Subjects, courses and any arrangements for courses including staff allocated as stated in this Handbook are an expression of intent only. The University reserves the right to discontinue or vary arrangements at any time without notice. Information has been brought up to date as at 3 November 1992, but may be amended without notice by the University Council.

The address of The University of New South Wales is:
P.O. Box 1, Kensington 2033
New South Wales Australia
Telephone: (02) 697 2222
Facsimile: (02) 662 7471
Telegraph: UNITECH, SYDNEY
Telex: AA26054
© The University of New South Wales 1992

It is University policy to promote equal opportunity in education (refer to EOE Policy Statement, The University of New South Wales Calendar (Summary Volume) and Student Guide 1993).
Please note that some subjects marked ‘Not offered in 1993’ are in fact, offered. The following table lists all subjects which are offered in 1993; incorrectly marked in this handbook.

There may however, have been other changes subsequent to the printing of this book. Please contact the School of Civil Engineering for the Postgraduate Timetable (see below).

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9402</td>
<td>Transport, Environment, Community</td>
</tr>
<tr>
<td>CIVL9405</td>
<td>Urban Transport Planning Practice</td>
</tr>
<tr>
<td>CIVL9410</td>
<td>Highway Engineering Practice</td>
</tr>
<tr>
<td>CIVL9412</td>
<td>Economics for Transportation Studies</td>
</tr>
<tr>
<td>CIVL9417</td>
<td>Transport and Traffic Flow Theory</td>
</tr>
<tr>
<td>CIVL9418</td>
<td>Statistics for Transport Studies Part 1</td>
</tr>
<tr>
<td>CIVL9419</td>
<td>Statistics for Transport Studies Part 2</td>
</tr>
<tr>
<td>CIVL9704</td>
<td>Quantitative Engineering Management</td>
</tr>
<tr>
<td>CIVL9705</td>
<td>Engineering Management Practice</td>
</tr>
<tr>
<td>CIVL9714</td>
<td>Special Topic in Engineering Management</td>
</tr>
<tr>
<td>CIVL9723</td>
<td>Constriction Design</td>
</tr>
<tr>
<td>CIVL9724</td>
<td>Construction Engineering and Technology</td>
</tr>
<tr>
<td>CIVL9753</td>
<td>Soil Engineering</td>
</tr>
<tr>
<td>CIVL9776</td>
<td>Rock Mechanics</td>
</tr>
<tr>
<td>CIVL9777</td>
<td>Numerical Methods in Geomechanics</td>
</tr>
<tr>
<td>CIVL9781</td>
<td>Advanced Concrete Technology</td>
</tr>
<tr>
<td>CIVL9786</td>
<td>Industrial and Heavy Duty Pavements</td>
</tr>
<tr>
<td>CIVL9802</td>
<td>Elastic Stability 1</td>
</tr>
<tr>
<td>CIVL9803</td>
<td>Elastic Stability 2</td>
</tr>
<tr>
<td>CIVL9805</td>
<td>Vibration of Structures 2</td>
</tr>
<tr>
<td>CIVL9806</td>
<td>Prestressed Concrete 1</td>
</tr>
<tr>
<td>CIVL9807</td>
<td>Prestressed Concrete 2</td>
</tr>
<tr>
<td>CIVL9809</td>
<td>Reinforced Concrete 1</td>
</tr>
<tr>
<td>CIVL9810</td>
<td>Reinforced Concrete 2</td>
</tr>
<tr>
<td>CIVL9814</td>
<td>Analysis of Plates and Shells</td>
</tr>
<tr>
<td>CIVL9817</td>
<td>Experimental Structural Analysis</td>
</tr>
<tr>
<td>CIVL9818</td>
<td>Bridge Design 1</td>
</tr>
<tr>
<td>CIVL9819</td>
<td>Bridge Design 2</td>
</tr>
<tr>
<td>CIVL9820</td>
<td>Structural Analysis and Finite Elements 1</td>
</tr>
<tr>
<td>CIVL9821</td>
<td>Structural Analysis and Finite Elements 2</td>
</tr>
<tr>
<td>CIVL9822</td>
<td>Steel Structures 1</td>
</tr>
<tr>
<td>CIVL9823</td>
<td>Steel Structures 2</td>
</tr>
<tr>
<td>CIVL9830</td>
<td>Hydromechanics</td>
</tr>
<tr>
<td>CIVL9831</td>
<td>Closed Conduit Flow</td>
</tr>
<tr>
<td>CIVL9832</td>
<td>Pipe Network and Transients</td>
</tr>
<tr>
<td>CIVL9833</td>
<td>Free Surface Flow</td>
</tr>
<tr>
<td>CIVL9835</td>
<td>Coastal Engineering 1</td>
</tr>
<tr>
<td>CIVL9836</td>
<td>Coastal Engineering 2</td>
</tr>
<tr>
<td>CIVL9847</td>
<td>Water Resources Policy</td>
</tr>
<tr>
<td>CIVL9848</td>
<td>Water Resource System Design</td>
</tr>
<tr>
<td>CIVL9849</td>
<td>Irrigation</td>
</tr>
<tr>
<td>CIVL9851</td>
<td>Unit Operations in Public Health Engineering</td>
</tr>
<tr>
<td>CIVL9852</td>
<td>Water Distribution and Sewage Collection</td>
</tr>
<tr>
<td>CIVL9855</td>
<td>Water and Wastewater Analysis and Quality</td>
</tr>
<tr>
<td>CIVL9856</td>
<td>Water Treatment</td>
</tr>
<tr>
<td>CIVL9857</td>
<td>Sewage Treatment and Disposal</td>
</tr>
<tr>
<td>CIVL9858</td>
<td>Water Quality Management</td>
</tr>
<tr>
<td>CIVL9860</td>
<td>Investigation of Groundwater Resources 1</td>
</tr>
<tr>
<td>CIVL9861</td>
<td>Investigation of Groundwater Resources 2</td>
</tr>
<tr>
<td>CIVL9862</td>
<td>Fluvial Hydraulics</td>
</tr>
<tr>
<td>CIVL9863</td>
<td>Estuarine Hydraulics</td>
</tr>
<tr>
<td>CIVL9866</td>
<td>Public Health Science</td>
</tr>
<tr>
<td>CIVL9870</td>
<td>Hydraulics and Design of Water and Wastewater Treatment Plants</td>
</tr>
<tr>
<td>CIVL9871</td>
<td>Water Supply and Sanitation in Developing Countries</td>
</tr>
<tr>
<td>CIVL9872</td>
<td>Solid Waste Management</td>
</tr>
<tr>
<td>CIVL9875</td>
<td>Hydrological Processes</td>
</tr>
<tr>
<td>CIVL9876</td>
<td>Applied Hydrological Modelling</td>
</tr>
<tr>
<td>CIVL9877</td>
<td>Flood Design 1</td>
</tr>
<tr>
<td>CIVL9878</td>
<td>Flood Design 2</td>
</tr>
<tr>
<td>CIVL9880</td>
<td>Groundwater Modelling</td>
</tr>
<tr>
<td>CIVL9881</td>
<td>Hazardous Waste Management</td>
</tr>
<tr>
<td>CIVL9887</td>
<td>Advanced Topics in Waste Management</td>
</tr>
<tr>
<td>CIVL9901</td>
<td>Special Topic in Civil Engineering</td>
</tr>
<tr>
<td>CIVL9909</td>
<td>Project</td>
</tr>
<tr>
<td>CIVL9915</td>
<td>Project Report</td>
</tr>
</tbody>
</table>

Enquiries:
The School of Civil Engineering
Telephone 697 5033
4th Floor, Civil Engineering Building
Contents

Introduction 1

Calendar of Dates 3

Staff 5

Handbook Guide 13

Faculty Information 17
Some People Who Can Help You 17
Entrance Requirements 17
Enrolment Procedures 17
Library Facilities 18
Student Clubs and Societies 18
Students with Disabilities 18
IAESTE 18
Professional Institutions 18
General Information 19

Summary of Courses 20
Undergraduate Study 20
Combined Degree Courses 20
Subject Areas 20
Co-op Program 21
Transfer Courses 21
Course Revision 21
General Rules for Progression 21
Honours 22
Prerequisites and Corequisites 22
Industrial Experience Requirements (Engineering Students) 22
Practical Experience Requirements (Surveying Students) 22
General Education Requirement 22
Conditions for the Award of Degree of Bachelor of Engineering 23
Conditions for the Award of Degree of Bachelor of Surveying 24
Graduate Study 24
English Language Requirements 24
Research Degrees 24
Doctor of Philosophy 24
Master of Engineering/Master of Science/Master of Surveying 25
Course Work Master Degrees 25
Master of Engineering Science/Master of Environmental Engineering Science/
Master of Surveying Science 26
Master of Biomedical Engineering 26
Master of Information Science/Master of Computer Science/Master of Cognitive Science 26
Graduate Diplomas 26
Graduate Subjects 27
Graduate Diploma Subjects 27

School of Civil Engineering 29
Undergraduate Study: Course Outlines 30
3620 Civil Engineering Full-time 30
3625 Environmental Engineering Full-time 30
Combined Courses 31
3730 BE BSc in Civil Engineering Full-time 31
3146 BE(Civil) BE(Mining) in Civil Engineering and Mining Engineering Full-time 32
4775 BE(Civil Engineering) LLB in Civil Engineering and Law Full-time 33
Undergraduate Study: Subject Descriptions 33
Graduate Study: Course Outlines 40
Course Work Programs 40
8612/8614 Master of Engineering Science in Civil Engineering 40
8085 Master of Engineering Science/Master of Applied Science - Waste Management 40
8615 Master of Environmental Engineering Science in Civil Engineering 41
5459/5498 Graduate Diploma in Civil Engineering 41
Graduate Study: Subject Descriptions 42
Department of Transport Engineering 42
Department of Engineering Construction and Management 44
Department of Geotechnical Engineering 45
Department of Structural Engineering 47
Department of Water Engineering 48

School of Computer Science and Engineering 53
Undergraduate Study: Course Outlines 54
3645 Computer Engineering Full-time 54
Combined Courses 55
3722 BE BA in Computer Engineering 56
3725 BE BSc in Computer Engineering 56
Undergraduate Study: Subject Descriptions 57
Graduate Study: Course Outlines 62
Course Work Programs 62
8155 Master of Cognitive Science 62
8508 Master of Information Science/Master of Computer Science 62
8680 Master of Computer Science 63
5452 Graduate Diploma in Computer Science 63
5483 Graduate Diploma in Information Science 63
5464 Graduate Diploma in Computer Education 63
Graduate Study: Subject Descriptions 63

School of Electrical Engineering 69
Undergraduate Study: Course Outlines 70
3640 Electrical Engineering Full-time 70
3640 Electrical Engineering Part-time 71
3640 Electrical Engineering Sandwich 71
3645 Computer Engineering Full-time 71
Combined Courses 72
3720 BE BA in Electrical Engineering 72
3725 BE BSc in Electrical Engineering 73
Undergraduate Study: Subject Descriptions 74
Graduate Study: Course Outlines 81
Course Work Programs 81
8501 Master of Engineering Science in Electrical Engineering 81
Centres in the Faculty of Engineering

Centre for Advanced Numerical Computation in Engineering and Science
Centre for Biomedical Engineering
Graduate Study: Course Outlines
8660 Master of Biomedical Engineering
5462 Graduate Diploma in Biomedical Engineering
Graduate Study: Subject Descriptions
Centre for Groundwater Management and Hydrogeology
Centre for Manufacturing and Automation
Centre for Photovoltaic Devices and Systems
Centre for Remote Sensing and Geographic Information Systems
Centre for Wastewater Treatment
Munro Centre for Civil and Environmental Engineering

Servicing Subject Descriptions

Accounting
Anatomy
Biological Science
Biotechnology
Chemical Engineering and Industrial Chemistry
Chemistry
Economics
Fuel Technology
Geography
Applied Geology
Industrial Relations and Organizational Behaviour
Information Systems, Library and Archives
Law
Mathematics
Materials Science and Engineering
Mines
Physiology and Pharmacology
Physics
Town Planning
Polymer Science
Safety Science

Conditions for the Award of Higher Degrees

Doctor of Philosophy
Master of Biomedical Engineering
Master of Business and Technology
Master of Cognitive Science (Honours)
Master of Cognitive Science (Pass)
Master of Computer Science
Master of Engineering and Master of Science
Master of Engineering, Master of Science and Master of Surveying without supervision
Master of Engineering Science and Master of Surveying Science
Master of Information Science
Master of Surveying
Master of Surveying without supervision
Master of Surveying Science
Graduate Diploma
Graduate Diploma in Industrial Management
<table>
<thead>
<tr>
<th>Scholarships and Prizes</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships</td>
<td>185</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>185</td>
</tr>
<tr>
<td>Graduate</td>
<td>187</td>
</tr>
<tr>
<td>Prizes</td>
<td>189</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>189</td>
</tr>
<tr>
<td>Graduate</td>
<td>192</td>
</tr>
</tbody>
</table>
This handbook provides information on courses of study offered by the Faculty of Engineering, at both undergraduate and graduate levels, together with descriptions of subjects available and areas in which research may be undertaken.

The Faculty consists of the Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, Mechanical and Manufacturing Engineering, Surveying and the Centres for Biomedical Engineering, Photovoltaic Devices and Systems, and Wastewater Treatment. The Faculty is also closely associated with the Centre for Groundwater Management and Hydrogeology, and the Centre for Remote Sensing and Geographic Information Systems both of which are joint multidisciplinary enterprises with the Faculty of Applied Science.

The Faculty is also actively involved with two of the 15 Cooperative Research Centres (CRCs) established under the Commonwealth Government’s program of CRCs announced in 1991. These are the CRC for Waste Management and Pollution Control and the CRC for Aerospace Structures.

The Faculty is dedicated to the achievement of excellence in scholarship, teaching and research in technology and its application for the benefit of the community. The goals of the Faculty are to:

1. provide undergraduate, graduate and continuing education programs, and to undertake research, in the professional fields of engineering and surveying;
2. provide formal and continuing education programs, and to undertake research, in interdisciplinary fields in which engineering science and practice play a prominent role;
3. aid the advancement, development and practical application of science and technology to satisfy the needs of industry, commerce, the infrastructure of society and the efficient management of resources.

Achievement of these goals will develop the attitudes and skills required of professional engineers operating into the twenty-first century.

Schools within the Faculty offer undergraduate courses leading to the award of the degree of Bachelor of Engineering (BE) and Bachelor of Surveying (BSurv). There are also a number of combined degree courses available which lead to the award of two degrees. Through its schools and centres, the Faculty offers an active graduate program through formal graduate courses both at degree and graduate diploma level, and research degrees.

The Faculty has a commitment to developing in students the technical, scientific and creative skills required to solve all aspects of engineering problems, and to direct and manage engineering activities. Critical to this is an understanding of human interaction with the environment so that the impact of engineering activity can be assessed together with the ability to communicate with other members of the profession, with industrial personnel, administrators and with members of the public.

Other important attributes for a successful engineer include the desire and ability for continuing self-education and reappraisal of current practice including the ability to innovate. Concomitant with this is the ability to evaluate independently and to criticise constructively their own work and the work of other engineers.

It is also important for students to join in the development of themselves as professional engineers. Engineering is a cooperative profession where teamwork is very important. Whilst at university, students should take as many opportunities as possible to join in the activities which help to develop the whole person. Student clubs and professional institutions provide many opportunities for gaining knowledge and experience which will be valuable in later years.

Dean
Faculty of Engineering
The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of approximately six weeks between the two sessions and there are short recesses of one week within each of the sessions.

Session 1 commences on the Monday nearest 1 March.

All Faculties (other than Medicine)

<table>
<thead>
<tr>
<th>Session 1</th>
<th>1993</th>
<th>1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14 weeks)</td>
<td>1 March to 8 April</td>
<td>28 February to 31 March</td>
</tr>
<tr>
<td>Recess:</td>
<td>9 April to 18 April</td>
<td>1 April to 10 April</td>
</tr>
<tr>
<td></td>
<td>19 April to 11 June</td>
<td>11 April to 10 June</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>12 June to 17 June</td>
<td>11 June to 16 June</td>
</tr>
<tr>
<td>Examinations</td>
<td>18 June to 6 July</td>
<td>17 June to 5 July</td>
</tr>
<tr>
<td>Midyear Recess:</td>
<td>7 July to 25 July</td>
<td>6 July to 24 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2</th>
<th>1993</th>
<th>1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14 weeks)</td>
<td>26 July to 24 September</td>
<td>25 July to 23 September</td>
</tr>
<tr>
<td>Recess:</td>
<td>25 September to 4 October</td>
<td>24 September to 3 October</td>
</tr>
<tr>
<td></td>
<td>5 October to 5 November</td>
<td>4 October to 4 November</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>6 November to 11 November</td>
<td>5 November to 10 November</td>
</tr>
<tr>
<td>Examinations</td>
<td>12 November to 30 November</td>
<td>11 November to 29 November</td>
</tr>
</tbody>
</table>

Important Dates for 1993

January 1993

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 1</td>
<td>New Year's Day - Public Holiday</td>
</tr>
<tr>
<td>M 11</td>
<td>Term 1 begins - Medicine IV</td>
</tr>
<tr>
<td>M 18</td>
<td>Term 1 begins - Medicine V</td>
</tr>
<tr>
<td>T 26</td>
<td>Australia Day - Public Holiday</td>
</tr>
</tbody>
</table>

February 1993

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 2</td>
<td>Enrolment period begins for new undergraduate students and undergraduate students repeating first year</td>
</tr>
<tr>
<td>M 8</td>
<td>Re-enrolment period begins for second and later year undergraduate and graduate students enrolled in formal courses. Students should consult the Re-enrolling 1993 leaflet for their course for details.</td>
</tr>
<tr>
<td>F 26</td>
<td>Last day for acceptance of enrolment by new and re-enrolling students. (Late fee payable thereafter if enrolment approved.)</td>
</tr>
</tbody>
</table>

March 1993

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 1</td>
<td>Session 1 begins - all courses except Medicine IV, V, VI</td>
</tr>
<tr>
<td></td>
<td>Term 1 begins - Australian Graduate School of Management</td>
</tr>
<tr>
<td>Su 7</td>
<td>Term 1 ends - Medicine VI</td>
</tr>
<tr>
<td>M 8</td>
<td>Session 1 begins - University College, Australian Defence Force Academy</td>
</tr>
<tr>
<td>F 12</td>
<td>Last day applications are accepted from students to enrol in Session 1 or whole year subjects</td>
</tr>
<tr>
<td>Su 14</td>
<td>Term 1 ends - Medicine IV</td>
</tr>
<tr>
<td>M 15</td>
<td>Term 2 begins - Medicine IV</td>
</tr>
<tr>
<td>Su 21</td>
<td>Term 1 begins - Medicine V</td>
</tr>
<tr>
<td>M 29</td>
<td>Term 2 begins - Medicine V</td>
</tr>
<tr>
<td>W 31</td>
<td>HECS Census Date for Session 1</td>
</tr>
<tr>
<td></td>
<td>Last day for students to discontinue without failure subjects which extend over Session 1 only</td>
</tr>
</tbody>
</table>
April 1993
F 9 Good Friday - Public Holiday
S 10 Easter Saturday - Public Holiday
M 12 Easter Monday - Public Holiday
Su 18 Mid-Session Recess begins
Su 25 Term 2 ends - Medicine IV
Term 2 ends - Medicine VI
M 26 Anzac Day - Public Holiday

May 1993
M 3 Term 3 begins - Medicine IV
Term 3 begins - Medicine VI
F 7 Term 1 ends - Australian Graduate School of Management
S 8 May Recess begins - University College, Australian Defence Force Academy
T 11 Publication of Provisional Timetable for June examinations
W 19 Last day for students to advise of examination clashes
Su 23 May Recess ends - University College - Australian Defence Force Academy
Su 30 Term 2 ends - Medicine V
M 31 Term 2 begins - Australian Graduate School of Management

June 1993
T 1 Publication of Timetable for June Examinations
T 8 Term 3 begins - Medicine V
F 11 Session 1 ends
S 12 Study Recess begins
College of Fine Arts assessment week begins
Su 13 Term 3 ends - Medicine IV
Term 3 ends - Medicine VI
M 14 Queen's Birthday - Public Holiday
Term 4 begins - Medicine IV
Term 4 begins - Medicine VI
Th 17 Study Recess ends
F 18 Examinations begin
College of Fine Arts assessment week ends
F 25 Session 1 ends - University College, Australian Defence Force Academy
S 26 Mid-year Recess begins - University College, Australian Defence Force Academy
M 28 Examinations begin - University College, Australian Defence Force Academy

July 1993
T 8 Examinations end
W 7 Midyear Recess begins
S 10 Examinations end - University College, Australian Defence Force Academy
Su 11 Midyear Recess begins - University College, Australian Defence Force Academy
Su 25 Midyear Recess ends - University College, Australian Defence Force Academy
M 26 Session 2 begins - all courses except Medicine IV, V, and VI
Session 2 begins - University College, Australian Defence Force Academy

August 1993
F 6 Term 2 ends - Australian Graduate School of Management

September 1993
S 25 Mid-Session Recess begins
September Recess begins - University College, Australian Defence Force Academy
Su 26 Term 5 ends - Medicine IV
Term 5 ends - Medicine VI
M 27 Term 6 begins - Medicine IV
Term 6 begins - Medicine VI
Th 30 Closing date for applications to the Universities Admission Centre

October 1993
M 4 Labour Day - Public Holiday
Mid-Session Recess begins
September Recess ends - University College, Australian Defence Force Academy
T 5 Publication of provisional timetable for November examinations
W 13 Last day for students to advise of examination clashes
Su 17 Term 4 - Medicine V
T 26 Publication of Timetable for November Examinations
F 29 Session 2 ends - University College, Australian Defence Force Academy

November 1993
M 1 Examinations begin - University College, Australian Defence Force Academy
F 5 Session 2 ends
Term 3 ends - Australian Graduate School of Management
S 6 Study Recess begins
College of Fine Arts assessment week begins
Su 7 Term 6 ends - Medicine IV
Term 6 ends - Medicine VI
Th 11 Study Recess ends
F 12 Examinations begin
College of Fine Arts assessment week ends
F 19 Examinations end - University College, Australian Defence Force Academy
T 30 Examinations end

December 1993
Th 23 Last day for acceptance of applications by Admissions Section for transfer to another undergraduate course within the University
M 27 Christmas Day - Public Holiday
T 28 Boxing Day - Public Holiday
Comprises Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, Mechanical and Manufacturing Engineering (incorporating Aerospace Engineering and Naval Architecture), Surveying, the Graduate School of Engineering and Centres for Biomedical Engineering, Photovoltaic Devices and Systems, Advanced Numerical Computation in Engineering and Science, Manufacturing and Automation, Wastewater Treatment, and the Munro Centre for Civil and Environmental Engineering. The Faculty is also associated with the Centres for Groundwater Management and Hydrogeology, Remote Sensing and Geographic Information Systems, Co-operative Research Centres for Waste Management and Pollution Control and Aerospace Structures.

Dean
Mark Sebastian Wainwright, MApSc Adel., PhD McM., CPEng, FTS, FRACI, FIEAust.

Presiding Member and Head of the Graduate School of Engineering
Professor C. Patterson

Executive Assistant (International Programs)
Anthony John Robinson

Senior Administrative Officer
Robyn Christine Horwood, BA DipEd UNSW

Administrative Assistant
Maureen Ellen Noonan

School of Civil Engineering

Professor of Civil Engineering and Head of School
Robin Fell, BE MEngSc Qld., CPEng, FIEAust

Professor of Civil Engineering and Head of Department of Engineering Construction and Management
David Gordon Carmichael, BE MEngSc Syd., PhD Cant., CPEng, FIEAust, MASCE

Associate Professor and Head of Department of Geotechnical Engineering
Brian Shackel, BE Sheff., MEngSc PhD UNSW, CPEng, MIEAust

Professor of Civil Engineering and Head of Department of Structural Engineering
Raymond Ian Gilbert, BE PhD UNSW, CPEng, MIEAust

Professor of Transport Engineering and Head of Department of Transport Engineering
John Andrew Black, BA Manc., MTCP Syd., PhD Brad., CPEng, FIEAust

Professor of Civil Engineering and Head of Department of Water Engineering
Vacant

Senior Administrative Officer
George John Harris, BA UNSW

Administrative Assistant
Helen Elizabeth Prior

Computer Systems Officer
Robert Peter Hegedus, BSc UNSW, MACS, MACM

Department of Engineering Construction and Management

Includes Systems Engineering, Engineering Economy, Project Planning and Management, Construction Management, Engineering Management.
Department of Geotechnical Engineering

Includes Foundation Engineering, Soil Mechanics, Rock Mechanics, Concrete Technology, Pavement Engineering.

Associate Professors
Somasundaram Valliapppan, BE Annam., MS Northeastern, PhD DSc Wales, CPEng, FIEAust, FASCE
William Otho Yandell, ME PhD UNSW, CPEng, MIEAust

Senior Lecturers
Garry Robert Mostyn, BE MEngSc UNSW, BA Macq., CPEng, MIEAust
Viriyawan Murti, BSc BE PhD UNSW, MACS

Lecturer
Gareth Edward Swarbrick, BE Adel. GradIEAust

Professional Officer
Peter Kenneth Maguire BS N.E., GradDip UNSW

Department of Structural Engineering

Associate Professors
Mark Andrew Bradford, BSc BE PhD Syd., CPEng, MASCE, MIEAust
Peter Walder Kneen, BE Melb., PhD Wat., CPEng, MIEAust, IASS
Victor Andrada Pulmano, BSCE Philippines, MEng A.I.T., PhD Northwestern

Senior Lecturers
Mario Maria Attard, BE PhD UNSW, MIEAust
Alexander Cuthbert Heaney, BE MEngSc Melb., PhD Wat., CPEng, MIEAust, MASCE, AMICE
Fariborz Barzegar-Jamshidi, BSc MSc PhD Ill., MASCE, MACI
Raymond Eric Lawther, BE PhD UNSW

Ian James Somervaille, BE PhD UNSW, ASTC
Francis Shay Khiet Tin Loi, BE PhD Monash, CPEng, MIEAust

Lecturer
Stephen James Foster, BE N.S.W.I.T., MEngSc UNSW
Nadarajah Gowriplan, BSc(Eng) Moratuwa, MSc PhD Leeds, MIEAust

Department of Transport Engineering

Senior Lecturer
Theolten Brummelaar, BE MEngSc UNSW, CPEng, MIEAust

Lecturers
Michael Clarence Dunne, BSc PhD Adel.
Peter Hidas, MCEng DipArch PhD Bud.
Upali Vandebona, BSc Eng Ceylon, MEng A.I.T., PhD Monash

Professional Officer
Tu That Ton, BE Saigon Polytech., BE C.I.T., MEngSc UNSW

Department of Water Engineering

Professor of Civil Engineering and Director of Environmental Studies
David Lyon Wilkinson, BE Syd., PhD UNSW, CPEng, MIEAust

Associate Professor and Director, Water Research Laboratory
Colin Raymond Dudgeon, ME PhD UNSW, CPEng, MIEAust, MASCE

Associate Professor
Ian Cordery, ME PhD UNSW, CPEng, FIEAust

Senior Lecturers
Richard Ian Acworth, BSc Leeds, MSc PhD Birm., FGS
James Edward Ball, ME PhD N'cle.(N.S.W.), CPEng, MIEAust, MASCE
Peter John Bliss, BE UNSW, MSc DIC Lond., ASTC, CPEng, MIEAust
Brian Selby Jenkins, BE PhD UNSW, ASTC, CPEng, MIEAust, LGE
Stephen James Moore, BE UNSW, CPEng, MIEAust

Lecturers
Penelope Anne Fitzgerald, BSc Syd., CPEng, MIEAust, MASM, ARACI
David Andrew Luketina, BE PhD UWA, CPEng, MIEAust

Professional Officers
Kenneth Brian Higgs, MSc Aston, MAIP
Vir Abhimanyu Sardana, BScEng Rour., MTech IITD, PhD UNSW, MISB, CPEng, MIEAust
Centre for Wastewater Treatment

Director
Vacant

Manager
Terrence John Schulz, BE Syd.

Deputy Manager
Ralph Kaye, BSc Newark

Senior Research Fellow
Brace Boyden

Munro Centre for Civil and Environmental Engineering

Emeritus Professor and Director
G.E. Roberts

School of Computer Science and Engineering

Professor of Computer Science and Head of School
John Hiller, BE MCom PhD UNSW, FIEAust, FIREE, MACM

Professor of Computer Science
Graham Reginald Hellestrand, BSc PhD UNSW, MIEE

Executive Assistant to Head of School
Dr G. R. Whale

Associate Professor
John Lions, BSc Syd., PhD Camb., FACS, MACM

Senior Lecturers
Adnan Amin, BSc DipCompSc Baghdad, DSc Nancy
Anthony Keith Burston, MSc PhD Manch.
Pramay Chaudhuri, BSc BTech Calc., ME PhD Jadavpur
Paul Justin Compton, MSc UNSW
Ian Gorton, BSc PhD Sheff.
William Stephen Matheson, BE MEngSc Molb., PhD Br.Col., CEng, MIEE, MIEE
Nandan Parameeswaran, BE Madr., ME Kanpur I.T., PhD Bangalore I.T.T.
Arthur Ramer, MS Warsaw, PhD S.U.N.Y.
Kenneth Arthur Robinson, BSc BE Syd.
Claude Anthony Sammut, BSc PhD UNSW
William Hulme Wilson, MSc A.N.U., PhD Syd., DipCompSc Qu., MACM

Lecturers
Man-Chung Chan, BA Chinese H.K., PhD LaT., CUHK
Tamas Domonkos Gedeon, BSc PhD W.Aust.
Asis Kumar Goswami, BETE ME Jadavpur, PhD I.I.S. Bangalore
Gernot Heiser, BSc Freiburg, MSc Brock, PhD E.T.H.
Timothy David Lambert, BMath, N’cle.(N.S.W.), MSc Manil.
Jian Ma, BE Xian., ME CAS, DEng A.I.T.
Hee Hiong Anne Ngu, BSc PhD W.Aust.
Jacek Olszewski, DSc Warsaw, PhD Wrocl., MACS
Wesley Phoa, BSc ANU, PhD Camb.
Clark Quinn, MA PhD U.C. San Diego
Stephen Michael Russell, BSc Syd., ACM
Aroc Sowmya, BSc Madr., MSc MTech PhD I.T.T. Bomb.
Aydn Uresin, BSc T.U. Istanbul, MSc PhD Sthn Calif.
Geoffrey Robert Whale, BE PhD UNSW, MIEEE
John Zic, BSc PhD Syd.

Associate Lecturers
Narciso Cerpa, C.I.S.E., Santiago.
Ashesh Mahadadia, BE MEngSc UNSW
Dan Glass, BAppSc U.T.S.
Peter Ho, BSc UNSW
Daryoush Litkouhi, BSc Iran U. Science and Tech., ME Asian I.T. Thailand
Linda Milne, BSc Flin.
Prabal Roy, BE Alld., MS Florida
Tanya Maria Warmenhoven, BSc UNSW

Visiting Professor
Donald Michie, FBCS, FRSE, FAAAA

Visiting Fellows
Arun Kumar Sharma, MSc Birla I.T.S., PhD S.U.N.Y.

Manager, School Computing Facility and Executive Officer
Peter Ivanov, BE MEngSc UNSW

Administrative Officer
LeAnn Quinn, BSc Pittsburg

Administrative Assistants
Michael Charles Doggett, BSc BE UNSW
Vanessa Joubert

Computer Systems Officers
Neil Frances Brown, BSc UNSW,
Martin Dennis, BSc UNSW
Catherine Maree Clegg, BSc DipEd UNSW
Mark Anthony Mathews, BSc UNSW, GradDip N’cle (N.S.W.)
John David Nicholls, BE UNSW
Geoffrey Morris Oakley, BSc UNSW
Adam John Radford, BSc UNSW
Zain Rahmat, BSc UNSW
Cameron Alexander Simpson
Jon Oliver Vahlberg, BSc Flin., MinfTech Qu.

Professional Officers
Serge Poplawsky, Dipl Ing Bratislava, ME UNSW
Jeffrey Stanley Skebe, BS Case-Western Reserve, MEngSc UNSW
Keith William Titzmuss, BScTech MEngSc UNSW
Herbert Chen, BSc UNSW
Kevin Elphinstone, BE BSc UNSW
Ming Chi Joseph Kam, BSc UNSW
Leung Him Li, BE UNSW
School of Electrical Engineering

Professor of Electrical Engineering and Head of School
Graham Austin Rigby, MSc Syd., PhD Calif., CEng, CEng,
FTS, FIREE, MIEEE, FIEAust

Professors of Electrical Engineering
Pak Lim Chu, ME PhD UNSW, CEng, FIEAust, SMIEEE, FOSA
Ian Francis Morrison, BSc BE PhD Syd., CEng, FIAE,
FIEAust, MIEEE, FIEAust

Head of Department of Electrical Power Engineering
Associate Professor H.R. Outhred

Professor and Head of Department of Systems and Control
Neville Waller Rees, BSc PhD Wales, CEng, FIEAust, SMIEEE

Associate Professor and Head of Department of Communications
T.B. Vu

Professor and Head of Department of Electronics
Martin Andrew Green, BE MEngSc Old., PhD Mcm.,
CPeng, FAA, FIEEE, FIREE, FIEAust

Executive Assistant to Head of School
Dr C.J.E. Phillips

Executive Officer
Kevin John Flynn, BE MEngSc UNSW, ASTC

Administrative Assistant
Ann Gabrielle Mary Johnson, BSc UNSW,

Associate Lecturers
Sukhbir Singh Sethi, MEngSc UNSW
James Douglas Woods, BE UNSW

Professional Officer
Peyian Chen, BE XIBEI Telecom.Eng.Univ.,China

Department of Electric Power Engineering

Associate Professors
Colin Grantham, BSc PhD N'cle.(U.K), CEng, FIEE
Hugh Ronald Outhred, BSc BE PhD Syd., AMIEE, FIEAust,
MIEEE, MIEEE

Senior Lecturers
Trevor Robert Blackburn, BSc Adel., PhD Flin., CEng,
MAIP, MIEEE, MIIEEE
Kevan Charles Daly, BSc BE PhD UNSW, CEng, MIEEE,
MIEEE
Roland John Kaye, BE MEngSc Melb., PhD Calif., MIEEE
Fazlur Muhammed Rahman, BScEng BUET(Ban), MSc
PhD Manc.Inst.Sci.&Tech., MIEEE, AMIEEE
Darmawan Sutanto, BE PhD W.Aust., CEng, SMIEEE

Project Scientist
Edward Douglas Spooner, ME UNSW

Professional Officers
Erik Maria Keller, DipLIng C.V.U.T. Prague
Bao Ton Phung, BE W'gong., MEngSc UNSW

Visiting Fellow
Ronald Edward James, BScEng PhD Lond., CEng, CEng,
FIEAust, MIEEE, MIIEEE

Department of Electronics

Associate Professors
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD
Camb., FIEAust, SMIEEE, SMIEEE
Israel Korn, MSc DSc Technion, Haifa, SMIEEE
The Bao Vu, BE PhD Adel., CEng, FIEAust, SMIEEE

Senior Lecturers
Edward Henry Fooks, BSc PhD Lond., CEng, FIEEE, MIIEEE
Christopher John Elliott Phillips, BSc BE PhD Syd., MIIEEE
Robert Radzyner, BE Melb., MEngSc PhD UNSW,
SMIEEE, SMIEEE
Ramutis Anthony Zakarevicius, BSc BE MEngSc PhD Syd.,
CPeng, MIEAust, SMIEEE, SMIEEE

Lecturers
William John Dewar, MScEng Qu., PhD UNSW, MIIEEE
Douglas Hamilton Irving, BE PhD UNSW

Hassan Mehrpour, BE MSc BU
Grang-Ding Peng, BSc Fudan, MSc PhD Jiao Tong, MOSA
Iain Murray Skinner, BSc Old., PhD A.N.U.

Professional Officers
Philip Mark Allen, BE UNSW
Thomas Millett, BAppSc N.S.W.I.T.

Project Scientist
Trevor Wayne Whitbread, BE BSc UNSW, MIEEE

Department of Communications

Associate Professors
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD
Camb., FIEAust, SMIEEE, SMIEEE
Israel Korn, MSc DSc Technion, Haifa, SMIEEE
The Bao Vu, BE PhD Adel., CEng, FIEAust, SMIEEE

Senior Lecturers
Edward Henry Fooks, BSc PhD Lond., CEng, FIEEE, MIIEEE
Christopher John Elliott Phillips, BSc BE PhD Syd., MIIEEE
Robert Radzyner, BE Melb., MEngSc PhD UNSW,
SMIEEE, SMIEEE
Ramutis Anthony Zakarevicius, BSc BE MEngSc PhD Syd.,
CPeng, MIEAust, SMIEEE, SMIEEE

Lecturers
William John Dewar, MScEng Qu., PhD UNSW, MIIEEE
Douglas Hamilton Irving, BE PhD UNSW

Hassan Mehrpour, BE MSc BU
Grang-Ding Peng, BSc Fudan, MSc PhD Jiao Tong, MOSA
Iain Murray Skinner, BSc Old., PhD A.N.U.

Professional Officers
Philip Mark Allen, BE UNSW
Thomas Millett, BAppSc N.S.W.I.T.

Project Scientist
Trevor Wayne Whitbread, BE BSc UNSW, MIEEE

Department of Electric Power Engineering

Associate Professors
Colin Grantham, BSc PhD N'cle.(U.K), CEng, FIEE
Hugh Ronald Outhred, BSc BE PhD Syd., AMIEE, FIEAust,
MIEEE, MIEEE

Senior Lecturers
Trevor Robert Blackburn, BSc Adel., PhD Flin., CEng,
MAIP, MIEEE, MIIEEE
Kevan Charles Daly, BSc BE PhD UNSW, CEng, MIEEE,
MIEEE
Roland John Kaye, BE MEngSc Melb., PhD Calif., MIEEE
Fazlur Muhammed Rahman, BScEng BUET(Ban), MSc
PhD Manc.Inst.Sci.&Tech., MIEEE, AMIEEE
Darmawan Sutanto, BE PhD W.Aust., CEng, SMIEEE

Project Scientist
Edward Douglas Spooner, ME UNSW

Professional Officers
Erik Maria Keller, DipLIng C.V.U.T. Prague
Bao Ton Phung, BE W'gong., MEngSc UNSW

Visiting Fellow
Ronald Edward James, BScEng PhD Lond., CEng, CEng,
FIEAust, MIEEE, MIIEEE

Department of Electronics

Associate Professors
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD
Camb., FIEAust, SMIEEE, SMIEEE
Israel Korn, MSc DSc Technion, Haifa, SMIEEE
The Bao Vu, BE PhD Adel., CEng, FIEAust, SMIEEE

Senior Lecturers
Edward Henry Fooks, BSc PhD Lond., CEng, FIEEE, MIIEEE
Christopher John Elliott Phillips, BSc BE PhD Syd., MIIEEE
Robert Radzyner, BE Melb., MEngSc PhD UNSW,
SMIEEE, SMIEEE
Ramutis Anthony Zakarevicius, BSc BE MEngSc PhD Syd.,
CPeng, MIEAust, SMIEEE, SMIEEE

Lecturers
William John Dewar, MScEng Qu., PhD UNSW, MIIEEE
Douglas Hamilton Irving, BE PhD UNSW

Hassan Mehrpour, BE MSc BU
Grang-Ding Peng, BSc Fudan, MSc PhD Jiao Tong, MOSA
Iain Murray Skinner, BSc Old., PhD A.N.U.

Professional Officers
Philip Mark Allen, BE UNSW
Thomas Millett, BAppSc N.S.W.I.T.

Project Scientist
Trevor Wayne Whitbread, BE BSc UNSW, MIEEE

Department of Communications

Associate Professors
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD
Camb., FIEAust, SMIEEE, SMIEEE
Israel Korn, MSc DSc Technion, Haifa, SMIEEE
The Bao Vu, BE PhD Adel., CEng, FIEAust, SMIEEE

Senior Lecturers
Edward Henry Fooks, BSc PhD Lond., CEng, FIEEE, MIIEEE
Christopher John Elliott Phillips, BSc BE PhD Syd., MIIEEE
Robert Radzyner, BE Melb., MEngSc PhD UNSW,
SMIEEE, SMIEEE
Ramutis Anthony Zakarevicius, BSc BE MEngSc PhD Syd.,
CPeng, MIEAust, SMIEEE, SMIEEE

Lecturers
William John Dewar, MScEng Qu., PhD UNSW, MIIEEE
Douglas Hamilton Irving, BE PhD UNSW

Hassan Mehrpour, BE MSc BU
Grang-Ding Peng, BSc Fudan, MSc PhD Jiao Tong, MOSA
Iain Murray Skinner, BSc Old., PhD A.N.U.

Professional Officers
Philip Mark Allen, BE UNSW
Thomas Millett, BAppSc N.S.W.I.T.

Project Scientist
Trevor Wayne Whitbread, BE BSc UNSW, MIEEE
Department of Systems and Control

Associate Professors
Branko George Celler, BSc BE PhD UNSW, MIEEE, MAPP
Peter Douglas Neilson, BScEng PhD UNSW
Keith Eugene Tait, BE BSc N.Z., PhD UNSW

Senior Lecturers
David James Clements, BSc Qld., ME PhD N'cra.(N.S.W.), MIEEE, MSMIA, SigmaXi
Timothy Hesketh, MScEng CapeT., PhD Massey, MIEEE
Khiang Wee Lim, BE Malay., DPhil Oxf., SMIEEE

Lecturer
Boshra Dawoud Farah, BScEng Alexandria, Dring K.M.Stadt., CEng, MIAE
Gang (Gary) Feng, MEng Nanjing Aero Inst., PhD Melb., MIEEE

Professional Officers
Kong Been Lee, BE MEngSc ME UNSW, MIEEE, AMIEE
Christopher Xiaolong Lu, MScEng Beijing, MIAE, MIEEE

Centre for Photovoltaic Devices and Systems

Director
Professor M. A. Green

Associate Directors
Dr H.R. Outhred
Dr S.R. Wenham

School of Mechanical and Manufacturing Engineering

Incorporates Aerospace Engineering and Naval Architecture.

Nuffield Professor of Mechanical Engineering and Head of School
Brian Edward Milton, BE PhD UNSW, MSc Birm., CEng, FIEAust, FSAAEA, MRAeS

Director of Laboratories
Vacant

Professor of Mechanical Engineering and Director of Programs
Clifford Patterson, MA PhD Camb., FIEAust, CEng, FIMechE, CPhys, FinstP, FIMA, MIEE

Associate Professor and Director of Undergraduate Studies
John Edward Baker, MSc Syd., BE MEngSc PhD UNSW

Director of Graduate Studies
Masud Behnia, BSME, MSME PhD Purdue, CEng, MASME, MAIAA, MIAE

Heads of Departments

Aerospace Engineering
John Randall Page, BSc Hart., MSc Gran I.T., CEng, FBIS, MRAeS, MAIAA

Applied Mechanics
Associate Professor Eric Joseph Hahn, BE BSc PhD UNSW, CEng, FIEAust, MASME

Design
Associate Professor Alexander Eric Churches, BE PhD UNSW, ASTC, CEng, FRSA

Fluid and Thermal Engineering
Associate Professor Eddie Leonardi, BScEng PhD UNSW, CEng, MASME, MIAE, MASHRAE

Industrial Technology and Management
Sir James Kirby Professor of Manufacturing Engineering Hartmut Kaebernick, Dipl-Ing Dr-Ing T.U. Berlin, CEng, FIEAust, SMSME, VDI

Mechatronics
Richard Adrian Willgoss, BSc PhD St'lon., CEng, MIEEE, MinstP, MIEEE, CPhys, FIEAust

Naval Architecture
Associate Professor Lawrence Julian Doctors, BE MEngSc Syd., PhD Mich., CEng, FRINA, MSNAME, FIEAust

Executive Assistant to Head of School
Eleonora Maria Kopalinsky, BE PhD UNSW

Department of Aerospace Engineering

Associate Professor
Donald Wainwright Kelly, BE Syd., PhD Lond.

Senior Lecturers
Noor-e-Alam Ahmed, BSc Strath., PhD Cran. I.T., CEng, MIMechE
J. R. Page

Department of Applied Mechanics

Professor
C. Patterson

Associate Professors
J. E. Baker
Kerry Patrick Byrne, BE MEngSc Qld., BSc Melb., PhD St'lon.
E. J. Hahn

Senior Lecturers
Robin Arthur Julian Ford, BScEng PhD Lond., CEng, ACGI, MIAE
Chakravarti Varadachar Madhusudana, BE Mys., ME I.I.Sc., PhD Monash, CEng, MIAE, MASME
Robert Bond Randall, BTechn Adel., BA Melb., CEng, FDIage, MIAE, MAAs
Hugh Lithgow Stark, BSc PhD Strath., CEng, FIMechE, MIEAust
Khosrow Zarrabi, MSc PhD UMIST, MIEAust.

Lecturer
See Seng Leong, BE PhD UNSW, CEng, MIEAust

Associate Lecturers
Mahinda Dharmasiri Kuruppu, BScEng Sri Lanka, PhD H.K., CEng, MIME, MIEAust

Department of Design

Associate Professor
A. E. Churches

Senior Lecturers
Anthony John Barratt, BE N.S.W.I.T.
John Michael Challen, BE MEngSc Syd., PhD UNSW, FIEAust
Richard Butler Frost, BE UNSW, CEng, FIEAust, FRSA

Lecturer
Robin Arthur Platfoot, BE UNSW, PhD Syd.

Department of Fluid and Thermal Engineering

Professor
B. E. Milton

Associate Professors
E. Leonardi
Graham Lindsay Morrison, BE PhD Melb., FIEAust
John Arthur Reizes, ME PhD UNSW, CEng, FIEAust

Senior Lecturers
E. M. Kopalinsky
Ian Lachlan Maclaine-cross, BE Melb., PhD Monash, MIEAust

Department of Industrial Technology and Management

Professor
H. Kaebernick

Associate Professor
Roger Malcolm Kerr, BSc Lond., MSc Bath., DPhil Oxf.

Senior Lecturers
Leonard Edward Farmer, BE MEngSc PhD UNSW, CEng, MIEAust
Khoi Hoang, BE Saigon, PhD UNSW,
Philip Mathew, BE PhD UNSW, CEng, MIEAust

Yi-xin Lawrence Yao, BE Shanghai Jiaotong, MS PhD Wisconsin-Madison, CEng, MIEAust, MASME, MSME

Lecturers
Ka Ching Chan, MASc Tor.
Atiya Berman Kayis, MS Middle East T.U., PhD Istanbul T.U.

Department of Mechatronics

Senior Lecturer
R. A. Willgoss

Lecturers
Jayantha Katupitiya, BScEng Sri Lanka, PhD Leuven, CEng, MIEAust, MASME, MIEEE
Michal John Tordon, DipIng Bratislava, PhD Prague, MIEEE

Associate Lecturer
James Minghui Hu, BE China Text. U., PhD UNSW

Department of Naval Architecture

Associate Professors
L. J. Doctors

Senior Lecturers
Mahiuddin Chowdhury, BSc Bangh. U.T., PhD N’cle (U.K.), CEng, FRINA, FIEAust, MIEAust
Prabhat Kumar Pal, BME N.C.E., Bengal, BTech PhD I.I.T. Kharagpur, CEng, FRINA, FIEAust, MIINA, MSTG Hamburg

Heads of Programs

Energy and Power Systems
Associate Professor J.A. Reizes

Machine Systems Design
Mr R.B. Frost

Maintenance Engineering
Mr R.B. Randall

Manufacturing and Automation
(Centre for Manufacturing and Automation)
Dr S.S. Leong

Mechanical Building Services
Associate Professor E. Leonardi

Vehicle and Transport Systems
Mr J.R. Page

Administrative Officer
Amos Dimitrius Bauman, AEd BA BEd Qld., MEd N.E.

Administrative Assistant
Audrey Muriel Colquhoun
Senior Project Scientist
Peter Yo Pin Chen, BSc MEngSc ME PhD UNSW, ASTC

Professional Officers
James Beck, ME Prague
Eric Arthur Carter, BE MEngSc UNSW, ASTC
Anthony Gordon Harris, BSc Exe.
Alfred Win Lin Hu, BE Rangoon I.T., MIEEE
Yelim Kotlyar, BMechEng Moscow Mach. Inst.
Philip Chi Bong Kwok, BE BeijingInst.Aer.& Astro., CEng, MIEAust

SMlor Projact Scientist
Potar Yo Pin Chen, BSc MEngSc ME PhD UNSW, ASTC

Professional Officers
James Beck, ME Prague
Eric Arthur Carter, BE MEngSc UNSW, ASTC
Anthony Gordon Harris, BSc Exe.
Alfred Win Lin Hu, BE Rangoon I.T., MIEEE
Yelim Kotlyar, BMechEng Moscow Mach. Inst.
Philip Chi Bong Kwok, BE BeijingInst.Aer.& Astro., CEng, MIEAust

Scientist

UNSW, ASTC

Professional Officers
James Beck, ME Prague
Eric Arthur Carter, BE MEngSc UNSW, ASTC
Anthony Gordon Harris, BSc Exe.
Alfred Win Lin Hu, BE Rangoon I.T., MIEEE
Yelim Kotlyar, BMechEng Moscow Mach. Inst.
Philip Chi Bong Kwok, BE BeijingInst.Aer.& Astro., CEng, MIEAust

Centre for Advanced Numerical Computation in Engineering and Science

Visiting Professor and Director
Professor G. De Vahl Davis

Centre for Manufacturing and Automation

Director
Dr S.S. Leong

School of Surveying

Professor and Head of School
John Charles Trinder, BSurv PhD UNSW, MSc I.T.C. Delft, RegSurvNSW, FISAust

Professor of Surveying
Friedrich Karl Brunner, DiplIng Drtech T.U. Vienna

Associate Professors
Bruce Crosby Forster, MSurv Melb., MSc R'dg., PhD UNSW, MISAust, LSVic, MIEEE
Arthur Harry William Kearsley, MSurvSc PhD UNSW, MISAust
Jean Marc Rueger, DipIng E.T.H. Zurich, PhD UNSW, ACSM, LSSwitz, MISAust
Artur Stolz, BSurv PhD UNSW, RegSurvNSW

Senior Lecturers
Bruce Raymond Harvey, BSurv PhD UNSW
Ewan Gerald Masters, BSurv PhD UNSW, MISAust
Christopher Rizos, BSurv PhD UNSW
Anthony John Robinson, BSurv MBA PhD UNSW, RegSurvNSW, MISAust, MAIC

Honorary Research Professor
Peter Louis Brennan Oxley, BSc PhD Leeds, CEng, CEng, FIEAust, FIProdE

Visiting Professors
George Bennett, BA Syd., PhD UNSW, ASTC, CEng, FIProdE
Graham de Vahl Davis, AM, BESyd., PhD Camb., CEng, CEng, FIMechE, FIEAust, MASME
Henry Ehikpehale Enahoro, BSc MScTech ManC., PhD Sheff., CEng, FIMechE, MIProdE
Zdenek Josef Holy, DiplIng Prague, MSc Birm., MEngSc PhD UNSW, CEng, MIEAust

Centre for Biomedical Engineering

Professor and Director
Klaus Schindhelm, BE PhD UNSW, MIEAust

Associate Professor
Christopher David Bertram, MA DPhil Oxf.

Visiting Professor
Peter Craig Farrell, BE Syd., SM M.I.T., PhD Wash., DSc UNSW, MASAIO

Senior Lecturers
Alberto Pompeo Avolio, BE PhD UNSW
Bruce Kenneth Milthorpe, BA Macq., PhD A.N.U.

Lecturer
Ross Alexander Odell, BSE Prin., PhD M.I.T.

Professional Officer
Laura Anne Poole-Warren, BSc PhD UNSW
Peter Roman Sowiaczek, BSc N'cle(N.S.W.)

Administrative Assistant
Rhonwen Cunningham, BA DipSocWk Syd.
Centre for Groundwater Management and Hydrogeology

In association with the Faculty of Applied Science.

Associate Professor and Director
Colin Raymond Dudgeon, ME PhD UNSW, CPEng, MIEAust, MASCE

Senior Lecturer
Richard Ian Acworth, BSc Leeds, MSc PhD Birm., FGS

Senior Research Fellow
Jerzy Jankowski, MSc PhD Wrocl.
This handbook is divided into separate sections for each School/Unit, identified by a four-letter code (e.g. CIVL, School of Civil Engineering). This code appears on the top right corner of each page relating to the School/Unit. Each School/Unit section is divided into Undergraduate and Graduate Study and includes course outlines and subject descriptions.

Read the opening sections of the handbook first, and then read the information contained under Course Outlines (Undergraduate or Graduate as appropriate). These sections cover all degrees and diplomas offered by the Faculty. Detailed information on each subject then appears under Subject Descriptions, which includes session/s offered, pre/corequisite details, class hours, credit/unit value, etc.

You will find that almost any course of study you wish to undertake has subjects from other Schools, and even other Faculties. This means that in your engineering course, subjects are listed from other Schools in the Faculty of Engineering, each with their own identifying code, as well as from the School in which you are planning to do a course. If, for example, this is Mechanical and Manufacturing Engineering (MECH), all the subjects for Mechanical and Manufacturing Engineering are described in the section for that School. As Mechanical and Manufacturing Engineering also includes Aerospace Engineering (AERO), Manufacturing Management (MANF) and Naval Architecture (NAVL) these subjects are also included with the School. If they are Electrical Engineering (ELEC), Computer Science and Engineering (COMP), Civil Engineering (CIVL) or Surveying (SURV) subjects, then descriptions for these subjects will be located in the appropriate School section which has that particular identifying number.

Any subject which is not an Engineering subject (i.e. a subject offered by another Faculty, but included in a course), appears under the Servicing Subject Descriptions section.

As changes may be made to information provided in this Handbook, students should frequently consult the noticeboards of the schools and the official noticeboards of the University.

Undergraduate Study

It is most important that you read the opening sections of the Handbook for general information on the Faculty of Engineering, Faculty Information, and Undergraduate Study, Course Outlines. Both of these contain specific information relating to undergraduate degrees, including Enrolment Procedures, Conditions for the Award of Degrees, Honours, Professional Practice, Course Transfers and a number of other details that you should be familiar with.

Once you have determined which course you want to do, you must read the course outlines and then the subject descriptions for all subjects to find out what each one entails.

Graduate Study

No matter which graduate degree course you plan to undertake you must read the general summary of graduate courses in the section, Graduate Study, Course Outlines. This covers both research degrees and course work programs. Information relating to the various Masters degrees by course work and Graduate Diplomas is detailed in the appropriate School sections. The Centre for Biomedical Engineering is the only Centre in the Faculty of Engineering with its own code number (BIOM) and it located at the end of the section on Centre. The Graduate School of Engineering (GSOE) also has its own identifier and is located at the end of the Graduate Study section.

You will also need to read the Conditions for the Award of Degrees at the back of the Handbook for the formal rules governing each degree.

Most importantly, staff in the Faculty of Engineering are only too happy to help you with any queries you might have or problems that need to be sorted out. As a first step, contact the School Office, or there is a list of people who can help you at the beginning of Faculty Information. You can then be directed to other staff members who can assist you if there are very specific matters that need to be solved.
Information Key

The following key provides a guide to abbreviations used in this book:

C credit points
F full year (Session 1 plus Session 2)
HPW hours per week
L lecture
P/T part-time
S1 Session 1
S2 Session 2
SS single Session, but which Session taught is not known at time of publication
T tutorial/laboratory
U unit value
WKS weeks of duration
X external

Prefixes

The identifying alphabetical prefixes for each organizational unit offering subjects to students in the Faculty of Engineering follow.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational Unit</th>
<th>Faculty/Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>AERO</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>COMP</td>
<td>School of Computer Science & Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Econometrics and Economics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GSOE</td>
<td>Graduate School of Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>INDC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organizational Behaviour</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Law</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Librarianship</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>MANF</td>
<td>School of Mechanical & Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science & Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical & Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational Unit</td>
<td>Faculty/Board</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>NAVL</td>
<td>School of Mechanical and Manufacturing</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology & Pharmacology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts & Social Sciences</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>SAFE</td>
<td>Department of Safety Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Some People Who Can Help You

If you require advice about enrolment, degree requirements, progression within courses, subject content and requirements, contact the appropriate school/centre representative listed below:

School of Civil Engineering: Mr G. J. Harris, Room 406, Civil Engineering Building.

School of Computer Science and Engineering: Dr G.R. Whale or Ms V. Joubert, School Office, Room 313, Electrical Engineering Building.

School of Electrical Engineering: Dr C. J. E. Phillips, Room G6, or Ms A. G. M. Johnson, School Office, Electrical Engineering Building.

School of Mechanical and Manufacturing Engineering: Dr E.M. Kopalinsky, Room 105B, or Mr A.D. Bauman, Room 112, Mechanical and Manufacturing Engineering Building.

School of Surveying: Mr L. Daras, School Office, Room 529, Geography and Surveying Building.

Centre for Biomedical Engineering: Associate Professor K. Schindhelm, 5th Floor, New Research Building.

Centre for Groundwater Management and Hydrogeology: Associate Professor C. Dudgeon, Room 4275, Applied Science Building.

Centre for Remote Sensing: Dr A.K. Skidmore, Room 235, Geography and Surveying Building.

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboards of the schools and the official noticeboards of the University.

Course Prerequisites

Mathematics
- 2u (60-100)
- 3u (1-50)
- 4u (1-100)

Additional subject prerequisites

English
- 2u Contemporary (60-100)
- 2uG (53-100)
- 2u (49-100)
- 3u (1-50)

Science
- 2u Physics (57-100) or 2u Chemistry (60-100)
- 3u (90-150)
- 4u (1-50)

Students are advised that the lack of specified subject prerequisite/s do not preclude their selection to any course but the required standard must be achieved before enrolment in the University subject is permitted.

The University conducts Bridging Courses to assist in remedying deficiencies in subject levels. Further details are available from the Students' Information Guide published annually by the Universities Admissions Centre (UAC).

Introductory subjects are also available to students who do not have the New South Wales Higher School Certificate prerequisite/s in Mathematics, Chemistry or Physics. It should be noted that inclusion of these subjects in first-year programs could extend the duration of a course.

Enrolment Procedures

All students re-enrolling in 1993 or enrolling in graduate course should obtain a copy of the free leaflet Re-Enrolling 1993 available from School offices and the Admissions Office. This leaflet provides detailed information on enrolment procedures and fees, enrolment timetables,
enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Re-enrolment forms must be lodged with the appropriate School Office by the start of the third week in the preceding December. Enrolment at the University will not be authorised until the re-enrolment form has been checked and the program approved. Students not intending to re-enrol should advise the School. Leave of absence for up to one year is usually granted to students in good standing.

It is the responsibility of students to enrol in a program consistent with the rules governing re-enrolment and admission to the degree.

Faculty of Engineering Library

Facilities

Although any of the university libraries may meet specific needs, the staff and students of the Faculty of Engineering are served mainly by the Physical Sciences Library and the Undergraduate Services.

The Physical Sciences Library

The library, located on Levels 6 and 7 of the Library tower, caters for the information needs of staff, graduate students and undergraduates in the pure and applied sciences, engineering and architecture.

Physical Sciences Library materials are listed in the Library's online catalogue, microfiche book finding list or microfiche serials catalogue.

This Library provides reference, reader assistance and reader education services including interlibrary loan, online search and CD-ROM facilities. Photocopying facilities are also available.

Trained Library staff are always available on Level 7 to assist readers with their enquiries.

