prerequisite: MECH9204.
An introductory overview of the elements of Industrial Automation systems and the factors governing their use in industry.

MECH9205 The Analysis and Use of Integrated CAD/CAM Systems C3
Prerequisite: MECH9204.

MECH9211 Control and Modelling of Mechanical Systems 1 C3
As for MECH9212.

MECH9212 Control and Modelling of Mechanical Systems 2 C3
Prerequisite: MECH9211 or equivalent.
Development of modelling techniques using both digital and analogue computation, with special emphasis on the representation of non-linearities. Typical examples of mechanical systems.

MECH9221 Industrial Robotics C3

MECH9222 Artificially Intelligent Machines C3
The principles of operation of machines into which limited powers of decision making have been delegated. The grouping of intelligent machines. Cognition; sensor technology; parsing; information representation; convolutions; software and hardware environments.

MECH9301 Advanced Mechanism Analysis and Synthesis 1 C3
Assumed knowledge: MECH2300 or 5.333 or equivalent. Excluded: MECH4301.
Algebraic displacement, velocity and acceleration analyses of simple and complex planar mechanisms. Instantaneous kinematics: centroids; inflection and Bresse circles; acceleration centre; Euler-Savary equation; cubic of stationary curvature; centring point curve. Coupler curves and their properties; curve cognates. Constraint and freedom; mobility; velocity closure of a loop; special configurations; singularities. Various methods of synthesis.

MECH9302 Advanced Mechanism Analysis and Synthesis 2 C3
A selection of topics from Planar mechanisms: kinematic analysis of complex mechanisms; kinetic analysis; kinematic geometry; precision position synthesis. Cams: basic and common curves; equations of motion; development of profile; determination of system geometry and mechanical properties; noise, wear, backlash and manufacture. Spatial linkages: structural analysis; closure equations; screw system algebra; special configurations.

MECH9310 Advanced Vibration Analysis C3
Assumed knowledge: MECH3310 or equivalent. Excluded: MECH4310.
Introduction to experimental vibration analysis using Fast Fourier Transform (FFT) techniques. Typical sources of vibration in machines. Analysis of continuous systems via classical and finite element techniques. Experimental modal analysis. Torsional vibrations, including geared shaft systems.

MECH9320 Random Vibrations C2
Assumed knowledge: MECH3310.
Probability, vibration theory review, linear mechanical system response to random vibrations. Statistical characteristics: autocorrelation, spectral density, convolution, narrow band processing, consistency, applications.
Acoustic plane wave equation, standing waves, energy density, intensity, decibel scales. Human response, annoyance and damage criteria. Transmission between media, absorbing materials. Mufflers, Three dimensional wave equation. Transmission in ducts. Room acoustics.

History of lubrication, types of bearing and bearing operation, nature of surfaces and their contact, modes of lubrication, properties of lubricants, viscous flow in pipes and channels, measurement of viscosity, infinitely long and short bearing approximations, one dimensional analysis of short bearing, other slider bearing geometries, the effect of end leakage, hydrostatic or externally pressurised bearings, squeeze films.

MECH9720 Solar Thermal Energy Design C3
Excluded: MECH4720 and equivalent.

MECH9730 Two Phase Flow and Heat Transfer C3
Assumed knowledge: MECH3701 or equivalent. Excluded: MECH4720.

MECH9740 Power Plant Engineering C3
Assumed knowledge: MECH2600 and MECH2700 or equivalent.

MECH9741 Energy Conservation and System Design C3
Examination of some existing systems, assessment of their energy losses and their improvement by tuning. Alternative energy sources and their availability, energy utilization and efficiency in various systems. Environmental aspects, assessment of emissions, means of improvement. Economically viable energy technology under present conditions. Expected trends in energy technology in the short and long term. A number of case studies.

MECH9742 Power Production Assessment C3
Assumed knowledge: MECH3600 and MECH3701 or equivalent.
Components of hydro, coal and nuclear fuel power station designs. Economics of power production. Operation and maintenance of costs. Efficiency and heat balance calculations of thermal power stations. Comparison of electrical energy production costs of different power stations.

MECH9751 Refrigeration and Air Conditioning 1 C3

MECH9752 Refrigeration and Air Conditioning 2 C3
Assumed knowledge: MECH9751 or equivalent.

MECH9753 Refrigeration and Air Conditioning Design 1 C3
Assumed Knowledge: MECH9730, MECH9751, MECH9752 or equivalent.

MECH9754 Refrigeration and Air Conditioning Design 2 C3
Prerequisite: MECH9753 or equivalent.

MECH9755 Refrigeration and Air Conditioning Applications C3
Industrial, commercial and domestic applications of refrigeration and air conditioning. Refrigeration technology. The science and technology of foods. Building design and construction.

MECH9756 Refrigeration and Air Conditioning Experimentation C3
Prerequisites: MECH9751, MECH9752. Co-requisites: MECH9753, MECH9754.
Performance testing and system evaluation of multistage R22 brine system, R12 forced draft cooler system and dual duct air conditioning plant. Instrumentation, data acquisition and control of refrigeration plant. Use of calorimeter rooms for testing and rating of equipment. Transient performance characteristics of direct expansion coil and system, under different ambient conditions. Group project involving the designing, building, commissioning, instrumenting and testing of refrigeration and air conditioning equipment.

MECH9757 Ambient Energy Air Conditioning C2
Assumed knowledge: MECH3701 or equivalent.

MECH9761 Internal Combustion Engines 1 C3
MECH9762 Internal Combustion Engines 2 C3
Prerequisite: MECH9761 or equivalent.

MECH9800 Ordinary Differential Equations in Mechanical Engineering C3
Solutions and their meaning, integration constants, linearity; special methods of solution; integration factors; variation of parameters; Euler, higher order linear equations; physical origins of ordinary differential equations and linear systems; linearization of engineering problems; stability of engineering systems.

MECH9900 Special Topic in Mechanical Engineering C2
MECH9910 Special Topic in Mechanical Engineering C2
MECH9920 Special Topic in Mechanical Engineering C3
MECH9930 Special Topic in Mechanical Engineering C3
These syllabi change to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

Mines

MINE1524 Mining Conservation F3
The reclamation of excavated land; integration with operational stages of mining. Mining cycles of alluvial, strip, and open cuts, land clearing, stabilizing the mined area, socio-economic aspects of mining, rehabilitation costs, government regulations. Examination and evaluation of a current operation.

MINE355 Mine Fill Technology F2

Remote Sensing

REMO9580 Image Analysis in Remote Sensing C3
Prerequisite: 10.361 or similar.
Techniques for extracting information from remotely sensed data with particular emphasis on satellite imagery. Topics taken from: nature and characteristics of earth resources and related satellites; satellite sensors and data formats; image enhancement techniques; image classification methods, including clustering, classification and feature selection; image classification methodologies; new horizons in remote sensing image analysis.

