HANDBOOK

1995
ENGINEERING
Subjects, courses and any arrangements for courses including staff allocated as stated in this Handbook are an expression of intent only. The University reserves the right to discontinue or vary arrangements at any time without notice. Information has been brought up to date as at 1 November 1994, but may be amended without notice by the University Council.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Calendar of Dates</td>
<td>3</td>
</tr>
<tr>
<td>Staff</td>
<td>5</td>
</tr>
<tr>
<td>Handbook Guide</td>
<td>13</td>
</tr>
<tr>
<td>Faculty Information</td>
<td>17</td>
</tr>
<tr>
<td>Some People Who Can Help You</td>
<td>17</td>
</tr>
<tr>
<td>Entrance Requirements</td>
<td>17</td>
</tr>
<tr>
<td>Enrolment Procedures</td>
<td>18</td>
</tr>
<tr>
<td>Faculty of Engineering Library Facilities</td>
<td>16</td>
</tr>
<tr>
<td>Student Clubs and Societies</td>
<td>18</td>
</tr>
<tr>
<td>Students With Disabilities</td>
<td>18</td>
</tr>
<tr>
<td>Equal Opportunity in Education Policy Statement</td>
<td>19</td>
</tr>
<tr>
<td>IAESTE</td>
<td>19</td>
</tr>
<tr>
<td>Professional Institutions</td>
<td>19</td>
</tr>
<tr>
<td>General Information</td>
<td>20</td>
</tr>
<tr>
<td>Summary of Courses</td>
<td>21</td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td>21</td>
</tr>
<tr>
<td>Bachelor of Engineering</td>
<td>21</td>
</tr>
<tr>
<td>Combined Degree Courses</td>
<td>21</td>
</tr>
<tr>
<td>Concurrent Degree Courses</td>
<td>22</td>
</tr>
<tr>
<td>Subject Areas</td>
<td>22</td>
</tr>
<tr>
<td>Co-op Program</td>
<td>22</td>
</tr>
<tr>
<td>Transfer Courses</td>
<td>22</td>
</tr>
<tr>
<td>Course Revision</td>
<td>23</td>
</tr>
<tr>
<td>General Rules for Progression</td>
<td>23</td>
</tr>
<tr>
<td>Honours</td>
<td>23</td>
</tr>
<tr>
<td>Prerequisites and Corequisites</td>
<td>23</td>
</tr>
<tr>
<td>Industrial Experience Requirements</td>
<td>23</td>
</tr>
<tr>
<td>Computing Requirements</td>
<td>23</td>
</tr>
<tr>
<td>General Education Requirement</td>
<td>24</td>
</tr>
<tr>
<td>General Education Requirement for Combined Degrees</td>
<td>24</td>
</tr>
<tr>
<td>Conditions for the Award of the Degree of Bachelor of Engineering</td>
<td>24</td>
</tr>
<tr>
<td>Graduate Study</td>
<td>25</td>
</tr>
<tr>
<td>English Language Requirements</td>
<td>25</td>
</tr>
<tr>
<td>Research Degrees</td>
<td>25</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>26</td>
</tr>
<tr>
<td>Master of Engineering/Master of Science</td>
<td>26</td>
</tr>
<tr>
<td>Course Work Masters Degrees</td>
<td>26</td>
</tr>
</tbody>
</table>
Graduate Diplomas ... 27
Graduate Subjects ... 27

School of Civil Engineering .. 29

Undergraduate Study: Course Outlines 30
3620 Civil Engineering - Full-time Course 30
3625 Environmental Engineering - Full-time Course 31

Combined Courses ... 31
3730 BE BSc in Civil Engineering - Full-time Course 31
3146 BE(Civil) BE(Mining) in Civil Engineering and Mining Engineering - Full-time Course 33
4775 BE (Civil Engineering) LLB in Civil Engineering and Law - Full-time Course 33

Graduate Study: Course Work Programs 34
8612 Master of Engineering Science 34
8614 Master of Engineering Science 35
8615 Master of Environmental Engineering Science 35
8617 Engineering Construction and Management 35
5454 Graduate Diploma in Engineering Construction and Management ... 35
5459 Graduate Diploma in Waste Management 35

Subject Descriptions ... 36

School of Computer Science and Engineering 55

Undergraduate Study: Course Outlines 56
3645 Computer Engineering - Full-time Course 56

Combined Courses ... 58
3722 BE BA in Computer Engineering 58
3726 BE BSc in Computer Engineering 59

Graduate Study: Course Work Programs 60
8155 Master of Cognitive Science ... 60
8508/8680 Master of Information Science/Master of Computer Science 60
8508 Master of Information Science 60
8680 Master of Computer Science 61
5452 Graduate Diploma in Computer Science 61
5453 Graduate Diploma in Information Science 61
5464 Graduate Diploma in Computer Education 61

Subject Descriptions ... 62

School of Electrical Engineering ... 71

Undergraduate Study: Course Outlines 72
3640 Electrical Engineering - Full-time Course 72
3640 Electrical Engineering - Part-time Course 73
3640 Electrical Engineering - Sandwich Course 73
3645 Computer Engineering - Full-time course 73
Technical Electives - all courses .. 73
Electrical Engineering Professional Electives - all courses 74

Combined Courses ... 74
3720 BE BA in Electrical Engineering 74
3725 BE BSc in Electrical Engineering 75
3727 Electrical Engineering/Biomedical Engineering - Full-time Course 76

Graduate Study: Course Work Programs 76
8501 Master of Engineering Science in Electrical Engineering 76

Specialist Programs ... 76
5435 Graduate Diploma in Electric Power Engineering 78
5458 Graduate Diploma in Electrical Engineering 79

Subject Descriptions ... 80
Graduate School of Engineering 145
Course Outlines ... 146
8616 Master of Business and Technology 148
5457 Graduate Diploma in Industrial Management 146
Subject Descriptions .. 146

Centres in the Faculty of Engineering 149
Centre for Advanced Numerical Computation in Engineering and Science 149
Subject Descriptions .. 150
Centre for Manufacturing and Automation 150
Centre for Photovoltaic Devices and Systems 150
Centre for Remote Sensing and Geographic Information Systems .. 150
Centre for Wastewater Treatment 151
Munro Centre for Civil and Environmental Engineering .. 151
UNSW Groundwater Centre 151
8021 Groundwater Studies Graduate Course 151
8612/8614 Waste Management Graduate Course 151
5459/5498 Waste Management Graduate Diploma Course .. 151

Servicing Subject Descriptions 153

Conditions for the Award of Degrees 173
First Degrees ... 173
Higher Degrees .. 173
Doctor of Philosophy .. 176
Master of Biomedical Engineering 178
Master of Business and Technology 179
Master of Cognitive Science at Honours Level 180
Master of Cognitive Science at Pass Level 182
Master of Computer Science 182
Master of Engineering and Master of Science 184
Master of Engineering and Master of Science without supervision .. 186
Master of Engineering Science 187
Master of Environmental Engineering Science 188
Master of Information Science 189
Graduate Diploma ... 191
Graduate Diploma in Industrial Management 191

Scholarships and Prizes 193
Scholarships ... 193
Undergraduate .. 193
Graduate .. 195
Prizes ... 199
Undergraduate .. 199
Graduate .. 203
Introduction

This handbook provides information on courses of study offered by the Faculty of Engineering, at both undergraduate and graduate levels, together with descriptions of subjects available and areas in which research may be undertaken.

The Faculty consists of the Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, Geomatic Engineering, and Mechanical and Manufacturing Engineering. It also has two graduate schools, the Graduate School of Biomedical Engineering and the Graduate School of Engineering and a number of faculty centres, Manufacturing and Automation, Photovoltaic Devices and Systems, Wastewater Treatment and the Munro Centre for Civil and Environmental Engineering. The Faculty is also closely associated with the UNSW Groundwater Centre and the Centre for Remote Sensing and Geographic Information Systems both of which are joint multidisciplinary enterprises with the Faculty of Applied Science, and the Centre for Advanced Numerical Computation in Engineering and Science which is a joint enterprise with the Faculty of Science. Furthermore, the Faculty is actively involved with seven Cooperative Research Centres (CRCs) established under the Commonwealth Government's program of CRCs announced in 1991.

The Faculty is dedicated to the achievement of excellence in scholarship, teaching and research in technology and its application for the benefit of the community. Schools within the Faculty offer undergraduate courses leading to the award of the degree of Bachelor of Engineering (BE). There are also a number of combined degree courses available which lead to the award of two degrees, as well as a concurrent degree program leading to the award of a bachelor and masters degree. Through its schools and centres, the Faculty offers an active graduate program through formal graduate courses both at degree and graduate diploma level, and research degrees.

The Faculty has a commitment to developing in students the technical, scientific and creative skills required to solve all aspects of engineering problems, and to direct and manage engineering activities. Critical to this is an understanding of human interaction with the environment so that the impact of engineering activity can be assessed together with the ability to communicate with other members of the profession, with industrial personnel, administrators and with members of the public.

Other important attributes for a successful engineer include the desire and ability for continuing self-education and reappraisal of current practice including the ability to innovate. Concomitant with this is the ability to evaluate independently and to criticise constructively their own work and the work of other engineers.

It is also important for students to join in the development of themselves as professional engineers. Engineering is a cooperative profession where teamwork is very important. Whilst at university, students should take as many opportunities as possible to join in the activities which help to develop the whole person. Student clubs and professional institutions provide many opportunities for gaining knowledge and experience which will be valuable in later years.

M.S. Wainwright
Dean
Faculty of Engineering
The academic year is divided into two sessions, each containing 14 weeks for teaching. Between the two sessions there is a break of approximately six weeks, which includes a one-week study period, two weeks for examinations, and three weeks' recess. There is also a short recess of one week within each session.

Session 1 commences on the Monday nearest 1 March.

All Faculties (other than AGSM, Medicine and University College)

<table>
<thead>
<tr>
<th>Session 1 (14 weeks)</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-session recess</td>
<td>14 April to 23 April</td>
<td>5 April to 14 April</td>
</tr>
<tr>
<td>Study period</td>
<td>10 June to 15 June</td>
<td>15 June to 20 June</td>
</tr>
<tr>
<td>Examinations</td>
<td>16 June to 4 July</td>
<td>21 June to 9 July</td>
</tr>
<tr>
<td>Mid-year recess</td>
<td>5 July to 23 July</td>
<td>10 July to 28 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2 (14 weeks)</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-session recess</td>
<td>23 September to 2 October</td>
<td>28 September to 7 October</td>
</tr>
<tr>
<td>Study period</td>
<td>4 November to 9 November</td>
<td>9 November to 14 November</td>
</tr>
<tr>
<td>Examinations</td>
<td>10 November to 28 November</td>
<td>15 November to 3 December</td>
</tr>
</tbody>
</table>

Important dates for 1995

January
- M 2 New Year's Day - Public Holiday
- M 9 Medicine IV - Term 1 begins
- M 16 Medicine V - Term 1 begins
- Th 26 Australia Day - Public Holiday
- T 31 Enrolment period begins for new undergraduate students and undergraduate students repeating first year.

February
- M 6 Re-enrolment period begins for second and later year undergraduate students and graduate students enrolled in formal courses. Students should consult the *Re-enrolling 1995* leaflets applicable to their courses for details.
- M 13 Semester 1 begins - AGSM Open Learning Graduate Management Qualification program

March
- M 6 Session 1 begins - University College, ADFA
- F 10 Last day applications are accepted from students to enrol in Session 1 or whole year subjects
- Su 12 Medicine IV - Term 1 ends
- M 13 Medicine IV - Term 2 begins
- Su 19 Medicine V - Term 1 ends
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td>9 Medicine VI - Term 2 ends</td>
</tr>
<tr>
<td>F</td>
<td>14 Good Friday - Public Holiday</td>
</tr>
<tr>
<td>S</td>
<td>15 Easter Saturday - Public Holiday</td>
</tr>
<tr>
<td>M</td>
<td>17 Easter Monday - Public Holiday</td>
</tr>
<tr>
<td>Su</td>
<td>23 Medicine IV - Term 2 ends</td>
</tr>
<tr>
<td>T</td>
<td>25 Anzac Day - Public Holiday</td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1 Medicine IV - Term 3 begins</td>
</tr>
<tr>
<td>F</td>
<td>5 Term 1 ends - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>S</td>
<td>6 Mid-session recess begins - University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>8 Examinations begin - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>T</td>
<td>9 Publication of provisional timetable for June examinations</td>
</tr>
<tr>
<td>F</td>
<td>12 Examinations end - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>S</td>
<td>13 Examination - AGSM Open Learning Graduate Diploma in Management</td>
</tr>
<tr>
<td>W</td>
<td>17 Last day for students to advise of examination clashes</td>
</tr>
<tr>
<td>Su</td>
<td>21 Mid-session recess ends - University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>24 Session 2 begins - University College, ADFA</td>
</tr>
<tr>
<td>T</td>
<td>30 Publication of timetable for June examinations</td>
</tr>
<tr>
<td>June</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>3 Examination - AGSM Open Learning Graduate Management Qualification program</td>
</tr>
<tr>
<td>M</td>
<td>5 Medicine V - Term 3 begins</td>
</tr>
<tr>
<td>F</td>
<td>9 Semester 1 ends - AGSM Open Learning Graduate Diploma in Management</td>
</tr>
<tr>
<td>S</td>
<td>10 Study recess begins</td>
</tr>
<tr>
<td>Su</td>
<td>11 Medicine IV - Term 3 ends</td>
</tr>
<tr>
<td>M</td>
<td>12 Queen's Birthday - Public Holiday</td>
</tr>
<tr>
<td>T</td>
<td>13 Medicine IV - Term 4 begins</td>
</tr>
<tr>
<td>Th</td>
<td>15 Study recess ends</td>
</tr>
<tr>
<td>F</td>
<td>18 Examinations begin</td>
</tr>
<tr>
<td>S</td>
<td>23 Mid-year recess begins - University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>26 Examinations begin - University College, ADFA</td>
</tr>
<tr>
<td>July</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4 Examinations end</td>
</tr>
<tr>
<td>W</td>
<td>5 Mid-year recess begins</td>
</tr>
<tr>
<td>S</td>
<td>8 Examinations end - University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>10 Semester 2 begins - AGSM Open Learning Graduate Diploma in Management</td>
</tr>
<tr>
<td>M</td>
<td>17 Mid-year recess begins - University College, ADFA</td>
</tr>
<tr>
<td>F</td>
<td>21 Medicine VI - Term 4 ends</td>
</tr>
<tr>
<td>Su</td>
<td>23 Mid-year recess ends - University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>24 Session 2 begins - all courses except Medicine IV, V, VI</td>
</tr>
<tr>
<td>M</td>
<td>31 Medicine VI - Term 5 begins</td>
</tr>
<tr>
<td>August</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4 Last day applications are accepted from students to enrol in Session 2 subjects</td>
</tr>
<tr>
<td>Su</td>
<td>6 Medicine IV - Term 4 ends</td>
</tr>
<tr>
<td>M</td>
<td>7 Bank Holiday</td>
</tr>
<tr>
<td>F</td>
<td>11 Examinations end - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>M</td>
<td>14 Medicine IV - Term 3 ends</td>
</tr>
<tr>
<td>M</td>
<td>28 Term 3 begins - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>Th</td>
<td>31 Last day for students to discontinue without failure subjects</td>
</tr>
<tr>
<td></td>
<td>which extend over Session 2 only</td>
</tr>
<tr>
<td></td>
<td>HECS Census Date for Session 2</td>
</tr>
<tr>
<td>September</td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td>10 Medicine VI - Term 5 ends</td>
</tr>
<tr>
<td>S</td>
<td>23 Mid-session recess begins - University College, ADFA</td>
</tr>
<tr>
<td>Su</td>
<td>24 Medicine IV - Term 5 ends</td>
</tr>
<tr>
<td>M</td>
<td>25 Medicine IV - Term 6 ends</td>
</tr>
<tr>
<td>F</td>
<td>29 Closing date for applications to the Universities Admission Centre</td>
</tr>
<tr>
<td>October</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>2 Labour Day - Public Holiday</td>
</tr>
<tr>
<td>T</td>
<td>3 Publication of provisional timetable for the November examinations</td>
</tr>
<tr>
<td>W</td>
<td>11 Last day for students to advise of examination clashes</td>
</tr>
<tr>
<td>S</td>
<td>14 Examinations - AGSM Open Learning Graduate Diploma in Management</td>
</tr>
<tr>
<td>Su</td>
<td>15 Medicine V - Term 4 ends</td>
</tr>
<tr>
<td>M</td>
<td>22 Medicine VI - Term 6 ends</td>
</tr>
<tr>
<td>T</td>
<td>24 Publication of timetable for November examinations</td>
</tr>
<tr>
<td>F</td>
<td>27 Session 2 begins - University College, ADFA</td>
</tr>
<tr>
<td>M</td>
<td>30 Examinations begin - University College, ADFA</td>
</tr>
<tr>
<td>November</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3 Session 2 ends - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>S</td>
<td>4 Study recess begins</td>
</tr>
<tr>
<td>F</td>
<td>10 Examinations begin</td>
</tr>
<tr>
<td>S</td>
<td>14 Final Examination - AGSM Open Learning Graduate Management Qualification program</td>
</tr>
<tr>
<td>M</td>
<td>17 Examinations end - AGSM MBA program - all classes</td>
</tr>
<tr>
<td>T</td>
<td>28 Examinations end</td>
</tr>
<tr>
<td>December</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>21 Last day for acceptance of applications by the Admissions Section</td>
</tr>
<tr>
<td></td>
<td>for transfer to another undergraduate course within the University</td>
</tr>
<tr>
<td>M</td>
<td>25 Christmas Day - Public Holiday</td>
</tr>
<tr>
<td>T</td>
<td>26 Boxing Day - Public Holiday</td>
</tr>
</tbody>
</table>
Comprises Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, Mechanical and Manufacturing Engineering (incorporating Aerospace Engineering and Naval Architecture), Geomatic Engineering, the Graduate School of Biomedical Engineering, the Graduate School of Engineering and Centres for Photovoltaic Devices and Systems, Advanced Numerical Computation in Engineering and Science, Manufacturing and Automation, Wastewater Treatment, the Munro Centre for Civil and Environmental Engineering and the Centre for Remote Sensing and Geographic Information Systems. The Faculty is also associated with the UNSW Groundwater Centre, and the Co-operative Research Centres for Waste Management and Pollution Control, and Aerospace Structures.