Physical Sciences Librarian: Rhonda Langford

Undergraduate Services

- The Open Reserve Section houses books and other materials which are required reading. Level 2.
- The Audio Visual Section contains multimedia videos and cassette tapes of lectures. The section has wired study carrels and cassette players for student use. The map collection is also located here. Level 3.
- The Reader Education program provides orientation tours and introductory library research method lectures to students.

Students With Disabilities

The University of New South Wales has a policy of equal opportunity in education and seeks wherever possible to ensure maximum participation of students with disabilities.

The University offers a range of assistance: examination support; specialized equipment; educational support; parking provisions; library assistance.

A Resource Guide for students and staff with disabilities and a map showing wheelchair access is available from the Advisor to students with Disabilities, the EEO Unit, the Library and the Students' Union.

It is advisable to make contact with the Advisor to Students with Disabilities prior to, or immediately following enrolment, to discuss your support needs.

The Advisor can be contacted on 697 5418 or at the Student Services Huts, Physics Road (near Barker Street).

International Association for the Exchange of Students for Technical Experience – IAESTE

IAESTE is an organization to facilitate overseas work in technical areas in 53 different countries throughout the world for students or recent graduates. It organizes visas, work permits for as little as 6 weeks or up to 12 months, lodging and an initial welcome.

Further information may be obtained from the Association, c/-The Graduate Careers Council of Australia, PO Box 28, Parkville, Vic 3052. Telephone (03) 347 4644.

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Academic Registrar for approval by the University Council.

The following societies serve the interests of students in the various courses in the Faculty of Engineering: Biomedical Engineering Society (BioEngSoc); Civil Engineering Society (CIVSOC); Computing Science Association (CSA); Electrical Engineering Society (ELSOC); Mechanical Engineering Society (MECHSOC); Naval Architecture Students' Association (NASA); Surveying Society (SURVSOC).

Students are encouraged to participate in the activities of their societies. Enquiries should be directed initially to the general offices of the respective Schools.
Professional Institutions

1. The Institution of Engineers, Australia

The professional body for engineering in Australia is the Institution of Engineers, Australia (IEAust), which has as its first objective 'to promote the science and practice of engineering in all its branches'.

The IEAust has its national headquarters in Canberra and functions through a series of divisions, the local one being the Sydney Division. Within each division are branches representing the main interests within the profession, e.g., civil, mechanical, electrical, engineering management and environmental engineering.

Students of an approved school of engineering may join the Institution as a student member (StudIEAust). Student members receive the fortnightly publication Engineers, Australia and for a small fee they also receive The Transactions which contains articles on a particular branch of engineering.

Student members are invited to participate in the Excellence Award for Work Experience, the National Young Engineer of the Year Award and to avail themselves of other IEAust services including the Mentor Scheme and industrial experiences guidance.

For more information and membership application forms, write to The Secretary, The Institution of Engineers, Australia, Sydney Division, 1st Floor, 118 Alfred Street, Milsons Point 2061.

2. The Institution of Surveyors, Australia

During their years as undergraduates, students in the surveying course are encouraged to take the first steps in joining in the activities of the professional body which represents surveyors, The Institution of Surveyors, Australia. The aims of the Institution are to promote scientific, technical and educational aspects of surveying and to maintain high professional standards of practice and conduct. Student members receive the quarterly journal of the Institution, The Australian Surveyor and Azimuth which is published by the New South Wales Division of the Institution. Membership also entitles the student to attend all meetings of the Institution and to attend the annual Congress at a special concessional rate. Membership application forms are available at the office of the School of Surveying and from the Institution Office, Third Floor, Guild House, 363 Pitt Street, Sydney 2000.

General Information

While this Handbook has been specially designed as a detailed source of reference in all matters related to the Faculty, the University's Student Guide is intended to provide general information on some of the most important rules and procedures and introduces students to many of the services available to them. The Guide, which helps to put the Faculty into perspective within the University as a whole, is issued free of charge to all enrolled students. For fuller details about some aspects of the University and its activities students might need to consult the University Calendar.
Undergraduate Study

The Faculty of Engineering offers the following courses:

Bachelor of Engineering
BE

in:
Aerospace Engineering
Civil Engineering
Computer Engineering
Electrical Engineering
Environmental Engineering
Mechanical Engineering
Manufacturing Management
Naval Architecture

These full-time courses are designed to be taken over a period of four years. They may also be taken on a part-time basis which usually involves a combination of mainly day-time study together with some evening attendance over a period of six or seven years. It may not be possible to offer evening classes in the later year subjects.

Courses in sandwich form after the first year are also available in Civil Engineering and Environmental Engineering.

Bachelor of Surveying
BSurv

This course is available on a full-time basis and in sandwich form, the latter providing for alternate periods of full-time study and full-time employment with part-time study.

Combined Degree Courses

Full-time courses are available for the award of the following degrees:

Bachelor of Engineering Bachelor of Science
BE BSc
(5 years' duration) in:
Aerospace Engineering

Civil Engineering
Electrical Engineering
Manufacturing Management
Mechanical Engineering
Naval Architecture

Bachelor of Engineering Bachelor of Arts
BE BA
(5 years' duration) in:
Aerospace Engineering
Electrical Engineering
Manufacturing Management
Mechanical Engineering
Naval Architecture

Bachelor of Engineering Bachelor of Laws
BE LLB
(6 years' duration) in:
Civil Engineering

Bachelor of Engineering (Civil) and Bachelor of Engineering (Mining)
BE BE
(5 years' duration) in:
Civil Engineering

Bachelor of Surveying Bachelor of Science in Computer Science
BSurv BSc
(5 years' duration)

Subject Areas

The three major subject areas in engineering and surveying courses are basic sciences, engineering sciences and engineering applications. The basic sciences area is emphasised in Year 1 since it forms the foundation for the remainder of the course. Engineering sciences form the link...
between the basic sciences and engineering applications. The engineering applications area provides the opportunity for applying knowledge to the solution of problems and is consequently emphasised later in the course. A feature of the courses at the University of New South Wales is the inclusion of a program of General Education, the requirements for which are set out below.

Basic Sciences consist of Mathematics, Physics and some Chemistry. Engineering Science subjects are those which provide the theoretical basis for engineering applications. These include Applied Mechanics, Fluid Mechanics, Electronics, Electricity, Thermodynamics, Structural Mechanics, Materials Science. Engineering Applications involve Innovation and Design, Systems and Control, Production, Technical Communication, Energy Conversion, Management. General Education subjects serve to provide both an introduction to the environments in which humans function — physical, biological, socio-economic, and technological — and an introduction to the cultural bases of knowledge and belief.

Co-op Program

The University's Co-op Program in the Faculty of Engineering consists of industry-linked, five-year courses in Aerospace Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Environmental Engineering, Mechanical Engineering, Manufacturing Management and Naval Architecture.

Co-op scholars are selected largely on the basis of academic attainment, personal skills and motivation as well as on non-academic achievements.

Further information is available from the University's Office of Industry-Linked Education, telephone (02) 697 5116.

Transfer Courses

Students transferring to the University of New South Wales after successful completion of the first year of an engineering degree course at an Australian university would normally be admitted with advanced standing into the degree courses offered by the Faculty of Engineering. Students transferring from related courses at an Australian university are granted exemptions based on parity of all junior courses.

Students who have completed the first year of an undergraduate course in one school may apply for a transfer to a course in another school of the Faculty with credit for relevant subjects completed. However, as there are considerable differences in the various Year 1 programs, students are not granted complete exemption from Year 1 of the course to which the transfer is made.

Please note, however, that due to enrolment quotas in undergraduate courses the number of places available for transfer is limited and offers will be made on a competitive basis.

Formal advanced standing procedures apply for entry into the following Bachelor of Engineering (BE) courses at the University of New South Wales with full credit.

BE in Electrical Engineering

Students studying at the University of Western Sydney, Macarthur, who complete at their first attempt the first year of the Science Program are granted enrolment in the second year of the BE course. Entry is restricted to applicants who are residents of the South-Western Region of Sydney.

BE in Aerospace Engineering

BE in Manufacturing Management

BE in Mechanical Engineering

BE in Naval Architecture

Students studying at the Charles Sturt University, Wagga Wagga, may be admitted to the second year of the above course after satisfactorily completing the one-year Bachelor of Engineering Transfer Program (KSZ) at Wagga Wagga.

BE in Aerospace Engineering

Students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian university may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering. (The first and second years of this course are identical with the first two years of the course in Mechanical Engineering.)

BE in Naval Architecture

Students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian university may be admitted to the final two years of the Bachelor of Engineering degree course in Naval Architecture. (The first and second years of this course are identical with the first two years of the course in Mechanical Engineering.)

Further information regarding entry into the above listed courses may be obtained from the Dean's Office, Faculty of Engineering.

Course Revision

Following each course revision students are assessed on the basis of the new program but retain credit for any subject already completed and are not liable for the increased requirements if progression is normal.

General Rules for Progression

Progression in all undergraduate courses in the Faculty of Engineering is permitted by subject. However:
1. Course programs will continue to be stated and timetabled by year or stage and it cannot be guaranteed that non-standard programs can be completed in the minimum number of years. Students are not permitted to enrol in subjects with clashing timetables.

2. Students must satisfy the rules governing re-enrolment: in particular, these require students enrolled in the first year of a degree program to pass in at least half that program. Students are also required to show cause why they should be allowed to repeat a subject which has been failed more than once. Students are also required to show cause why they should be allowed to continue with their course if their average mark in a year of study falls below 50%.

3. Students must satisfy the relevant prerequisite and corequisite requirements. This will usually necessitate students completing or attempting all subjects of a particular year or stage before proceeding to a subject in the next part of a course. Further details are available from the appropriate school.

4. Only in exceptional circumstances will students be permitted to enrol in subjects extending over more than two years of the course or for more than twenty-eight hours of course work per week if a full-time student or fourteen hours per week if a part-time student. Students repeating subjects are required to choose a program which limits their hours of course work to twenty-two per week if a full-time student, and to eleven per week if a part-time student, unless they have the express permission of the Head of School to exceed these hours. Previously failed subjects must be included, except that a failed elective may be replaced by another elective.

5. Notwithstanding the above, before students can enrol in any non-standard program such program must meet with the approval of the Head of School. A non-standard program is one which involves enrolment in subjects from more than one year or stage, or comprises subjects which do not normally constitute a particular year's course work.

Prerequisites and Corequisites

- A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.
- A corequisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.

Industrial Experience Requirements (Engineering Students)

The Faculty of Engineering endorses the requirement of The Institution of Engineers, Australia, in that all students must complete at least 60 working days of approved industrial experience prior to enrolment in the final year of their course. The staff of the Faculty will, where possible, assist students to obtain this employment, but it is emphasized that the primary responsibility for obtaining suitable industrial experience rests with each student. The award of the degree is dependent on the completion of the requisite periods of industrial employment at a standard approved by the University.

Students enrolled in Bachelor of Engineering courses in the Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering and Mechanical and Manufacturing Engineering are required to enrol in Industrial Training subjects. Schools' entries under Course Outlines and Subject Descriptions should be consulted for details of subject requirements.

Students will formally enrol in the Industrial Training subject in Year 4, although they are strongly encouraged to complete as much industrial experience as possible in the breaks between the early years of the course.

Honours

In the Bachelor of Engineering degrees courses the same formal program is offered to both pass students and to those aiming at honours. Honours will be awarded for meritorious performance over the course; special attention is paid to a candidate's performance in the final year subjects and thesis project.

In the cases of combined degrees, such as the BE BA or the BE BSc, the award of the BA or BSc degree at honours level requires two additional sessions of study.

Students wishing to gain a degree at Honours level in Arts or in Science as part of their combined degree program must meet all the relevant requirements of the Faculty of Arts or the Board of Studies in Science and Mathematics and of the appropriate School concerned. Students may enrol for the Honours year only on the recommendation of the Head of their School in the Faculty of Engineering and with the approval of the Head of the appropriate Arts or Science School, and the Faculty of Engineering. For an Honours in Science, approval must also be sought from the Board of Studies in Science and Mathematics. AUStUDY support is available for the combined degree program including the Honours level.

Practical Experience Requirements (Surveying Students)

All students in BSurv course must gain at least 60 days of recognised professional practice after the completion of Session 1 in Year 2 as part of the requirements for subject SURV8711. Special instructions will be given before commencement of professional practice.

General Education Requirement

The University requires that all undergraduate students undertake a structured program in General Education as an integral part of studies for their degree.

Among its objectives, the General Education program provides the opportunity for students to address some of the key questions they will face as individuals, citizens and professionals.
There are differing requirements for general education for students commencing before, in, and after 1988. Students must complete a program of general education in accordance with the requirements in effect when they commenced their degree program. Students should consult the appropriate course authority or the Centre for Liberal and General Studies in Morven Brown Building, Room G58.

The program requires students to undertake studies in three categories of the program: The key questions addressed by the Program are:

Category A: The External Context: An introduction in non-specialist terms to an understanding of the environments in which humans function.

Course Requirement: 56 hours

1. **Australia and the Development of the World Economy.** How do we, can we, generate wealth?
2. **Human Inequality.** How can we, ought we, distribute wealth, status and power?
3. **Science and Civilization.** What stops should we take, and what policies should we adopt, in science and technology?
4. **Ecosystems, Technology and Human Habitation.** What effects do our wealth generating and socio-scientific activities have on the environment?
5. **Mass Media and Communication.** What are the effects of the new mass media of communication?
6. **Australian Society and Culture.** What are the key social and cultural influences on Australia today?

Category B: The Internal Context of Assumptions and Values: An introduction to, and a critical reflection upon, the cultural bases of knowledge, belief, language, identity and purpose.

Course Requirement: 56 hours

1. **The Self and Society.** How do we define ourselves in relation to the larger human community?
2. **Changing Conceptions of Human Nature and Well-Being.** How do our conceptions of human nature and well being influence both individual and social behaviour?
3. **The Pursuit of Human Rationality.** What are the prevailing conceptions of and challenges to human rationality?
4. **The Use of Language, Images and Symbols.** How do language, images and symbols function as means and media of communication?
5. **The Computer: Its Impact, Significance and Uses.** What is the impact of the computer on human society and culture?
6. **Beliefs, Values and the Search for Meaning.** Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth?

Category C: An Introduction to the design and responsible management of the human and planetary future: An introduction to the systems over which human beings exercise some influence and control. This category is required only of students in four-year professional and honours programs.

The central question to be addressed by students in a systematic and formal way is: For what purpose or purposes will I use my intellectual skills, my expertise, or my technological prowess?

Will these abilities be used, for example:

- in a creative and innovative way?
- to widen the circle of human participation in the benefits they bring?
- to break down the barriers of exclusion and discrimination?
- to enhance the prospects for survival of the human species?
- to enhance the capacity of the planet earth to sustain life?

The way in which the Category C requirement of the Program will be met varies with each of the Schools and courses in the Faculty. The particular details are shown under each School's handbook entry.

Conditions for the Award of the Degree of Bachelor of Engineering

1. A candidate for the award of the degree of Bachelor of Engineering shall:
 1. comply with the requirements for admission;
 2. follow the prescribed course of study in the appropriate School, and satisfy the examiners in the necessary subjects;
 3. complete an approved program of industrial training for such periods as are prescribed. In general, this training must be completed before 31 January in the year in which the degree is to be awarded.

2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations and excursions to such an extent and in such a manner as is prescribed from time to time by the Academic Board on the recommendation of the Faculty. Those students who are required to undertake field work for any subject must be prepared to pay the appropriate costs and be in attendance at all scheduled examinations except in abnormal circumstances.

3. A student may be granted advanced standing by the Academic Board on the recommendation of the appropriate Faculty, but in each case must complete an adequate period of approved industrial training before being eligible for the degree. In addition to the above requirements a student coming from another institution must comply with the conditions laid down by the Academic Board for admission with advanced standing.

4. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
 1. Honours Class I
 2. Honours Class II, Division I
 3. Honours Class II, Division II

5. In special cases the Faculty may approve the variation of any of the preceding conditions.
Conditions for the Award of the Degree of Bachelor of Surveying

1. A candidate for the award of the degree of Bachelor of Surveying shall:
 (1) comply with the requirements for admission;
 (2) follow the prescribed course of study in the School of Surveying and satisfy the examiners in the necessary subjects;
 (3) complete an approved program of professional practice for such periods as are prescribed. In general, this training must be completed before 31 January in the year in which the degree is to be awarded.

2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations, excursions and field camps to such an extent and in such a manner as is prescribed from time to time by the Academic Board on the recommendation of the Faculty. Those students who are required to undertake field work for any subject must be prepared to pay the appropriate costs and be in attendance at all scheduled examinations except in abnormal circumstances.

3. A student may be granted advanced standing by the Academic Board on the recommendation of the Faculty of Engineering. In addition to the above requirements a student coming from another institution must comply with the conditions laid down by the Academic Board for admission with advanced standing.

4. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
 - Honours Class I
 - Honours Class II, Division I
 - Honours Class II, Division II

5. In special cases the Faculty may approve the variation of any of the preceding conditions.

Graduate Study

The Faculty awards ten higher degrees as follows:
- Research - Doctor of Philosophy, Master of Engineering and Master of Surveying

In addition, the degrees of Doctor of Science and Master of Science may be awarded for research conducted in, or in association with, the Faculty of Engineering.

The Graduate School of Engineering is responsible for the MBT Program which is a joint initiative of the Faculties of Applied Science and Engineering. The two courses offered through this special unit are the Master of Business and Technology, and the Graduate Diploma in Industrial Management (see Graduate School of Engineering section in this Handbook).

Conditions governing the award of higher degrees and graduate diplomas are set out later in this handbook in Conditions for the Award of Degrees. However, conditions for the award of the degree of Doctor of Science may be found in the University Calendar.

Minimum Acceptable Score
1. The Test of English as a Foreign Language (TOEFL) 550
2. International English Language Testing Service (IELTS) 6.0
3. Combined Universities Language Test (CULT) 65%
4. Indonesia-Australia Language Foundation (IALF)* Cat 1 or 2

*Cat 3 may be accepted if current English program available.

Research Degrees

Doctor of Philosophy
PhD

This degree is awarded for a thesis considered to be a substantially original contribution to the subject concerned. The degree is becoming a prerequisite for research appointments in government and industrial research and development laboratories. Research for this degree may be taken at, or externally to, the University. However the Faculty recommends that periods of residency at the University totalling at least six months be included in the candidate's research program.

Admission Guidelines: A candidate for registration for the degree of Doctor of Philosophy should hold an honours degree from the University of New South Wales or an honours degree of equivalent standing from another approved university. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

English Language Requirements

Applicants whose first language is not English or who have not undertaken a previous degree where English was the primary language of instruction are required to provide proof of their competence by presenting acceptable results from one of the following tests or by satisfying the course authority as to their level of proficiency. A pass in the writing component of the tests listed below is strongly recommended.
Master of Engineering/
Master of Science/
Master of Surveying
ME/MSc/MSurv

These are research degrees in which a thesis embodies the result of an original investigation, or design, or engineering surveying development. Candidates for the award of the degree of ME and MSurv may be required to carry out a program of advanced study.

Admission Guidelines: A candidate for registration for the degree of Master of Engineering, Master of Science or Master of Surveying should hold a Bachelor's degree from the University of New South Wales or from another approved university. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Research degrees may be undertaken in the Faculty of Engineering as follows:

PhD
Civil Engineering 1630
Electrical Engineering 1640
Computer Science and Engineering 1650
Mechanical and Manufacturing Engineering 1662
Surveying 1680
Biomedical Engineering 1710

ME
Civil Engineering 2650
Electrical Engineering 2660
Computer Science and Engineering 2665
Mechanical and Manufacturing Engineering 2692

MSc
Civil Engineering 2750
Electrical Engineering 2760
Mechanical and Manufacturing Engineering 2781
Biomedical Engineering 2795

MSurv
Surveying 2720

The following courses are contributed to by the Faculty of Engineering and further details may be found in the Faculty of Applied Science Handbook: Master of Applied Science in Arid Lands Management (course code 8025), Master of Safety Science (course 8671) and Master of Engineering Science in Industrial Safety (course code 8675).
Graduate Diplomas

Courses of study leading to the award of a Graduate Diploma in the Faculty of Engineering provide graduates with opportunities to extend their professional knowledge. In most cases, candidates may choose from a range of subjects in the special area of their choice. There are also opportunities to select subjects from other professional areas in which candidates may be interested.

Before enrolment, an applicant should submit an intended program for approval by the school or centre offering the majority of the credits. Candidates must complete a program totalling 24 credits except for Biomedical Engineering which requires 30 and the Graduate Diploma specialisation in Computer Science which requires 36. In the latter case, an exemption may be granted from 12 of these credits. In most cases, 12 credits may be derived from approved undergraduate subjects and the program may contain subjects from other schools of the Faculty, other faculties of the University and other universities or institutions subject to meeting the prerequisite requirements. If an applicant nominates a course of study taken from the list below, at least half of the credits should come from the subjects taken in that area. The exceptions to this requirement are for the Information Science and Computer Science Graduate Diploma specialisations where all subjects are taken from a prescribed program of study.

It should be noted that some candidates who have partially completed or who have completed the requirements but not taken out the diploma may be considered for upgrading to the relevant Master program with advanced standing. Since the policy on upgrading varies between different schools and centres, further enquiries should be made with the school or centre concerned.

Applicants for admission to a course of study leading to the award of a Graduate Diploma commencing in first session should apply to the Registrar on the prescribed form by 31 October of the year before the year in which enrolment is to begin. Where application is for registration commencing in the second session, applicants should apply at least two months before the commencement of session. It may be necessary to limit entry to formal courses due to quota restrictions. In such cases, applications may be placed on a reserve list and considered subject to the availability of places. If a firm offer of admission is made, it will be subject to acceptance within three weeks.

Courses of study leading to the award of a graduate diploma may be undertaken in the Faculty of Engineering as follows:

School/Course

Graduate Diploma in Engineering:
- Biomedical Engineering 5462
- Civil Engineering 5459
- Waste Management 5459 (Internal) 5498 (External)
- Electrical Engineering 5458
- Computer Science 5452
- Information Science 5453
- Computer Education 5464
- Industrial Engineering 5455
- Mechanical Engineering 5456
- Graduate Diploma in Remote Sensing 5496

Master of Biomedical Engineering MBioMedE

Information is detailed under Centre for Biomedical Engineering, Graduate Study.

Master of Information Science MInf
Master of Computer Science MCompSc
Master of Cognitive Science MCogSc

Information is detailed under School of Computer Science and Engineering, Graduate Study.
Graduate Diploma in Surveying 5491
Further details of the recommended programs of study may be obtained from the course authorities concerned.

Graduate Subjects

The subjects which may be available for a candidate proceeding to the award of the degree of Master of Biomedical Engineering, Master of Computer Science, Master of Engineering Science, Master of Environmental Engineering Science, Master of Information Science, Master of Surveying Science and Graduate Diploma are listed at the end of each School section. Not all electives are necessarily offered in any particular year.

Under the credit system in operation in the Faculty, one credit is normally equal to one hour's attendance per week for one session. The qualification 'normally' is required because of the varying ways in which credits are distributed for course work, design, critical review or research in the different schools.

Many graduate subjects assume that students have prior, or preliminary, knowledge of the area of study. It is the responsibility of students to acquaint themselves with this level of assumed prior knowledge and take steps, if necessary, to obtain it. This may, for example, involve a course of preparatory reading before commencing the subject.

In some cases the assumed level of knowledge for a specific subject is indicated in this Handbook by the statement of assumed knowledge. This is intended as a guide to the assumed prior knowledge and often uses the description of other subjects in the Handbook (graduate and undergraduate) to indicate the content and level which the lecturer will assume. Students who are in doubt as to the adequacy of their preparation should contact the lecturer concerned and discuss the matter. The lecturer in charge of a subject has the authority to decide whether or not the student has the appropriate level of assumed knowledge.

Graduate Diploma Subjects

Graduate Diploma programs in all schools of the Faculty may include subjects from the graduate study lists at the end of each School section in this handbook, subject to the approval of the Head of School responsible for the subject.
School of Civil Engineering

Head of School
Professor R. Fell

First Year Management Committee
Mr V.J. Summersby (Chair)
Professor R.I. Gilbert
Assoc. Professor P.W. Kneen
Dr A. C. Heaney

Senior Administrative Officer
Mr G.J. Harris

The School consists of five departments: Geotechnical Engineering (foundation engineering, soil mechanics, rock mechanics, concrete technology, and pavement engineering); Engineering Construction and Management (civil engineering systems, engineering economy, project planning and management and civil engineering construction); Structural Engineering (structural analysis and structural design); Transport Engineering (planning, design and operation of transport systems, statistical analysis, land use and transport modelling, economic evaluations and environmental impact studies); Water Engineering (hydraulics, hydrology, water resources, waste management and public health engineering).

Within the five departments the School has a broad spectrum of expertise in the disciplines of Environmental Engineering.

The Centre for Wastewater Treatment and the Munro Centre for Civil and Environmental Engineering are also located within the School. In addition to extensive laboratory facilities on the Kensington campus, the School operates laboratories at King Street, Randwick and Manly Vale. The latter complex houses the School's Water Research Laboratory and the associated Water Reference Library. The School also uses the Fowlers Gap Arid Zone Research Station for construction camps and data collection for arid zone hydrology.

The School is also involved in the Centre for Groundwater Management and Hydrogeology which is a joint enterprise with Schools in the Faculty of Applied Science.

The School offers courses (3620) and (3625) leading to the award of degrees of Bachelor of Engineering (Civil) (BE) and Bachelor of Engineering (Environmental) (BE), at pass or honours level, which can be taken on a four-year full-time basis, on a part-time basis or on a combined full-time part-time basis subject to the approval of the Head of School. Intending part-time students are advised that most subjects are offered only in the daytime. Part-time students will normally take two years for each equivalent full-time year.

Alternatively, the courses may be taken in a sandwich form in which a student, after completing the first year of the course on a full-time basis, gains industrial experience during one or more periods of employment by taking leave of absence for one academic year.

A six-year full-time course (4775) leading to the award of the degrees of Bachelor of Engineering and Bachelor of Laws (BE LLB) is offered.

A five year full-time combined course (3146) leading to the award of the degrees of Bachelor of Engineering (Civil) and Bachelor of Engineering (Mining) is offered.

The degree of Bachelor of Engineering (Civil or Environmental) may be conferred as a Pass degree or as an Honours degree. There are two classes of Honours, Class I, and Class II in two divisions, and the award and grade of Honours are made in recognition of superior performance throughout the course with a greater weighting on subjects in the later years.

The award of the degree of Bachelor of Engineering (Civil or Environmental) is recognized by the Institution of Engineers, Australia, as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is accorded to the BE course by overseas engineering institutions.
There are formal graduate courses leading to the award of the degree of Master of Engineering Science 8612, Master of Environmental Engineering Science 8615, and also the Graduate Diploma in Engineering 5459. These courses are available in specialist areas including engineering construction and management, geotechnical engineering, public health engineering, structural engineering, transport engineering and water engineering. In addition, and within the Master of Engineering Science and Graduate Diploma course structures, courses are offered in the area of waste management. They can be taken internally on a full or part-time basis or externally. These courses are designed to provide engineers and scientists with the background necessary to design treatment, handling and disposal processes for a wide range of waste streams, solve existing waste problems, and understand pertinent waste legislation.

Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2650 and Doctor of Philosophy 1630.

Undergraduate Study

Course Outlines

3620

Civil Engineering – Full-time Course

Bachelor of Engineering

<table>
<thead>
<tr>
<th>BE (Civil)</th>
<th>HPW</th>
<th>Year 1</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHEM1808 Chemistry 1CE</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIVL1106 Computing and Graphics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIVL1203 Engineering Mechanics 1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIVL1301 Civil Engineering Practice</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL5100 Geology for Civil and Environmental Engineers</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS1989 Physics</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totaling</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>HPW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL2106 Systems Engineering</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CIVL2203 Engineering Mechanics 2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CIVL2301 Engineering Construction</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL2402 Materials Engineering 1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CIVL2505 Hydraulics 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATH2009 Engineering Mathematics 2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MATH2869 Statistics SC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SURV0441 Surveying for Engineers</td>
<td>0</td>
<td>4.5</td>
</tr>
<tr>
<td>SURV0491 Survey Camp (1 week equivalent to 3 HPW in S2)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totaling</td>
<td>24</td>
<td>26.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL3106 Engineering Computations</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL3203 Structural Analysis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3303 Structural Design</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

3625

Environmental Engineering – Full-time Course

Bachelor of Engineering

BE (Environmental)

Note: The General Education requirements Category C. for this course are still to be determined.
Undergraduate Study CIVL 31

Combined Courses

Programs for combined degree courses offered in the Faculty of Engineering are listed below. In all cases material not in italic typeface refers to the BE degree component of the combined course.

3730
BE BSc in Civil Engineering - Full-time Course

Students may seek permission to undertake a five-year full-time combined course leading to the award of the degrees of Bachelor of Engineering (Civil) and Bachelor of Science (BE BSc). The course is administered by the Faculty of Engineering.

Normally, students enrolled in the BE BSc course may be awarded their degrees at the conclusion of five years' study. However, students who commence the course and do not complete the Civil Engineering component may take out a BSc degree on completion of one of the approved programs of the Science and Mathematics Course.

Similarly, students not wishing to complete the BSc degree course may revert to the Civil Engineering program (3620) with appropriate credit for subjects satisfactorily completed.

The combined course consists of the Civil Engineering program (3620), and at least fourteen units of the Science and Mathematics Course (3970) within an approved program.

There are three approved programs but additional ones may be approved if they are relevant. Approval may be given to change the programs listed below to allow for timetabling and the student's academic interests.

Although transfer from Course 3620 to Course 3730 is normally made at the end of Year 1, first year students who are considering to apply for transfer should note the requirements for PHYS1989 Physics 1 in the second program.

The prerequisite CHEM1002 for Year 2 Chemistry subjects will be waived for students in Course 3730.

Approved Programs

Geography and Environmental Chemistry

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1032
PHYS1989

Year 2
CHEM2011, CHEM2031, CHEM2041
CIVL2203, CIVL2301, CIVL2402
GEOG1031 and any other Year 1 Geography subject
MATH2009

One 56-hr or two 28-hr General Education subject/s Cat. A
Year 3
CHEM3311
CIVL2106, CIVL2505, CIVL3106, CIVL3203, CIVL3303
GEOG3021, GEOG2032
SURV0441, SURV0491
One 56-hr or two 28-hr General Education subject/s Cat. B

Year 4
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
GEOG3011, GEOG3042, GEOG3211
At least 2 units chosen from:
GEOG2021, GEOG3032, GEOG3051, GEOG3062

Year 5
Choose 2 units from Table 1 in the Sciences Handbook at Level II or higher
CIVL4006, CIVL4101, CIVL4203, CIVL4306*
CIVL4403, CIVL4502, CIVL4605, CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
*General Education Cat. C.

Physics with Mathematics

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1032
PHYS1002
Year 2
CIVL2203, CIVL2301, CIVL2402
MATH2510, MATH2520, MATH2100, MATH2120
MATH2869
PHYS2011, PHYS2021, PHYS2031
One 56-hr or two 28-hr General Education subject/s (Cat A)

Year 3
CIVL2106, CIVL2505, CIVL3203, CIVL3303
MATH2501
PHYS2001, PHYS3021, PHYS3041
SURV0441, SURV0491
One 56-hr or two 28-hr General Education subject/s (Cat B)

Year 4
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
PHYS3030
Choose 1 unit from: PHYS3631, PHYS3110, PHYS3010, PHYS3050
Choose 2 Level II or Level III Mathematics units from Table 1 in the Sciences Handbook.

Year 5
CIVL4006, CIVL4101, CIVL4203, CIVL4306*, CIVL4403, CIVL4502, CIVL4605, CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from Table 1 in the Sciences Handbook at Level II or higher.
*General Education Cat. C.

Computing with some Mathematics

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1032
PHYS1989

Year 2
CIVL2106, CIVL2203, CIVL2301, CIVL2402
COMP1011, COMP1021
MATH2501†, MATH2510†, MATH2520†, MATH2699
One 56-hr or two 28-hr General Education subject/s Cat.A

Year 3
CIVL2505, CIVL3203, CIVL3303
COMP2011, COMP2021, COMP2031
MATH2100†, MATH2120†,
SURV0441, SURV0491
One 56-hr or two 28-hr General Education subject/s Cat.B
Choose 1 Level II or Level III Mathematics unit from the Sciences Handbook.

Year 4
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
COMP3211,
Choose three units, at least one of which is a Computer Science Unit, from COMP3211, COMP3231, COMP3311 or Level II or Level III Mathematics units from the Sciences Handbook.

Year 5
CIVL4006, CIVL4101, CIVL4203, CIVL4306*, CIVL4403, CIVL4502, CIVL4605, CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from the Sciences Handbook at Level II or higher.
*General Education Cat. C.
†Students are encouraged to select higher level Mathematics units where applicable.

3146
BE(Civil) BE(Mining) in Civil Engineering and Mining Engineering - Full-time Course

The Civil Engineering component of this course is administered by the School of Civil Engineering, the Mining Engineering component is administered by the School of Mines in the Faculty of Applied Science.

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1032
PHYS1989
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

CIVL0616
Structures
Staff Contact: Dr A. C. Heaney
S1 L1 T2
Notes: This is a servicing subject for courses offered by other schools and faculties.

CIVL0626
Civil Engineering for Electrical Engineers
Staff Contact: A/Prof P. W. Kneen
S1 L2 T2
Notes: This is a servicing subject for courses offered by other schools and faculties.

Includes an introduction to the various branches of civil engineering, the nature and organisation of the profession. Relationship between clients and design consultants. The historical development of civil engineering. Theory of beams and trusses, resultant forces, structural action, stress and strain. Relation between load, shear force and bending moments, geometric properties of sections, deflection of beams. Properties of materials used in structures; various steels, concrete plain, reinforced and
prestressed, aluminium and timber. Brittle fracture.
Introduction to buckling. Engineering failures. Introduction to
design of transmission lines and towers.

CIVL0636
Properties of Materials
Staff Contact: Prof R.I. Gilbert
F L1 T1
Notes: This is a servicing subject for courses offered by
other schools and faculties.

Mechanical behaviour of materials. Response to static
loading in tension, compression, shear and bending. Use
of static test data in analysis and design; variability of
material properties; factors of safety. Hardness tests.
Creep in solid materials. Response to dynamic loading;
fatigue; impact. Deterioration of engineering materials.
Rheological classification of materials.

CIVL0646
Engineering for Surveyors 1
Staff Contact: Dr B.S. Jenkins
S1 L1.5 T1.5
Notes: This is a servicing subject for courses offered by
other schools and faculties.

Aspects of hydraulics: Fluid properties, hydrostatics,
motion of fluids, continuity, energy and momentum aspects,
closed conduit flow and open channel flow. Aspects of
hydrology: Scope and applications. Hydrologic
measurements, rainfall analysis, storm rainfall-runoff
relations, flood estimation. Urban drainage design.

CIVL0656
Engineering for Surveyors 2
Staff Contact: A/Prof W.O. Yandell
S2 L3
Notes: This is a servicing subject for courses offered by
other schools and faculties.

Municipal engineering. Soil mechanics: Soil forming
processes; pedological classification; engineering
classification of soils; pavement design based on
engineering classification; effective stress concept for
saturated and unsaturated soils, shear strength, flow of
water through soils, consolidation; slope stability and earth
pressures. Public utilities: Relationship between urban
development and each of water supply, wastewater and
stormwater drainage, transport.

CIVL1007
Engineering Practice
Staff Contact: Prof D.L. Wilkinson
F L1 T1
Prerequisites: HSC Exam Score Range Required - 2 unit
English (General) 53-100, 2 unit English 49-100, 3 unit
English 1-50, or 2 unit contemporary English 60-100
Notes: Excluded GEN5429

Introduction to the structure, nature and scope of
environmental engineering work and the problems resolved
by practitioners. History of engineering. Branches of
engineering; organisation of the profession. Methodologies
employed by engineers in their work. Communication
methods and skills. Report preparation.

Introduction to Construction Practice. Construction of
concrete and steel structures. Construction of earthworks.
Earthworks plant. Construction of rockworks.

Management of Engineering Projects. The nature of civil
engineering projects. Management overview. Legal,
political and environmental aspects. Technical and
Construction practice. Hand-over. Operation and
management; Demolition.

CIVL1106
Computing and Graphics
Staff Contact: Dr A.C. Heaney
F L1 T2

Introduction to programming and development of skills for
solving problems and rapid calculation. Computing
elements, input-output, data and program structures.
Useful and correct algorithms. The use of Pascal and
control languages. Introduction to higher level languages
and graphics.

Australian Drawing Standards. Descriptive geometry and
orthographic projections. Perspective drawing. Introduction
to computer aided drafting. Introduction to graphics –
primitives, attributes, windows, layers, etc. Elementary
graphics programming. Tutorials include supervised and
free practice at computing, testing algorithms, data
manipulation. Drawing practice includes graphs, systems
diagrams; road, concrete and steel work; perspective
drawing; pseudo computer aided drafting and a graphics
plot.

CIVL1203
Engineering Mechanics
Staff Contact: Prof R.I. Gilbert
F L2 T2
Corequisite: MATH1032

Two-dimensional concurrent and non-concurrent force
systems. Equilibrium of particles and rigid bodies.
Distributed forces: centre of gravity and centroid. Internal
forces in structural members: shear and bending moment
diagrams. Analysis of structures: trusses, frames and
Forces in cables. Properties of cross-sections. Concepts of
stress and strain.

Dynamics of particles. Laws governing conservation of
energy and momentum. Curvilinear motion and angular
momentum. Planar motion of rigid bodies. Derivation and
solution of equations of motion for simple spring-mass
systems responding to forces of simple form. Applications
to civil engineering problems.

CIVL1301
Civil Engineering Practice
Staff Contact: Mr V.J. Summersby
S1 L2 T1 S2 L1.5 T.5
Prerequisites: HSC Exam Score Range Required - 2 unit
English (General) 53-100, 2 unit English 49-100, 3 unit
English 1-50 or 2 unit contemporary English 60-100

Introduction to the structure, nature and scope of civil
engineering work and the problems resolved by
practitioners. History of civil engineering. Branches of
engineering; organisation of the profession. Methodologies
employed by engineers in their work. Communication
methods and skills. Report preparation. An examination of
some leading Australian and world engineering projects.

Construction Practice: Construction of concrete structures.
Concrete materials. Batching of concrete materials. Mixing,

CIVL2007
Engineering Mechanics and Materials
Staff Contact: Dr F.S.K. Tin Loi
F L3 T1
Prerequisite: CIVL1203

Metals Technology: Relationship of properties to microstructure, dislocation mechanisms of plastic deformation; micro-mechanism of creep and fracture. Property control by strain hardening, alloying and heat treatment of steel and aluminium.

CIVL2017
Data Survey and Analysis
Staff Contact: Prof D.L. Wilkinson
S2 L1.5 T5
Prerequisite: MATH2669

CIVL2106
Systems Engineering
Staff Contact: Mr R.R. Wakefield
S1 L1 T1 S2 L2 T1
Prerequisites: CIVL1106, MATH1032
Corequisite: MATH2869

The solution of Civil Engineering problems involving probabilistic and statistical aspects. Problems examined include hydrological data fitting, traffic data analysis, structural reliability, limit state design, quality control, geomechanics site investigations and field data gathering and reduction. Regression. Decision processes associated with indefinite information; the modelling of the associated Civil Engineering systems.

CIVL2203
Engineering Mechanics 2
Staff Contact: Dr A.C. Heaney
F L2.5 T1.5
Prerequisite: CIVL1203

CIVL2301
Engineering Construction
Staff Contact: Mr G. Nawar
F L1.5 T5
Prerequisite: CIVL1301

CIVL2402
Materials Engineering 1
Staff Contact: Dr N. Gowriplan
F L2.5 T1.5
Prerequisites: CIVL1203, GEOL5002, CHEM1808
Corequisite: CIVL2203
Use of concrete and metals in Civil Engineering Practice: Behaviour of concrete, composition, function and

Behaviour of metals and other engineering materials. Response of materials to forces in tension, compression, bending, shear and torsion; elastic and plastic deformation strength brittleness, hardness etc. Effects of temperature and strain rates, static and dynamic loading, fatigue, brittle fracture and creep failures.

Metals Technology Relationship of properties to microstructure, dislocation mechanisms of plastic deformation; micro-mechanism of creep and fracture. Property control by strain hardening, alloying and heat treatment of steel and aluminium.

CIVL2505
Hydraulics 1
Staff Contact: Dr B.S. Jenkins
F L1 T1
Prerequisite: CIVL1203, MATH1032

Fluid properties: definition of a fluid, density, unit weight, specific volume, relative density, bulk modulus, vapour pressure, surface tension, viscosity, properties of gases. Fluid statics: pressure at a point, absolute and gauge pressure, manometers, forces on plane and curved surfaces, buoyancy, stability of floating bodies, accelerated bodies of fluid.

Kinematics of Fluid Flow: streamlines, pathlines, continuity. Fluid dynamics: the energy equation, the momentum equation, application of the concepts of flow resistance, energy loss and fluid momentum to steady flows in closed conduits and to steady uniform free-surface flows. Hydrodynamics: the stream function and velocity potentials, rotation, basic flow patterns, flow nets.

CIVL3007
Environmental Fluid Mechanics
Staff Contact: Prof D.L. Wilkinson
F L2 T1
Prerequisite: CIVL2505

CIVL3106
Engineering Computation
Staff Contact: Dr I.J. Somervaille
F L1 T1
Prerequisite: CIVL1106, MATH2009

CIVL3203
Structural Analysis
Staff Contact: Dr R.E. Lawther
F L2 T1
Prerequisite: CIVL2203

CIVL3303
Structural Design
Staff Contact: Mr S.J. Foster
F L3 T1
Prerequisite: CIVL2203

Design of steel girders; lateral and local buckling, web buckling. Steel beam-columns, slenderness effects. Plastic design of continuous steel beams.

CIVL3402
Geotechnical Engineering 1
Staff Contact: Dr V. Murt
F L2 T1
Prerequisite: CIVL2203, GEOL5100

CIVL3505
Hydraulics 2
Staff Contact: Prof D.L. Wilkinson
F L2 T1
Prerequisite: CIVL2505

dimensional analysis, similarity criteria and scale selection, scale effects.

CIVL3601
Engineering Management 1
Staff Contact: Mr R.R. Wakefield
F L1.5 T.5
Prerequisites: CIVL1301, CIVL2106

Basic techniques used in the management of engineering works; purpose and principles of management; management of people, plant, materials, money and sites; management of safety. Planning techniques used in management: networks, critical path method, and PERT. Operations research in management: methodologies for problem solving including simulation and queuing theory. Theory of the management of humans. Theory of the management of organisations. Use and management of information systems. Law and the law of contract.

CIVL3705
Water Resources
Staff Contact: Dr J.E. Ball
F L2 T1
Prerequisite: MATH2869
Corequisite: CIVL3505

CIVL3804
Transport Engineering
Staff Contact: Dr M.C. Dunne
F L1 T1
Prerequisites: CIVL2106, MATH2869

CIVL4006
Industrial Training
Staff Contact: Mr G. Nawar

Students are required to complete a minimum of 60 working days of approved industrial training, submit a report on this training before the fourth week of Session 1 of fourth year, and to present a seminar during the first session of fourth year outlining their industrial training experiences.

CIVL4007
Waste Management
Staff Contact: Head, Department of Water Engineering
S1 L2 T1
Prerequisite: INDG4120
Note: Subject not offered in 1993

Chemical fixation, acid waste treatment, metals removal, landfill site selection, leachate testing, toxicity testing, hydrogeological sampling. Transportation of hazardous materials. Legal aspects of hazardous waste.

CIVL4017
Water Engineering
Staff Contact: Head, Department of Water Engineering
S2 L4 T2
Prerequisites: CIVL3402, CIVL3007
Notes: Subject not offered in 1993

Selection of 4 topics from:

Water Resources
The evaluation of water resources planning and management alternatives (the "rational" approach). Water and politics. Water and law.

Hydrology

Numerical Modelling of Free Surface Flow
An introduction to one-dimensional and two-dimensional numerical models of unsteady gradually varied canal, river and flood plain flows.

Public Health Engineering

Advanced Hydraulics
Hydraulic modelling. Introduction to unsteady flow in open channels.

Coastal Engineering

CIVL4027
Geotechnical and Transport Engineering
Staff Contact: Head, Department of Geotechnical Engineering
S2 L3 T3
Prerequisites: CIVL3402, CIVL3804
Notes: Subject not offered in 1993

Four topics selected from:

CIVL4037
Communications and Ethics
Staff Contact: School Office
S2 L.5 T.5
Notes: Subject not offered in 1993
Written and verbal communication skills in engineering practice. Preparation of proposals and reports. Relations to the media. Engineering ethics.

CIVL4101
Engineering Management 2
Staff Contact: Mr J.B. O’Brien
S1 L1.5 T.5
Prerequisite: CIVL3601
Contract management and administration. Business and financial management; corporate entities; basic accounting to trial balance; income statements; balance sheets; accounting for fixed assets; taxation aspects; financial report. Management of large projects; management of international projects.

CIVL4203
Structural Engineering
Staff Contact: Prof R.I. Gilbert
S1 L3 T1
Prerequisites: CIVL3203, CIVL3303
Slab design: two-way edge-supported slabs and flat slab design; idealised frame and simplified design methods, punching shear, moment transfer at column connections, serviceability approach, detailing. Design of reinforced concrete footings and retaining walls. Plastic analysis and design of steel frames. Approximate analysis and structural form. Variational theorems. Brief discussions of cable structures, arches, plates and shells.

CIVL4306
Engineering and the Environment
Staff Contact: Prof D.L. Wilkinson
S1 L2 T2
Prerequisite: CIVL3601

CIVL4403
Materials Engineering 2
Staff Contact: Dr A.C. Heaney
S1 L3
Prerequisites: CIVL2402, CIVL3303
Metals used in structures: types, applications and developments in steels, aluminium alloys etc. Corrosion: causes, prevention and control in structural, reinforcing and piling steels. Fatigue and brittle fracture: factors leading to increased risk, significance of welding; empirical and fracture mechanics approaches to design against failures in service.

CIVL4502
Geotechnical Engineering 2
Staff Contact: A/Prof B. Shackel
S1 L2 T1
Prerequisite: CIVL3402
Theoretical and presumptive bearing capacity of shallow foundations. Allowable settlement and foundations on sand and rock. Lateral earth pressures and retaining wall design. Single axially and laterally loaded piles, pile groups. Reactive soils, residential slabs and footings.

CIVL4605
Water Supply and Wastewater Disposal
Staff Contact: Ms P.A. Fitzgerald
S1 L2 T1
Prerequisite: CIVL2505

CIVL4704
Highway and Pavement Engineering
Staff Contact: A/Prof B. Shackel
S1 L2 T1
Prerequisites: CIVL3402, CIVL3804

CIVL4811
Construction Major
Staff Contact: Mr J.B. O’Brien
S2 HPW9
Prerequisites: CIVL2301, CIVL4101, CIVL4306
Professional level construction and project management skills and techniques: advanced construction technology topics and topics in the planning, design, organization, coordination, staffing, administration, control and management of construction and allied projects. State-of-the-art work associated with selected advanced topics in construction and project management.

CIVL4822
Geotechnical Major
Staff Contact: Mr G.R. Mostyn
S2 HPW9
Prerequisites: CIVL4306, CIVL4502, CIVL4704
Advanced pavement engineering including concrete technology. Rock engineering, slopes and tunnels. Foundation engineering. Soil engineering including site characterization, critical state theory and liquefaction. A two and a half day field trip is included as part of the subject.

CIVL4833
Structures Major
Staff Contact: Professor R. I. Gilbert
S2 HPW9
Prerequisites: CIVL4203, CIVL4403
Specialisation in each of the following strands of structural engineering: Bridge engineering. Concrete structures. Structural analysis and stability. Structural dynamics.

CIVL4844
Transport Major
Staff Contact: Prof J.A. Black
S2 HPW9
Prerequisite: CIVL4306
Application of computer aided methods for geometric design of roads. Design for traffic management and control: efficiency, safety, environmental factors, information systems, lighting. Environmental and social impact of transport design. Transport system design and operations.

CIVL4855
Water Major
Staff Contact: Dr J.E. Ball
S2 HPW9
Prerequisites: CIVL3505, CIVL3705, CIVL4605
Specialisation in six of the following strands (only six topics are offered each year): Water resources. Hydrology. Advanced hydraulics. Coastal engineering. Public health engineering. Environmental and social issues. Special topic.

CIVL4906
Project/Thesis
Staff Contact: A/Prof W.O. Yandell
S1 S2 S6
Prerequisites: All third year subjects
Corequisite: The appropriate major
Directed laboratory, investigatory, design, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.

CIVL4907
Project/Thesis
S1 S2 S6
Prerequisites: All third year subjects
Corequisite: The appropriate major
Notes: Subject not offered in 1993
Directed laboratory, investigatory, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.
Graduate Study

There are formal graduate courses leading to the award of the degree of Master of Engineering Science 8612, Master of Environmental Engineering Science 8615, and also the Graduate Diploma in Engineering 5459. These course are available in specialist areas including engineering construction and management, geotechnical engineering, public health engineering, structural engineering, transport engineering and water engineering. In addition, and within the Master of Engineering Science and Graduate Diploma course structures, courses are offered in the area of waste management. They can be taken internally on a full or part-time basis or externally. These courses are designed to provide engineers and scientists with the background necessary to design treatment, handling and disposal processes for a wide range of waste streams, solve existing waste problems, and understand pertinent waste legislation.

Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2650 and Doctor of Philosophy 1630.

Course Work Programs

The School of Civil Engineering offers a large number of graduate subjects which allow the flexibility of many combinations to provide relevant groupings both in an academic and professional sense. The main technical groupings are:

• engineering construction and management
• geotechnical engineering
• structural engineering
• transport engineering
• water engineering

All candidates are required to undertake a project with the other credits being obtained from formal course work. Full details of preferred programs in the various specialist areas are available from the School. All subjects for the the Masters degrees are also offered in the Graduate Diploma programs.

8612
Civil Engineering

Master of Engineering Science
MEngSc

Waste Management
8612 Internal
8614 External

8085
Waste Management

Master of Applied Science
MAppSc

Candidates are required to complete a course totalling at least 30 credits, made up of compulsory subjects, elective subjects and a project. The degree may be obtained internally on a full time (normally 2 sessions) or part time (normally 4 sessions) basis. An external course program is also offered (normally over 4 sessions) to students outside Sydney with resource material posted to students and evaluation made on written assignments and examinations. Candidates are enrolled as MEngSc or MAppSc degree students depending on their previous qualifications, experience and course content.

Internal Program

Compulsory Subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9872</td>
<td>Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9881</td>
<td>Hazardous Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9884</td>
<td>Environmental Engineering Science 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9886</td>
<td>Environmental Engineering Science 3</td>
<td>3</td>
</tr>
<tr>
<td>FUEL5880</td>
<td>Unit Operations in Wastewater Sludge and Solids Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Project (MEngSc)
CIVL9909

Project (MAppSc)
GEOL9504

Elective Subjects

(2 of the following for MEngSc, 3 for GradDip)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC5630</td>
<td>Industrial Water and Wastewater Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9857</td>
<td>Sewage Treatment and Disposal</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9870</td>
<td>Hydraulics and Design of Water and Wastewater Treatment Plants</td>
<td>3</td>
</tr>
<tr>
<td>CIVL9887</td>
<td>Advanced Topics in Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>FUEL5920</td>
<td>Atmospheric Pollution Control</td>
<td>3</td>
</tr>
<tr>
<td>GEOG3042</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9011</td>
<td>Hydrology G</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9020</td>
<td>Geopollution Management</td>
<td>3</td>
</tr>
<tr>
<td>GEOL9060</td>
<td>Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>MINE1524</td>
<td>Mining Conservation</td>
<td>3</td>
</tr>
<tr>
<td>MINE5355</td>
<td>Mine Fill Technology</td>
<td>3</td>
</tr>
</tbody>
</table>
SAFE9242 Human Behaviour and Safety Science 3
SAFE9543 Management of Dangerous Materials* 3

External Program
CIVL8855 Water and Wastewater Analysis and Quality Requirements 3
CIVL8857 Sewage Treatment and Disposal 3
CIVL8872 Solid Waste Management 3
CIVL8881 Hazardous Waste Management 3
CIVL8884 Environmental Engineering Science 1 3
FUEL5881 Unit Operations in Wastewater, Sludge and Solids Management 3
GEOL9320 Geopollution Management 3

Project
CIVL8909 9

Project
CIVL8803 9

Notes: MEngSc students undertake a 9 credit project to make 30 credits and GradDip students complete a 3 credit project to make 24 credits.

Civil subjects starting with 8 are the external equivalents of the internal subjects starting with a 9.

* Subject to approval of course coordinator.

8615
Master of Environmental Engineering Science

MEnvEngSc
Candidates are required to complete a program totalling 30 credits. The program is made up of compulsory subjects, selective subjects and a 9 credit project.

Compulsory Subjects
C
CIVL9884 Environmental Engineering Science 1 3
CIVL9885 Environmental Engineering Science 2 3
CIVL9888 Environmental Management 3
CIVL9889 Environmental Law and Economics 3
CIVL9909 Project 9

Elective Subject Groupings

Waste Management (Liquids)
CEIC5630 Industrial Water and Wastewater Engineering 3
CIVL9851 Unit Operations in Public Health Engineering 3
CIVL9857 Sewage Treatment 3
CIVL9858 Water Quality Management 3

Waste Management (Solids)
CIVL9872 Solid Waste Management 3
CIVL9881 Hazardous Waste Treatment 3
CIVL9887 Advanced Topics in Waste Management 3
SAFE9543 Management of Dangerous Materials 3

Elective Subject Groupings

Water Engineering
CIVL9835 Coastal Engineering 1 3
CIVL9836 Coastal Engineering 2 3
CIVL9858 Water Quality Management 3
CIVL9875 Hydrological Processes 3
CIVL9876 Applied Hydrological Modelling 3
CIVL9880 Groundwater Modelling 3

Geotechnical Engineering
CIVL9788 Site Investigation 3
GEOL9030 Geological Engineering 3
GEOL9060 Environmental Geology 3
GEOL9080 Groundwater Geophysics 3
GEOL9320 Geopollution Management 3

Transport Engineering
CIVL9407 Transport Systems Design (Non-Urban) 3
CIVL9408 Transport Systems Design (Urban) Management 3
CIVL9420 Transport and the Environment 3

Management
CIVL9702 Project Planning and Control 3
CIVL9704 Quantitative Engineering Management 3
CIVL9705 Engineering Management Practice 3
CIVL9706 Management of People 3
CIVL9710 Engineering Risk Management 3
CIVL9731 Project Management 3

Land and River Management
GEOG9310 River Management
GEOG9320 Soil Degradation and Conservation
GEOG9300 Vegetation Management

Subjects offered within the MEngSc degree program are also available to students enrolled for a MEnvEngSc degree, subject to the approval of the course coordinator.

5459
Graduate Diploma in Civil Engineering
Details of the recommended programs of study may be obtained from the Head of School. All subjects offered in the Masters programs can also be taken in the Graduate Diploma programs subject to the approval of the course coordinator.

5459
Waste Management
5459 Internal
5498 External
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

External subjects

CIVL8803
Project (GradDip)
C3
A critical review of literature on a selected topic or a minor design project.

CIVL8855
Water and Wastewater Analysis and Quality Requirements
Staff Contact: Ms P.A. Fitzgerald
C3 S1
The effects of impurities in water and wastewater on its suitability for various beneficial uses, and methods used for detecting impurities. Analytical methods used in water and wastewater treatment for monitoring and process control.

CIVL8857
Sewage Treatment and Disposal
Staff Contact: Mr P.J. Bliss
C3 S2
Application of processes and process variations used to improve the quality of sewage effluent, and the disposal of the effluent. Re-use of effluents where applicable. Sludge treatment and disposal.

CIVL8872
Solid Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Characterisation of municipal solid waste; collection; transfer stations; waste minimisation and recycling; waste treatment, including size reduction, composting, incineration, emerging technologies; landfill disposal, including preparation of landfill management plans and operational aspects; introduction to planning of waste management systems.

CIVL8881
Hazardous Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Waste audits and characterisation of hazardous wastes in regions and industries; control of generation and transport of hazardous waste, manifest systems; waste minimisation; on-site treatment methods; integrated off-site treatment facilities; management of residues from treatment facilities; introduction to planning of regional hazardous waste management systems. Characteristics of individual waste types (dioxins, PCBs, pesticides, heavy metal, etc.) and waste management in individual industries (steel, pulp and paper, petro-chemical, food processing, etc.) covered by assignments.

CIVL8884
Environmental Engineering Science 1
Staff Contact: Ms P.A. Fitzgerald
C3 S1
Water chemistry: Basic concepts in aqueous chemistry; pH buffering, alkalinity, chemical equilibrium, kinetics of chemical reactions, neutralisation and precipitation, Henry's Law.
Introduction to Microbiology: Structure and metabolism of cells and micro-organisms; monitoring methods for pathogens and indicator organisms; impact of water and wastewater treatment on disease transmission.

CIVL8909
Project (external)
C9
A minor research investigation involving analysis and interpretation of data, or a critical review and interpretation of literature on a selected topic, or a design project.

Department of Transport Engineering

CIVL9402
Transport, Environment, Community
Staff Contact: Prof J.A. Black
C3 F
Notes: Not offered in 1993.

CIVL9403
Theory of Land Use Transport Interaction
Staff Contact: Prof J.A. Black
C3 S3
Theoretical aspects of land use transport planning. Basic concepts, data collection methods, systems models and equation of state function (behavioural, optimizing). Introduction to land use-transport modelling (land use, generation, distribution, modal assignment, network assignment, evaluation). Planning methodologies (short-, medium-, long-term; action planning, strategic planning; local, urban, regional, national).

CIVL9405
Urban Transport Planning Practice
Staff Contact: Prof J.A. Black
SS C3
Notes: Not offered in 1993.
Analytical techniques for urban land use/transport planning practice. Planning methodology: traffic generation, trip distribution, modal-choice, traffic assignment, evaluation. Land use forecasting: calibration and verification of
behavioural models, application of mathematical programming models, case studies, public transport problems.

CIVL9407
Transport Systems Design (Non-Urban)
Staff Contact: Mr T. ten Brummelaar
C3 S1
Process of location of road, railway and airport facilities. Data collection, alternative routes, public discussion, methods, techniques, aids, plans and diagrams produced. Geometric form; differences between road, railway and airport carriageway layout. Optical guidance, design models, landscape, provision for surface-water, signposting, fencing and posts.

CIVL9408
Transport Systems Design (Urban)
Staff Contact: Mr T. ten Brummelaar
C3 S2
Types of urban transport facilities. Distributors, streets, bicycle routes, walk-oriented areas, bus lanes and rapid transit lanes, stops and change terminals, noise control. Minimum geometric form; speed range controls, provision for surface water on urban roads, landscape. Design of intersection and parking areas.

CIVL9410
Highway Engineering Practice
Staff Contact: Assoc. Prof. B. Shackel
C3 S1
Notes: Not offered in 1993.

CIVL9412
Economics for Transportation Studies
Staff Contact: Prof J.A. Black
C3 SS
Notes: Not offered in 1993.

CIVL9414
Transport Systems Part 1
Staff Contact: Dr U. Vandebona
C3 S1

CIVL9415
Transport Systems Part 2
Staff Contact: Dr U. Vandebona
C3 S2
Historical introduction to transport systems and development of various transport modes, road (vehicles, pedestrians, cycles), conveyer, rail, sea and air. Analysis of the operational characteristics of vehicles in the transport modes of road, rail and air. Analysis of the requirements of the rights of way for each transport mode. Development of optimum criteria for the distribution of cargo and passenger traffic. Terminals and mode transfer facilities. Development of system operational models. Energy consideration, new systems.