REMO9581 Microwave Remote Sensing C3
Use of passive and active (radar) microwave techniques in remote sensing of earth resources. Topics include: real and synthetic aperture radar systems; passive microwave radiometry; energy-surface interactions; interpretation of microwave image data: applications in agriculture, geology, oceanography and hydrology; issues in signal and image processing; characteristics of airborne and spaceborne microwave sensors.

Safety Science

Safety Science is a Department within the Faculty of Applied Science

SAFE9213 Introduction to Safety Engineering M C3
The treatment of the following topics covers similar material as SAFE9211, but assumes a basic knowledge of differential calculus. The following workplace topics are considered: safety management, ergonomics, equipment design and task consideration, machine guarding and electrical safety, fire and explosion, management of dangerous materials, ventilation, radiation protection, noise and vibration control, environmental safety, transport safety, safety issues in different industries.

SAFE9224 Principles of Ergonomics C3
Applied anatomy and kinesiology, anthropometry; application to work place arrangement, seating and bench design, tool and equipment design, lifting techniques, consumer product and architectural design. Physiological and psychological aspects of work and fatigue; measurement of energy consumption, limits to energy expenditure at work, static muscular fatigue, boredom. Environment effects; artificial lighting arrangements, problems of perception, colour; noise and vibration, heat and ventilation, thermal regulation in humans, criteria for comfort. Person-machine interfaces, displays, machine controls, reaction times, vigilance. Applications of ergonomics to occupational safety and health. Ergonomic research methodology.

Note: A project forms a substantial proportion of the assessment for this subject.

SAFE9232 Introduction to Occupational Health and Safety Law C3
The concept of law; the creation and interpretation of statutes; the judicial and court systems; locus standi; common law and equity; basic principles of legal liability (civil and criminal); basic principles of administrative law and the liability of the Crown; the common law of employment; statutory regulation of employment; compulsory arbitration of industrial disputes. Outline of occupational health, safety and compensation legislation of the Australian States. Actions under the common law.
SAFE9242 Human Behaviour and Safety Science C3

SAFE9533 Electrical Safety C3
Electric current; effects of current flow and electric fields; elementary circuit representation, typical supply situations; likely dangerous conditions; static electricity; hazardous locations; some special problem areas: codes of safe working; treatment of electric shock. Electrical causes of fire and explosion.

SAFE9543 Management of Dangerous Materials C3

SAFE9553 Radiation Protection C3
Radiation physics; radiation dosimetry and instrumentation; radiation biology; shielding and control of radiation; waste management; emergency procedures; environmental impact, non-ionizing radiation. Relevant legislation and codes of safe practice. Special topics: practical work and site visit.

SAFE9583 Ventilation C3
Prerequisite: SAFE9011 or equivalent.

SURV9121 Network and Deformation SS L2 T1 C3
Analysis
Selected topics from: Geodetic datum and invariant quantities, measures of accuracy, testing of hypotheses, out-lie detection, internal and external reliability and sensitivity criteria, variance component estimation, design and optimisation of deformation monitoring networks, two-epoch analysis, multi-epoch analysis, case studies of monitoring networks.

SURV9122 Elements of Geodetic Equipment SS L2 T1 C3
Selected topics from: Measuring system definition and design: principles of signal analysis, analogue to digital conversion, modulation techniques, phase and delay lock loops. Satellite receivers: design of satellite ranging systems, propagation effects, generation, reception and processing of GPS signals, GPS antenna and receiving design. Inertial sensors: principle and design of gyroscopes and accelerometers. Electronic theodolites: absolute and incremental angle encoders and electronic circle, tilt sensors, surveying robots. Electronic distance meters: principle of precision distance meters and laser interferometers, phase and time measuring techniques.

SURV9161 Advanced Estimation Techniques SS L2 T1 C3
Selected topics from: Generalised least squares estimation, sequential least squares estimation, matrix partitioning techniques, Kalman Filtering, covariance analysis, management of large data sets, application in satellite geodesy, network analysis and analytical photogrammetry.

SURV9162 Mathematical Methods SS L2 T1 C3
Selected topics from: Principles and applications of spectral analysis techniques, spherical harmonic expansion of the Earth's gravity field, methods of curve fitting, numerical methods of differentiation and integration, case studies in satellite orbit dynamics.

SURV9210 Satellite Surveying SS L2 T1 C3
Concepts of satellite surveying: nomenclature, TRANSIT system, GPS for point and relative positioning, vertical control. Surveying with GPS: planning a survey, field and office procedures, case studies. Considerations for high-precision applications: aspects of satellite geodesy, modelling the observable, dual frequency observations, orbit determination, short-arc techniques.

SURV9211 Introduction to Geodesy S1 L2 T1 C3

SURV9213 Physical Meteorology S2 L2 T1 C3
SURV9217 Gravimetric Geoid Evaluations SS L2 T1 C3

SURV9530 Analytical Photogrammetry SS L2 T1 C3
Fundamental relationship, image and object space. Interior orientation, deviations from collinearity. General orientation of one and two images by collinearity. Simultaneous block adjustment by bundles. Additional parameters. Calibration of metric and non-metric cameras. Control requirements in analytical photogrammetry.

SURV9532 Computer-Assisted Mapping SS L2 T1 C3

SURV9600 Principles of Remote Sensing SS L2 T1 C3

SURV9602 Remote Sensing Procedures SS L2 T1 C3
Review of atmospheric correction procedures and application to multi-temporal Landsat MSS data. Review of image registration, enhancement and classification procedures with particular reference to multi-source remote sensing data sets. Analysis of techniques over a varied land use area. Land use change project and analysis using multi-source and multi-temporal remotely sensed imagery, including Landsat MSS, TM, SPOT and SAR.

SURV9604 Land Information Systems SS L2 T1 C3

SURV9605 Ground Investigations for Remote Sensing SS L1 T1 C3
The spectral, temporal and spatial characteristics of various surfaces, and the available sensors to effect maximum differentiation. Ground and image comparisons. Instruments available for field measurements. Field investigation procedures including positioning and sampling considerations.

SURV9608 Cadastral Systems SS L2 T1 C3

SURV9912 Project C12
Graduate Study

Conditions for the Award of Higher Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Table of Courses by Faculty (Undergraduate Study) in the Calendar.