Dean
Mark Sebastian Wainwright, MAppSc Adel., PhD McM., CPEng, FTS, FRACI, FIIEAust

Presiding Member
Professor C. Patterson

Associate Dean (International Programs)
Anthony John Robinson

Executive Officer
Robyn Christine Horwood, BA DipEd UNSW

Administrative Assistant
Maureen Ellen Noonan

School of Civil Engineering

Professor of Transport Engineering and Head of School
John Andrew Black, BA Manc., MTCP Syd., PhD Brad., CPEng, FIEAust

Professor of Civil Engineering and Head of Department of Engineering Construction and Management
David Gordon Carmichael, BE MEngSc Syd., PhD Cant., CPEng, FIEAust, MASCE, AIArbA

Professor of Civil Engineering and Head of Department of Geotechnical Engineering
Robin Fell, BE MEngSc Qld., CPEng, FIEAust

Professor of Civil Engineering and Head of Department of Structural Engineering
Raymond Ian Gilbert, BE PhD UNSW, CPEng, MIEAust

Senior Lecturer and Head of Department of Transport Engineering
Stephen Edmund Samuels, BE MEngSc Monash, PhD N'dele.(N.S.W.), CPEng, MIEAust, MAAS, MASA

Professor of Civil Engineering and Head of Department of Water Engineering
Trevor David Waite, BSc Tas, GradDip R.M.I.T., MAppSc Monash, PhD M.I.T., FRACI

Senior Administrative Officer
Karene May Irvine, BA UNSW

Administrative Assistants
Valerie Anne Carey, BEd Macq., GradDipEd N.T.U.
Helen Elizabeth Prior
Angela Rita Spano

Computer Systems Officer
Robert Peter Hegedus, BSc UNSW, MACS, MACM
Department of Engineering Construction and Management
Includes Systems Engineering, Engineering Economy, Project Planning and Management, Construction Management, Engineering Management

Visiting Fellows
Ian Elliott Abrahams, BSc(Eng) Witz., CPEng, MIEAust
Barry Allan Tozer, ME Adel., MICE, ASCE, MIEAust, AIArB

Senior Lecturers
Jonathan Brian O'Brien, BE UNSW, MASc Tor., CPEng, MIEAust
Victor John Summersby, BE MEngSc MCom UNSW, ASTC, CPEng, PEng, MIEAust

Computer Systems Officer
Jong Hwal Perng, BE N.T.U., ME T.K.U.

Department of Geotechnical Engineering
Includes Foundation Engineering, Soil Mechanics, Rock Mechanics, Pavement Engineering

Professor
Somasundaram Valliappan, BE Annam., MS Northeastern, PhD DSc Wales, CPEng, FIEAust, FASCE

Associate Professor
Brian Shackel, BE Sheff., MEngSc PhD UNSW, BEc Macq. GradDipEd NTU, CPEng, MIEAust

Senior Lecturers
Nasser Khalili-Naghadeh, BSc Teh., MSc Birm, PhD UNSW
Gary Robert Mostyn, BE MEngSc UNSW, BA Macq., CP Eng, MIEAust

Lecturer
Gareth Edward Swarbrick, BE Adel., PhD UNSW, GradIEAust

Professional Officer
Peter Kenneth Maguire, BS N.E., GradDip UNSW

Honorary Visiting Fellow
William Otho Yandell, ME PhD UNSW, CpEng, MIEAust

Senior Technical Officer
Lindsay John O'Keeffe, BSc UNSW

Department of Structural Engineering
Includes Structural Analysis, Structural Design, Stress Analysis, Solid Mechanics and Concrete Technology.

Associate Professors
Mark Andrew Bradford, BSc BE PhD Syd., CPEng, MASCE, MIEAust
Peter Walder Kneen, BE Melb., PhD Wat., CPEng, MIEAust, IASS
Victor Andrade Pulmano, BSCE Philippines, MEng A.I.T., PhD Northwestern
Francis Shay Khiet Tin Loi, BE PhD Monash, CPEng, MIEAust

Senior Lecturers
Mario Maria Attard, BE PhD UNSW, MIEAust, MCIA
Alexander Cuthbert Heaney, BE MEngSc Melb., PhD Wat., CPEng, MIEAust, MASCE, AMICE
Fariborz Barzegar-Jamshidi, BSc MSc PhD Ill., MASCE, MACI
Raymond Eric Lawther, BE PhD UNSW
Ian James Somervaille, BE PhD UNSW, ASTC

Lecturers
Stephen James Foster, BE N.S.W.I.T., MEngSc PhD UNSW
Nadarajah Gowripalan, BSc(Eng) Moratuwa, MSc PhD Leeds, MIEAust

Department of Transport Engineering

Lecturers
Michael Clarence Dunne, BSc PhD Adel.
Peter Hidas, MEng DipArch PhD Bud.
Upali Vandebona, BSc(Eng) Ceylon, MEng A.I.T., PhD Monash

Professional Officer
Tu That Ton, BE Saigon Polytech., BE C.I.T., MEngSc UNSW

Department of Water Engineering

Associate Professor and Director, Water Research Laboratory
Ronald John Cox, BE PhD UNSW

Associate Professors
Nicholas John Ashbolt, BAgSc, PhD Tas, MASM
Ian Cordery, ME PhD UNSW, CP Eng, FIEAust

Senior Lecturers
Richard Ian Acworth, BSc Leeds, MSc PhD Birm., FGS
James Edward Ball, ME PhD N'cle.(N.S.W.), CPEng, MIEAust, MASCE, MIAHR, MAWWA
Peter John Bliss, BE UNSW, MSc DIC Lond., ASTC, CPEng, MIEAust
Penelope Anne FitzGerald, BSc Syd., CPEng, MIEAust, MIVEM, MASM, MAWWA, ARACI
Stephen James Moore, BE UNSW, CPEng, MIEAust

Lecturer
David Andrew Luketina, BE PhD UWA, CPEng, MIEAust
Dean Djokic, MSc, Zagreb, PhD UT Austin, MASCE

Professional Officers
Sabina Hamaty, BE UNSW
Kenneth Brian Higgs, MSc Aston, MAIP
Benita Kung, BSc N.E., MRACI, MAWWA
Vir Abhimanyu Sardana, BScEng Rour., MTech IITD, PhD UNSW, MISB, CPEng, MIEAust, MACS

Centre for Postgraduate Studies in Civil Engineering
Director
Professor Robin Fell

Manager
Karenne May Irvine

Centre for Wastewater Treatment
Director
Professor Trevor David Waite

Manager
Terrence John Schulz, BE Syd.

Deputy Manager
Ralph Kaye, BSc Newark

Senior Research Fellow
Brace Boyd, BS Louisiana Tech., MS PhD Arkansas
Heriberto Bustamante, BSc, PhD, Imperial Coll., ChEngUK, UK Eng Council

Business Manager
Ian Menzies, BSc Syd., DipGeoSc BEc Macq.

Munro Centre for Civil and Environmental Engineering
Director
Associate Professor Brian Shackel

Administrator
Valerie Anne Carey

School of Computer Science and Engineering

Professor of Computer Science and Head of School
John Hiller, BE MCom PhD UNSW, FIEAust, FIREE, MACM

Professor of Computer Science
Graham Reginald Hellestrand, BSc PhD MBA(Exec) UNSW, MIEE

Executive Assistant to Head of School
Dr G. R. Whale

Associate Professor
Paul Justin Compton, MSc UNSW
John Lions, BSc Syd., PhD Camb., FACS, MACM
Claude Anthony Sammut, BSc PhD UNSW

Senior Lecturers
Adnan Amin, BSc DipCompSc Baghdad, DSc Nancy
Pramay Chaudhuri, BSc BTech Calc., ME PhD Jadavpur
Tamas Domonkos Gedeon, BSc PhD W.Aust.
Ian Gorton, BSc PhD Sheffield Hallam, MIEE
Gernot Heiser, BSc Freiburg, MSc Brock, PhD E.T.H.
Jayasooriah, BE Sing., MEng N.U.S., PhD UNSW, MIEE
William Stephen Matheson, BE MEngSc Melb., PhD Br.Col., CEng, MIEE, MIEE
Nandan Parameswaran, BE Madr., BE Kanpur I.T., PhD I.I.Sc. Bangalore
Arthur Ramer, MS Warsaw, PhD S.U.N.Y.
Kenneth Arthur Robinson, BSc BE Syd.
Arun Kumar Sharma, MSc Birla I.T.S., PhD S.U.N.Y.
Arcot Sowmya, BSc Madr., MSc M Tech PhD I.I.T. Bombay
William Hulme Wilson, MSc A.N.U., PhD Syd., DipCompSc Qu., MACM

Lecturers
Man-Chung Chan, BA Chinese H.K., PhD LaT., CUHK
Asis Kumar Goswami, BETE ME Jadavpur, PhD I.I.Sc. Bangalore
Achim Gunther Hoffman, MSc PhD T.U. Berlin
Jesse Sheng Jin, BS S.J.T.U., MS C.T.U., PhD Otago
Timothy David Lambert, BMath N’Cle. (N.S.W.), MSc Manit.
Hee Hiong Anne Ngu, BSc PhD W.Aust.
Wesley Phoa, BSc A.N.U., PhD Camb.
Clark Nives Quinn, MA PhD U.C. San Diego
Stephen Michael Russell, BSc Syd.
John Andrew Shepherd, MSc PhD Melb.
Andrew Taylor, BSc PhD Syd.
Geoffrey Robert Whale, BE PhD UNSW, MIEE
John Zic, BSc PhD Syd.

Associate Lecturers
Narciso Cerpa, CISE Santiago
Peter Steven Ho, BSc UNSW
Lesley Pek Wee Kim, BSc Lond., MSc Brunel
Ashesh Mahldadia, BE MEngSc UNSW
Graham Alan Mann, BSc W.Aust., MCogSc UNSW
Linda Karen Milne, BSc Flin.
Radhakrishna Nagalla, BSc Calicut, M Tech I.I.T. Kharagpur, MSc Calgary

Visiting Professor
Donald Michie, FRSEd, FBCS, FAAAI
Visiting Fellow
Tatjana Zrimec, MSc PhD Ljubljana

Manager, School Computing Facility and Executive Officer
Peter Ivanov, BE MEngSc UNSW

Administrative Officer
LeAnn Quinn, BSc Pittsburgh

Administrative Assistant
Michael Charles Doggett, BSc BE UNSW

Vanessa Joubert

Computer Systems Officers
Neil Frances Brown, BSc UNSW
Catherine Maree Clegg, BSc DipEd UNSW
Christian Michel Coulon, BCompSc GradDip N.E., MInfSc UNSW
Martin Dennis, BSc UNSW
Mark Anthony Mathews, BSc UNSW, GradDip N‘cle. (N.S.W.)
Geoffrey Morris Oakley, BSc UNSW
Alexei Parchkov, BE Moscow Aviation Institute
Zain Rahmat, BSc UNSW
Vasantha Saparamadu, BSc U Moratuwa Sri Lanka
Cameron Alexander Simpson

Professional Officers
Herbert Chen, BSc UNSW
Kevin Elphinstone, BE BSc UNSW
Ming Chi Joseph Kam, BSc UNSW
Leung Him Li, BE UNSW
Serge Poplavsky, Dipl Ing Bratislava, ME UNSW
Keith William Titmus, BScTech MEngSc UNSW

School of Electrical Engineering

Professor of Electrical Engineering and Head of School
Graham Austin Rigby, MSc Syd., PhD Calif., CEng, CEng, FTS, FIREE, MIEEE, FIEAust

Professors of Electrical Engineering
Pak Lim Chu, ME PhD UNSW, CEng, FIEAust, SMIEEE, MIEE, FOSA
Martin Andrew Green, BE MEngSc Qld., PhD MCM, CEng, FAA, FIEE, FIEAust
Ian Francis Morrison, BSc BE PhD Syd., CEng, FIAE, FIEAust, MIEE, MIEEEE

Executive Assistant to Head of School
Dr T. Hesketh

Executive Officer
Kevin John Flynn, BE MEngSc UNSW, ASTC

Administrative Assistant
Ann Gabrielle Mary Johnson, BSc UNSW

Associate Lecturers
Ghassan Kbar, BE Damascus, ME Syd, MIEAust
Rodica Ramer, MS PhD Bucharest, MIEEE

Professional Officer
Peiyan Chen, BE XIBEI Telecom.Eng.Univ., China

Department of Communications

Associate Professor and Head of Department
The Bao Vu, BE PhD Adel., CPEng, FIEAust, SMIEEE

Associate Professors
Warwick Harvey Holmes, BSc BE MEngSc Syd., PhD Camb., FIEAust, SMIEEE, SMIREE, CEng, MAES
Israel Korn, MSc DSc Technion, Haifa, FIEEE

Senior Lecturers
William John Dewar, MScEng Qu., PhD UNSW, MIEEE
Edward Henry Fooks, BSc PhD Lond., CEng, FIEEE, MIEE
Christopher John Elliott Phillips, BSc BE PhD Syd., MIEEE
Robert Radzyner, BE Melb., MEngSc PhD UNSW, SMIEEE, SMIREE
Ramutis Anthony Zakarevicius, BSc BE MEngSc PhD Syd., CEng, MIEAust, SMIEEE, SMIMEE

Lecturers
Hassan Mehnpour, BE MS BU, PhD UNSW, MIEEE
Gang-Ding Peng, BSc Fudan, MSc PhD Jiao Tong, MOSA
Iain Murray Skinner, BSc Qld., PhD A.N.U.
Tak On Tsun, BSc Hons H.K., Dr Eng. Tech Uni. Munich

Professional Officers
Philip Mark Allen, BE UNSW, MIEEE
Thomas Millett, BAppSc N.S.W.I.T.

Project Scientist
Trevor Wayne Whitbread, BE BSc UNSW, MIEEE

Department of Electric Power Engineering

Associate Professor and Head of Department
Trevor Robert Blackburn, BSc Adel., PhD Flin., CEng, MAIP, MIEE, MIEEEE

Associate Professors
Colin Grantham, BSc PhD N‘cle.(U.K.), CEng, FIEEE
Hugh Ronald Outhred, BSc BE PhD Syd., AMIEEE, FIEAust, MIEEE

Senior Lecturers
Kevan Charles Daly, BSc BE PhD UNSW, CEng, MIEEE, MIEEE
Roland John Kaye, BE MEngSc Melb., PhD Calif., MIEEE
Fazlur Muhammed Rahman, BScEng BUET(Ban), MSc PhD Manc.Inst.Sci.&Tech., MIEEE, AMIME, MISA
Darmawan Sutanto, BE PhD W.Aust., SMIEEE

Project Scientist
Edward Douglas Spooner, ME UNSW

Professional Officers
Fabio Barone, BE UNSW
Erik Maria Keller, DipLIng C.V.U.T. Prague
Daniel Krcho, MPhys MFFUK
Bao Toan Phung, BE W'gong., MEngSc UNSW

Visiting Fellows
Ronald Edward James, BScEng PhD Lond., CEng, CPEng, CEng, FIEAust, MIEEE, MIME, MIMechE, SMIREE
Walter Lachs, BE MEngSc Syd, PhD UNSW, FIEEE, MIEEE
Department of Electronics

Associate Professor and Head of Department
Stuart Ross Wenham, BE BSc PhD UNSW, SMIEEE

Senior Lecturers
Ruey Shing Star Huang, BS Natl.Cheng Kung, MS Natl.Chiao Tung, PhD UNSW, SMIEEE
Chee Yee Kwok, BSc BE PhD UNSW, MIEEE

Lecturers
Christian Beatrice Honsberg, ME PhD Delaware
Alistair Bruce Sproul, BSc Syd., PhD UNSW

Professional Officers
Eric Gauja, BSc BE PhD UNSW
Michael Taouk, BSc PhD UNSW

Department of Systems and Control

Professor and Head of Department
Neville Walter Rees, BSc PhD Wales, CPEng, FIEAust, SMIEEE

Associate Professors
Branko George Cellar, BSc BE PhD UNSW, MIEEE, MIREE, MAPPS
Khiang Wee Lim, BE Malaya, DPhil Oxf., SMIEEE
Peter Douglas Neilson, BScEng PhD UNSW
Keith Eugene Tait, BE BSc N.Z., PhD UNSW

Senior Lecturers
David James Clements, BSc Qld., ME PhD N'cle.(N.S.W.), MIEEE, MIA/SIAM, SigmaXi
Timothy Hesketh, MScEng CapeT., PhD Massey, MIEEE

Lecturers
Boshra Dawoud Farah, BScEng Alexandria, Dr-Ing TU.Chemnitz, CPEng, MIEAust
Gang (Gary) Feng, MEng Nanjing Aero Inst., PhD Melb., MIEEE

Professional Officers
Kong Been Lee, BE MEngSc ME UNSW, MIEEE, AMIEEE
Christopher Xiaolong Lu, MScEng Beijing MIEAust, MIEEE

Centre for Photovoltaic Devices and Systems

Director
Professor M. A. Green

Associate Directors
Associate Professor H. R. Outhred
Associate Professor S. R. Wenham

School of Geomatic Engineering

Professor and Head of School
John Charles Trinder, BSurv PhD UNSW, MSc I.T.C. Delft, FISAust

Associate Professors
Bruce Crosby Forster, MSurv Melb., MSc R'dg., PhD UNSW, MISAust, LSVic, MIEEE
Arthur Harry William Kearsley, MSurvSc PhD UNSW, MISAust
Jean Marc Rueger, Dipling E.T.H. Zurich, PhD UNSW, ACSM, LSSwitz, MISAust
Artur Stolz, BSurv PhD UNSW

Senior Lecturers
Bruce Raymond Harvey, BSurv GradDipHEd PhD UNSW
Ewan Gerald Masters, BSurv PhD UNSW, MISAust
Christopher Rizos, BSurv PhD UNSW
Anthony John Robinson, BSurv MBA PhD UNSW, RegSurvNSW, MISAust, MAIC

Lecturer
Sabapathy Ganeshan, BSc Ceyl.

Administrative Assistant
Leon Daras, BA UNSW

Professional Officers
Brian Edward Donnelly, BSurv UNSW, MSurv N'cle.(N.S.W.), GradDipCompStud C.C.A.E.
Stephen Kenneth Johnson, BSurv UNSW
Trevor Allan Sier, BSurv UNSW

Computer Systems Officer
Bernd Hirsch, BAppISc Mitchell C.A.E.

School of Mechanical and Manufacturing Engineering

Incorporates Aerospace Engineering and Naval Architecture

Nuffield Professor of Mechanical Engineering and Head of School
Brian Edward Milton, BE PhD UNSW, MSc Birm., CPEng, FIEAust, FSAEA, MRAeS

Professor and Director of Laboratories
Graham Lindsay Morrison, BE PhD Melb., FIEAust

Professor of Mechanical Engineering
C. Patterson

Associate Professor and Executive Assistant to Head of School
Eleonora Maria Kopalinsky, BE PhD UNSW

Associate Professor and Director of Undergraduate Studies
Robin Arthur Julian Ford, BScEng PhD Lond., CPEng, ACGI, MIEAust
Associate Professor and Undergraduate Admissions,
Advanced Standing Officer
John Edward Baker, MSc Syd., BE MEngSc PhD UNSW

Associate Professor and Director of Graduate Studies
Masud Behnia, BSME, MSME PhD Purdue, PE, CEng, MASME, MAIAA, FIEAust

Heads of Departments

Aerospace Engineering
John Randall Page, BSc Hart., MSc Gran I.T., CEng, FBIS, MRAeS, MAIAA

Applied Mechanics
Associate Professor Eric Joseph Hahn, BE BSc PhD UNSW, CEng, FIEAust, MASME

Design
Associate Professor Alexander Eric Churches, BE PhD UNSW, ASTC, FIEAust, CEng, FRSA

Fluid and Thermal Engineering
Associate Professor Eddie Leonardi, BScEng PhD UNSW, CEng, MASME, MIEAust, MASHRAE

Industrial Technology and Management
Sir James Kirby Professor of Manufacturing Engineering
Hartmut Kaebernick, Dipl-Ing Dr-Ing T.U. Berlin, CEng, FIEAust, SMSME, VDI

Mechatronics
Richard Adrian Willgoss, BSc PhD S'ton., CEng, MIEE, MinstP, MIEE, CPhys, FIEAust

Naval Architecture
Associate Professor Lawrence Julian Doctors, BE MEngSc Syd., PhD Mich., CEng, FRINA, MSNAME, FIEAust

Department of Aerospace Engineering
Associate Professor
Donald Wainwright Kelly, BE Syd., PhD Lond.