CIVL9416
Traffic Engineering
Staff Contact: Dr M.C. Dunne
C6 F

CIVL9417
Transport and Traffic Flow Theory
Staff Contact: Prof J.A. Black
C6 F
Notes: Not offered in 1993.
Analysis of deterministic and stochastic models of the traffic stream. Topics covered include the following. Definition and measurement of traffic stream parameters. Space and time distribution of speed. Overtaking models and the moving-observer method. Fundamental diagram of traffic. Car-following theory. Headway and counting distributions. Introduction to queueing theory. Simulation techniques. Signalized and unsignalized intersections.

CIVL9418
Statistics for Transport Studies Part 1
Staff Contact: Prof J.A. Black
C3 SS
Notes: Not offered in 1993.

CIVL9419
Statistics for Transport Studies Part 2
Staff Contact: Prof J.A. Black
C3 SS
Notes: Not offered in 1993.
Prerequisite: Assumed knowledge CIVL9418
Linear models. Analysis of variance and co-variance. Simple and multiple regression. Design of experiments,
interpretation of results. Sample survey design and analysis.

CIVL9420
Special Topic In Transport Engineering
Staff Contact: Prof J.A. Black
C3 S2
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

Department of Engineering Construction and Management

CIVL9701
Economic Decision Making In Engineering
Staff Contact: Prof D.G. Carmichael
C3 SS
Review of practical engineering decision-making problems and relevant techniques. Engineering economics, benefit/cost analysis, consideration of inflation and taxation in investment decisions, bidding, decision theory, microeconomic theory, objectives and multiple objective planning.

CIVL9702
Project Planning and Control
Staff Contact: Prof D.G. Carmichael
C3 S1
The critical path method, PERT, arrow diagrams, precedence diagrams, resource levelling, resource constrained scheduling, network compression, overlapping relationships, applied cpm, cost control, cash flow, project control, legal considerations, simulation in networks, stochastic networks, project management, applications.

CIVL9704
Quantitative Engineering Management
Staff Contact: Mr R.R. Wakefield
C3 S2
Notes: Not offered in 1993.
Models and techniques to assist the manager in making decisions; modelling and regression, forecasting; job planning, layout planning, capacity planning; work measurement; optimization (linear programming, non-linear programming, dynamic programming), inventory models, transportation, assignment and allocation, heuristic techniques, multiple and single objectives, applications.
Techniques dealing with uncertainty and variability in management situations, including a review of probability theory, reliability, availability, quality control, decision analysis, queuing, simulation, applications.

CIVL9705
Engineering Management Practice
Staff Contact: Prof D.G. Carmichael
C3 SS
Notes: Not offered in 1993.
Management theory and processes, the structure and function of organizations; decision making, gaming behaviours in management, interpersonal skills, conflict management, management of group action, management information, marketing, negotiating, quality.

CIVL9706
Management of People
Staff Contact: Prof D.G. Carmichael
C3 SS
The development of skills for the management of people and their workplaces; industrial relations, health and safety issues; the recognition of people as the basic unit of engineering productivity and engineering organizations.

CIVL9710
Engineering Risk Management
Staff Contact: Mr G. Nawar
C3 S2
Introduction to the concept of risk and decision making under conditions of uncertainty; project objectives and planning, risk identification in engineering processes; human error, natural hazards and unforeseen risks; risk evaluation and quantification methods; relevant statistical techniques; risk avoidance and minimization; financial risk, portfolio theory, risk sharing and financing; ambient and acceptable risk levels; insurances.

CIVL9714
Special Topic In Engineering Management
Staff Contact: Prof D.G. Carmichael
C3 SS
Notes: Not offered in 1993.
A series of lectures from industry experts or visiting specialists in current and advanced engineering management.

CIVL9723
Construction Design
Staff Contact: Prof D.G. Carmichael
C3 SS
Notes: Not offered in 1993.
Design theory as applied to construction processes; application to selected areas of the construction industry such as temporary works design, formwork and falsework, dewatering systems, ground support systems and mixed construction activities such as tunnelling and high rise building construction.

CIVL9724
Construction Engineering and Technology
Staff Contact: Mr J.B. O'Brien
C3 S2
Notes: Not offered in 1993.
Construction engineering theory, construction processes; methods engineering, automation and mechanization concepts; modelling, design and analysis; problem solving; task analysis; adaptive systems and control concepts; experimental studies of construction processes. Construction technologies; construction robotics, applications of expert and knowledge based systems. Studies to be selected from: drilling, blasting techniques, tunnelling, rock-bolting and other ground support, earth/rock transport, harbours, railways, dams, bridges, structural steelwork techniques, pipeline construction, foundation grouting compressed air work.
CIVL9725
Engineering Financial Management
Staff Contact: Mr V.J. Summersby
C3 S1

CIVL9726
Legal Studies and Professional Practice
Staff Contact: Prof D.G. Carmichael
C3 S1
Nature and sources of law, court procedures, interpretation of documents, evidence, technical opinions, expert witness; contract law, contract administration; company law; arbitration; duties of an engineer; professional liability.

CIVL9727
Construction Planning and Estimating
Staff Contact: Prof D.G. Carmichael
C3 S2
Project initiation and development, feasibility studies, planning and estimating procedures, contract administration; estimating cost of labour plant and materials, indirect cost and overheads, profit; construction administration. Preparation of cost estimate for a major civil engineering project.

CIVL9728
Special Topic in Construction
Staff Contact: Prof D.G. Carmichael
C3 SS
A construction topic presented in depth by industry experts or visiting specialists.

CIVL9731
Project Management
Staff Contact: Mr J.B. O'Brien
C3 SS
A problem-oriented approach to project management; the nature of engineering and construction projects; the project team, organizational and behavioural aspects, team motivation; behavioural aspects of project management; the organization and management of project resources; short term field planning and management strategies; project success evaluation techniques; project management decision processes; fast track projects; work delegation across organizational boundaries, contract design, development and administration; management information and decision support systems; management control systems and large project cost and schedule control; case studies in project management.

CIVL9732
Masonry Construction, Design and Materials
Staff Contact: Mr G. Nawar
C3 SS
Properties of masonry units, mortar, grout and accessories; advantages and limitations of masonry in construction; construction planning, methods and productivity; general design principles, details and performance limit states; structural design of masonry subject to axial, in-plane and out-of-plane lateral loads; reinforced and prestressed masonry; design for fire resistance; workmanship and site control; cleaning, maintenance and repair.

Department of Geotechnical Engineering

CIVL9753
Soil Engineering
Staff Contact: Mr G.R. Mostyn
C3 SS
Notes: Not offered in 1993.

CIVL9776
Rock Mechanics
Staff Contact: A/Prof S. Valliappan
C3 SS
Notes: Not offered in 1993.

CIVL9777
Numerical Methods in Geomechanics
Staff Contact: A/Prof S. Valliappan
C3 S1
Notes: Not offered in 1993.
Fundamentals of finite element and boundary element methods; application to practical geotechnical design and case studies; deformation and flow problems; linear and non-linear analysis; application to underground opening, stability of slopes, foundations, mining excavation; seepage and consolidation soil-structure interaction problems; earth pressures, retaining walls and buried pipes, thermal stress analysis.

CIVL9781
Advanced Concrete Technology
Staff Contact: Dr N. Gowriplan
C3 SS
Notes: Not offered in 1993.
CIVL9783
Pavement Materials
Staff Contact: A/Prof W.O. Yandell
C3 S1

CIVL9784
Pavement Design
Staff Contact: A/Prof B. Shackel
C3 S2

CIVL9785
Pavement Evaluation and Maintenance
Staff Contact: A/Prof W.O. Yandell
C3 S2

CIVL9786
Industrial and Heavy Duty Pavements
Staff Contact: A/Prof B. Shackel
C3 S2
Notes: Not offered in 1993.

CIVL9788
Site Investigations
Staff Contact: Mr G.R. Mostyn
C3 S1
Engineering geology mapping and terrain classification. Drilling, trenching and sampling of rock and soil. In-situ testing of soil and rock. Laboratory testing of soil and rock. Assessment of design parameters. Instrumentation to measure pore pressure, stress, displacement.

CIVL9790
Stability of Slopes
Staff Contact: Prof R. Fell
C3 S1
Stability of natural and constructed slopes in civil and mining engineering. Stability analysis; stabilization methods and design; monitoring. Design of slopes in soft ground, soil and rock, and in partially saturated slopes; design of open cut mines. Probabilistic methods.

CIVL9791
Foundation Engineering 1
Staff Contact: Mr G.R. Mostyn
C3 S1
Stress distribution beneath foundations, settlement analysis, design of shallow footings, design of pile foundations, cast in situ piles, foundation on shrink-swell soils, lateral earth pressures, foundations on rock, site investigations.

CIVL9792
Foundation Engineering 2
Staff Contact: A/Prof S. Valliappan
C3 S2
Advanced consolidation theory, non-linear behaviour, soil structure interaction, design of rafts and piled rafts, analysis and construction of piled foundations, steel piles, braced cuts, temporary support of excavations, design of foundations for dynamic loading, machine foundations.

CIVL9793
Geomechanics
Staff Contact: Dr V. Murti
C3 SS
The fundamentals of the effective stress concept, clay mineralogy, seepage analysis and Laplace equation, method of fragments, fundamentals of liquefaction and cyclic mobility, basic and advanced consolidation theory including Terzaghi's ID theory, nonlinearity and Biot's theorem, critical state soil mechanics theory, hyperbolic model, fundamentals of continuum stress analysis, theory of elasticity, constitutive relationships and failure criteria for real soils and rocks and soil plasticity.
Department of Structural Engineering

CIVL9802
Elastic Stability 1
Staff Contact: Dr R.E. Lawther
C3 SS
Notes: Not offered in 1993.
Euler strut; uniform and non-uniform cross sections.
Eccentric loading; stressing beyond the elastic limit. Struts continuous over several supports. Stability of frames.

CIVL9803
Elastic Stability 2
Staff Contact: Dr R.E. Lawther
C3 S2
Notes: Not offered in 1993.
Energy methods of formation of stability problems. Approximate methods. Thin-walled open section struts; lateral buckling of beams; bending and buckling of thin plates.

CIVL9804
Vibration of Structures 1
Staff Contact: Prof R.I. Gilbert
C3 SS
Review of basic aspects. Analysis of lumped mass systems with various degrees of freedom. Vibration in beams and other continuous structures.

CIVL9805
Vibration of Structures 2
Staff Contact: Prof R.I. Gilbert
C3 SS
Notes: Not offered in 1993.

CIVL9806
Prestressed Concrete 1
Staff Contact: Prof R.I. Gilbert
C3 S1
Notes: Not offered in 1993.
Historical development. Methods of prestressing. Elastic analysis and design. Flexural capacity and shear capacity of prestressed elements.

CIVL9807
Prestressed Concrete 2
Staff Contact: Prof R.I. Gilbert
C3 S2
Notes: Not offered in 1993.

CIVL9809
Reinforced Concrete 1
Staff Contact: Mr S.J. Foster
C3 S1
Notes: Not offered in 1993.
Historical development. Methods of analysis and design, including limit state concepts. Analysis and design for bending, compression and combined bending and compression. Slenderness effects in columns. Shear and torsion. Serviceability requirements.

CIVL9810
Reinforced Concrete 2
Staff Contact: Prof R.I. Gilbert
C3 S2
Notes: Not offered in 1993.

CIVL9814
Analysis of Plates and Shells
Staff Contact: A/Prof V.A. Pulmano
C3 SS
Notes: Not offered in 1993.

CIVL9817
Experimental Structural Analysis
Staff Contact: Prof R.I. Gilbert
C3 SS
Notes: Not offered in 1993.
Dimensional analysis and principles of similitude, model analysis and design of models. Instrumentation and special methods of measurement. Evaluation of data.

CIVL9818
Bridge Design 1
Staff Contact: Dr F.S.K. Tin Loi
C3 S1
Notes: Not offered in 1993.

CIVL9819
Bridge Design 2
Staff Contact: Dr F.S.K. Tin Loi
C3 SS
Notes: Not offered in 1993.

CIVL9820
Structural Analysis and Finite Elements 1
Staff Contact: Dr I.J. Somervaille
C3 S1
Notes: Not offered in 1993.
Stiffness analysis of structures. Basis of finite elements: principle of virtual work, variational theorems, constraint
equations. Effects of inplane rigid floors and axially rigid members on the behaviour of multi-storey frames.

CIVL9821
Structural Analysis and Finite Elements 2
Staff Contact: A/Prof P.W. Kneen
C3 S2
Notes: Not offered in 1993.

CIVL9822
Steel Structures 1
Staff Contact: A/Prof M.A. Bradford
C3 S1
Notes: Not offered in 1993.
Introduction to limit states design, methods of analysis of steel structures, columns, tension members, bending of beams, lateral buckling of beams, design by buckling analysis, beam-columns, elastic design of frames.

CIVL9823
Steel Structures 2
Staff Contact: A/Prof M.A. Bradford
C3 S1
Notes: Not offered in 1993.
Effective lengths of columns in braced and sway frames, uniform torsion of steel structures, warping torsion of steel structures, design rules for torsion, design of bolted plates and connections, design of welded plates and connections, design process for industrial frames.

Department of Water Engineering

CIVL9830
Hydromechanics
Staff Contact: Head of Department
C3 SS
Notes: Not offered in 1993.
General equation of fluid motion, potential flow, conformal mapping, laminar flow, Navier-Stokes equations; turbulence, shear flows, jets and wakes, boundary layers, turbulent mixing, diffusion, air entrainment, cavitation, stratification.

CIVL9831
Closed Conduit Flow
Staff Contact: A/Prof C.R. Dudgeon
C3 SS
Notes: Not offered in 1993.
Theories for energy loss in conduit flows, roughness at pipe walls and tunnels, design applications. Cavitation in conduits, transport of waterborne mixtures in pipes, accuracy of flow measurement in pipe lines.

CIVL9832
Pipe Network and Transients
Staff Contact: Dr B.S. Jenkins
C3 SS
Notes: Not offered in 1993.

CIVL9833
Free Surface Flow
Staff Contact: A/Prof C.R. Dudgeon
C3 S1
Notes: Not offered in 1993.
Theory of waterflow in open channels. Application of theory to design of hydraulic structures, spillways, control gates, energy dissipators, channel transitions. Use of hydraulic models.

CIVL9835
Coastal Engineering 1
Staff Contact: Prof D.L. Wilkinson
C3 SS
Notes: Not offered in 1993.
Theory of periodic waves as applied to tides and wind generated waves in water of varying depths. Wave and tide prediction.

CIVL9836
Coastal Engineering 2
Staff Contact: Prof D.L. Wilkinson
C3 SS
Notes: Not offered in 1993.
Wave forces on structures, shore processes and beach erosion. Estuarine hydraulics, wave and tide models.

CIVL9847
Water Resources Policy
Staff Contact: Dr J.E. Ball
C3 SS
Notes: Not offered in 1993.
Resource economics, water supply, water demand, multiple objective planning, multiple purpose projects, water law, water administration, case studies.

CIVL9848
Water Resource System Design
Staff Contact: Head of Department
C3 SS
Notes: Not offered in 1993.
Principles of the optimal design and operation of multiple purpose, multiple component, water resource system; evaluation of cost and benefits in complex and simple systems.

CIVL9849
Irrigation
Staff Contact: Head of Department
C3 S1
Notes: Not offered in 1993.
Soils, soil-water relationships, plants, climate, crop requirements; water budgets, sources, quality,
measurement; irrigation efficiency. Design of irrigation systems, appurtenant works, distribution.

CIVL9851
Unit Operations in Public Health Engineering
Staff Contact: Mr P.J. Bliss
C3 S1
Notes: Not offered in 1993.
Theory of physical, chemical, biological, and hydraulic processes used in both water and wastewater treatment. Applications where these are common to both water and wastewater treatment.

CIVL9852
Water Distribution and Sewage Collection
Staff Contact: Mr P.J. Bliss
C3 SS
Notes: Not offered in 1993.
Water collection, transmission and distribution systems – layout design and analysis, reservoirs, pumping. Sewage collection design and analysis – capacities, corrosion, pumping.

CIVL9855
Water and Wastewater Analysis and Quality Requirements
Staff Contact: Ms P.A. Fitzgerald
C3 S1
Notes: Not offered in 1993.
The effects of impurities in water and wastewater on its suitability for various beneficial uses, and methods used for detecting impurities. Analytical methods used in water and wastewater treatment for monitoring and process control.

CIVL9856
Water Treatment
Staff Contact: Ms P.A. Fitzgerald
C3 S2
Notes: Students specialising in Public Health Engineering normally study BIOT7100 Biological Principles and BIOT7030 Biotechnology in the School of Biotechnology. Not offered in 1993.
Application of processes and process variations used to upgrade the quality of water for specified uses, with particular reference to the treatment of water for municipal use.

CIVL9857
Sewage Treatment and Disposal
Staff Contact: Mr P.J. Bliss
C3 S2
Notes: Students specialising in Public Health Engineering normally study BIOT7100 Biological Principles and BIOT7030 Biotechnology in the School of Biotechnology. Not offered in 1993.
Application of processes and process variations used to improve the quality of sewage effluent, and the disposal of the effluent. Re-use of effluents where applicable. Sludge treatment and disposal.

CIVL9858
Water Quality Management
Staff Contact: Mr S.J. Moore
C3 SS
Notes: Not offered in 1993.
Fundamental concepts; systems approach to quality aspects of water resource systems; quality interchange systems; quality changes in estuarine, surface, and ground water. Quality management by engineered systems. Economic criteria relating to water use and re-use systems.

CIVL9860
Investigation of Groundwater Resources 1
Staff Contact: Dr R.I. Acworth
C3 SS
Notes: Not offered in 1993.
Occurrence and extraction of groundwater, investigation and drilling methods, systems approach, optimization techniques, conjunctive use studies, quality of groundwater.

CIVL9861
Investigation of Groundwater Resources 2
Staff Contact: Dr R.I. Acworth
C3 SS
Notes: Not offered in 1993.
Geophysical methods, remote sensing, photo-interpretation, arid-environment studies, analogue models, case studies.

CIVL9862
Fluvial Hydraulics
Staff Contact: Dr B.S. Jenkins
C3 S2
Notes: Not offered in 1993.
Unsteady and varied flow in non-uniform channels, secondary currents, sediment transport, channel morphology, scour and shoaling, river control works, modelling of fluvial processes.

CIVL9863
Estuarine Hydraulics
Staff Contact: Prof D.L. Wilkinson
C3 S2
Notes: Not offered in 1993.

CIVL9868
Public Health Science
Staff Contact: Ms P.A. Fitzgerald
C3 S1
Notes: Not offered in 1993.
Impact of water and wastewater treatment on disease transmission. Monitoring methods used for pathogens and indicator organisms, structure and degradation of large molecules, biochemical pathways of anabolism and catabolism and the characterization of micro-organisms.
CIVL9870
Hydraulics and Design of Water and Wastewater Treatment Plants
Staff Contact: Mr P.J. Bliss
C3 S2
Corequisites: CIVL9856, CIVL9857 or equivalent
Notes: Not offered in 1993.
Application of hydraulic principles to flows within treatment plants. Selection and integration of unit processes required for water and wastewater treatment, plant layout, plant design including hydraulic profiles, the influence of flow and load variability, instrumentation and control strategies.

CIVL9871
Water Supply and Sanitation In Developing Countries
Staff Contact: Head of Department
C3 SS
Prerequisite: CIVL9851, CIVL9855, CIVL9868 or equivalent
Notes: Not offered in 1993.
Selection of appropriate technology for water supply and wastewater treatment and disposal to account for hot climates and low per capita incomes. Design basis for systems and the operating requirements.

CIVL9872
Solid Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Notes: Not offered in 1993.
Characterisation of municipal solid waste; collection; transfer stations; waste minimisation and recycling; waste treatment, including size reduction, composting, incineration, emerging technologies; landfill disposal, including preparation of landfill management plans and operational aspects; introduction to planning of waste management systems.

CIVL9875
Hydrological Processes
Staff Contact: A/Prof I. Cordery
C3 S1
Notes: Not offered in 1993.
Hydrological cycle, water and energy balances and circulation, precipitation process, interception, infiltration, storm runoff process, evaporation and transpiration, surface groundwater interactions, land use effects.

CIVL9876
Applied Hydrological Modelling
Staff Contact: A/Prof I. Cordery
C3 S1
Notes: Not offered in 1993.
Introduction to hydrological models, deterministic catchment models, model calibration and verification, stochastic models, storage yield analysis for reservoir design, extension of records, stochastic reservoir analysis or identification of groundwater systems, conjunctive use systems.

CIVL9877
Flood Design 1
Staff Contact: Head of Department
C3 S1
Notes: Not offered in 1993.
Introduction to flood estimation, frequency analysis of hydrological data, design rainfall data, hydrograph analysis, storm rainfall-runoff relations, design flood estimation for small to medium sized catchments including the rational method, introduction to urban drainage design.

CIVL9878
Flood Design 2
Staff Contact: Head of Department
C3 S2
Notes: Not offered in 1993.
Introductory flood routing, loss rates, linear and nonlinear response, unit hydrographs, runoff routing, choice of method of flood estimation, urban drainage design.

CIVL9880
Groundwater Modelling
Staff Contact: Dr R.I. Acworth
C3 S1
Notes: Not offered in 1993.
Groundwater modelling of porous media, fractured rock and low permeability materials. Analytical, numerical analytical models. Matrix structure and inverse methods, stochastic modelling and characterization of variability, modelling multiphase fluids and regional groundwater flow. Applications to borefield management, salt water intrusion, mine dewatering, geotechnical problems.

CIVL9881
Hazardous Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Notes: Not offered in 1993.
Waste audits and characterisation of hazardous wastes in regions and industries; control of generation and transport of hazardous waste, manifest systems; waste minimisation; on-site treatment methods; integrated off-site treatment facilities; management of residues from treatment facilities; introduction to planning of regional hazardous waste management systems. Characteristics of individual waste types (dioxins, PCBs, pesticides, heavy metal, etc.) and waste management in individual industries (steel, pulp and paper, petro-chemical, food processing, etc.).

CIVL9884
Environmental Engineering Science 1
Staff Contact: Ms P.A. Fitzgerald
C3 S1
Water chemistry: Basic concepts in aqueous chemistry: pH buffering, alkalinity, chemical equilibrium, kinetics of chemical reactions, neutralisation and precipitation, Henry's Law.
Introduction to Microbiology: Structure and metabolism of cells and micro-organisms; monitoring methods for pathogens and indicator organisms; impact of water and wastewater treatment on disease transmission.
CIVL9885
Environmental Engineering Science 2
Staff Contact: Prof D.L. Wilkinson
C3 S1
Classification of soils and improvement of the engineering properties of soils. Aspects of soil chemistry relevant to contaminant behaviour of soil.
Fundamentals of dispersion common to all environmental media (air, water, soil).
Air chemistry: interaction and degradation of gaseous pollutants in the atmosphere.

CIVL9886
Environmental Engineering Science 3
Staff Contact: Mr S.J. Moore
C3 S1
Fundamentals of dispersion common to all environmental media (air, water, soil). Aspects of soil chemistry relevant to contaminant behaviour in soils. Assification of soils and improvement of the engineering properties of soils related to waste management. Introduction to hydrogeology. Management of waste projects: basic management concepts; management of environmental studies, investigations and design projects; management of operating waste facilities.

CIVL9887
Advanced Topics in Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Prerequisites or corequisites: CIVL9872, CIVL9881
Notes: Not offered in 1993.
A selection of at least 7 topics from the following to suit the class needs, expertise of visiting academics and researchers in the Cooperative Research Centre for Waste Management and Pollution Control, and issues of current interest. Background and basis of solid and hazardous waste classification and control systems; legislative and economic (market) regional pollution control mechanisms; developing techniques for waste minimisation; site selection and EIS preparation for waste facilities; dispersion of contaminants in the atmosphere; community consultation; detailed legislative requirements; application of systems concepts in waste management; environmental management plans; risk assessment at waste facilities; contaminated site characterisation and remediation; topics of interest to visiting academics; case studies by way of assignments.

CIVL9888
Environmental Management and Economics
Staff Contact: Prof D.L. Wilkinson
C3 S2
Spectrum of modern environmentalism, sustainable development and urban growth. The structure of the environmental regulatory process. Decision making and management systems; case studies; introduction to micro-economics with reference to environmental issues, sustainable economic growth and zero growth. Environmental costing.

CIVL9889
Legislative Aspects of the Environment
Staff Contact: Prof D.L. Wilkinson
C3 S2
Statutory and common law regulation of access to, use and management of natural resources and waste disposal in the natural environment. Case studies from waste treatment and disposal, water resources management, disposal of mine wastes and other areas as appropriate.

CIVL9901
Special Topic in Civil Engineering
C3 SS
Notes: Not offered in 1993.
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

CIVL9902
Special Topic in Civil Engineering
C3 S2
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

CIVL9909
Project
C9
Notes: Not offered in 1993.
A minor research investigation involving analysis and interpretation of data, or a critical review and interpretation of literature on a selected topic, or a design project.

CIVL9915
Project Report
C15
Notes: Not offered in 1993.
The School, which was formerly the Department of Computer Science in the School of Electrical Engineering and Computer Science, was established on 1 January 1991. The School of Computer Science and Engineering and the restructured School of Electrical Engineering have joint responsibility for the curriculum of the Computer Engineering course.

The staff of the School are grouped around the activity areas of Artificial Intelligence, Formal Methods and Software Engineering, Computer Architecture and VLSI Design, Information Science, Algorithms and Programming Techniques, Networks and Operating Systems and Human-computer interaction. Subjects in these areas are offered to students taking major studies in computer science or computer engineering, while introductory-level computing subjects are available more generally to students studying Science, Arts or Engineering. Computer science has links with discrete mathematics, which furnishes the theory behind the algorithms that computer software implements, and electrical engineering, which supplies the present technology underlying physical computing devices.

The School, together with the School of Electrical Engineering, jointly administers the BE Computer Engineering 3645. It also offers a major in Computer Science in the BSc (Science and Mathematics) 3970, combined BE BSc degree courses 3681, 3725, 3726, combined BA BE course 3722 and combined BSc LLB course 4770.

The formal graduate courses offered are the Master of Cognitive Science 8155, Master of Computer Science 8680, Master of Information Science 8508, Graduate Diploma in Computer Science 5452, Graduate Diploma in Information Science 5453 and Graduate Diploma in Computer Education 5464. Opportunities are provided for graduate research leading to the award of the degree of Master of Engineering 2665 and Doctor of Philosophy 1650.

Summary of Undergraduate Courses

<table>
<thead>
<tr>
<th>Course and Degree(s)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3645 BE in Computer Engineering</td>
<td>4 years</td>
</tr>
<tr>
<td>3722 BE BA in Computer Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3725 BE BSc in Electrical Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3726 BE BSc in Computer Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3730 BE BSc in Civil Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3611 BE BSc in Aerospace Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3661 BE BSc in Manufacturing Management</td>
<td>5 years</td>
</tr>
<tr>
<td>3681 BE BSc in Mechanical Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3701 BE BSc in Naval Architecture</td>
<td>5 years</td>
</tr>
<tr>
<td>3745 BSurv BSc in Surveying</td>
<td>5 years</td>
</tr>
</tbody>
</table>
Undergraduate Study

Course Outlines

3645
Computer Engineering - Full-time Course

Bachelor of Engineering
BE

Whilst jointly administered by the Schools of Computer Science and Engineering and Electrical Engineering, for convenience, day-to-day administration of the course is conducted through the Computer Science and Engineering School Office, Room 313, to which enquiries should be directed.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9001 Introduction</td>
<td>1.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ACCT9002 Introduction</td>
<td>0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>COMP1011 Computing 1A</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>COMP1021 Computing 1B</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ELEC1011 Electrical Engineering 1</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MATH1032 Mathematics 1 or</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MATH1042 Higher Mathematics 1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MATH1081 Discrete Mathematics</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PHYS1969 Physics 1 (Electrical Engineering)</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>25.5</td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9001 Introduction</td>
<td>1.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ACCT9002 Introduction</td>
<td>0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>COMP1011 Computing 1A</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>COMP1021 Computing 1B</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ELEC1011 Electrical Engineering 1</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MATH1032 Mathematics 1 or</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MATH1042 Higher Mathematics 1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MATH1081 Discrete Mathematics</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PHYS1969 Physics 1 (Electrical Engineering)</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>25.5</td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Options for the four streams are listed below:

Communications Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3013 Communications Systems 1
Electronics Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3016 Electronic Signal Processing

Systems and Control Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3014 Systems and Control 1
Students who elect the Communications, Electronics or Systems and Control Stream must also take the following subjects in year 3 or year 4:
COMP3131 Parsing and Translation and/or
COMP3231 Operating Systems
COMP3331 Computer Networks and Applications or
ELEC4351 Digital Communication and Computer Networks

Computing Stream
Option A: Any level 3/4 Computer Science subjects or
ELEC3031 Integrated Electronics + Laboratory
Option B: Any level 3/4 Computer Science subject
Note: COMP3131 Parsing and Translation, COMP3231 Operating Systems and COMP3331 Computer Networks and Applications must be taken either in year 3 or year 4
Students undertaking computing electives only must complete at least two Level 4 Computer Science subjects in year 3 and/or year 4.
A complete list of the level 3 and level 4 Computer Science subjects is given later in this section.

Year 4

<table>
<thead>
<tr>
<th>Professional Electives</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Professional Electives</td>
<td>S1</td>
</tr>
<tr>
<td>15</td>
<td>S2</td>
</tr>
<tr>
<td>COMP4903 Industrial Training</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>COMP4910 Thesis Part A</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>COMP4911 Thesis Part B</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IROB2721 Managing People (General Education Cat.C)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Totaling</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Professional Electives may be chosen from level 3/4 Computer Science Subjects and the Electrical Engineering Professional Elective Subjects listed below. Students should also note the compulsory subjects which must be taken in Year 3 or Year 4, listed in the previous section.

Computer Engineering Professional Electives

Communications Stream
ELEC3016 Electronic Signal Processing
ELEC4042 Signal Processing
ELEC4313 Optical Communications
ELEC4323 Digital and Analogue Communications
ELEC4351 Digital Communication and Computer Networks
ELEC4503 Advanced Electronic Circuits
ELEC4512 Semiconductor Devices

Electronics Stream
ELEC4042 Signal Processing
ELEC4503 Advanced Electronic Circuits
ELEC4512 Semiconductor Devices
ELEC4522 Microelectronics Design and Technology
ELEC4540 Applied Photovoltaics
COMP4215 VLSI Systems Architecture and Design

Systems and Control Stream
ELEC4042 Signal Processing

Level 4 Computer Science Subjects
COMP4011 Occasional Elective (Computer Engineering)
COMP4012 Occasional Elective (Computer Engineering)
COMP4121 Parallel Algorithms and Architectures
COMP4131 Programming Language Semantics
COMP4141 Theory of Computation
COMP4211 Advanced Architectures and Algorithms
COMP4215 VLSI Systems Architecture and Design
COMP4216 Distributed Operating Systems
COMP4411 Artificial Intelligence: Knowledge-Based Systems
COMP4412 Artificial Intelligence: Interacting with the World
COMP4444 Neural Networks

Combined Courses

Students in Computer Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. (The two degrees referred to here are the Bachelor of Engineering/Bachelor of Science BE BSc and the Bachelor of Engineering/Bachelor of Arts BE BA). Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Computer Science and Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate. Students wishing to enrol in, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisite study, sequencing and academic attainment average (a creditable performance, i.e. 65%) of both the Course Authorities concerned.

Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. AUSTUDY support is available for the five years of the combined degree courses.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However, the choice of subjects and the time taken to complete the program can
be seriously affected by this. Thus, students considering course 3726 should contact the School of Computer Science and Engineering before completing the Year 2 enrolment. Students may opt to join the BE BA course (3722) in year 1, whereas transfer to 3726 normally occurs after year 2.

Students wishing to gain a degree at honours level in Arts or Science as part of their combined degree program shall meet all the relevant requirements of the Faculty concerned and of the appropriate Schools. Such students may enrol for the Honours year only on the recommendation of the Head of School of Computer Science and Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate.

Re-enrolment of students in Courses 3722 and 3726 each year is arranged by the School of Computer Science and Engineering.

3722
BE BA in Computer Engineering

With this combined degree course students can add their choice of Arts program to the standard, professionally accredited engineering course offered by the School of Computer Science & Engineering. The full range of Arts programs is available.

Because the engineering and arts programs have common content, such as mathematics and physics, only one more year of study is normally required to gain the additional qualification of Bachelor of Arts.

Eligibility

Anyone who meets the entry requirements for both Engineering and Arts is eligible for the combined course. Students may enter directly in first year or may apply to transfer from the normal engineering course later, although with late transfer it might not be possible to complete the course in minimum time.

Organization

The BE BA course is administered by the School of Computer Science & Engineering.

Students should start discussing their program with representatives of the School and the Faculty of Arts and Social Sciences as soon as possible - preferably well before enrolment. Enquiries should be directed to the Executive Assistant to the Head of School of Computer Science & Engineering and the Executive Assistant to the Dean of the Faculty of Arts and Social Sciences.

Students should work out for themselves the Arts program they would like to add to their chosen engineering course. The Arts & Social Sciences Faculty Handbook describes the options, and the School of Computer Science & Engineering can supply sample programs showing what previous students have arranged.

There are no special rules on what to include in each year. Students should schedule the arts and engineering components to suit their preferences while meeting the constraints of timetables and pre-requisites. The sample programs can help here too.

The Arts component must be approved by the Faculty of Arts and Social Sciences.

The final program and schedule must be approved by the School of Computer Science & Engineering.

Rules

1. In addition to the BE course, students must complete a major sequence offered within the BA course and meet the additional requirements listed below:

 Faculty which provides the chosen major
 Faculty of Arts and Social Sciences:
 Arts Credit Points required (minimum) 48 total, including major sequence

 Other Faculties:
 Major sequence plus at least 12 Credit Points from Schools of the Faculty of Arts and Social Sciences

 Mathematics majors are not usually permitted. BE BSc combined degrees are more appropriate for this.

2. The requirements of the General Education Program must be met. In some cases subjects within the combined course may satisfy the Category A and/or Category B guidelines. Students should consult the Centre for Liberal and General Studies for advice.

 Note that exemption from the General Education Category A and Category B requirements for the BE BA program will not be available to students who withdraw from the combined program and revert to the BE or BA course.

 The Category C General Education requirement is satisfied as part of the final year BE Computer Engineering program.

3. There will be a testamur for each part of the combined degree course.

4. Students who complete the BE program first may proceed to graduation with the degree of Bachelor of Engineering in the usual way, subject to the satisfaction of the General Education requirement.

5. Students who complete the requirements for their Arts program and the first two years of the BE program may proceed to graduation with the degree of Bachelor of Arts.

3726
BE BSc in Computer Engineering

Students who achieve a creditable performance in the first two years of their Computer Engineering course may apply to transfer to the combined Bachelor of Engineering/Bachelor of Science BE BSc course. The combined degree course normally requires an additional year of study and enables students to complete a major sequence in Mathematics or Physics in the Faculty of Science while completing their studies in Computer Engineering.

Students wishing to enrol in the combined course may do so only on the recommendation of the Head of School and with the approval of the Board of Studies in Science and Mathematics. Because of the need to include appropriate pre-requisites, students considering course 3726 should...
contact the School of Computer Science & Engineering before completing their Year 2 enrolment. Application to transfer to the combined degree course must be made in writing to the Head of School at the end of Year 2.

After completing Years 1, 2 and 3 (modified where necessary as indicated below) of the Computer Engineering course, students in their fourth year complete a specific program consisting of four Level III Science units from related disciplines, the appropriate General Education electives and no less than four other Level II or Level III units. The subjects chosen should be in accord with the rules of the BSc course 3970 leading to a major in Mathematics or Physics. In their fifth year students complete Year 4 of the Computer Engineering course 3645. The program below outlines the course of study:

Year 1 (Standard Program for course 3645)
ACCT9001, ACCT9002, COMP1011, COMP1021, ELEC1011, MATH1042 or MATH1032, MATH1081, PHYS1969.

Year 2
COMP2011, COMP2021, COMP2031, ECON1103, ELEC2011, ELEC2030, ELEC2033, ELEC4532, MATH2400, MATH2610, MATH2620, MATH2849, MATH3150, PHYS2959, General Education (Category A).

For Physics majors the 1.5 hour subject PHYS2959 must be replaced by the 4.5 hour subject PHYS29E9 Solid State Physics. Mathematics subjects may be taken at the ordinary level.

Year 3
COMP3111, COMP3121, COMP3211, COMP3221, ELEC3032, MATH2601, MATH2859, MATH3141. Elective subjects in Computer Science and/or Electrical Engineering, General Education (Category B).

Mathematics majors should take the higher level subject MATH2601 and are required to add MATH2110 Vector Analysis to their program, as a Mathematics pre-requisite, in place of General Education which will be taken in Year 4.

Physics majors are required to add the following subjects to their program in place of General Education and a five hour Computer Science subject in Session 1 (these will be taken in Year 4):

- PHYS2979 Electromagnetic Theory
- PHYS2999 Mechanics and Thermal Physics
- MATH2100 Vector Calculus

Year 4
Mathematics
56-hour General Education subject (Category B).

Choose at least 5 Mathematics units, 4 of which are Level III.

Choose 3 Level II or Level III units from those available in Program 1000 of course 3970 (see Sciences handbook for details).

Physics
56-hour General Education subject (Category B).

Choose 7 Level II or Level III units from those available in program 0100 of course 3970 of which four must be Level III Physics units chosen to include PHYS3010, PHYS3021, PHYS3030 and PHYS3060.

Computer Science subject deferred from Year 3 of the Computer Engineering course.

Year 5
Year 4 of the Computer Engineering course.

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

COMP1011 Computing 1A

Staff Contact: Mr N. Cerpa

Prerequisites: as for MATH1032

Corequisites: MATH1032 or MATH1042

Notes: Excluded COMP1811, 6.611, 6.600

COMP1021 Computing 1B

Staff Contact: Dr G. Whale

S1 or S2 L3 T3

Prerequisites: COMP1011

Notes: Excluded COMP1821, 6.621, 6.021D

Introduction to procedural programming style and comparison with functional programming. Control structures: selection, recursion and iteration. Abstract Data Types: lists, stacks, queues, trees. Implementation in a procedural language (Modula-2) using linked structures. Searching and sorting. The layered model of a computer, instruction set, execution cycle, data storage, assembly language programming.
COMP1811
Computing 1 (Procedural)
Staff Contact: Mr P. Compton
S1 or S2 L3 T3
Prerequisites: as for MATH1032
Notes: Excluded COMP1011, 6.611, 6.600

COMP1821
Computing 2
Staff Contact: Dr T. Gedeon
S1 or S2 L3 T3
Prerequisites: COMP1811
Notes: Excluded COMP1021, 6.621, 6.021D

COMP2011
Data Organization
Staff Contact: Dr A. Sowmya
S1 or S2 L3 T2
Prerequisites: COMP1021 or COMP1821
Notes: Excluded 6.641

Data types and data structures: abstractions and implementations. Data Representation: logical and physical. Files: access methods, implementation, external data structures. Primary and secondary memory: performance, management policies. Data encapsulation and information hiding; introduction to object orientation.

COMP2021
Digital System Structures
Staff Contact: Dr G. Heiser
S1 or S2 L3 T2
Prerequisites: COMP1021 or COMP1821
Notes: Excluded ELEC2012

Digital Systems: switches and gates, boolean algebra, minimisation techniques, combinational and sequential design, timing analysis, finite state machines; analysis, design and realisation of modest digital subsystems, understanding major subsystems in a model computer. Assembly language programming: translation of higher level programming abstractions and data structures to a real computer using an assembler as a target; study of the relationships between the programming model and the hardware model of a computer; understanding of instruction execution.

COMP2031
Concurrent Computing
Staff Contact: Dr J. Olszewski
S1 or S2 L3 T2
Prerequisites: COMP1021 or COMP1821

COMP3111
Software Engineering
Staff Contact: Mr K. Robinson
S1 L3 T2
Prerequisites: COMP2011
Notes: Excluded 6.642, 6.660G

Informal specification: Data flow diagram methodology, analysis, design, testing, management and documentation of software. Formal specification: set theory, logic, schema calculus, case studies. The Z specification notation. Managing the project lifecycle. CASE tools. A major group project is undertaken.

COMP3121
Algorithms and Programming Techniques
Staff Contact: School Office
S2 L3 T2
Prerequisites: COMP2011
Notes: Excluded 6.642, 6.660G, COMP9101

COMP3131
Parsing and Translation
Staff Contact: Mr K. Robinson
S2 L3 T2
Prerequisites: COMP2011
Notes: Excluded 6.643, 6.664G, COMP9102

COMP3211
Computer Organisation and Design
Staff Contact: Prof G. Hellestrand
S1 L3 T2
Prerequisites: COMP2021 or ELEC2012
Notes: Excluded 6.654G, COMP9211
Combinational and sequential circuit design; synchronisation, communication and arbitration; register transfer specification (Modal). Arithmetic Design Strategies. Memory Organisation: physical and virtual address space; operating system and compiler support; memory mapping and caching. Communications Organisation: shared memory, memory mapping; network systems. Processor Design: the instruction pipeline; hardwired and micro-programmed control; instruction sets; RISC and object-based processor organisation. Error Detection/Correction and Fault Tolerance; coding theory.

COMP3221
Microprocessors and Interfacing
Staff Contact: Dr S. Matheson
S2 L3 T2
Prerequisites: COMP2021
Notes: Excluded 6.0318, 6.060G, 6.613, 6.732E, ELEC3020, COMP9221
The concept of a microprocessor system, busses, address spaces, memory devices, bus timing, bus standards, the VME bus, I/O device interfacing, polling, interrupts, DMA interfaces, the 68000 processor family, the C programming language, device drivers, the device driver software environment, other microprocessors, advanced topics. Laboratory work involves interfacing to and programming MC68000-series microprocessor-based systems.

COMP3231
Operating Systems
Staff Contact: Mr S. Russell
S1 L3 T2
Prerequisites: COMP2011, COMP2031 or ELEC3020
Notes: Excluded 6.632, 6.672, COMP9201

COMP3311
Database Systems
Staff Contact: Dr A. Ngu
S1 L3 T2
Prerequisites: COMP2011
Notes: Excluded 6.005G, 6.633, 6.659G, COMP9311
The relational database model, object data bases, 4GL query languages, database design and implementation, deductive databases. Concurrency, optimisation, distribution. A major project involving both design and realisation is included.

COMP3321
Business Systems Organization
Staff Contact: School Office
S2 L3 T2
Prerequisites: COMP2011
Review of the organization of accounting systems: journals, accruals, merchandising. The structure, design, development, and integration of various business systems selected from the following: general ledger; financial reporting; debtors; creditors; stock control; invoicing; purchasing and receiving; fixed assets; payroll. Systems for generating application systems and packages. User interfaces. File specifications and B-tree index files. Distributed commercial systems. The partial implementation of a business system is undertaken as a group project.

COMP3331
Computer Networks and Applications
Staff Contact: Dr K. Burston
S2 L3 T2
Prerequisites: COMP2011
Notes: Excluded 6.633, 6.659G, COMP9331

COMP3411
Artificial Intelligence
Staff Contact: Dr W. Wilson
S1 L2 T3
Prerequisites: COMP2011
Notes: Excluded 6.666G, COMP9414

COMP3421
Computer Graphics
Staff Contact: Dr T. Lambert
S1 L3 T2
Prerequisites: COMP2011
Notes: Excluded 6.668G, COMP9415

COMP3511
Human-Computer Interaction
Staff Contact: Dr C. Quinn
S1 L3 T2
Prerequisites: COMP2011
Notes: Excluded 6.006G, COMP9511
Introduces analysis and design of user-system interactions. A cognitive approach focuses on user goals and enabling technologies, progressing from principles to process. Topics: human information processing system, interaction devices and components, communication models, the design cycle, and evaluation.
COMP4011
Occasional Elective S1 (Computer Engineering)
Staff Contact: School Office
S1 L3 T2
Prerequisites: Any 4 level 3 Computer Science subjects
A program of advanced coursework offered by a new or visiting staff member in an area of computer science/engineering. Syllabus details will be available from the school office before the start of session.

COMP4012
Occasional Elective S2 (Computer Engineering)
Staff Contact: School Office
S2 L3 T2
Prerequisites: Any 4 level 3 Computer Science subjects
A program of advanced coursework offered by a new or visiting staff member in an area of computer science/engineering. Syllabus details will be available from the school office before the start of session.

COMP4121
Parallel Algorithms and Architectures
Staff Contact: School Office
SS HPW4
Prerequisites: COMP3121 or COMP9101

COMP4131
Programming Language Semantics
Staff Contact: Mr K. Robinson
S2 HPW4
Prerequisites: Any 4 level 3 Computer Science subjects
Formal methods for specifying the semantics of programming languages and that of programs expressed in those languages. Denotational Semantics: application to language design and the implementation of translators and compilers. Axiomatic semantics, weakest precondition, refinement. Concrete and abstract syntax, the lambda calculus, semantic functions, denotations, recursion.

COMP4141
Theory of Computation
Staff Contact: Dr A. Sharma
S1 HPW4
Prerequisites: Two level 3 Computer Science subjects or equivalent

COMP4211
Advanced Architectures and Algorithms
Staff Contact: Dr S. Matheson
SS HPW4
Prerequisites: COMP3211
Notes: Excluded COMP9214

COMP4215
VLSI Systems Architecture and Design
Staff Contact: Prof G. Hellestrand
S1 HPW4
Prerequisites: ELEC4532, COMP3221 or ELEC3020
Notes: Excluded COMP9215
Review of electronics and technology. Integrated digital subsystems. Analog functions in VLSI. Testing and testability. Integrated digital systems. VLSI design tools. Project work involves specification and simulation of a significant subsystem in the MODAL hardware description language, followed by fabrication and testing.

COMP4216
Distributed Operating Systems and Architectures
Staff Contact: Dr G. Heiser
S2 HPW4
Prerequisites: COMP3211, COMP3231, COMP3331
Notes: Excluded COMP9216
Architectural Support: virtual addressing, caching, exception handling, communications; multiprocessor systems; capability-based architectures. Communication Models: IPC, RPC and Session models; broadcast, multicast; distributed virtual memory; Naming and Security; Cryptographic authentication and capability-based protection schemes Distributed File Systems: File services; Sharing and cache consistency; transaction services; availability, scaling, replication, recoverability. Object-Orientation: weak, supportive and strong models; remote invocation versus server-based interaction; naming of operations; persistence and inheritance models. Fault Tolerance.

COMP4411
Artificial Intelligence: Knowledge-Based Systems
Staff Contact: Dr C. Sammut
SS HPW4
Prerequisites: COMP3411
Notes: Excluded COMP9414, COMP9416.
Topics will be selected from Expert Systems: applications of expert systems; the expert system life cycle; knowledge representation; reasoning for expert systems; knowledge acquisition; knowledge maintenance; expert system project and Machine Learning: learning as search; concept description languages; reinforcement learning; induction; learning theories; theory revision; learning project.
COMP4412
Artificial Intelligence: Interacting with the World
Staff Contact: Dr A. Sowmya
SS HPW4
Prerequisites: COMP3411
Notes: Excluded COMP9414, COMP9416
Topics selected from Intelligent Robotics: image processing and computer vision; simulation; programming languages for robots; path and motion planning under constraints; design and control models; planning and learning; Robotics Project and Natural Language Processing; overview of linguistics; grammars and languages; basic parsing techniques; semantic analysis and representation structures; cognitive modelling; natural language generation; natural language systems; natural language project.

COMP4444
Neural Networks
Staff Contact: Dr T. Gedeon
S1 HPW4
Prerequisites: Any 4 level 3 Computer Science subjects or equivalent
Network architectures: perceptrons, Hopfield nets, Kohonen nets, ART models, back-propagation trained feed-forward nets, weightless nets; hardware based neural networks; practical applications of neural networks; input and output coding; selecting the right model; designing successful applications of neural networks.

COMP4903
Industrial Training
Staff Contact: School Office
Students enrolled in courses 3645, 3722 and 3726 must complete a minimum of 60 days' industrial training. At least some of this must be obtained in Australia. Overseas employment must have prior approval. Students are required to submit to the School evidence from their employers confirming completion of the prescribed training and a report, typically 2000 words long, summarising the work done and training received. Experience claimed as an industrial elective covers requirements for this subject. Industrial Experience
Students will formally enrol in the subject in year 4, although they are strongly encouraged to complete as much industrial experience as possible in the breaks between the early years of the course.

COMP4910
Thesis Part A

COMP4911
Thesis Part B
This is done in the last two sessions of the BE degree course. For full-time students, seven hours per week in the first session and fourteen hours per week in the second session are devoted to directed laboratory and research work on an approved subject under guidance of members of the lecturing staff. Generally, the thesis involves the design and construction of experimental apparatus or software, or both, together with appropriate laboratory tests. Each student is required to present a seminar, and a written thesis must be submitted on each project by the Tuesday of the fourteenth week of Session 1 or Session 2.
Graduate Study

The formal graduate courses offered are the Master of Cognitive Science 8155, Master of Computer Science 8680, Master of Information Science 8508. Graduate Diploma in Information Science 5453, Graduate Diploma in Computer Science 5452, and Graduate Diploma in Computer Education 5464. Opportunities are provided for graduate research leading to the award of the degree of Master of Engineering 2665 and Doctor of Philosophy 1650.

Course Work Programs

8155
Master of Cognitive Science
MCogSc
For course details see School Office, School of Computer Science and Engineering.

Master of Information Science/Master of Computer Science

MInfSc/MCompSc
These degrees allow for flexibility of choice between formal coursework and research.
Candidates are required to complete a program totalling at least 36 credits and this may be taken in one of two ways:
i. Major Project Option – 18 credits of coursework and an 18 credit Project, or
ii. Coursework Option – 36 credits all of which will be associated with subjects although 6 credits will relate to a minor project or design. The typical duration of the course is three sessions full-time or five sessions part-time.

I. Major Project Option
Compulsory Subjects
At least one of:
- COMP9314 Advanced Data Base Management A 3
- COMP9315 Advanced Data Base Management B 3
- COMP9511 Human Interface Computing 3
- COMP9514 Advanced Decision Theory for Information Science 3
Students will take at least one of:
- GEOG9240 Geographic Information Systems 3
- LIBS0817 Information Storage and Retrieval 3
- REMO9580 Design Analysis in Remote Sensing 3
- SURV9604 Land Information Systems 3
It is necessary that subjects of at least three credits be taken in one of the areas of expert systems, knowledge-based systems, artificial intelligence, or decision support systems.

II. Coursework Option
Compulsory subjects:
- COMP9311 Introduction to Data Base Systems (For students with limited knowledge of Data Bases)
- COMP9596 Advanced Topics in Information Science
- ELEC9336 Digital Communication Networks 1

The remaining three subjects may be chosen from subjects offered in the specialisations:
- Computer Science/Computer Engineering
- Digital Communications and Systems
- Signal Processing
- Cybernetic Engineering and Advanced Robotics
It could also be appropriate to select subjects dealing with behavioural aspects of judgement and choose from the programs offered by other schools.

Students should note that the decision to take Coursework or Project options will not be made until the first 12 credits of coursework has been completed. The Project option will not be available to all students and high grades in the first four subjects will be needed to obtain approval to select that option.
8680
Master of Computer Science*

MCompSc

Candidates are required to complete a course totalling at least 48 credits but those who consider that they have extensive knowledge of computing may request exemption from 12 credits of Level 1 subjects.

The program of study may be taken in one of two ways:

Project Option
18 credit project COMP9918
12 credits from Level 1 subjects
at least 9 credits from Level 2 subjects
remaining subjects to be chosen from Computer Science
Level 3 electives or

Coursework Option
12 credit Level 1 subjects
12 credits from Level 2 subjects
12 credits from Computer Science Level 3 subjects
remaining subjects to be chosen from Computer Science
or other specialisations subject to approval

Level 1 Subjects
COMP9021 Introduction to Computer Science
COMP9022 Digital System Structures
COMP9023 Concurrent and Functional Programming
COMP9024 Data Structures, File Systems and Data Bases

Level 2 Subjects
COMP9008 Software Engineering
COMP9101 Design and Analysis of Algorithms
COMP9102 Compiling Techniques and Programming Languages
COMP9201 Operating Systems
COMP9211 Computer Organisation and Design
COMP9221 Microprocessor Systems
COMP9231 Integrated Digital Systems
COMP9331 Computer Networks and Applications
COMP9414 Artificial Intelligence

Informal specification: Data flow diagram methodology, analysis, design, testing, management and documentation of software.

Formal specification: set theory, logic, schema calculus, case studies. The Z specification notation. Managing the project lifecycle. CASE tools. A major project is undertaken.

COMP9008 Software Engineering
Staff Contact: Mr K. Robinson
C3 S1 HPW4
Prerequisite: Assumed knowledge COMP9024
Notes: Excluded CIMP3111

COMP9415 Computer Graphics
COMP9416 Expert Systems and Deductive Data Bases

Level 3 Subjects
COMP9114 Formal Specification
COMP9115 Programming Languages: Fundamental Concepts
COMP9214 Computer Architecture
COMP9215 VLSI Systems Architecture and Design
*Note that the Course Structure is currently under review.

5452
Graduate Diploma in Computer Science
GradDip

5433
Graduate Diploma in Information Science
GradDip

5464
Graduate Diploma in Computer Education
GradDip

For Graduate Diploma course details of recommended programs of study may be obtained from the School Office. Subjects offered in the Masters programs may be taken in the Graduate Diploma programs subject to the approval of the course coordinator. The following extra subjects are offered for the Graduate Diploma in Computer Education:

COMP9011 Literacy and Programming 3
COMP9012 Software Engineering and Tools 3
COMP9013 Data Bases and Expert Systems 3
COMP9014 Computer Organisation and Interfacing 3
COMP9015 Issues in Computing 3
COMP9018 Computer Graphics and Applications 3

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

COMP9008 Software Engineering
Staff Contact: Mr K. Robinson
C3 S1 HPW4
Prerequisite: Assumed knowledge COMP9024
Notes: Excluded CIMP3111

COMP9011 Literacy and Programming
Staff Contact: Ms L. Quinn
C3 S1 HPW3
Introduction to a number of the packages such as: spreadsheets, word processing, data base systems,
hypertext, graphics, networking. It will be necessary that skills be acquired with these systems. There will also be an introduction to both procedural and functional programming.

COMP9012
Software Engineering and Tools
Staff Contact: Ms L. Quinn
C3 S1 HPW3
Introduction to the Data Flow/Process Interaction model of software specification and architecture. The techniques of Software Engineering involved in specification, analysis, design, implementation, testing, debugging, maintenance, and modification are discussed. Modern CASE tools are discussed and used.

Software Tools: reusability, packages, libraries, processes, concurrency, intercommunication channels, windows, graphics, data bases, translators, pattern matchers, sorters, and user interfaces are discussed and used in the context of a programmers' shell.

COMP9013
Data Bases and Expert Systems
Staff Contact: Ms L. Quinn
C3 S1 HPW3
Introduction to some basic material on data structures. Experience with commercial relational data base systems and an application generator. Some of the notions of data base design and the redundancy: efficiency tradeoff will be discussed. There will be an overview given of expert systems, artificial intelligence, knowledge based systems and decision support systems.

COMP9014
Computer Organisation and Interfacing
Staff Contact: Ms L. Quinn
C3 HPW3

COMP9015
Issues In Computing
Staff Contact: Ms L. Quinn
C3 HPW3
A review of issues that affect the use of Computer Systems. Topics that may be covered include: the human implications of computing systems, the effect of computing operations on organisational structure, software copyright, privacy, the role of computing systems and information systems in decision making, the significance of the timeliness of information and its implication on the value of decision making and the requirements for a computing system.

COMP9018
Computer Graphics and Applications
Staff Contact: Ms L. Quinn
C3 HPW3
This subject will provide both a series of lectures on topics such as the basics of graphic systems and graphic devices. Application areas to be considered may include business, entertainment, computer-based training, mapping. The laboratory work will involve use of sophisticated hardware for drawing, animation, simulation and CAD operations.

COMP9021
Introduction to Computer Science
Staff Contact: Prof G. Hellestrand
C3 HPW3

Data structures; lists, queues, trees. Implementation in Modula-2 programs. Introduction to problem solving using the functional Programming language Miranda.

COMP9022
Digital System Structures
Staff Contact: Dr G. Heiser
C3 S1 HPW3
Prerequisite: Assumed knowledge COMP9021 or COMP1021
Notes: Excluded COMP2021.

Digital Systems: switches and gates, boolean algebra, minimization techniques, combinational and sequential design, timing analysis, finite state machines; analysis, design and realization of modest digital subsystems, understanding major subsystems in a model computer.

Assembly language programming; translation of higher level programming abstractions and data structures to a real computer using an assembler as a target; study of the relationships between the programming model and the hardware model of a computer; understanding of instruction execution.

COMP9023
Concurrent and Functional Programming
Staff Contact: Dr J. Olszewski
C3 S2 HPW3
Prerequisite: Assumed knowledge COMP9021 or COMP1021
Notes: Excluded COMP2031.

COMP9024
Data Structures, File Systems and Data Bases
Staff Contact: Dr A. Amin
C3 S2 HPW3
Prerequisites: Assumed knowledge COMP9021 or COMP1021
Notes: Excluded COMP2011.

The abstraction and representation of information; fundamental types, sets and sequences, recursive sets (arrays and structures (lists, trees)), classes (structure and
manipulation). Practical work will use Modula-2 and Miranda. Internal (memory) and external (file system) representation of information. Structured policies for packaging information (data bases, sets, hierarchy, network, relations), knowledge bases and frames). Efficiency and complexity of representation. Introduction to data bases and query languages. The manipulation of knowledge. Prolog as a query language.

COMP9101
Design and Analysis of Algorithms
Staff Contact: School Office
C3 S1 HPW3
Prerequisite: Assumed knowledge COMP9024 or COMP2011
Notes: Excluded COMP3121
Techniques for design and performance analysis of algorithms for a number of classes of problems.
Analysis of algorithms: order notation, recurrence equations, worst case and expected order statistics.
Design of efficient algorithms: recursion, divide and conquer, balancing; backtracking algorithms, branch and bound, dynamic programming; set manipulation problems; fast search algorithms, balanced optimal multiway trees; graph representations and algorithms, pattern matching algorithms. NP-complete problems. Design and specification of programs; modularization, interface design, introduction to formal specification techniques.

COMP9102
Compiling Techniques and Programming Languages
Staff Contact: Mr P. Ho
C3 S2 HPW3
Prerequisite: Assumed knowledge COMP9024 or COMP2011
Notes: Excluded COMP3131.
Language description; phrase structure grammars. Chomsky classifications, context-free grammars, finite state grammars, Backus Naur Form, syntax graphs, LL(k), LR(k), LSL(k).

COMP9114
Formal Specification
Staff Contact: Mr K. Robinson
C3 SS HPW3
Prerequisite: Assumed knowledge; background to final year Computer Science level, equivalent to subjects COMP9008, COMP9101 and COMP9102
Introduction to formal specification techniques; use of predicate logic and modern set theory to describe computing systems; Schema notation for structuring large specifications; Schema calculus to prove properties of specifications; Refinement techniques for transformation of specifications into executable programs; refinement of abstract data types.