The following is the list of higher degrees, graduate diplomas and graduate certificates of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see later in this section.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Medicine</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Art</td>
<td>MArt</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Arts Administration</td>
<td>MArtAdmin</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Education</td>
<td>MArtEd</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>Arts and Social Sciences University College</td>
</tr>
<tr>
<td>Master of Art Theory</td>
<td>MArtTh</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calender/Handbook</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEtv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td>MBEtv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Clinical Education</td>
<td>MClinEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Cognitive Science</td>
<td>MCogSc</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Community Health</td>
<td>MCH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Computer Science</td>
<td>MCompSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Construction Management</td>
<td>MConstMgt</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Education</td>
<td>MEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Education in Creative Arts</td>
<td>MEdCA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEadmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Fine Arts</td>
<td>MFA</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Higher Education</td>
<td>MHEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Information Science</td>
<td>MinfSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Planning</td>
<td>MLP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Management Economics</td>
<td>MMgtEc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts and Social Science</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Project Management</td>
<td>MPM</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Public Health</td>
<td>MPH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychology (Applied)</td>
<td>MPsychol</td>
<td>Professional Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science†</td>
</tr>
</tbody>
</table>
Graduate Study: Conditions for the Award of Higher Degrees

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Psychology (Clinical)</td>
<td>MPsychol</td>
<td>Science†</td>
</tr>
<tr>
<td>Master of Psychotherapy</td>
<td>MPsychotherapy</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Sports Science</td>
<td>MSpSc</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Surveying</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying without supervision</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying Science</td>
<td>MSurvSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Town Planning</td>
<td>MTP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Welfare Studies and Practice</td>
<td>MWSP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>GradDip</td>
<td>Applied Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td></td>
<td>DipClinEd</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>DipPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>DipEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td></td>
<td>DipHEd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DiplM-ArchivAdmin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DiplM-Lib</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DipFDA</td>
<td>Science*</td>
</tr>
<tr>
<td>Graduate Certificate</td>
<td>GradCertHEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td></td>
<td>GradCertPhilT</td>
<td>Arts and Social Sciences</td>
</tr>
</tbody>
</table>

*Faculty of Science, †Faculty of Biological and Behavioural Sciences.

1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.
(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

Enrolment

3.(1) An application to enrol as a candidate for the degree shall be lodged with the Registrar at least one month prior to the date at which enrolment is to begin.

(2) In every case before making the offer of a place the Committee shall be satisfied that initial agreement has been reached between the School* and the applicant on the topic area, supervision arrangements, provision of adequate facilities and any coursework to be prescribed and that these are in accordance with the provisions of the guidelines for promoting postgraduate study within the University.

(3) The candidate shall be enrolled either as a full-time or a part-time student.

(4) A full-time candidate will present the thesis for examination no earlier than three years and no later than five years from the date of enrolment and a part-time candidate will present the thesis for examination no earlier than four years and no later than six years from the date of enrolment, except with the approval of the Committee.

(5) The candidate may undertake the research as an internal student i.e. at a campus, teaching hospital, or other research facility with which the University is associated, or as an external student not in attendance at the University except for periods as may be prescribed by the Committee.

(6) An internal candidate will normally carry out the research on a campus or at a teaching or research facility of the University except that the Committee may permit a candidate to spend a period in the field, within another institution or elsewhere away from the University provided that the work can be supervised in a manner satisfactory to the Committee. In such instances the Committee shall be satisfied that the location and period of time away from the University are necessary to the research program.

(7) The research shall be supervised by a supervisor and where possible a co-supervisor who are members of the academic staff of the School or under other appropriate supervision arrangements approved by the Committee. Normally an external candidate within another organisation or institution will have a co-supervisor at that institution.

Progression

4. The progress of the candidate shall be considered by the Committee following report from the School in accordance with the procedures established within the School and previously noted by the Committee.

(i) The research proposal will be reviewed as soon as feasible after enrolment. For a full-time student this will normally be during the first year of study, or immediately following a period of prescribed coursework. This review will focus on the viability of the research proposal.

(ii) Progress in the course will be reviewed within twelve months of the first review. As a result of either review the Committee may cancel enrolment or take such other action as it considers appropriate. Thereafter, the progress of the candidate will be reviewed annually.

Thesis

5.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall comply with the following requirements:

(a) it must be an original and significant contribution to knowledge of the subject;

(b) the greater proportion of the work described must have been completed subsequent to enrolment for the degree;

(c) it must be written in English except that a candidate in the Faculty of Arts may be required by the Committee to write a thesis in an appropriate foreign language;

(d) it must reach a satisfactory standard of expression and presentation;

* "School" is used here and elsewhere in these conditions to mean any teaching unit authorised to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
(e) it must consist of an account of the candidate's own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

6. (1) There shall be not fewer than three examiners of the thesis, appointed by the Committee, at least two of whom shall be external to the University.

At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that one of the following:

(a) The thesis merits the award of the degree.

(b) The thesis merits the award of the degree subject to minor corrections as listed being made to the satisfaction of the head of school.

(c) The thesis requires further work on matters detailed in my report. Should performance in this further work be to the satisfaction of the Higher Degree Committee, the thesis would merit the award of the degree.

(d) The thesis does not merit the award of the degree in its present form and further work as described in my report is required. The revised thesis should be subject to re-examination.

(e) The thesis does not merit the award of the degree and does not demonstrate that resubmission would be likely to achieve that merit.

(3) If the performance at the further work recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further work, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

7. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Biomedical Engineering may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed, and shall submit a project report. The program of advanced study, including the preparation of the project report, shall total a minimum of 60 credits. The number of credits allocated for each subject shall be determined by the Committee on the
Engineer

recommendation of the Director of the Centre for Biomedical Engineering (hereinafter referred to as the head of the school).

(3) The progress of the candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or five sessions in the case of a part-time candidate. The maximum period of candidature shall be five academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Project Report

4.(1) A candidate shall be required to undertake a project on an approved topic.

(2) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.

(3) The candidate shall give in writing to the Registrar two months notice of intention to submit a report on the project.

(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports for higher degrees.

(5) It shall be understood that the University retains three copies of the project report submitted for examination and is free to allow the project report to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report in whole or in part, in microfilm or other copying medium.

Examination

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Computer Science (MCompSc) Qualifications

1. The degree of Master of Computer Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.
(2) A candidate for the degree shall:
(a) undertake such formal subjects and pass such assessment as prescribed, or
(b) undertake an approved combination of the above and demonstrate ability to undertake
research by the submission of a project report embodying the results of an original investigation
of an approved topic.

(3) The program of advanced study shall total a minimum of 48 credits. The number of credits
allocated for each subject shall be determined by the Committee on the recommendation of the
appropriate head of school.

(4) A candidate's proposed program shall be approved by the head of the Department of
Computer Science prior to enrolment.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and
as a result of its review the Committee may cancel enrolment or take such other action as it
considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of three academic sessions from
the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time
candidate. The maximum period of candidature shall be six academic sessions from the date
of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special
cases an extension of these times may be granted by the Committee.