Senior Lecturers
Noor-e-Alam Ahmed, BSc Strath., PhD Cran. I.T., CEng, MMechE
J. R. Page

Department of Applied Mechanics

Professors
Kerry Patrick Byrne, BE MEngSc Qld., BSc Melb., PhD S'ton.
C. Patterson

Associate Professors
J. E. Baker
R. A. J. Ford
E. J. Hahn

Senior Lecturers
See Seng Leong, BE PhD UNSW, CEng, MIEAust
Chakravarti Varadachar Madhusudana, BE Mys., ME I.I.Sc., PhD Monash, CEng, MIEAust, MASME

Robert Bond Randall, BTech Adel., BA Melb., CEng, FIDiage, MIEAust, MAAS
Hugh Lithgow Stark, BSc PhD Strath., CEng, FIMechE, MIEAust
Khosrow Zarrabi, MSc PhD UMIST, MIEAust

Department of Design

Associate Professors
A. E. Churches
Richard Butler Frost, BE UNSW, CEng, FIEAust, FRSA

Senior Lecturers
Anthony John Barratt, BE N.S.W.I.T.
John Michael Challen, BE MEngSc Syd., PhD UNSW, FIEAust

Lecturer
Robin Arthur Platfoot, BE UNSW, PhD Syd.

Department of Fluid and Thermal Engineering

Professors
B. E. Milton
G. L. Morrison

Associate Professors
M. Behnia
E. M. Kopalinsky
E. Leonardi
John Arthur Reizes, ME PhD UNSW, CEng, FIEAust

Senior Lecturers
Ian Lachlan Maclaine-cross, BE Melb., PhD Monash, MIEAust

Lecturer
Robert Thomas Casey, BE MESc PhD Qld.

Department of Industrial Technology and Management

Professor
H. Kaebernick

Associate Professor
Roger Malcolm Kerr, BSc Lond., MSc Bath., DPhil Oxf.

Senior Lecturers
Leonard Edward Farmer, BE MEngSc PhD UNSW, CEng, MIEAust
Khoi Hoang, BE Saigon, PhD UNSW
Philip Mathew, BE PhD UNSW, CEng, MIEAust
Yi-xin Lawrence Yao, BE Shanghai Jiaotong, MS PhD Wisconsin-Madison, CEng, MIEAust, MASME, SMSME
Lecturers
Ka Ching Chan, MASc Tor.
Atie Berman Kayis, BSc MS M.E.T.U., PhD Istanbul T.U.

Associate Lecturer
Maruf Hasan, BScEng B'desh Engin., MEng A.I.T., CEng, MIEAust

Department of Mechatronics
Senior Lecturer
R. A. Willgoss

Lecturers
Jayantha Katupitiya, BScEng Sri Lanka, PhD Leuven, CEng, MIEAust, MASME, MIEEE, MIE
Michal John Tordon, Diping Bratislavaa, PhD Prague, MIEEE

Department of Naval Architecture
Associate Professor
L. J. Doctors

Senior Lecturers
Mahiuddin Chowdhury, BScEng Bangl.U.E.T., PhD N’cle (U.K), Eur Ing, FRINA, MIEAust
Phillip John Helmore, BE MEngSc UNSW, CEng, MIEAust, MSNAME
Prabhat Kumar Pal, BME N.C.E., Bengal, BTech PhD I.I.T. Kharagpur, CEng, FRINA, FIEAust, MIINA, MSTG Hamburg

Honorary Research Professor
Peter Louis Brennan Oxley, BSc PhD Leeds, CEng, CEng, FTS, FIEAust, FIProdE

Honorary Visiting Professors
George Bennett, BA Syd., PhD UNSW, ASTC, CEng, FIProdE
Graham de Vahl Davis, AM, BESyd., PhD Camb., CEng, FIProdE, FIEAust, MASME
Henry Ehikpohale Enahoro, BSc MScTech Manc., PhD Sheff., CEng, FIProdE, MIEAust, MIEEE
Zdenek Josef Holy, Diping Prague, MSc Birm., MEngSc PhD UNSW, CEng, MIEAust

Honorary Associate
Dr C. H. Warman

Administrative Officer
Amos Dimitrius Bauman, AEd BA BEd Qld., MEd N.E.

Administrative Assistant
Guilia Pearson

Professional Officers
James Beck, ME Prague
Anthony Gordon Harris, BSc Exe.
Alfred Win Lin Hu, BE Rangoon I.T., MIEEE
John David Isles, BSc U.T.S.
Philip Chi Bong Kwok, BE BeijingInst.Aer. & Astro., CEng, MIEAust, MIEEE
Alexander Lev Litvak, Diping Odessa, MEngSc UNSW, CEng, MIEAust
Jason Trihung Nhieu, BSc Nat Cheng Kung, MEngSc UNSW, CEng, MIEAust
Russell Norman Overhall, BE UNSW, CEng, MIEAust
Charles James Sanderson, BE Syd., MScEng UNSW

Computer Systems Officer
David Alexander Herd, BSc Syd.

Centre for Manufacturing and Automation
Director
Dr S. S. Leong

Graduate School of Biomedical Engineering
Professor and Head of School
Klaus Schindhelm, BE PhD UNSW, MIEAust

Associate Professors
Christopher David Bertram, MA DPhil Oxf.
Bruce Kenneth Milthorpe, BA Macq., PhD A.N.U.

Visiting Professor
Peter Craig Farrell, BE Syd., SM M.I.T., PhD Wash., DSc UNSW, MASAIO

Senior Lecturers
Alberto Pompeo Avolio, BE PhD UNSW
Nigel Hamilton Lovell, BE PhD UNSW MIEAust, MIEEE

Lecturer
Ross Alexander Odell, BSE Prin., PhD M.I.T.

Research Scientist
Laura Anne Poole-Warren, BSc PhD UNSW

Professional Officer
Peter Roman Slowiaczek, BSc N’cle(N.S.W.)

Administrative Assistant
Rhonwen Cuningham, BA DipSocWk Syd.
Graduate School of Engineering

Professor and Head of School
Clifford Patterson, MA PhD Camb., FIEAust, CEng, FI MechE, CPhys, FinstP, FIMA, MIEE

Administrative Assistant
Margaret Elizabeth Brennan

Centre for Remote Sensing and Geographic Information Systems
(in association with the Faculty of Applied Science)

Director
Ewan Gerald Masters

Centre for Advanced Numerical Computation in Engineering and Science
(in association with the Faculty of Science)

Professor and Director
Clive Allen John Fletcher, BScEng Lond., MSc Cran.I.T., PhD Univ.Calif.(Berkeley), CEng, MRAes, MAIAA

Senior Lecturer
Steven Armfield, BSc Flin., PhD Syd.

Senior Administrative Officer
George John Harris, BA UNSW

UNSW Groundwater Centre
(in association with the Faculty of Applied Science)

Director
Richard Ian Acworth, BSc Leeds, MSc PhD Birm., FGS

Senior Lecturer
Jerzy Jankowski, MSc PhD Wroc.
This handbook is divided into separate sections for each School/Unit, identified by a four-letter code (e.g. CIVL, School of Civil Engineering). This code appears on the top right corner of each page relating to the School/Unit. Each School/Unit section is divided into Undergraduate and Graduate Study and includes course outlines and subject descriptions.

Read the opening sections of the handbook first, and then read the information contained under Course Outlines (Undergraduate or Graduate as appropriate). These sections cover all degrees and diplomas offered by the Faculty. Detailed information on each subject then appears under Subject Descriptions, which includes session/s offered, pre/corequisite details, class hours, credit/unit value, etc.

You will find that almost any course of study you wish to undertake has subjects from other Schools, and even other Faculties. This means that in your engineering course, subjects are listed from other Schools in the Faculty of Engineering, each with their own identifying code, as well as from the School in which you are planning to do a course. If, for example, this is Mechanical and Manufacturing Engineering (MECH), all the subjects for Mechanical and Manufacturing Engineering are described in the section for that School. As Mechanical and Manufacturing Engineering also includes Aerospace Engineering (AERO), Manufacturing Management (MANF) and Naval Architecture (NAVL) these subjects are also included with the School. If they are Electrical Engineering (ELEC), Computer Science and Engineering (COMP), Civil Engineering (CIVL) or Geomatic Engineering (GMAT) subjects, then descriptions for these subjects will be located in the appropriate School section which has that particular identifying number.

Any subject which is not an Engineering subject (i.e. a subject offered by another Faculty, but included in a course), appears under the Servicing Subject Descriptions section.

As changes may be made to information provided in this Handbook, students should frequently consult the noticeboards of the schools and the official noticeboards of the University.

Undergraduate Study

It is most important that you read the opening sections of the Handbook for general information on the Faculty of Engineering, Faculty Information, and Undergraduate Study, Course Outlines. Both of these contain specific information relating to undergraduate degrees, including Enrolment Procedures, Conditions for the Award of Degrees, Honours, Professional Practice, Course Transfers and a number of other details that you should be familiar with.

Once you have determined which course you want to do, you must read the course outlines and then the subject descriptions for all subjects to find out what each one entails.

Graduate Study

No matter which graduate degree course you plan to undertake you must read the general summary of graduate courses in the section, Graduate Study, Course Outlines. This covers both research degrees and course work programs. Information relating to the various Masters degrees by course work and Graduate Diplomas is detailed in the appropriate School sections.

You will also need to read the Conditions for the Award of Degrees at the back of the Handbook for the formal rules governing each degree.

Most importantly, staff in the Faculty of Engineering are only too happy to help you with any queries you might have or problems that need to be sorted out. As a first step, contact the School Office, or there is a list of people who can help you at the beginning of Faculty Information. You can then be directed to other staff members who can assist you if there are very specific matters that need to be solved.
Information Key

The following key provides a guide to abbreviations used in this book:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>credit points</td>
</tr>
<tr>
<td>F</td>
<td>full year (Session 1 plus Session 2)</td>
</tr>
<tr>
<td>HPW</td>
<td>hours per week</td>
</tr>
<tr>
<td>L</td>
<td>lecture</td>
</tr>
<tr>
<td>P/T</td>
<td>part-time</td>
</tr>
<tr>
<td>S1</td>
<td>Session 1</td>
</tr>
<tr>
<td>S2</td>
<td>Session 2</td>
</tr>
<tr>
<td>SS</td>
<td>single Session, but which Session taught is not known at time of publication</td>
</tr>
<tr>
<td>T</td>
<td>tutorial/laboratory</td>
</tr>
<tr>
<td>U</td>
<td>unit value</td>
</tr>
<tr>
<td>WKS</td>
<td>weeks of duration</td>
</tr>
<tr>
<td>X</td>
<td>external</td>
</tr>
</tbody>
</table>

Prefixes

The identifying alphabetical prefixes for each organizational unit offering subjects to students in the Faculty of Engineering follow.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational Unit</th>
<th>Faculty/Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>AERO</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>ANCE</td>
<td>Centre for Advanced Numerical Computation in Engineering and Science</td>
<td>Engineering/Science</td>
</tr>
<tr>
<td>BIOM</td>
<td>Graduate School of Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>COMP</td>
<td>School of Computer Science & Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Econometrics and Economics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GMAT</td>
<td>School of Geomatic Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>GSOE</td>
<td>Graduate School of Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>INDC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organizational Behaviour</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Law</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Information, Library & Archive Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>MANF</td>
<td>School of Mechanical & Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational Unit</td>
<td>Faculty/Board</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science & Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical & Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>NAVL</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology & Pharmacology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts & Social Sciences</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>SAFE</td>
<td>Department of Safety Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Some People Who Can Help You

If you require advice about enrolment, degree requirements, progression within courses, subject content and requirements, contact the appropriate school/centre representative listed below:

School of Civil Engineering: Ms K. Irvine, Room 406, Civil Engineering Building.

School of Computer Science and Engineering:
Dr G.R. Whale or Ms V. Joubert, School Office, Room 313, Electrical Engineering Building.

School of Electrical Engineering: Dr T. Hesketh, G6, or Ms A. G. M. Johnson, School Office, Electrical Engineering Building.

School of Mechanical and Manufacturing Engineering:
Dr E.M. Kopalinsky, Room 105B, or Mr A.D. Bauman, Room 112, Mechanical and Manufacturing Engineering Building.

School of Geomatic Engineering: Mr L. Daras, School Office, Room 529, Geography and Geomatic Engineering Building.

Graduate School of Biomedical Engineering:
Professor K. Schindhelm, 5th Floor, Samuels Building.

Graduate School of Engineering:
Professor C. Patterson, Room 445, Geography and Surveying Building.

UNSW Groundwater Centre: Dr I. Acworth, Room 309, Civil Engineering Building.

Centre for Advanced Numerical Computation in Engineering and Science: Prof. C.A.J. Fletcher, Room 106A, Mechanical and Manufacturing Engineering Building.

Centre for Remote Sensing and Geographic Information Systems: Dr E.G. Masters, Room 613, Geography and Surveying Building.

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboards of the schools and the official noticeboards of the University.

Entrance Requirements

Students are selected for courses offered by the Faculty according to the Tertiary Entrance Rank obtained in the New South Wales Higher School Certificate (NSW HSC). Other students are admitted on the basis of their previous academic mark. In addition, students are expected to have reached the following standards (or equivalent) in the NSW HSC subjects:

Course Prerequisites

Mathematics
2u (60-100)
2u and 3u (100-150)
3u and 4u (100-200)

Additional subject prerequisites

Mathematics
2u (90-100)

and

English
2u Contemporary (60-100)
2uG (53-100)
2u (49-100)
3u (1-50)

and

Science
2u Physics (57-100) or
2u Chemistry (60-100)
3u (90-150)
4u (1-50)

Students are advised that the lack of specified subject prerequisite/s do not preclude their selection to any course but the required standard must be achieved before enrolment in the University subject is permitted.

The University conducts Bridging Courses to assist in remedying deficiencies in subject levels. Further details are available from the Students' Information Guide published annually by the Universities Admissions Centre (UAC).

Introductory subjects are also available to students who do not have the required prerequisite/s in Mathematics, Chemistry or Physics. It should be noted that inclusion of these subjects in first-year programs could extend the duration of a course.
Enrolment Procedures

All students re-enrolling in 1995 or enrolling in graduate courses should obtain a copy of the free leaflet Re-Enrolling 1995 available from School offices and the Student Centre. This leaflet provides detailed information on enrolment procedures and fees, enrolment timetables, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Re-enrolment forms must be lodged with the appropriate School Office by the start of the third week in the preceding December. Enrolment at the University will not be authorised until the re-enrolment form has been checked and the program approved. Students not intending to re-enrol should advise the School. Leave of absence for up to one year is usually granted to students in good standing.

It is the responsibility of students to enrol in a program consistent with the rules governing re-enrolment and admission to the degree.

Faculty of Engineering Library

Facilities

Although any of the university libraries may meet specific needs, the staff and students of the Faculty of Engineering are served mainly by the Physical Sciences Library and the Undergraduate Services.

The Physical Sciences Library

The Physical Sciences Library, located on levels 5, 6 and 7 of the Library Building, provides information for students and staff from the Faculties of Science, Engineering, the Built Environment and Applied Science.

The Library is open from 8.00 am to 10.00 pm Monday to Thursday, 8.00 am to 6.00 pm on Friday and 12.00 pm to 5.00 pm Saturday and Sunday. These hours are reduced during the vacations.

Personal reference assistance is available after 10.00 am including help with catalogue, CD Roms, Inter-library loans, photocopying and online searching. An information skills program is in place with emphasis on developing basic information access and management skills for first years and advanced skills for final year and postgraduate students.

The Library's catalogue and selected CD-Rom databases are available over the Campus Wide Network. Reserve and multimedia services are offered, including videos, tapes, microforms and maps.

Physical Sciences Librarian: Rhonda Langford

Undergraduate Services

The Open Reserve Section houses books and other materials which are required reading. Level 2.

The Audio Visual Section contains multimedia videos and cassette tapes of lectures. The section has wired study carrels and cassette players for student use. The map collection is also located here. Level 3.

The Reader Education program provides orientation tours and introductory library research method lectures to students.

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Academic Registrar for approval by the University Council.

The following societies serve the interests of students in the various courses in the Faculty of Engineering: Biomedical Engineering Society (BioEngSoc); Civil Engineering Society (CIVSOC); Computing Science Association (CSA); Electrical Engineering Society (ELSOC); Mechanical Engineering Society (MECHSOC); Naval Architecture Students' Association (NASA); Geomatic Engineering Society (GMATSOC formerly SURVSOC).

Students are encouraged to participate in the activities of their societies. Enquiries should be directed initially to the general offices of the respective Schools.

Students With Disabilities

The University of New South Wales has a policy of equal opportunity in education and seeks wherever possible to ensure maximum participation of students with disabilities.

The University offers a range of assistance: examination support; specialized equipment; educational support; parking provisions; library assistance.

A Resource Guide for students and staff with disabilities and a map showing wheelchair access is available from the Advisor to students with Disabilities, the EEO Unit, the Library and the Students' Union.

It is advisable to make contact with the Adviser to Students with Disabilities prior to, or immediately following enrolment, to discuss your support needs.

The Adviser can be contacted on 385 5418 or at Student Services, Quadrangle Building.
Equal Opportunity in Education Policy Statement

Under the Federal Racial Discrimination Act (1975), Sex Discrimination Act (1984), Disability Discrimination Act (1992) and the New South Wales Anti-Discrimination Act (1977), the University is required not to discriminate against students or prospective students on the grounds of sex, marital status, pregnancy, race, nationality, national or ethnic origin, colour, homosexuality or disability. Under the University of New South Wales Act (1989), the University declares that it will not discriminate on the grounds of religious or political affiliations, views or beliefs.

University Commitment to Equal Opportunity in Education

As well as recognizing its statutory obligations as listed, the University will eliminate discrimination on any other grounds which it deems to constitute disadvantage. The University is committed to providing a place to study free from harassment and discrimination, and one in which every student is encouraged to work towards her/his maximum potential. The University further commits itself to course design, curriculum content, classroom environment, assessment procedures and other aspects of campus life which will provide equality of educational opportunity to all students.