COMP9115
Programming Languages: Fundamental Concepts
Staff Contact: Mr K. Robinson
C3 SS HPW3
Prerequisite: Assumed knowledge; background to final year Computer Science level, equivalent to subjects COMP9008, COMP9101, COMP9102
Fundamental aspects of programming language definition, semantics and implementation models. The current approach uses denotational semantics. Denotational semantics is a formal method for describing the abstract meaning of programming languages.

COMP9201
Operating Systems
Staff Contact: Mr S. Russell
C3 S2 HPW3
Prerequisite: Assumed knowledge, COMP9023 and COMP9024
Notes: Excluded COMP3231.
Services provided by operating systems. System calls and user commands (command languages, menus, etc). Virtual machines. Efficient techniques and methods of process management, memory management, input/output and communication handling. Performance evaluation and tuning. Protection and security.

COMP9211
Computer Organization and Design
Staff Contact: Prof G. Helbstrand
C3 S1 HPW4
Prerequisites: Assumed knowledge ELEC2012 or COMP9022
Notes: Excluded COMP3211.
Topics will be chosen from:
Advanced Design Strategies: combinational and sequential circuit design and realisation; synchronisation, communication and arbitration; register transfer specification (Modal). Arithmetic Design Strategies. Memory Organization; physical and virtual address space; memory hierarchy; operating system and compiler support; memory mapping and caching.
Communications Organization: shared memory, memory mapping; network systems. Processor Design: the instruction pipeline; hardwired and micro-programmed control; instruction sets; RISC and object-based processor organization. Error Detection/Correction and Fault Tolerance; testing and testability; faults, errors and failures; coding theory; diagnosing and correcting errors.
general-purpose machines that aim for high performance, ultra-reliability or minimal cost.

COMP9215
VLSI System Design
Staff Contact: Prof G. Hellestrand
C3 S1 HPW4
Prerequisite: Assumed knowledge, background in electronic design equivalent to ELEC4532 or COMP9231
Notes: Excluded COMP4215

The design and implementation of very large scale integrated systems, using both nMOS and CMOS technologies. The use and construction of CAD tools, including simulators, layout generators, and plot utilities. MOS failure modes, testing and design for testability. A study of some digital subsystems, digital architectures and design styles will be carried out. An integral part of the course is an MSI LSI design project. Selected project designs will be submitted for fabrication and returned to students for testing.

COMP9216
Parallel and Distributed Computing Systems
Staff Contact: School Office
C3 SS HPW3
Prerequisite: Assumed knowledge, background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121 and COMP3131
Notes: Not offered in 1993

Parallelism concurrency in functionally coupled and distributed communicationally coupled, computing systems. Topics selected from: Synchronisation, communication and arbitration; Computational paradigms -s; concurrent synchronous processing, lists, trees; Computational paradigms - p: vectors, arrays, APL tables, associative look-up structures; Synchronous bit-serial architectures: n-operand arithmetic, n-operand comparison; Pure pipeline and Systolic architectures and problems; Pipelined ALUs - multiple bus data path architectures; Memory-Processor architecture. Object based systems; Languages with communication and processes; CSP, ADA C; Locally and geographically distributed systems: Failure tolerant computer systems.

COMP9231
Integrated Digital Systems
Staff Contact: Prof G. Hallestrand
C3 S2 HPW4
Prerequisite: Assumed knowledge ELEC2012 or COMP9022
Notes: Excluded ELEC4532.

Integrated circuit logic families with emphasis on MOS technologies, structured chip design, custom and semi-custom approaches, system architecture, computer aided design, layout considerations, timing estimates, circuit failures, faults, fault modelling, testing, design for testability.

COMP9221
Microprocessor Systems
Staff Contact: Dr I. Gorton
C3 S1 HPW4
Prerequisite: Assumed knowledge COMP9021, COMP9022
Notes: Excluded 6.0318, 6.613, 5.087G, 5.088G, COMP3221, ELEC3020.

Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The MC68000 family and assembly programming language. Other microprocessors. The subject includes two hours per week of laboratory work involving interfacing to and programming MC68000-series microprocessor-based systems.

COMP9311
Data Base Systems
Staff Contact: Prof J. Hiller
C3 S1 or S2 HPW3
Prerequisites: Assumed knowledge, familiarity with storage structures
Notes: Excluded 6.659G, 55.823G

A first subject on data base management systems to be presented at a level appropriate for a graduate subject. The material to be covered will include a selection from: the relational, hierarchic/network, and inverted file data models; normalisation and the problems of redundancies; views and their updates; high level query languages; distributed systems; deductive data bases; data definitions; application generators.

COMP9314
Advanced Data Base Management A
Staff Contact: Ms L. Quinn
C3 S1 HPW3
Prerequisite: Assumed knowledge COMP9311

Examination in detail of some of the commercially oriented issues associated with recent developments in data base management systems. Topics to be treated may include: functional analysis and data base design, object data bases, application generators, and office data systems. The subject will involve the students in performance of a significant data base design task.

COMP9315
Advanced Data Base Management B
Staff Contact: Ms L. Quinn
C3 S2 HPW3
Prerequisite: Assumed knowledge corresponds to the treatment in COMP9311

Examination in detail of some of the technical issues associated with recent developments in data base management systems. Topics to be treated may include: query optimisation, concurrent processing and its control, recovery and restart, and distributed dbms.

COMP9331
Computer Networks and Applications
Staff Contact: Dr K. Burston
C3 S2 HPW3
Prerequisite: Assumed knowledge COMP9024
Notes: Excluded COMP3331.

COMP9414
Artificial Intelligence
Staff Contact: Mr P. Staines, School of Philosophy
C3 S1 HPW3
Prerequisite: Assumed knowledge COMP9024
Notes: Excluded COMP3411

Overview of current research in Artificial Intelligence. Some of the topics are: the representation of knowledge, search techniques, problem solving, machine learning, expert systems, natural language understanding, and languages for Artificial Intelligence. Students are also required to prepare a report and give a seminar on one aspect of A.I. such as: robotics, vision, language understanding, speech recognition, A.I. languages, learning.

COMP9415
Computer Graphics
Staff Contact: Dr T. Lambert
C3 S1 HPW3
Prerequisite: Assumed knowledge, background to final year Computer Science levels, equivalent to subjects COMP9101, COMP9102

Graphics hardware: scan conversion of lines and polygons. 2D transformations, windowing, clipping, viewports, user interfaces. 3D transformations: perspective transformation, 3D clipping, hidden line surface removal, lighting and texture maps. Hierarchical modelling of objects, modelling curves and surfaces with splines and fractals. Graphics standards will be examined.

COMP9416
Expert Systems and Deductive Data Bases
Staff Contact:
C3 S2 HPW3
Prerequisites: COMP9311, and some familiarity with rule based systems and reasoning procedures.

Introduction to Expert Systems including knowledge representation, inference, reasoning under uncertainty, qualitative modelling and knowledge acquisition. Students will build an expert system using a shell. Introduction to deductive database including logic programming, clause indexing and query optimisation, integration of deductive databases and expert systems.

COMP9511
Human-Computer Interaction
Staff Contact: Dr C. Quinn
C3 S2 HPW3
Corequisites: Knowledge of data base query languages
Notes: Excluded 55.821G.

Introduces theories and models of user-system interaction. A scientific approach emphasizes the literature and methodological issues in HCI design, using a cognitive engineering framework. Topics: models of mind, interaction formalisms and tools, and theories of design.

COMP9514
Advanced Decision Theory for Information Science
Staff Contact: Prof J. Hillier
C3 S5 HPW3
Prerequisites: Assumed knowledge, a graduate level in expert systems or 55.821G or equivalent.

This subject will link results from fields such as information theory, the economics of information, the theory of judgement and choice, certainty theory and the theory of evidence. There will be a review of maximum utility theory decision making and the associated axioms. Developments of maximum expected utility theory including prospect theory, regret theory and duality theory will be introduced. The results will be linked to system design.

COMP9596
Advanced Topics in Information Science
Staff Contact: Prof J. Hillier
C6 S1 or S2 HPW6
Prerequisite: Assumed knowledge 55.821G or equivalent.

This subject will integrate information science skills in an experimental situation involving software development and assessment. The subject will be project oriented. There may be a lecture portion that relates to statistical aspects of experimental design and hypothesis testing.

COMP9918
Project Report
C18
School of Electrical Engineering

Head of School
Professor G. A. Rigby

Executive Assistant to Head of School
Dr C. J. E. Phillips

Executive Officer
Mr K. J. Flynn

Administrative Assistant
Miss A. G. M. Johnson

The School comprises four departments and a Special Research Centre: Communications (all aspects of theory, applied electronics and engineering relating to communication systems and networks such as telephones, broadcasting and television); Electric Power (electrical machines and generation, distribution and utilisation of electric energy); Electronics (electronic circuits, devices, micro-electronics and application of electronics to such areas as solar power generation); Systems and Control (development of theories for the control of complex systems and the application of these theories including computer simulation). The Centre for Photovoltaic Devices and Systems conducts research into energy efficient silicon solar cells for electricity generation.

Electrical Engineering has close links with the pure sciences and mathematics. Its technology is changing rapidly, and the School's teaching and research programs are constantly under review to meet the ever-changing challenges of present and future needs.

The School offers undergraduate and graduate training in all branches of the profession of electrical engineering. A number of inter-departmental and specialised groups (such as Digital Systems, Biomedical Engineering, Measurement, Microelectronics, etc.) are also active.

Summary of Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Duration (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3640 BE</td>
<td>4 full-time</td>
</tr>
<tr>
<td>3645 BE</td>
<td>4 full-time</td>
</tr>
<tr>
<td>3720 BE and BA</td>
<td>5 full-time</td>
</tr>
<tr>
<td>3725 BE and BSc</td>
<td>5 full-time</td>
</tr>
</tbody>
</table>

Course 3645 is jointly administered by the Schools of Computer Science and Engineering, and Electrical Engineering.

The undergraduate curriculums are being progressively revised to provide a flexible training to suit the needs of today and tomorrow. Individual student needs can be further met by quite extensive substitution provisions within the course programs.

The formal graduate courses offered are: Master of Engineering Science in Electrical Engineering 8501; Graduate Diploma in Electrical Engineering 5458. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2660, Master of Science 2760 and Doctor of Philosophy 1640.

Recognition

The degree of Bachelor of Engineering (BE) is recognised by the Institution of Engineers, Australia and the Institution of Radio and Electronics Engineers, Australia, as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is also accorded to the BE courses by overseas engineering institutions.
Substitution of Subjects

General Education
Students must apply to the Director, Centre for Liberal and General Studies, for permission to substitute a subject for part, or all, of their General Studies (old rules) or General Education (new rules) requirement.

Other Subjects
To suit the special abilities or needs of individual students a limited amount of substitution is permitted within each course. Any such substitution must have prior approval of the Head of School who will ensure that:
1. The replacement subject is at least the same length and level as the prescribed subject it replaced; and
2. The resulting overall program of study is suited to the award of the degree as applicable.
Substitution is not permitted in Year 1.

Examples
(i) The normal Year 4 of the BE degree program includes 5 Professional Electives. Students may substitute for one of these electives, a subject of suitable level and difficulty from an area outside the School relevant to the profession of Electrical Engineering. A graduate subject of the School may also be substituted in this way, provided that the student has passed the Year 3 Electrical Engineering subjects at an adequate level.
(ii) Part-time BE students in full-time employment may request substitution of Industrial Electives (ELEC0931, ELEC0932, ELEC0933) for up to three subjects in the BE degree course. See Industrial Elective subject descriptions for details.

Undergraduate Study

Course Outlines

3640
Electrical Engineering - Full-time Course

Bachelor of Engineering
BE

Course 3640 has been revised and is shown below.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
<th>Year 2</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1806 Chemistry 1EE</td>
<td>3</td>
<td>S1 S2</td>
<td></td>
</tr>
<tr>
<td>COMP1011 Computing 1A</td>
<td>0</td>
<td>COMP1021 Computing 1B</td>
<td>6</td>
</tr>
<tr>
<td>ELEC1010 Introduction to Electrical</td>
<td>1.5</td>
<td>ELEC2010 Circuit Theory</td>
<td>2.5</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td>ELEC2011 System Theory</td>
<td>0</td>
</tr>
<tr>
<td>ELEC1011 Electrical Engineering 1</td>
<td>0</td>
<td>ELEC2012 Digital Circuits</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH1090 Discrete Mathematics</td>
<td>3</td>
<td>ELEC2015 Electromagnetic Applications</td>
<td>0</td>
</tr>
<tr>
<td>MECH0160 Introductory Engineering</td>
<td></td>
<td>ELEC2016 Electrical Design and Practice</td>
<td>2.5</td>
</tr>
<tr>
<td>Design and Drawing Practice</td>
<td>3</td>
<td>ELEC2020 Analog Electronics</td>
<td>0.5</td>
</tr>
<tr>
<td>MECH0360 Introductory Engineering Mechanics</td>
<td>3</td>
<td>MATH2110 Higher Vector Calculus</td>
<td>2.5</td>
</tr>
<tr>
<td>PHYS1969 Physics 1</td>
<td>6</td>
<td>MATH3150 Transform Methods</td>
<td>0</td>
</tr>
<tr>
<td>Total 25.5</td>
<td></td>
<td>MATH2610 Higher Real Analysis</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH2620 Higher Complex Analysis</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH2849 Statistics SE 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS2979 Electromagnetic Theory</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS2989 Solid State Physics</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One 56-hr or two 28-hr General Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>subject/s (Cat A)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totaling 23.5</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Note: Students who plan to specialize in Computer Science, Mathematics or Physics in a BE/BSc degree course should consult the School before enrolling in year 2.

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3010 Introduction to Electrical Energy</td>
<td>2.5</td>
</tr>
<tr>
<td>ELEC3011 Integrated Electronics</td>
<td>2.5</td>
</tr>
<tr>
<td>ELEC3012 Signals, Spectra and Filters</td>
<td>2.5</td>
</tr>
<tr>
<td>ELEC3013 Communication Systems 1</td>
<td>0</td>
</tr>
<tr>
<td>ELEC3014 Systems and Control 1</td>
<td>0.5</td>
</tr>
<tr>
<td>ELEC3020 Microprocessors and Interfacing</td>
<td>2.5</td>
</tr>
<tr>
<td>ELEC3110 Electrical Engineering Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>
3645

Computer Engineering – Full-time course

Bachelor of Engineering
BE

This course commenced in 1989, and is jointly administered by the Schools of Electrical Engineering, and Computer Science and Engineering. For course details refer to the entry under the School of Computer Science and Engineering.

Technical Electives – all courses

<table>
<thead>
<tr>
<th>Subject</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9062 Accounting for Engineers</td>
<td>1.5</td>
</tr>
<tr>
<td>CIVL0628 Civil Engineering</td>
<td>4</td>
</tr>
<tr>
<td>COMP2011 Data Organization</td>
<td>5</td>
</tr>
<tr>
<td>COMP2031 Concurrent Computing</td>
<td>0</td>
</tr>
<tr>
<td>ELEC3401 Reliability Engineering in Design and Development</td>
<td>0</td>
</tr>
<tr>
<td>ELEC3402 Introductory Physiology for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>FUEL0020 Fuels and Energy</td>
<td>0</td>
</tr>
<tr>
<td>MATS9640 Materials Science and Engineering for Electrical Engineers</td>
<td>0</td>
</tr>
<tr>
<td>MECH0760 Mechanical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PHYS2999 Mechanics and Thermal Physics</td>
<td>2</td>
</tr>
<tr>
<td>SAFE9533 Electrical Safety</td>
<td>0</td>
</tr>
</tbody>
</table>

Electrical Engineering Professional Electives – all courses

Professional Elective subjects in the Computer Science area require either COMP2011 or COMP2031 as a prerequisite. A free choice may not be possible. Each elective is 5 hours per week for one session.

<table>
<thead>
<tr>
<th>Subject</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC4042 Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ELEC4202 Power Systems</td>
<td></td>
</tr>
<tr>
<td>ELEC4215 Industrial Electrical Systems</td>
<td></td>
</tr>
<tr>
<td>ELEC4216 Electric Drive Systems</td>
<td></td>
</tr>
<tr>
<td>ELEC4240 Power Electronics</td>
<td></td>
</tr>
<tr>
<td>ELEC4303 Electromagnetic Wave Propagation</td>
<td></td>
</tr>
<tr>
<td>ELEC4313 Optical Communications</td>
<td></td>
</tr>
<tr>
<td>ELEC4323 Digital and Analog Communications</td>
<td></td>
</tr>
<tr>
<td>ELEC4333 Communication Systems 2</td>
<td></td>
</tr>
<tr>
<td>ELEC4351 Data Communications and Computer Networks</td>
<td></td>
</tr>
<tr>
<td>ELEC4352 Data Networks 2</td>
<td></td>
</tr>
<tr>
<td>ELEC4412 Systems and Control 2</td>
<td></td>
</tr>
<tr>
<td>ELEC4413 Digital Control</td>
<td></td>
</tr>
<tr>
<td>ELEC4432 Computer Control and Instrumentation</td>
<td></td>
</tr>
<tr>
<td>ELEC4483 Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>ELEC4503 Advanced Electronic Circuits</td>
<td></td>
</tr>
<tr>
<td>ELEC4512 Semiconductor Devices</td>
<td></td>
</tr>
<tr>
<td>ELEC4522 Microelectronics Design and Technology</td>
<td></td>
</tr>
<tr>
<td>ELEC4532 Integrated Digital Systems</td>
<td></td>
</tr>
<tr>
<td>ELEC4540 Applied Photovoltaics</td>
<td></td>
</tr>
<tr>
<td>COMP3211 Computer Organization and Design</td>
<td></td>
</tr>
</tbody>
</table>
Combined Courses

Students in Electrical Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. (The two degrees referred to here are the Bachelor of Engineering/Bachelor of Science BE BSc and the Bachelor of Engineering/Bachelor of Arts BE BA). Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Electrical Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate. Students wishing to enrol, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisite study, sequencing and academic attainment (a creditable performance, ie 65% average) of both the Course Authorities concerned.

Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. AUSTUDY support is available for the five years of the combined degree courses.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However the choice of subjects and the time taken to complete the program can be seriously affected by this. Thus, students considering course 3725 or course 3720 should contact the Electrical Engineering School before completing their Year 2 enrolment. Application for transfer to a combined course must be made in writing to the Head of School by the start of the third week of December in the year that they complete Year 2 of the BE degree course.

Students wishing to gain a degree at honours level in Arts or Science as part of their combined degree program shall meet all the relevant requirements of the Faculty concerned and of the appropriate Schools. Such students may enrol for the Honours year only on the recommendation of the Head of School of Electrical Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate.

Re-enrolment of students in Courses 3720 and 3725 each year is arranged by the School of Electrical Engineering.

3720 BE BA in Electrical Engineering

With this combined degree course students can add their choice of arts program to the standard, professionally accredited engineering course offered by the School of Electrical Engineering. The full range of Arts programs is available.

Because the engineering and arts programs have common content, such as mathematics and physics, only one more year of study is normally required to gain the additional qualification of Bachelor or Arts.

Eligibility

Anyone who meets the entry requirements for both Engineering and Arts is eligible for the combined course. Students may enter directly in first year or may apply to transfer from the normal engineering course later, although with late transfer it might not be possible to complete the course in minimum time.

Organization

The BE BA course is administered by the School of Electrical Engineering.

Students should start discussing their program with representatives of the School and the Faculty of Arts and Social Sciences as soon as possible - preferably well before enrolment. Enquiries should be directed to the Executive Assistant to the School and the Executive Assistant to the Dean of the Faculty of Arts and Social Sciences.

Students should work out for themselves the arts program they would like to add to their chosen engineering course. The Arts and Social Sciences Faculty Handbook describes the options, and the School of Electrical Engineering can supply sample programs showing what previous students have arranged.

There are no special rules on what to include in each year. Students should schedule the arts and engineering components to suit their preferences while meeting the constraints of timetables and prerequisites. The sample programs can help here too.

The Arts component must be approved by the Faculty of Arts and Social Sciences.

The final program and schedule must be approved by the School of Electrical Engineering.

Rules

1. In addition to the BE course, students must complete a major sequence offered within the BA course and meet the additional requirements listed below:

Faculty which provides the chosen major
Faculty of Arts and Social Sciences:
(minimum) 48 credit points total, including major sequence

Other Faculties:
Major sequence plus at least 12 Credit Points from Schools of the Faculty of Arts and Social Sciences.

Mathematics majors are not usually permitted. BE BSc combined degrees are more appropriate for this.
2. The requirements of the General Education Program must be met. In some cases subjects within the combined course may satisfy Category A and/or Category B guidelines. Students should consult the Centre for Liberal and General Studies for advice.

3. There will be a testamur for each part of the combined degree course.

4. Students who complete the BE program first may proceed to graduation with the degree of Bachelor of Engineering in the usual way.

5. Students who complete the requirements for their Arts program and the first two years of the BE program may proceed to graduation with the degree of Bachelor of Arts.

3725
BE BSc in Electrical Engineering

As noted above students wishing to transfer to the combined degree should contact the Electrical Engineering School Office before completing their Year 2 enrolment. After completing Years 1, 2 and 3 (modified where necessary as indicated below) of the Electrical Engineering course, students in their fourth year complete a specific program consisting of four Level III Science units chosen from related disciplines, the appropriate General Education electives and three or four other Level II or Level III units. The subjects chosen should be in accord with the rules of the BSc course 3970 leading to a major in Computer Science, Mathematics or Physics. In their fifth year students complete year 4 of the Electrical Engineering course.

Students may open up a wider choice of subjects in their Science year by including additional Computer Science (viz COMP2011 and COMP2031), in Years 2 and 3 or Physics (viz PHYS2999) in years 2 or 3 of their Electrical Engineering program. Any Electrical Engineering subject omitted will have to be taken later in the course. The extra subject in year 2 may be credited towards either the BE or the BSc requirements but not both.

Students who plan to specialise in Computer Science, Mathematics or Physics in a BE/BSc degree course should consult the School before enrolling in year 2.

Year 1 (Standard program for course 3640)
CHEM1806, COMP1011,
ELEC1010, ELEC1011,
MATH1032/MATH1042, MATH1090,
MECH0160, MECH0360,
PHYS1969

Year 2
COMP1021,
ELEC2010, ELEC2011, ELEC2012, ELEC2015,
ELEC2016, ELEC2020,
MATH2110, MATH2610, MATH2620, MATH2849,
MATH3150,
PHYS2979, PHYS2989,
General Education (Category A).

Computer Science majors add COMP2011 in Session 2 by moving 2 hours of General Education to Session 1. Higher Mathematics subjects may be taken at the ordinary level.

Physics majors may take the Higher Mathematics subjects at the ordinary level.

Year 3
ELEC3010, ELEC3011, ELEC3012, ELEC3013,
ELEC3014, ELEC3020, ELEC3110,
MATH2601, MATH2859, MATH3141,
Two from ELEC3015, ELEC3016 and Technical Elective,
General Education (Category B).

Computer Science majors must take COMP2031 as their Technical Elective. The Higher Mathematics subject MATH2061 may be taken at the ordinary level.

Physics majors must take PHYS2999 as their Technical Elective. The Higher Mathematics subject MATH2601 may be taken at the ordinary level.

Year 4
Refer to course 3970 in the Science Handbook for subject details. Any General Education deferred from Year 2 or 3 should be taken during this year.

Computer Science
Choose at least 7 Level II or Level III units including at least 4 Computer Science units at Level III with the balance being chosen from Level III Computer Science units and other Level II or Level III units from the Science Program 0600.

Mathematics
Choose at least 5 Mathematics units, 4 of which are Level III.

Choose at least 3 Level II or Level III units from the Science Program 1000.

Physics
Choose 7 Level II or Level III units of which at least 4 must be Level III Physics units chosen to include PHYS3010, PHYS3031, PHYS3030 and PHYS3060.

Year 5
Year 4 of the Electrical Engineering course.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

ELEC0802
Electrical Power Engineering
Staff Contact: Dr B. Farah
S2 HPW3
Prerequisite: PHYS1002 or equivalent (PHYS2920 or 6.851 for students in Course 3140)

The course deals with the principles and practice of electrical power apparatus, particularly the transformer, the dc motor and the ac motor. It also covers some of the electronic power converters for power supplies and for control of electrical machinery. The course commences with the basic circuit theory and phasor algebra relevant to the analysis of the above systems and then proceeds to the consideration of distribution of electrical power. It then covers the operation, analyses and characteristics of transformers, dc motors, ac motors and a few semiconductor power converter circuits. Rating and thermal consideration electrical apparatus are also treated.

ELEC0805
Electronics for Measurement and Control
Staff Contact: Dr B. Farah
S2 L2 T1

The use of electronics in mechanical systems and the processing of signals by analog and digital techniques. Revision of basic circuit theory, operational amplifier circuits and filtering. Digital logic using integrated circuits. Microcomputers and Microprocessors. Techniques for A/D and D/A conversion, measurement system interfacing to microprocessors.

ELEC0931
Industrial Elective

ELEC0932
Industrial Elective

ELEC0933
Industrial Elective

Prerequisites: for ELEC0931, ELEC0932, ELEC0933
Students must be in at least the third stage of part-time BE degree course and be in full-time approved employment or be pursuing an approved sandwich course.

Note: New enrolments in the part-time BE or sandwich course are not accepted, as those courses are no longer offered.

Each Industrial Elective represents one year of appropriate concurrent industrial experience for students in approved full-time employment. Students must submit evidence and a written report to the satisfaction of the Head of School. Some attendance at the University for verbal reporting may also be required.

A maximum of three such electives can be taken and they may be substituted for certain subjects in course 3640 requirements. The substitution is not available for work done during the first year of employment if this coincides with the first year of part-time enrolment. The period of employment claimed must precede the completion of the thesis ELEC4911. An Industrial Elective cannot be claimed for work submitted for credit as ELEC4911 Thesis. Details of the procedure for registering and the requirements to be met can be obtained from the School of Electrical Engineering.

ELEC1010
Introduction to Electrical Engineering
Staff Contact: A/Prof H.R. Outhred
S1 L1 T.5
Prerequisite: HSC Exam Score Range Required - 2 unit English (General) 53-100, or 2 unit English 49-100, or 3 unit English 1-50, 2 unit Contemporary English 60-100

Introduction to the nature and scope of electrical engineering, including communications, computing, electrical energy, electronics and systems. Careers for electrical engineers in public and private enterprise. Organisation, verbal and written communication and research skills in engineering.

ELEC1011
Electrical Engineering 1
Staff Contact: Dr E.H. Fooks
S2 L3 T3
Corequisite: PHYS1969 or equivalent

ELEC2010
Circuit Theory
Staff Contact: Prof I.F. Morrison
S1 L2 T.5
Prerequisites: ELEC1011, MATH1032
Corequisite: MATH2620 or MATH2520

Dynamic response of linear circuits: 1st and 2nd order circuits with DC sources, introduction to higher order circuits. Sinusoidal steady state operation: phasors, impedance and admittance; dynamic response of circuits driven by sinusoidal sources; linearity, network theorems; resonance, bandwidth, and quality factor. Two-port network: parameters, circuits as filters. Power in steady-state circuits; average and reactive power, power factor, power factor correction. Three-phase circuits: balanced and unbalanced steady-state operation; real and reactive power in balanced circuits, transient analysis. Operational amplifiers and ideal transformers.

ELEC2011
Systems Theory
Staff Contact: Dr D.J. Clements
S2 L2 T.5
Prerequisites: ELEC2010, MATH2610 or MATH2510
Corequisites: MATH3150, MATH2620, MATH2520
Continuous and discrete signals and their transformations. Properties of continuous and discrete systems. Linear time invariant systems. Low order differential and difference equations. Diagrammatic representations of systems. Impulse responses, step responses, convolution. Frequency responses, poles, zeros. Introduction to feedback, stability. Examples of systems will be taken from areas of circuits, analog and digital electronics, power and mechanical engineering, communications and control.

ELEC2012
Digital Circuits
Staff Contact: Dr T. Hesketh
S2 L1 T.5
Prerequisite: ELEC1011

ELEC2015
Electromagnetic Applications
Staff Contact: Dr T.R. Blackburn
S2 L2 T.5
Prerequisite: PHYS2979
Notes: Excluded ELEC2010, ELEC2011, ELEC2012

ELEC2016
Electrical Design and Practice
Staff Contact: Dr K.C. Daly
S1 L1 T1 S2 L1 T4
Prerequisite: ELEC1011, ELEC1010, PHYS1969
Corequisite: ELEC2010, ELEC2020, ELEC2012
Notes: Excluded ELEC2110, ELEC2111, ELEC2014.

ELEC2020
Analog Electronics
Staff Contact: Dr S.R. Wenham
S2 L2 T.5
Prerequisite: ELEC2010, PHYS2989 or PHYS2859
Operating principles and terminal characteristics of PN diodes, solar cells, bipolar and field effect transistors. Small signal models of devices, including h-parameter model. Analysis and design of low-frequency Class-A amplifiers, including choice of biasing method.

ELEC2030
Circuit Theory and Laboratory
Staff Contact: Prof I.F. Morrison
S1 L2 T.5
Prerequisite: ELEC1011, MATH1032
Corequisite: MATH2620 or MATH2520
Notes: Excluded ELEC2010. Only available to course 3645.

ELEC2033
Analog Electronics and Laboratory
Staff Contact: Dr S.C. Wenham
S2 L2 T.5
Prerequisite: ELEC2010, PHYS2989 or PHYS2859
Notes: Excluded ELEC2020. Only available to course 3645.
Operating principles and terminal characteristics of PN diodes, bipolar and field effect transistors, and thyristors. Small signal models of devices, including h-parameter model. Analysis and design of low-frequency Class-A amplifiers, including choice of biasing method. Laboratory work on circuits, devices and systems. Computer aided experimental work.

ELEC3010
Introduction to Electrical Energy
Staff Contact: A/Prof C. Grantham
S1 L2 T.5
Prerequisite: ELEC2015
Corequisite: ELEC3110
ELEC3011
Integrated Electronics
Staff Contact: Dr C.Y. Kwok
S1 L2 T.5
Prerequisite: ELEC2020
Corequisite: ELEC3110

ELEC3012
Signals, Spectra and Filters
Staff Contact: Dr D.H. Irving
S1 L2 T.5
Prerequisites: ELEC2011, MATH3150
Corequisite: MATH2849, MATH2859, ELEC3110

ELEC3013
Communication Systems 1
Staff Contact: A/Prof I. Korn
S2 L2 T.2
Prerequisite: ELEC3012 or ELEC3032
Overview of information acquisition, transmission and processing. Aims to enable students not specialising in this field to understand the communication problems they are likely to meet in their career, and to provide a background if they intend to specialise in communications. Topics include analogue to digital conversion (sampling, quantising, aliasing, pulse code modulation, delta modulation, time and frequency division multiplexing). Modulation and demodulation (amplitude, frequency and phase modulation, signal to noise ratio, noise figure, error probability, bandwidth, spectrum, intersymbol interference). Communication systems (radio wave propagation, antennas and arrays, modems, repeaters, equalisers, line coding).

ELEC3014
Systems and Control 1
Staff Contact: A/Prof P.D. Neilson
S2 L2 T.2
Prerequisite: ELEC3012 or ELEC3032
Consolidation and extension of basic material on continuous-time and discrete-time systems, and the relationships between them. Includes dynamic systems modelling, block diagrams, signal flow graphs, frequency and time domain relationships, stability criteria, Nyquist diagrams and root locus methods. Also includes introductory state space analysis.

ELEC3015
Electrical Energy
Staff Contact: A/Prof C. Grantham
S2 L2 T.2
Prerequisite: ELEC3010

ELEC3016
Electronic Signal Processing
Staff Contact: Dr C.Y. Kwok
S2 L2 T.2
Prerequisites: ELEC3011 or ELEC3031, ELEC3012 or ELEC3032

ELEC3020
Microprocessors and Interfacing
Staff Contact: I. Gorton
S1 L2 T.5
Prerequisite: ELEC2012
Notes: Excluded COMP3221.
Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The 68000 family and assembly programming language. Other microprocessors.

ELEC3031
Integrated Electronics + Laboratory
Staff Contact: Dr C.Y. Kwok
S2 L2 T.5
Prerequisite: ELEC2020
Notes: Only available to course 3645.
Analysis and design of bipolar and field effect transistor amplifiers. Applications of negative feedback. Differential amplifiers. Properties and applications of operational amplifiers. Analysis and design of sinusoidal oscillators. Includes the appropriate laboratory component from ELEC3110 Electrical Engineering Laboratory 3.

ELEC3032
Signals, Spectra and Filters + Laboratory
Staff Contact: Dr D.H. Irving
S1 L2 T.1.5
Prerequisites: ELEC2011, MATH3150
Corequisites: MATH2849, MATH2859
Notes: Only available to course 3645.
Analysis and processing of continuous and discrete signals: frequency response, transfer functions, and convolution. Generalised Fourier analysis: autocorrelation, cross-correlation and power density spectra. Linear system relations, ideal filters and distortionless transmission. Random signal theory: modelling random signals, nonlinear devices, linear system identification using cross-correlation. Analogue filters: poles and zeros,

ELEC3110
Electrical Engineering Laboratory 3
Staff Contact: Dr R. Radzyner
S1 T6
Prerequisite: ELEC2016
Corequisites: ELEC3020, ELEC3010, ELEC3011, ELEC3012
A programme of experiments and laboratory-based design exercises in electrical energy, electronic devices and circuits, signal processing and microprocessors.

ELEC3120
Electrical Energy Strand of ELEC3110
Staff Contact: Dr R. Radzyner
S1 T1
Notes: Excluded ELEC3110
A program of experiments and laboratory-based design exercises in electrical energy.

ELEC3121
Electronics Strand of ELEC3110
Staff Contact: Dr R. Radzyner
S1 T2
Notes: Excluded ELEC3110
A program of experiments and laboratory-based design exercises in electronic devices and circuits.

ELEC3122
Signals, Spectra and Filters Strand of ELEC3110
Staff Contact: Dr R. Radzyner
S1 T1
Notes: Excluded ELEC3110
A program of experiments and laboratory-based design exercises in signal processing.

ELEC3123
Microprocessor and Interfacing Strand of ELEC3110
Staff Contact: Dr R. Radzyner
S1 T2
Notes: Excluded ELEC3110.
A program of experiments and laboratory-based design exercises in microprocessors and their applications.

ELEC3402
Reliability Engineering for Design and Development
Staff Contact: H.S. Blanks
S2 L2 T2
Prerequisite: MATH2849 attempted
Corequisite: MATH2859
Notes: Excluded 6.044.
Part A: Quantified reliability, maintainability, availability achievement in design and development. Prediction of RAM. Redundancy design. Fault tree analysis. FMECA. Life cycle cost. RM programme management, including

ELEC3122
Reliability Engineering for Design and Development
Staff Contact: A/Prof B.G. Celler
S1 L2 T2
An introduction to biophysics and physiology for engineers. Cells, tissues and organ systems with emphasis on their functional and regulatory characteristics and their interaction. An introduction to computer models of physiological control systems demonstrating their value in understanding the dynamics of complex neural, hormonal and circulatory responses to changes in homeostasis.

ELEC4010
Introduction to Management for Electrical Engineers
Staff Contact: Prof G.A. Rigby
S1 L3 T1
Prerequisite: ELEC2016
The purpose of this subject is to introduce students to key management concepts and techniques in the context of electrical engineering. Topics to be discussed will be taken from accounting, economics, finance, marketing, decision-making techniques, operations research, project and strategic management, human resources, industrial relations and law.

ELEC4011
Ethics and Electrical Engineering Practice
Staff Contact: A/Prof H.R. Outhred
S2 L1 T1
Prerequisite: ELEC4010
An introduction to the ethical issues associated with electrical engineering practice. The role of the professional expert in society will be discussed and the nature of the decision making process will be examined. Social, political, environmental and economic considerations in decision making will be explored using case studies.

ELEC4042
Signal Processing
Staff Contact: Dr C.J.E. Phillips
S1 L2 T3
Prerequisite: ELEC3012
Analysis and processing of continuous-time (analog) and discrete-time (digital) signals and systems with emphasis on digital signal processing. Design and implementation of finite and infinite duration impulse response (FIR and IIR) digital filters. Aspects of nonlinear filtering techniques. Applications of the discrete Fourier transform (DFT), faster Fourier transform (FFT) algorithms and applications. Processing and analysis of random signals and noise; correlation functions, mean square estimation, Wiener filters and linear prediction. Adaptive signal processing; adaptive FIR filters, least mean-square (LMS) algorithm and applications. Spectrum estimation.
ELEC4202
Power Systems
Staff Contact: Dr R.J. Kaye
SS L2 T3
Prerequisite: ELEC3015

Review of basic concepts used in power systems analysis: phasors, complex power, systematic network analysis, three phase systems, the per-unit methodology. Some aspects of power systems analysis, including load flow and fault analysis. Distribution systems. An introduction to power system protection. Power systems planning: electricity pricing, demand side options, co-ordinated pricing and planning, practical tariffs.

ELEC4215
Industrial Electrical Systems
Staff Contact: Dr T.R. Blackburn
SS L2 T3
Prerequisite: ELEC3015

The design, operation, and maintenance of large industrial electric power systems. Protection and detailed fault calculations. Choice and use of protective equipment, including circuit interrupters, surge diverters and personnel protection. Testing of equipment and relevance of Standards (including safety and general wiring procedures). Insulation systems, their design and practical limitations. High voltage testing techniques and their use in insulation assessment of high, medium and low voltage industrial systems.

ELEC4216
Electrical Drive Systems
Staff Contact: A/Prof C. Grantham
SS L2 T3
Prerequisite: ELEC3010

ELEC4240
Power Electronics
Staff Contact: Dr K.C. Daly
SS L2 T3
Prerequisite: ELEC2020, ELEC3010, MATH3150
Notes: Excluded 6.212.

The course will be of interest to intending electronic specialists who want to know about techniques of designing high current electronic circuits using devices in the switching mode rather than in the linear mode as well as to power specialists who want to know of techniques of power conversion by other than electromechanical means. The course starts with coverage of the full spectrum of modern power semiconductor devices, their characteristics - both static and switching, their drive circuit design and protection techniques including the snubber. Topologies of power electronic circuits for applications in controlled rectification, inversion, dc-dc conversion and ac-ac conversion, their control techniques and characteristics will then be treated. Effects of power electronic circuits on supply systems will also be covered.

ELEC4303
Electromagnetic Wave Propagation
Staff Contact: Dr I. Skinner
SS L2 T3
Prerequisite: ELEC2015

ELEC4313
Optical Communications
Staff Contact: Prof P.L. Chu
SS L2 T3
Prerequisite: ELEC3013

ELEC4323
Digital and Analog Communications
Staff Contact: A/Prof I. Korn
SS L2 T3
Prerequisite: ELEC3013, MATH3150, MATH2859

ELEC4333
Communications Systems 2
Staff Contact: Prof T.B. Vu
SS L2 T3
Prerequisite: ELEC3013, ELEC3016

Modern communications systems from a systems point of view. Topics selected from: radar: Fundamentals of radio systems, CW radar, MTI and Pulse Doppler radar, tracking radar, synthetic aperture radar, electronic navigation aids, radio direction finding, VOR and dopper VOR, DME, hyperbolic systems of navigation aids, television systems: Monochrome and colour television systems, teletext, terrestrial and satellite TV transmission, the MAC transmission format and HDTV systems; satellite communications systems: satellite channel, antenna systems, effect of rainfall and atmospheric losses, receiver noise, link analysis, satellite transponders, FDMA, TDMA, CDMA, mobile satellite communications systems.
ELEC4351
Data Communication and Computer Networks
Staff Contact: Dr W.J. Dewar
SS L3 T2
Prerequisites: ELEC3013, ELEC3020

ELEC4352
Data Networks 2
Staff Contact: H. Mehrpour
SS L3 T2
Prerequisite: ELEC4351

Data transmission on telephone networks. High speed Local Area Networks (HSLANs) and Metropolitan Area Networks (MANs). Local area network interconnection. Protocol modelling and verification techniques. Analysis of protocols for data link, network and transport layers. TCP/IP protocols. Operating system views of communications; network protocol drivers, network servers.

ELEC4412
Systems and Control 2
Staff Contact: Prof N.W. Rees
SS L2 T3
Prerequisites: ELEC3012, ELEC3014
Notes: ELEC4432 recommended prerequisite.

ELEC4413
Digital Control
Staff Contact: Dr D.J. Clements
SS L2 T3
Prerequisites: ELEC3014, MATH2849, MATH2859
Notes: ELEC4412 recommended prerequisite.

Covers the design and implementation of digital control systems. The topics covered include: identification of discrete-time model parameters; pole placement and linear-quadratic controller design; observers; noise models and stochastic systems; minimum variance controllers; Kalman filtering; LQG control; introduction to ideas of adaptive control and robustness. Aspects of implementation are constantly emphasized.

ELEC4432
Computer Control and Instrumentation
Staff Contact: Dr K.W. Lim
SS L2 T3
Prerequisites: ELEC3014, ELEC3020,
Notes: ELEC3016 recommended prerequisite.

Design, evaluation and implementation of computer and microprocessor based control systems and instrumentation. The program is laboratory intensive. Topics covered include software systems for process control, the organisation of hardware systems for computer control, programmable logic controllers, robust implementation of digital controllers, smart sensors and instrumentation networks.

ELEC4483
Biomedical Engineering
Staff Contact: A/Prof B.G. Cellar
SS L2 T3
Prerequisites: ELEC3402, ELEC3014, ELEC3016

Application of signals and systems theory to the analysis and computer modelling of dynamic properties of physiological systems. Topics include descriptions of typical biomedical signals, statistical properties of signals, optimal filtering of physiological signals, ARIMA stochastic models of time series, forecasting or prediction methods, estimation of transfer function - noise models using least squares procedures, identification of multivariable nonlinear systems, computer modelling of stochastic signals and dynamic systems, and physiological adaptive control processes. Several laboratory experiments will be run concerned with computer simulation and analysis of models of cardiac, respiratory and nervous systems.

ELEC4503
Advanced Electronic Circuits
Staff Contact: Prof G.A. Rigby
SS L2 T3
Prerequisites: ELEC2020, ELEC3011 (ELEC3016 recommended)

Electronic devices circuits and subsystems for use in communications and signal processing. The emphasis is on high performance applications which require an understanding of device behaviour and advanced circuit design techniques. Topics include: high frequency models for bipolar and field effect devices, noise in systems, tuned amplifiers, power amplifiers, controlled gain amplifiers, AGC, multipliers, modulators and phase-locked loops.

ELEC4512
Semiconductor Devices
Staff Contact: Prof M.A. Green
SS L2 T3
Prerequisite: ELEC3011

Principles of operation and circuit characteristics of a range of semiconductor devices including bipolar diodes and transistors, MOS devices and circuits, charge-coupled devices, solar cells, light-emitting diodes, and semiconductor lasers. The lectures are supplemented by experimental work with a selection of these devices.
ELEC4522
Microelectronics Design and Technology
Staff Contact: Dr C. Y. Kwok
SS L2 T3
Prerequisites: ELEC3011, ELEC3016

ELEC4532
Integrated Digital Systems
Staff Contact: Prof G.R. Hellestrand
SS L2 T3
Prerequisites: ELEC2012 or COMP2021
Integrated circuit logic families with emphasis on MOS technologies, structured chip design, custom and semi-custom approaches, system architecture, computer aided design, layout considerations, timing estimates, circuit failures, faults, fault modelling, testing, design for testability.

ELEC4540
Applied Photovoltaics
Staff Contact: Dr S.R. Wenham
SS L2 T3
The use of solar cells (photovoltaic devices) as electrical power supplies based on the direct conversion of sunlight into electricity. The emphasis is placed on applications including system design and construction, although the properties of sunlight, the operating principles of solar cells and the interaction between sunlight and the cells are also treated.

ELEC4903
Industrial Training
Staff Contact: Dr D. Sutanto
Students enrolled in courses 3640, 3725 and 3720 must complete a minimum of 60 days industrial training. At least some of this must be obtained in Australia. Overseas employment must have prior approval. Students are required to submit to the School evidence from their employers confirming completion of the prescribed training and a report, typically 500 words long, summarising the work done and training received. Experience claimed as an industrial elective covers requirements for this subject. Students will formally enrol in this subject as part of the program for year 4.

ELEC4910
Thesis Part A
Staff Contact: Dr D. H. Irving
S1 HPW6
ELEC4911
Thesis Part B
Staff Contact: Dr D. H. Irving
S2 HPW12
This is done in the last two sessions of the BE degree course. For full-time students, six hours per week in the first session, and twelve hours per week in the second session are devoted to directed laboratory and research work on an approved subject under guidance of members of the lecturing staff. Part-time students may need to attend the University full-time in their final session or attend for one further part-time session, if facilities are not available for the thesis to be done at work. Generally, the thesis involves the design and construction of experimental apparatus together with laboratory tests. Each student is required to present a seminar, and a written thesis must be submitted on each project by the Tuesday of the fourteenth week of Session 1 or Session 2.
Graduate Study

The formal graduate courses offered are: Master of Engineering Science in Electrical Engineering 8501; Graduate Diploma in Electrical Engineering 5458. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2660, Master of Science 2760 and Doctor of Philosophy 1640.

Course Work Programs

8501
Master of Engineering Science in Electrical Engineering

MEngSc

Candidates may commence in Session 1 or Session 2 and must possess an appropriate level of knowledge for the program subjects chosen.

All candidates elect to study in at least one of the specific programs offered by the School of Electrical Engineering: each Program Co-ordinator will advise if applicants are adequately qualified to undertake the proposed subjects and must approve the chosen program.

All candidates must register in one of the following major areas and in at least one of its programs:

Major Area
Communications
Program Co-ordinator: Dr R.A. Zakarevicius
Programs:
1. Communication Electronics
2. Digital Communication and Systems
3. Microwave and Optical Communications
4. Signal Processing

Electric Power
Program Co-ordinator: Dr T.R. Blackburn
Programs:
1. Power Systems Engineering
2. Electrical Power Technology

Electronics
Program Co-ordinator: Dr R.S. Huang
Programs
1. Solid State Devices
2. Microelectronics
3. Photovoltaics

Systems and Control
Program Co-ordinator: Professor N.W. Rees
Programs:
1. Digital Systems and Control
2. Cybernetic Engineering and Advanced Robotics
3. Biomedical Engineering (see co-ordinator)

Programs listed would normally consist of 12 or 18 credits of course work and correspondingly a 12 or 18 credit project. However, other appropriate programs or subjects in the same major area or other areas may be substituted for the project allowing completion of the 30 credits by course work only.

Specialist Programs

Communications
Candidates must normally do 18 credits from the Communications area (an 18 credit project or 18 credits of coursework within one of the following programs).

1. Communication Electronics
One elective subject may be chosen from outside this program.

Compulsory subject
ELEC9340 Communication Electronics 3

Elective subjects
COMP9215 VLSI System Architecture and Design 3
COMP9221 Microprocessor Systems 3
ELEC9336 Television Systems 3
ELEC9341 Signal Processing 1 – Fundamental Methods 3
ELEC9343 Principles of Digital Communications 3
ELEC9353 Microwave Circuits: Theory and Techniques 3
ELEC9354 Microwave and Optical Devices 3
ELEC9403 Real Time Computing and Control 3
ELEC9503 Integrated Circuit Design 3

2. Digital Communication and Systems
At least three subjects must be taken from the following list and the remaining subjects from other graduate programs within the Department and School.

ELEC9336 Digital Communication Networks 3
ELEC9337 Data Networks 2 3
ELEC9338 Television Systems 3
ELEC9343 Principles of Digital Communications 3
ELEC9347 Digital Modulation 3

3. Microwave and Optical Communications
One of the three elective subjects may be chosen from outside this program.

Compulsory subjects
ELEC9350 Theory of Optical Fibres and Optical Signal Processing 3
ELEC9351 Propagation and Transmission of Electromagnetic Waves 3
ELEC9354 Microwave and Optical Devices 3
Elective subjects

- ELEC9352 Antenna Design and Applications 3
- ELEC9353 Microwave Circuits: Theory and Techniques 3
- ELEC9355 Optical Communications Systems 3

4. Signal Processing
One of the four elective subjects may be chosen from outside the program.

Compulsory subjects

ELEC9341 Signal Processing 1 – Fundamental Methods 3
ELEC9342 Signal Processing 2 – Advanced Techniques 3

Elective subjects

- ELEC9340 Communications Electronics 3
- ELEC9343 Principles of Digital Communications 3
- ELEC9350 Theory of Optical Fibres and Optical Signal Processing 3
- ELEC9370 Digital Image Processing Systems
- MATH5054 Advanced Mathematics for Electrical Engineers 3

Electric Power

Normally 12 or 18 credits of coursework and an 18 or 12 credit project as appropriate. At least three subjects should be chosen from one of the programs below, with the remainder from either program or from the list of relevant subjects in item 3.

1. Power Systems Engineering

- ELEC4202 Power Engineering 1 3
- ELEC4215 Industrial Electrical Systems 3
- ELEC9201 Power System Planning and Economics 3
- ELEC9202 Power Systems Operation and Control 3
- ELEC9203 Power System Analysis 3
- ELEC9204 Protection of Power Apparatus and Systems 3
- ELEC9222 Power Engineering Seminars (Occasional Elective) 3

2. Electrical Power Technology

- ELEC4202 Power Engineering 1 3
- ELEC4215 Industrial Electrical Systems 3
- ELEC9204 Protection of Power Apparatus and Systems (Occasional Elective) 3
- ELEC9214 Power System Equipment 3
- ELEC9215 Fields and Materials 3
- ELEC9231 Electrical Drive Systems 3
- ELEC9226 Electrical Services in Buildings 3

3. Relevant Subjects from other areas and disciplines

Relevant coursework subjects from other areas and disciplines are listed below. A limited number of credits from this group may be taken as part of an Electric Power program. Subject to the approval of the Postgraduate Advisor, a limited number of other elective subjects offered in the School of Electrical Engineering may also be included in the program.

- ACCT9062 Accounting for Engineers 3
- COMP9221 Microprocessor Systems 3
- ELEC4240 Power Electronics 3

Electronics

Normally 12 or 18 credits of coursework and an 18 or 12 credit project as appropriate. At least three subjects should be chosen from one of the programs below.

The remaining subjects may be chosen from one of the program lists or from the list of electives appropriate to that program.

Subject to the approval of the Electronics Department Program Co-ordinator, previously listed, a limited number of other subjects outside these lists may also be included in the program.

1. Solid State Devices

- ELEC4540 Applied Photovoltaics 3
- ELEC9354 Microwave and Optical Devices 3
- ELEC9501 Advanced Semiconductor Devices 3
- ELEC9502 Integrated Circuit Technology 3
- ELEC9504 Solar Energy Conversion 3
- ELEC9507 Solar Cells and Systems 3

2. Microelectronics

- COMP9215 VLSI Systems Architecture Design 3
- ELEC9340 Communication Electronics 3
- ELEC9501 Advanced Semiconductor Devices 3
- ELEC9502 Integrated Circuit Technology 3
- ELEC9503 Integrated Circuit Design 3

Additional elective subjects for both programs:

- COMP9221 Microprocessor Systems 3
- ELEC4532 Integrated Digital Systems 3
- ELEC4540 Applied Photovoltaics 3
- ELEC9341 Signal Processing 1 – Fundamental Methods 3
- ELEC9342 Signal Processing 2 – Advanced Techniques 3
- ELEC9343 Principles of Digital Communications 3
- ELEC9353 Microwave Circuits: Theory and Techniques 3

3. Photovoltaics

- ELEC4540 Applied Photovoltaics 3
- ELEC9501 Advanced Semiconductor Devices 3
- ELEC9502 Integrated Circuit Technology 3
- ELEC9504 Solar Energy Conversion 3
- ELEC9507 Solar Cells and Systems 3
- ELEC9508 High Efficiency Silicon Solar Cells 3

Additional electives for the above program:

- COMP9221 Microprocessor Systems 3
- ELEC4202 Power Systems 3
- ELEC4240 Power Electronics 3
- ELEC9201 Power System Planning and Economics 3
GRADUATE STUDY ELEC 83

ELEC9202 Power System Operation, Control and Protection 3
MECH9720 Solar Thermal Energy Design 3
MECH9741 Energy Conservation and Systems Design 3
SAFE9213 Introduction to Safety Engineering M 3

Systems and Control

1. Digital Systems and Control
Normally 18 credits of course work and a 12 credit project.

Compulsory subjects
ELEC9401 Computer Control Systems 1 3
ELEC9402 Computer Control Systems 2 3
ELEC9403 Real Time Computing and Control 3
ELEC9404 Topics in Digital Control 3

Elective subjects
COMP9221 Microprocessor Systems 3
ELEC9342 Signal Processing 2 – Advanced Techniques 3
ELEC9405 Advanced Control Topics 3
ELEC9410 Robotics, Automation and Productivity Technology 3
ELEC9415 Optimization and Optimal Control 3
ELEC9416 Non-Linear Systems and Simulation 3

2. Cybernetic Engineering and Advanced Robotics
Normally 9 credits of course work and a 12 credit project. Remaining 9 credits may be taken from the elective list or other programs and subjects.

Compulsory subjects
ELEC9407 Cybernetic Engineering 3

Elective subjects
COMP9221 Microprocessor Systems 3
ELEC9342 Signal Processing 2 – Advanced Techniques 3
ELEC9370 Digital Image Processing Systems 3
ELEC9403 Real Time Computing and Control 3
ELEC9405 Human Movement Control Systems 3
ELEC9411 Introductory Physiology for Engineers 3

5458
Graduate Diploma in Electrical Engineering

GradDip
Details of the recommended programs of study may be obtained from the Head of the School of Electrical Engineering. Subjects offered in the Masters programs can be taken in the Graduate Diploma programs subject to the approval of the course coordinator.

In addition the following subjects are offered specially for Graduate Diploma candidates. Not all electives are necessarily offered in any particular year.

Compulsory subjects
ELEC9224 Special Topic in Power 2
ELEC9225 Special Topic in Power 2
ELEC9411 Introductory Physiology for Engineers 3

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

Department of Electric Power Engineering

ELEC9201 Power System Planning and Economics
Staff Contact: A/Prof H.R. Outhred C3
Review of conventional planning techniques and their limitations. Introduction of a novel approach based on welfare maximisation. Examples of its application to coordinated supply and demand side planning in problems such as demand forecasting, supply reliability, maintenance scheduling, transmission planning and demand management.

ELEC9202 Power System Operation and Control
Staff Contact: Dr R.J. Kaye C3
Introduction to the main techniques currently used in the operation and control of power systems, including operations planning. Current trends in the evolution of the structure of electricity industries in various parts of the world and their implications for power system operations. The subject is in three parts: A: Practices in Power System Operation and Control, B: Trends in Power Industry Structure, C: Operations and Scheduling in a Decentralised Power System.

ELEC9203 Power System Analysis
Staff Contact: Dr D. Sutanto C3 S2
Prerequisite: Assumed knowledge ELEC4202 or equivalent
Notes: Excluded 6.203.
Emphasis on interconnected system operation, performance and control. Digital computer techniques for power system operation, performance and control. Digital

ELEC9204
Protection of Power Apparatus and Systems
Staff Contact: Prof I.F. Morrison
C3
Prerequisite: Assumed knowledge ELEC4202 or equivalent

ELEC9214
Power System Equipment
Staff Contact: Dr T.R. Blackburn
C3
Prerequisite: Assumed knowledge ELEC4202 or equivalent

Operating characteristics and design features of the major equipment components of a power system. Includes a general treatment of equipment rating, thermal design, electrodynamic forces, equipment protection and data acquisition. Specific items of equipment include power transformers, instrument transformers, switchgear, overhead lines and underground cables, surge arrestors, gas insulated systems, power factor correction equipment and alternators. Protection of electrical equipment. Effects of electromagnetic fields on personnel.

ELEC9215
Fields and Materials
Staff Contact: Dr T.R. Blackburn
C3

General description of the inter-relationship between the different types of fields (electrical, magnetic and thermal) and materials when used in various areas of electrical power engineering. Topics include: a general coverage of dielectric, conducting, magnetic and thermal materials; solution of Poisson's Laplace's and Fourier's equations for simple geometries and calculation of electric, magnetic and thermal fields, including boundary effects; a selection of typical applications from thermal rating, electric heating, contact effects, laser action, surface electron emission, etc; a brief outline of some measurement techniques applicable to the above.

ELEC9221
Special Topic in Power
Staff Contact: Prof I.F. Morrison
C3

This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9222
Special Topic in Power
Staff Contact: Prof I.F. Morrison
C3

This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9223
Power Engineering Seminar
Staff Contact: Dr R.J. Kaye, Prof I.F. Morrison
C3

Weekly seminars given by members of the staff, postgraduate students and invited speakers, covering aspects of power and energy engineering. Outside speakers will be drawn from other universities, research institutions and industry. The purpose of the course is to expose students to the range of research and development activities within the power engineering discipline.

ELEC9224
Special Topic in Power
Staff Contact: Prof I.F. Morrison
C2

The content of this subject changes to allow presentation of a special topic of current interest in a short course format.

ELEC9225
Special Topic in Power
Staff Contact: Prof I.F. Morrison
C2

The content of this subject changes to allow presentation of a special topic of current interest in a short course format.

ELEC9226
Electrical Services In Buildings
Staff Contact: Dr D. Sutanto
C3
Prerequisite: Assumed knowledge: ELEC3010, ELEC3015

ELEC9231
Electrical Drive Systems
Staff Contact: A/Prof C. Grantham, Dr F. Rahman
C3
Notes: Excluded ELEC4216

Department of Communications

ELEC9330
Special Topic
Staff Contact: Dr R.A. Zakarevicius
C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9336
Digital Communication Networks
Staff Contact: Prof T.B. Vu
C3
Notes: Excluded ELEC9337, ELEC4351, ELEC4352.
Introduction to data communication. Analog versus digital transmission. Transmission media. LAN's; WAN's; ISDN. Protocols: IEEE standards for LAN's; fibre optic networks; satellite networks. OSI reference model. Some design issues and examples: topics include error detection and correction; routing and congestion control; internetworking; connection management; data representation and coding; file management; electronic mail.

ELEC9337
Data Networks 2
Staff Contact: Dr W.J. Dewar
C3
Prerequisite: ELEC4351.

ELEC9338
Television Systems
Staff Contact: Dr R.A. Zakarevicius
C3
Prerequisites: ELEC9351, ELEC9341
Notes: Excluded ELEC4042.

ELEC9340
Communication Electronics
Staff Contact: Dr R.A. Zakarevicius
C3
Prerequisite: Assumed knowledge ELEC3016 or similar
Electronic aspects of modern analogue and digital communication systems. Topics selected from: electronic systems design; electromagnetic compatibility and interference; electronic system noise; analogue modulators, demodulators, frequency conversion circuits, AM and FM transmitters and receivers; television electronics; phase locked loops; switched capacitor and other practical filter technologies; surface acoustic wave devices.

ELEC9341
Signal Processing 1 – Fundamental Methods
Staff Contact: Dr R. Radzyner, A/Prof W.H. Holmes
C3
Notes: Excluded ELEC4042.
Analysis and processing of analogue and digital signals with emphasis on digital methods. The topics covered are: Convolution, correlation, energy and power density spectra for signals and linear systems; sampling and analogue to digital conversion; the discrete Fourier transform (DFT) and fast Fourier transform (FFT) algorithms and applications; fundamentals of digital filter design and realization; finite word length effects in digital filters; digital processing of analogue signals, especially implementations on programmable digital signal processing (DSP) chips.