4.(1) A candidate who undertakes an 18 credit project shall carry out the work on an approved
topic under the direction of a supervisor appointed from the full-time academic members of the
University staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit
a project report.

(3) The project report or thesis shall present an account of the candidate's own research. In
special cases work done conjointly with other persons may be accepted, provided the Committee
is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is
related to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with
the requirements of the University for the preparation and submission of project reports and
theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis
submitted for examination and is free to allow the project report or thesis to be consulted or
borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the
project report or thesis in whole or in part, in microfilm or other copying medium.

5.(1) There shall be not fewer than two examiners of the project report, appointed by the
Academic Board on the recommendation of the Committee, at least one of whom shall be external
to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise
report on the project report and shall recommend to the Committee that:
(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the
satisfaction of the head of the school*; or
(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit
it in a revised form after a further period of study and/or research; or
(d) the project report be noted as unsatisfactory and that the candidate be not permitted to
resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of
assessment in the prescribed formal subjects, recommend whether or not the candidate may be
awarded the degree. If it is decided that the project report in unsatisfactory the Committee shall
determine whether or not the candidate may resubmit it after a further period of study and/or
research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

* Or department where a department is not within a school, or schools or departments where the research is
being undertaken in more than one school or department.
1. The degree of Master of Engineering or Master of Science by research may be awarded by the Council on recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of the thesis embodying the results of an original investigation.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

 (2) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the degree.

 (3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work the Committee may prescribe.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

 (2) In every case, before permitting a candidate to enrol, the head of the school in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.

 (3) An approved candidate shall be enrolled in one of the following categories:

 (a) full-time attendance at the University;

 (b) part-time attendance at the University;

 (c) external - not in regular attendance at the University and using research facilities external to the University.

 (4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

 (5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

 (6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school in which the candidate is enrolled and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

 (7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

 (8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present, for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

 (2) The candidate shall give in writing two months notice of intention to submit the thesis.

 (3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

 (4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

 (5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

 (6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.
5.(1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

(c) the candidate be awarded the degree subject to further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Engineering or Master of Science or Master of Surveying without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor of the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

3. An application to enrol as candidate for the degree without supervision shall be made in the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should, in his or her own interest, seek at an early stage the advice of the appropriate head of school* with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available.

4.(1) A candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation an submission of theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

School is used here and elsewhere in these conditions to mean any teaching unit authorised to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) Before the thesis is submitted to the examiners the head of the school* in which the candidate is enrolled shall certify that it is prima facie worthy of examination.

(3) At the conclusion of the examination each examiner shall submit to the Committee that:
 (a) the candidate be awarded the degree without further examination; or
 (b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or
 (c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
 (d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
 (e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

A candidate shall pay such fees as may be determined from time to time by the Council.

The degree of Master of Engineering Science or Master of Surveying Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

(2)(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:
 (a) undertake such formal subjects and pass such assessment as prescribed, or
 (b) demonstrate ability to undertake research by the submission of a thesis embodying the results of an original investigation of an approved topic, or
 (c) undertake an approved combination of the above in which case the thesis component shall be referred to as a project report.

(3) The program of advanced study shall total a minimum of 30 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school*.

(4) A candidate's proposed program shall be approved by the appropriate head of school* prior to enrolment. For the purposes of this requirement the appropriate head of school shall normally be the head of the school* providing the major field of study.

*"School" is used here and elsewhere in these conditions to mean any teaching unit authorised to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. (1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic under the direction of a supervisor appointed from the full-time academic members of the University staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report or thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate’s part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.

5. (1) There shall be not fewer than two examiners of the project report, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Information Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.
3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:

(a) undertake such formal subjects and pass such assessment as prescribed, or

(b) undertake an approved combination of the above and demonstrate ability to undertake research by the submission of a project report embodying the results of an original investigation of an approved topic.

(3) The program of advanced study shall total a minimum of 36 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school.

(4) A candidate's proposed program shall be approved by the head of the Department of Computer Science prior to enrolment.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of three academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4.(1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic under the direction of a supervisor appointed from the full-time academic members of the University staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report or thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school*; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report in unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.
1. The degree of Master of Surveying by research may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work as the Committee may prescribe.

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolments is to begin.

(2) In every case, before permitting a candidate to enrol, the Head of the School of Surveying (hereinafter referred to as the head of the school) shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:
 (a) full-time attendance at the University;
 (b) part-time attendance at the University;
 (c) external - not in regular attendance at the University and using research facilities external to the University.

(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

(5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

4.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

(2) The candidate shall give in writing two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.
5.(1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination, or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.
Scholarships and Prizes

The scholarships and prizes listed below are available to students whose courses are listed in this book. Each faculty handbook contains in its Scholarship and Prizes section the scholarships and prizes available with that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

Listed below is an outline only of a number of scholarships available to students. Full information may be obtained from the Student Centre located on the Lower Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar and Deputy Principal by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Development Cooperation Scholarship</td>
<td>Tuition fees only</td>
<td>1992 and 1993 only</td>
<td>Applicants must complete their studies by the end of the 1993 academic year. Scholarships may only be offered in 1992. Only students from specified countries and in certain fields of study can apply. Applications from the Student Centre. The closing date is well before 1 October 1991. Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country.</td>
</tr>
<tr>
<td>Equity and Merit Scholarship Scheme</td>
<td>Tuition fees. Some students may be eligible for air fares and a stipend.</td>
<td>Determined by normal course duration</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need.</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa payable in fortnightly instalments</td>
<td>1 year</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girls Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year</td>
<td>Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need.</td>
</tr>
<tr>
<td>W.S. and L.B. Robinson*</td>
<td>Up to $6500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology, electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science.</td>
</tr>
<tr>
<td>Alumni Association</td>
<td>Up to $1500 pa</td>
<td>1 year</td>
<td>Available to students enrolled in any year of a full-time course. Candidates must be the children of Alumni of the University of NSW and may be either permanent residents of Australia or overseas students.</td>
</tr>
<tr>
<td>Sporting Scholarships</td>
<td>$2000 pa</td>
<td>1 year</td>
<td>Available to students who are accepted into a course of at least two years duration. Prospective applicants should have an outstanding ability in a particular sport and are expected to be an active member of a UNSW Sports Club. Apply directly to Sport and Recreation Section, PO Box 1, Kensington 2033.</td>
</tr>
</tbody>
</table>

*Applications close 30 September each year. Apply directly to PO Box 460 Broken Hill NSW 2880

Engineering

Proctor and Gamble Australia Pty Ltd

- **Computer Science and Engineering**
 - Up to $2500 pa
 - 1 year
 - Permanent residence in Australia and in the final year of the Computer Science program of the Bachelor of Science degree course

- **Electrical Engineering**
 - The Tyree Westinghouse Electrical Company Pty Ltd
 - Up to $6720 over 4 years
 - 1 year renewable for the duration of the course, subject to satisfactory progress
 - Eligibility for admission to the full-time degree course in Electrical Engineering

- **OTC Ltd-Women in Electrical Engineering**
 - Up to $2000 pa
 - 1 year
 - Available to female students enrolled in Year 1 of the electrical engineering degree course. Candidates must be residents of Australia.