Special Admissions Schemes

The University will encourage the enrolment of students who belong to disadvantaged groups through programs such as the University Preparation Program and the ACCESS Scheme. Where members of disadvantaged groups are particularly under-represented in certain disciplines, the responsible faculties will actively encourage their enrolment.

Support of Disadvantaged Students

The University will provide support to assist the successful completion of studies by disadvantaged group members through such means as the Aboriginal Education Program, the Supportive English Program and the Learning Centre. It will work towards the provision of other resources, such as access for students with impaired mobility, assistance to students with other disabilities, the provision of a parents' room on the upper campus, and increased assistance with English language and communication.

Course Content, Curriculum Design, Teaching and Assessment, and Printed Material

Schools and faculties will monitor course content (including titles), teaching methods, assessment procedures, written material (including study guides and handbook and Calendar entries) and audiovisual material to ensure that they are not discriminatory or offensive and that they encourage and facilitate full participation in education by disadvantaged people.

Equal Opportunity Adviser Scheme

The University will continue its Equal Opportunity Adviser Scheme for students who feel that they have been harassed or who consider they have been disadvantaged in their education by practices and procedures within the University.

Harassment Policy

The University is committed to ensuring freedom from harassment for all people working or studying within the institution. It will continue to take action, including disciplinary action, to ensure that freedom from harassment is achieved.

International Association for the Exchange of Students for Technical Experience - IAESTE

IAESTE is an organization to facilitate overseas work in technical areas in 53 different countries throughout the world for students or recent graduates. It organizes visas, work periods for as little as 6 weeks or up to 12 months, lodging and an initial welcome.

Further information may be obtained from the Association, c/-The Graduate Careers Council of Australia, PO Box 28, Parkville, Vic 3052, telephone (03) 347 4644.

Professional Institutions

1. The Institution of Engineers, Australia

The professional body for engineering in Australia is the Institution of Engineers, Australia (IEAust), which has as its first objective ‘to promote the science and practice of engineering in all its branches’.

The IEAust has its national headquarters in Canberra and functions through a series of divisions, the local one being the Sydney Division. Within each division are branches representing the main interests within the profession, e.g. civil, mechanical, electrical, engineering management and environmental engineering.

Students of an approved school of engineering may join the Institution as a student member (StudIEAust). Student members receive the fortnightly publication Engineers, Australia and for a small fee they also receive The Transactions which contains articles on a particular branch of engineering.

Student members are invited to participate in the Excellence Award for Work Experience, the National Young Engineer of the Year Award and to avail themselves of other IEAust services including the Mentor Scheme and industrial experiences guidance.

For more information and membership application forms, write to The Secretary, The Institution of Engineers, Australia, Sydney Division, 1st Floor, 118 Alfred Street, Milsons Point 2061.

2. The Institution of Surveyors, Australia

During their years as undergraduates, students in the Geomatic Engineering course are encouraged to take the first steps in joining in the activities of the professional body which represents them - The Institution of Surveyors,
Australia. The aims of the Institution are to promote scientific, technical and educational aspects of geomatic engineering and to maintain high professional standards of practice and conduct. Student members receive the quarterly journal of the Institution, The Australian Surveyor and Azimuth which is published by the New South Wales Division of the Institution. Membership also entitles the student to attend all meetings of the Institution and to attend the annual Congress at a special concessional rate. Membership application forms are available at the office of the School of Geomatic Engineering and from the Institution Office, Third Floor, Guild House, 363 Pitt Street, Sydney 2000.

General Information

While this Handbook has been specially designed as a detailed source of reference in all matters related to the Faculty, the University's Student Guide is intended to provide general information on some of the most important rules and procedures and introduces students to many of the services available to them. The Guide, which helps to put the Faculty into perspective within the University as a whole, is issued free of charge to all enrolled students. For fuller details about some aspects of the University and its activities students might need to consult the University Calendar.
Undergraduate Study

The Faculty of Engineering offers the following courses:

Bachelor of Engineering

BE

in:
- Aerospace Engineering 3610
- Civil Engineering 3620
- Computer Engineering 3645
- Electrical Engineering 3640
- Environmental Engineering 3625
- Geomatic Engineering 3741
- Manufacturing Management 3663
- Mechanical Engineering 3680
- Naval Architecture 3700

These full-time courses are designed to be taken over a period of four years. They may also be taken on a part-time basis which usually involves a combination of mainly day-time study together with some evening attendance over a period of six or seven years. It may not be possible to offer evening classes in the later year subjects.

Courses in sandwich form after the first year are also available in Civil Engineering and Environmental Engineering.

Combined Degree Courses

Full-time courses are available for the award of the following degrees:

Bachelor of Engineering Bachelor of Arts

BE BA

(5 years' duration) in:
- Aerospace Engineering 3612
- Computer Engineering 3722
- Electrical Engineering 3611
- Manufacturing Management 3665
- Mechanical Engineering 3682
- Naval Architecture 3702

Bachelor of Engineering Bachelor of Laws

BE LLB

(6 years' duration) in:
- Civil Engineering 4775

Bachelor of Engineering (Civil) and Bachelor of Engineering (Mining)

BE BE

(5 years' duration) in:
- Civil Engineering 3146

Bachelor of Engineering in Geomatic Engineering Bachelor of Science in Computer Science

BE BSc

(5 years' duration) in:
- Geomatic Engineering 3746
Concurrent Degree Courses

Full-time courses are available for the award of the following degrees:

Bachelor of Engineering Master of Biomedical Engineering
BE MBiomedE

(5 years’ duration) in:
Electrical Engineering 3727
Mechanical Engineering 3683

Subject Areas

The three major subject areas in engineering courses are basic sciences, engineering sciences and engineering applications. The basic sciences area is emphasised in year 1 since it forms the foundation for the remainder of the course. Engineering sciences form the link between the basic sciences and engineering applications. The engineering applications area provides the opportunity for applying knowledge to the solution of problems and is consequently emphasised later in the course. A feature of the courses at the University of New South Wales is the inclusion of a program of General Education, the requirements for which are set out below.

Basic Sciences consist of Mathematics, Physics and some Chemistry. Engineering Science subjects are those which provide the theoretical basis for engineering applications. These include Applied Mechanics, Fluid Mechanics, Electronics, Electricity, Thermodynamics, Structural Mechanics, Materials Science. Engineering Applications involve Innovation and Design, Systems and Control, Production, Technical Communication, Energy Conversion, Management. General Education subjects serve to provide both an introduction to the environments in which humans function - physical, biological, socio-economic, and technological - and an introduction to the cultural bases of knowledge and belief.

Co-op Program

The University’s Co-op Program in the Faculty of Engineering consists of industry-linked, five-year courses in Aerospace Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Environmental Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture.

Co-op scholars are selected largely on the basis of academic attainment, personal skills and motivation as well as on non-academic achievements.

Further information is available from the University’s Office of Industry-Linked Education, telephone (02) 385 5116.

Transfer Courses

Students transferring to the University of New South Wales after successful completion of the first year of an engineering degree course at an Australian university would normally be admitted with advanced standing into the degree courses offered by the Faculty of Engineering. Students transferring from related courses at an Australian university are granted exemptions based on parity of all junior courses.

Students who have completed the first year of an undergraduate course in one school may apply for a transfer to a course in another school of the Faculty with credit for relevant subjects completed. However, as there are considerable differences in the various year 1 programs, students are not granted complete exemption from year 1 of the course to which the transfer is made.

Please note, however, that due to enrolment quotas in undergraduate courses the number of places available for transfer is limited and offers will be made on a competitive basis.

Formal advanced standing procedures apply for entry into the following Bachelor of Engineering (BE) courses at the University of New South Wales with full credit.

BE in Electrical Engineering
Students studying at the University of Western Sydney, Macarthur, who complete at their first attempt the first year of the Science Program are granted enrolment in year 2 of the BE course. Entry is restricted to applicants who are residents of the South-Western Region of Sydney.

BE in Aerospace Engineering
BE in Manufacturing Management
BE in Mechanical Engineering
BE in Naval Architecture

Students studying at the Charles Sturt University, Wagga Wagga, may be admitted to year 2 of the above courses after satisfactorily completing the one-year Bachelor of Engineering Transfer Program (KSZ) at Wagga Wagga.

BE in Aerospace Engineering
Students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian university may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering (years 1 and 2 of this course are identical with the first two years of the course in Mechanical Engineering).

BE in Naval Architecture
Students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian university may be admitted to the final two years of the Bachelor of Engineering degree course in Naval Architecture. (Years 1 and 2 of this course are identical with the first two years of the course in Mechanical Engineering.)

Further information regarding entry into the above listed courses may be obtained from the Dean’s Office, Faculty of Engineering.
Course Revision

Following each course revision students are assessed on the basis of the new program but retain credit for any subject already completed and are not liable for the increased requirements if progression is normal.

General Rules for Progression

Progression in all undergraduate courses in the Faculty of Engineering is permitted by subject. However:

1. Course programs will continue to be stated and timetabled by year or stage and it cannot be guaranteed that non-standard programs can be completed in the minimum number of years. Students are not permitted to enrol in subjects with clashing timetables.

2. Students must satisfy the rules governing re-enrolment: in particular, these require students enrolled in the year 1 of a degree program to pass in at least half that program. Students are also required to show cause why they should be allowed to repeat a subject which has been failed more than once. Students are also required to show cause why they should be allowed to continue with their course if their average mark in a year of study falls below 50%.

3. Students must satisfy the relevant prerequisite and corequisite requirements. This will usually necessitate students completing or attempting all subjects of a particular year or stage before proceeding to a subject in the next part of a course. Further details are available from the appropriate school.

4. Only in exceptional circumstances will students be permitted to enrol in subjects extending over more than two years of the course or for more than twenty-eight hours of course work per week if a full-time student or fourteen hours per week if a part-time student. Students repeating subjects are required to choose a program which limits their hours of course work to twenty-two per week if a full-time student, and to eleven per week if a part-time student, unless they have the express permission of the Head of School to exceed these hours. Previously failed subjects must be included, except that a failed elective may be replaced by another elective.

5. Notwithstanding the above, before students can enrol in any non-standard program such program must meet with the approval of the Head of School. A non-standard program is one which involves enrolment in subjects from more than one year or stage, or comprises subjects which do not normally constitute a particular year’s course work.

Prerequisites and Corequisites

- A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.
- A corequisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.

Industrial Experience Requirements

All students must complete at least 60 working days of approved industrial experience (or professional practice in the case of Geomatic Engineering students) prior to enrolment in the final year of their course. The award of the degree is dependent on the completion of the requisite periods of industrial employment at a standard approved by the University.

Students enrolled in Bachelor of Engineering courses in the Schools of Civil Engineering, Computer Science and Engineering, Electrical Engineering, and Mechanical and Manufacturing Engineering are required to enrol in Industrial Training subjects. Geomatic Engineering students enrol in a professional practice subject. Schools' entries under Course Outlines and Subject Descriptions should be consulted for details of subject requirements.

Computing Requirements

A number of courses in the Faculty of Engineering have certain computing requirements. To obtain details of these, each student should contact the appropriate School Office in the first weeks of first session.

Honours

In the Bachelor of Engineering degrees courses the same formal program is offered to both pass students and to those aiming at honours. Honours will be awarded for meritorious performance over the course: special attention is paid to a candidate’s performance in the final year subjects and thesis project.

In the cases of combined degrees, such as the BE BA or the BE BSc, the award of the BA or BSc degree at honours level requires two additional sessions of study.

Students wishing to gain a degree at Honours level in Arts or in Science as part of their combined degree program must meet all the relevant requirements of the Faculty of Arts or the Board of Studies in Science and Mathematics and of the appropriate School concerned. Students may enrol for the Honours year only on the recommendation of the Head of their School in the Faculty of Engineering and with the approval of the Head of the appropriate Arts or Science School. For an Honours in Science, approval must also be sought from the Board of Studies in Science and Mathematics. AUSTUDY support is available for the combined degree program including the Honours level.
General Education Requirement

The University requires that all undergraduate students undertake a structured program in General Education as an integral part of studies for their degree.

Among its objectives, the General Education program provides the opportunity for students to address some of the key questions they will face as individuals, citizens and professionals.

There are differing requirements for general education for students commencing before, in, and after 1988. Students must complete a program of general education in accordance with the requirements in effect when they commenced their degree program. Students should consult the appropriate course authority or the Centre for Liberal and General Studies in Morven Brown Building, Room G58.

The program requires students to undertake studies in three categories of the program: The key questions addressed by the Program are:

Category A: The External Context: An introduction in non-specialist terms to an understanding of the environments in which humans function.

Course Requirement: 56 hours

1. Australia and the Development of the World Economy. How do we, can we, generate wealth?
2. Human Inequality. How can we, ought we, distribute wealth, status and power?
3. Science and Civilization. What steps should we take, and what policies should we adopt, in science and technology?
4. Ecosystems, Technology and Human Habitation. What effects do our wealth generating and techno-scientific activities have on the environment?
5. Mass Media and Communication. What are the effects of the new mass media of communication?
6. Australian Society and Culture. What are the key social and cultural influences on Australia today?

Category B: The Internal Context of Assumptions and Values: An introduction to, and a critical reflection upon, the cultural bases of knowledge, belief, language, identity and purpose.

Course Requirement: 56 hours

1. The Self and Society. How do we define ourselves in relation to the larger human community?
2. Changing Conceptions of Human Nature and Well-Being. How do our conceptions of human nature and well being influence both individual and social behaviour?
3. The Pursuit of Human Rationality. What are the prevailing conceptions of and challenges to human rationality?
4. The Use of Language, Images and Symbols. How do language, images and symbols function as means and media of communication?
5. The Computer: Its Impact, Significance and Uses. What is the impact of the computer on human society and culture?
6. Beliefs, Values and the Search for Meaning. Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth?

Category C: An introduction to the design and responsible management of the human and planetary future: An introduction to the systems over which human beings exercise some influence and control. This category is required only of students in four-year professional and honours programs.

The central question to be addressed by students in a systematic and formal way is: For what purpose or purposes will I use my intellectual skills, my expertise, or my technological prowess?

Will these abilities be used, for example:
- in a creative and innovative way?
- to widen the circle of human participation in the benefits they bring?
- to break down the barriers of exclusion and discrimination?
- to enhance the prospects for survival of the human species to enhance the capacity of the planet earth to sustain life?

The way in which the Category C requirement of the Program will be met varies with each of the Schools and courses in the Faculty. The particular details are shown under each School's handbook entry.

General Education Requirement for Combined Degrees

Students in BE BA programs are exempt from both Category A and Category B General Education requirements. Students in the BE BSc program are exempt from Category A General Education requirements only.

A student transferring from a combined degree course to a single degree course must satisfy the General Education requirements of the single degree course.

Students who transfer from a combined degree course to a single degree course are given credit for those General Education subjects that have been completed in the combined degree course.

Where a student enrols in a combined degree course and subsequently does not proceed in the program, the Centre for Liberal and General Studies has discretionary power to decide whether the student concerned has satisfied all or part of the General Education requirements. Application for exemption from General Education requirements should be made to the Centre.

Conditions for the Award of the Degree of Bachelor of Engineering

1. A candidate for the award of the degree of Bachelor of Engineering shall:
 (1) comply with the requirements for admission;
 (2) follow the prescribed course of study in the appropriate School, and satisfy the examiners in the necessary subjects;
(3) complete an approved program of industrial training (professional practice in the case of Geomatic Engineering candidates) for such periods as are prescribed. In general, this training must be completed before 31 January in the year in which the degree is to be awarded.

2. During each year a student shall perform laboratory, drawing office and field work, attend demonstrations and excursions to such an extent and in such a manner as is prescribed from time to time by the Academic Board on the recommendation of the Faculty. Those students who are required to undertake field work for any subject must be prepared to pay the appropriate costs and be in attendance at all scheduled examinations except in abnormal circumstances.

3. A student may be granted advanced standing by the Academic Board on the recommendation of the appropriate Faculty, but in each case must complete an adequate period of approved industrial training before being eligible for the degree. In addition to the above requirements a student coming from another institution must comply with the conditions laid down by the Academic Board for admission with advanced standing.

4. The degree shall be awarded in the pass or honours grade. Honours may be awarded in the following categories:
 - Honours Class I
 - Honours Class II, Division I
 - Honours Class II, Division II

5. In special cases the Faculty may approve the variation of any of the preceding conditions.

Graduate Study

The Faculty awards higher degrees as follows: Research - Doctor of Philosophy, Master of Engineering and Master of Science; Course Work Masters - Master of Biomedical Engineering, Master of Cognitive Science, Master of Computer Science, Master of Engineering Science (available in a number of areas of specialization), Master of Environmental Engineering Science and Master of Information Science. In addition, the degrees of Doctor of Science and Master of Science may be awarded for research conducted in, or in association with, the Faculty of Engineering.

The Graduate School of Engineering is responsible for the MBT Program which is a joint initiative of the Faculties of Applied Science and Engineering. The two courses offered through this special unit are the Master of Business and Technology, and the Graduate Diploma in Industrial Management (see Graduate School of Engineering section in this Handbook).

Conditions governing the award of higher degrees and graduate diplomas are set out later in this handbook in Conditions for the Award of Degrees. However, conditions for the award of the degree of Doctor of Science may be found in the University Calendar.

English Language Requirements

Applicants whose first language is not English or who have not undertaken a previous degree where English was the primary language of instruction are required to provide proof of their competence by presenting acceptable results from one of the following tests or by satisfying the course authority as to their level of proficiency. A pass in the writing component of the tests listed below is strongly recommended.

Minimum Acceptable Score

1. The Test of English as a Foreign Language (TOEFL) 550
2. International English Language Testing Service (IELTS) 6.0
3. Combined Universities Language Test (CULT) 65%
4. Indonesia-Australia Language Foundation (IALF)* Cat 1 or 2. Cat 3 may be accepted if current English program available.
5. English for Academic Purposes C.

* Research students must have a writing score of 5 as well as 550 in TOEFL.

Research Degrees

Research degrees may be undertaken in the Faculty of Engineering as follows:

PhD
- Biomedical Engineering 1710
- Civil Engineering 1630
- Computer Science and Engineering 1650
- Electrical Engineering 1640
- Geomatic Engineering 1680
- Mechanical and Manufacturing Engineering 1662

ME
- Biomedical Engineering 2675
- Civil Engineering 2650
- Computer Science and Engineering 2665
- Electrical Engineering 2660
- Geomatic Engineering 2721
- Mechanical and Manufacturing Engineering 2692

MSc
- Biomedical Engineering 2795
- Civil Engineering 2750
- Computer Science and Engineering 2765
- Electrical Engineering 2760
- Mechanical and Manufacturing Engineering 2781
Doctor of Philosophy
PhD
This degree is awarded for a thesis considered to be a substantially original contribution to the subject concerned. The degree is becoming a prerequisite for research appointments in government and industrial research and development laboratories. Research for this degree may be taken at, or externally to, the University. However the Faculty recommends that periods of residency at the University totalling at least six months be included in the candidate’s research program.