ELEC9342
Signal Processing 2 – Advanced Techniques
Staff Contact: Dr R. Radzyner, A/Prof W.H. Holmes
C3
Prerequisite: ELEC4042, ELEC9341 or similar
Advanced techniques and applications of digital signal processing. Topics covered are: advanced frequency domain signal analysis, including spectral estimation; advanced digital filtering methods: signal processing with finite word lengths; sampling rate conversion and multirate signal processing; least square detection and estimation methods, including linear prediction; adaptive filtering in detection and estimation problems; nonlinear digital signal processing; two and three dimensional signal processing; applications in communications, control, radar, sonar and in the processing of speech, audio, image and seismic signals (e.g. equalization, echo cancellation, noise reduction, deconvolution).

ELEC9343
Principles of Digital Communications
Staff Contact: A/Prof I. Kom
C3
Prerequisite: ELEC9341 or similar
Notes: Excluded ELEC4042.

ELEC9347
Digital Modulation
Staff Contact: A/Prof I. Kom
C3
Prerequisite: ELEC9343 or similar
A research orientated, advanced treatment of digital modulation and detection in Gaussian and fading channels.
Modulation includes: M-ary ASK, PSK, DPSK, QASK, OQASK, FSK and CPM (including MSK).

Detection includes: coherent, partially coherent and noncoherent like differential phase detection for DPSK, FSK and CPM and limiter-discriminator detection and limiter-discriminator-integrator detection for FSK and CPM. Channels include: Gaussian, Rician (Satellite Mobile), Rayleigh (Land Mobile) with frequency selective fading and Doppler frequency shifts. Analysis and design includes: probability of error formulas and bounds; power spectral density and bandwidth; effect of intersymbol, cochannel and adjacent channel interference; symbol constellations, equalization; partial response, full response and Nyquist signals; complexity and comparisons.

ELEC9350
Theory of Optical Fibres and Optical Signal Processing
Staff Contact: Prof P.L. Chu
C3

ELEC9351
Propagation and Transmission of Electromagnetic Waves
Staff Contact: Dr E.H. Fooks
C3

ELEC9352
Antenna Design and Applications
Staff Contact: Prof T.B. Vu
C3
Prerequisite: ELEC9351
Principles of phased arrays and reflector antennas with some emphasis on space-borne and ground-terminal antennas for satellite communications. Analysis and synthesis of phased array, null steering theory. Single and dual reflector antennas, offset- reflector systems, optimization techniques. Effects of satellite orbital saturation on design of ground terminal antennas. Monopole tracking antennas. Antenna tolerance theory.

ELEC9353
Microwave Circuits: Theory and Techniques
Staff Contact: Dr E.H. Fooks
C3

ELEC9354
Microwave and Optical Devices
Staff Contact: Dr R.A. Zakarevicius
C3
Principles and applications of microwave amplifying and control devices. Includes microwave transistors, Gunn and impact diodes and recent developments in ultra high speed transistors. Principles and applications of optical sources and detectors. Includes lasers, LEDS, optical detectors.

ELEC9355
Optical Communications Systems
Staff Contact: Prof P.L. Chu
C3
Prerequisites: ELEC9350, ELEC9354

ELEC9370
Digital Image Processing Systems
Staff Contact: Dr C.J.E. Phillips
C3
The fundamentals of digital image processing with topics selected from the following: Visual perception and the image model, transforms, enhancement, sharpening and smoothing, restoration, encoding, segmentation, reconstruction of images from projections and tomography, satellite imaging and imaging in remote sensing; image processing hardware and systems; picture processing; measurement and inspection.

Department of Systems and Control

ELEC9401
Computer Control Systems 1
Staff Contact: A/Prof P.D. Neilson
C3
An introduction to the use of CAD packages and coverage of the control theory necessary to understand the design of fundamental control systems. Selected computer
packages, sampling and conversion, difference equation models, polynomial forms, z-transforms, differential equation models, operator forms, s-transforms, block diagrams, flow diagrams and state space models, connections between discrete and continuous models, classical continuous design, Root locus, Nyquist, Bode, classical discrete design, w-transforms, PID controllers, simple controller design schemes (time polynomial), Dahlin Higham, pole placement, approximations, Smith predictor, deadbeat, stochastic observers, pre-whitening, stochastic processes, time domain, frequency domain, correlation, identification, moving average models.

ELEC9402
Computer Control Systems 2
Staff Contact: A/Prof P.D. Neilson
C3
Prerequisite: ELEC9401
Builds on the material of 6.401G, completing coverage of basic material considered necessary for modern control system synthesis and design. Revision of model forms: discrete-continuous, polynomial-state space. Observability, controllability, observers – deterministic, stochastic processes, stochastic models, innovation models, prediction, multivariable PI tuning, linear quadratic regulator design, Kalman filtering, stochastic control, LQG, disturbances, measured disturbances, feedforward control, estimated disturbances, identification, simultaneous estimation of states and parameters, simple adaption, servomechanism problems, cascade control, multiple sampling rates, non-linear elements.

ELEC9403
Real Time Computing and Control
Staff Contact: Dr T Hesketh
C3
Prerequisites: ELEC9401 or assumed knowledge equivalent to ELEC4432 or ELEC4413
Examines the implementation of modern control techniques and associated instrumentation using distributed computers. Practical hardware aspects, including measurement and actuation, data conditioning, acquisition and transmission, microprocessor devices, and other distributed computing components. Commercial realisations ranging from PLCs to full process control computing systems. Software: executive operating systems, concurrency, control algorithms, numerical problems, languages and development tools in the real-time context. Design of the man-machine interface using interactive computer display systems. The role of simulation and other CAD tools. Steps of engineering development from concept to commissioning. The viewpoint of industrial design is maintained throughout.

ELEC9404
Topics in Digital Control
Staff Contact: Prof N.W. Rees
C3
Prerequisites: ELEC9401, ELEC9402
Possible modules include: identification, estimation, multivariable systems, robust control, optimisation, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, variable structure systems, expert systems and fuzzy control.

ELEC9405
Advanced Control Topics
Staff Contact: A/Prof P.D. Neilson
C3
Prerequisites: ELEC9401, ELEC9402
From one to three models, covering advanced control theory, with an emphasis on applications. The modules are not limited to digital control. Typical modules include: identification, estimation, multi-variable systems, robust control, optimization, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, non-linear identification, non-linear control, variable structure systems, expert systems and others to be decided.

ELEC9407
Cybernetic Engineering
Staff Contact: A/Prof K.E. Tait
C3
The genesis of cybernetics; fundamentals of cybernetic engineering; machines modelled on life and their evolution to robots. Topics include biological information transmission, memory and efficiency with aspects of biochemical coding and control, genetic and neural; basics of brain models and the development of pattern recognition techniques, learning machines and syntactic structures; includes the Perceptron view and brain modelling; neural networks and neural computing; the albus approach to robotics, anthropomorphic robots; the social consequences of the dual evolution of robots.

ELEC9409
Cybernetic, Machine and Robot Vision
Staff Contact: A/Prof K.E. Tait
C3
Prerequisite: Assumed knowledge ELEC9370 or equivalent
Material oriented towards image understanding, scene analysis and world models for robots incorporating vision; including imaging techniques and geometries for vision, modelling the imaging process and image understanding, edges, range information, surface orientation, boundaries and regions, motion and optic, flow, texture, structural description, matching and inference, vision robotics.

ELEC9410
Robotics, Automation and Productivity Technology
Staff Contact: A/Prof K.E. Tait
C3
Principles of Robotics relevant to trends in automating the manufacturing process. Such aspects as arm configurations, dynamics and control with relevant sensing methods; assembly and control together with trends in artificial intelligence for Robotics are discussed.

ELEC9411
Introductory Physiology for Engineers
Staff Contact: A/Prof B.G. Celier
C3 S1 L2 T2
Notes: Excluded ELEC3402.
This subject is intended primarily for Biomedical Engineering students. It is compulsory for Strand A, part-time students ONLY who are unable to do PHPH2112.
An introduction to biophysics and physiology for Engineers. Cells, tissues and organ systems with emphasis on their functional and regulatory characteristics and their interaction. An introduction to computer models of physiological control systems demonstrating their value in understanding the dynamics of complex neural, hormonal and circulatory responses to changes in homeostasis.

ELEC9412
Biological Signal Analysis
Staff Contact: A/Prof P.D. Neilson
C3
Notes: Excluded ELEC9341.
Digital computer methods of extracting information from biological signals using filtering and averaging, expectation density functions, correlation functions, spectral analysis and other techniques. Methods of constructing models of biological systems.

ELEC9415
Optimisation and Optimal Control
Staff Contact: Dr D.J. Clements
C3 SS
Prerequisites: 1 undergraduate Control subject plus MATH2501
Constrained and unconstrained optimisation, Euler, Bernoulli, Lagrange. Linear quadratic and geometrical programming techniques, the simplex method, Kuhn-Tucker necessary conditions, gradient methods. Dynamic optimisation, dynamic programming, the optimum principle. Design control systems by optimisation methods, optimisation of parameters, decoupling and other methods. Introduction to integer programming.

ELEC9416
Non-linear Systems and Simulation
Staff Contact: Prof N.W. Rees
C3 SS
Prerequisites: 1 undergraduate Control subject plus MATH2501
Dynamic and static non-linear systems; Non-linear control, phase plane, describing function, stability, Liapunov, Popov and the circle criterion, special systems. Simulation and Non-linear systems, numerical methods, simulation languages and shells, CACE, intelligent interfaces, discrete event simulation.

Department of Electronics

ELEC9502
Integrated Circuit Technology
Staff Contact: Dr R.S. Huang
C3
Technologies for the fabrication of bipolar, CMOS, and BiCMOS VLSI integrated circuits. Includes technology modules of Crystal growth, wafer preparation, masking and etching, photolithography, oxidation, diffusion, ion implantation, plasma processing, thin film deposition andmetallization. Advanced technologies such as GaAs high speed IC and SOI for radiation hard or 3-D integration are briefly discussed. Process integration and the link of device physics, circuit design to technology development are emphasized.

ELEC9503
Integrated Circuit Design
Staff Contact: Dr C.Y. Kwok
C3
Prerequisite: Assumed knowledge ELEC3016 or 6.322
An advanced treatment of the design of integrated circuits with emphasis on the relationships between technology, device characteristics and circuit design. Includes properties and modelling of bipolar and MOS circuit components, circuit analysis and simulation, layout rules, analog functions such as operational and power amplifiers; multipliers, D A and A D converters. Analog MOS circuits. Switch capacitor filters. Digital circuits include gates, compound functions, RAM, ROM, speed and power analysis. Economics and yield analysis for MSI, LSI and VLSI devices.

ELEC9504
Solar Energy Conversion
Staff Contact: Dr R.S. Huang
C3

ELEC9506
Special Topic In Electronics
Staff Contact: Dr R.S. Huang
C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

ELEC9507
Solar Cells and Systems
Staff Contact: Dr. S. Wenham
C3
Prerequisites: ELEC4540 or similar
Harnessing of sunlight by using solar cells to convert it directly into electricity. The main emphasis is placed on applications including systems design, construction and operation with this subject building on the material introduced in the subject Applied Photovoltaics. Grid connected systems receive particular attention. Factors important in the design of solar cells are also studied with regard to their effects on spectral response, temperature sensitivity, resistive losses, current generation and open
circuit voltages. A range of solar cell technologies are considered both at the laboratory and commercial levels. Advanced concepts and designs for photovoltaic modules and batteries are considered. Experience will be gained with the computer aided design procedures for photovoltaic systems. Management and entrepreneurial approach in relation to starting a small business within the photovoltaic industry are considered.

ELEC9508
High Efficiency Silicon Solar Cells
Staff Contact: Prof M.A. Green
C3
Prerequisite: ELEC9501 (or equivalent)

This is an advanced level subject for those with a good background in semiconductor device physics and an interest in silicon solar cells or related devices. After a brief review of the crystal structure, energy bands and phonon spectra of silicon, the course examines silicon's optical, recombination and transport properties in some detail. Next comes a discussion of efficiency limits upon photovoltaic energy conversion, with particular emphasis upon light trapping and the potential for exceeding conventional limits. After discussion of presently achievable surface and bulk material properties, the final section of the course studies in detail the design of silicon cells upon both crystalline and multicrystalline substrates and under concentrated and non-concentrated sunlight.

Project Reports

ELEC9912
Project Report
Staff Contact: A/Prof K.E. Tait
C12

The project is done in a major area, in which it is offered under the supervision of an academic member of staff. Where the work is carried out externally a suitable co-supervisor may be required. Projects can take many forms such as the design and construction of experimental equipment or a theoretical investigation. At the end of the work a comprehensive project report giving an account of the student's own research must be submitted. Information on the preparation of project reports is contained in the University Calendar. The 12 credit project is not available in all areas.

ELEC9918
Project Report
Staff Contact: A/Prof K.E. Tait
C18

As above. The 18 credit project is not available in all major areas.
School of Mechanical and Manufacturing Engineering*

*Incorporating Aerospace Engineering and Naval Architecture

Head of School
Professor B.E. Milton

Executive Assistant to Head of School
Dr E.M. Kopalinsky

Administrative Officer
Mr A.D. Bauman

The School comprises seven departments: Aerospace Engineering (design, manufacture, and operation of aircraft and spacecraft); Applied Mechanics (engineering mechanics and mechanics of solids); Design (conceptual design, machine systems design, optimization and failure analysis); Fluid and Thermal Engineering (energy utilization and power generation, refrigeration and air conditioning, gas and liquid handling); Industrial Technology and Management (economic analysis, production planning and control, product and process design, methods engineering and operations research); Mechatronics (interface between mechanical engineering and electronic engineering); Naval Architecture (analysis and design of marine vehicles such as ferries, catamarans, yachts and ships).

In addition, there are six Directed Programs of industry-oriented cross-disciplinary activity. These are Manufacturing and Automation; Mechanical Building Services; Maintenance Engineering; Energy and Power Systems; Vehicle and Transport Systems; Machine Systems Design.

The Centre for Advanced Numerical Computation in Engineering and Science and the Centre for Manufacturing and Automation are located in the School.

The School offers courses in Aerospace Engineering, Mechanical Engineering, Manufacturing Management and Naval Architecture, either singly or in combination with Science or Arts degree courses.

No formal part-time courses are offered by the School. However, it is possible for students to undertake studies with a reduced program. Students intending to take a reduced program are advised that very few undergraduate subjects are offered in the evening.

Formal graduate courses offered are: the Master of Engineering Science in Industrial Engineering 8531 and in Mechanical Engineering 8541, and the Graduate Diploma in Industrial Engineering 5455 and Mechanical Engineering 5456. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2680 and 2692 and Doctor of Philosophy 1662.

The Co-operative Program

The School offers the 'Co-op Program', an industry-linked course, for each of the above 4 degrees. In the Co-op Program, students are funded from scholarships awarded by Australia's premier industries.

Co-operative scholars are selected largely on the basis of academic attainment, personal skills and motivation, as well as on non-academic achievements. Together with receiving a rigorous and broadly-based academic education, scholars gain first-hand experience in a wide variety of industries during 5 industrial training periods. These take place at the end of year 1, end of year 2, second half of year 3, first half of year 4 and end of year 4. Hence, the total duration of the course is 5 years, comprising the normal 4 academic years and more than 1 year of experience in industry.
Because of this pattern, the normal third academic year is not taken over consecutive sessions but is incorporated into years 3 and 4 of the program. This twelve month period is spent at two different industries. Scholars must be prepared to sacrifice leisure during non-academic periods to gain the considerable practical training available.

Undergraduate Study

Course Outlines

Summary of Courses

The courses, which lead to the award of the degree of Bachelor of Engineering (BE) are planned to provide the appropriate academic training for the professional engineer in the fields of aerospace, manufacturing and mechanical engineering, and for the naval architect.

The School also offers combined courses in conjunction with other faculties of the University, leading to the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc) or Bachelor of Engineering and Bachelor of Arts (BE BA). These combined courses enable students to major in the area of computer science, materials science, mathematics, physics, statistics or another relevant field, in addition to studying their chosen engineering specialty.

For the four BE courses, the study of the basic sciences – mathematics, physics and chemistry – together with an introduction to engineering, comprise year 1. In year 2 further mathematical studies are undertaken, together with a study of the engineering sciences – thermodynamics, fluid mechanics, engineering mechanics, mechanics of solids – and their application in the field of design.

The first halves of the courses of Mechanical Engineering, Manufacturing Management and Aerospace Engineering and of Naval Architecture are identical, and students attend classes together. The latter halves of these four courses contain a number of common core subjects together with specific disciplinary requirements. In the final year in the Mechanical Engineering course, in addition to core subjects and disciplinary requirements, provision is made for a limited degree of specialization in one or more elective subjects. A student with a good academic record may also take, subject to the approval of the Head of School, some graduate subjects offered by the School in lieu of an equivalent quantity of final year undergraduate electives. Each student is required to submit a thesis at the end of the final year and to deliver a short paper on the subject of the thesis.

General Education Program

Requirements for General Education elective and prescribed subjects are as follows: year 2 - one 56 hour or two 28 hour subject/s from Category A; year 3 - one 56 hour or two 28 hour subject/s from Category B. The key questions and issues to be addressed in Category C will be considered in the following subjects: MECH1000/MECH2000/MECH3000/MECH4001 Professional Studies 1-4, MECH1100/MECH2100/MECH3100 Mechanical Engineering Design 1-3, MANF3400 Engineering Economics, MANF4400 Engineering Management, MECH4002 The Engineer in Society.

Industrial Experience

Industrial experience is an integral part of the courses. This can be taken within Australia or overseas. Students must complete forty working days of approved industrial experience between both years 2 and 3 and years 3 and 4. Students are strongly recommended to gain as much industrial experience as possible between years 1 and 2. Students who have had suitable experience in industry may qualify for exemption from certain subjects. The Head of School should be contacted for details.

Recognition

The Institution of Engineers, Australia, recognizes the degree of BE in any of the undergraduate courses offered by the School as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is accorded to the BE degree courses by overseas engineering institutions.

The award of the BE degree in Aerospace Engineering is recognized by the Royal Aeronautical Society as giving exemption from the formal examination requirements for corporate membership. Advancement from graduate membership to associate membership grade is awarded on a case by case basis after a further period of some years of professional experience.

The award of the BE degree in Naval Architecture is recognized by the Royal Institution of Naval Architects (RINA), London, as the academic qualification for corporate membership of that body.

Course Progression Guidelines

The student’s attention is directed to the Faculty’s General Rules for Progression contained in this Handbook. As well, the following points should be noted.

- A student who is faced with compiling a mixed year’s program must give preference to subjects from the lower year of the course.

- In the event of a student dropping one or more subjects from a mixed year’s program, the discarded subjects must be chosen from the higher year’s selection.

- The subjects MECH4000 Thesis and MECH4001 Professional Studies 4 can be taken only in the final year of a student’s program.
3610
Aerospace Engineering

3663
Manufacturing Management

3680
Mechanical Engineering

3700
Naval Architecture

Bachelor of Engineering
BE

HPW

<table>
<thead>
<tr>
<th>Years 1 and 2 of all courses</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1807 Chemistry 1ME</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MANF1100 Workshop Technology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MANF1110 Manufacturing Technology</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MECH1000 Professional Studies 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MECH1100 Mechanical Engineering Design 1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MECH1110 Graphical Analysis and Communication</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH1300 Engineering Mechanics 1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH1400 Mechanics of Solids 1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH1500 Computing 1M</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS1919 Physics 1 (Mechanical Engineering)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Totalling</td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>

An alternative ‘Science compatible’ course which can be undertaken by all students, and which must be undertaken by potential combined degree BE BSc students, is:

Year 1

<table>
<thead>
<tr>
<th>Courses</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1807 Chemistry 1ME</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MANF1100 Workshop Technology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MANF1110 Manufacturing Technology</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MECH1000 Professional Studies 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MECH1100 Mechanical Engineering Design 1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MECH1110 Graphical Analysis and Communication</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH1300 Engineering Mechanics 1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH1400 Mechanics of Solids 1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS1002 Physics 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>and CHEM1201 Chemistry 1B (required for Materials Science majors)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>or COMP1011 Computing 1A (required for Computer Science majors)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>or 1 relevant level I unit from the School of Physics or Mathematics undergraduate offerings in the Science Handbook</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Totalling</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>

For MATH2009 students may substitute MATH2501, MATH2510, MATH2100 and MATH2120. Also, if they satisfy prerequisites, they may take one or more of these at the higher level.

Year 3

<table>
<thead>
<tr>
<th>Courses</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO3100 Aerospace Design 1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>AERO3400 Analysis of Aerospace Structures 10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>AERO3601 Aerodynamics 1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>AERO3662 Flight Dynamics 1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>ELEC0802 Electrical Power Engineering</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MANF3400 Engineering Economics</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3000 Professional Studies 3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH3010 Industrial Training 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MECH3200 Engineering Experimentation</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>MECH3211 Linear Systems</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
The Mechanical Engineering course provides a versatile, comprehensive coverage of areas involving the conception and design of machinery and mechanical plant, the supervision of its construction, operation and maintenance, the planning and supervision of large engineering projects, and general engineering management. Due to its wide range, a number of options are provided as Technical
Electives in the final year. These are preferentially linked to provide a direction appropriate to the needs of Australian industry and to the specific interests of students, although some flexibility is available if required. Typical fields which may be encompassed by the course include building services, computer-aided design, power generation, energy and environmental systems, gas and liquid handling, bio-mechanics, materials handling, control systems, mechatronics and robotics, and transport. An emphasis is placed on the application of engineering science, development and management in these fields.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH3000</td>
<td>Professional Studies</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MECH3010</td>
<td>Industrial Training</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MECH3100</td>
<td>Mechanical Engineering Design</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH3300</td>
<td>Engineering Mechanics</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3600</td>
<td>Fluid Mechanics 2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3701</td>
<td>Thermodynamics 2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH3702</td>
<td>Heat Transfer</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3800</td>
<td>Numerical Methods</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MANF3400</td>
<td>Engineering Economics</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Education subject(s) (Cat B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23.5</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Year 4: Total 22 to 19

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF4400</td>
<td>Engineering Management</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Thesis</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Professional Studies</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4010</td>
<td>Industrial Training 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MECH4500</td>
<td>Computing 3M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Program Options/Technical Electives</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>22</td>
<td>19</td>
</tr>
</tbody>
</table>

Technical Engineering Technical Electives

Technical Electives must be chosen primarily in accordance with the Directed Program nominated by each student and, in any case, at least 12 session-hours must be selected from the Mechanical Engineering list. The remaining ones may be taken from years 3 or 4 of other courses in the School, provided that pre- and corequisites can be satisfied. Appropriate details of the Directed Programs and the recommended electives will be provided to students to enable them to make selections before proceeding to the final year. A student with a good academic record may be permitted to choose some post-graduate subjects as Technical Electives. Express approval is also required for the selection of a subject from outside the School and such choice will normally be limited to three session-hours. The selection of certain subjects or combinations of subjects might require the approval of the Head of School as will any variation from the foregoing guidelines.

It is unlikely that all of the Technical Electives listed below can be offered each year. Those to be made available are decided on the basis of staff availability and student demand. Students are advised in September of each year which Technical Electives will be offered in the following year.

HPW

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4301</td>
<td>Plane Mechanism Kinematics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MECH4310</td>
<td>Advanced Vibration Analysis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4321</td>
<td>Engineering Noise 1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4322</td>
<td>Engineering Noise 2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH4361</td>
<td>Lubrication</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH4400</td>
<td>General Mechanics of Solids</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MECH4410</td>
<td>Engineering Applications of Finite Elements</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MECH4420</td>
<td>Plates and Shells</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4430</td>
<td>Theory of Elasticity</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4440</td>
<td>Theory of Plasticity</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4450</td>
<td>Structural Instability</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH4411</td>
<td>Design Project</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4412</td>
<td>Design Technology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4413</td>
<td>Computer-Aided Engineering Design</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH4600</td>
<td>Viscous Flow Theory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4690</td>
<td>Special Fluid Mechanics Elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4700</td>
<td>Turbomachines and Engines</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4710</td>
<td>Convection Heat Transfer</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4720</td>
<td>Solar Energy</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4730</td>
<td>Multiphase Flow</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4740</td>
<td>Thermal Power Plants</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4751</td>
<td>Refrigeration and Air Conditioning</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4790</td>
<td>Special Thermodynamics Elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH4800</td>
<td>Optimal Engineering Strategies</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATS9530</td>
<td>Materials Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>SAFE0213</td>
<td>Introduction to Safety Engineering</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
3700
Naval Architecture

Bachelor of Engineering
BE

Years 3 and 4
Naval Architecture is the branch of engineering which is concerned with the design, building and utilisation of all types of ships and marine vehicles. Naval architects must be conversant with a wide variety of skills, including most forms of engineering and architecture. This is because a ship or a boat must be a completely self-sufficient vehicle containing a number of systems and able to withstand the loads from the sea. Yachts, fishing boats, frigates, ferries, catamarans and pleasure craft are just a few of the types of vessels that are studied during the course, which is the only Naval Architecture degree (Bachelor) course in Australia.

The Faculty of Engineering has approved an arrangement whereby, upon the recommendation of the Head of School, students who satisfy the requirements for the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to the final two years of the BE degree course in Naval Architecture.

Combined Courses
Bachelor of Engineering/Bachelor of Science

3611
BE BSc in Aerospace Engineering

3664
BE BSc in Manufacturing Management

3681
BE BSc in Mechanical Engineering

3701
BE BSc in Naval Architecture

The combined degree course of five years full-time study enables a student in the School to qualify for the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc). The course enables such combined degree students to major in the areas of computer science, materials science, mathematics, physics or statistics. It is administered by the Faculty of Engineering.

All students who are accepted into the year 1 'Science compatible' course in the School may enrol directly into this course. Continued enrolment in year 2 requires a pass in all subjects by the end of year 1 and students who fail to achieve this will automatically be transferred to the normal Engineering program. Alternatively, students may transfer into the year 2 of this course, provided they have passed all subjects of the 'Science compatible' course by the end of year 1.

Normally, students enrolled in this BE BSc degree course are awarded their degrees at the conclusion of five years study. However, it is possible for students to take out the Science degree prior to the Engineering degree provided they have:

1. completed the requirements for years 1, 2 and 3.
2. completed the General Education requirements for the Science degree,
3. obtained approval from the Board of Studies in Science and Mathematics.

Students who commence the course and do not complete the Engineering component may take out a BSc degree on completion of one of the approved programs in the Science and Mathematics course. Similarly, students not wishing to complete the BSc degree course may revert to the normal Engineering program with appropriate credit for subjects satisfactorily completed.

Year 1 of the combined course is equivalent to the year 1 'Science compatible' course in the School of Mechanical and Manufacturing Engineering. Having completed years 2 and 3, as outlined below, students in years 4 and 5 do year 3 and year 4 of their selected Engineering course except that significant repetition of subject material is not allowed. Instead, students are required to substitute either
an appropriate Technical Elective or an appropriate Level II or III subject from relevant undergraduate offerings in the Science Handbook, or in exceptional circumstances, some other equivalent subject with the permission of the Head of the School of Mechanical and Manufacturing Engineering.

In order to limit the combined degree courses to five years, the workload in the first three years is higher than in the single degree course. Students who have barely satisfied the minimum entrance requirements are therefore advised against enrolling for the combined degree course. Those who do enrol and whose average mark at the end of Session 1 of year 1 is less than 65% are advised to contact the School to see whether or not they should continue in the combined course in Session 2 of year 1, as the workload in Session 2 is higher than in Session 1.

General Education requirements correspond to whatever is required in year 2 of the normal Mechanical Engineering, Manufacturing Management, Aerospace Engineering or Naval Architecture degree course.

Year 2
Years 2 and 3 are requirements pertaining to students who commenced year 1 in 1989 or later. Students who commenced in earlier years should consult the Handbook appropriate to their year.

All students should note that the Mathematics subjects are also offered at a higher level.

Computer Science Majors should aim for a creditable academic attainment (65%) over years 1 and 2.

Year 2
COMP1021, COMP2011, COMP2021, COMP2031
MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH2110), MATH2120 (or MATH2130)
MATH9520
MECH2300, MECH2400, MECH1500

Year 3
ELEC0805
MATH2841 (or MATH2839)
MECH2000, MECH2100, MECH3310, MECH2600, MECH2700

4 Level III units from undergraduate offerings of the School of Computer Science and Engineering for course 3681 in the Science Handbook.
One 56-hr or two 28-hr General Education subject/s Cat A.

Materials Science Majors

Year 2
CHEM2011, CHEM2021
MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620) MATH2100 (or MATH2110), MATH2120 (or MATH2130)
MATS4363 (Units 1 and 3), MATS1002, MATS1253, MATS1072
MECH2300, MECH2400, MECH1500

Year 3
ELEC0805
MATH2841 (or MATH2839)
MATS4363 (Units 2 and 4), MATS9325 (Units 1 and 3), MATS1263, MATS1083, MATS1042
MECH2000, MECH2100, MECH2310, MECH2600, MECH2700
POLY3010
3 appropriate Level III units from the School of Materials Science and Engineering undergraduate offerings for course 3681 in the Science Handbook.
One 56-hr or two 28-hr General Education subject/s Cat A.

Mathematics Majors

Year 2
Same year 2 as for Computer Science or Materials Science or Physics or Statistics majors or
ELEC0805
MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH), MATH2120 (or MATH2130)
MATS9520
MECH2300, MECH2400, MECH1500
3.5 appropriate Level II units from undergraduate offerings for course 3681 in the Science Handbook including some from the School of Mathematics.

Year 3
MECH2000, MECH2100, MECH2310, MECH2600, MECH2700, MATH2841 (or MATH2839)
4 Level III units from School of Mathematics undergraduate offerings in the Science Handbook.
One 56-hr or two 28-hr General Education subject/s Cat A.

Physics Majors

Year 2
MATH2501 (or MATH2601), MATH2510 (or MATH2610),
MATH2520 (or MATH2620), MATH2100 (or MATH2110),
MATH2120 (or MATH2130),
MATS9520
MECH2300, MECH2400, MECH1500
PHYS2001, PHYS2011, PHYS2021, PHYS2031

Years
MATH2841 (or MATH2839)
MECH2000, MECH2100, MECH2310, MECH2600,
MECH2700
PHYS3010, PHYS3021, PHYS3030, PHYS3041
1 Level III unit from School of Physics undergraduate offerings in the Science Handbook.
One 56-hr or two 28-hr General Education subject/s Cat A.

Statistics Majors

Year 2
ELEC0805
MATH2501 (or MATH2601), MATH2510 (or MATH2610),
MATH2520 (or MATH2620), MATH2100 (or MATH2110),
MATH2120 (or MATH2130), MATH2801 (or MATH2901),
MATH2821 (or MATH2921), MATH2810 (or MATH2910),
MATH2830 (or MATH2930)
MATS9520
MECH2300, MECH2400, MECH1500
0.5 appropriate Level II unit.

Year 3
MECH2000, MECH2100, MECH2310, MECH2600,
MECH2700
4 Level III units from Statistics undergraduate offerings in the Science Handbook
1 Level II or III unit from School of Mathematics or School of Physics undergraduate offerings in the Science Handbook.
One 56 hour or two 28 hour General Education subject/s Cat A.

Notes
1. The following considerations pertain to the choice of additional units in years 2 and 3 listed in undergraduate offerings in the Science Handbook:
(a) The Level III units satisfy the relevant major requirements.
(b) They be from the Schools of Chemistry, Computer Science and Engineering, Electrical Engineering, Mathematics, Materials Science and Engineering and/or Physics.
(c) They include MATH2841 Statistics or MATH2839 Statistics SM or MATH2821 Basic Inference.
(d) They include PHYS2031 Laboratory or ELEC0805 Electronics for Measurement and Control.
(e) They include MATS9520 Engineering Materials or MATS1253 Ferrous Alloys.
(f) They exclude MATH2301 Mathematical Computing.
(g) All pre and corequisites are satisfied.
2. With permission of the School of Mechanical and Manufacturing Engineering, students may delay this subject till year 3.
3. Provided MECH2400 is taken concurrently or has been taken, the pre or corequisite requirement of MATS1062 is assumed to be satisfied.
4. These Mathematics Majors need to add ELEC0805 Electronics for Measurement and Control to year 3.
5. These Mathematics Majors should substitute 1 Level II or III units from the Schools of Physics, Chemistry or Mathematics undergraduate offerings for MATH2841 Statistics in Year 3.
6. Students may substitute PHYS2031 Laboratory for ELEC0805 plus a 0.5 Level II unit.
7. Under special circumstances, with permission of the Head of the School of Physics, a student may substitute alternative Physics Level III undergraduate offerings of equivalent unit value.
8. Students who have satisfactorily completed CHEM1807 Chemistry 1ME and CHEM1201 Chemistry 1B will be considered to have satisfied the prerequisites for CHEM2011 Physical Chemistry and CHEM2021 Organic Chemistry.

Combined Courses
Bachelor of Engineering/Bachelor of Arts

3612
BE BA in Aerospace Engineering

3665
BE BA in Manufacturing Management

3682
BE BA in Mechanical Engineering

3702
BE BA in Naval Architecture

The BE BA Program

With these combined degree courses students can add their choice of an Arts program to any of the standard, professionally accredited engineering courses offered by the School of Mechanical and Manufacturing Engineering. The full range of Arts programs is available.

Because the Engineering and Arts programs have common content, such as mathematics and physics, only one more year of study is normally required to gain the additional qualification of Bachelor of Arts.
Eligibility

Anyone who meets the entry requirements for both Engineering and Arts is eligible for the combined course. Students may enter directly in year 1 or apply to transfer from the normal engineering course later, although with late transfer it might not be possible to complete the course in minimum time.

Organization

The BE BA course is administered by the School of Mechanical and Manufacturing Engineering.

Students should start discussing their program with representatives of the School and the Faculty of Arts and Social Sciences as soon as possible - preferably well before enrolment. Enquiries should be directed to the Executive Assistant to the Dean of the Faculty of Arts and Social Sciences.

Students should work out for themselves the arts program they would like to add to their chosen engineering course. The Arts and Social Sciences Faculty Handbook describes the options, and the School of Mechanical and Manufacturing Engineering can supply sample programs showing what previous students have arranged.

There are no special rules on what to include in each year. Students should schedule the arts and engineering components to suit their preferences while meeting the constraints of timetables and prerequisites. The sample programs can help here too.

The Arts component must be approved by the Faculty of Arts and Social Sciences.

The final program and schedule must be approved by the School.

Rules

1. In addition to their chosen BE course, students must complete a major sequence offered within the BA course and meet the additional requirements from the Faculty which provides the chosen major. The required Arts credits points are:

 Faculty of Arts and Social Sciences:
 48 total including major sequence.

2. The requirements of the General Education Program must be met. In some cases subjects within the combined course may satisfy the Category A and/or Category B guidelines. Students should consult the Centre for Liberal and General Studies for advice.

3. There will be a certificate for each part of the combined degree course.

4. Students who complete the BE program first may proceed to graduation with the degree of Bachelor of Engineering in the usual way.

5. Students who complete the requirements for their Arts program and the first two years of the BE program may proceed to graduation with the degree of Bachelor of Arts.

Subject Descriptions

Descriptions of all subjects are presented in alphanumic order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

Aerospace Engineering

AERO3100
Aerospace Design 1

Staff Contact: Mr J.R. Page
S1 HPW4 S2 HPW2
Prerequisites: MATS952, 0MECH2100, MECH2300, MECH2400
Corequisites: AERO3400, AERO3601, AERO3602

Introduction to the special constraints involved in the design of an aerospace vehicle. The development of detail design skills and the methodology of aerospace design. An introduction to airworthiness regulations, ESDU data sheets and the use of computer-aided design techniques. The production of engineering design reports on selected areas and the design work carried out.

AERO3400
Analysis of Aerospace Structures 1

Staff Contact: A/Prof D.W. Kelly
S2 L3 T1
Prerequisites: MECH2300, MECH2400, MATH2009
Corequisite: MECH3400

Aerospace applications of plane frames and space structures. Open and closed section thin walled beams, tapered beams. Semi-monocoque structures, ribs and bulkheads. Stresses due to torsion and shear in multicell tubes. Deflections. Structural instability, buckling of perfect and imperfect columns, bending and buckling of thin flat plates. Introduction to composite materials, sandwich panels.

AERO3601
Aerodynamics 1

Staff Contact: Dr N.E.A. Ahmed
S1 HPW4
Prerequisites: MECH2600, MECH2700, MATH2009
Corequisites: AERO3602
Notes: Excluded 5.811.

Potential flow. Airfoil and wing theory: Inviscid conservation relations. Source, sink, doublet and point vortex; superposition with uniform flow. Airfoil formation and Kutta condition. Computational methods. Lifting line and Prandtl

AERO3602
Flight Dynamics 1
Staff Contact: Mr J.R. Page
S1 HPW2
Prerequisites: MECH2300, MECH2310, MECH2600
Corequisites: AERO3601
Notes: Excluded 5.811.

AERO4100
Aerospace Design 2
Staff Contact: Mr J.R. Page
F L2 T1
Prerequisites: AERO3100, AERO3601, AERO3602
Corequisites: AERO4400, AERO4601, AERO4602, AERO4700
Notes: Excluded AERO4109.

The students are formed into project teams to carry out initial design of an aerospace vehicle. A lecture program supports this work, along with tutorials and project team meetings.

AERO4201
Aerospace Systems
Staff Contact: Mr J.R. Page
S1 HPW2
Prerequisites: AERO3601, AERO3602, MECH3211
Corequisites: AERO4601
A basic understanding of information, power and mass transport systems used on current craft; how the systems interface with the flight management on the vehicle.

AERO4202
Space Engineering
Staff Contact: Mr J.R. Page
S2 HPW2
Prerequisites: AERO3602
Corequisites: AERO4201
Introduction to the particular problems in vehicles that operate outside the sensible atmosphere. The dynamics of such vehicles, their on-board systems and their management and control.

AERO4400
Analysis of Aerospace Structures 2
Staff Contact: A/Prof D.W. Kelly
F L2 T1
Prerequisites: AERO3400, MECH3400
Notes: Excluded MECH4410, MECH9410.

AERO4601
Aerodynamics 2
Staff Contact: Dr N.E.A. Ahmed
F L1.5 T.5
Prerequisite: AERO3601
Notes: Excluded AERO4609.
Concentrates on high-speed flow and viscous compressible flows. As well as obtaining a good theoretical grounding, the student is introduced to the measurement of the properties of these flows in the laboratory and the use of computer modelling techniques (CFD).

AERO4602
Flight Dynamics 2
Staff Contact: Mr J.R. Page
S1 L2 T1
Prerequisites: AERO3602, MECH3211
Notes: Excluded AERO4609.
An introduction to the dynamic stability and control of atmospheric vehicles, including an understanding of the characteristics of such vehicles, and their testing in flight and evaluation.

AERO4700
Aerospace Propulsion
Staff Contact: Mr J.R. Page
F L1.5 T.5
Prerequisites: MECH2600, MECH2700 or AERO3601

MANF0420
Production Management
Staff Contact: Prof H. Kaebemick
S1 HPW6
Manufacturing industry dynamics. Porters Model; bases for competition. Meaning of waste; value adding management. Dynamics of materials flow. Hierarchical planning; MRP; OPT; JIT; maintenance management. Manufacturing performance monitoring. Use of production planning and control systems in a simulated production company.
MANF1100
Workshop Technology
Staff Contact: Dr Y.L. Yao
SS HPW3
The implementation of design and its interaction with manufacturing equipment and processes. Manufacturing capabilities and tolerancing. Approximately 30 hours of practical training including welding, fitting and machining. Students who have done Industrial Arts for the HSC, have an appropriate trade or certificate course qualification, or are suitably employed, may qualify for exemption from this subject.

MANF1110
Manufacturing Technology
Staff Contact: Dr P. Mathew
S2 HPW3
Corequisites: MECH1100, MECH1300, MECH1400
Description of the processes classified as: forming from liquid or solid, material removal, material joining. Elementary mechanics of forming and cutting processes. Analysis of the primary functions of machine tool structures and their operation. Relationship between product design and manufacture processes. Elementary functional analysis of product designs, including linear loop equations, limits and fits, dimensional accuracy of processes and alternate design and manufacturing strategies.

MANF3200
Product Design and Manufacturing Technology
Staff Contact: Dr L.E. Farmer
S1 HPW4
Corequisites: MECH2100, MECH2400, MANF3410
Notes: Excluded 18.403.
Design of products so that they can be manufactured economically. Material on: geometric analysis of product designs and the technology and economics of manufacturing, assembly, storage and transportation processes provides a basis for rational process selection and the refinement of product design to suit the chosen manufacturing methods.

MANF3300
Design of Manufacturing Facilities 1
Staff Contact: Dr L.E. Farmer
S2 HPW4
Corequisites: MANF3200, MANF3410, MANF3500, MATH2839
Notes: Excluded 18.303.
The design of workplace elements in which operations such as assembly, measurement and loading/unloading are performed by a human operator or robot. Material on: documentation of manufacturing processes, characteristics of human operators and robots, workplace and methods design, measurement of workplace element characteristics.

MANF3400
Engineering Economics
Staff Contact: Prof H. Kaebernick
S1 HPW2
Prerequisite: MECH1500
Notes: Excluded 18.603.
An analytic framework for decision making from an economic viewpoint which included: cost information, engineering and investment decision, cost/benefit analysis, replacement analysis, capital recovery models, breakeven analysis and decision trees.

MANF3410
Quality Systems 1
Staff Contact: Dr P. Mathew
S1 HPW4
Prerequisites: MANF1110, MATH2839, MECH3000
Notes: Excluded 18.003, MANF4429.
An introduction to the role of national and international standards in manufacturing, the principle and technology underlying dimensional metrology. The design and analysis of experiments to investigate the performance of manufacturing processes and introductory statistical process control.

MANF3500
Computers in Manufacturing 1
Staff Contact: Prof H. Kaebernick
S2 HPW4
Prerequisites: MANF1110, MECH1500, ELEC0805
Notes: Excluded 18.224.
The selection and use of computer-controlled devices such as robots, machines and vehicles in manufacturing systems: components of computerized systems. Control of devices by PLCs and computers is also examined.

MANF3600
Information and Decision Making Technology 1
Staff Contact: Prof H. Kaebernick
S1 HPW4 S2 HPW2
Prerequisites: MECH1500, MATH2839
Notes: Excluded MANF3609, MANF4610, MANF9620, MANF9629.
An introduction to the quantitative aspects of decision making and relevant computing tools including: decision theory, data modelling and data base management systems, operations research, spreadsheets, fourth generation languages and decision support systems.

MANF3800
Introduction to Numerical Methods
Staff Contact: Dr I. Macalpine-cross
S2 HPW1.5
Prerequisites: MECH1500, MATH2009
Notes: Excluded 18.003. Combined degree course students who have taken MATH3101 or 10.222A Numerical Analysis, should substitute a Technical Elective or a half Level II or Level III unit from relevant undergraduate offerings in the Science Handbook for this subject.

An introduction to the processes, data structures and numerical algorithms required for the solution of engineering problems including: numerical solution of equations, sets of simultaneous equations interpolation, differentiation and integration.
MANF4010
Manufacturing Systems Design
Staff Contact: Dr Y.L. Yao
F HPW2
Students will work in project teams to perform a complete manufacturing system design, involving activities such as: selection of a product for manufacture, engineering and industrial design, design for manufacture, process selection, tolerance optimization, manufacturing system design, including selection of production elements, workplace design, factory layout, production control system, detailed budget, containing discounted cash flow analysis, projected position and income statements. Prominent engineers will give lectures on their experiences. Topics covered formally will include: steps in starting up a company, statutory requirements, finance, feasibility analysis, manufacturing goal setting, industrial design, import replacement, the economic environment of manufacturing.

MANF4300
Design of Manufacturing Facilities 2
Staff Contact: Mr K.C. Chan
S2 HPW4
Corequisite: MANF3300
Introduction to layout design; strategies and criteria for locating a manufacturing facility; process locations, safety aspects. Materials handling system: automatic guided vehicles, conveyor systems, robots. Storage and retrieval systems: palletization, warehousing, containers, overhead cranes, forklifts, robots. Simulation of various systems: computerized manufacturing facilities planning, including simulation and associated data acquisition and manipulation.

MANF4400
Engineering Management
Staff Contact: Dr B. Kayis
S1 HPW2
Prerequisite: MANF3400
Notes: Excluded 18.603
Engineering and management, summary of macro- and micro-economic issues from an engineering management perspective, management science models, marketing management, the legal environment of business, industrial relations, engineering project management, quality assurance and total quality management, entrepreneurship and management of technical change and innovation.

MANF4410
Quality Systems 2
Staff Contact: Dr B. Kayis
S1 HPW2
Prerequisite: MANF3410
Notes: Excluded MANF4429, MANF9410.
Management and philosophies of quality systems; quality planning in design and manufacture; selection of quality systems and statistical process control; total quality - quality circles and zero defects; accreditation for quality; economic selection of quality systems; preparation and use of quality manuals - national and international standards; legal aspects of product design and quality; some experiments and analyses for statistical process control; case studies/project.

MANF4420
Management of Manufacturing Systems
Staff Contact: Prof H. Kaebemick
S1 HPW6 S2 HPW2
Prerequisites: MANF3400, MANF3410, MANF3600
Notes: Excluded MANF4429.
Nature and scope of manufacturing management, key bases for competition, Porter's model, manufacturing performance factors and their strategic significance; meaning of waste, value added and total quality; design for manufacture and the market; basic dynamics of materials flow in an organization. Demand forecasting and master planning, role of inventory, production smoothing. Production control, bottlenecks and capacity constraining resources, product and layout rationalization, mechanics of scheduling. Purchasing, vendor selection, vendor performance monitoring; physical distribution, warehouse location and operations. Maintenance management: planning and control, total preventative maintenance. Role and fit of packaged approaches. Role and fit of packaged approaches: MRP, JIT, OPT.

MANF4500
Computers in Manufacturing 2
Staff Contact: Prof H. Kaebemick
S1 HPW2
Prerequisite: MANF3500
Introduction to computer integrated manufacture (CIM): what is CIM, skills required when designing and implementing CIM, unsolved problems in CIM. Integration: CAD, CAM, CAD/CAM integration technology, MAP/TOP. Flexible Manufacturing Systems (FMS): FMS system architecture, material handling and storage systems in FMS, auxiliary devices in FMS, FMS operation control. Project on computer integration with data acquisition and control.

MANF4600
Information and Decision Making Technology 2
Staff Contact: Prof H. Kaebemick
S1 HPW4
Prerequisite: MANF3600
Notes: Excluded MANF3609, MANF4610, MANF9620, MANF9629.
Combinatorial optimization; integer and dynamic programming; branch and bound technique; elementary multiple-criteria decision analysis; goal programming; examples from production planning and scheduling. Data, information and knowledge; problem decomposition; techniques for knowledge representation; rule-based systems; examples from manufacturing process planning, scheduling, and diagnostic maintenance. Intelligent DSS: deductive databases; integration of algorithmic and knowledge-based problem solving approaches; examples from process planning and scheduling. More advanced simulation topics; discrete event simulation languages; factory simulation packages; simulation model and experimental design. Organizational issues; distributed vs centralized decision making, knowledge bases and data bases; goal integration; importance of common data and procedural semantics for coordinated decision making; examples from CIM environments.
Mechanical Engineering

MECH0130
Engineering Drawing and Descriptive Geometry
Staff Contact: A/Prof A.E. Churches
SS L1 T3
Notes: This is a servicing subject taught within courses offered by other schools and faculties.

MECH0160
Introductory Engineering Design and Drawing Practice
Staff Contact: A/Prof A.E. Churches
S1 L3 T2
Notes: Excluded MECH0130, MECH1110.

This subject is intended specifically for Electrical Engineering students, and is to be taken in conjunction with MECH0360.

Introduction to engineering design: Engineering method, problem identification, creative thinking, mathematical modelling; computer-aided design; materials and processes; communication of ideas; the place of engineering in society.

MECH0330
Engineering Mechanics
Staff Contact: Dr R.A.J. Ford
S1 L3 T2
Prerequisites: As for MECH1300 Engineering Mechanics 1.
Notes: Excluded MECH0330, MECH1300.

MECH1000
Professional Studies 1
Staff Contact: A/Prof J.A. Reizes
S1 HPW1
Prerequisite: HSC Exam Score Range Required - 2 unit English (General) 53-100, or 2 unit English 49-100, 3 unit English 1-50, or 2 unit Contemporary English 60-100
Notes: Excluded 5.061. If these prerequisites are not met, other remedial English studies can be taken concurrently.

To assess abilities in written expression; to develop a consciousness of the importance of written, pictorial and oral expression in engineering life; to begin to develop these skills, emphasising the significance of logical structure; to begin to develop an awareness of the professional attitude.

MECH1100
Mechanical Engineering Design 1
Staff Contact: A/Prof A.E. Churches
S1 HPW1 S2 HPW2
Corequisite: MECH1000

Introduction to hardware. Studies of a range of engineering components, considering: what they do, how they do it, how they were made, the range of possible forms for each item, why each item has its particular form. Design philosophy. Design as the formulation and implementation of practical ways of fulfilling needs, including: recognising the need,
generalising the question, considering a range of solutions, selecting a short-list, analysing the selected range, making a final choice. Commercial philosophy. Impetus for design, market competition, significance of innovation, intellectual property, financing, manufacturing, marketing, etc.

MECH1110
Graphical Analysis and Communication
Staff Contact: A/Prof A.E. Churches
S2 L1 T2
Notes: Excluded MECH0130, MECH0160.
Descriptive geometry as the basis of analysis and synthesis of spatial relationships: points, lines, plans, solids, intersections. Orthographic and other projection systems. Engineering drawing as a means of definition and communication, selection of views, construction of drawings, conventions, dimensions and tolerancing. Introduction to computer-based drafting systems.

MECH1300
Engineering Mechanics 1
Staff Contact: Dr K. Zarrabi
S1 or S2 L2 T2
Prerequisite: HSC Exam Score Range Required - Either 2 unit Science (Physics) 53-100, or 3 unit Science 90-150, or 4 unit Science multstrand 1-50 or 2 unit Industrial Arts (Engineering Science) 53-100, or 3 unit Industrial Arts (Engineering Science) 1-50
Notes: Excluded MECH0330, MECH0360. Students who wish to enrol in this subject in courses other than the full-time courses in Aerospace Engineering, Electrical Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of the first year.

MECH1400
Mechanics of Solids 1
Staff Contact: Dr M. Chowdhury
S1 or S2 L2 T1
Corequisite: MECH1300 or MECH0330 or MECH0360 or MECH0440

MECH1500
Computing 1 M
Staff Contact: Dr R.A. Willgoss
S2 HPW3
Introduction: history, applications, hardware, software, a model of a computer system, editors, operating systems. Program design and development: programming objectives, data structures, algorithms, symbolic names, translation of algorithms, steps in programming, programming style, syntax charts, errors and debugging. Data: data types, declarations, input output, file control. Programming constructs: arithmetic expressions, assignment, relational and logical expressions, selection, iteration, intrinsic functions, statement functions, subprograms, common, communication. Applications using existing programs: sorting, word processing, graphics and plotting, simultaneous linear algebraic equations. The computer language employed in this subject is FORTRAN.

MECH2000
Professional Studies 2
Staff Contact: Mr A.J. Barratt
HPW4 total
Prerequisite: MECH1000
To introduce the student to the engineering working environment. To get the student curious about the engineering environment. To give further practice in report writing. Preparation for Industrial Training; Industrial Training, report on Industrial Training.

MECH2100
Mechanical Engineering Design 2
Staff Contact: A/Prof A. E. Churches
F L1 T2
Prerequisites: MANF1110, MECH1110, MECH1400
Design of basic engineering elements and simple systems. Selection and specification of materials and manufacturing processes for engineering items. Communication by means of engineering drawings (including tolerances) of manufacturing information for simple structures and assemblies. Application of standards and trade literature to design. Simple design-and-make project to meet a published specification and to demonstrate the product's performance.

MECH2300
Engineering Mechanics 2A
Staff Contact: Dr S.S. Leong
S1 or S2 L2 T1
Prerequisites: MATH1032 or MATH1042, MECH1300 or MECH0360
Kinetics of systems of particles; plane steady mass flow. Plane kinematics and kinetics of rigid bodies: moment of inertia; motion relative to translating and rotating frames of reference; equations of motion; work and energy, impulse and momentum. Virtual work for static and dynamic systems. Kinematics and kinetics of simple mechanisms.

MECH2310
Engineering Mechanics 2B
Staff Contact: Dr S.S. Leong
S1 or S2 HPW2
Corequisite: MECH2300

MECH2400
Mechanics of Solids 2
Staff Contact: Dr H.L. Stark
F L1.5 T2
Prerequisites: MATH1032 or MATH1042, MECH1400
Mechanical properties of materials: tensile and compressive behaviour; hardness; testing machines.
Analysis of stress and strain at a point (2D, 3D, Mohr's Circles); generalised Hooke's Law; modulus of rigidity; bulk modulus; interdependence of elastic moduli; strain energy (total, volumetric and distortion); yield criteria; combined loads in beams; fatigue, stress concentrations, Miner's Rule; membrane stresses; bending of composite beams; bending and unsymmetrical beams; direct shear stresses in beams, shear centre; elastic and inelastic buckling of columns.

MECH2600
Fluid Mechanics 1
Staff Contact: A/Prof G. Morrison
F L1 T1
Prerequisites: MATH1032 or MATH1042, PHYS1919

MECH2700
Thermodynamics 1
Staff Contact: A/Prof E. Leonardi
F L1 T1
Prerequisites: MATH1032 or MATH1042, PHYS1919

MECH3000
Professional Studies 3
Staff Contact: Dr R. A. Ford
S2 HPW2
Prerequisites: MECH2000, MECH3010

MECH3010
Industrial Training 1
Staff Contact: Mr A.J. Barratt
S1
Notes: Report to be submitted by the end of the second week of Session 1 detailing involvement and experience gained prior to year 3.

Practical work in industry at the process or shop floor level to gain experience of people, industrial problems and relations, and process equipment.

MECH3100
Mechanical Engineering Design 3
Staff Contact: Mr R.B. Frost
F L2 T1
Prerequisite: MECH2100
Corequisites: MECH3300, MECH3400
Mathematical modelling in design with applications. More advanced design analyses, component and assembly design and drawing with individual and group projects of an interdisciplinary nature.

MECH3200
Engineering Experimentation
Staff Contact: Dr R.A. Willgoss
F HPW1.5
Prerequisites: ELEC0805, MECH2400, MECH2600, MECH2700
Notes: Excluded 5.034.
Scientific method, engineering method; report writing; error analysis; principles of transducers; dynamic response of instruments; digital data acquisition; interfacing transducers to computers; computer control of experiments; signal processing.

MECH3211
Linear Systems Analysis
Staff Contact: Mr R. A. Willgoss
S1 L2 T1
Prerequisites: MATH2009, MECH1300
Notes: Combined degree course students who have taken MATH3181 or 10.222M Optimal Control theory should substitute a Technical Elective or a half Level II or III unit from relevant undergraduate offerings in the Science Handbook.
Models of physical systems: differential equations for physical systems including mechanical, electrical, hydraulic, thermal and pneumatic systems; linearisation. System analysis techniques: solution by Laplace transform method. Transfer functions and block diagrams. System response: response of first and second order systems to impulse step, ramp, sinusoidal and periodic inputs; higher order system response; system stability, applications.

MECH3212
Principles of Control of Mechanical Systems
Staff Contact: Dr M.J. Tordon
S2 L2 T1
Prerequisite: MECH3211
Introduction to modern systems analysis. Review of modelling; nonlinear systems. Digital and analogue representations. Stability; regulation; control and optimal control. Instrumentation; actuators; interfaces; control computers; programmable logic controllers. Implementation; various case studies, including microprocessor applications.

MECH3300
Engineering Mechanics 3
Staff Contact: A/Prof K.P. Byrne
S1 HPW2
Prerequisites: MATH2009, MECH2300
Kinematics of gear tooth profiles; standard and non-standard gear proportions. Gear trains; epicyclic gears. Static and dynamic balancing of rotating and
reciprocating mass systems. Three-dimensional kinematics and kinetics of a rigid body: co-ordinate transformations, general screw motion, angular momentum, inertia tensor, kinetic energy, Euler's equations of motion, planetary and satellite motions, gyroscope.

MECH3310
Vibration Analysis
Staff Contact: Prof C. Patterson
S2 HPW2
Prerequisites: MATH2009, MECH2310
Lagrange's equations of motion. Linear vibrations of multi-degree-of-freedom systems; normal modes; simple applications. Finite elements for structural dynamics; mass matrix; natural frequency and normal mode determinations; convergence; engineering applications.

MECH3400
Mechanics of Solids 3
Staff Contact: A/Prof E.J. Hahn
S1 L3 T1
Prerequisites: MATH2009, MECH2400

MECH3500
Computing 2M
Staff Contact: Dr J. Katupitiya
S1 HPW2
Prerequisite: MECH1500
Notes: Excluded MECH4509.
Techniques for writing, debugging and documenting elegant, portable, robust and reliable programs quickly and economically. Material on the programming environment, programming style, numerical precision, storage management, database processing and program libraries. The computer languages employed in this subject are FORTRAN and C.

MECH3600
Fluid Mechanics 2
Staff Contact: A/Prof J.A. Reizes
S1 HPW2
Prerequisites: MATH2009, MECH2600, MECH2700
Notes: Excluded 5.630, 5.653, 5.663.
Dimensional Analysis, dynamic similarity, turbomachines; incompressible, inviscid flow; compressible flow.

MECH3701
Thermodynamics 2
Staff Contact: Prof B.E. Milton
S2 HPW2
Prerequisite: MECH2700
Notes: Excluded 5.623, 5.624, 5.636.
Availability - open and closed systems; general thermodynamic relations; kinetic theory of gases; non-reactive ideal gas mixtures; high-temperature gas properties; combustion.

MECH3702
Heat Transfer
Staff Contact: Dr M. Behnia
S1 HPW2
Corequisite: MECH3600
Notes: Excluded 5.336.

MECH3800
Numerical Methods
Staff Contact: Dr I.L. Maclaine-cross
S2 L2 T1
Prerequisites: MATH2009, MECH1500
Notes: Combined degree course students who have taken MATH2220 Applied Mathematics 2 - Continuous Time Systems or 10.2216 Higher Applied Mathematics 2 - Continuous Time Systems or MATH3101 or 10.222A Numerical Analysis, should substitute a Technical Elective or a half Level II or Level III unit from relevant undergraduate offerings in the Science Handbook for this subject.

MECH4000
Thesis
Staff Contact: Dr M. Chowdhury
F T6
Corequisite: MECH4001
To be taken in year of completion of course.
For students in the BE degree courses in the School of Mechanical and Manufacturing Engineering.

MECH4001
Professional Studies 4
Staff Contact: Dr I.L. Maclaine-cross
S2 HPW2
Prerequisites: MECH3000
Corequisite: MECH4000, MECH4002
Notes: Excluded MECH4019.
Development of skills in the use of various media of communication. Presenting oral and written reports. Conference organization and participation. Group projects in communications.

MECH4002
The Engineer in Society
Staff Contact: A/Prof J.A. Reizes
S2 HPW2
Corequisite: MECH4001
Notes: This subject satisfies the requirements of Category C of the General Education Program.
Reading, instruction and project work concerned with the organisational, environmental and social aspects of engineering.
The subject is intended to integrate a student's prior and current studies over the range of scientific, technological and contextual areas and general education. Students will
undertake socially directed projects in large groups and follow them up with more reflective individual tasks.

MECH4010
Industrial Training 2
Staff Contact: Mr J.A. Barratt
S1
Notes: Report to be submitted in Session 1 detailing responsibilities and experience gained in vacation period between Years 3 and 4.

Practical work in industry at the professional level to gain experience in design, development, investigation or management control systems areas in collaboration with professional engineers.