- **Environmental Engineering**
 - Rankine and Hill
 - $1500
 - 1 year only
 - Available to students enrolled in Year 1 of the degree course in Environmental Engineering
Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical and Manufacturing Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheem Australia Ltd</td>
<td>Up to $2500 pa</td>
<td>1 year renewable</td>
<td>Permanent residence in Australia for a second and later year student enrolled in degree course in Mechanical or Manufacturing Engineering</td>
</tr>
<tr>
<td>Surveying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Institution of Surveyors NSW, Incorporated</td>
<td>Up to $500 pa</td>
<td>1 year renewable</td>
<td>Permanent residence in Australia and eligibility for admission to the full-time degree course in Surveying. Selection is based on academic merit, personal qualities and financial need.</td>
</tr>
<tr>
<td>NSW Department of Lands</td>
<td>Up to $2000 pa</td>
<td>1 year</td>
<td>Available to female students entering Year 1 of the degree course in Surveying course. Candidates must be residents of Australia.</td>
</tr>
</tbody>
</table>

The UNSW Co-op Program

The University of New South Wales has industry-linked education scholarships to the value of $9300 per annum in the following areas: Accounting (and Economics, Finance, Information Systems or Japanese Studies); Business Information Technology, Aeronautical, Ceramic, Chemical, Civil, Computer, Electrical, Environmental, Materials, Mechanical, Metallurgical, Mineral, Mining and Petroleum Engineering; Applied Geology, Industrial Chemistry, Manufacturing Management, Textile Management, Textile Technology, and Wool and Pastoral Science.

Graduate Scholarships

Application forms and further information are available from the Student Centre, located on the Ground Floor of the Chancellery unless an alternative contact address is provided. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

Details of overseas awards and exchanges administered by the Department of Employment, Education and Training can be obtained from: Awards and Exchanges Section, Department of Employment, Education and Training, PO Box 826, Woden, ACT 2606.

Where possible, the scholarships are listed in order of faculty.

*Available for reference in the University Library.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Postgraduate Research Scholarships</td>
<td>Living allowance of</td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates or equivalent. A limited number of scholarships are offered subject to the availability of funds. Information should be obtained from the Faculty office. Applicants must be honours graduates or equivalent or scholars who will graduate with honours in current academic year, and who are domiciled in Australia. Applications to Registrar by 31 October.</td>
</tr>
<tr>
<td>Australian Postgraduate Research Awards</td>
<td>$13,504 to $17,427</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engineering Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Postgraduate Course Awards</td>
<td>Living allowance of $10,903 pa. Other allowances may also be paid. Tax free.</td>
<td>1-2 years; minimum duration of course</td>
<td>Applicants must be graduates or scholars who will graduate in current academic year, and who have not previously held a Commonwealth Postgraduate Award. Applicants must be domiciled in Australia. Preference is given to applicants with employment experience. Applications to the Registrar by 28 September.</td>
</tr>
<tr>
<td>Australian Development Cooperation Scholarship</td>
<td>Tuition fees only</td>
<td>1992 and 1993 only</td>
<td>Applicants must complete their studies by the end of the 1993 academic year. Scholarships may only be offered in 1992. Only students from specified countries and in certain fields of study can apply. Applications from the Student Centre. The closing date is well before 1 October 1991.</td>
</tr>
<tr>
<td>Equity and Merit Scholarship Scheme</td>
<td>Tuition fees. Some students may be eligible for air fares and a stipend.</td>
<td>Determined by normal course duration</td>
<td>Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country.</td>
</tr>
<tr>
<td>Overseas Postgraduate Research Scholarships</td>
<td>Tuition fees only</td>
<td>2 years for a Masters and 3 years for a PhD degree</td>
<td>Eligibility is confined to postgraduate research students who are citizens of overseas countries excluding citizens of countries which are covered by the Equity and Merit Scholarship Scheme (EMSS). Applications to the Registrar by 28 September.</td>
</tr>
<tr>
<td>Special Overseas Postgraduate Fund</td>
<td>Tuition fees only</td>
<td>1 year for a Postgraduate Diploma, 2 years for Masters degree and 3 years for Doctorate</td>
<td>Eligibility is confined to postgraduate students who are citizens of overseas countries excluding citizens of countries which are covered by the Equity and Merit Scholarship Scheme (EMSS). Applications to the Registrar by 28 September.</td>
</tr>
<tr>
<td>Australian American Educational Foundation Fulbright Award</td>
<td>Travel expenses and $A2000 as establishment allowance</td>
<td>1 year, renewable</td>
<td>Applicants must be graduates who are domiciled in Australia and wish to undertake research or study for a higher degree in America. Applications close 30 September with The Secretary, DEET, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td>Amount varies, depending on award</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women</td>
</tr>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</td>
<td>Usually 2 years, sometimes 3</td>
<td>Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Tenable in Commonwealth countries other than Australia. Applications close with the Registrar in September or October each year.</td>
</tr>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$7000</td>
<td>1 year</td>
<td>Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April with The Secretary, Ground Floor, Sydney School of Arts, 275c Pitt Street, Sydney, NSW 2000.</td>
</tr>
</tbody>
</table>
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships tenable at Harvard University</td>
<td>Stipend of $US7000 pa plus tuition fees</td>
<td>1, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with the Academic Registrar mid October. Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra, ACT 2601.</td>
</tr>
<tr>
<td>Robert Gordon Menzies Scholarship to Harvard</td>
<td>Up to $US 15,000</td>
<td>1 year</td>
<td>Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra, ACT 2601.</td>
</tr>
<tr>
<td>Gowrie Scholarship Trust Fund</td>
<td>$6000 pa. Under special circumstances this may be increased.</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with the Academic Registrar by 31 October. Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close 29 August with the Academic Registrar. Forms available from Mr J Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra, ACT 2601.</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York</td>
<td>Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA</td>
<td>12 to 21 months</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with the Academic Registrar by 31 October. Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close 29 August with the Academic Registrar. Forms available from Mr J Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra, ACT 2601.</td>
</tr>
<tr>
<td>The Packer, Shell and Barclays Scholarships to Cambridge University</td>
<td>Living and travel allowances, tuition expenses</td>
<td>1-3 years</td>
<td>Applicants must be Australian citizens who are honours graduates or equivalent, and under 26 years of age. Applications close 15 October with The Secretary, Cambridge Commonwealth Trust, PO Box 252, Cambridge CB2 1TZ, England. Unmarried Australian citizens aged between 19 and 25 who have an honours degree or equivalent. Applications close in August each year with The Secretary, University of Sydney, NSW 2006.</td>
</tr>
<tr>
<td>The Rhodes Scholarship to Oxford University</td>
<td>Approximately £4862 stg pa</td>
<td>2 years, may be extended for a third year.</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Institute of Nuclear Science and Engineering Studentships</td>
<td>Basic stipend $11,103 pa plus allowances and some University expenses</td>
<td>1-3 years</td>
<td>Applicants must be honours graduates in Science or Engineering. At least one quarter of the period of tenure must be spent at the Institute at Lucas Heights, NSW. Applications close late October with the Registrar.</td>
</tr>
<tr>
<td>Harold G. Conde Memorial Fellowship</td>
<td>$5000 pa</td>
<td>Maximum of 3 years</td>
<td>Applicants should be honours graduates permanently domiciled in Australia. The Fellowship is a supplementary award to be held in conjunction with another scholarship and is for graduate study or research in a field related to the electricity industry. Applications close with the Registrar by 10 April.</td>
</tr>
</tbody>
</table>
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Research Scholarship in Microelectronics</td>
<td>$12,000 pa where only scholarship held.</td>
<td>Up to 3 years</td>
<td>To enable a suitable graduate to undertake a research degree in the Joint Microelectronics Research Centre. Applications close 31 October with the Registrar.</td>
</tr>
<tr>
<td></td>
<td>$5,000 pa where it supplements another scholarship.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Joseph Barling Fellowship</td>
<td>Not less than $8,500</td>
<td>Maximum of 3 years</td>
<td>Candidates should be electrical engineering graduates of the University of New South Wales in special circumstances mechanical and industrial engineering graduates may apply. The Fellowship is for full-time study for the award of the degree of Master of Business Administration or Doctor of Philosophy at the University. Applications close 31 December with the Registrar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Engineering Research Association</td>
<td>Variable</td>
<td>1-3 years</td>
<td>Awarded for graduate study or research in the field of Biomedical Engineering. Applications to The Secretary, MERA, PO Box 218, Lindfield, NSW 2070. Applications close with the Registrar 20 June.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Industry Research Award</td>
<td>$21,000 pa</td>
<td>2-4 years</td>
<td>Applicants must be first class honours graduates or equivalent or scholars who will graduate with honours in the current academic year, who are Australian citizens or permanent residents and who are aged under 25 years at 1 January. Applications close November 2 with ATERB, PO Box 76, Epping, NSW 2121.</td>
</tr>
<tr>
<td>Australian Telecommunications and Electronics Research Board</td>
<td>$9,000 intended as a supplement to other awards</td>
<td>1 year for a Masters and up to 3 years for a PhD degree</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Scholarship in Science or Engineering</td>
<td>Adequate funds for living allowance tuition and travel expenses</td>
<td>2 years, sometimes 3</td>
<td>Applicants must be Australian citizens, under 25 years of age, with at least 5 years' domicile in Australia and who are completing the requirements for an honours degree in Science or Engineering. The successful candidate will attend a British university to pursue a higher degree. Applications close 30 September with Shell Australia, 140 Phillip Street, Sydney, NSW 2000.</td>
</tr>
</tbody>
</table>
Prizes