Admission Guidelines: A candidate for registration for the degree of Doctor of Philosophy should hold an honours degree from the University of New South Wales or an honours degree of equivalent standing from another approved university. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Period of Candidature: The normal period is six academic sessions (full-time) and eight academic sessions (part-time) from the date of enrolment. In special cases extensions may be granted. Admission Guidelines: A candidate for registration for the degree of Master of Philosophy should hold a Bachelor’s degree from the University of New South Wales or another approved university. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Period of Candidature: The normal period is three academic sessions (full-time) and four academic sessions (part-time) from the date of enrolment. In special cases extensions may be granted. Concurrent Coursework: All new PhD candidates in the Faculty of Engineering must complete and pass three subjects as approved by the Head of School, normally in the first year of candidature.

Master of Engineering/
Master of Science/
ME/MSc
These are research degrees in which a thesis embodies the result of an original investigation, or design, or engineering development. Candidates for the award of the degree of ME may be required to carry out a program of advanced study.

Admission Guidelines: A candidate for registration for the degree of Master of Engineering or Master of Science should hold a Bachelor’s degree from the University of New South Wales or another approved university. Applications for admission should be made to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.

Period of Candidature: The normal period is three academic sessions (full-time) and six academic sessions (part-time) from the date of enrolment. In special cases the minimum period of registration may be reduced by up to two academic sessions. The maximum period of registration is six academic sessions (full-time) and ten academic sessions (part-time). In special cases an extension of these times may be granted.

Concurrent Coursework: All new Masters research candidates in the Faculty of Engineering must complete and pass three subjects as approved by the Head of School, normally in the first year of candidature.

Course Work Masters Degrees

Course work programs: Detailed information on course work programs is available from the schools offering the courses and can be found in this Handbook under the appropriate School section.

Admission Guidelines: An acceptable qualification is a degree at Honours level, or at Pass level to a superior standard in a four-year course in an approved discipline. The latter is defined as an average of 65% over the last two years of a full-time course (or last three stages of a part-time course) taken in minimum time. If the degree concerned is not in an acceptable discipline, or was of less than four years full-time study, a bridging or qualifying program is required. This is normally arranged by enrolment in the appropriate graduate diploma with the possibility of transferring to the Masters program after completion of requirements prescribed by the Faculty.

Applicants for admission to a course of study leading to the award of a Masters degree by course work commencing in first session should apply to the Registrar on the prescribed form by the 31st October of the year before the year in which enrolment is to begin. Where application is for registration commencing in the second session, applicants should apply at least two months before the commencement of session. It may be necessary to limit entry to formal courses due to quota restrictions. In such cases, applications may be placed on a reserve list and considered subject to the availability of places. If a firm offer of admission is made, it will be subject to acceptance within three weeks.

Courses of study leading to the award of course work Masters degrees may be undertaken in the Faculty as follows:

MBiomedE
Biomedical Engineering 8660
MBT
Business and Technology 8616
MEngSc
Biomedical Engineering 8665
Civil Engineering
Engineering Construction and Management (External) 8617
Public Health 8612
Water Engineering 8612
Waste Management 8612
Waste Management (External) 8614
Electrical Engineering 8501
Geomatic Engineering 8652
Industrial Engineering 8531
Mechanical Engineering 8541
Remote Sensing 8641
MCogSc
Cognitive Science 8155
MCompSc
Computer Science and Engineering 8680
MEnvEngSc
Civil Engineering 8615
MInfSc
Computer Science and Engineering 8508
Master of Engineering Science MEngSc

The Master of Engineering Science is a Faculty-wide degree allowing for flexibility of choice between formal course work and research. The schools in the Faculty have developed recommended programs of study leading to specialization in certain areas and further information is available under each School section in this handbook.

Candidates who enrolled from 1990 are required to complete a program totalling 30 credits. Those who first enrolled prior to 1990 including those who are upgrading from a Graduate Diploma must complete 36 credits. A degree may be awarded for formal course work only or for the completion of formal course work and a report on a project depending on the program being offered. The number of credits for a project reports varies amongst schools and centres and between departments within schools and are 9, 12, and 18.

Candidates may undertake interdisciplinary studies and, subject to approval, are able to take subjects from any school in the Faculty, other faculties of the University and other universities or institutions. By means of this system, programs of studies best suited to the needs of the candidates may be selected.

Before enrolment an applicant should submit an intended program for approval by the school or division offering the majority of the credits to ensure that the prerequisite background held is adequate for all subjects including those taken in other schools or institutions.

Period of Candidature: The normal period is two academic sessions (full-time) or four academic sessions (part-time) from the date of enrolment. The maximum period of candidacy is four academic sessions (full-time) and eight academic sessions (part-time). In special cases an extension of time may be granted. A candidate is not permitted to continue in a course if the credit value of the subjects failed totals more than six.

Graduate Diplomas

Courses of study leading to the award of a Graduate Diploma in the Faculty of Engineering provide graduates with opportunities to extend their professional knowledge. In most cases, candidates may choose from a range of subjects in the special area of their choice. There are also opportunities to select subjects from other professional areas in which candidates may be interested.

Before enrolment, an applicant should submit an intended program for approval by the school or centre offering the majority of the credits. Candidates must complete a program totalling 24 credits except for the Graduate Diploma specialization in Computer Science which requires 36. In this case, an exemption may be granted from 12 of these credits. In most cases 12 credits may be derived from approved undergraduate subjects and the program may contain subjects from other schools of the Faculty, other faculties of the University and other universities or institutions subject to meeting the prerequisite requirements. If an applicant nominates a course of study taken from the list below, at least half of the credits should come from the subjects taken in that area. The exceptions to this requirement are for the Information Science and Computer Science Graduate Diploma specializations where all subjects are taken from a prescribed program of study.

It should be noted that some candidates who have partially completed or who have completed the requirements but not taken out the diploma may be considered for upgrading to the relevant Master program with advanced standing. Since the policy on upgrading varies between different schools and centres, further enquiries should be made within the school or centre concerned.

Applicants for admission to a course of study leading to the award of a Graduate Diploma commencing in first session should apply to the Registrar on the prescribed form by 31 October of the year before the year in which enrolment is to begin. Where application is for registration commencing in the second session, applicants should apply at least two months before the commencement of session. It may be necessary to limit entry to formal courses due to quota restrictions. In such cases, applications may be placed on a reserve list and considered subject to the availability of places. If a firm offer of admission is made, it will be subject to acceptance within three weeks.

Courses of study leading to the award of a graduate diploma may be undertaken in the Faculty of Engineering as follows:

Graduate Diploma in Engineering:
- Biomedical Engineering 5445
- Engineering Construction and Management 5454
- Computer Education 5464
- Computer Science 5452
- Electrical Engineering 5458
- Electric Power Engineering 5435
- Geomatic Engineering 5492
- Industrial Management 5457
- Information Science 5453
- Industrial Engineering 5455
- Mechanical Engineering 5456
- Remote Sensing 5496
- Waste Management 5459 (Internal) 5498 (External)

Further details of the recommended programs of study may be obtained from the course authorities concerned.

Graduate Subjects

The subjects which may be available for candidates proceeding to the award of the degree of Master of Biomedical Engineering, Master of Computer Science, Master of Engineering Science, Master of Environmental Engineering Science, Master of Information Science, and Graduate Diploma can be found in each School section. Not all electives are necessarily offered in any particular year.

Under the credit system in operation in the Faculty, one credit is normally equal to one hour's attendance per week for one session. The qualification 'normally' is required because of the varying ways in which credits are distributed for course work, design, critical review or research in the different schools.

Many graduate subjects assume that students have prior, or preliminary, knowledge of the area of study. It is the
responsibility of students to acquaint themselves with this level of assumed prior knowledge and take steps, if necessary, to obtain it. This may, for example, involve a course of preparatory reading before commencing the subject.

In some cases the assumed level of knowledge for a specific subject is indicated in this Handbook by the statement of assumed knowledge. This is intended as a guide to the assumed prior knowledge and often uses the description of other subjects in the Handbook (graduate and undergraduate) to indicate the content and level which the lecturer will assume. Students who are in doubt as to the adequacy of their preparation should contact the lecturer concerned and discuss the matter. The lecturer in charge of a subject has the authority to decide whether or not the student has the appropriate level of assumed knowledge.
School of Civil Engineering

Head of School
Professor J.A. Black

First Year Management Committee
Mr V. J. Summersby (Chair)
Assoc. Professor P.W. Kneen
Dr A.C. Heaney

Senior Administrative Officer
Ms K.M. Irvine

The School consists of five departments: Engineering Construction and Management (civil engineering systems, engineering economy, project planning and management and civil engineering construction); Geotechnical Engineering (foundation engineering, soil mechanics, rock mechanics, materials, and pavement engineering); Structural Engineering (structural analysis, concrete technology, and structural design); Transport Engineering (planning, design and operation of transport systems, statistical analysis, land use and transport modelling, economic evaluations and environmental impact studies); Water Engineering (hydraulics, hydrology, water resources, waste management and public health engineering).

Within the five departments the School has a broad spectrum of expertise in the disciplines of Environmental Engineering.

The Centre for Wastewater Treatment and the Munro Centre for Civil and Environmental Engineering are also located within the School. In addition to extensive laboratory facilities on the Kensington campus, the School operates laboratories at Govett Street, Randwick and Manly Vale. The latter complex houses the School's Water Research Laboratory and the associated Water Reference Library. The School also uses the Fowlers Gap Arid Zone Research Station data collection for arid zone hydrology.

The School is also involved in the UNSW Groundwater Centre which is a joint enterprise with Schools in the Faculty of Applied Science.

The School offers courses 3620 and 3625 leading to the award of degrees of Bachelor of Engineering (Civil) (BE) and Bachelor of Engineering (Environmental) (BE), at pass or honours level, which can be taken on a four-year full-time basis, on a part-time basis or on a combined full-time part-time basis subject to the approval of the Head of School. Intending part-time students are advised that most subjects are offered only in the daytime. Part-time students will normally take two years for each equivalent full-time year.

Alternatively, the courses may be taken in a sandwich form in which a student, after completing the first year of the course on a full-time basis, gains industrial experience during one or more periods of employment by taking leave of absence for one academic year.

A six-year full-time course 4775 leading to the award of the degrees of Bachelor of Engineering and Bachelor of Laws (BE LLB) is offered.

A five-year full-time combined course 3146 leading to the award of the degrees of Bachelor of Engineering (Civil) and Bachelor of Engineering (Mining) is offered.

Five-year full-time combined courses 3730 leading to the award of the degrees of Bachelor of Engineering (Civil) and Bachelor of Science are offered.

There are formal graduate courses leading to the award of the degree of Master of Engineering Science 8612, Master of Environmental Engineering Science 8615, and also the Graduate Diploma in Engineering 5459. These courses are available in specialist areas including
Undergraduate Study

Computing Requirements

Information regarding recommended computing equipment for the courses offered by the School is available from the School Office.

Course Outlines

3620
Civil Engineering - Full-time Course
Bachelor of Engineering
BE (Civil)

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
<th>Year 2</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>CHEM1808</td>
<td>Chemistry 1CE</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CIVL1106</td>
<td>Computing and Graphics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL1203</td>
<td>Engineering Mechanics 1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CIVL1301</td>
<td>Civil Engineering Practice</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>GEOL5100</td>
<td>Geology for Civil and Environmental Engineers</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>PHYS1989</td>
<td>Physics</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>General Education Cat.A</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CIVL3106</td>
<td>Engineering Computations</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL3203</td>
<td>Structural Analysis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3303</td>
<td>Structural Design</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CIVL3402</td>
<td>Geotechnical Engineering 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3505</td>
<td>Hydraulics 2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3601</td>
<td>Engineering Management 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL3705</td>
<td>Water Resources</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3804</td>
<td>Transport Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Education Cat.B</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totaling</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>CIVL4006</td>
<td>Industrial Training</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4101</td>
<td>Engineering Management 2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4203</td>
<td>Structural Engineering</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4306</td>
<td>Engineering and the Environment*</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4403</td>
<td>Materials Engineering 2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4502</td>
<td>Geotechnical Engineering 2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4605</td>
<td>Water Supply and Wastewater Disposal</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4704</td>
<td>Highway and Pavement Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4906</td>
<td>Project/Thesis</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Plus two of the following five elective majors:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL4811</td>
<td>Construction Major</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CIVL4822</td>
<td>Geotechnical Major</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CIVL4833</td>
<td>Structures Major</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CIVL4844</td>
<td>Transport Major</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CIVL4855</td>
<td>Water Major</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Totalling</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

*General Education Cat.C.
Environmental Engineering - Full-time Course

Bachelor of Engineering (Environmental)

Note: The General Education requirements Category C for this course are still to be determined.

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1002</td>
<td>Chemistry 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CIVL1007</td>
<td>Engineering Practice</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL1203</td>
<td>Engineering Mechanics</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>GEOG1031</td>
<td>Environmental Processes</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GEOL5100</td>
<td>Geology for Civil and Environmental Engineers</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A or</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B or</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>PHYS1889</td>
<td>Physics 1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS1021</td>
<td>Biology B</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CIVL1106</td>
<td>Computing and Graphics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL2007</td>
<td>Engineering Mechanics and Materials</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CIVL2017</td>
<td>Data Survey and Analysis</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CIVL2106</td>
<td>Systems Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL2505</td>
<td>Hydraulics 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>INDC4120</td>
<td>Chemistry of the Industrial Environment</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MATH2009</td>
<td>Engineering Mathematics 2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MATH2869</td>
<td>Statistics SC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>General Education Cat.A</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS3111</td>
<td>Population and Community Ecology</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CEIC0010</td>
<td>Mass Transfer and Material Balance</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL3007</td>
<td>Environmental Fluid Mechanics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3017</td>
<td>Management for Environmental Engineers 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL3106</td>
<td>Engineering Computations</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CIVL3402</td>
<td>Geotechnical Engineering</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3705</td>
<td>Water Resources</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CIVL3804</td>
<td>Transport Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GEOL9110</td>
<td>Hydro and Environmental Geology</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>General Education Cat.B</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>21</td>
<td>27</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC0020</td>
<td>Fluid/Solid Separation</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>INDC3070</td>
<td>Instrumentation and Process Control</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4006</td>
<td>Industrial Training</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4007</td>
<td>Waste Management</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4037</td>
<td>Communications and Ethics</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CIVL4057</td>
<td>Management for Environmental Engineers 2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4605</td>
<td>Water Supply and Wastewater Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CIVL4907</td>
<td>Project/Thesis</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Combined Courses

Programs for combined degree courses offered in the Faculty of Engineering are listed below. In all cases material not in italic typeface refers to the BE degree component of the combined course.

3730 BE BSc in Civil Engineering - Full-time Course

Students may seek permission to undertake a five-year full-time combined course leading to the award of the degrees of Bachelor of Engineering (Civil) and Bachelor of Science (BE BSc). The course is administered by the Faculty of Engineering.

Normally, students enrolled in the BE BSc course may be awarded their degrees at the conclusion of five years' study. However, students who commence the course and do not complete the Civil Engineering component may take out a BSc degree on completion of one of the approved programs of the Science and Mathematics Course.

Similarly, students not wishing to complete the BSc degree course may revert to the Civil Engineering program (3620) with appropriate credit for subjects satisfactorily completed. Students in the BE BSc program are exempt from Category A General Education requirements only. If at any time a student reverts to the single degree program the usual General Education requirements for that course apply.

The combined course consists of the Civil Engineering program (3620), and at least fourteen units of the Science and Mathematics Course (3970) within an approved program.

There are three approved programs but additional ones may be approved if they are relevant. Approval may be given to change the programs listed below to allow for timetabling and the student's academic interests.

Although transfer from Course 3620 to Course 3730 is normally made at the end of Year 1, first year students who are considering to apply for transfer should note the requirements for PHYS1002 Physics 1 in the second program.

The prerequisite CHEM1002 for Year 2 Chemistry subjects will be waived for students in Course 3730.
Approved Programs

Geography and Environmental Chemistry

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1131 or MATH1141
MATH1231 or MATH1241
PHYS1989

Year 2
CHEM2011, CHEM2031, CHEM2041
CIVL2203, CIVL2301, CIVL2402
GEOG1031 and any other Year 1 Geography subject
MATH2009

Year 3
CHEM3311
CIVL2106, CIVL2505, CIVL3106, CIVL3203, CIVL3303
GEOG3021, GEOG2032
GMAT0441, GMAT0491
One 56-hr or two 28-hr General Education subject/s Cat. B

Year 4
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
GEOG3011, GEOG3042, GEOG3211
At least 2 units chosen from:
GEOG2021, GEOG3032, GEOG3051, GEOG3062

Year 5
Choose 2 units from Table 1 in the Sciences Handbook at Level II or higher
CIVL4006, CIVL4101, CIVL4203, CIVL4306*, CIVL4403, CIVL4502, CIVL4605, CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from Table 1 in the Sciences Handbook at Level 11 or higher.
*General Education Cat. C.

Physics with Mathematics

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1131 or MATH1141
MATH1231 or MATH1241
PHYS1002

Year 2
CIVL2203, CIVL2301, CIVL2402
MATH2510, MATH2520, MATH2100, MATH2120
MATH2869
PHYS2011, PHYS2021, PHYS2031

Year 3
CIVL2106, CIVL2505, CIVL3203, CIVL3303
GMAT0441, GMAT0491
MATH2501
PHYS2001, PHYS2021, PHYS3041
One 56-hr or two 28-hr General Education subject/s (Cat B)

Year 4
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
PHYS3030
Choose 1 unit from: PHYS3631, PHYS3110, PHYS3010, PHYS3050
Choose 2 Level II or Level III Mathematics units from Table 1 in the Sciences Handbook.

Year 5
CIVL4006, CIVL4101, CIVL4203, CIVL4306*, CIVL4403, CIVL4502, CIVL4605,
CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from Table 1 in the Sciences Handbook at Level 11 or higher.
*General Education Cat. C.

Computing with some Mathematics

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1131 or MATH1141
MATH1231 or MATH1241
PHYS1989

Year 2
CIVL2106, CIVL2203, CIVL2301, CIVL2402
COMP1011, COMP1021
MATH2501+, MATH2510+, MATH2520+, MATH2869

Year 3
CIVL2505, CIVL3203, CIVL3303
GMAT0441, GMAT0491
COMP2011, COMP2021, COMP2031
MATH2100+, MATH2120+
One 56-hr or two 28-hr General Education subject/s Cat.B
Choose .5 Level II or Level III Mathematics unit from the Sciences Handbook.

Year 4
CIVL3402, CIVL3505, CIVL3601, CIVL3705, CIVL3804
COMP3121
Choose three units, at least one of which is a Computer Science Unit, from COMP3211, COMP3231, COMP3311
or Level II or Level III Mathematics units from the Sciences Handbook.