MECH4020
Group Engineering Project
Staff Contact: Dr M. Behnia
S1 HPW6 or F HPW3
Subject integrates the engineering science and creativity aspects of previous years. Students work in groups on an engineering project. Aspects of the project include project management, a basic assessment of the market development of the design and other engineering features, consideration of environmental and safety impacts, procedures for manufacture and/or construction and the industrial design (presentation and packaging of the completed item).

MECH4110
Design Project
Staff Contact: A/Prof A.E. Churches
F L1 T2
Prerequisite: MECH3100
Creative design and development leading to the detail design and possible building and testing of systems and devices to satisfy specified objectives of set projects.

MECH4120
Design Technology
Staff Contact: Mr R.B. Frost
S1 L2 T1
Prerequisite: MECH2100
Aspects of mechanical engineering technology which form the basis for machinery design including: performance matching; hydraulic power components and circuits. Fluid couplings and torque converters; power flow analysis in multi-path machinery, and other selected topics.

MECH4130
Computer-Aided Engineering Design
Staff Contact: A/Prof A.E. Churches
S2 L2 T1
Prerequisite: MECH2100
Notes: Excluded MANF9319, MANF9630.
Mathematical modelling and analysis of component and system designs using the computer as a tool to optimise and investigate design solutions. Use of available algorithms and computer packages.

MECH4001
Plane Mechanism Kinematics
Staff Contact: A/Prof J.E. Baker
SS L2 T1
Prerequisite: MECH2300
Notes: Excluded MECH9001.
Algebraic displacement, velocity and acceleration analyses of simple and complex planar mechanisms. Instantaneous kinematics: centroids; inflection and Bresse circles; acceleration centre; Euler-Savary equation; cubic of stationary curvature; centring point curve. Coupler curves and their properties; curve cognates. Constraint and freedom; mobility; velocity closure of a loop; special configurations; singularities. Various methods of synthesis.

MECH4310
Advanced Vibration Analysis
Staff Contact: Mr R.B. Randall
SS L2 T1
Prerequisite: MECH3310
Notes: Excluded MECH9310.

MECH4311
Engineering Noise 1
Staff Contact: A/Prof K.P. Byrne
SS L2 T1
Notes: Excluded MECH9311.

MECH4312
Engineering Noise 2
Staff Contact: A/Prof K.P. Byrne
SS L2 T1
Prerequisite: MECH4311
Notes: Excluded MECH9312.

MECH4361
Lubrication
Staff Contact: A/Prof E.J. Hahn
SS HPW3
Prerequisites: MECH2600, MATH2009
Notes: Excluded MECH9361.
History of lubrication, types of bearings and bearing operation, nature of surfaces and their contact, modes of lubrication, properties of lubricants, viscous flow in pipes and channels, measurement of viscosity, infinitely long and short bearing approximations, one-dimensional analysis of short bearing, other slider bearing geometries, the effect of end leakage, hydrostatic or externally pressurised bearings, squeeze films.
MECH4400
General Mechanics of Solids
Staff Contact: Dr K. Zairabi
SSL 2 T1
Prerequisite: MECH3400
Notes: Excluded MECH9400, 5.424.

MECH4410
Engineering Applications of Finite Elements
Staff Contact: A/Prof D.W. Kelly
SSL 2 T1
Prerequisite: MECH3400
Notes: Excluded AERO4400, MECH9410.
Introduction to finite element and associated graphics packages.

MECH4420
Plates and Shells
Staff Contact: Dr H.L. Stark
SSL 2 T1
Prerequisite: MECH3400
Notes: Excluded MECH9421.
Bending of rectangular and circular plates under normal loading; thermal stresses. Shells; membrane stresses, bending stresses, discontinuities at junction of ends; design of pressure vessels.

MECH4430
Theory of Elasticity
Staff Contact: A/Prof J.E. Baker
SSL 2 T1
Prerequisites: MECH2300, MECH3400
Mathematical foundations; analysis of stress; deformation and strain; equilibrium, motion and flow; fundamental laws of continuum mechanics; linear elasticity; viscoelasticity; applications.

MECH4440
Theory of Plasticity
Staff Contact: School Office
SSL 2 T1
Prerequisite: MECH3400
Analysis of stress, strain, strain rate; plastic stress strain relations with description of experimental verification. Application of plasticity theory to a selection of problems including metal working processes such as extrusion and rolling and metallic friction and wear.

MECH4450
Structural Instability
Staff Contact: School Office
SSL 2 T1
Prerequisite: MECH3400
Buckling of perfect and imperfect columns; bending and buckling of thin flat plates; local instability and crippling of thin-walled columns. Buckling of monocoque cylinders and curved panels. Stiffened panels. Tension field beams.

MECH4500
Computing 3M
Staff Contact: Dr J. Katupitiya
SSL HPW2
Prerequisite: MECH3500
Computer environments; PC and mainframe. User and machine interfacing with terminal controls, menus, mouse and I/O hardware. Use of graphics and special packages, e.g., spreadsheets for man/machine interaction. Communications protocol, serial and parallel transmission, interrupts polling and general housekeeping routines. Use of C language and comparison with other high level languages.

MECH4600
Viscous Flow Theory
Staff Contact: A/Prof E. Leonard
SSL HPW3
Prerequisites: MATH2009, MECH2600, MECH2700

MECH4690
Special Fluid Mechanics Elective
This subject is variable in content in order to allow the presentation of material of particular interest and merit by a visiting expert in a field not otherwise covered.

MECH4700
Turbomachines and Engines
Staff Contact: Prof B.E. Milton
SSL HPW3
Prerequisite: MECH3701
MECH4710
Convection Heat Transfer
Staff Contact: A/Prof J.A. Reizes
SS L2 T1
Prerequisite: MECH3600
Notes: Excluded MECH9710.

MECH4720
Solar Energy
Staff Contact: A/Prof G.L. Morrison
SS L2 T1
Prerequisites: MATH2009, MECH3702
Notes: Excluded MECH9720.

MECH4730
Multiphase Flow
Staff Contact: Dr M. Behnia
SS L2 T1
Prerequisite: MECH3600
Notes: Excluded MECH9730

MECH4740
Thermal Power Plants
Staff Contact: Dr M. Behnia
SS L2 T1
Prerequisites: MECH2600, MECH2700
Notes: Excluded MECH9740.

MECH4751
Refrigeration and Air Conditioning
Staff Contact: A/Prof E. Leonardi
SS HPW3
Corequisite: MECH3702

Psychrometry and air conditioning calculations; heating and cooling load calculations; refrigerants; vapour compression refrigeration; multipressure systems; air conditioning systems; components of refrigeration and air conditioning systems; air distribution; refrigeration and air conditioning controls.

MECH4790
Special Thermodynamics Elective
This subject is variable in content in order to allow the presentation of material of particular interest and merit by a visiting expert in a field not otherwise covered.

MECH4900
Optimal Engineering Strategies
Staff Contact: A/Prof J.E. Baker
SS L2 T1
Prerequisites: MATH2009, MECH2300

Optimization: a selection of techniques and their applications from the calculus of variations, geometric programming, network analysis, linear programming, non-linear programming, etc. Strategies for design and analysis: system structure; variable classification; procedure generation; recycle optimisation; the adjacency matrix.

Naval Architecture

NAVL3100
Principles of Ship Design 1
Staff Contact: Dr P.K. Pal
S2 L2 T1
Corequisites: NAVL3600, NAVL3610

NAVL3400
Ship Structures 1
Staff Contact: Dr M. Chowdhury
F L1.5 T.5
Prerequisites: MATH2009, MATS9520, MECH2400
Corequisite: MECH3400

NAVL3600
Ship Hydrostatics
Staff Contact: A/Prof L.J. Doctors
F L2 T.5
Prerequisites: MATH1032, MECH1300, MECH1500, PHYS1919
Basic concepts and integration methods. Hydrostatic particulars and approximate formulae. Intact stability, cross curves and righting arm, stability at small angles and free surface effects, the wall-sided formula, flooding and water tight subdivision. Damaged stability. Launching calculations and docking. Representation of hull surfaces for computer applications. Analysis of hull hydrostatics and stability by an integrated computer package.

NAVL3610
Ship Hydrodynamics
Staff Contact: A/Prof L.J. Doctors
F L2 T.5
Prerequisites: MATH2009, MECH2300, MECH2310, MECH2600

NAVL4000
Ship Management Economics
Staff Contact: Dr P.K. Pal
S2 L1.5 T.5
Prerequisite: MATH2009

NAVL4100
Principles of Ship Design 2
Staff Contact: Dr P.K. Pal
S1 L3 T1 S2 L1.5 T.5
Prerequisite: NAVL3100
Corequisite: NAVL4400

NAVL4110
Ship Design Project
Staff Contact: Dr P.K. Pal
S1 T3 S2 T4
Prerequisites: NAVL3100, NAVL3600, NAVL3610
Corequisites: NAVL4000, NAVL4100
Each student is required to perform the following design tasks and submit the results: 1. Rationale, specifications, weights, inboard profile. 2. Power, capacities, freeboard, trim, stability, stem gear. 3. Sectional area curve, lines drawing, prelim midship section. 4. Hydrostatics, floodable length and stability curves. 5. Powering, propeller, systems-schematic drawing, detailed capacity. 6. Section modulus calculation, bulkhead, midship section, module concept. 7. Final weights, capacity drawing, operational data, and evaluation. 8. Specification.

NAVL4400
Ship Structures 2
Staff Contact: Dr M. Chowdhury
F L1.5 T.5
Prerequisite: NAVL3400
Corequisite: MECH3400

NAVL4700
Ship Propulsion and Systems
Staff Contact: Dr P.K. Pal
F HPW4
Prerequisites: NAVL3600, NAVL3610
Graduate Study

Formal graduate courses offered are: the Master of Engineering Science in Industrial Engineering 8531 and in Mechanical Engineering 8541, and the Graduate Diploma in Industrial Engineering 5455 and Mechanical Engineering 5456. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2680 and 2692 and Doctor of Philosophy 1662.

8531
Industrial Engineering

8541
Mechanical Engineering

Master of Engineering Science MEngSc

A major field of study is required to be nominated and two-thirds of the 30 credits required for the degree must be taken in that major field. (Examples of major fields are applied mechanics, fluid mechanics, manufacturing management, mechatronics and design. Consult School Advisers for further details.)

All candidates take a 12 credit project on a topic in their major field.

Formal lecture subjects are not restricted to the School of Mechanical and Manufacturing Engineering, Faculty of Engineering or this University, but two-thirds of all credits must be taken at the University of New South Wales.

In consultation with their School Adviser, candidates at enrolment put together a program which is based on these requirements, but which may be modified from time to time in the light of changes in availability of subjects. These requirements also apply to a number of specialist courses which are offered by the School of Mechanical and Manufacturing Engineering and which are described below. Some of these specialist programs may not run if the resources are not available.

Specialist Programs

1. Computer Integrated Manufacturing C
12 credits of core subjects:
MANF9470 Production Management 1 3
MANF9560 Computer Integrated Manufacturing 3
MANF9543 CAD/CAM 3
MANF9544 Concurrent Product and Process Design 3
MANF9040 Seminar 0
and 12 credit project
MANF9010 Research Project 12

The remaining 6 credits may be selected from the following electives:
MANF9410 Total Quality Management 3
MANF9601 Economic Decisions in Industrial Management 3
MANF9400 Industrial Management 3
MECH9410 Finite Element Applications 3
MANF9340 Flexible Manufacturing Systems 3
MANF9500 Computer-Aided Programming for Numerical Control 3

2. Industrial Management
Before enrolling in the program, a student should have had one year's relevant industrial experience and have access to industry for his/her project topic.

12 credits of core subjects:
MANF9400 Industrial Management 3
MANF9470 Production Management 1 3
MANF9410 Total Quality Control 3
MANF9040 Seminar 0
SAFE9224 Principles of Ergonomics 3
and 12 credit project
MANF9010 Research Project 12

The remaining 6 credits may be selected from the following electives:
ACCT9062 Accounting for Engineers 3
MANF9601 Economic Decisions in Industrial Management 3
MANF9340 Flexible Manufacturing Systems 3
MANF9543 CAD/CAM 3
MANF9544 Concurrent Product and Process Design 3
MANF9560 Computer Integrated Manufacturing 3
SAFE9213 Introduction to Safety Engineering M 3

3. Refrigeration and Air Conditioning
12 credits of core subjects:
MECH9751 Refrigeration and Air Conditioning 1 3
MECH9752 Refrigeration and Air Conditioning 2 3
MECH9753 Refrigeration and Air Conditioning Design 1 3
MECH9754 Refrigeration and Air Conditioning Design 2 3
and 12 credit project
MECH9010 Research Project 12

The remaining 6 credits may be selected from:
MECH9321 Acoustic Noise 1 2
MECH9322 Acoustic Noise 2 2
MECH9710 Numerical Fluid Dynamics and Heat Transfer 3
MECH9711 Analysis of Heat Transfer 4
MECH9720 Solar Thermal Energy Design 3
MECH9730 Two Phase Flow and Heat Transfer 3
MECH9741 Energy Conservation and System Design 3
MECH9757 Ambient Energy Air Conditioning 2
SAFE9232 Introduction to Occupational Health and Safety Law 3
SAFE9583 Ventilation 3
or such other subjects (based on availability) as may be approved by the Head of School.

4. Industrial Automation
9 credits of core subjects must be selected from:
MECH9201 Digital Fundamentals for Mechanical Engineers 3
MECH9202 Microprocessor Fundamentals 3
MECH9203 Industrial Applications for Microprocessors 3
MECH9211 Modelling and Control of Mechatronic Systems 3
MECH9221 Industrial Robots 3
MECH9222 Artificially Intelligent Machines 3
MANF9500 Computer Aided Programming for Numerical Control 3
and 12 credit Project
MECH9010 Research Project 12
The remaining 9 credits may be selected from the above list or from other subjects as approved by the Head of School.

5. Advanced Analysis for Design

12 credits of core subjects:
MECH9410 Finite Element Applications 3
MECH9421 Stress Analysis for Mechanical Engineering Design 1 3
MECH9400 Mechanics of Fracture and Fatigue 3
SAFE9224 Principles of Ergonomics 3
and 12 credit project
MECH9010 Research Project 12
The remaining 6 credits may be selected from:
CIVL9731 Project Management (or CIVL9732) 3
CIVL9732 Advanced Project Management Theory (or CIVL9731) 3
MANF9601 Economic Decisions in Industrial Management 3
MECH4120 Design Technology 2
MECH4130 Computer Aided Engineering Design 2
MECH9460 Experimental Stress Analysis 3
or such other subjects (based on availability) as may be approved by the Head of School.

6. Noise and Vibration

9 credits of core subjects:
MECH9321 Acoustic Noise 1 3
MECH9311 Fundamentals of Vibration 3
MECH9312 Fundamentals of Noise and Vibration Measurement 3
and 12 credit project
MECH9010 Research Project 12
The remaining 9 credits may be selected from:
MECH9322 Acoustic Noise 2 3
MECH9310 Advanced Vibration Analysis 3
MECH9323 Environmental Noise 3
MECH9324 Building Acoustics 3
or other subjects approved by the Head of School.

5455
Graduate Diploma in Industrial Engineering
Grad Dip

5456
Graduate Diploma in Mechanical Engineering
Grad Dip

Details of recommended programs of study may be obtained from the Head of School. Subjects from the Masters degree programs are offered in the Graduate Diploma programs subject to the approval of the course coordinator.

Subject Descriptions

Descriptions of all subjects are presented in alphanumerical order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

Industrial Technology and Management

MANF9010
Research Project
Staff Contact: Prof H. Kasbernack
C12

MANF9019
Project
C9

MANF9029
Project Report
C18

MANF9039
Thesis
C36

MANF9040
Seminar Industrial Management
C0
Staff Contact: Dr Y.L. Yao

MANF9340
Flexible Manufacturing Systems
Staff Contact: Prof H. Kasbernack
C3 SS HPW3
Prerequisite: MANF9520
Technical aspects of FMS components, including automated material-handling devices, job selection design and their aggregation. Hierarchical structure of FMS; mathematical models of FMS.
MANF9400
Industrial Management
Staff Contact: Dr B. Kayis
C3 SS HPW3
Definitions of management; evolution of management thought, classical, quantitative and behavioural schools; interactions between organizations and their environment. The planning process; strategic and tactical planning, developing planning premises, nature of managerial decision making, quantitative aids, management by objectives. Organizational structures; coordination and spans of control, the informal organization, authority delegation and decentralization, groups and committees, managing organizational change and conflict. Motivation, performance and satisfaction; leadership, interpersonal and organizational communication, staffing and the personnel function. The control process; budgetary and non-budgetary methods of control, use of management information systems.

MANF9410
Total Quality Management
Staff Contact: Dr B. Kayis
C3 SS HPW3
Economics of measurement; advanced measuring and inspection methods; non-destructive testing; quality control systems; sampling by attributes and variables; standardization; case studies; process capability and variability; machine tools acceptance testing; alignment procedures.

MANF9470
Production Management 1
Staff Contact: Prof H. Kaebenick
C3 SS HPW3
Notes: Excluded MANF9420
Framework and functions of production management; industry dynamics, competitive advantage, Porter's model; meaning of waste and value added; competitive advantage and its implications for management of materials flow. Dynamics of materials flow in a manufacturing organisation; role of inventory; push vs pull systems of production; bottlenecks; VIT and A plants. Hierarchical production planning; the Master Production Schedule; translating the MOS into operational requirements. Mechanics of MRP, JIT and OPT. Role of Total Quality Management. Matching Production Management system to type and strategic positioning of company.

MANF9491
Special Topic In Industrial Engineering
C3 SS HPW3
Notes: This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

MANF9492
Special Topic In Industrial Engineering
C3 SS HPW3
Notes: This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

MANF9500
Computer Aided Programming for Numerical Control
Staff Contact: Dr P. Mathew
C3 SS HPW3
Prerequisite: Assumed knowledge MECH1500 or equivalent
Notes: Excluded MANF4509.

MANF9543
CAD/CAM
Staff Contact: Dr K. Hoang
C3 SS HPW3
Note: Student numbers are limited due to computer availability. Preference will be given to CIM Program students. Students must contact the Department of Industrial Technology and Management one week after enrolment to confirm enrolment.
Topics to be covered include: Manufacturing systems; elements of CAM; computer process monitoring and control; production systems at the plant and operation levels; principles underlying the interactive computer graphics packages such as Auto CAD and CATIA; applications to design and engineering processes.

MANF9544
Concurrent Product and Process Design
Staff Contact: Dr Y.L. Yao
C3 SS HPW3
Topics to be covered are selected from: concurrent engineering concepts, producibility, maintainability, technical and economic considerations, design for manufacturing, design for assembly, inspectability, computer-aided concurrent engineering, knowledge-based approaches, environmental and ecological impacts.

MANF9560
Computer Integrated Manufacturing
Staff Contact: Dr K. Hoang
C3 SS HPW3
Prerequisite: MANF9520
Systems analysis and design of computer integrated manufacturing, including flexible manufacturing systems and automated factories.

MANF9601
Economic Decisions in Industrial Management
Staff Contact: Prof H. Kaebenick
C3 SS HPW3
Notes: Excluded MANF3619.
General aspects: the economic objective, the single-period investor's model, economic criteria, the mathematics of finance. Deterministic models: project evaluation using discounted cash flow analysis; capital structure; debt and equity financing; cost of capital and the minimum acceptable rate of return; taxation; inflation and its effects. Probabilistic models: multiple objectives and multi-attribute value systems based on means and variances of cash flows. Particular applications of economic decision-making:
venture and risk analysis, risk management, static and
dynamic replacement models, rent-or-buy decisions,
breakeven analysis, expansion and economic package
concepts, analysis of projects with public financing.

Mechanical Engineering

MECH9010
Project
C12

MECH9201
Digital Logic Fundamentals for Mechanical Engineers
Staff Contact: Dr M.J. Tordon
C3 SS HPW3
Notes: Excluded 6.021E, 6.631 and equivalent.

MECH9202
Microprocessor Fundamentals for Mechanical Engineers
Staff Contact: Dr M.J. Tordon
C3 SS HPW3
Prerequisite: MECH9201 or equivalent
Notes: Excluded 6.0318, 6.613, COMP9221, ELEC4432, ELEC9406, ELEC4351 and equivalent.

MECH9203
Industrial Applications of Microprocessors
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: MECH9202 or equivalent
Notes: Excluded ELEC4432, ELEC9406, ELEC4351 and equivalent.

MECH9204
Elements of Industrial Automation
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2300 or 5.333 or

MECH9205
The Analysis and Use of Integrated CAD/CAM Systems
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: MECH9204

Economic background to the use of CAD/CAM systems.
Elements in systems for use with machining centres, lathes and
sheet metal machinery. Data input techniques. Coordinate
handling. Machine specific post processors. Data verification
and output integrity analysis. Techniques for interfacing
machine tools with computers. Restrictions imposed by
requirements for real time control. Integration with
accounting and cost analysis systems. Choice of
computer. Factors in CAD CAM system selection.

MECH9211
Modelling and Control of Mechatronic Systems
Staff Contact: Dr J. Katupitiya
C3 SS HPW3
Prerequisite: MECH9212

Development of modelling technique and design of
controllers using digital computers, with special emphasis
on motion control. Typical examples of mechatronics
systems.

MECH9212
Control and Modelling of Mechanical Systems 2
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: MECH2112 or equivalent

Development of modelling techniques using both digital
and analogue computation, with special emphasis on
the representation of non-linearities. Typical examples of
mechanical systems.

MECH9221
Industrial Robotics
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3

Applications survey. System structure, hardware, software,
handling. Linkage kinematic structure; power
Interface hardware. Feedback. Function programming
philosophies. Control algorithms. Problem specification;
solution preparation. Writing, storage, implementation of
counter algorithms.

MECH9222
Artificially Intelligent Machines
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3

The principles of operation of machines into which limited
powers of decision making have been delegated. The
grouping of intelligent machines. Cognition; sensor
technology; parsing; information representation;
convolutions; software and hardware environments.

MECH9301
Advanced Mechanism Analysis and Synthesis 1
Staff Contact: A/Prof J.E. Baker
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2300 or 5.333 or
Algebraic displacement, velocity and acceleration analyses of simple and complex planar mechanisms. Instantaneous kinematics: centroids; inflection and Bresse circles; acceleration centre; Euler-Savary equation; cubic of stationary curvature; centring point curve. Coupler curves and their properties; curve cognates. Constraint and freedom; mobility; velocity closure of a loop; special configurations; singularities. Various methods of synthesis.

Advanced Mechanism Analysis and Synthesis 2
Staff Contact: A/Prof J.E. Baker
C3 SS HPW3
A selection of topics from Planar mechanisms: kinematic analysis of complex mechanisms; kinetic analysis; kinematic geometry; precision position synthesis. Cams: basic and common curves; equations of motion; development of profile; determination of system geometry and mechanical properties; noise, wear, backlash and manufacture. Spatial linkages: structural analysis; closure equations; screw system algebra; special configurations.

Advanced Vibration Analysis
Staff Contact: Mr R.B. Randell
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3310 or equivalent
Notes: Excluded MECH4310.
Introduction to experimental vibration analysis using Fast Fourier Transform (FFT) techniques. Typical sources of vibration in machines. Analysis of continuous systems via classical and finite element techniques. Experimental modal analysis. Torsional vibrations, including geared shaft systems.

Fundamentals of Vibration
Staff Contact: Mr R.B. Randell
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2300, MATH2009 or equivalent
Notes: Excluded MECH3310.

Fundamentals of Noise and Vibration Measurement
Staff Contact: A/Prof K.P. Byrne
C3 SS HPW3

Random Vibrations
Staff Contact: School Office
C2 SS HPW2
Prerequisite: Assumed knowledge MECH3310
Probability, vibration theory review, linear mechanical system response to random vibrations. Statistical characteristics: autocorrelation, spectral density, convolution, narrow band processing, consistency, applications.

Acoustic Noise 1
Staff Contact: A/Prof K.P. Byrne
C3 SS HPW3
Notes: Excluded MECH4341.
Acoustic plane wave equation, standing waves, energy density, intensity, decibel scales. Human response, annoyance and damage criteria. Transmission between media, absorbing materials. Mufflers, Three dimensional wave equation. Transmission in ducts. Room acoustics.

Acoustic Noise 2
Staff Contact: A/Prof K.P. Byrne
C3 SS HPW3
Prerequisite: MECH9321 or equivalent
Notes: Excluded MECH4322.

Environmental Noise
Staff Contact: A/Prof K.P. Byrne
C3 SS HPW3
Prerequisite: MECH4321 or equivalent

Building Acoustics
Staff Contact: A/Prof K.P. Byrne
C3 SS HPW3
Prerequisite: MECH4321 or equivalent
Room acoustics viewed from modal and energy aspects. Absorption and transmission performance of building elements such as carpets, windows and walls. Relationship between laboratory and field performance measurements. Noise problems associated with building services.
lubrication applied to slider and journal bearings; bearing
design with side leakage; thermal balance. Journal bearing
dynamics; instability analysis. Elastohydrodynamic
lubrication. Bearing materials; friction and wear. Grease
lubrication.

MECH9362
Lubrication Theory and Design 2
Staff Contact: A/Prof E.J. Hahn
C2 SS HPW2
Prerequisite: MECH9361 or equivalent
Continuum equations of hydrodynamic lubrication. Journal
bearing dynamics. Rolling contacts. Elastohydrodynamic
lubrication. Grease lubrication. Plastic-elastohydrodynamic
lubrication. Metal forming, cutting lubrication.

MECH9400
Mechanics of Fracture and Fatigue
Staff Contact: Dr K. Zarrabi
C3 SS HPW3
Notes: Excluded MECH4400.
Theories of fracture; failure modes. Ductile, brittle fracture.
Mechanics of crack propagation, arrest. Measurement of
static fracture properties. Fatigue crack initiation,
propagation. Engineering aspects of fatigue.

MECH9410
Finite Element Applications
Staff Contact: A/Prof D.W. Kelly
C3 SS HPW3
Notes: Excluded MECH4410, MECH4400.
Introduction to finite element and associated graphics
packages. Principles of mesh design and validation.
Specification of boundary conditions including use of
symmetry. Estimation of the cost of solution. Interpretation
of results. Assessment of the accuracy of the results.
Convergence to the exact solution. Selection of
applications from linear and non-linear elasticity: three
dimensional solids, plates and shells, plasticity, buckling
and post-buckling behaviour, thermal stresses, dynamics
including natural and forced vibration.

MECH9421
Stress Analysis for Mechanical Engineering Design 1
Staff Contact: A/Prof A.E. Churches
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3400 or equivalent
Plates, shells: primary, secondary and peak stresses,
relations to strength. Pressure vessels. Current design
philosophies.

MECH9422
Stress Analysis for Mechanical Engineering Design 2
Staff Contact: A/Prof A.E. Churches
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3400 or equivalent
Topics selected from: Plastic collapse. Limit state design.
Stress concentrations. Plate girder panel structures.
Lightweight structures. Machine frames. High temperature
components. Gears.

MECH9460
Experimental Stress Analysis
Staff Contact: School Office
C3 SS HPW3
Strain gauging: practice, theory, instrumentation, data
acquisition and processing, applications, load cell design.
Photoelasticity: transmission and reflective. Brittle
coatings. Dye penetrants. Practical laboratory classes
throughout.

MECH9620
Computational Fluid Dynamics
Staff Contact: A/Prof J.A. Reizes
C3 HPW3
Incompressible flow: primitive equations; stream function,
vorticity equations. The conservative property. Stability
SOR methods. Fourier series methods. Pressure,
temperature solutions. Solving the primitive equations.

MECH9631
Gasdynamics 1
Staff Contact: School Office
C2 SS HPW2
Notes: Excluded AERO3601.
One dimensional steady flow: isentropic channel flow,
normal shock waves, supersonic wind tunnels and
diffusers. Two dimensional steady flow: oblique shock
waves, Prandtl-Meyer expansions, nozzles, airfoils. One
dimensional unsteady flow: moving waves, reflections,
explosions in ducts, shock tubes; method of characteristics,
internal flows, piston and valve effects.

MECH9632
Gasdynamics 2
Staff Contact: School Office
C2 SS HPW2
Prerequisite: MECH9631 or equivalent
Kinematics, dynamics, thermodynamics, vorticity. Nozzle.
Wind tunnel. Diffusers. Shock waves; steady, moving.
Method of characteristics. Combustion. Real gas behaviour
at high temperature. Hypersonic aerodynamics, free
molecule flow, re-entry; high energy experimental methods.

MECH9710
Numerical Fluid Dynamics and Heat Transfer
Staff Contact: A/Prof J.A. Reizes
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3800 or equivalent
Notes: Excluded MECH4710
Introduction: Review of the mechanisms of heat transfer.
Governing equations for convection: continuity,
Navier-Stokes, energy. Boundary layer equations for
forced and natural convection. Boundary conditions.
Approximate analytical solution methods: momentum and
energy integral equations. Polhausen technique. Similarity
formulation. Solution by conversion to initial value problem.
Finite difference methods: finite difference approximations
of partial differential equations. Consistency stability and
convergence. Application to the boundary layer and full
equations of motion and energy.
MECH9711
Analysis of Heat Transfer
Staff Contact: Dr M. Behnia
C4 SS HPW4
Prerequisite: Assumed knowledge MECH3701 or equivalent
Notes: Candidates wishing to specialize in Refrigeration and Air Conditioning should select this subject.

MECH9720
Solar Thermal Energy Design
Staff Contact: A/Prof G.L. Morrison
C3 SS HPW3
Notes: Excluded MECH4720 and equivalent.

MECH9730
Two Phase Flow and Heat Transfer
Staff Contact: Dr M. Behnia
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3701 or equivalent
Notes: Excluded MECH4720.

MECH9740
Power Plant Engineering
Staff Contact: Dr M. Behnia
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2600 and MECH2700 or equivalent

MECH9741
Energy Conservation and System Design
Staff Contact: A/Prof J.A. Reizes
C3 SS HPW3
Examination of some existing systems, assessment of their energy losses and their improvement by tuning. Alternative energy sources and their availability, energy utilization and efficiency in various systems. Environmental aspects, assessment of emissions, means of improvement. Economically viable energy technology under present conditions. Expected trends in energy technology in the short and long term. A number of case studies.

MECH9742
Power Production Assessment
Staff Contact: Dr M. Behnia
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3600 and MECH3701 or equivalent
Components of hydro, coal and nuclear fuel power station designs. Economics of power production. Operation and maintenance of costs. Efficiency and heat balance calculations of thermal power stations. Comparison of electrical energy production costs of different power stations.

MECH9751
Refrigeration and Air Conditioning 1
Staff Contact: A/Prof E. Leonard
C3 SS HPW3

MECH9752
Refrigeration and Air Conditioning 2
Staff Contact: A/Prof E. Leonard
C3 SS HPW3
Prerequisite: Assumed knowledge MECH9751 or equivalent
Notes: Candidates wishing to specialize in Refrigeration and Air Conditioning should select this subject.
MECH9753
Refrigeration and Air Conditioning Design 1
Staff Contact: Dr I.L. Maclaine-cross
C3 SS HPW3
Prerequisite: Assumed knowledge MECH9730, MECH9751, MECH9752 or equivalent

MECH9754
Refrigeration and Air Conditioning Design 2
Staff Contact: Dr I.L. Maclaine-cross
C3 SS HPW3
Prerequisite: MECH9753 or equivalent

MECH9755
Refrigeration and Air Conditioning Applications
Staff Contact: A/Prof E. Leonardi
C3 SS HPW3
Industrial, commercial and domestic applications of refrigeration and air conditioning. Refrigeration technology. The science and technology of foods. Building design and construction.

MECH9756
Refrigeration and Air Conditioning Experimentation
Staff Contact: A/Prof E. Leonardi
C3 SS HPW3
Prerequisites: MECH9751, MECH9752
Corequisites: MECH9753, MECH9754
Performance testing and system evaluation of multistage R22 brine system, R12 forced draft cooler system and dual duct air conditioning plant. Instrumentation, data acquisition and control of refrigeration plant. Use of calorimeter rooms for testing and rating of equipment. Transient performance characteristics of direct expansion coil and system, under different ambient conditions. Group project involving the designing, building, commissioning, instrumenting and testing of refrigeration and air conditioning equipment.

MECH9757
Ambient Energy Air Conditioning
Staff Contact: Dr I.L. Maclaine-cross
C2 SS HPW2
Prerequisite: Assumed knowledge MECH3701 or equivalent

MECH9761
Internal Combustion Engines 1
Staff Contact: Prof B.E. Milton
C3 SS HPW3

MECH9762
Internal Combustion Engines 2
Staff Contact: Prof B.E. Milton
C3 SS HPW3
Prerequisite: MECH9761 or equivalent

MECH9800
Ordinary Differential Equations In Mechanical Engineering
Staff Contact: A/Prof J.E. Baker
C3 SS HPW3
Solutions and their meaning, integration constants, linearity; special methods of solution; integration factors; variation of parameters; Euler, higher order linear equations; physical origins of ordinary differential equations and linear systems; linearization of engineering problems; stability of engineering systems.

MECH9900
Special Topic In Mechanical Engineering
C2 SS HPW2
MECH9910
Special Topic In Mechanical Engineering
C2 SS HPW2
MECH9920
Special Topic In Mechanical Engineering
C3 SS HPW3
MECH9930
Special Topic In Mechanical Engineering
C3 SS HPW3
These syllabi change to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.
Surveying is a professional science dealing with measuring processes and the handling and computation of data. Traditionally, surveyors measure land and water areas and produce maps for use in development projects such as land subdivision, town planning, building construction, engineering works (e.g., dams and railways), mining, and navigation.

Today in Australia, a surveyor may choose to work in one of the specialised areas of: Satellite Surveying (position determination techniques using satellite signals); Geodetic Surveying (determining the mathematical model of the Earth, and its gravity field, and the practice of surveying on the Earth's surface); Hydrographic Surveying (mapping the seabed and waterways for navigation and off-shore resource management); Engineering Surveying (the precise surveying for engineering projects); Cadastral Surveying (knowledge of the laws and practices for survey of property boundaries); Land Management and Development (environmental assessment for resource management and change of land use); Land Information Management (the use of computer-based information systems of spatially related data for planning purposes); Photogrammetry and Remote Sensing (the use of photographs and remotely sensed images for mapping and resource surveys).

The two undergraduate degrees in the School are the Bachelor of Surveying course 3740 and the combined degree in Bachelor of Surveying, Bachelor of Science in Computer Science 3745.

Formal graduate courses lead to the award of the degree of Master of Surveying Science 8651 and of the graduate diploma in Surveying 5491, and opportunities are provided for graduate research leading to the award of the degrees of Master of Surveying 2720 and Doctor of Philosophy 1680.

The School of Surveying is also involved in the Centre for Remote Sensing and Geographic Information Systems in association with the School of Geography in the Faculty of Applied Science. The Centre supports graduate programs leading to the award of the degree of Master of Engineering Science 8641 or Master of Applied Science 8026 or the Graduate Diploma in Remote Sensing and Geographic Information Systems 5026 or 5496 in addition to supervision for the degree of Doctor of Philosophy.

Bachelor of Surveying Course

The School offers a full-time course of four years duration leading to the award of the degree of Bachelor of Surveying (BSurv). Alternatively, the course may be taken in a sandwich form in which a student may, after completing the first year of the course on a full-time basis, alternate his or her studies with one or more periods of employment by taking leaves of absence of two consecutive sessions. The BSurv degree course is a well-rounded course aimed at preparing the graduate for a broad range of career opportunities in the various branches of Surveying and in associated fields referred to above. The course recognises that its graduates may be called on to act as survey practitioners, consultants, managers, teachers or researchers, and indeed a single graduate may take on several of these roles during his or
her career. To this end, the BSurv degree course covers general scientific principles with special emphasis on computing, as well as specialised surveying applications. Throughout the course, theoretical studies are complemented by practical exercises in the field and in the laboratory.

The Bachelor of Surveying/Bachelor of Science in Computer Science Course

This new combined degree course of five years full-time study enables a student to qualify for the award of the two degrees of Bachelor of Science in Computer Science and Bachelor of Surveying. The course authority for the combined degree is the School of Surveying. All students admitted to the combined course will be part of the Surveying UAC quota (NSU Code) but must also have achieved a level equivalent to the Computer Science cut-off (NCS) for the year of admission.

The course is specifically designed for students wishing to enter a career in computer science specializing in surveying, satellite positioning, spatial data handling for land and geographic information systems, remote sensing, digital mapping and terrain analysis. The content of the course comprises subjects from the BSc in Computer Science and BSurv degree courses with some variations to accommodate the requirements of both degrees. It should be possible to complete the requirements for the award of the BSc degree after four years study and the BSurv degree after five years.

Recognition

The degree of Bachelor of Surveying is recognised by the New South Wales Surveyors' Board as meeting all examination requirements for registration as a Registered Surveyor in New South Wales, and is recognised by the Institution of Surveyors, Australia for admission as corporate members.

Students wishing to become Registered Surveyors with the New South Wales Surveyors' Board after graduation are advised to gain practical experience under a Registered Surveyor during their course. Some reduction in the period of practical experience required before registration may be granted because of practical experience gained during the University course, provided the New South Wales Surveyors' Board is informed in the prescribed manner. Details are obtainable from the Registrar, Surveyors' Board, Department of Lands, Bridge Street, Sydney 2000.

Field Excursions

Students must complete all necessary fieldwork for any subject and be prepared to pay all the appropriate costs, and must be in attendance at all scheduled examinations except in exceptional circumstances.

Course Revision

The BSurv degree course was recently revised. Years 1 and 2 of the new course have been introduced in 1989, while year 3 was introduced in 1990, and year 4 in 1991. Students with broken programs will have their status in the new course determined according to a table of equivalent subjects in the new and old courses.
Undergraduate Study

Course Outlines

3740

Surveying

Bachelor of Surveying (BSurv)

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1032 Mathematics 1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MECH0130 Engineering Drawing and Design</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PHYS1929 Physics 1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SURV1111 Introduction to Computing</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV1711 Introduction to Surveying (C)</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV2041 Survey Data Presentation</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV2111 Principles of Computer Processing</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SURV2221 Introduction to Geodetic Science</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>21</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2009 Engineering Mathematics 2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH2829 Statistics SU</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PHYS2969 Physics of Measurements</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SURV2041 Survey Data Presentation</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV3111 Survey Computations</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV3221 Geodetic Computations</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV4051 Survey Camp 1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV4011 Surveying Techniques</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SURV4111 Data Analysis and Computing</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV4221 Geodetic Positioning</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Education Subject Cat.A</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL0646 Engineering for Surveyors</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PLAN9111 Town Planning</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SURV5011 Engineering Surveying</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV5111 Data Analysis and Computing</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV5221 Geodetic Positioning</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV5722 Project Management</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL0656 Engineering for Surveyors</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6051 Survey Camp 2</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SURV6121 Computer Graphics</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6511 Photogrammetry and Mapping</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6621 Cadastral Surveying</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6722 Project Management</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6811 Land Economics and Valuation</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>28-hr General Education Subject Cat.B</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Combined Course 3745

Bachelor of Surveying/Bachelor of Science in Computer Science (BSurv BSc in Computer Science)

The structure of this new course is flexible to accommodate timetabling but a recommended program which will satisfy prerequisites throughout the course is:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1032, MECH0130, PHYS1929, SURV1711(C)</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SURV3111 Survey Computations</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SURV5111 Data Analysis and Computing</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SURV5221 Geodetic Positioning</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SURV5722 Project Management</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CIVL0656 Engineering for Surveyors</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SURV6051 Survey Camp 2</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SURV6511 Photogrammetry and Mapping</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6621 Cadastral Surveying</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6722 Project Management</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SURV6811 Land Economics and Valuation</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1011, COMP201, MATH2841, MATH2501, MATH2510, MATH2520, Phys2969, SURV3111, SURV3231, SURV4051, SURV4111, SURV4221</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2011, COMP2021, COMP301, SURV5011, MATH2100, MATH2120, PLAN9111, SURV5111, SURV5221, SURV5721, SURV6051, SURV6511, SURV6721, SURV6811</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

General Ed. Cat. B.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

Note: Electronic Calculators - Students enrolled in the surveying courses are required to equip themselves with an electronic calculator. Advice on the purchase of this equipment is given to students at the commencement of their course.

SURV0411
Surveying for Builders
Staff Contact: School Office
S2 L1 T2
Notes: This is a servicing subject taught within courses offered by other schools and faculties.
A compulsory subject.

SURV0441
Surveying for Engineers
Staff Contact: School Office
S2 L2 T2.5
Notes: This is a servicing subject taught within courses offered by other schools and faculties.

SURV0491
Survey Camp
Staff Contact: School Office
Notes: This is a servicing subject taught within courses offered by other schools and faculties.
A one-week field camp for students studying SURV0441 Surveying for Engineers.

SURV0580
Mining Surveying
Staff Contact: School Office
S1 L2 T1
Prerequisite: SURV0441

SURV0752
Remote Sensing Techniques and Applications
Staff Contact: School Office
S1 L3 T1
Notes: This is a servicing subject taught within courses offered by other schools and faculties.
The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; Infra-red remote sensing techniques; side-looking airborne radar; theory and applications of Landsat imagery; interpretation of Landsat photographic products. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

SURV0901
Introduction to Mapping
Staff Contact: School Office
S1 L1 T.5
Notes: This is a servicing subject taught within courses offered by other schools and faculties.

SURV1111
Introduction to Computing
Staff Contact: School Office
S1 L2 T2
Revision of plane trigonometry and co-ordinate systems. Join, polar, area calculations using hand calculators. Spherical trigonometry. Principles of calculation; representation of numbers, round-off errors, significant figures, orders of magnitude. Introduction to computers;
SURV1711
Introduction to Surveying
Staff Contact: School Office
F L2 T1

SURV2041
Survey Data Presentation
Staff Contact: School Office
S2 L2 T1

SURV2211
Principles of Computer Processing
Staff Contact: School Office
S2 L2 T2

Corequisite: SURV1111

Operating systems; VAX/VMS, or command language. Software; spreadsheets, compilers. Program structure; subroutines, functions, control structures. Program libraries; creation, system libraries. Data structures; arrays, stacks, lists, queues, trees. Data files; types and organisations. Sorting, searching, merging. Data bases; concepts, types, information access.

SURV2221
Introduction to Geodetic Science
Staff Contact: School Office
S2 L2.5 T1.5

SURV3011
Surveying Instruments
Staff Contact: School Office
S1 L2.5 T1.5

Prerequisite: SURV1711

Survey tapes and bands; measurement, calibration, reductions. Precise levelling instruments; principles, construction, applications, testing and adjustment, ancillary equipment. Optical and electronic theodolites; principles, construction, testing and adjustment.

SURV3111
Survey Computations
Staff Contact: School Office
S1 L2 T1

Prerequisite: SURV1111

Intersection, resection, trilateration, with and without redundant data, semigraphic solutions. Missing data problems, road intersections. Subdivision calculations. Transformations. Traverse computations. Introduction to PCs and MS DOS.

SURV3231
Geodetic Computations
Staff Contact: School Office
S1 L2 T1

Corequisites: MATH2009, SURV1111

Principles of map projections. Surveying and mapping projections; transverse Mercator projection. Geometry of the ellipsoid; ellipsoidal computations. Corrections to field observations; arc-to-chord, scale factor and grid convergence.

SURV4011
Surveying Techniques
Staff Contact: School Office
S2 L4.5 T1.5

Prerequisite: SURV2041

Corequisites: SURV3011, SURV3111

Principles, reduction of observations and errors in survey techniques of horizontal and zenith angle measurement, trigonometric heighting, traversing, vertical staff tacheometry. Electronic distance measurement; principles, corrections, reductions, calibration, electro-optical distance meters.

SURV4051
Survey Camp 1
Staff Contact: School Office
S2 T3

Prerequisite: SURV1711

Corequisites: SURV3011, SURV4011

Notes: Students are required to attend a one-week survey camp, which is equivalent to 3 class contact hours per week.

SURV4111
Data Analysis and Computing 1
Staff Contact: School Office
S2 L2 T1

Prerequisites: MATH1032, SURV2111

Corequisite: SURV3111

Least squares theory; modelling of observations; general, parametric and condition methods. Solution of equations and inverses. Treatment of singular equations and datum problems. Law of propagation of variances. Statistical testing; confidence intervals, error ellipses. Applications in
surveying, geodesy, photogrammetry and other sciences. Software design and coding for least squares analysis. Use of personal computers.

SURV4221
Geodetic Positioning 1
Staff Contact: School Office
S2 L2 T1
Prerequisite: SURV2221
Corequisites: SURV1111, SURV3231

SURV5011
Engineering Surveying
Staff Contact: School Office
S1 L3.5 T.5
Corequisites: SURV3111, SURV4011
Design and computation of horizontal and vertical curves, volume determination, route surveys. Setting out surveys: techniques, setting out of roads, buildings and large structures. Introduction to mine surveying: height and azimuth transfer.

SURV5111
Data Analysis and Computing 2
Staff Contact: School Office
S1 L2 T1
Prerequisite: MATH2829
Corequisite: SURV3111, MATH2009

SURV5221
Geodetic Positioning 2
Staff Contact: School Office
S1 L2 T1
Prerequisite: SURV4221
Corequisite: SURV4111
Introduction to satellite positioning; review of reference systems in satellite geodesy; absolute and relative positioning; ranging methods and review of satellite technology. Introduction to the GPS system; measurement modes. Surveying with GPS; planning a survey, instrumentation, field and office procedures. Modelling the observations; principles of data processing. Combination of terrestrial and GPS data. Height determination using GPS. Case studies.

SURV5621
Cadastral Surveying 1
Staff Contact: School Office
S1 L2 T1
The legal system in Australia and NSW; the nature of land law including land tenure, estates in land, interests in land. Land title systems. Land administration in Australia and NSW. Boundary surveying principles. Cadastral mapping in NSW.

SURV5722
Project Management 1
Staff Contact: School Office
S1 L2 T1

SURV6501
Survey Camp 2
Staff Contact: School Office
S2 T4
Prerequisite: SURV4051
Corequisite: SURV5011
Notes: Students are required to attend a one week Survey Camp which is equivalent to 3 class contact hours per week together with 1 hour per week evaluation.

One week survey project of substantial extent, followed by one hour per week computations, plan and report preparation at the School of Surveying.

SURV6121
Computer Graphics
Staff Contact: School Office
S2 L2 T1
Overview of graphics systems and their relation to computer assisted mapping and information systems. Acquisition, processing, presentation of data. Graphics data structures, algorithms and transformations. Graphics programming using a high level language and graphics language. Use of interactive graphics display terminals.

SURV6511
Photogrammetry and Mapping 1
Staff Contact: School Office
S2 L2 T2
Properties of photogrammetric and remotely sensed images; photography, electro-optical, linear array, microwave systems. Photograph geometry; camera calibration, inner orientation, collinearity equations, deviations from collinearity. Stereoscopic vision; Principles of instrumentation for analogue and analytical photogrammetry. Exterior orientation; relative and absolute orientation, ground control point selection.

SURV6621
Cadastral Surveying 2
Staff Contact: School Office
S2 L2 T1
Corequisite: SURV5621
Survey investigation for both artificial and natural boundaries; survey and title searching. Field note preparation for cadastral surveying. Survey marking and preparation of plans of survey. Study of appropriate
statutes and regulations. Cadastral survey techniques for urban and rural properties; the status of roads in NSW, strata plan surveys, identification surveys, consents for MHWM, railways, rivers, kerbs in Sydney. The role of coordinates in cadastral surveying.

SURV6722
Project Management 2
Staff Contact: School Office
S2 L2 T1
Corequisite: SURV5722

Aims and forms of project organization. Preparation of contracts and specifications: contract law, subcontracting, contract work, bidding. Project scheduling, control and documentation. Project teams in a corporation. Psychology of professionals. Qualifications of a project manager. Decision making process in project management: authority, power, interaction, leadership, assignments. Human resource management: small group behaviour, learning curve, management of teams in professional practice, professional liabilities and responsibilities. Short term field planning. Logistics of field work. Case studies in the application of project management to surveying projects.

SURV6811
Land Economics and Valuation
Staff Contact: School Office
S2 L2 T1

The surveyor's role in the economic use of land. Variation of land use and land value. Temporal change in land use due to supply and demand, and its effect on land development and urbanisation. Location theory, public measures for directing land use. Introduction to valuation: factors affecting value of land, valuation principles and practice.

SURV7051
Survey Camp 3
Staff Contact: School Office
S1 T7

Prerequisites: all Year 3 subjects

Two weeks survey camp for projects (equivalent to 6 class contact hours per week) selected from areas of cadastral, engineering and geodetic surveying, followed by (one hour per week) computations, plan and report preparation at the School of Surveying.

SURV7311
Offshore Surveying
Staff Contact: School Office
S1 L2 T1

SURV7511
Photogrammetry and Mapping 2
Staff Contact: School Office
S1 L2 T1

Prerequisite: SURV6511

Aerial triangulation; semi and analytical methods, block adjustment by models and bundles, control requirements for block adjustment. Differential rectification; orthophotos. Map production; map compilation by photogrammetric techniques, map production processes. Project planning. Non-topographic methods of photogrammetry.

SURV7521
Remote Sensing and Resources Surveys
Staff Contact: School Office
S1 L2 T1

SURV7531
Spatial Information Systems 1
Staff Contact: School Office
S1 L2 T1

Overview and background of Spatial Information Systems. Explanation of definitions and terminology; LIS, GIS, MPC. Management and institutional issues; land information as maps and records; existing systems; problems. Technological issues; digital maps and data base management; data acquisition; data storage; editing; raster and vector representations; topology. Modelling and analysis.

SURV7712
Land Management and Development Project
Staff Contact: School Office
S1 L1 T1

Corequisite: SURV7811

Design and studio project for a residential neighbourhood development. Constraint and site analysis: preparation of maps of land use, vegetation, surface and soils, drainage and terrain, slopes, climate and aspect; composite overlay maps. Structure plan design: residential precincts, schools, commercial areas, industrial areas, active and passive recreation, pedestrian ways and road hierarchy.

SURV7811
Land Subdivision and Development
Staff Contact: School Office
S1 L2 T1

Subdivision and development control in New South Wales. Administration of subdivision and development under Local Government and environmental planning and assessment legislation; procedures and legal controls. Statutory requirements for land development and subdivision of land, particularly as they apply to broad-acre subdivisions.

SURV8001
Project
S1 T1 S2 T8

Prerequisite: all Year 3 subjects

The project is undertaken in the final year of the BSurv Course with one hour per week in the first session and 8 hours per week in the second session. Students must undertake surveying projects or research tasks in the field or laboratory on a topic approved by the Head of School,
under the guidance of academic staff. Each student is required to submit a written report in prescribed format by a specific date at the end of the second session.

SURV8011
Project Surveying
Staff Contact: School Office
S2 L2 T1
Corequisites: SURV5011
Selected topics from: monitoring of deformations and settlement of terrain, structures and machines; design and optimization of precise engineering networks; high precision distance measurement; 3-D measuring systems; computer controlled surveying; length transducers; alignment surveys; interferometer applications; collimation and auto-collimation techniques; optical tooling; principal and use of gyrotheodolite; electronic tiltmeters; inertial surveys.

SURV8221
Advanced Geodesy
Staff Contact: School Office
S2 L2 T1
Prerequisite: SURV5221
Selected topics from: space technologies including GPS for high precision positioning; satellite altimetry analysis; gravimetric geodesy; 4-D geodesy; inertial positioning technology; methods of kinematic positioning.

SURV8531
Spatial Information Systems 2
Staff Contact: School Office
S2 L2 T1
Management of Land Information Systems; system lifecycle; development; costs and benefits; examples in Australia and overseas. Data management; combination of attribute and graphical data; continuous mapping; indexing; computer considerations; standards for cartography, software, hardware and communications. Future developments. Modelling and analysis with a GIS software system.

SURV8711
Professional Practice
Staff Contact: School Office
S2 T2
Students must complete 60 days of approved professional practice prior to the commencement of this subject. Professional practice is to be taken during the vacation periods. Students are required to provide evidence of this practice in a special log-book (available from the School). A detailed report must be submitted and a seminar must be presented summarising the work done and the experience gained during the professional practice period. Students are required to perform several practical surveying tasks (including instrument adjustment, levelling, traversing and resection) which will be examined.

SURV8712
Land Management and Development Project 2
Staff Contact: School Office
S2 L1 T1
Prerequisite: SURV7712
Corequisite: SURV7811
Continuation of design and studio project for a residential neighbourhood development. Plan of detailed lot layout: consideration of access, grades, drainage reserves, parks and pedestrian ways. Engineering design and plans: catchment details, road longitudinal and cross-sections, drainage layout, flow schedule, hydraulic grade line calculations, longitudinal sections of kerb profiles.
Graduate Study

Formal graduate courses lead to the award of the degree of Master of Surveying Science 8651 and of the graduate diploma in Surveying 5491, and opportunities are provided for graduate research leading to the award of the degrees of Master of Surveying Science 2720 and Doctor of Philosophy 1680.

The School of Surveying is also involved in the Centre for Remote Sensing and Geographic Information Systems in association with the School of Geography in the Faculty of Applied Science. The Centre supports graduate programs leading to the award of the degree of Master of Engineering Science 8641 or Master of Applied Science 8026 or the Graduate Diploma in Remote Sensing and Geographic Information Systems 5026 or 5496 in addition to supervision for the degree of Doctor of Philosophy.

8651 Master of Surveying Science

MSurvSc

Programs of study leading to the degree of MSurvSc are offered by the School of Surveying in a range of topics including:

- advanced surveying
- geodesy
- photogrammetry
- land development and management
- land and geographic information systems

Candidates are allowed a wide choice in selecting programs. Subjects can be selected to suit individual student needs and typical programs can be supplied by the School on request. The program of study must total at least 30 credits. One credit is normally equal to attendance for one hour per week for one session but some senior undergraduate subjects may be taken for partial credit towards the degree. The program normally includes a Project of 12 credits. Examples of suitable external subjects are electronic computing, statistics, oceanography, and a range of others.

8641 Remote Sensing

Master of Engineering Science
MEngSc

Candidates are required to complete a course totalling at least 30 credits, made up of compulsory subjects, elective subjects and a project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject approved by the appropriate Head of School. The degree will normally comprise one year of full-time study (two sessions of 15 credits) or two years of part-time study.

Compulsory subjects

GEOG9150 Remote Sensing Applications
GEOG9290 Image Analysis in Remote Sensing
SURV9600 Principles of Remote Sensing
SURV9604 Land Information Systems
SURV9605 Field Data Collection and Integration
SURV9606 Microwave Remote Sensing
Project in Remote Sensing (one elective project to be chosen from the list below)†

Elective subjects

COMP9311 Data Base Systems
ELEC9336 Digital Communication Networks
GEOG9280 Image Analysis in Remote Sensing
LIBS0815 Economics of Information Systems
LIBS0817 Information Storage and Retrieval Systems
SURV9107 Special Topic in Surveying
SURV9532 Data Acquisition and Terrain Modelling
SURV9600 Principles of Remote Sensing
SURV9608 Cadastral Systems

Other elective subjects may be added with the approval of the Head of School.

The Masters degree program in Geographic Systems is offered in both the Faculty of Engineering and the Faculty of Applied Science. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.
Elective subjects
Candidates may include additional subjects selected from the following listed elective subjects, or from other relevant subjects offered within the University, as approved by the appropriate Head of Schools.

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1011</td>
<td>Computing 1A</td>
<td>4</td>
</tr>
<tr>
<td>COMP1021</td>
<td>Computing 1B</td>
<td>4</td>
</tr>
<tr>
<td>ELEC9370</td>
<td>Digital Image Processing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9408</td>
<td>Computer Display Systems and Interactive Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9210</td>
<td>Computer Mapping and Data Display</td>
<td>3</td>
</tr>
<tr>
<td>GEOG9240</td>
<td>Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEOL0360</td>
<td>Remote Sensing Applications in Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>SURV9213</td>
<td>Physical Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>SURV9602</td>
<td>Remote Sensing Procedures</td>
<td>3</td>
</tr>
<tr>
<td>SURV9604</td>
<td>Land Information Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

5496 Graduate Diploma in Remote Sensing
GradDip

5491 Graduate Diploma in Surveying
GradDip

Details of the recommended programs of study may be obtained from the Head of the School of Surveying. Subjects from the Masters programs can be taken in the Graduate Diploma programs subject to the approval of the course coordinator.

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

SURV9106 Special Topic in Surveying A
C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognised expertise in the topic.

SURV9107 Special Topic in Surveying B
C3
A special subject taken by an individual student or a small group of students by private study in conjunction with tutorial sessions with the member(s) of staff in charge of the subject.

SURV9121 Network and Deformation Analysis
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Geodetic datum and invariant quantities, measures of accuracy, testing of hypotheses, outlier detection, internal and external reliability and sensitivity criteria, variance component estimation, design and optimisation of deformation monitoring networks, two-epoch analysis, multi-epoch analysis, case studies of monitoring networks.

SURV9122 Elements of Geodetic Equipment
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Measuring system definition and design; principles of signal analysis, analogue to digital conversion, modulation techniques, phase and delay lock loops. Satellite receivers: design of satellite ranging systems, propagation effects, generation, reception and processing of GPS signals, GPS antenna and receiving design. Inertial sensors: principle and design of gyroscopes and accelerometers. Electronic theodolites: absolute and incremental angle encoders and electronic circle, tilt sensors, surveying robots. Electronic distance meters: principle of precision distance meters and laser interferometers, phase and time measuring techniques.

SURV9161 Advanced Estimation Techniques
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Generalised least squares estimation, sequential least squares estimation, matrix partitioning techniques, Kalman Filtering, covariance analysis, management of large data sets, application in satellite geodesy, network analysis and analytical photogrammetry.

SURV9162 Mathematical Methods
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Principles and applications of spectral analysis techniques, spherical harmonic expansion of the Earth's gravity field, methods of curve fitting, numerical
methods of differentiation and integration, case studies in satellite orbit dynamics.

SURV9210
Satellite Surveying
Staff Contact: School Office
C3 SS L2 T1
Concepts of satellite surveying: nomenclature, TRANSIT system, GPS for point and relative positioning, vertical control. Surveying with GPS: planning a survey, field and office procedures, case studies. Considerations for high-precision applications: aspects of satellite geodesy, modelling the observable, dual frequency observations, orbit determination, short-arc techniques.

SURV9211
Introduction to Geodesy
Staff Contact: School Office
C3 S1 L2 T1

SURV9213
Physical Meteorology
Staff Contact: School Office
C3 S2 L2 T1

SURV9217
Gravimetric Geoid Evaluations
Staff Contact: School Office
C3 SS L2 T1

SURV2530
Analytical Photogrammetry
Staff Contact: School Office
C3 SS L2 T1
Fundamental relationship, image and object space. Interior orientation, deviations from collinearity. General orientation of one and two images by collinearity. Simultaneous block adjustment by bundles. Additional parameters. Calibration of metric and non-metric cameras. Control requirements in analytical photogrammetry.

SURV9532
Data Acquisition and Terrain Modelling
Staff Contact: School Office
C3 SS L2 T1

SURV9600
Principles of Remote Sensing
Staff Contact: School Office
C3 S1 L2 T1

SURV9602
Remote Sensing Procedures
Staff Contact: School Office
C3 S2 L2 T1
Review of atmospheric correction procedures and application to multi-temporal Landsat MSS data. Review of image registration, enhancement and classification procedures with particular reference to multi-source remote sensing data sets. Analysis of techniques over a varied land use area. Land use change project and analysis using multi-source and multi-temporal remotely sensed imagery, including Landsat M, SS, TM, SPOT and SAR.