Undergraduate University Prizes

The following table summarizes the undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded.

Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor of the Chancellery.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Sydney Technical College Union Award</td>
<td>$400.00</td>
<td>Leadership in student affairs combined with marked academic proficiency by a graduand</td>
</tr>
<tr>
<td>The University of New South Wales Alumni Association Prize</td>
<td>$400.00</td>
<td>Achievement for community benefit by a student in the final or graduating year</td>
</tr>
<tr>
<td>Faculty of Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Institution of Engineers Australia Award</td>
<td>$200.00</td>
<td>The best performance by a final or equivalent year student in the BE or BSc(Eng) degrees offered by the Schools of Civil Engineering, Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Chemical Engineering and Industrial Chemistry, and the Departments of Mining Engineering and Textile Technology (Engineering option only)</td>
</tr>
<tr>
<td>The John Fraser Memorial Award</td>
<td>$130.00</td>
<td>The best performance in Year 1 or part-time equivalent of a Bachelor degree offered by the Faculty of Engineering</td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Association of Consulting Structural Engineers of New South Wales Prize</td>
<td>$225.00</td>
<td>Best performance in CIVL4203 Structural Engineering in the Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
<tr>
<td>The Association of Consulting Structural Engineers of New South Wales Prize</td>
<td>$175.00</td>
<td>The best performance in CIVL3303 Structural Design 3 in the Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
<tr>
<td>The Australian Conservation Foundation Prize</td>
<td>$50.00</td>
<td>The best performance in the subjects which develop environmental management concepts for the Civil Engineer</td>
</tr>
<tr>
<td>The Australian Institute of Traffic Planning and Management Prize</td>
<td>$150.00</td>
<td>The best performance in CIVL4844 Transport major in the Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
<tr>
<td>The Australian Welding Institute Prize</td>
<td>Books to the value of $100.00 1 year membership of the institute.</td>
<td></td>
</tr>
<tr>
<td>The Baulderstone Hornibrook Prize</td>
<td>$500.00</td>
<td>The best performance in Engineering Construction and Management in the Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
<tr>
<td>The Crawford Munro Memorial Prize</td>
<td>$300.00</td>
<td>The best performance in CIVL3705 Water Resources in the Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
</tbody>
</table>
School of Civil Engineering (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The GAA Engineering Award</td>
<td>$500.00</td>
<td>The best performance in CIVL3303 Structural Design in Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
<tr>
<td>The GAA Engineering Award</td>
<td>$500.00</td>
<td>The best essay on a topic relating to galvanising by a student proceeding to the degree of Bachelor of Engineering in Civil Engineering</td>
</tr>
<tr>
<td>The Hardie's Pipeline Award</td>
<td>$250.00</td>
<td>The best performance in CIVL4605 Water Supply and Wastewater Disposal in the Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
<tr>
<td>The James Hardie Co Pty Ltd Prize</td>
<td>$225.00</td>
<td>The best performance in CIVL2505 Hydraulics 1 in the Bachelor of Engineering degree course in Civil Engineering</td>
</tr>
<tr>
<td>The Jeffery and Katauskas Prize</td>
<td>$500.00</td>
<td>The best performance in CIVL4822 Geotechnical Major in the Bachelor of Engineering degree course.</td>
</tr>
</tbody>
</table>