Year 5
CIVL4006, CIVL4101, CIVL4203, CIVL4306*, CIVL4403, CIVL4502, CIVL4605,
CIVL4704, CIVL4906
Two of the following subjects:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855
Choose 1 unit from the Sciences Handbook at Level II or higher.
*General Education Cat. C.

+Students are encouraged to select higher level Mathematics units where applicable.
BE(Civil) BE(Mining) in Civil Engineering and Mining Engineering - Full-time Course

Students enrol in the Bachelor of Engineering in Civil Engineering course 3620 which is administered by the School of Civil Engineering in the Faculty of Engineering. The first three years of the combined degree course are therefore identical to course 3620. At the end of year 3, students may apply to enter the Bachelor of Engineering in Mining Engineering course 3146 which is administered by the School of Mines in the Faculty of Applied Science.

Year 4
CIVL4006, CIVL4203, CIVL4306, CIVL4502, CIVL4605, CIVL4704, CIVL4822, CIVL4906
GEOL5311
GMAT0580
MINE1231, MINE1330, MINE1420, MINE1630,

Year 5
ELEC0802
MINE1131, MINE1132, MINE1140,MINE1330
MINE1530, MINE1740, MINE1830, MINE1940,
MINE2141, MINE3040, MINE7342, MINE7440
PHYS2920

BE (Civil Engineering) LLB in Civil Engineering and Law - Full-time Course

This course is administered by the Faculty of Law and candidates enrol through the Faculty of Law. Further information can be obtained from the Faculty of Law Handbook.

Year 1
CHEM1808
CIVL1106, CIVL1203, CIVL1301
GEOL5100
MATH1131 or MATH1141
MATH1231 or MATH1241
PHYS1989

Year 2
CIVL2106, CIVL2203, CIVL2402, CIVL2505
LAWS1120, LAWS7410
MATH2009, MATH2869
GMAT0441, GMAT0491

Year 3
CIVL3106, CIVL3203, CIVL3303, CIVL3402, CIVL3505,
CIVL3601, CIVL3705, CIVL3804
LAWS1410

Year 4
CIVL4006, CIVL4203, CIVL4502, CIVL4605, CIVL4704,
CIVL4306 taken concurrently with LAWS3410
LAWS1610, LAWS2160, LAWS3010
Plus one of the following elective majors:
CIVL4811, CIVL4822, CIVL4833, CIVL4844, CIVL4855

Year 5
LAWS1010, LAWS8320, LAWS8820, LAWS2150,
LAWS8210, LAWS7420, LAWS7430 (The research component is taken in conjunction with or after)
Law electives to value 9 credit points.

Year 6
Law electives to value 24 credit points.
Graduate Study

There are formal graduate courses leading to the award of the degree of Master of Engineering Science 8612, Master of Environmental Engineering Science 8615, and also the Graduate Diploma in Engineering 5459. These courses are available in specialist areas including computational engineering, engineering construction and management, geotechnical engineering, public health engineering, structural engineering, transport engineering and water engineering.

Within the Master of Engineering Science and Graduate Diploma courses, students may undertake engineering construction and management or waste management externally. Fees are payable for these distance learning courses.

Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2650 and Doctor of Philosophy 1630.

Course Work Programs

The School of Civil Engineering offers a large number of graduate subjects which allow the flexibility of many combinations to provide relevant groupings both in an academic and professional sense. The main technical groupings are:

- computational engineering
- engineering construction and management
- environmental engineering
- geotechnical engineering
- public health engineering
- structural engineering
- transport engineering
- waste management
- water engineering

MEngSc students may elect to take a 9 credit project to make 30 credits. GradDip students undertake 24 credits of coursework. Full details of preferred programs in the various specialist areas are available from the School. All subjects for the Masters degrees are also offered in the Graduate Diploma programs.

8612
Master of Engineering Science
MEngSc

Waste Management

<table>
<thead>
<tr>
<th>Core Subjects</th>
<th>First Year</th>
<th></th>
<th>Second Year</th>
<th></th>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9872 Solid Waste Management</td>
<td>3</td>
<td>CIVL9881 Hazardous Waste Management</td>
<td>3</td>
<td>CIVL9884 Environmental Engineering Science 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9884 Environmental Engineering Science 2</td>
<td>3</td>
<td>FUEL5880 Unit Operations in Wastewater Sludge and Solids Management</td>
<td>3</td>
<td>CIVL9909 Project</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Elective Subjects
Two elective subjects may be chosen from those offered by the School of Civil Engineering. Other subjects offered on campus may be approved as electives by the course coordinator.

Public Health

<table>
<thead>
<tr>
<th>Core Subjects</th>
<th>First Year</th>
<th></th>
<th>Second Year</th>
<th></th>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9851 Unit Operations in Public Health Engineering</td>
<td>3</td>
<td>CIVL9855 Water and Wastewater Analysis and Quality Requirements</td>
<td>3</td>
<td>CIVL9856 Water Treatment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVL9857 Wastewater Treatment and Disposal</td>
<td>3</td>
<td>CIVL9884 Environmental Engineering Science 1</td>
<td>3</td>
<td>CIVL9909 Project</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Elective Subjects
Two elective subjects may be chosen from those offered by the School of Civil Engineering. Other subjects offered on campus may be approved as electives by the course coordinator.

Water Engineering

Specialization is possible within a range of areas including:

- Hydrology
- Water Resources
- Groundwater
- Coastal
- Hydraulics
- Environmental

Details of the recommended program in each of these areas may be obtained from the Head, Department of Water Engineering.
Computational Engineering

Core Subjects
- ANCE8002 Supercomputing Techniques 3
- ANCE8001 Computational Mathematics 3
- CIVL9909 Project 9

Elective Subjects
Four subjects to be chosen from those offered by the School of Civil Engineering. Other subjects as approved by the Head of School.

8614
Master of Engineering Science
MEngSc

Waste Management (External)*

<table>
<thead>
<tr>
<th>Core Program</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL8872</td>
<td>Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8881</td>
<td>Hazardous Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8884</td>
<td>Environmental Engineering Science 1</td>
<td>3</td>
</tr>
<tr>
<td>FUEL5881</td>
<td>Unit Operations in Wastewater, Sludge and Solids Management</td>
<td>3</td>
</tr>
<tr>
<td>CIVL8909</td>
<td>Project</td>
<td>9</td>
</tr>
</tbody>
</table>

Elective Program
- CIVL8855 Water and Wastewater Analysis and Quality Requirements 3
- CIVL8857 Sewage Treatment and Disposal 3
- CIVL8891 Groundwater Contamination and Remediation 3

8615
Master of Environmental Engineering Science
MEnvEngSc

Candidates are required to complete a program totalling 30 credits. The program is made up of coresubjects, elective subjects and a 9 credit project.

<table>
<thead>
<tr>
<th>Core Subjects</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9884</td>
<td>Environmental Engineering Science 1</td>
</tr>
<tr>
<td>CIVL9885</td>
<td>Environmental Engineering Science 2</td>
</tr>
<tr>
<td>CIVL9888</td>
<td>Environmental Management and Economics</td>
</tr>
<tr>
<td>CIVL9889</td>
<td>Legislative Aspects of the Environment</td>
</tr>
<tr>
<td>CIVL9909</td>
<td>Project</td>
</tr>
</tbody>
</table>

Elective Subjects
Three elective subjects may be chosen from those offered by the School of Civil Engineering. Other subjects offered on campus may be approved as electives by the course coordinator. Subjects offered within the MEngSc degree program are also available to students enrolled for a MEnvEngSc degree, subject to the approval of the course coordinator.

8617
Engineering Construction and Management

Master of Engineering Science (External)*
MEngSc

Subjects are selected from the following list. All subjects are not offered each year.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL8701</td>
<td>Financial Management</td>
</tr>
<tr>
<td>CIVL8702</td>
<td>Project Time Management</td>
</tr>
<tr>
<td>CIVL8703</td>
<td>Quality and Quality Systems</td>
</tr>
<tr>
<td>CIVL8705</td>
<td>Project Management through People</td>
</tr>
<tr>
<td>CIVL8706</td>
<td>Human Resources Management</td>
</tr>
<tr>
<td>CIVL8707</td>
<td>Contracts Management</td>
</tr>
<tr>
<td>CIVL8710</td>
<td>Management of Risk</td>
</tr>
<tr>
<td>CIVL8714</td>
<td>Resource Management</td>
</tr>
<tr>
<td>CIVL8723</td>
<td>Construction Design</td>
</tr>
<tr>
<td>CIVL8724</td>
<td>Construction Engineering and Technology</td>
</tr>
<tr>
<td>CIVL8725</td>
<td>Engineering Financial Management</td>
</tr>
<tr>
<td>CIVL8726</td>
<td>Legal Studies and Professional Practice</td>
</tr>
<tr>
<td>CIVL8727</td>
<td>Construction Estimating and Tendering</td>
</tr>
<tr>
<td>CIVL8728</td>
<td>Special Topic in Construction</td>
</tr>
<tr>
<td>CIVL8731</td>
<td>Project Management Framework</td>
</tr>
<tr>
<td>CIVL8909</td>
<td>Project</td>
</tr>
</tbody>
</table>

Graduate Diplomas in Civil Engineering

Details of the recommended programs of study may be obtained from the Head of School. All subjects offered in the Masters programs can also be taken in the Graduate Diploma programs subject to the approval of the course coordinator.

5454
Engineering Construction and Management

Graduate Diploma (External)*
GradDip

Subjects offered are the same as those for the Master of Engineering Science (external). See above.

5459
Waste Management

Graduate Diploma
- 5459 Internal
- 5498 External*

*External Courses are offered on a fee paying basis.
Subject Descriptions

Descriptive of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

CIVL0616
Structures
Staff Contact: A/Prof V. A. Pulmano
S1 L1 T2
Note/s: This is a servicing subject for courses offered by other schools and faculties.

CIVL0626
Civil Engineering for Electrical Engineers
Staff Contact: A/Prof P.W. Kneen
S1 L2 T2
Note/s: This is a servicing subject for courses offered by other schools and faculties.

Includes an introduction to the various branches of civil engineering, the nature and organization of the profession. Relationship between clients and design consultants. The historical development of civil engineering. Theory of beams and trusses, resultant forces, structural action, stress and strain. Relation between load, shear force and bending moments, geometric properties of sections, deflection of beams. Properties of materials used in structures; various steels, concrete plain, reinforced and prestressed, aluminium and timber. Brittle fracture. Introduction to buckling. Engineering failures. Introduction to design of transmission lines and towers.

CIVL0636
Properties of Materials
Staff Contact: Dr N. Gowripalan
F L1 T1
Note/s: This is a servicing subject for courses offered by other schools and faculties.

CIVL1106 Computing and Graphics
Staff Contact: A/Prof P.W. Kneen
F L1 T2
Introduction to programming and development of skills for solving problems and rapid calculation. Computing elements, input-output, data and program structures. Useful and correct algorithms. The use of Pascal and control languages. Introduction to higher level languages and graphics.

Australian Drawing Standards. Descriptive geometry and orthographic projections. Perspective drawing. Introduction to computer aided drafting. Introduction to graphics - primitives, attributes, windows, layers, etc. Elementary graphics programming. Tutorials include supervised and free practice at computing, testing algorithms, data manipulation. Drawing practice includes graphs, systems diagrams; road, concrete and steel work; perspective drawing; pseudo computer aided drafting and a graphics plot.

CIVL1203 Engineering Mechanics
Staff Contact: Prof R.I. Gilbert
F L2 T2
Corequisite: MATH1032 or MATH1042 or MATH1131 and MATH1231 or MATH1141 and MATH1241

CIVL1301 Civil Engineering Practice
Staff Contact: Mr V.J. Summersby
S1 L2 T1 S2 L1.5 T.5
Prerequisites: HSC Exam Score Range Required - 2 unit English (General) 53-100, 2 unit English 49-100, 3 unit English 1-50 or 2 unit contemporary English 60-100

CIVL2007 Engineering Mechanics and Materials
Staff Contact: A/Prof F.S.K. Tin Loi
F L3 T1
Prerequisite: CIVL1203

Metals Technology: Relationship of properties to microstructure, dislocation mechanisms of plastic deformation; micro-mechanism of creep and fracture. Property control by strain hardening, alloying and heat treatment of steel and aluminium.

CIVL2017 Data Survey and Analysis
Staff Contact: Dr D.A. Luketina
S2 L1.5 T.5
Prerequisite: MATH2869

CIVL2106 Systems Engineering
Staff Contact: Dr R.R. Wakefield
S1 L1 T1 S2 L2 T1
Prerequisites: CIVL1106, MATH1032 or MATH1231 or MATH1042 or MATH1241
Corequisite: MATH2869
Concepts. Case studies in the formulation, modelling and resolution of Civil Engineering problems.

The solution of Civil Engineering problems involving probabilistic and statistical aspects. Problems examined include hydrological data fitting, traffic data analysis, structural reliability, limit state design, quality control, geomechanics site investigations and field data gathering and reduction. Regression. Decision processes associated with indefinite information; the modelling of the associated Civil Engineering systems.

CIVL2203
Engineering Mechanics 2
Staff Contact: Dr A.C. Heaney
F L2.5 T1.5
Prerequisite: CIVL1203

CIVL2301
Engineering Construction
Staff Contact: Mr V.J. Summersby
F L1.5 T.5
Prerequisite: CIVL1301

CIVL2402
Materials Engineering 1
Staff Contact: Dr N. Gowripalan
F L2.5 T1.5
Prerequisites: CIVL1203, GEOL5002, CHEM1808 Corequisite: CIVL2203

Behaviour of metals and other engineering materials. Response of materials to forces in tension, compression, bending, shear and torsion; elastic and plastic deformation strength brittleness, hardness etc. Effects of temperature and strain rates, static and dynamic loading, fatigue, brittle fracture and creep failures.

Metals Technology Relationship of properties to microstructure, dislocation mechanisms of plastic deformation; micro-mechanism of creep and fracture. Property control by strain hardening, alloying and heat treatment of steel and aluminium.

CIVL2505
Hydraulics 1
Staff Contact: Dr J.E. Ball
F L1 T1
Prerequisites: CIVL1203, MATH1032 or MATH1231 or MATH1042 or MATH1241

Fluid properties: definition of a fluid, density, unit weight, specific volume, relative density, bulk modulus, vapour pressure, surface tension, viscosity, properties of gases. Fluid statics: pressure at a point, absolute and gauge pressure, manometers, forces on plane and curved surfaces, buoyancy, stability of floating bodies, accelerated bodies of fluid.

Kinematics of Fluid Flow: streamlines, pathlines, continuity.

Fluid dynamics: the energy equation, the momentum equation, application of the concepts of flow resistance, energy loss and fluid momentum to steady flows in closed conduits and to steady uniform free-surface flows. Hydrodynamics: the stream function and velocity potentials, rotation, basic flow patterns, flow nets.

CIVL3007
Environmental Fluid Mechanics
Staff Contact: Dr D.A. Luketina
F L2 T1
Prerequisite: CIVL2505

CIVL3017
Management for Environmental Engineers 1
Staff Contact: Mr V.J. Summersby
F 1.5 T.5
Prerequisites: CIVL1007, CIVL2006

CIVL3106
Engineering Computations
Staff Contact: Dr I.J. Somervaille
F L1 T1
Prerequisites: CIVL1106, MATH2009

CIVL3203
Structural Analysis
Staff Contact: Dr R.E. Lawther
F L2 T1
Prerequisite: CIVL2203

CIVL3303
Structural Design
Staff Contact: Dr S.J. Foster
F L3 T1
Prerequisite: CIVL2203

 Design of steel girders; lateral and local buckling, web buckling. Steel beam-columns, slenderness effects. Plastic design of continuous steel beams.

CIVL3402
Geotechnical Engineering 1
Staff Contact: Mr G. R. Mostyn
F L2 T1
Prerequisites: CIVL2203, GEOL5100

CIVL3505
Hydraulics 2
Staff Contact: Dr D.A. Luketina
F L2 T1
Prerequisite: CIVL2505

CIVL3601
Engineering Management 1
Staff Contact: Dr R.R. Wakefield
F L1.5 T.5
Prerequisites: CIVL1301, CIVL2106

Basic techniques used in the management of engineering works; purpose and principles of management; management of people, plant, materials, money and sites; management of safety. Planning techniques used in management networks, critical path method, and PERT. Operations research in management: methodologies for problem solving including simulation and queueing theory. Theory of the management of humans. Theory of the management of organizations. Use and management of information systems. Law and the law of contract.

CIVL3705
Water Resources
Staff Contact: Dr J.E. Ball
F L2 T1
Prerequisite: MATH2869
Corequisite: CIVL3505

CIVL3804
Transport Engineering
Staff Contact: Dr M.C. Dunne
F L1 T1
Prerequisites: CIVL2106, MATH2869

Definitions, properties and measurements over space and time of traffic flow, traffic concentration and traffic speed. Relationships between flow, concentration and speed including definitions of mean free speed, jam concentration and maximum flow. Definition of time and space headways. Collection and analysis of headway and counting data. Overtaking rates. Capacities and delays at unsignalized intersections and roundabouts.

CIVL4006
Industrial Training
Staff Contact: Mr G. Nawar
Students are required to complete a minimum of 60 working days of approved industrial training, submit a report on this training before the fourth week of Session 1 of fourth year, and to present a seminar during the first session of fourth year outlining their industrial training experiences.

CIVL4007
Waste Management
Staff Contact: Mr S.J. Moore
S1 L2 T1
Prerequisite: INDC4120
Chemical fixation, acid waste treatment, metals removal, landfill site selection, leachate testing, toxicity testing, hydrogeological sampling. Transportation of hazardous materials. Legal aspects of hazardous waste.

CIVL4017
Water Engineering
Staff Contact: Dr J.E. Ball
S2 L4 T2
Prerequisites: CIVL3705, CIVL3007
Specialization in four of the following topics:

CIVL4027
Geotechnical Engineering
Staff Contact: Mr G.R. Mostyn
S2 L4 T2
Prerequisite: CIVL3402
Geotechnical Engineering: Influence of geology on geotechnical behaviour, drilling, sampling, in-situ testing, testing for shear strength of soils; landslides and slope stabilization; liquefaction of soils; critical state soil mechanics, and finite element methods in geomechanics.
Environmental Geomechanics: Clay mineralogy, reactive soils, dispersive soils, investigation of contaminated sites, geotechnical design of landfills, contaminant migration in soil, site remediation.

CIVL4037
Communications and Ethics
Staff Contact: Prof T.D. Waite
S2 L5 T1.5
Written and verbal communication skills in engineering practice. Preparation of proposals and reports. Relations to the media. Engineering ethics.