SURV9604
Land Information Systems
Staff Contact: School Office
C3 SS L2 T1

SURV9605
Field Data Collection and Integration
Staff Contact: School Office
C3 S1 HPW3
The spectral, temporal and spatial characteristics of various surfaces, and the available sensors to effect maximum differentiation. Ground and image comparisons. Instruments available for field measurements. Field investigation procedures including positioning and sampling considerations.
SURV9606
Microwave Remote Sensing
Staff Contact: School Office
C3 S1 HPW3
Use of passive and active (radar) microwave techniques in remote sensing of earth resources. Topics include: real and synthetic aperture radar systems; passive microwave radiometry; energy-surface interactions; interpretation of microwave image data; applications in agriculture, geology, oceanography and hydrology; issues in signal and image processing; characteristics of airborne and spaceborne microwave sensors.

SURV9906
Major Assignment
C6

SURV9608
Cadastral Systems
Staff Contact: School Office
C3 SS L2 T1

SURV9909
Project
C9

SURV9912
Project
C12

SURV9918
Project Report
C18
Graduate School of Engineering

Head of School:
Professor C. Patterson

The Graduate School in the Faculty of Engineering is a special unit set up to take study program initiatives on a non-subject oriented basis. The courses that run under its auspices are those that cannot properly be positioned within a particular School.

The two courses currently offered by the School through the MBT Program are the Master of Business and Technology and the Graduate Diploma in Industrial Management. Although the MBT Program is a joint initiative of the Faculties of Applied Science and Engineering, candidates enrol through the Faculty of Engineering.

These courses aim to produce fully professional engineers with advanced management training. Principal amongst the aims and objectives of the MBT Program is a commitment to developing and enhancing links with industry and in so doing improve the quality and relevance of tertiary education and research services to the private and public sectors.

The skills and knowledge developed are directly related to candidates' roles within their organisations. It is, in effect, learning through working - organised learning with the opportunity to draw on examples from leading experts. The program should become an integral component of training strategies used by organisations for preparing their professional technologists and other staff for middle management. It will ultimately be used to prepare outstanding personnel for the challenges of functional and general management. In addition to the traditional management training route of the MBA employers have highlighted the need for managers capable of integrating the technical, commercial and managerial appropriate to their businesses.

The MBT program is strongly aligned to the open teaming principles used in the Graduate Management Qualification (GMQ) developed by the Australian Graduate School of Management (AGSM) in order to maintain the University's unique standard of excellence in the professional development of managers.

Subjects from the Industrial Management Qualification (IMQ), the first in the series of articulated courses of the MBT Program, complement those of the GMQ so that it is possible to use subjects from both to qualify for the Master's award. Candidates successfully completing four MBT subjects will have the option of either being awarded an IMQ or proceeding to the second level, the Graduate Diploma in Industrial Management course. Those successfully completing the requirements for the Graduate Diploma will be eligible to transfer to the Master of Business and Technology award course subject to approval by the Head, Graduate School of Engineering. In each case candidates electing to continue to the higher award will normally be required to pass at credit level assessment tasks already undertaken. It is anticipated that a candidate may require a minimum of three years to complete all three levels of the MBT Program.

However, the time taken will depend upon a candidate's starting qualifications and attainment in the program. Special arrangements can be made subject to the approval of the Head of the Graduate School of Engineering.
Course Outlines

8616
Master of Business and Technology

MBT

The course can be completed in a minimum of six sessions and must be completed within ten sessions. To qualify for the Master of Business and Technology (MBT), a candidate must successfully complete 8 subjects (24 credits) and any one of the following options to give a total equivalent to 36 credits. At present, four subjects have been prepared, a second group will be available in 1993.

Core subjects
- GSOE9101 Project Management 3
- GSOE9102 Management of Manufacturing Systems 3
- GSOE9103 Environmental Management 3
- GSOE9104 Management of Innovation and Technological Change 3

Options
- an intensive, industry-based research project or an industry-based research project with one other subject to give a total of 36 credits or an industry-based research project with two other subjects to give a total of 36 credits.

One subject is to considered equivalent to 3 credits with 1 credit equivalent to a minimum of 1 hour per week in a semester/session.

This is because the open learning principles employed for the subjects require 1.5 hours per week per subject and two 3 hour workshops per session per subject face-to-face contact with an instructor. Further, each subject comprises 12 units with each unit requiring a minimum of 4 hours of self-guided learning activities. Consequently each subject requires an input of time in excess of 6 hours per week per session.

Courses of study leading to the award of a Master of Business and Technology provide technical graduates with opportunities to extend their career paths into management. Because the subjects that have been developed for the course require minimum contact hours, employment-based experience and self-paced learning based on open learning principles, it is anticipated that in most cases, candidates will choose only from those subjects. There are also opportunities to select subjects from other professional areas in which candidates may be interested particularly those that incorporate similar open learning strategies, such as the subjects required for the Graduate Management Qualification of the Australian Graduate School of Management (AGSM) provided more than half the credits are selected from the subjects listed above. Enrolment in such subjects will require the approval of the Graduate School of Engineering and other course authorities as appropriate.

5457
Graduate Diploma in Industrial Management

GradDipIndMgt

An applicant should submit an intended program to the Head, Graduate School of Engineering for approval. Candidates must complete a program of eight subjects totalling 24 credits and including core subjects from the Graduate School of Engineering. Those successfully completing all eight subjects may elect to graduate with the Graduate Diploma in Industrial Management or proceed to the third and final level, the Master of Business and Technology.

The Graduate Diploma in Industrial Management is offered only as a self-guided course. It can be completed in a minimum of four academic sessions. The maximum period of candidature is six academic sessions. In special circumstances extensions may be granted.

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For further details and academic advice regarding the following subjects consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

GSOE9101
Project Management
Staff Contact: Prof D.G. Carmichael
C3

GSOE9102
Management of Manufacturing Systems
Staff Contact: A/Prof R.M. Kerr
C3

GSOE9103
Environmental Management
Staff Contact: Prof A.G. Fane
C3

GSOE9104
Management of Innovation and Technological Change
Staff Contact: Dr J. Carlpio
C3

GSOE9105
Risk Management
Staff Contact: School Office
GSOE9106
Information Systems Management
Staff Contact: School Office

GSOE9107
Maintenance Management
Staff Contact: School Office
The University has established Centres to encourage research and teaching in areas not readily covered by the established programs in Schools and Faculties. Most Centres have concentrated on multidisciplinary fields and have focussed on new initiatives in the expansion of teaching, research and professional services in specialised areas. The majority of Centres are formed within a School or Faculty or groups thereof although some operate as autonomous units.

The Faculty of Engineering has 8 Centres either located within relevant Schools or in association with other Faculties.

Centre for Advanced Numerical Computation in Engineering and Science
Centre for Biomedical Engineering
Centre for Groundwater Management and Hydrogeology
Centre for Manufacturing and Automation
Centre for Photovoltaic Devices and Systems
Centre for Remote Sensing and Geographic Information Systems
Centre for Wastewater Treatment
Munro Centre for Civil and Environmental Engineering

One Centre offers programs which have their own subject identifier. This is the Centre for Biomedical Engineering (BIOM). The Centre's course details are listed later in this section. Information on study programs available through other Centres is located under the appropriate School section in this Handbook.

The Faculty is also closely associated with two of the 15 Cooperative Research Centres established under the Commonwealth Government's program of Cooperative Research Centres (CRCs) in 1991.

The CRC for Aerospace Structures provides an Australian focus for the generation of advanced aerospace technologies which fosters the development of an efficient and internationally competitive Australian aerospace industry. (Contact person: Mr J.R. Page, School of Mechanical and Manufacturing Engineering.)

The CRC for Waste Management and Pollution Control is developing new approaches which aim to lessen the threat to the environment caused by urban, industrial and agricultural wastes and in the process establish the basis for an environmental management industry. (Contact Mr R. Frost, Director, CRC for Waste Management and Pollution Control.).

Centre for Advanced Numerical Computation in Engineering and Science

Director:
Professor G. de Vahl Davis

The Centre for Advanced Numerical Computation in Engineering and Science (CANCES) was established by the University during 1992. Its two main purposes are to conduct sponsored research, involving heavy computational resources, on problems of industrial, scientific and national importance and to offer postgraduate and short courses in the field.

CANCES is a joint venture between the Faculties of Engineering and Science but the Centre is located in the School of Mechanical and Manufacturing Engineering. Its facilities include a two-processor Cray Y/MPEL supercomputer available for research in the areas of computational science and engineering. PhD and Masters programs of the Faculties of Engineering and Science have been adapted to encourage specialization in computational engineering and science. Special courses in computational mathematics and supercomputing techniques are provided.
Centre for Biomedical Engineering

Director:
Professor K. Schindhelm

Centre Administration:
Ms R. Cunningham

The Centre for Biomedical Engineering is an interdisciplinary unit which promotes and co-ordinates biomedical engineering studies and research being conducted by various schools and departments within the University and its teaching hospitals. Biomedical engineering involves the application of engineering principles and technology to medical problems with particular emphasis on clinical medicine.

The Centre offers formal graduate programs leading to the award of the degree of Master of Biomedical Engineering 8660 and a Graduate Diploma in Engineering 5462. Opportunities are provided for graduate research leading to the award of the degrees of Master of Science 2795 and Doctor of philosophy 1710. The MBiomedE degree course is designed to cater for students with either a medical or engineering/physical science background. Initially, students with a medical background study basic engineering subjects such as mathematics, mechanics, electronics and computing, whilst students with a non-medical background take courses in physiology, anatomy, pathology and biochemistry. Later, both groups choose electives from biomechanics, biophysics, biomaterials, medical instrumentation and mass transfer in medicine, as well as undertaking a research project.

Graduate Study: Course Outlines

8660
Master of Biomedical Engineering

MBiomedE

This degree is primarily obtained through course work but includes a project report conducted in either a hospital or other institution. The course of study offers scope for original research into the application of engineering principles and technology to medical problems. Candidates must complete a program totalling 60 credits, 40 of which must be for the study of subjects at graduate level.

Period of candidature: The normal period is four academic sessions (full-time) or six academic session (part-time) from the date of enrolment. The maximum period of candidature is eight academic sessions (full-time) and ten academic sessions (part-time). In special cases extensions may be granted. A candidate is not permitted to continue in the course if the credit value of the subjects failed totals more than twelve.

Strand A subjects are directed to candidates with an engineering/physical sciences background and Strand B to those with a medical/biological sciences background. Selection of subjects is not limited to those listed below: relevant approved subjects from other areas may be undertaken. A research project is compulsory and may be undertaken concurrently with other subjects. An 18 credit Project Report is the normal requirement.

5462
Graduate Diploma in Biomedical Engineering

GradDip

The program of study must total 30 credits and include at least 18 credits at graduate level. An applicant for admission to the graduate diploma course should be a graduate of an approved university or have other qualifications as may be approved by the Faculty of Engineering.

The normal period of candidature is two academic sessions (full-time) or four academic sessions (part-time). The maximum period of candidature is four academic sessions (full-time) and eight academic sessions (part-time). A
candidate is not permitted to continue in the course if the credit value of subjects failed totals more than six.

Subject choices are the same as for the Master of Biomedical Engineering course.

Graduate Study: Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

BIOM9010
Biomedical Engineering Practice
Staff Contact: Prof K. Schindhelm
C2 S2 L2
Notes: Compulsory for all students
Introduction to clinical situations in hospitals. Presentation of guest lectures by eminent people working in this field. Lecture topics include cardiology, neurology, orthopaedics, rehabilitation, etc. Visits to various biomedical engineering units.

BIOM9012
Biomedical Statistics
Staff Contact: Dr R. Odell
C4 S2 L3 T1

BIOM9018
Project Report
Staff Contact: Prof K. Schindhelm
C18
Notes: Compulsory for all students.
Projects are undertaken at the Centre or other relevant institutions towards the end of the course. Topics are chosen in collaboration with a supervisor from the Centre.

BIOM9027
Medical Imaging
Staff Contact: A/Prof C.D. Bertram
C4 S2 L2 T2
Prerequisites: Assumed knowledge/prerequisites BIOM9028, BIOM9010
Fundamentals of producing a medical image, image collection techniques, image reconstruction algorithms. Detailed examination of four main areas of medical imaging: Nuclear Medicine, Ultrasound, Diagnostic Radiology, Magnetic Resonance Imaging. Clinical application of each area.

BIOM9028
Radiation Physics
Staff Contact: Dr B.K. Milthorpe
C3 S1 L2 T1
Prerequisites: Mathematics at University year 1 level required.

BIOM9030
Project Report
Staff Contact: Prof K. Schindhelm
C30
Notes: This subject can only be taken with permission of the Director.
Projects are undertaken at the Centre or other relevant institutions towards the end of the course. Topics are chosen in collaboration with a supervisor from the Centre.

BIOM9040
Analogue Electronics for Biomedical Engineers
Staff Contact: Dr B.K. Milthorpe
C4 S1 L2 T2
Notes: For students with no electronics background.
Basic theory of passive components, simple network analysis, small signal amplifiers, feedback and oscillators, operational amplifiers and their uses, analogue integrated circuits. Safety requirements for medical instruments, circuit diagram analysis and component identification. Laboratory work involves both design and construction of analogue circuits.

BIOM9050
Microprocessors and Circuit Design for Biomedical Engineers
Staff Contact: Dr B.K. Milthorpe
C4 S2 L2 T2
Prerequisite: BIOM9501, BIOM9040 or equivalents.
Notes: Students should NOT have a digital electronics background.
Examination of the fundamental digital and analogue circuits commonly found in medical applications. Emphasis is given to project-oriented practical experience involving aspects of biological signal acquisition by microcomputers. Fundamentals of microprocessor hardware and software.

BIOM9060
Biomedical Systems Analysis
Staff Contact: Dr R. Odell
C3 S1 L2 T1
Corequisite: BIOM9101 at least
Notes: Mathematics background required.
Analysis of compartmental systems in biology and medicine. Applications include pharmacology, physiology and nuclear medicine. Topics include the mathematics of linear compartmental systems, non-linear systems, tracer methods, parameter estimation by fitting models to data, the optimum design of experiments, and methods of control.

BIOM9101
Mathematical Modelling for Biomedical Engineers
Staff Contact: Dr R. Odell
C4 S1 L3 T1
Notes: Compulsory for Strand B students. This subject is also for students with 1 year university maths or less.
Calculus Bridging Course is recommended for those with less.

BIOM9311
Mass Transfer In Medicine
Staff Contact: Dr R. Odell
C4 S2 L2 T2

BIOM9321
Physiological Fluid Mechanics
Staff Contact: A/Prof C.D. Bertram
C4 S2 L2 T2
Fundamentals of biological fluid flow by way of the governing equations. Kinematics and dynamics, viscous and inertial flow, boundary layers, separation, physiological flows (cardiac, vascular, pulmonary, urinary, etc.) and flow in artificial organs.

BIOM9332
Biocompatibility
Staff Contact: Prof. K. Schindhelm
C3 S2 L2 T1
Interaction of biological fluids and cells with foreign surfaces, in vitro tests to assess biocompatibility and thrombogenicity, current status of biocompatible materials as applied to extracorporeal systems, surgical implants and prosthetic devices.

BIOM9501
Computing for Biomedical Engineers
Staff Contact: Prof K. Schindhelm
C4 S1 L2 T2
Notes: Highly recommended for Strand B students. This subject is for students with little or no previous computing experience.

Algorithm design and documentation, printer plotting, editing, using the VAX/Vms systems. Programming in FORTRAN and PASCAL languages. Overview of computing in biomedical engineering and hospitals. Automated patient monitoring and laboratory testing. Data storage and information retrieval.

BIOM9510
Introductory Biomechanics
Staff Contact: A/Prof C.D. Bertram
C3 S1 L2 T1
Notes: Mechanics Bridging Course recommended for students with no mechanics background.

The principles of the mechanics of solid bodies, force systems, kinematics and kinetics of rigid bodies, stress—strain relationships, stress analysis of simple elements application to musculoskeletal system.

BIOM9541
Mechanics of the Human Body
Staff Contact: Prof N.L. Svensson
C3 SS L2 T1
Prerequisites: BIOM910 and ANAT2111
Statics and dynamics of the musculoskeletal system; mathematical modelling and computer simulation, analysis of pathological situations.

BIOM9551
Biomechanics of Physical Rehabilitation
Staff Contact: Prof N.L. Svensson
C3 S1 L2 T1
Prerequisite: BIOM9541
Notes: This subject is not offered on a regular basis.
The application of biomechanics principles to the areas of: performance testing and assessment, physical therapy, design of rehabilitation equipment, design of internal and external prostheses and orthoses.

BIOM9561
Mechanical Properties of Biomaterials
Staff Contact: Prof N.L. Svensson
C3 SS L2 T1
Prerequisite: BIOM9510
Notes: This subject is not offered on a regular basis.
The physical properties of materials having significance to biomedical engineering; human tissues; skin; soft tissues; bone; metals; polymers and ceramics. The effects of degradation and corrosion.

BIOM9601
Biomedical Applications of Microcomputers 1
Staff Contact: Dr A. Avolio
C3 S1 L3
Prerequisites: BIOM9040 and BIOM9050 or equivalents.
Notes: Excluded ELEC9406. A reasonably advanced background in microprocessors is required. Entry to course is by interview.

Microcomputer architecture; physiological data acquisition systems: input/output signals and devices; assembly language programming; interfacing to higher level languages; the numeric data co-processor; interrupts; graphics; practical sessions on use of Debug, Assembler, familiarisation with interrupt vector table and I/O ports. Major assignment on specific biomedical application (eg. bedside ECG monitor).

BIOM9602
Biomedical Applications of Microcomputers 2
Staff Contact: Dr A. Avolio
C3 S2 L3
Prerequisite: BIOM9601
Notes: A reasonably advanced background in microprocessors is required. Entry to course is by interview.

Data communication; serial and parallel ports; BIOS and DOS interrupts; interfacing to external devices; stepper motor control. Implementation and analysis of a range of microcomputer-based biomedical applications, eg. variable rate infusion pump, physiological reaction-time monitoring system; measurement of coronary sinus flow, temperature control; position control; operation of intra-aortic balloon pump.
BIOM9603

Image and Flow Cytometry

Staff Contact: Dr B.K. Milthorpe

C3 S2 L3

Notes: Basic electronics/computing background required.

Technology, techniques and uses of flow and static cytometry. Flow and cytometers (analysis and cell sorting), image analysis and cell counting from slides. Preparation and staining of cells. Data acquisition and analysis. Applications in medical research and diagnosis.

BIOM9611

Medical Instrumentation

Staff Contact: A/Prof C.D. Bertram/ Dr A. Avolio

C3 S2 L2 T1

Prerequisite: BIOM9040 or equivalent

A critical survey of the theory and practical applications of medical transducers and electromedical equipment in common use in hospitals and research laboratories.

BIOM9621

Biological Signal Analysis

Staff Contact: A/Prof C.B. Bertram

C3 S1 L3

Notes: Basic electronics and mathematics background required.

Use of digital computers to extract information from biological signals. Signal processing using filtering, averaging, curve-fitting and related techniques, and analysis using model simulations, correlation, spectral analysis etc.

BIOM9701

Dynamics of the Cardiovascular System

Staff Contact: A/Prof C.D. Bertram

C3 S1 L2 T1

Notes: Some mathematics background desirable.

Structure of the heart; organization of the mammalian vasculature; mechanical, electrical and metabolic aspects of cardiac pumping; the solid and fluid mechanics of blood vessels; rheology of blood.

Centre for Manufacturing and Automation

Director: Dr S.S. Leong

The Centre is located within the School of Mechanical and Manufacturing Engineering. Its main purpose is to offer short courses for professionals from industry to upgrade their technological and managerial skills.

Centre for Photovoltaic Devices and Systems

Director: Professor M. Green

The Centre for Photovoltaic Devices and Systems was established in 1991 under the Commonwealth Special Research Centres Scheme. Its function is to carry out research into improved performance, lower cost photovoltaic solar cells and develop a co-ordinated set of activities in the photovoltaic systems area. The Centre is housed in the School of Electrical Engineering.

Centre for Remote Sensing and Geographic Information Systems

Director: Dr A.K. Skidmore

Deputy Director: Professor J.C. Trinder

The Centre for Remote Sensing and Geographic Information Systems is a joint multidisciplinary enterprise of the Faculties of Applied Science, and Engineering which promotes and co-ordinates remote sensing studies and research being conducted by various schools within the University. Remote sensing is the science of obtaining information about the earth's surface (in particular) using electro-magnetic imaging systems mounted on aircraft and space platforms.

The Centre, in association with schools in the Faculties of Engineering and Applied Science supports graduate
programs leading to the award of the degree of Master of Engineering Science 8641 or Master of Applied Science 8026 or the Graduate Diploma in Remote Sensing 5026 or 5496 in addition to supervision for the degree of Doctor of Philosophy. Students from a wide variety of backgrounds can undertake the programs which may include engineering, geography, geology, surveying, planning, biology and agricultural or environmental studies.

Entry into either the Faculty of Engineering or the Faculty of Applied Science depends on the background of the applicant and the orientation of the proposed program. The Schools involved in the Centre are the School of Geography in the Faculty of Applied Science and the School of Surveying in the Faculty of Engineering.

Centre for Wastewater Treatment

Director: Position vacant

The Centre for Wastewater Treatment was established with a grant provided by the Australian Water Advisory Council.

Wastewater treatment is concerned with the application of research to the solution of problems of wastewater and its treatment. The Centre's program comprises grant projects, sponsored research projects, consultancies, education and training elements. As well as supporting research students, the Centre provides professional refresher and other continuing education courses.

Munro Centre for Civil and Environmental Engineering

Director: Emeritus Professor G.E. Roberts

The Munro Centre for Civil and Environmental Engineering has been established in the School of Civil Engineering. Its purpose is to support the School, and to facilitate interaction between the School, the engineering profession, industry and government. The Centre promotes ongoing education in civil and environmental engineering by organizing conferences, courses and seminars.
Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

The following subjects are offered by other Faculties at UNSW, and contribute as either part of courses contained in this handbook, or as electives.

Accounting

Accounting is a School within the Faculty of Commerce and Economics

ACCT9001
Introduction to Accounting A
Staff Contact: School Office
S1 L1.5

ACCT9002
Introduction to Accounting B
Staff Contact: School Office
S2 L1.5
Prerequisite: ACCT9001

An introduction for non-commerce students to managerial accounting. Long-range planning, budgeting and responsibility accounting: cost determination, cost control and relevant cost analyses.

ACCT9062
Accounting for Engineers
Staff Contact: School Office
F L1.5

Problems related to industrial situations, and their relevance in decision-making. Manufacturing and cost accounts, budgeting and budgetary control, cost analysis and control and profit planning.

Anatomy

Anatomy is a School in the Faculty of Medicine

ANAT2111
Introductory Anatomy
Staff Contact: Dr P. Pandey
C6 S1 L2 T4
Prerequisites: BIOS1011, BIOS1021

Introduction to gross anatomy, based on a study of prospected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genito-urinary and nervous systems. General topographical and surface anatomy.

Biological Science

Biological Science is a School in the Faculty of Biological and Behavioural Sciences

BIOS1021
Biology B
Staff Contact: Dr R. Vickers
S2 L2 T4
Prerequisite: BIOS1011 (however, students without this prerequisite may seek the permission of the Coordinator of First Year Biology to enrol. Students enrolling in Environmental Engineering will be exempted)

The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes which will include dissection of a toad and a rat.

BIOS3111
Population and Community Ecology
Staff Contact: A/Prof B. Fox
S1 L2 T4
Prerequisite: BIOS1021 and MATH1032 or MATH1042 and MATH1021

Factors regulating dynamics of interacting populations, renewable resource management, ecosystem stability,
Biotechnology

Biotechnology is a Department within the School of Applied Bioscience in the Faculty of Applied Science

BIOT7100

Biological Principles
Staff Contact: Dr S. Delaney
S1 L3

Chemical Engineering and Industrial Chemistry

Chemical Engineering and Industrial Chemistry is a School within the Faculty of Applied Science

CEIC0010

Mass Transfer and Material Balances
Staff Contact: Dr E. Curry-Hyde
F L1 T1
Prerequisites: CHEM1101, CHEM1201, CIVL2505

CEIC0020

Fluid/Solid Separation
Staff Contact: A/Prof N.R. Foster
SS L1.5 T.5

CEIC0030

Environmental Protection in the Process Industries
Staff Contact: Dr P. Crisp
SS L3 T3
Prerequisites: CEIC0010, INDC3070, INDC4120

Selection of 3 topics from:

Environmental Pollutants
The characteristics of pollutants in air and water. Consequences of pollution by aqueous, gaseous and solid wastes; case histories. Standards and regulations; legislative aspects. Measurement, analysis and sampling - modern techniques of environmental chemical analysis.

Pollution Control Techniques

Water Pollution Control Engineering

Air Pollution Control

Laboratory for Environmental Analysis
14 hour laboratory unit developing techniques in modern environmental analysis.

Advanced Environmental Protection
This comprises a series of elective strands which build upon the core subject as follows:
1. Advanced treatment methods (water)
2. Advanced treatment methods (air)
3. Hazardous wastes
4. Computer-aided risk assessment
5. Advanced laboratory
6. Occupational Health Laboratory

CEIC5630

Industrial Water and Wastewater Engineering
Staff Contact: Prof A.G. Fane
C3 S2 L3

Environmental consequences of water pollution. Water quality criteria and regulations related to industrial use and disposal. Water sources and requirements of industry. Theoretical and practical aspects of treatment methods,
SERVICING SUBJECTS

143

including screening, sedimentation, oil separation, coagulation and flocculation, filtration, biological treatment, adsorption, ion exchange, membrane processes. Strategies for industry including waste surveys, prevention at source, correction before discharge and water reuse. Economic aspects. Seminars. Factory visits/ laboratory.

CHEN3070
Process Control
Staff Contact: Dr D.C. Dixon
S2 L2
Prerequisites: CEIC2010, CEIC2020, MATH2021

INDC4120
Chemistry of the Industrial Environment
Staff Contact: Dr P. Crisp
S1 L2 T1
Prerequisites: CHEM1101, CHEM1201

Chemistry

Chemistry is a School in the Faculty of Science

Level I

CHEM1002
Chemistry 1
Staff Contact: Dr P. Chia
F L3 T3
Prerequisites: HSC Exam Score Range required - 2 unit Mathematics 55-100 or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Chemistry 53-100, or 3 unit Science 90-150, or 4 unit Science 1-50, or 2 unit Physics 53-100
Note: CHEM1002 is the normal prerequisite for Level II Chemistry.

CHEM1201
Chemistry 1B
Staff Contact: Dr P. Chia
S2 L3 T3
Prerequisites: CHEM1101
Note: The two subjects CHEM1101 and CHEM1201, taken sequentially, are equivalent to CHEM1002.
Molecular geometry, hybridization of orbitals. Periodicity of physical and chemical properties of elements and compounds. Organic chemistry, including stereoisomerism.

CHEM1806
Chemistry 1EE
Staff Contact: Dr P. Chia
S1 L2 T1
Prerequisites: HSC Exam Score Range Required - 2 unit Mathematics 67-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100, and 2 unit Science (Physics) 53-100, or 2 unit Science (Chemistry) 53-100, or 4 unit Science 1-50, or 3 unit Science 90-150

CHEM1807
Chemistry 1ME
Staff Contact: Dr P. Chia
S1 L3 T3
Notes: Excluded CHEM1101, CHEM1201, CHEM1002. Restricted to Course 3681.

CHEM1808
Chemistry 1CE
Staff Contact: Dr P. Chia
S2 L3 T3
Notes: Excluded CHEM1101, CHEM1201, CHEM1002. Restricted to Course 3730.

Level II

CHEM2011
Physical Chemistry
Staff Contact: Dr D. Smith
S1 or S2 L3 T3
Prerequisites: CHEM1002, MATH1032 or MATH1042 or MATH1011 and MATH1021
First, second and third laws of thermodynamics. Applications of thermodynamics. Chemical and phase

CHEM2031
Inorganic Chemistry and Structure
Staff Contact: Dr D. Phillips
S1 or S2 L3 T3
Prerequisites: CHEM1002

CHEM2041
Chemical and Spectroscopic Analysis
Staff Contact: Dr G. Moran
S1 or S2 L3 T3
Prerequisites: CHEM1002, MATH1032 or MATH1042 or MATH1011 and MATH1021

Level III
CHEM3311
Environmental Chemistry
Staff Contact: Dr W. Johnson
S2 L3 T3
Prerequisites: CHEM2011, CHEM2041

Fuel Technology
Fuel Technology is a Department within the School of Chemical Engineering and Industrial Chemistry.

FUEL0020
Fuels and Energy
Staff Contact: A/Prof G. Sergeant
S2 L3 T1
A servicing subject for students in Electrical Engineering which covers the topics, sources and properties of fuels and energy, energy use patterns, principles of combustion, combustion calculation, the technology of boilers and other fuel plant, thermodynamic cycles, new and emerging energy technologies, including solar, wind and nuclear energy.

FUEL5880
Unit Operations In Wastewater, Sludge and Solid Waste Management
Staff Contact: A/Prof G. Sergeant
C3
Please see subject description for FUEL5881.

FUEL5881
Unit Operations In Wastewater, Sludge and Solid Waste Management
Staff Contact: A/Prof G. Sergeant
C3
Notes: FUEL5881 is for external students

FUEL5920
Practical Aspects of Air Pollution Measurement and Control
C3 S1 or S2 T3
Prerequisite: FUEL5910 or equivalent
Laboratory and tutorial programs in the measurement and analysis of ambient and industrial air pollutants. Computation tutorials in advanced dispersion models, aerosol dynamics and control equipment design parameters.

Economics
Economics is a School in the Faculty of Commerce and Economics

ECON1103
Staff Contact: A/Prof T. Pary
S1 L2 T1.5
Prerequisite: HSC minimum mark required - Contemporary English 60, or 2 unit English (General) 60, or 2 unit English 53, or 3 unit English 1
Notes: Excluded ECON1101 and ECON1102.
Introduction to economics as a social science, scarcity, resource allocation and opportunity cost. Consumer and producer behaviour as the basis for supply and demand analysis. Introduction to marginal analysis. Applications of supply and demand analysis. Efficiency concepts and market forces.
Geography

Geography is a School within the Faculty of Applied Science.

GEOG1031
Environmental Processes
Staff Contact: Drs M. Fox, M. Melville and Mr A. Evans
S2 L2 T2
Notes: Excluded GENS4240.
Essential and continuing links between components of the physical environment. Movement of energy and matter in the physical environment, including consideration of Earth's energy balance, the hydrological cycle, nutrient cycles in vegetation and soil, imbalances leading to land degradation and instability, and to movement of materials.

GEOG2021
Introduction to Remote Sensing
Staff Contact: Mr A. Evans
S2 L2 T2
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts or equivalent as approved by the Head of School
Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airphoto interpretation techniques relevant to environmental assessment. Introduction to principles of the electromagnetic spectrum, photometry and radiometry. Sensor types, image formation and end products associated with selected satellite programs, including Landsat. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement.

GEOG2032
Geomorphology
Staff Contact: Dr W. Erskine, Dr I. Prosser
S2 L2 T2
Prerequisites: GEOG3051
Drainage basin processes including: weathering, the production of runoff and sediment, sediment tracing, sediment budgets and denudation histories. The processes of river channel change including sediment transport, hydraulics, hydrogeology, hydraulic geometry and channel patterns and floodplain formation. There will be an emphasis on the application of geomorphic principles to land management.

GEOG3011
Pedology
Staff Contact: Dr M. Melville
Prerequisites: GEOG1031 or GEOG1051 and one of CHEM1101 or CHEM1401 or both GEOL1101 and GEOL1201 or both BIOS1011 or BIOS1021
Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology.

GEOG3021
Biogeography
Staff Contact: A/Prof J. Dodson and Dr M. Fox
S1 L2 T2
Prerequisites: GEOG1031 or GEOG1051 or both BIOS1011 and BIOS1021

GEOG3032
Remote Sensing Applications
Staff Contact: Mr A. Evans
S2 L2 T2
Prerequisite: GEOG2021 or SURV8711
Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multitemporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

GEOG3042
Environmental Impact Assessment
Staff Contact: Drs W. Erskine, S. Walker
S1 L2 T2
Prerequisites: GEOG1031 or GEOG1051 or by permission from Head of School
Rationale and basic objectives; history and legislative framework; standardized types of environmental impact assessment EIA, including matrix approach, adopted methods of EIA in Australia. Techniques of impact evaluation in terms of socio-economic criteria. Environmental decision making and planning under conditions of uncertainty. Case studies exemplifying procedures, techniques and issues. Trends, changes and possible future developments in EIA. Practical exercises representing components of typical EIAs.

GEOG3051
Soils and Landforms
Staff Contact: Drs W. Erskine, I. Prosser
S1 L2 T2
Prerequisite: GEOG1031 or GEOG1051
An introduction to soil classification schemes with particular emphasis on the soils and landforms of floodplains and the
Riverina Plain, NSW. Long term development of landscapes with emphasis on the evolution of mountain ranges. Arid zone and coastal landforms emphasising current processes and Quaternary history.

GEOG3062 Environmental Change
Staff Contact: A/Prof J. Dodson
S2 L2 T2
Prerequisite: Successful completion of a Year 2 Programme in Applied Science, Science, or Arts or equivalent as approved by the Head of School

GEOG3211 Australian Environment and Natural Resources
Staff Contact: Drs M. Fox and I. Prosser
S1 L2 T2
Prerequisite: GEOG1051 or GEOG1031
Notes: Two field tutorials equivalent to 16 tutorial hours are compulsory.
The characteristics of Australia's physical and biotic environment: geology, climate, geomorphology, soils, vegetation and fauna. The problems of exploiting Australia's water and land resources including the degradation of land by erosion, salinization and soil fertility decline; and habitat loss and fragmentation.

GEOG9150 Remote Sensing Applications
Staff Contact: Drs A. Skidmore and Q. Zhou
C3 S1 L1 T2
The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials; multitemporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in the coastal zone. Use of remote sensing in environmental management and in environmental impact assessment.

GEOG9210 Computer Mapping and Data Display
Staff Contact: Prof B. Garner
C3 S1 L2 T2
Introduction to automated cartography and thematic mapping; theoretical and practical problems in displaying and mapping data by computer; review and application of selected computer mapping packages. INFO is used for database management, and ARC/INFO and GIMMS for cartographic manipulation and output.

GEOG9240 Principles of Geographic Information Systems
Staff Contact: Dr Q Zhou
C3 S1 L1 T3
Study of selected geographic information systems; problems of data capture and display, data storage and manipulation, system design and development; cartographic displays and computer mapping. INFO is used for database management, and ARC/INFO and MAP for spatial data manipulation and display.

GEOG9290 Image Analysis In Remote Sensing
Staff Contact: Dr A. Skidmore
C3 S1 L1 T1
Techniques for extracting information from satellite imagery including image enhancement techniques, classification and feature recognition, statistical methods and related procedures. Emphasis is on applications relating to vegetation cover and natural resource management. Practical work will be undertaken using the ERDAS image processing software.

GEOG9300 Vegetation Management
Staff Contact: Dr M. Fox
C3 S1 L2 T1
Notes: Fieldwork forms a compulsory part of this subject and students will incur personal costs.
The subject provides a background in theory and practice in vegetation management, particularly under Australian conditions. It covers the description and measurement of vegetation, vegetation dynamics, vegetation response to perturbation and human impacts, theories, and modelling of vegetation change. A third of the subject is devoted to management strategies of selected vegetation types.

GEOG9310 River Management
Staff Contact: Dr W. Erskine
C3 S1 L2 T1
The principles of river management including total or integrated catchment management, environment impact assessment, in-stream uses and hydrogeomorphic behaviour. Issues covered include regulated rivers, interbasin diversions, extractive industries, urbanization, river engineering, legislative controls and institutional responsibilities. The course develops an understanding of how and why rivers respond to human activities and ways of ameliorating negative impacts. Fieldwork is an essential part of the subject and the Nepean River will be used as a case study of management problems.

GEOG9320 Soil Degradation and Conservation
Staff Contact: Dr M. Melville, Dr W. Erskine
C3 S2 L2 T1
Notes: Fieldwork forms a compulsory part of this subject and students will incur personal costs.
Identification, assessment and analysis of the main processes of soil degradation, including the role of climate, vegetation, geomorphology and pedology in controlling the processes. Discussions of appropriate management strategies for reducing degradation and for reclaiming
degraded landscapes. Topics include: surface wash, gully erosion, wind erosion, soil acidification, soil structure decline, salinization, accumulation of toxins and desertification.

GEOG9512
Project
Staff Contact: Dr M. Sant, Dr A. Skidmore
C12
An investigation of a problem in remote sensing or geographical information systems which involves an identifiable research-component. Such an investigation should be related to the research interests of particular Schools within the Faculty of Applied Science.

Applied Geology

Applied Geology is a Department within the School of Mines in the Faculty of Applied Science

GEOL5100
Geology for Civil and Environmental Engineers
Staff Contact: Dr P.G. Lennox
S1 L2 T1
An introduction to mineralogy, petrology, structural geology, stratigraphy and geomorphology. Weathering of rocks and development of soils. The role of the geologist in civil and environmental engineering.

GEOL5311
Geology for Mining Engineers 2
Staff Contact: Dr M.B. Katz
F L2 T2
Notes: a geology field excursion is held at the end of Session 1, attendance is compulsory.

Palaeontology and Stratigraphy: principles of stratigraphy; the use of fossils in stratigraphic correlation and bore logging. Structural Geology: elements of structural geology; stereographic projection and fracture analysis applied to mining operation. Geology of Fuels: origin and properties of coal, oil, oil shale and natural gas; stratigraphic and structural consideration in exploration and development of coal and petroleum deposits. Hydrogeology: principles of hydrogeology: transmission of groundwater in rocks and soils applied to mining operations. Ore Deposits: mineralogy of industrially important metallic and non-metallic minerals; theories of ore formation including secondary enrichment processes. Exploration Procedures: theories and application of exploration techniques in mineral and coalfield exploration including geological and geophysical methods.

GEOL9010
Hydrogeology
Staff Contact: Applied Geology Office
C3 S1 L1.5 T1.5
Surface and sub-surface methods of geological and geophysical investigation; ground water exploration of confined and unconfined aquifers. Geological and hydraulic characteristics of rocks; aquifer boundaries, groundwater storage and quality. Hydraulics of wells. Hydrogeological systems analysis, including computer methods, mapping techniques and groundwater resources evaluation. Hydrogeology of arid and semi-arid zones. Case history studies of groundwater fields.

GEOL9011
Hydrogeology G
Staff Contact: Applied Geology Office
C3 S1 L1.5 T1.5

GEOL9020
Geopollution Management
Staff Contact: Applied Geology Office
C3 S1 L1 T1

GEOL9030
Geological Engineering
Staff Contact: Mr G. McNally
C3 S1 L1.5 T1.5

GEOL9060
Environmental Geology
Staff Contact: Mr G. McNally
C3 S1 L1.5 T1.5
Communication of geological information to technical and non-technical people. Geological legislation for water resources and waste disposal.

GEOl9110
Hydro and Environmental Geology
Staff Contact: Prof G. Hocking
SS L3 T1
Prerequisites: GEOl5100

Hydrogeology. Hydraulics of groundwater in fractured and porous media; hydrodynamic dispersion of contaminants; monitoring and sampling of contaminants.

Coastal Geology: Properties of sedimentary populations. The shore's processes, littoral and longshore drifts and net sand movement.

GEOl9120
Groundwater Contaminant Transport
Staff Contact: Prof G. Hocking
S1 L3 T1
Prerequisites: GEOl9110, CIVL3007

GEOl9320
Geopollution Management (External)
Staff Contact: School Office
C3 External

Please see subject description for GEOl9020.

Industrial Relations and Organizational Behaviour

Industrial Relations and Organizational Behaviour is a School in the Faculty of Commerce and Economics

IROB2721
Managing People
Staff Contact: Dr A. Donovan
S1 L2 T2

Managing in a rapidly changing environment. Leadership, decision-making and innovation. Power, legitimacy, and the socialization process. The structure and design of organizations, organisation and domination, the evolution of ethical awareness. Intergroup conflict and conflict resolution. Skills of managing: communication, negotiation, coaching and objectives setting. Organizational culture and transformation.

IROB5701
Industrial Relations A
Staff Contact: Dr M. Hess
C3 S1 L3

Concepts and issues in Australia industrial relations at the macro or systems level, with overseas comparisons where appropriate. Labour movements and the evolution of employee-employer relations in the context of industrialization and change; origins and operations of industrial tribunals at the national and state levels; their instrumentailities; nature of industrial conflict and procedures for conflict resolution such as arbitration and bargaining; and national wage policy.

Information, Library and Archive Studies

Information, Library and Archive Studies is a School in the Faculty of Professional Studies

LIBS0815
Economics of Information Systems
Staff Contact: A/Prof C.J. Maguire
S1 HPW2

Information as a resource. Effects of information technology on work and the distribution of wealth. Copyright, patents, licences and other systems aimed at ensuring appropriability of economic benefits from information. Market research and the pricing and distribution of information products and services.

LIBS0817
Information Storage and Retrieval Systems
Staff Contact: Mrs C.S. Wilson
S2 HPW3

Automatic indexing; Automatic thesaurus construction and maintenance; Online searching and information retrieval; Database construction and database software evaluation; Advanced information retrieval techniques; systems analysis, design and costing; advanced technologies for information storage and retrieval.

Law

LAWS1010
Litigation
Staff Contact: Dr Jill Hunter
C6 F HPW4

An introduction to issues and problems in three areas:

Civil procedure: focus on selected topics - parties to an action; pleadings and the discovery and exchange of information. Supreme Court Rules are examined to determine the extent to which they facilitate just, accurate and speedy resolution of disputes.
Criminal procedure: the law and related issues associated with arrest, the use of warrants, police searches, interrogation and the formulation of pleadings. Comparisons drawn between the civil and criminal pre-trial processes.

Evidence: a basic understanding of the legal and philosophical principles related to the presentation of evidence in court. In particular, examination of the rules designed to protect the accused at trial; the use against hearsay evidence; the use of expert evidence; the treatment of unreliable evidence and some analysis of the philosophy of proof and probability theory.

The effect of pre-trial procedures on the final outcome at trial highlighted.

LAWS1120 Legal System Torts
Staff Contact: Ms Prue Vines/Mr Angus Corbett
C6 F HPW4
The legal significance of the arrival of the British in Australia; the principal institutions of the legal system, particularly the courts, the legislature, and the executive arms of government; the judiciary; the legal profession; their history, roles, interrelationships, operation and techniques; general constitutional principles and institutions; the notion and consequences of federalism; Bill of Rights proposals; precedent and statutory interpretation, practice and theory; sources of Australian law, including the past and present status of Aboriginal customary law; origins of the common law; classifications within the common law; jurisdiction of Australian courts; the development of compensation law, with particular reference to workers' compensation and occupational health and safety; modern statutory compensation schemes; the rules and concepts of the law of torts, their origins, growth, operation and limitations; tort law protection from assault, injury and death; negligence; interests in another's life and services; false and misleading statements affecting economic interests; loss distribution; employers' liability; occupiers' liability; causation; remoteness of damage; product liability; interference with interests in land; interference with personal liberty. Some of these topics are dealt with in outline only.

LAWS1610 Criminal Law
Staff Contact: A/Prof David Brown
C6 F HPW4
The principles of criminal law and criminal liability. Aims to: promote and refine research and social policy analysis skills; develop a rigorous analytic and socially oriented approach to the study of criminal law; investigate the constitution of concepts like crime, criminal and criminal law; question traditional approaches which assume a unified set of general principles; suggest an approach to criminal law as a number of diverse fields of regulation; acknowledge the importance of forms of regulation outside the criminal law; examine empirical material on the actual operation of the N.S.W. criminal process such as court statistics and a court observation exercise; examine the substantive rules developed in selected criminal offence areas; stress the importance and relevance of criminal law in an understanding of law, even (and especially) for those who do not intend to practise in the area. Topics include: the phenomenon of crime, the criminal process, criminal responsibility, homicide offences, public order offences, drug offences, offences against the person, offences of dishonest acquisition, general defences, complicity, conspiracy, sentencing and penal practices.

LAWS2150 Federal Constitutional Law
Staff Contact: Prof George Winterton
C3 S1 or S2 HPW4
Federal constitutional law, stressing the legislative and judicial powers of the Commonwealth and the judicial interpretation by the High Court of the extent of those powers, in particular: trade and commerce, external affairs, corporations, appropriation, grants and taxation powers, family law and industrial law powers, inconsistency of Commonwealth and State laws, freedom of interstate trade and commerce, excise and implied limitations on Commonwealth and State powers. Techniques and approaches adopted by the High Court in interpreting the Australian Constitution, and occasionally, federal executive power.
Further study of constitutional law may be undertaken in LAWS2100 The High Court of Australia.

LAWS2160 Administrative Law
Staff Contact: Prof Garth Nettheim
C3 S1 or S2 HPW4
Principles and procedures for review of administrative action. Topics: relations between different agencies of government (legislative, administrative, judicial); delegated legislation; judicial power; the Ombudsman; the Administrative Appeals Tribunal; principles of judicial review (denial of natural justice, going beyond power, error of law); procedures for judicial review; the Administrative Decisions (Judicial Review) Act, 1977 (Cth.).

LAWS3010 Property and Equity
Staff Contact: Dr Chris Rossiter
C6 F HPW4
The basic principles of the law of property, transcending the traditional boundaries of real and personal property. For
reasons of time and convenience, most topics are those usually considered in the context of 'real property'.

Enquiry into the meaning of the concepts of property and the purposes that are or ought to be fulfilled by the law of property. Some of the traditional concepts and classifications adopted by the common law in the content of the study of fixtures. Topics: possession as a proprietary interest in land and goods; some basic concepts such as seisin and title; the fragmentation of proprietary interests, including the doctrines of tenure and estates; an introduction to future interests; the development of legal and equitable interests, including a comparative treatment of their nature, extent and sphere of enforceability and an introduction to trusts; legal and equitable remedies; the statutory regulation of proprietary interests in land, including an examination of the Torrens and deeds registration systems; co-ownership; an introduction to security interests; the acquisition of proprietary interests; the alienability of interests including trusts for sale; commercial transactions involving leasehold estates in land and bailment of goods.

LAWS3410
Environmental Law

Staff Contact: Mr Gerard Rowe/ Mr Steven Seidler
C3 SS HPW4

This subject examines environmental law in both a theoretical and a practical sense. From the theoretical point of view, environmental law is considered through interdisciplinary perspectives in a policy setting. The non-legal perspectives in terms of which environmental law is considered include ecology, economics and philosophy. The practical orientation of the course is toward developing an understanding of the legal framework for environmental decision making in Australia, particularly in N.S.W. Topics to be covered include the relevance of ecology to environmental law, environmental ethics, environmental economics, international environmental law, Commonwealth powers with respect to the environment, a range of Commonwealth and NSW legislation relating to the environment, and different legal techniques for enhancing protection of the environment (eg. regulation through the criminal law, through traditional common law techniques such as nuisance and private covenants, through economic incentive schemes, and through systems of consents and licenses). Alternative Dispute Resolution techniques will also be examined.

Attention is also paid to: (1) the part played by political and administrative discretion in the field of environmental decision-making, with some emphasis on the tensions which exist between various levels and arms of government; (2) the role of public participation in the decision making process; and (3) environmental law in other countries, particularly the U.S.

Students are encouraged to take an interest in topical environmental issues.

LAWS6210
Law, Lawyers and Society

Staff Contact: Dr. Stan Ross
C3 S1 or S2 HPW4

1. The lawyer-client relationship, including who exercises control and the lawyers’ duties to accept work, to keep client confidences, to act competently and to avoid conflicts of interest; the social implications of lawyers’ professional behaviour. 2. The adversary system of litigation and the lawyers’ role therein, both generally and specifically as defence counsel and as prosecutor in criminal cases. 3. The structure of the profession and methods of regulation including discussion of the concept of professionalism, control of admission, discipline generally and conducting court specifically; selection and control of the judiciary. 4. Issues relating to the delivery of legal services, including specialization in lawyers’ practice, the structure and availability of legal aid, the regulation of lawyers’ fees, the extent of the lawyers’ monopoly and the role of non-lawyers in delivering legal services.

LAWS7420
Legal Research and Writing 2

Staff Contact: Mr Joe Ury
C1 S2 HPW2

A revision of legal research skills acquired in LAWS741 Legal Research and Writing 1, particularly the use of Australian digests, law reform materials and indexes to legal periodicals. Practice in ascertaining delegated legislation, in using English, Commonwealth and US digests and in tracing recent amendments to case-law, statutes and regulations. Further instruction on the use of computers for retrieval of legal materials.

LAWS7430
Research Component

Staff Contact: A/Prof Adrian Brooks

Notes: Taken after or concurrently with LAWS7420.

This subject must be taken either concurrently with or after LAWS7420 Legal Research and Writing 2, though students are advised where possible to complete Legal Research and Writing 2 first so that they have a command of the relevant research techniques. Students must select one from amongst the subjects for which they are enrolled in which a piece of assessable work (a research essay or moot) will be allocated for Research Component, and must submit a Research Component Form to the Administrative Assistant (Undergraduate) by the end of Week 4 in the Session in which they elect to undertake Research Component. This form must identify the subject in which the work for Research Component will be undertaken, and must be signed by the teacher in the subject. Students must attach to the completed research essay or moot submission a written research report, outlining the research methods adopted in preparation for the essay or moot. The piece of assessable work chosen for allocation to Research Component must be worth 30% of the total mark (in the case of a three-credit point subject, or 15% of the total mark in the case of a six-credit point subject). The assessment of Research Component will be made on the basis of the research report, in addition to the separate assessment of the essay or moot for the purpose of the subject selected. All subjects offered in the Law School are prima facie compulsory for all students except those taking one or more of the Research Thesis electives (LAWS6510, LAWS6520, LAWS6530).
LAWS8320
Legal Theory
Staff Contact: A/Prof Martin Krygier
C3 S1 or S2 HPW4
Introduction to theoretical - particularly philosophical - questions which underline the practical workings of the law. The course concentrates on questions to do with the reasoning, particularly the reasoning of judges, and of moral reasoning; and the interrelationships between law and morals and law and politics.

LAWS8820
Law and Social Theory
Staff Contact: A/Prof Martin Krygier
C3 S1 or S2 HPW4
Examination of sociological assumptions about law, about society, and about the relationships between law, legal institutions and social ordering. Topics include: The role and functions of law within modern society, the extent to which law embodies implicit social theories and the nature of these theories, and the implications of empirical social research on our understanding of the place of law in society.

LAWS8320 and LAWS8820 form part of the compulsory core of the LLB and BJuris degree courses with respect to students who entered the Faculty in 1981 or later. Students are required to take one of these two subjects to fulfil compulsory requirements and are permitted to take the other as an elective.

Mathematics
Mathematics is a School within the Faculty of Science

MATH1032
Mathematics 1
Staff Contact: School of Mathematics First Year Office
U2 F HPW6
Prerequisites: HSC exam score range required: 2 unit Mathematics (67-100)(from 1994 this will be 90-100) or 2 and 3 unit Mathematics (100-150) or 3 and 4 unit Mathematics (100-200) or MATH1011 (2 unit Mathematics in this instance refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject. It does not refer to the subjects Mathematics in Society or Mathematics in Practice. These numbers may vary from year to year.)
Notes: Excluded MATH1011, MATH1021, MATH1042, ECON2200, ECON2201, ECON2202.
Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

MATH1042
Higher Mathematics 1
Staff Contact: School of Mathematics First Year Office
U2 F HPW6
Prerequisites: HSC exam score range required: 3 unit Mathematics (145-150) or 4 unit Mathematics (186-200) (these numbers may vary from year to year.)
Notes: Excluded MATH1011, MATH1021, MATH1032, ECON2200, ECON2201, ECON2202.
As for MATH1032 Mathematics 1, but in greater depth.

MATH1081
Discrete Mathematics
Staff Contact: School of Mathematics First Year Office
U1 S1 or S2 HPW6
Prerequisites: As for MATH1032.
Notes: Excluded MATH1081.
As for MATH1032 Mathematics 1, but in greater depth.

MATH2009
Engineering Mathematics 2
Staff Contact: School Office
F HPW4
Prerequisite: MATH1032
Notes: Restricted to Combined degree courses 3681, 3730
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.

MATH2100
Vector Calculus
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2110.
Properties of vectors and vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss and Stokes' theorems. Curvilinear co-ordinates.

MATH2110
Higher Vector Analysis
Staff Contact: School Office
U.5 S1 HPW2.5
Prerequisites: MATH1032 or MATH1042 with a mark of at least 70
Notes: Excluded MATH2100.
As for MATH2100 but in greater depth.
MATH2120
Mathematical Methods for Differential Equations
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042.
Notes: Excluded MATH2130.

Introduction to qualitative and quantitative methods for ordinary and partial differential equations. The following topics are treated by example. Ordinary differential equations: linear with constant coefficients, first-order systems, singularities, boundary-value problems, eigenfunctions, Fourier series. Bessel’s equation and Legendre’s equation. Partial differential equations: characteristics, classification, wave equation, heat equation, Laplace’s equations, separation of variables methods, applications of Bessel functions and Legendre polynomials.

MATH2130
Higher Mathematical Methods for Differential Equations
Staff Contact: School Office
U.5 S2 HPW2.5
Prerequisite: MATH1032 or MATH1042 with a mark of at least 70
Notes: Excluded MATH2120.
As for MATH2120 but in greater depth.

MATH2200
Discrete Dynamical Systems
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH1032 or MATH1042
Corequisite: MATH2501 or MATH2601

The study of dynamical systems whose states change at discrete points in time. Difference equations, general properties. Linear systems, stability, oscillations, z-transforms. Nonlinear systems, critical points, periodic cycles, chaotic behaviour. Applications selected from engineering, biological, social and economic contexts.

MATH2220
Continuous Dynamical Systems
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH1032 or MATH1042

The study of continuous dynamical systems. One-dimensional systems, kinematic waves, applications include traffic flow and waves in fluids. An introduction to the modelling of physical, biological and ecological systems, stability, oscillations and resonance.

MATH2400
Finite Mathematics
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: MATH1081 Discrete Mathematics is advised.

Positional number systems, floating-point arithmetic, rational arithmetic, congruences. Euclid’s algorithm, continued fractions, Chinese remainder theorem, Fermat’s theorem, applications to computer arithmetic. Polynomial arithmetic, division algorithm, factorization, interpolation, finite field. Codes, error correcting codes, public-key cryptography.

MATH2501
Linear Algebra
Staff Contact: School Office
U.5 S1 or S2 HPW5 or F HPW2.5
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2601.

MATH2510
Real Analysis
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2610.

Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

MATH2520
Complex Analysis
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2620.

Analytic functions, Taylor and Laurent series, integrals. Cauchy’s theorem, residues, evaluation of certain real integrals.

MATH2601
Higher Linear Algebra
Staff Contact: School Office
U.5 S1 HPW5
Prerequisite: MATH1042 or MATH1032 with a mark of at least 70
Notes: Excluded MATH2501.
As for MATH2510, but in greater depth, and with additional material on unitary, self-adjoint and normal transformations.

MATH2610
Higher Real Analysis
Staff Contact: School Office
U.5 S1 HPW2.5
Prerequisite: MATH1042 or MATH1032 with a mark of at least 70
Notes: Excluded MATH2510.
As for MATH2510 Pure Mathematics 2 Real Analysis but in greater depth.

MATH2620
Higher Complex Analysis
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1042 or MATH1032 with a mark of at least 70
Notes: Excluded MATH2520.
As for MATH2520 Pure Mathematics 2 Complex Analysis, but in greater depth.
MATH2801
Probability and Random Variables
Staff Contact: School Office
U1 S1 HPW4
Prerequisite: MATH1021(Cr) or MATH1032 or MATH1042
Notes: Excluded MATH2819, MATH2841, MATH2901, BIOS2041. Probability, random variables, standard discrete and continuous distributions, multivariate distributions, transformations, random sampling, sampling distributions, limit theorems.

MATH2810
Statistical Computing and Simulation
Staff Contact: School Office
U.5 S1 HPW2
Prerequisites: MATH1021(Cr) or MATH1032 or MATH1042
Corequisite: MATH2801
Notes: Excluded MATH2910.
Introduction to APL, random variables, univariate transformation, simulation of random variables, APL programming, integer value random variables, random walks theory and simulation, introduction to Markov chains.

MATH2821
Basic Inference
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH2801
Notes: Excluded MATH2921, MATH2841, MATH2819, BIOS2041.
Point estimation: general theory, estimation by moments, maximum likelihood, interval estimation with general theory and application, hypothesis testing using Neyman Pearson theory, linear regression and prediction, analysis of variance.

MATH2829
Statistics SU
Staff Contact: School Office
S1 HPW3
Prerequisite: MATH1032 or MATH1042
Notes: Not available to Science students.
Introduction to probability theory, random variables and distribution functions, sampling distributions, including those of t, chi^2 and F. Estimation procedures, including confidence interval estimation with an emphasis on least squares and surveying problems, and computer based exercises.

MATH2830
Nonparametric Statistical Inference
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2801, MATH2821
Notes: Excluded MATH2930.
Order statistics, exact and approximate distributions, multinomial distributions, goodness of fit, contingency tables, one-sample and two-sample estimation and inference problems.

MATH2839
Statistics SM
Staff Contact: School Office
U1 F HPW2
Prerequisite: MATH1032
Notes: Excluded MATH2841, MATH2801, MATH2821, MATH2901, MATH2921. Restricted to combined degree course 3681.
Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, chi^2 and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard test of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

MATH2841
Statistics SS
Staff Contact: School Office
U1 F HPW2
Prerequisites: MATH1042, MATH1032 or MATH1021(Cr)
Notes: Excluded MATH2801, MATH2821, MATH2901, MATH2921, MATH2819, BIOS2041.
An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard univariate distributions: binomial, Poisson and normal, an introduction to multivariate distributions. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random effect models.

MATH2849
Statistics SE1
Staff Contact: School Office
S2 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: Not available to Science students.
Introduction to probability theory, random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions including those of χ^2 and t.

MATH2859
Statistics SE2
Staff Contact: School Office
S1 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: Not available to Science students.
MATH2869
Statistics SC
Staff Contact: School Office
S1 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: Not available to Science students.

MATH2901
Higher Probability and Random Variables
Staff Contact: School Office
U1 S1 HPW4
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2801, MATH2841, MATH2819, BIOS2041.
As for MATH2801 but in greater depth.

MATH2910
Higher Statistical Computing and Simulation
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH1032 or MATH1042.
Co-requisites: MATH2901
Notes: Excluded MATH2810.
As for MATH2810 but in greater depth.

MATH2921
Higher Basic Inference
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH2901
Notes: Excluded MATH2821, MATH2841, MATH2819, BIOS2041.
As for MATH2821 but in greater depth.

MATH2930
Higher Nonparametric Statistical Inference
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2901.
Corequisite: MATH2921
Notes: Excluded MATH2830.
As for MATH2830 but in greater depth.

MATH3101
Numerical Analysis
Staff Contact: School Office
U1 S1 HPW4
Notes: Excluded MATH3141.
Analysis of some common numerical methods. Iterative methods for solving nonlinear equations; interpolation using polynomials, splines and trigonometric functions; least-squares approximation and orthogonal functions; numerical differentiation and integration: extrapolation; finite difference methods for initial value problems for ordinary differential equations; iterative techniques for large systems of linear equations.