School of Computer Science and Engineering

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Logica Pty Limited Prize</td>
<td>$1000.00</td>
<td>The best performance by a graduand in a Computer Science Honours degree course at honours level</td>
</tr>
<tr>
<td>The Telecom Australia Prize</td>
<td>$300.00</td>
<td>The best telecommunications related thesis by a final year student proceeding to the award of the degree of Bachelor of Engineering in Electrical Engineering or Computer Engineering.</td>
</tr>
</tbody>
</table>

School of Electrical Engineering

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Austral Crane Prize</td>
<td>$37.50</td>
<td>The best performance in Year 3 of the Bachelor of Engineering degree course in Electrical Engineering</td>
</tr>
<tr>
<td>The Austral Crane Prize</td>
<td>$37.50</td>
<td>The best performance in a Power or Control elective in the Bachelor of Engineering degree course in Electrical Engineering</td>
</tr>
<tr>
<td>The Electricity Supply Engineers' Association of New South Wales Prize</td>
<td>$100.00</td>
<td>The best overall performance including proficiency in electric power distribution in Year 3 full-time or equivalent part-time stages of the Bachelor of Engineering degree course in Electrical Engineering</td>
</tr>
<tr>
<td>The Institution of Electrical Engineers Prize</td>
<td>$100.00</td>
<td>The best performance in Year 3 studies of the Bachelor of Engineering degree course in Electrical Engineering</td>
</tr>
<tr>
<td>The Institution of Electrical Engineers Prize</td>
<td>$100.00</td>
<td>The best performance in the final year thesis/project by a student proceeding to the award of the degree of Bachelor of Electrical Engineering</td>
</tr>
<tr>
<td>The J. Douglas Maclurcan Prize</td>
<td>$60.00 book order</td>
<td>Outstanding performance in the field of Control Systems in the final year of the Bachelor of Engineering course in Electrical Engineering</td>
</tr>
</tbody>
</table>

Centre for Photovoltaic Devices and Systems

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Photovoltaics Prize (Applied Photovoltaics)</td>
<td>$500.00</td>
<td>The best performance in ELEC4540 Applied Photovoltaics in the Bachelor of Engineering degree course</td>
</tr>
<tr>
<td>The Photovoltaics Thesis Prize</td>
<td>$500.00</td>
<td>The best performance for an undergraduate thesis in the area of photovoltaics in the Bachelor of Engineering degree course</td>
</tr>
<tr>
<td>The Photovoltaics Prize (Advanced Photovoltaics)</td>
<td>$500.00</td>
<td>The best performance in ELEC9505 Solar Cells leading to the award of the Bachelor of Engineering or Master of Engineering Science or Doctor of Philosophy degrees</td>
</tr>
<tr>
<td>Donor/Name of Prize</td>
<td>Value</td>
<td>Awarded for</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>School of Mechanical and Manufacturing Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Ansett Airlines of Australia Prize</td>
<td>$200.00 and Bronze Medal</td>
<td>The best overall performance in the Bachelor of Engineering degree course in Aeronautical Engineering</td>
</tr>
<tr>
<td>The Atlas Copac Prize</td>
<td>$125.00</td>
<td>The best overall performance in the Bachelor of Engineering degree course in Mechanical Engineering.</td>
</tr>
<tr>
<td>The Austral Crane Prize</td>
<td>$75.00</td>
<td>The best overall performance in full-time Year 3 of the Bachelor of Engineering degree course in Mechanical Engineering.</td>
</tr>
<tr>
<td>The Australian Institute of Refrigeration, Air Conditioning and Heating Prize</td>
<td>Student membership of the Institute for one year, and Design Aid and Data book</td>
<td>The best performance in a subject selected by the Head of School.</td>
</tr>
<tr>
<td>The Babcock Australia Limited Prize</td>
<td>Books to the value of $100.00</td>
<td>The best performance in a subject selected by the Head of School at the beginning of each academic year.</td>
</tr>
<tr>
<td>The Carrier Air Conditioning Pty Limited Prize</td>
<td>$250.00</td>
<td>The best performance in a subject selected by the Head of School.</td>
</tr>
<tr>
<td>The Computer-based Engineering Design Prize</td>
<td>$100.00</td>
<td>The best undergraduate or postgraduate thesis making a contribution to computer-based Engineering design in the School of Mechanical and Industrial Engineering.</td>
</tr>
<tr>
<td>The David Carment Memorial Prize</td>
<td>$500.00 and Bronze Medal</td>
<td>The best overall performance in the final year of the Bachelor of Engineering degree course in Naval Architecture.</td>
</tr>
<tr>
<td>The Electricity Commission of NSW Award</td>
<td>$250.00</td>
<td>The best performance in MECH4740 Thermal Power Plants.</td>
</tr>
<tr>
<td>The Hawker de Havilland Ltd Prize</td>
<td>$500.00</td>
<td>The best thesis in the Bachelor of Engineering degree course in Aeronautical Engineering.</td>
</tr>
<tr>
<td>The Hawker de Havilland Victoria Limited Prize</td>
<td>$300.00 and Silver Medal</td>
<td>The best overall performance in the final year of the Bachelor of Engineering degree Course in Aeronautical Engineering.</td>
</tr>
<tr>
<td>The Jeremy Hirschhorn Prize in Mechanical Engineering</td>
<td>$100.00</td>
<td>The best performance by a final year student in Mechanics of Machines.</td>
</tr>
<tr>
<td>The John Harrison Prize</td>
<td>$100.00</td>
<td>The best performance in Mechanics of Machines in Year 3 of the Bachelor of Engineering degree course in Mechanical Engineering.</td>
</tr>
<tr>
<td>The R.A.A. Bryant Prize</td>
<td>$1,000.00 (indexed per year since 1989)</td>
<td>A student graduating with first class honours and the University Medal in Mechanical Engineering.</td>
</tr>
<tr>
<td>The R.E. Jeffries Memorial Prize</td>
<td>$500.00</td>
<td>The best overall performance in the final year of the Bachelor of Engineering degree course in Industrial Engineering.</td>
</tr>
<tr>
<td>The Royal Institution of Naval Architects (Australian Division) Prize</td>
<td>$250.00</td>
<td>The best ship design by a student in the final year of the Bachelor of Engineering degree course in Naval Architecture.</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in full-time Year 1 of the Bachelor of Engineering degree course in Mechanical Engineering.</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best undergraduate thesis by a student in the final year of the Bachelor of Engineering degree course in Mechanical Engineering.</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in the subject MANF3619 Management/Economics by a student in the Bachelor of Engineering degree course.</td>
</tr>
<tr>
<td>The Shell Refining (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School.</td>
</tr>
<tr>
<td>The Spruon and Ferguson Prize</td>
<td>$250.00</td>
<td>The best performance in MECH3100 Mechanical Engineering Design 3 by a student in the Bachelor of Engineering degree course in Mechanical Engineering.</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Mechanical and Manufacturing Engineering (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Staedtler (Pacific) Pty Ltd Prize</td>
<td>Products to the value of $350.00</td>
<td>The best overall performance by a student in Year 2 of the Bachelor of Engineering degree course in Mechanical Engineering</td>
</tr>
<tr>
<td>The TRW Products Limited Prize</td>
<td>$1000.00</td>
<td>The best overall performance in the Bachelor of Engineering degree course in Manufacturing Engineering</td>
</tr>
</tbody>
</table>

Graduate University Prizes

The following table summarizes the graduate prizes awarded by the University.