CIVL4047
Transport Engineering
Staff Contact: Dr S.E. Samuels
S2 L4 T2
Prerequisite: CIVL3804
The subject comprises 4 strands. Students must take strands A and B, each of which extends over 7 weeks (21 contact hours). In addition they must take either strand C or strand D, both of which extend over 14 weeks (42 contact hours).
A: Geometric Design of Transport Elements (i)
B: Environmental Impact of Transport (ii)
C: Transport Operations
D: Traffic Management and Control
(i): First half of session
(ii): Second half of session

CIVL4057
Management for Environmental Engineers 2
Staff Contact: Prof D.G. Carmichael
S1 L1.5 T.5
Prerequisite: CIVL3017
Introduction to industrial relations, aspects of law for environmental engineers involved in management, contract law and the administration of contracts. Business and financial management, corporate entities, basic accounting techniques, preparation and interpretation of important financial statements. Accounting for fixed assets. Local and international funding of engineering projects.

CIVL4101
Engineering Management 2
Staff Contact: Mr J.B. O'Brien
S1 L1.5 T.5
Prerequisite: CIVL3601
Contract management and administration. Business and financial management: corporate entities; basic accounting to trial balance; income statements; balance sheets; accounting for fixed assets; taxation aspects; financial report. Management of large projects; management of international projects.

CIVL4203
Structural Engineering
Staff Contact: Dr F. Barzegar
S1 L3 T1
Prerequisites: CIVL3203, CIVL3303
Slab design: two-way edge-supported slabs and flat slab design; idealised frame and simplified design methods, punching shear, moment transfer at column connections, serviceability approach, detailing. Design of reinforced concrete footings and retaining walls. Plastic analysis and design of steel frames. Approximate analysis and structural form. Variational theorems. Brief discussions of cable structures, arches, plates and shells.

CIVL4306
Engineering and the Environment
Staff Contact: Dr A.C. Heeney
S1 L2 T2
Prerequisite: CIVL3601
methodologies for engineering and non-engineering groups. Planning for non-optimal engineering solutions. Professional ethics.

CIVL4403 Materials Engineering 2
Staff Contact: Dr A.C. Heaney
S1 L3
Prerequisites: CIVL2402, CIVL3303

Metals used in structures: types, applications and developments in steels, aluminium alloys etc. Corrosion: causes, prevention and control in structural, reinforcing and piling steels. Fatigue and brittle fracture: factors leading to increased risk, significance of welding; empirical and fracture mechanics approaches to design against failures in service.

CIVL4502 Geotechnical Engineering 2
Staff Contact: Mr G. R. Mostyn
S1 L2 T1
Prerequisite: CIVL3402

Theoretical and presumptive bearing capacity of shallow foundations. Allowable settlement and foundations on sand and rock. Lateral earth pressures and retaining wall design. Single axially and laterally loaded piles, pile groups. Reactive soils, residential slabs and footings.

CIVL4605 Water Supply and Wastewater Disposal
Staff Contact: Mr P.J.Bliss
S1 L2 T1
Prerequisite: CIVL2505

CIVL4704 Highway and Pavement Engineering
Staff Contact: A/Prof B. Shackel
S1 L2 T1
Prerequisites: CIVL3402, CIVL3804

CIVL4811 Construction Major
Staff Contact: Mr J.B. O'Brien
S2 L6 T3
Prerequisites: CIVL2301, CIVL4101, CIVL4306 and all Year 3 subjects

Professional level construction and project management skills and techniques: advanced construction technology topics and topics in the planning, design, organization, coordination, staffing, administration, control and management of construction and allied projects. State-of-the-art work associated with selected advanced topics in construction and project management.

CIVL4822 Geotechnical Major
Staff Contact: Mr G.R. Mostyn
S2 L6 T3
Prerequisites: CIVL4306, CIVL4502, CIVL4704

Advanced pavement engineering including concrete technology. Rock engineering, slopes and tunnels. Foundation engineering. Soil engineering including site characterization, critical state theory and liquefaction. A two and a half day field trip is included as part of the subject.

CIVL4833 Structures Major
Staff Contact: Dr R.E. Lawther
S2 L6 T3
Prerequisites: CIVL4203, CIVL4403

specialization in each of the following strands of structural engineering: Bridge engineering. Concrete structures. Structural analysis and stability. Structural dynamics.

CIVL4844 Transport Major
Staff Contact: Dr S.E.Samuels
S2 L6 T3
Prerequisite: CIVL4306, CIVL4704

Analytical and computer aided methods for geometric design of roads. Design for traffic management and control efficiency, safety, environmental factors, information systems, lighting. Environmental and social impact of transport design. Transport system design and operations.

CIVL4855 Water Major
Staff Contact: Dr J.E. Ball
S2 L6 T3
Prerequisites: CIVL3505, CIVL3705, CIVL4605

CIVL4906 Project/Thesis
Staff Contact: Dr N. Gowripalan
S1 1 S2 6
Prerequisites: All third year subjects
Corequisite: The appropriate major

Directed laboratory, investigatory, design, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work.
undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.

CIVL4907
Project/Thesis
S1 1 S2 6
Staff Contact: Dr N. Gowriplan
Prerequisites: All third year subjects
Corequisite: The appropriate major
Directed laboratory, investigatory, field or research work on an approved subject under the guidance of members of the academic staff. Each student is required to present a seminar and a written project/thesis on the work undertaken. Time devoted to the project/thesis is one hour per week in Session 1 for library methodology instruction and preliminary work, and six hours per week in Session 2 to carry out the major part of the work.

CIVL8701
Financial Management
Staff Contact: Dr R. R. Wakefield
C3 S1
Project initiation and development, feasibility studies, planning; economics, benefit/cost analysis, methods of economic appraisal; consideration of inflation and taxation in investment decisions; depreciation; management decision processes, decision theory, utility; life-cycle costing, value management; models and techniques to assist the manager, forecasting; optimization; applications; multiple objective planning; project delivery systems.

CIVL8702
Project Time Management
Staff Contact: Dr R. R. Wakefield
C3 S2
The planning process; the link between planning and control; control systems; the critical path method, networks, resource levelling, resource constrained scheduling, network compression, overlapping relationships, applied cpm, cost influences, project control, legal considerations, simulation in networks, stochastic networks, project management, applications.

CIVL8703
Quality and Quality Systems
Staff Contact: Dr R. R. Wakefield
C3 S2
Quality management principles, practice and responsibilities; applications; quality systems documentation, manuals, implementation and procedures; quality assurance; quality control; relevant codes on quality; total quality management, quality circles and related approaches; quality requirements in contracts; continuous improvement.

CIVL8705
Project Management through People
Staff Contact: Prof D. G. Carmichael
C3 SS
Note/s: Not offered in 1995
The role of people in the management and execution of projects. Responsibilities, authorities and accountabilities. Staffing; the selection and sources of project personnel; their interaction, roles, duties and communications. Personnel skills.

CIVL8706
Human Resources Management
Staff Contact: Mr J. B. O'Brien
C3 S2
The development of skills for the management of people and their workplaces; industrial relations, health and safety issues, the recognition of people as the basic unit of engineering productivity; the structure and function of organizations, management of group action; work delegation across organizational boundaries; interpersonal skills, conflict management; learning curves; motivation.

CIVL8707
Contracts Management
Staff Contact: Prof D. G. Carmichael
C3 S1
Elements of contract law and a contract; contracts; contract documents including specifications; procurement methods (contract or project delivery strategies); tendering; time in contracts; variations; payments; rights and obligations; planning and programming; risk management and insurance; dispute resolution and dispute avoidance; cost estimating; claims.

CIVL8710
Management of Risk
Staff Contact: Mr G. Nawar
C3 S2
Introduction to the concept of risk and decision making under conditions of uncertainty; project objectives and planning, risk/factors affecting project performance; risk identification in engineering processes; human error, natural hazards and unforeseen risks; risk evaluation and quantification methods; relevant statistical techniques; risk avoidance and minimisation; financial risk, portfolio theory, risk sharing and financing; ambient and acceptable risk levels; time estimating; insurances.

CIVL8714
Resource Management
Staff Contact: Prof D.G. Carmichael
C3 S1
The management of non human (inert) resources such as equipment, plant, materials infrastructure and assets, including maintenance management, asset management, fleet management and related topics; resource acquisition, maintenance and repair policies; procurement, inventory, supply management and control; optimization, applications; resource planning; resource disposal.

CIVL8723
Construction Design
Staff Contact: Dr R.R. Wakefield
C3 S2
Design theory as applied to construction processes; application to selected areas of the construction industry such as temporary works design, formwork and falsework, dewatering systems, ground support systems and mixed construction activities such as tunnelling and high rise building construction; queuing and simulation models; work study (method study and work measurement) procedures; productivity; job planning, layout planning, capacity planning; planning and design of production.
systems (construction oriented); reliability, availability, applications.

CIVL8724
Construction Engineering and Technology
Staff Contact: Mr J.B. O'Brien
C3 S2
Note/s: Not offered in 1995
Structure of the construction industry; construction engineering theory, construction processes: methods engineering, automation and mechanization concepts; modelling, design and analysis; problem solving; task analysis; adaptive systems and control concepts; experimental studies of construction processes. Construction technologies; construction robotics, applications of expert and knowledge based systems. Studies to be selected from: drilling, blasting techniques, tunnelling, rock-bolting and other ground support, earth/rock transport, harbours, railways, dams, bridges, structural steelwork techniques, pipeline construction, foundation grouting, compressed air work.

CIVL8725
Engineering Financial Management
Staff Contact: Mr V.J. Summersby
C3 S1

CIVL8726
Legal Studies and Professional Practice
Staff Contact: Prof D.G. Carmichael
C3 S3
Note/s: Not offered in 1995
Nature and sources of law, court procedures, interpretation of documents, evidence, technical opinions, expert witness; company law; duties of an engineer; tort, professional liability; trade practices and consumer legislation; ethics.

CIVL8727
Construction Estimating and Tendering
Staff Contact: Prof D.G. Carmichael
C3 S2
Estimating procedures, estimating cost of labour plant and materials, indirect costs and overheads, profit; preparation of cost estimates for engineering projects; the conversion of an estimate into a tender; bidding strategies and models; the tendering process; marketing.

CIVL8728
Special Topic in Construction
Staff Contact: Mr V.J. Summersby
C3 S3
Note/s: Not offered in 1995
A construction topic presented in depth by industry experts or visiting specialists. This subject is only given when an appropriate specialist is available, and is not offered every year.

CIVL8731
Project Management Framework
Staff Contact: Mr J.B. O'Brien
C3 S1
An overview of project management; the nature of technical and non-technical projects; the project life cycle; the project team, organizational and behavioural aspects; the project manager; the organization and management of project resources; project success evaluation techniques; project delivery; management information and decision support systems; case studies; management theory and processes; relationship to general management; functions of project management.

CIVL8803
Project (external) GradDipl
C3
A critical review of literature on a selected topic or a minor design project.

CIVL8855
Water and Wastewater Analysis and Quality Requirements
Staff Contact: Ms P.A. FitzGerald
C3 S1
The effects of impurities in water and wastewater on its suitability for various beneficial uses, and methods used for detecting impurities. Analytical methods used in water and wastewater treatment for monitoring and process control.

CIVL 8856
Water Treatment
Staff Contact: Ms P.A. Fitzgerald
C3 S2
Application of processes and process variations used to upgrade the quality of water.

CIVL8857
Wastewater Treatment and Disposal
Staff Contact: Mr P.J. Bliss
C3 S2
Application of processes and process variations used to improve the quality of wastewaters and of sewage effluent, and the disposal of the effluent. Re-use of effluents where applicable. Sludge treatment and disposal.

CIVL8872
Solid Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Characterization of municipal solid waste; collection; transfer stations; waste minimization and recycling; waste treatment, including size reduction, composting, incineration, emerging technologies; landfill disposal, including preparation of landfill management plans and operational aspects; introduction to planning of waste management systems.
CIVL8881 Hazardous Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Waste audits and characterization of hazardous wastes in regions and industries; control of generation and transport of hazardous waste, manifest systems; waste minimisation; on-site treatment methods; integrated off-site treatment facilities; management of residues from treatment facilities; introduction to planning of regional hazardous waste management systems. Characteristics of individual waste types (dioxins, PCBs, pesticides, heavy metal, etc.) and waste management in individual industries (steel, pulp and paper, petro-chemical, food processing, etc.).

CIVL8884 Environmental Engineering Science 1
Staff Contact: Prof T.D. Waite
C3 S1
Water chemistry: Basic concepts in aqueous chemistry; pH buffering, alkalinity, chemical equilibrium, kinetics of chemical reactions, neutralisation and precipitation, Henry's Law.

CIVL8891 Groundwater Contamination and Remediation
Staff Contact: Dr R. I. Acworth
Description of types of groundwater contaminants, sources of groundwater contamination, review of transport equations, mass transport in saturated media, advection and dispersion, biological and chemical transformation of groundwater contaminants, multiphase flow, migration of nonaqueous liquids. Groundwater sampling and analysis, monitoring well design and installation, soil-water and soil-gas monitoring. Treatment and prevention of groundwater contamination. Site investigation methods at contaminant sites. Size remediation: source control, pump and treat, soil vapour extraction, bioremediation.

CIVL8909 Project
C9
A minor research investigation involving analysis and interpretation of data, or a critical review and interpretation of literature on a selected topic, or a design project.

CIVL9402 Transport, Environment, Community
Staff Contact: Dr S.E. Samuels
C6 F
Note/s: Not offered in 1995

CIVL9403 Theory of Land Use Transport Interaction
Staff Contact: Dr S.E. Samuels
C3 SS
Note/s: Not offered in 1995
Theoretical aspects of land use transport planning. Basic concepts, data collection methods, systems models and equation of state function (behavioural, optimizing). Introduction to land use-transport modelling (land use, generation, distribution, modal assignment, network assignment, evaluation). Planning methodologies (short-, medium-, long-term; action planning, strategic planning; local, urban, regional, national).

CIVL9405 Urban Transport Planning Practice
Staff Contact: Dr S.E. Samuels
SS C3
Note/s: Not offered in 1995

CIVL9407 Transport Systems Design (Non-Urban)
Staff Contact: Dr S. E. Samuels
C3 SS
Note/s: Not offered in 1995
Process of location of road, railway and airport facilities. Data collection, alternative routes, public discussion, methods, techniques, aids, plans and diagrams produced. Geometric form; differences between road, railway and airport carriageway layout. Optical guidance, design models, landscape, provision for surface-water, signposting, fencing and posts.

CIVL9408 Transport Systems Design (Urban)
Staff Contact: Dr S.E. Samuels
C3 S1
Types of urban transport facilities. Distributors, streets, bicycle routes, walk-oriented areas, bus lanes and rapid transit lanes, stops and change terminals, noise control. Minimum geometric form; speed range controls, provision for surface water on urban roads, landscape. Design of intersection and parking areas.

CIVL9410 Highway Engineering Practice
Staff Contact: Assoc. Prof B. Shackel
C3 S1
CIVL9412
Economics for Transportation Studies
Staff Contact: Dr S.E. Samuels
C3 SS
Note/s: Not offered in 1995

CIVL9414
Transport Systems Part 1
Staff Contact: Dr U. Vandebona
C3 S1

CIVL9415
Transport Systems Part 2
Staff Contact: Dr U. Vandebona
C3 S2
Historical introduction to transport systems and development of various transport modes, road (vehicles, pedestrians, cycles), conveyor, rail, sea and air. Analysis of the operational characteristics of vehicles in the transport modes of road, rail and air. Analysis of the requirements of the rights of way for each transport mode. Development of optimum criteria for the distribution of cargo and passenger traffic. Terminals and mode transfer facilities. Development of system operational models. Energy consideration, new systems.

CIVL9416
Traffic Engineering
Staff Contact: Dr M.C. Dunne
C6 F
Road inventory; traffic measurements; flow, speed, origin-destination, accidents, road structure. Road capacity: controlled and uncontrolled intersections, highways and freeways. Signal systems. Traffic operations and control; arterial and network systems. Parking, Hazard analysis and safety improvement. Enforcement. Bus service operation.

CIVL9417
Transport and Traffic Flow Theory
Staff Contact: Dr M.C. Dunne
C6 F
Note/s: Not offered in 1995
Analysis of deterministic and stochastic models of the traffic stream. Topics covered include the following. Definition and measurement of traffic stream parameters. Space and time distribution of speed. Overtaking models and the moving-observer method. Fundamental diagram of traffic. Car-following theory. Headway and counting distributions. Introduction to queueing theory. Simulation techniques. Signalized and unsignalized intersections.

CIVL9418
Statistics for Transport Studies Part 1
Staff Contact: Dr M.C. Dunne
C3 SS
Note/s: Not offered in 1995

CIVL9419
Statistics for Transport Studies Part 2
Staff Contact: Dr M.C. Dunne
C3 SS
Prerequisite: Assumed knowledge CIVL9418
Note/s: Not offered in 1995

CIVL9420
Special Topic In Transport Engineering
Staff Contact: Dr S.E. Samuels
C3 S2
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

CIVL9701
Economic Decision Making in Engineering
Staff Contact: Dr R. R. Wakefield
C3 S1
Project initiation and development, feasibility studies, planning; review of practical engineering decision-making problems and relevant techniques; engineering economics, benefit/cost analysis, methods of economic appraisal; consideration of inflation and taxation in investment decisions; management decision processes, decision theory, utility; micro economic theory; life-cycle costing, asset management; maintenance management; models and techniques to assist the manager; modelling and regression, forecasting; optimization (linear programming, non-linear programming, dynamic programming), inventory models, transportation, assignment and allocation, heuristic techniques, multiple and single objectives, applications; multiple objective planning; BOOT and related project delivery systems.