MATH3141
Electrical Engineering Mathematics 3
Numerical and Mathematical Methods
Staff Contact: School Office
S2 HPW3.5
Prerequisites: MATH2100, MATH2501, MATH2510
Notes: Excluded MATH2120, MATH2130, MATH3101.
Not available to Science Students.

MATH3150
Transform Methods
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2100, MATH2520, MATH3121

MATH3181
Optimal Control
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH2100 or MATH2510
An introduction to the optimal control of dynamical systems. Mathematical descriptions of dynamical systems. Stability, controllability, and observability. Optimal control. Calculus of variations. Dynamic programming. Examples and applications are selected from biological, economical and physical systems.

MATH5045
Advanced Mathematics for Electrical Engineers
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials.

Materials Science and Engineering
Materials Science and Engineering is a School within the Faculty of Applied Science

MATS1002
Microstructural Analysis
Staff Contact: Dr P. Kraulis
S1 L1 T2
MATS1042
Crystallography and X-Ray Diffraction
Staff Contact: Dr P. Munroe
S2 L2 T2

MATS1062
Mechanical Properties of Materials
Staff Contact: Dr P. Krauklis
S1 L2 T2
Mechanical properties of solids. Nature and significance of mechanical properties. Mechanical testing; the tension test, hardness testing and impact testing. Stress-strain-time relationships. Analysis of stress and strain; stress and strain transformation relationships, Mohr’s circle, elastic stress-strain relationships, application to various types of loading and metal working processes. Failure and yielding criteria. Influence of stress state, temperature, strain rate and environment on mechanical behaviour.

MATS1072
Physics of Materials
Staff Contact: Dr S. Blairs
S2 L2 T1
Prerequisite: PHYS1002
Interatomic bonding in solid materials. Types of interatomic bonds, metallic, covalent, ionic. Introductory quantum mechanics in one dimension, free electron theory, effects of periodic potential, density of states curves. Effect of electron to atom ratio on conductivity and crystal structure; semiconductors; intrinsic, extrinsic. Exchange energy; ferromagnetism, antiferromagnetism. Elementary perturbation theory, covalent bond; crystal structures, properties. Ionic bond, crystal structures, force models, properties.

MATS1083
Non-ferrous Alloys
Staff Contact: Dr P. Krauklis
S2 L1 T2

MATS1253
Ferrous Alloys
Staff Contact: Dr P. Krauklis
S1 L1 T2

MATS1263
Alloy Steels
Staff Contact: Dr P. Krauklis
S2 L1 T1

MATS4363
Origins of Microstructure - Units 1, 2, 3
Unit 1 Phase equilibria
Staff Contact: Dr A.G. Crosky
S1 L1 T1

Unit 2 Diffusion
S1 L1 T1
Staff Contact: Dr A.K. Hellier
Fick’s first and second laws. Solutions for short and long times by analytical and numerical methods. Boundary conditions for solid-fluid and solid-solid interfaces. Diffusion couples. Atomic level diffusion theory.

Unit 3 Metallography and phase equilibrium laboratory
Staff Contact: Dr A.G. Crosky
S1 T3
Determination of equilibrium phase diagrams. Solidification processes in moulds Metallography of non-ferrous alloys.

Unit 4 Phase transformations
Staff Contact: Dr B. Gleeson
S2 L2 T1

MATS9323
Mechanical Behaviour of Materials - Units 1,2,3
Unit 1 Deformation
S1 L2
Staff Contact: School Office
Atomic and molecular description of deformation. Introduction to dislocation theory and its application to mechanical properties. Chain dynamics under stress.

Unit 2 Fractographic Analysis
Staff Contact: Dr A.G. Crosky
S2 L1 T1
Classification of macroscopic and microscopic fracture mechanisms. Initiation and propagation of ductile, brittle, fatigue, creep, stress corrosion, and corrosion fatigue fractures. Effect of material defects, design deficiencies and incorrect processing on the origin and cause of
fracture. Analysis of various modes of fracture using fractographic techniques involving optical microscopy and scanning and transmission electron microscopy.

Unit 3 Deformation and Strengthening Mechanisms
Staff Contact: Dr B. Gleeson
S2 L1 T1

Strengthening mechanisms, creep, fracture, grain size dependence of strength. Introduction to generation of deformation and recrystallisation textures. Measurements of age-hardening, activation energy of strain ageing.

MATS9520
Engineering Materials
Staff Contact: Dr A.G. Crosky
S1 L2 T1

Microstructure and structure-property relationships of the main types of engineering materials (Metals, Ceramics, Polymers and Composites). Micromechanisms of elastic and plastic deformation. Fracture mechanisms for ductile, brittle, creep and fatigue modes of failure in service; corrosion. Metal forming by casting and wrought processes. Phase Equilibria of alloys; microstructural control by thermomechanical processing and application to commercial engineering materials. Laboratory and tutorial work includes experiments on cast and recrystallised structures, ferrous and non-ferrous microstructures and fracture and failure analysis.

MATS9530
Materials Engineering
Staff Contact: Dr A.G. Crosky
S1 or S2 L2 T1
Prerequisite: MATS9520

Materials used in Mechanical Engineering and related fields (Manufacturing Engineering Management, Aerospace Engineering, Naval Architecture) are discussed with emphasis on the dependence of properties and performance on microstructure. Aspects of materials selection during the design of engineering components which affect the service performance in applications where failure can occur by brittle fracture, corrosion, creep or fatigue, will also be discussed.

MATS9640
Materials Science and Engineering Electrical Engineers
Staff Contact: Dr S. Blairs
S2 L3 T1
Prerequisite: PHYS2999

Metallic, ceramic, organic, polymeric and composite materials and their technology for electrical engineering applications. Structures and structure property relations, phase equilibria and their effect on mechanical, electrical, magnetic, thermal and chemical properties. The shaping, treating and joining of materials. Aqueous and gaseous corrosion. Metallic glasses, superconductors, fast ion conductors. The role of materials science in the development of electrical energy systems.

Mines

Mining Engineering is a Department within the School of Mines

MINE1040
Underground Coal Mining
Staff Contact: Dr A.K. Bhattacharyya
F L1 T1
Prerequisites: MINE1130 and MINE1140, MINE1231, MINE1830

Effect of surface improvements and structural geology on mine layout. Influence of coal seam properties on choice of extraction height and working section. Coal properties related to machine extraction. Pillar and coalface layouts to optimise strata control. Face and roadway support systems. Mechanised extraction: cutting machines, their stability and steering, armoured face conveyors and stage loaders, coal clearance systems, coal bunkerage. Mechanisation problems in thin, thick, steep and faulted seams. Multi-seam layouts. Limitations on face advance rate. Logistics of high-speed extraction - supplies, manpower, rapid transfer of face equipment. Packing and stowing. Hydraulic mining. Supervision and performance criteria.

MINE1130
Mining Methods
Staff Contact: A/Prof. E.G. Thomas
F L2
Prerequisite: MINE1420

MINE1140
Geotechnical Engineering
Staff Contact: Dr A.K. Bhattacharyya
F L1 T1
Prerequisites: MINE1231, MINE1232

MINE1231
Geomechanics A
Staff Contact: Dr V.S. Vutukuri
S1 L1.5 T1.5
Prerequisite: MATH1032
Corequisite: MINE4330

MINE1320
Fluid Mechanics and Thermodynamics
Staff Contact: Dr A.C. Partridge
F L1 T1
Prerequisites: MINE0110, MECH1300, PHYS1002, MATH1032
Corequisite: MATH2001

MINE1330
Mine Transport
Staff Contact: A/Prof G.S. Sen
S2 L1.5 T.5

MINE1420
Mine Development
Staff Contact: Mr D. Panich
F L1
Prerequisite: MINE0210
Notes: Visits to mines and related undertakings are a requirement of this subject.

MINE1440
Surface and Offshore Mining
Staff Contact: Dr A.K. Bhattacharyya
F L1 T1
Prerequisite: MINE1130

MINE1524
Mining Conservation
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 L2 T2

MINE1530
Power Supply in Mines
Staff Contact: Dr C.R. Daly
S1 L1 T1
Prerequisites: MINE0310, MINE1320, PHYS2920, ELEC0802

MINE1630
Excavation Engineering
Staff Contact: Prof F.F. Roxborough
F HPW2

MINE1740
Mining Legislation
Staff Contact: Dr C.R. Daly
S2 L2
An appreciation of the laws relating to mining practice and to safety and health in mines.

MINE1830
Mine Ventilation and Drainage
Staff Contact: Dr V.S. Vutukuri
F L1.5 T.5
Prerequisites: MINE1320, MINE1420
Corequisites: MINE4330
Mine drainage - engineering hydrology, sources of mine water, forecasting water inflows, drainage and dewatering, pumps and pumping.

MINE1840
Underground Metalliferous Mining
Staff Contact: Mr D. Panich
F L1 T1
Prerequisites: MINE1130.

MINE1940
Tunnel Engineering and Shaft Sinking
Staff Contact: A/Prof G.S. Sen
F L1 T1
Notes: Not available to students who have completed MINE1640.

MINE2140
Mine Economics and Planning
Staff Contact: Mr D. Panich
S1 L2 T2 S2 L1 T1
Prerequisite: MINE1130, MINE2230
Resource sampling, reserve calculations by traditional methods and by geostatistics, feasibility studies including calculation of capital costs and operating costs, company taxation. Feasibility study project. Project financing - equity, debt, leasing, non-recourse financing, joint ventures. Company types and structures, capitalisation, documents of incorporation and of annual reports. Commodity marketing, metal exchanges, producer pricing, price forecasting. Mining law, mineral ownership, federal and state responsibilities, royalties. Project control, contracts, insurance. Operating cost systems, discounted cash flow techniques applied to mine expansion and system modification. Replacement of mine plant.

MINE2230
Mine Feasibility Studies
Staff Contact: Mr D. Panich
S2 L1
Elements of mineral project cash flow. Application of numerical discounted cash flow techniques to economic analysis of mineral projects. Parameter sensitivity calculations.

MINE3040
Mine Safety Engineering
Staff Contact: Dr V.S. Vutukuri
F L1 T1

MINE4330
Mining Laboratory
Staff Contact: Mr D. Panich
F T2
Corequisites: MINE1231, MINE1232
A program of laboratory experiments for Year 3 students requiring the submission of appropriate laboratory reports related to the syllabus areas of the the co-requisite subjects.

MINES355
Mine Fill Technology
Staff Contact: A/Prof E.G. Thomas
C3 S1 or S2 HPW3
Fill properties and their assessment. Fill preparation, placement and dewatering. Field sampling and in situ testing. Mining methods employing fill. Pozzolanic fills. Dry

MINE7342
Minerals Engineering Processes
Staff Contact: Dr A.C. Partridge
F L1 T2

MINE7440
Mineral Process Technology
Staff Contact: Dr A.C. Partridge
F L1 T1

Physiology and Pharmacology

Physiology and Pharmacology is a School in the Faculty of Medicine

PHPH2112
Physiology 1
Staff Contact: Dr J. Morley
F HPW6
Prerequisites: BIOS1021; CHEM1002 or CHEM1011 and CHEM1201 or a credit level pass in CHEM1302 or CHEM1401 and CHEM1501; MATH1032 or MATH1042 or MATH1011 and MATH1021
Corequisite: BiOC2312
Notes: From 1994, student numbers in Physiology 1 will be limited, and entry to the subject will be allocated on academic merit.

Introduces fundamental physiological principles, dealing first with basic cellular function in terms of chemical and physical principles, and, with the operation of the various specialized systems in the body, for example, the cardiovascular system; the respiratory system; the gastrointestinal system; the endocrine system; the nervous system. Includes a substantial series of practical class experiments on these different areas of physiology. This subject is taken by students enrolled in any of the Physiology program.

Physics

Physics is a School in the Faculty of Science

Level I

PHYS1002
Physics 1
Staff Contact: 1st Year Director
F L3 T3
Prerequisites: HSC Exam Score Range Required - 2 unit Mathematics 67-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 or (for PHYS1002 only) MATH1011, and 2 unit Science (Physics) 57-100, or 2 unit Science (Chemistry) 60-100, or 3 unit Science 90-150, or 4 unit Science 1-50, or PHYS1022 (In this instance 2 unit Mathematics refers to the 3 Unit Mathematics subject and does not refer to the subjects Mathematics in Society or Mathematics in Practice.)
Corequisite: MATH1021 or MATH1032

Motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Force, inertial mass, energy, momentum, charge, potential, fields. Conservation principles applied to problems involving charge, energy and momentum. Application of Kirchoff's laws to AC and DC circuits. Uniform circular motion, Kepler's laws and rotational mechanics. Properties of matter: solids, liquids, gases. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization.

PHYS1919
Physics 1 (Mechanical Engineering)
Staff Contact: 1st Year Director
F L2 T2
Prerequisites: As for PHYS1002 Physics 1
Notes: Excluded PHYS1002. For students in the School of Mechanical and Industrial Engineering.

PHYS1929
Physics 1 (Surveying)
Staff Contact: 1st Year Director
F L2 T2
Prerequisites: As for PHYS1002 Physics 1

PHYS1969
Physics 1 (Electrical Engineering)

Staff Contact: 1st Year Director
F L 3 T 3

Prerequisites: As for PHYS1002 Physics 1

Notes: For students in the School of Electrical Engineering.

Electrostatics, steady state currents, magnetostatics in vacuum, ferromagnetism, electromagnetic induction, transient currents. Vectors, kinematics, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, rotational kinematics and dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics, kinetic theory of gases. Waves in elastic media, sound waves, geometrical optics, interference, diffraction, gratings and spectra, polarization.

PHYS1989
Physics 1 (Civil Engineering)

Staff Contact: 1st Year Director
S1 L 2 T 2 and S2 L 2 T 1

Prerequisites: As for PHYS1002

Notes: For students in the School of Civil Engineering.

In all first year Civil Engineering undergraduate degree courses students are advised to attempt PHYS1989 Physics 1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt PHYS1002 Physics 1. However, students who intend to apply for transfer to the Combined BE BSc degree program involving Level 2/3 Physics subjects must enrol in PHYS1002.

Level II

PHYS2001
Mechanics, and Computational Physics

Staff Contact: Executive Assistant
S1 L 3 T 1

Prerequisites: MATH1032, PHYS1002

Corequisite MATH2100

Notes: Excluded PHYS2999.

Harmonic motion, systems of particles, central force problems, Lagrange’s equations, coupled oscillations, travelling waves, pulses, energy and momentum transfer, computer operating systems, introduction to FORTRAN, libraries and software packages, use of computers to solve problems in physics.

PHYS2011
Electromagnetism and Thermal Physics

Staff Contact: Executive Assistant
S2 L 3 T 1

Prerequisites: MATH1032, PHYS1002

Corequisite MATH2100

Notes: Excluded PHYS2999.

Electric field strength and potential, Gauss’ law, Poisson’s and Laplace’s equations, capacitance, dielectrics and polarization, magnetism, electro-magnetic induction, Maxwell’s equations, electromagnetic waves. Laws of thermodynamics, kinetic theory, microscopic processes, entropy, solid state defects, Helmholtz and Gibbs functions, Maxwell’s relations, phase diagrams, chemical and electrochemical potential.

PHYS2021
Quantum Physics and Relativity

Staff Contact: Executive Assistant
F L 1.5 T 5

Prerequisites: MATH1032, PHYS1002

Notes: Excluded PHYS2999.

PHYS2031
Laboratory

Staff Contact: Executive Assistant
F T 3

Prerequisites: MATH1032, PHYS1002

Notes: Excluded PHYS2920.

Alternating current circuits, complex impedance, resonance, mutual inductance, introductory electronics, diodes, power supplies, transistor characteristics, amplifiers. Experimental investigations in a choice of areas including radioactivity, spectroscopy, properties of materials, Hall effect, nuclear magnetic resonance, photography, vacuum systems.

PHYS2959
Introductory Semiconductor Physics (Computer Engineering)

Staff Contact: Executive Assistant
S1 L 1 T 5

Prerequisites: MATH1032, PHYS1969 or PHYS1002

Notes: Excluded PHYS2021, PHYS2989.

Structural properties of solids; free electrons in metals; introductory quantum physics; band theory; semi-conductors in equilibrium.

PHYS2969
Physics of Measurement (Surveying)

Staff Contact: Executive Assistant
S1 L 1 T 2

Prerequisites: PHYS1929

Resolution, accuracy and sensitivity of instruments. Errors of observation; transducers; thermometry; electrical noise; mechanical design of apparatus; optical instruments; optical fibres: photometry; analogue-to-digital conversion and digital instruments. Measurements of very large and very small quantities.

PHYS2979
Electromagnetic Theory (Electrical Engineering)

Staff Contact: Executive Assistant
S1 L 1 T 5

Prerequisites: ELEC1011, PHYS1969

Corequisite MATH2100

PHYS2989
Solid State Physics (Electrical Engineering)
Staff Contact: Executive Assistant
S1 L2.5 T2
Prerequisites: MATH1032, PHYS1969 or PHYS1002
Corequisite: MATH2100

The concepts of waves and particles, introductory quantum mechanics, atomic structure, optical spectra and atomic structure, structural properties of solids, band theory and its applications, uniform electronic semiconductors in equilibrium, excess carriers in semiconductors.

PHYS2999
Mechanics and Thermal Physics (Electrical Engineering)
Staff Contact: Executive Assistant
F L1.5 T.5
Prerequisites: MATH1032, PHYS1969
Corequisite: MATH2100

Particle mechanics, harmonic motion, central force problems, systems of particles, Lagrange’s equations with applications, coupled oscillations, wave equation. Thermodynamic laws, entropy, kinetic theory, M-B distribution, microscopic processes, Maxwell's relations, chemical potential, phase diagrams, multicomponent systems, electrochemical potential, statistics of defects in solids.

Level III

PHYS3010
Quantum Mechanics
Staff Contact: Executive Assistant
S1 L1.5 T.5
Prerequisites: MATH2120, PHYS2021

Foundation principles, harmonic oscillator systems, spherically symmetric systems, angular momentum, hydrogen atom, perturbation theory, variational methods, identical particles, quantum theory of atoms.

PHYS3021
Statistical Mechanics and Solid State Physics
Staff Contact: Executive Assistant
S1 L3 T1
Prerequisites: MATH2120, PHYS2011, PHYS2021

Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations.

PHYS3030
Electromagnetism
Staff Contact: Executive Assistant
S1 L1.5 T.5
Prerequisites: MATH2100, MATH2120, PHYS2011

Electromagnetic fields; Maxwell’s equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Fresnel equations, waveguides, radiation fields, dipoles and antenna theory.

PHYS3041
Experimental Physics A
Staff Contact: Executive Assistant
F T4
Prerequisite: PHYS2031

Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems.

PHYS3050
Nuclear Physics
Staff Contact: Executive Assistant
S2 L1.5 T.5
Corequisite: PHYS2010

Nuclear shell model; theory of beta decay; the deuteron, nucleon-nucleon scattering; theories of nuclear reactions, resonances; mesons and strange particles, elementary particle properties and interactions; symmetries and quark models; strong and weak interactions.

PHYS3060
Advanced Optics
Staff Contact: Executive Assistant
S2 L1.5 T.5
Prerequisite: PHYS1002
Corequisite: MATH2120

Review of geometrical optics, including ray tracing, aberrations and optical instruments: physical optics, including Fresnel and Fraunhofer diffraction, transfer functions, coherence and auto and cross correlation; applications of optics, including fibre optics, lasers and holography.

PHYS3110
Experimental Physics B1
Staff Contact: Executive Assistant
S1 T4
Prerequisite: PHYS2031

Selected experiments and projects. Advanced experimental techniques and open ended projects in the areas covered in PHYS3041 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and superconductivity. Fourier optics, holography.

PHYS3630
Advanced Electronics
Staff Contact: Executive Assistant
S1 L1 T2
Prerequisite: PHYS2031, PHYS2630

Town Planning

Town Planning is a School within the Faculty of Architecture.

PLAN9111
Town Planning

Staff Contact: Ms S. Thompson

S1 L2

Introduction to the purpose, scope and application of planning. The urban planning process. Objectives and means of planning environmental policies, regional environmental plans, local environmental plans. Problems in planning: equitable distribution of resources. Environment and environmental impact statements. Planning law and administration. Future of cities.

Polymer Science

Polymer Science is a Department within the School of Chemical Engineering and Industrial Chemistry.

POLY3010
Polymer Science

Staff Contact: A/Prof R. Burford

S1 L2 S2 Lab.4

Prerequisites: CHEM2011, CHEM2021, MATH2021, MATH2819

Co- or prerequisites: INDC3090

Safety Science

Safety Science is a Department within the Faculty of Applied Science

SAFE9213
Introduction to Safety Engineering M

Staff Contact: Dr R. Rosen

C3

Prerequisite: Assumed knowledge SAFE9011 or PHYS1022

The treatment of the following topics covers similar material as SAFE9211, but assumes a basic knowledge of differential calculus. The following workplace topics are considered: safety management, ergonomics, equipment design and task consideration, machine guarding, electrical safety, fire and explosion, management of dangerous materials, ventilation, radiation protection, noise and vibration control, environmental safety, transport safety, safety issues in different industries.

SAFE9224
Principles of Ergonomics

Staff Contact: Dr K. Kothiyal

C3

Prerequisite: Assumed knowledge SAFE9011 or PHYS1022

Notes: A project forms a substantial proportion of the assessment for this subject.

Applied anatomy and kinesiology, anthropometry; application to work place arrangement, seating and bench design, tool and equipment design, lifting techniques, consumer product and architectural design. Psychophysical and psychological aspects of work and fatigue; measurement of energy consumption, limits to energy expenditure at work, static muscular fatigue, boredom. Environment effects; natural and artificial lighting arrangements, problems of perception, colour; noise and vibration, heat and ventilation, thermal regulation in humans, criteria for comfort. Person-machine interfaces, displays, machine controls, reaction times, vigilance. Applications of ergonomics to occupational safety and health. Ergonomic research methodology.

SAFE9232
Introduction to Occupational Health and Safety Law

Staff Contact: Head of School

C3

The concept of law; the creation and interpretation of statutes; the judicial and court systems; locus standi; common law and equity; basic principles of legal liability (civil and criminal); basic principles of administrative law and the liability of the Crown; the common law of employment; statutory regulation of employment; compulsory arbitration of industrial disputes. Outline of occupational health, safety and compensation legislation of the Australian States. Actions under the common law.

SAFE9242
Human Behaviour and Safety Science

Staff Contact: Ms Dianne Gardner

C3

SAFE9533
Electrical Safety

Staff Contact: Prof Jean Cross

C3

Effects of current flow and magnetic and electric fields; elementary circuit representation, typical supply situations; likely dangerous conditions; static electricity; hazardous locations; standards and codes of practice; treatment of electric shock. Electrical causes of fire and explosion; prevention of electrical accidents.
SAFE9543
Management of Dangerous Materials
Staff Contact: Dr C. Winder
C3
Prerequisite: Assumed knowledge 1st year Chemistry
Chemical legislation, regulatory assessment of chemicals, chemical information (labels/MSDS), workplace management of chemical safety (workplace assessment, exposure control, storage of chemicals, personal protection monitoring), emergency preparedness, pollution, management of hazardous wastes and disposal.

SAFE9553
Radiation Protection
Staff Contact: Dr R. Rosen
C3
Prerequisite: Assumed knowledge SAFE9211 or SAFE9213
Principles and practices of radiation protection for both ionising and non-ionising radiation. Radiation physics, detection and measurement; background radiation; biological effects of radiation; dose limits; technical controls for radioactive sources and irradiating apparatus. Codes of safe practice; radiological monitoring and personal dosimetry; storage, transport and disposal of sources; environmental impact; administrative controls; emergency procedures; control of non-ionising radiation. Practical work and site visit.

SAFE9583
Ventilation
Staff Contact: Dr K. Post
C3
Prerequisite: Assumed knowledge Maths, Physics and Engineering Mechanics.
Conditions for the Award of Degrees

First Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the full list of undergraduate courses and degrees offered see Table of Courses by Faculty (Undergraduate Study) in the Calendar.

The following is the list of higher degrees, graduate diplomas and graduate certificates of UNSW together with the publication in which the conditions for the award appear.

Higher Degrees

For details of graduate degrees by research and course work, arranged in faculty order, see Table of Courses by Faculty (Graduate Study) in the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLit</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Education</td>
<td>EdD</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Medicine</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Art</td>
<td>MArt</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Arts Administration</td>
<td>MArtAdmin</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Education</td>
<td>MArtEd</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Art Theory</td>
<td>MArtTh</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td>MBEv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Business and Technology</td>
<td>MBT</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Science*</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of Clinical Education</td>
<td>MClinEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Cognitive Science</td>
<td>MCogSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Master of Community Health</td>
<td>MCH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Computer Science</td>
<td>MCompSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Construction</td>
<td>MConstMgt</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Education</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Education in Creative Arts</td>
<td>MECA</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Fine Arts</td>
<td>MFA</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel</td>
<td>MHP</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Higher Education</td>
<td>MHEd</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Information Science</td>
<td>MinSc</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Planning</td>
<td>MLP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Management Economics</td>
<td>MMgtEc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Policy Studies</td>
<td>MPS</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Project Management</td>
<td>MPM</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Public Health</td>
<td>MPH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychological Medicine</td>
<td>MPM</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Psychology (Applied)</td>
<td>MPsy chol</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychology (Clinical)</td>
<td>MPsy chol</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Psychotherapy</td>
<td>MPsychotherapy</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Sports Science</td>
<td>MSpsSc</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Surveying</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
</tbody>
</table>
Doctor of Philosophy (PhD)

1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

Enrolment

3.(1) An application to enrol as a candidate for the degree shall be lodged with the Registrar at least one month prior to the date at which enrolment is to begin.

(2) In every case before making the offer of a place the Committee shall be satisfied that initial agreement has been reached between the School* and the applicant on the topic area.

School is used here and elsewhere in these conditions to mean any teaching unit authorised to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
supervision arrangements, provision of adequate facilities and any coursework to be prescribed and that these are in accordance with the provisions of the guidelines for promoting postgraduate study within the University.

(3) The candidate shall be enrolled either as a full-time or a part-time student.

(4) A full-time candidate will present the thesis for examination no earlier than three years and no later than five years from the date of enrolment and a part-time candidate will present the thesis for examination no earlier than four years and no later than six years from the date of enrolment, except with the approval of the Committee.

(5) The candidate may undertake the research as an internal student i.e. at a campus, teaching hospital, or other research facility with which the University is associated, or as an external student not in attendance at the University except for periods as may be prescribed by the Committee.

(6) An internal candidate will normally carry out the research on a campus or at a teaching or research facility of the University except that the Committee may permit a candidate to spend a period in the field, within another institution or elsewhere away from the University provided that the work can be supervised in a manner satisfactory to the Committee. In such instances the Committee shall be satisfied that the location and period of time away from the University are necessary to the research program.

(7) The research shall be supervised by a supervisor and where possible a co-supervisor who are members of the academic staff of the School or under other appropriate supervision arrangements approved by the Committee. Normally an external candidate within another organisation or institution will have a co-supervisor at that institution.

Progression

4. The progress of the candidate shall be considered by the Committee following report from the School in accordance with the procedures established within the School and previously noted by the Committee.

(i) The research proposal will be reviewed as soon as feasible after enrolment. For a full-time student this will normally be during the first year of study, or immediately following a period of prescribed coursework. This review will focus on the viability of the research proposal.

(ii) Progress in the course will be reviewed within twelve months of the first review. As a result of either review the Committee may cancel enrolment or take such other action as it considers appropriate. Thereafter, the progress of the candidate will be reviewed annually.

Thesis

5.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall comply with the following requirements:

(a) it must be an original and significant contribution to knowledge of the subject;

(b) the greater proportion of the work described must have been completed subsequent to enrolment for the degree;

(c) it must be written in English except that a candidate in the Faculty of Arts and Social Sciences may be required by the Committee to write a thesis in an appropriate foreign language;

(d) it must reach a satisfactory standard of expression and presentation;

(e) it must consist of an account of the candidate's own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.
Examination

6. (1) There shall be not fewer than three examiners of the thesis, appointed by the Committee, at least two of whom shall be external to the University.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that one of the following:

(a) The thesis merits the award of the degree.

(b) The thesis merits the award of the degree subject to minor corrections as listed being made to the satisfaction of the head of school.

(c) The thesis requires further work on matters detailed in my report. Should performance in this further work be to the satisfaction of the higher degree Committee, the thesis would merit the award of the degree.

(d) The thesis does not merit the award of the degree in its present form and further work as described in my report is required. The revised thesis should be subject to re-examination.

(e) The thesis does not merit the award of the degree and does not demonstrate that resubmission would be likely to achieve that merit.

(3) If the performance at the further work recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further work, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

Fees

7. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Biomedical Engineering (MBiomedE)

1. The degree of Master of Biomedical Engineering may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed, and shall submit a project report. The program of advanced study, including the preparation of the project report, shall total a minimum of 60 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the Director of the Centre for Biomedical Engineering (hereinafter referred to as the head of the school).
(3) The progress of the candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or five sessions in the case of a part-time candidate. The maximum period of candidature shall be five academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Project Report

4.(1) A candidate shall be required to undertake a project on an approved topic.

(2) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.

(3) The candidate shall give in writing to the Registrar two months notice of intention to submit a report on the project.

(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports for higher degrees.

(5) It shall be understood that the University retains three copies of the project report submitted for examination and is free to allow the project report to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report in whole or in part, in microfilm or other copying medium.

Examination

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Business and Technology

1. The degree of Master of Business and Technology by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).
(2) A candidate for the Master of Business and Technology shall obtain a grade point average of at least credit in the Graduate Diploma in Industrial Management at the first attempt of each of the subjects. Candidates will then be granted advanced standing in the Master of Business and Technology for the subjects already completed in the Graduate Diploma in Industrial Management.

(3) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(4) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Graduate School of Engineering at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of six academic sessions from the date of enrolment. The maximum period of candidature shall be ten academic sessions from the date of enrolment. In special cases a variation to these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be recommended from time to time by the Graduate School of Engineering.

Master of Cognitive Science (MCogSc) at Honours Level

1. The degree of Master of Cognitive Science at Honours level may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation. The degree shall be awarded either with the grade of Honours Class 1 or with the grade of Honours Class 2.

Qualifications

2. (1) A candidate for the degree shall:
 (a) have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee, and
 (b) have completed the requirements for the award of the degree at Pass level.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment to carry out such work as it may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.
(2) In every case, before permitting a candidate to enrol, the Chair of the Master of Cognitive Science Management Committee (hereinafter referred to as the Chair of the Management Committee) shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:
(a) full-time attendance at the University;
(b) part-time attendance at the University;
(c) external - not in regular attendance at the University and using research facilities external to the University.

(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such assessment and perform such other work as may be prescribed by the Committee.

(5) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the Chair of the Management Committee and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time or external candidate. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than four academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than eight academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied on the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses or higher degrees.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:
(a) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 without further examination; or
(b) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

*Or department where a department is not within a school, or schools or departments where the research is being undertaken in more than one school or department.
(c) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2) (c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees
6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Cognitive Science (MCogSc) at Pass Level

1. The degree of Master of Cognitive Science at Pass level may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications
2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).
 (2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.
 (3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression
3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.
 (2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.
 (3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.
 (4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment. The maximum period of candidature shall be eight academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Fees
4. A candidate shall pay such fees as may be determined from time to time by the Council.
Master of Computer Science (MCompSc)

1. The degree of Master of Computer Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:
 (a) undertake such formal subjects and pass such assessment as prescribed, or
 (b) undertake an approved combination of the above and demonstrate ability to undertake research by the submission of a project report embodying the results of an original investigation of an approved topic.

(3) The program of advanced study shall total a minimum of 48 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school.

(4) A candidate's proposed program shall be approved by the head of the Department of Computer Science prior to enrolment.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of three academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

18 Credit Project Report

4.(1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic under the direction of a supervisor appointed from the full-time academic members of the University staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report or thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.
Examination of 18 Credit Project Report

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:
 (a) the project report be noted as satisfactory; or
 (b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school*; or
 (c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or
 (d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering (ME) and Master of Science (MSc)

1. The degree of Master of Engineering or Master of Science by research may be awarded by the Council on recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of the thesis embodying the results of an original investigation.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the degree.

(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work the Committee may prescribe.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

(2) In every case, before permitting a candidate to enrol, the head of the school* in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:
 (a) full-time attendance at the University;
 (b) part-time attendance at the University;
 (c) external - not in regular attendance at the University and using research facilities external to the University.

*Or department where a department is not within a school, or schools or departments where the research is being undertaken in more than one school or department.
A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school in which the candidate is enrolled and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present, for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

The candidate shall give in writing two months notice of intention to submit the thesis.

The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

The candidate may also submit any work previously published whether or not such work is related to the thesis.

Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

- (a) the candidate be awarded the degree without further examination; or
- (b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or
- (c) the candidate be awarded the degree subject to further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
- (d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
- (e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the
same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering (ME), Master of Science (MSc) and Master of Surveying (MSurv)

without supervision

1. The degree of Master of Engineering or Master of Science or Master of Surveying without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

Qualification

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor of the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

Enrolment and Progression

3. An application to enrol as candidate for the degree without supervision shall be made in the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should, in his or her own interest, seek at an early stage the advice of the appropriate head of school (or department) with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available.

Thesis

4. (1) A candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.
(2) Before the thesis is submitted to the examiners the head of the school in which the candidate is enrolled shall certify that it is prima facie worthy of examination.

(3) At the conclusion of the examination each examiner shall submit to the Committee that:
 (a) the candidate be awarded the degree without further examination; or
 (b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school (or department); or
 (c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
 (d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
 (e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering Science (MEngSc) and Master of Surveying Science (MSurvSc)

1. The degree of Master of Engineering Science or Master of Surveying Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:
 (a) undertake such formal subjects and pass such assessment as prescribed, or
 (b) Undertake an approved combination of the above and demonstrate ability to undertake research by the submission of a project report embodying the results of an original investigation of an approved topic.
(3) The program of advanced study shall total a minimum of 30 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school.

(4) A candidate's proposed program shall be approved by the appropriate head of school prior to an enrolment. For the purposes of this requirement the appropriate head of school shall normally be the head of the school providing the major field of study.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

18 Credit Project Report

4.(1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic supervised by a supervisor or supervisors or under other appropriate supervision arrangements approved by the Committee.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(5) It shall be understood that the University retains the three copies of the project report submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.

Examination of 18 Credit Project Report

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Committee.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report in unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.
Master of Information Science (MInfSc)

1. The degree of Master of Information Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:

(a) undertake such formal subjects and pass such assessment as prescribed, or

(b) undertake an approved combination of the above and demonstrate ability to undertake research by the submission of a project report embodying the results of an original investigation of an approved topic.

(3) The program of advanced study shall total a minimum of 36 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school.

(4) A candidate's proposed program shall be approved by the head of the Department of Computer Science prior to enrolment.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of three academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

18 Credit Project Report

4.(1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic under the direction of a supervisor appointed from the full-time academic members of the University staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report or thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.
Examination of 18 Credit Project Report

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school*; or
(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or
(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners’ reports and the candidate’s results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Surveying (MSurv)

1. The degree of Master of Surveying by research may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work as the Committee may prescribe.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolments is to begin.

(2) In every case, before permitting a candidate to enrol, the Head of the School of Surveying (hereinafter referred to as the head of the school) shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:

(a) full-time attendance at the University;
(b) part-time attendance at the University;
(c) external - not in regular attendance at the University and using research facilities external to the University.

*Or department where a department is not within a school, or schools or departments where the research is being undertaken in more than one school or department.
4. (1) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

(5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

(2) The candidate shall give in writing two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination, or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.
Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Surveying without supervision (MSurv)

See Master of Engineering.

Master of Surveying Science (MSurvSc)

See Master of Engineering Science.

Graduate Diploma (GradDip)

1. A Graduate Diploma may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the diploma.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of two academic sessions* from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessionS* from the date of enrolment for a full-time candidate and six sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

*For the Graduate Diploma in Computer Science no candidate shall be awarded the diploma until a lapse of three academic sessions from the date of enrolment.
Graduate Diploma in Industrial Management (GradDip)

1. The Graduate Diploma in Industrial Management may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) A candidate for the Graduate Diploma in Industrial Management shall obtain a grade point average of at least credit in the Industrial Management Qualification at the first attempt of each of the subjects. Candidates will then be granted advanced standing in the Graduate Diploma in Industrial Management for the subjects already completed in the Industrial Management Qualification.

(3) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the diploma.

(4) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of four sessions from the date of enrolment. The maximum period of candidature shall be six sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be recommended from time to time by the Graduate School of Engineering.
Scholarships and Prizes

The scholarships and prizes listed below are available to students whose courses are listed in this book. Each faculty handbook contains in its Scholarships and Prizes section the scholarships and prizes available with that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University. Applicants should note that the awards and conditions are subject to review.

Key: V Value T Year/s of Tenure C Conditions

Scholarships

Undergraduate Scholarships

Listed below is an outline in summary form of undergraduate scholarships available to students. Full information may be obtained from the Student Centre located on the Lower Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar and Deputy Principal by 14 January each year. Please note that not all of these awards are available every year.

Sam Cracknell Memorial
V Up to $1500 pa payable in fortnightly instalments
T 1 year
C Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need.

Girls Realm Guild
V Up to $1500 pa
T 1 year with the prospect of renewal subject to satisfactory progress and continued demonstration of need
C Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need.

W.S. and L.B. Robinson
V Up to $6500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology.

General

John Crawford Scholarship Scheme
V Tuition fees. Some students maybe eligible for airfares and a stipend.
T Determined by normal course duration
C Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country. The closing date is normally early in the year before the year of study.
electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science. Applications close 30 September each year. Apply directly to PO Box 460 Broken Hill NSW 2880

Alumni Association

V Up to $1500 pa
T 1 year with the possibility of renewal
C Available to students enrolled in any year of a full-time course. Candidates must be the children of Alumni of the University of NSW and may be either permanent residents of Australia or international students.

Sporting Scholarships

V $2000 pa
T 1 year with possibility of renewal
C Available to students who are accepted into a course of at least two years duration. Prospective applicants should have an outstanding ability in a particular sport and are expected to be an active member of a UNSW Sports Club. Apply directly to Sport and Recreation Section, PO Box 1, Kensington 2033.

Environmental Engineering

Rankine and Hill
V $1500
T 1 year only
C Available to students enrolled in Year 1 of the degree course in Environmental Engineering

Mechanical and Manufacturing Engineering

Rheem Australia Ltd
V Up to $2500 pa
T 1 year renewable for the duration of the course, subject to satisfactory progress
C Permanent residence in Australia for a second or later year student enrolled in degree course in Mechanical or Manufacturing Engineering

Surveying

The Institution of Surveyors
V Up to $500 pa
T 1 year renewable for the duration of the course, subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to the full-time degree course in Surveying. Selection is based on academic merit, personal qualities and financial need.

NSW Department of Lands - Women In Surveying
V Up to $2000 pa
T 1 year
C Available to female students entering Year 1 of the degree course in Surveying course. Candidates must be residents of Australia.

The UNSW Co-op Program

The University of New South Wales has industry-linked education scholarships to the value of $9600 per annum in the following areas: Accounting (and Economics, Finance, Information Systems or Japanese Studies); Business Information Technology, Aeronautical, Bioprocess, Ceramic, Chemical, Civil, Electrical, Environmental, Materials, Mechanical, Metallurgical, Mineral, Mining and Petroleum Engineering; Food Science and Technology, Industrial Chemistry, Manufacturing Management, Textile Management, Textile Technology, and Wool and Pastoral Science.
Graduate Scholarships

Listed below is an outline in summary form of Graduate Scholarships available to students. Application forms and further information are available from the Scholarships Unit and Student Centre, located on the Ground Floor of the Chancellery, unless an alternative contact address is provided. Normally applications become available four to six weeks before the closing date. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

The following publications may also be of assistance: 1. Awards for Postgraduate Study in Australia and Awards for Postgraduate Study Overseas, published by the Graduate Careers Council of Australia. PO Box 28, Parkville, Victoria 3052;* 2. Study Abroad, published by UNESCO;*

Details of overseas awards and exchanges administered by the Department of Employment, Education and Training can be obtained from: Awards and Exchanges Section, Department of Employment, Education and Training, PO Box 826, Woden, ACT 2606.

Where possible, the scholarships are listed in order of faculty. Applicants should note that the awards and conditions are subject to review.

*Available for reference in the University Library.

General

University Postgraduate Research Scholarships

T 1-2 years for a Masters and 3-4 years for a PhD degree
V Living allowance of $14,260 pa. Other allowances may also be paid. Tax free.

C Applicants must be honours graduates or equivalent in the Medicine or Commerce faculties, or the University College, Australian Defence Force Academy. A limited number of scholarships are offered subject to the availability of funds. Information should be obtained from the Faculty office.

Australian Postgraduate Research Awards

T 1-2 years for a Masters and 3-4 years for a PhD degree
V $14,260 to $18,403

C Applicants must be honours graduates or equivalent or scholars who will graduate with honours in current academic year, and who are domiciled in Australia. Applications to Registrar by 31 October.

Australian Postgraduate Course Awards

V Living allowance of $11,214 pa. Other allowances may also be paid. Tax free.

T 1-2 years; minimum duration of course

C Applicants must be graduates or scholars who will graduate in current academic year, and who have not previously held a Commonwealth Postgraduate Award. Applicants must be domiciled in Australia. Preference is given to applicants with employment experience. Applications to the Registrar by 30 September.

John Crawford Scholarship Scheme

V Tuition fees. Some students may be eligible for air fares and a stipend.

T Determined by normal course duration

C Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country.

Overseas Postgraduate Research Scholarships

V Tuition fees only

T 2 years for a Masters and 3 years for a PhD degree

C Eligibility is confined to postgraduate research students who are citizens of countries other than Australia or New Zealand. Applications to the Registrar by 30 September.

Australian American Educational Foundation Fulbright Award

V Travel expenses and $A2000 as establishment allowance

T 1 year, renewable

C Applicants must be graduates who are domiciled in Australia and wish to undertake research or study for a higher degree in America. Applications close 30 September with The Secretary, DEET, AAEF Travel Grants, PO Box 826, Woden, ACT 2606. Application forms are available from the Associate Registrar, University of Sydney, NSW 2006, telephone (02) 692 2222.

Australian Federation of University Women

V Amount varies, depending on award

T Up to 1 year

C Applicants must be female graduates who are members of the Australian Federation of University Women. Further enquiries may be directed to the Secretary of the Federation, (telephone (02) 232 5629).

Commonwealth Scholarship and Fellowship Plan

V Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.

T Usually 2 years, sometimes 3

C Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Tenable in Commonwealth countries other than Australia. Applications close with the Registrar in early October.
The English-Speaking Union (NSW Branch)
V $7000
T 1 year
C Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April with The Secretary, Ground Floor, Sydney School of Arts, 275c Pitt Street, Sydney, NSW 2000.

Frank Knox Memorial Stipend of Fellowships
V $US7000 pa plus tuition fees
T 1, sometimes 2 years tenable at Harvard University
C Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with the Academic Registrar mid October.

Robert Gordon Menzies Scholarship to Harvard
V Up to $US 15,000
T 1 year
C Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra, ACT 2601

Gowrie Scholarship Trust Fund
V $6000 pa. Under special circumstances this may be increased.
T 2 years
C Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with the Academic Registrar by 31 October.

Harkness Fellowships of the Commonwealth Fund of New York
V Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA
T 12 to 21 months
C Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close 29 August with the Academic Registrar. Forms available from Mr J Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra, ACT 2601.

The Packer, Shell and Barclays Scholarships to Cambridge University
V Living and travel allowances, tuition expenses
T 1-3 years
C Applicants must be Australian citizens who are honours graduates or equivalent, and under 26 years of age. Applications are available from The Secretary, Cambridge Commonwealth Trust, PO Box 252, Cambridge CB2 1TZ, England. The scholarship closes on 15 October.

The Rhodes Scholarship to Oxford University
V Approximately £4862 stg pa
T 2 years, may be extended for a third year.
C Unmarried Australian citizens aged between 19 and 25 who have an honours degree or equivalent. Applications close in August each year with The Secretary, University of Sydney, NSW 2006.

Engineering

Australian Institute of Nuclear Science and Engineering Studentships
V Basic stipend $11,103 pa plus allowances and some University expenses
T 1-3 years
C Applicants must be honours graduates in Science or Engineering. At least one quarter of the period of tenure must be spent at the Institute at Lucas Heights, NSW. Applications close late October with the Registrar.

Harold G. Conde Memorial Fellowship
V $5000 pa
T Maximum of 3 years
C Applicants should be honours graduates permanently domiciled in Australia. The Fellowship is a supplementary award to be held in conjunction with another scholarship and is for graduate study or research in a field related to the electricity industry. Applications close with the Registrar by 10 April. The scholarship is offered subject to funds.

Medical Engineering Research Association
V Variable
T 1-3 years
C Awarded for graduate study or research in the field of Biomedical Engineering. Applications to The Secretary, MERA, PO Box 218, Lindfield, NSW 2070.
Water Industry Research Award
V $21,000 pa
T 2-4 years
C Application close with the Registrar on 31 July.

Australian Telecommunications
Shell Scholarship in Science or Engineering
V $9000 intended as a supplement to other awards
T 1 year for a Masters and up to 3 years for a PhD degree
C Applicants must be first class honours graduates or equivalent or scholars who will graduate with honours in the current academic year, who are Australian citizens or permanent residents and who are aged under 25 years at 1 January. Applications close November 2 with ATERB, PO Box 76, Epping, NSW 2121.

Prizes

Undergraduate University Prizes

The following information summarizes undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded.

Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor of the Chancellery.

General

The Sydney Technical College Union Award
V $400.00 and Bronze Medal
C Leadership in student affairs combined with marked academic proficiency by a graduand

The University of New South Wales Alumni
V Statuette Association Prize
C Achievement for community benefit by a student in the final or graduating year

Faculty of Engineering

The Institution of Engineers Australia Award
V $200.00 and medal.
C The best performance by a student in the final or equivalent year leading to the award of the BE or BSc(Eng) degrees offered by the Schools of Civil Engineering, Electrical Engineering and Computer

Science, Mechanical and Industrial Engineering, Chemical Engineering and Industrial Chemistry, and the Departments of Mining Engineering and Textile Technology (Engineering option only)

The John Fraser Memorial Award
V $130.00
C The best performance by a student in Year 1 or part-time equivalent of a Bachelor degree offered by the Faculty of Engineering

School of Civil Engineering

The Association of Consulting Structural
V $225.00 Engineers of New South Wales Prize
C Best performance in CIVL4203 Structural Engineering in the Bachelor of Engineering degree course in Civil Engineering

The Association of Consulting Structural
Engineers of New South Wales Prize
V $175.00
C The best performance in CIVL3303 Structural Design in the Bachelor of Engineering degree course in Civil Engineering

The Australian Conservation Foundation Prize
V $50.00
C The best performance in the subjects which develop environmental management concepts for the Civil Engineer
The Australian Institute of Traffic Planning and Management Prize
V $150.00
C The best performance in CIVL4844 Transport major in the Bachelor of Engineering degree course in Civil Engineering

The Baulderstone Hornibrook Prize
V $500.00
C The best performance in Engineering Construction and Management in the Bachelor of Engineering degree course in Civil Engineering

The Computing and Graphics Prize (Donor P W Kneen)
V $400.00
C The best performance in CIVL1106 Computing and Graphics by a student in the Bachelor of Engineering in Civil Engineering or Bachelor of Engineering in Environmental Engineering

The Crawford Munro Memorial Prize
V $300.00
C The best performance in CIVL3705 Water Resources in the Bachelor of Engineering degree course in Civil Engineering

The GAA Engineering Award
V $500.00
C The best performance in CIVL3303 Structural Design in the Bachelor of Engineering degree course in Civil Engineering

The GAA Engineering Award
V $500.00
C The best essay on a topic relating to galvanising by a student proceeding to the award of the degree of Bachelor of Engineering in Civil Engineering

The Institution of Engineers Environmental Engineering Prize
V $200.00
C The best performance in CIVL1007 Engineering Practice in the Bachelor of Engineering in Environmental Engineering course

The James Hardie Co Pty Ltd Prize
V $225.00
C The best performance in CIVL2505 Hydraulics 1 in the Bachelor of Engineering degree course in Civil Engineering

The Jeffery and Katauskas Prize
V $500.00
C The best performance in CIVL4822 Geotechnical Major in the Bachelor of Engineering degree course

The Welding Technology Institute of Australia Prize
V Books to the value of $100.00, 1 year membership of the Institute
C The best design which incorporates a welding process for students in Years 2 to 4 of the Bachelor of Engineering degree course in Civil Engineering

School of Computer Science and Engineering

The Logica Pty Limited Prize
V $1000.00
C The best performance by a graduand in a Computer Science degree course at honours level

School of Electrical Engineering

The Electricity Supply Engineers' Association of New South Wales Prize
V $100.00
C The best overall performance including proficiency in electric power distribution in Year 3 full-time or equivalent part-time stages of the Bachelor of Engineering degree course in Electrical Engineering

The Institution of Electrical Engineers Prize
V $100.00
C The best performance in Year 3 studies of the Bachelor of Engineering degree course in Electrical Engineering

The Institution of Electrical Engineers Prize
V £75.00 and Certificate
C The best performance in the final year thesis/project by a student proceeding to the award of the degree of Bachelor of Engineering in Electrical Engineering
The J. Douglas Maclurcan Prize
V $60.00 book order
C Outstanding performance in the field of Control Systems in the final year of the Bachelor of Engineering degree course in Electrical Engineering

The Telecom Australia Prize
V $300.00
C The best telecommunications related thesis by a final year student proceeding to the award of the degree of Bachelor of Engineering in Electrical Engineering or Computer Engineering

Photovoltaic Devices and Systems

The Photovoltaics Prize (Applied Photovoltaics)
V $500.00
C The best performance in ELEC4540 Applied Photovoltaics in the Bachelor of Engineering degree course

The Photovoltaics Thesis Prize
V $500.00
C The best performance for an undergraduate thesis in the area of photovoltaics in the Bachelor of Engineering degree course

The Photovoltaics Prize (Advanced Photovoltaics)
V $500.00
C The best performance in ELEC9505 Solar Cells leading to the award of the Bachelor of Engineering or Master of Engineering Science or Doctor of Philosophy degrees

School of Mechanical and Manufacturing Engineering

The Ansett Australia Prize
V $200.00 and bronze medal
C The best overall performance in the Bachelor of Engineering degree course in Aeronautical Engineering

The Atlas Copco Prize
V $125.00
C The best overall performance in the Bachelor of Engineering degree course in Mechanical Engineering

The Babcock Engineering Australia Limited Prize
V Books to the value of $100.00
C The best performance in a subject selected by the Head of School at the beginning of each academic year

The Carrier Air Conditioning Pty Limited Prize
V $250.00
C The best performance in a subject selected by the Head of School

The Computer-based Engineering Design Prize
V $100.00
C The best undergraduate or postgraduate thesis making a contribution to computer-based Engineering design in the School of Mechanical and Industrial Engineering

The David Carment Memorial Prize
V $500.00 and Bronze Medal
C The best overall performance in the final year of the Bachelor of Engineering degree course in Naval Architecture

The The Pacific Power Award
V $250.00
C The best performance in MECH4740 Thermal Power Plants

The Hawker de Havilland Ltd Prize
V $500.00
C The best thesis in the Bachelor of Engineering degree course in Aeronautical Engineering

The Hawker de Havilland Victoria Limited Prize
V $300.00 and Silver Medal
C The best overall performance in the final year of the Bachelor of Engineering degree course in Aeronautical Engineering

The Jeremy Hirschhorn Prize in Mechanical Engineering
V $100.00
C The best performance by a final year student in Mechanics of Machines

The John Harrison Prize
V $100.00
C The best performance in Mechanics of Machines in Year 3 of the Bachelor of Engineering degree course in Mechanical Engineering
The R.A.A. Bryant Prize
V $1,000.00 (indexed per year since 1989)
C A student graduating with first class honours and the University Medal in Mechanical Engineering

The R.E. Jeffries Memorial Prize
V $500.00
C The best overall performance in the final year of the Bachelor of Engineering degree course in Industrial Engineering

The Royal Institution of Naval Architects (Australian Division) Prize
V $250.00
C The best ship design by a student in the final year of the Bachelor of Engineering degree course in Naval Architecture

The Shell Refining (Australia) Pty Ltd Prize
V $100.00
C The best performance in a first year mechanical engineering subject to be selected by the Head of School at the beginning of each academic year

The Spruson and Ferguson Prize
V $250.00
C The best performance in MECH3100 Mechanical Engineering Design 3 by a student in the Bachelor of Engineering degree course in Mechanical Engineering

The Staedtler (Pacific) Pty Ltd Prize
V Products to the value of $350.00
C The best overall performance by a student in Year 2 of the Bachelor of Engineering degree course in Mechanical Engineering

The TRW Products Limited Prize
V $1000.00
C The best overall performance in the Bachelor of Engineering degree course in Manufacturing Engineering

Graduate University Prizes
The following information summarizes graduate prizes awarded by the University.

School of Chemical Engineering and Industrial Chemistry

The Clean Air Society of Australia and New Zealand Prize in Atmospheric Pollution Control
V $100.00
C The highest aggregate in FUEL5910 Atmospheric Pollution and Control and FUEL5920 Practical Aspects of Air Pollution Measurement and Control in a graduate course in the School of Chemical Engineering and Industrial Chemistry

School of Civil Engineering

The Institute of Advanced Motorists Prize
V $50.00
C The best performance in Traffic Planning and Control

The Maunsells Project Report Prize
V $500.00
C The best performance in CIVL8909 or CIVL9909 Project Report (9 credits) or GEOL9504 or GEOL9604 Project Report (9 credits) by a student in the Master of Engineering Science or Master of Applied Science degree courses
The Maunsells Waste Management Prize

$500.00

The best aggregate performance by a Stage 1 student in:
- CIVL8872/9872 Solid Waste Management
- CIVL8873/9873 Waste and Wastewater Analysis and Environmental Requirements,
- CIVL8874/9874 Waste Management Science by a student in the Master of Engineering Science or Master of Applied Science course

School of Mechanical and Manufacturing Engineering

The Computer-based Engineering Design Prize

$100.00

The best undergraduate or graduate thesis making a contribution to computer-based Engineering design in the School of Mechanical and Industrial Engineering
The University of New South Wales, Kensington Campus

Theatres
- Biomedical Theatres E27
- Central Lecture Block E19
- Chemistry Theatre (Dwyer, Mellor, Murphy, Nyholm, Smith) E12
- Classroom Block (Western Grounds) H3
- Fig Tree Theatre B14
- Io Myers Studio D9
- Keith Burrows Theatre J14
- Mathews Theatres D23
- Parade Theatre E3
- Physics Theatre (Main Building) K14
- Rex Vowels Theatre F17
- Science Theatre F13
- Sir John Clancy Auditorium C24

Buildings
- Applied Science F10
- Barker Street Gatehouse N11
- Basser College (Kensington) C18
- Central Store B13
- Chancellery C22
- Dalton (Chemistry) F12
- Goldstein College (Kensington) D16
- Golf House A27
- Gymnasium B5
- International House C6
- John Goodsell (Commerce and Economics) F20
- Kensington Colleges (Office) C17
- Library (University) E21
- Link B6
- Maintenance Workshop B13
- Mathews F23
- Manzies Library E21
- Morven Brown (Arts) C20
- New College L6
- Newton J12
- NIDA D2
- Parking Station H25
- Philip Baxter College (Kensington) D14
- Robert Heffron (Chemistry) E12
- Sam Cracknell Pavilion H8
- Samuels Building F26
- Shalom College N8
- Sir Robert Webster G14
- Unisearch House L5
- University Regiment J2
- University Union (Roundhouse) E6
- University Union (Blockhouse) G6
- University Union (Squarehouse) E4
- Wallace Wurth School of Medicine C27
- Warrane College M7

General
- Aboriginal Student Centre: 47 Botany St, Randwick
- Accommodation (off-campus) F15
- Accounting F20
- Admissions C22
- Adviser for Prospective Students C22
- Anatomy C27
- Applied Bioscience D26
- Applied Economic Research G14
- Applied Geology F10
- Applied Science (Faculty Office) F10
- Architecture (Faculty Office) H14
- Archives, University E21
- Arts and Social Sciences (Faculty Office) C20
- Asia-Australia Institute: 34 Botany St, Randwick
- Audio Visual Unit F20
- Australian Graduate School of Management C27
- Banking and Finance F20
- Biochemistry and Molecular Genetics D26
- Biological and Behavioural Sciences (Faculty Office) D26
- Biomedical Engineering F26
- Biomedical Library F23
- Biotechnology F26
- Cashier's Office C22
- Chaplains L32 & L13
- Chemical Engineering and Industrial Chemistry F10
- Chemistry E12
- Civil Engineering H20
- Co-op Bookshop G17
- Commerce and Economics (Faculty Office) F20
- Communications Law Centre C15
- Community Medicine D26
- Computer Science and Engineering G17
- Computing Services Department F26
- Cornea and Contact Lens Research Unit: 22-32 King St, Randwick
- Economics F20
- Education Studies G2
- Educational Testing Centre K14
- Electrical Engineering G17
- Energy Research, Development & Information Centre F10
- Engineering (Faculty Office) K17
- English C20
- Examinations C22
- Fees Office C22
- Fibre Science and Technology G14
- Food Science and Technology B8
- French C20
- Geography K17
- German and Russian Studies C20
- Graduate Office and Alumni Centre E4
- Graduate School of the Built Environment H14
- Groundwater Management and Hydrogeology F10
- Health Service, University L14b
- Health Services Management C22
- History C20
- House at Pooh Corner (Child Care) N8
- Industrial Design G15
- Industrial Relations and Organizational Behaviour F20
- Information Systems F20
- Institute of Languages: 14 Francis St, Randwick
- International Student Centre F16
- IPACE Institute F23
- Japanese Economic and Management Studies F20
- Kangaroo's House (Child Care) O14
- Landscape Architecture K15
- Law (Faculty Office) F21
- Law Library F21
- Legal Studies & Taxation F20
- Liberal and General Studies C20
- Librarianship F23
- Lost Property C22
- Marine Science D26
- Marketing F20
- Materials Science and Engineering E8
- Mathematics F23
- Mechanical and Manufacturing Engineering J17
- Medical Education C27
- Medicine (Faculty Office) B27
- Membrane and Separation Technology F19
- Microbiology and Immunology D26
- Mines K16
- Minor Works and Maintenance B14A
- Music B11
- News Service C22
- New South Wales University Press: 22-32 King St, Randwick
- Optometry J12
- Pathology C27
- Patrol and Cleaning Services C22
- Performing Arts B10
- Petroleum Engineering D12
- Philosophy C20
- Physics K15
- Physiology and Pharmacology C27
- Political Science C20
- Printing Section C22
- Professional Development Centre K13
- Professional Studies (Faculty Office) G2
- Property and Works C22
- Psychology F23
- Publications Section C22
- Remote Sensing K17
- Safety Science: 32 Botany Street, Randwick
- Science (Faculty Office) F23
- Science and Technology Studies C20
- Social Science and Policy C20
- Social Policy Research Centre F26
- Social Work G2
- Sociology C20
- Spanish and Latin American Studies C20
- Sport and Recreation Centre B6
- Squash Courts B7
- Staff Office C22
- Student Centre (off Library Lawn) C22
- Students' Union E4, C21
- Student Services: Careers, Loans, Accommodation etc L14
- Counselling L13
- Students' Union E4, C21
- Surveying K17
- Swimming Pool B4
- Textile Technology G14
- Theatre and Film Studies B10
- Town Planning K15
- WHO Regional Training Centre O27
- Wool and Animal Sciences G14