<table>
<thead>
<tr>
<th>Donor/name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Clean Air Society of Australia and New Zealand Prize in Atmospheric Pollution Control</td>
<td>$100.00</td>
<td>The highest aggregate in FUEL5910 Atmospheric Pollution and Control and FUEL5920 Practical aspects of Air pollution Measurement and Control in a graduate course in the School of Chemical Engineering and Industrial Chemistry</td>
</tr>
</tbody>
</table>

School of Civil Engineering

<table>
<thead>
<tr>
<th>Donor/name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Institute of Advanced Motorists Prize</td>
<td>$50.00</td>
<td>The best performance in Traffic Planning and Control</td>
</tr>
<tr>
<td>The Maunsells Project Report Prize</td>
<td>$500.00</td>
<td>The best performance in • CIVL8909 or CIVL9909 Project Report (9 credits) OR • GEOl 9504 or GEOl9604 Project Report (18 credits) by a student in the Master of Engineering Science of Master of Applied Science courses</td>
</tr>
<tr>
<td>The Maunsells Waste Management Prize</td>
<td>$500.00</td>
<td>The best aggregate performance by a Stage 1 student in • CIVL9884/8884 Environmental Engineering Science 1 • CIVL9872/8872 Solid Waste Management • CIVL9881/8881 Hazardous Waste Management</td>
</tr>
</tbody>
</table>

School of Mechanical and Manufacturing Engineering

<table>
<thead>
<tr>
<th>Donor/name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Computer-based Engineering Design Prize</td>
<td>$100.00</td>
<td>The best undergraduate or postgraduate thesis making a contribution to computer-based Engineering design in the School of Mechanical and Manufacturing Engineering.</td>
</tr>
</tbody>
</table>
The University of New South Wales Kensington Campus

Theatres
Biomedical Theatres E27
Central Lecture Block E19
Chemistry Theatres (Dryer, Meller, Murphy, Nyholm, Smith) E12
Classroom Block (Western Grounds) H3
Fig Tree Theatre B14
Io Myers Studio D9
Keith Burrows Theatre J14
Mathews Theatres D23
Parade Theatre E3
Physics Theatre (Main Building) K14
Rex Vowels Theatre F17
Science Theatre F13
Sir John Clancy Auditorium J14

General
Aboriginal Student Centre
47 Botany St, Randwick
Accommodation (off-campus) F15
Accounting F20
Admissions C22
Adviser for Prospective Students C22
Anatomy C27
Applied Bioscience D26
Applied Economic Research G14
Applied Geology F10
Applied Science (Faculty Office) F10
Architecture (Faculty Office) H14
Archives, University E21
Arts and Social Sciences (Faculty Office) C20
Asia-Australia Institute
34 Botany St, Randwick
Audio Visual Unit F20
Australian Graduate School of Management G27
Banking and Finance F20
Biochemistry and Molecular Genetics D26
Biological and Behavioural Sciences (Faculty Office) D26
Biomedical Engineering F26
Biomedical Library F23
Biotechnology F26
Cashier’s Office C22
Chaplain E15
Chemical Engineering and Industrial Chemistry F10
Chemistry E12
Civil Engineering H20
Co-op Bookshop G17
Commerce and Economics (Faculty Office) F20
Communications Law Centre C15
Community Medicine D26
Computer Science and Engineering G17
Computing Services Department F26
Cornea and Contact Lens Research Unit 22-32 King St, Randwick
Counselling and Careers/Loans F15
Economics F20
Education Studies G2
Educational Testing Centre E15D
Electrical Engineering G17
Energy Research, Development & Information Centre F10
Engineering (Faculty Office) K17
English C20
Examinations C22
Fees Office C22
Fibre Science and Technology G14
Food Science and Technology B8
French C20
Geography K17
German and Russian Studies C20
Graduate Office and Alumni Centre E4
Graduate School of the Built Environment H14
Groundwater Management and Hydrogeology F10
Health Service, University E15
Health Services Management C22
History C20
House at Pooh Corner (Child Care) N8
Industrial Design G14
Industrial Relations and Organizational Behaviour F20
Information Systems F20
Institute of Languages 14 Francis St, Randwick
International Student Centre F16
IPACE F23
Japanese Economic and Cultural Affairs Office; K17
Landscape Architecture K15
Law (Faculty Office) F21
Law Library F21
Legal Studies & Taxation F20
Liberal and General Studies C20
Librarianship F23
Lost Property C22
Marine Science D26
Marketing F20
Materials Science and Engineering E8
Mathematics F23
Mechanical and Manufacturing Engineering J17
Medical Education C27
Medical (Faculty Office) B27
Meteorology and Atmospheric Science F10
Microbiology and Immunology D26
Mining K15
Minor Works and Maintenance B14A
Music B11
News Service C22
New South Wales University Press 22-32 King St, Randwick
Optometry J12
Pathology C27
Patrol and Cleaning Services C22
Performing Arts B10
Petroleum Engineering D12
Philosophy C20
Physics K15
Physiology and Pharmacology C27
Political Science C20
Printing Section C22
Professional Development Centre E15
Professional Studies (Faculty Office) G2
Property and Works C22
Psychology F23
Publications Section C22
Remote Sensing K17
Safety Science
32 Botany Street, Randwick
Science (Faculty Office) F23
Science and Technology Studies C20
Social Science and Policy C20
Social Policy Research Centre F26
Social Work G2
Sociology C20
Spanish and Latin American Studies C20
Sport and Recreation Centre B6
Squash Courts B7
Staff Office C22
Student Centre (off Library Lawn) C22
Swimming Pool B4
Students’ Union E4, C21
Surveys K17
Textile Technology G14
Theatre and Film Studies B10
Town Planning K15
WHO Regional Training Centre C27
Wool and Animal Sciences G14
This Handbook has been specifically designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University - its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce and Economics, Engineering, Law, Medicine, Professional Studies, Science (including Biological and Behavioural Sciences and the Board of Studies in Science and Mathematics), and the Australian Graduate School of Management (AGSM).

The Calendar and Handbooks, which vary in cost, are available from the Cashier's Office.