CIVL9702
Project Planning and Control
Staff Contact: Dr R. R. Wakefield
C3 S2
The planning process; the link between planning and control; short term field planning and management strategies; control systems; the critical path method, PERT, arrow diagrams, precedence diagrams, resource levelling, resource constrained scheduling, network compression, overlapping relationships, applied cpm, cost control, cash flow project control, legal considerations, simulation in networks, stochastic networks, project management, applications; procurement, inventory, supply management and control.
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Staff Contact</th>
<th>Year Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL9703</td>
<td>Quality and Quality Systems</td>
<td>Dr R. R. Wakefield</td>
<td>C3 S2</td>
</tr>
<tr>
<td></td>
<td>Quality management principles, practice and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>responsibilities; applications; quality systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>documentation, manuals, implementation and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>procedures; quality assurance; quality control;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>relevant codes on quality; total quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>management, quality circles and related</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>approaches; quality requirements in contracts;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>continuous improvement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9705</td>
<td>Project Management through People</td>
<td>Prof D. G. Carmichael</td>
<td>C3 SS</td>
</tr>
<tr>
<td></td>
<td>The role of people in the management and execution</td>
<td>Not offered in 1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of projects. Responsibilities, authorities and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>accountabilities. Staffing; the selection and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sources of project personnel; their interaction,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>roles, duties and communications. Personnel skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9706</td>
<td>Human Resources Management</td>
<td>Mr J. B. O'Brien</td>
<td>C3 S2</td>
</tr>
<tr>
<td></td>
<td>The development of skills for the management of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>people and their workplaces; industrial relations,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>health and safety issues; the recognition of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>people as the basic unit of engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>productivity; the structure and function of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>organizations, management of group action; work</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>delegation across organizational boundaries;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interpersonal skills, conflict management;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>learning curves; motivation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9707</td>
<td>Contracts Management</td>
<td>Prof D. G. Carmichael</td>
<td>C3 S1</td>
</tr>
<tr>
<td></td>
<td>Elements of contract law and a contract;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>contracts; contract documents including</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>specifications; procurement methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(contract or project delivery strategies);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tendering; time in contracts; variations;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>payments; rights and obligations; planning and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programming; risk management and insurance;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dispute resolution and dispute avoidance;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cost estimating; claims.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9710</td>
<td>Engineering Risk Management</td>
<td>Mr G. Nawar</td>
<td>C3 S1</td>
</tr>
<tr>
<td></td>
<td>Introduction to the concept of risk and decision</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>making under conditions of uncertainty; project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>objectives and planning, risk/factors affecting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>project performance; risk identification in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>engineering processes; human error, natural</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hazards and unforeseen risks; risk evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and quantification methods; relevant statistical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>techniques; risk avoidance and minimisation;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>financial risk, portfolio theory, risk sharing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and financing; ambient and acceptable risk levels;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>time estimating; insurances.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9714</td>
<td>Special Topic in Engineering Management</td>
<td>Prof D. G. Carmichael</td>
<td>C3 SS</td>
</tr>
<tr>
<td></td>
<td>A series of lectures from industry experts or</td>
<td>Not offered in 1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td>visiting specialists in current and advanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>engineering management. This subject is only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>given when an appropriate specialist is available,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and is not offered every year.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9723</td>
<td>Construction Design</td>
<td>Dr R. R. Wakefield</td>
<td>C3 S2</td>
</tr>
<tr>
<td></td>
<td>Design theory as applied to construction processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>application to selected areas of the construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>industry such as temporary works design,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>formwork and falsework, dewatering systems,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ground support systems and mixed construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>activities such as tunnelling and high rise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>building construction; queuing and simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>models; work study (method study and work</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>measurement) procedures; productivity; job</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>planning, layout planning, capacity planning;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>planning and design of production systems (</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>construction oriented); reliability, availability,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9724</td>
<td>Construction Engineering and Technology</td>
<td>Mr J.B. O'Brien</td>
<td>C3 S2</td>
</tr>
<tr>
<td></td>
<td>Structure of the construction industry;</td>
<td>Not offered in 1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td>construction engineering theory, construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>processes: methods engineering, automation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and mechanization concepts; modelling, design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and analysis; problem solving; task analysis;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adaptive systems and control concepts;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>experimental studies of construction processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction technologies; construction robotics,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>applications of expert and knowledge based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systems. Studies to be selected from: drilling,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>blasting techniques, tunnelling, rock-bolting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and other ground support, earth/rock transport,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>harbours, railways, dams, bridges, structural</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>steelwork techniques, pipeline construction,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>foundation grouting, compressed air work.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9725</td>
<td>Engineering Financial Management</td>
<td>Mr V.J. Summersby</td>
<td>C3 S1</td>
</tr>
<tr>
<td></td>
<td>Engineering financial planning, control of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>labour, plant and materials. Insurances.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financial accounting. Project finance and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>taxation. Management accounting techniques and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cost controls.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL9726</td>
<td>Legal Studies and Professional Practice</td>
<td>Prof D. G. Carmichael</td>
<td>C3 SS</td>
</tr>
<tr>
<td></td>
<td>Nature and sources of law, court procedures,</td>
<td>Not offered in 1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interpretation of documents, evidence, technical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>opinions, expert witness; company law; duties of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>an engineer; tort, professional LIABILITY,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trade practices and consumer legislation; ethics.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CIVL9727
Construction Estimating and Tendering
Staff Contact: Prof D.G. Carmichael
C3 S2
Estimating procedures, estimating cost of labour and materials, indirect costs and overheads, profit; preparation of cost estimates for engineering projects; the conversion of an estimate into a tender; bidding strategies and models; the tendering process; marketing.

CIVL9728
Special Topic in Construction
Staff Contact: Mr V.J. Summersby
C3 SS
Note/s: Not offered in 1995
A construction topic presented in depth by industry experts or visiting specialists. This subject is only given when an appropriate specialist is available, and is not offered every year.

CIVL9731
Project Management Framework
Staff Contact: Mr J.B. O'Brien
C3 S1
An overview of construction/project management; the nature of engineering and construction projects; the project life cycle; the project team, organizational and behavioural aspects; the construction/project manager; behavioural aspects of construction/project management; the organization and management of project resources; project success evaluation techniques; project delivery including fast track projects; management information and decision support systems; case studies in construction/project management; value management/engineering; management theory and processes; relationship to general management; functions of construction/project management.

CIVL9732
Masonry Construction, Design and Materials
Staff Contact: Mr G. Nawar
C3 SS
Note/s: Not offered in 1995
Properties of masonry units, mortar, grout and accessories; advantages and limitations of masonry in construction; construction planning, methods and productivity; general design principles, details and performance limit states; structural design of masonry subject to axial, in-plane and out-of-plane lateral loads; reinforced and prestressed masonry; design for fire resistance; workmanship and site control; cleaning, maintenance and repair.

CIVL9777
Numerical Methods in Geomechanics
Staff Contact: Dr N. Khalil
C3 S1
Note/s: Not offered in 1995
Fundamentals of finite element and boundary element methods; application to practical geotechnical design and case studies; deformation and flow problems; linear and non-linear analysis; application to underground opening, stability of slopes, foundations, mining excavation; seepage and consolidation soil-structure interaction problems; earth pressures, retaining walls and buried pipes, thermal stress analysis.

CIVL9783
Pavement Materials
Staff Contact: A/Prof B. Shackel
C3 S2

CIVL9784
Pavement Design
Staff Contact: A/Prof B. Shackel
C3 S1

CIVL9785
Pavement Evaluation and Maintenance
Staff Contact: A/Prof B. Shackel
C3 S2

CIVL9786
Industrial and Heavy Duty Pavements
Staff Contact: A/Prof B. Shackel
C3 S2
Functions of industrial and heavy-duty pavements. Port pavements, container facilities, bulk cargo areas, mine haulage roads, factory and warehouse floors and hardstands operation requirements. Economic considerations. Types of industrial pavement. Advantages and disadvantages of flexible, rigid and segmented pavements. Types of load, industrial vehicles, contained stacking, bulk cargo. Load equivalence concepts, port area wheel loads, standard design vehicles, formulation and application of loading spectra. Pavement design procedures for new pavements and overlays. Selection of pavement materials. Construction, maintenance and rehabilitation of industrial pavements. Railtrack design,
Integration of railtrack and vehicular pavements. Settlement and drainage considerations.

CIVL9788
Site Investigations
Staff Contact: Prof. R. Fell
C3 S1
Engineering geology mapping and terrain classification. Drilling, trenching and sampling of rock and soil. In-situ testing of soil and rock. Laboratory testing of soil and rock. Assessment of design parameters. instrumentation to measure pore pressure, stress, displacement.

CIVL9790
Stability of Slopes
Staff Contact: Prof. R. Fell
C3 S1
Stability of natural and constructed slopes in civil and mining engineering. Stability analysis; stabilization methods and design; monitoring. Design of slopes in soft ground, soil and rock, and in partially saturated slopes; design of open cut mines. Probabilistic methods.

CIVL9791
Foundation Engineering 1
Staff Contact: Mr. G.R. Mostyn
C3 S1
Stress distribution beneath foundations, settlement analysis, design of shallow footings, design of pile foundations, cast in situ piles, foundation on shrink-swell soils, lateral earth pressures, foundations on rock, site investigations.

CIVL9792
Foundation Engineering 2
Staff Contact: Prof. S. Valliappan
C3 S2
Advanced consolidation theory, non-linear behaviour, soil structure interaction, design of rafts and piled rafts, analysis and construction of piled foundations, steel piles, braced cuts, temporary support of excavations, design of foundations for dynamic loading, machine foundations.

CIVL9793
Geomechanics
Staff Contact: Dr. N. Khalili
C3 S1
The fundamentals of the effective stress concept, clay mineralogy, seepage analysis and Laplace equation, method of fragments, fundamentals of liquefaction and cyclic mobility, basic and advanced consolidation theory including Terzaghi's 1D theory, nonlinearity and Biot's theorem, critical state soil mechanics theory, hyperbolic model, fundamentals of continuum stress analysis, theory of elasticity, constitutive relationships and failure criteria for real soils and rocks and soil plasticity.

CIVL9799
Environmental Geomechanics
Staff Contact: Dr. G.E. Swarbrick
C3 S2
Dispersive soils, hydrological cycle, partly saturated flow through soils, advective-dispersive transport, acid mine drainage, leachate plumes, design and construction of waste dump covers and liners, site remediation and leachate collection and treatment.
CIVL9810
Reinforced Concrete 2
Staff Contact: Dr S.J. Foster
C3 S2

CIVL9814
Analysis of Plates and Shells
Staff Contact: A/Prof V.A. Pulmano
C3 S2

CIVL9817
Experimental Structural Analysis
Staff Contact: Prof R.I. Gilbert
C3 SS
Note/s: Not offered in 1995.
Dimensional analysis and principles of similitude, model analysis and design of models. Instrumentation and special methods of measurement. Evaluation of data.

CIVL9818
Bridge Design 1
Staff Contact: A/Prof F.S.K. Tin Loi
C3 S1

CIVL9819
Bridge Design 2
Staff Contact: A/Prof F.S.K. Tin Loi
C3 S2

CIVL9820
Structural Analysis and Finite Elements 1
Staff Contact: Dr I.J. Somervaille
C3 S1

CIVL9821
Structural Analysis and Finite Elements 2
Staff Contact: A/Prof P.W. Kneen
C3 S2

CIVL9822
Steel Structures 1
Staff Contact: A/Prof M.A. Bradford
C3 S2
Introduction to limit states design, methods of analysis of steel structures, columns, tension members, bending of beams, lateral buckling of beams, design by buckling analysis, beam-columns, elastic design of frames.

CIVL9823
Steel Structures 2
Staff Contact: A/Prof M.A. Bradford
C3 S2
Effective lengths of columns in braced and sway frames, uniform torsion of steel structures, warping torsion of steel structures, design rules for torsion, design of bolted plates and connections, design of welded plates and connections, design process for industrial frames.

CIVL9824
Advanced Concrete Technology
Staff Contact: Dr N. Gowripalan
C3 SS

CIVL9830
Hydromechanics
Staff Contact: Dr D.A. Luketina
C3 SS
Note/s: Not offered in 1995
General equation of fluid motion, potential flow, conformal mapping, laminar flow, Navier-Stokes equations; turbulence, shear flows, jets and wakes, boundary layers, turbulent mixing, diffusion, air entrainment, cavitation, stratification.

CIVL9832
Transients in Open Channels and Pipes
Staff Contact: Dr J.E. Ball
C3 SS
Note/s: Not offered in 1995
Analysis of unsteady flows in open channels and closed conduits. Includes development of the appropriate equation set, conversion of coordinate systems into the fundamental characteristic coordinates, flow of information along the characteristic paths. Practical problems associated with unsteady flows are also addressed; these include pump operation, valve operation, the formation of surges and bores, the influence of junctions of channels and conduits on surge propagation.
CIVL9833
Design of Hydraulic Structures
Staff Contact: A/Prof R.J. Cox
C3 S1
Theory of waterflow in open channels. Application of theory to design of hydraulic structures, spillways, energy dissipators, channel transitions, gross pollution traps, side discharge weirs, all pollution booms.

CIVL9835
Coastal Engineering 1
Staff Contact: A/Prof R.J. Cox
C3 SS
Note/s: Not offered in 1995
Theory of periodic waves as applied to tides and wind generated waves in water of varying depths. Wave and tide prediction.

CIVL9836
Coastal Engineering 2
Staff Contact: A/Prof R.J. Cox
C3 SS
Note/s: Not offered in 1995
Wave forces on structures, shore processes and beach erosion. Estuarine hydraulics, wave and tide models.

CIVL9847
Water Resources Policy
Staff Contact: Dr D. Djokic
C3 SS
Note/s: Not offered in 1995
Resource economics, water supply, water demand, multiple objective planning, multiple purpose projects, water law, water administration, case studies.

CIVL9848
Water Resource System Design
Staff Contact: Dr D. Djokic
C3 SS
Note/s: Not offered in 1995
Principles of the optimal design and operation of multiple purpose, multiple component, water resource system; evaluation of cost and benefits in complex and simple systems.

CIVL9851
Unit Operations in Public Health Engineering
Staff Contact: Mr P.J. Bliss
C3 S1
Theory of physical, chemical, biological, and hydraulic processes used in both water and wastewater treatment. Applications where these are common to both water and wastewater treatment.

CIVL9852
Water Distribution and Sewage Collection
Staff Contact: Mr P.J. Bliss
C3 SS
Note/s: Not offered in 1995
Water collection, transmission and distribution systems - layout design and analysis, reservoirs, pumping. Sewage collection design and analysis - capacities, corrosion, pumping.

CIVL9855
Water and Wastewater Analysis and Quality Requirements
Staff Contact: Ms P.A. FitzGerald
C3 S1
The effects of impurities in water and wastewater on its suitability for various beneficial uses, and methods used for detecting impurities. Analytical methods used in water and wastewater treatment for monitoring and process control.

CIVL9856
Water Treatment
Staff Contact: Ms P.A. FitzGerald
C3 S2
Application of processes and process variations used to upgrade the quality of water for specified uses, with particular reference to the treatment of water for municipal use.

CIVL9857
Wastewater Treatment and Disposal
Staff Contact: Mr P.J. Bliss
C3 S2
Application of processes and process variations used to improve the quality of wastewaters and of sewage effluent, and the disposal of the effluent. Re-use of effluents where applicable. Sludge treatment and disposal.

CIVL9858
Water Quality Management
Staff Contact: Ms P.A. FitzGerald
C3 S2
Fundamental concepts; systems approach to quality aspects of water resource systems; quality interchange systems; quality changes in estuarine, surface, and ground water. Quality management by engineered systems. Economic and regulatory criteria relating to water use and re-use systems.

CIVL9859
Environmental Hydrology
Staff Contact: Dr J.E. Ball
C3 S1
Total catchment management; water policy; low flows and interaction between hydrology and water quality; land use effects; erosion processes; introduction to pollutant loading estimation (sources); quality models; rainfall impacts on water quality, accuracy of data; introduction to water quality treatment processes.

CIVL9860
Investigation of Groundwater Resources
Staff Contact: Dr R.I. Acworth
C3 S1
Occurrence and extraction of groundwater, investigation and drilling methods, systems approach, optimization techniques, conjunctive use studies, quality of groundwater.
CIVL9861
Environmental and Engineering Geophysics
Staff Contact: Dr R.I. Acworth
C3 SS
Note/s: Not offered in 1995
Introduction to available geophysical techniques. Electrical properties of water, soils, rocks and contaminants over the frequency range 1 Hz to GHz. Electrical conductivity profiling methods - resistivity and electromagnetic; electrical resistivity soundings; 2D electrical resistivity field methods and FD modelling. Time domain electromagnetic methods; borehole logging using electrical, electromagnetic, nuclear, caliper and fluid logs. Use of ground probing radar; gravity methods; seismic refraction - field techniques and the generalised reciprocal interpretation methods; time domain reflectometry and nuclear methods for soil moisture determination and contaminant investigation. Case studies from groundwater resource, salinity, engineering and contamination fields.

CIVL9862
Fluvial Hydraulics
Staff Contact: A/Prof R.J. Cox
C3 S2
Unsteady and varied flow in non-uniform channels, secondary currents, sediment transport, channel morphology, scour and shoaling, river control works, modelling of fluvial processes.

CIVL9863
Estuarine Hydraulics
Staff Contact: Dr D.A. Luketina
C3 S1

CIVL9866
Flood Design
Staff Contact: A/Prof I. Cordery
C3 S1
Introduction to flood estimation; frequency analysis of hydrological data; flood frequency analysis; design rainfall data; hydrograph analysis; loss models; regional flood methods; rational methods; time-area methods; UH methods; extreme floods.

CIVL9867
Flood Modelling
Staff Contact: Dr J.E. Bally
C3 S1
Introduction to modelling; introduction to flood routing, nonlinear catchment models; kinematic wave models; application and calibration of models; urban hydrology.

CIVL9870
Hydraulics and Design of Water and Wastewater Treatment Plants
Staff Contact: Mr P.J. Bliss
C3 SS
Corequisites: CIVL9856, CIVL9857 or equivalent
Note/s: Not offered in 1995
Application of hydraulic principles to flows within treatment plants. Selection and integration of unit processes required for water and wastewater treatment, plant layout, plant design including hydraulic profiles, the influence of flow and load variability, instrumentation and control strategies.

CIVL9871
Water Supply and Sanitation in Developing Countries
Staff Contact: Prof T.D. Waite
C3 SS
Prerequisite: CIVL9851, CIVL9855, CIVL9868 or equivalent
Note/s: Not offered in 1995
Selection of appropriate technology for water supply and wastewater treatment and disposal to account for hot climates and low per capita incomes. Design basis for systems and the operating requirements.

CIVL9872
Solid Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Characterization of municipal solid waste; collection; transfer stations; waste minimization and recycling; waste treatment, including size reduction, composting, incineration, emerging technologies; landfill disposal, including preparation of landfill management plans and operational aspects; introduction to planning of waste management systems.

CIVL9875
Hydrological Processes
Staff Contact: A/Prof I. Cordery
C3 S1
Introduction to hydrological cycle and energy balance; meteorology; precipitation processes, interception and infiltration, storm runoff processes, groundwater flow, E-T.

CIVL9876
Water Resource Modelling
Staff Contact: Dr D. Djokic
C3 S1
Water resources data - sources, errors, corrections; introduction to storage-yield relationships for reservoir design; extension of records; stochastic models; stochastic reservoir analysis; deterministic catchment models; model calibration and verification; application of conjunctive use systems; social interactions-economics, politics, public participation.

CIVL9877
Flood Design
Staff Contact: A/Prof I. Cordery
C3 S1
Introduction to flood estimation; frequency analysis of hydrological data; flood frequency analysis; design rainfall data; hydrograph analysis; loss models; regional flood methods; rational methods; time-area methods; UH methods; extreme floods.
CIVL9880
Groundwater Modelling
Staff Contact: Dr R.I. Acworth
C3 S2
Groundwater modelling of porous media, fractured rock and low permeability materials. Analogue, numerical analytical models. Matrix structure and inverse methods, stochastic modelling and characterization of variability, modelling multiphase fluids and regional groundwater flow. Applications to borefield management, salt water intrusion, mine dewatering, geotechnical problems.

CIVL9881
Hazardous Waste Management
Staff Contact: Mr S.J. Moore
C3 S2
Waste audits and characterization of hazardous wastes in regions and industries; control of generation and transport of hazardous waste, manifest systems; waste minimisation; on-site treatment methods; integrated off-site treatment facilities; management of residues from treatment facilities; introduction to planning of regional hazardous waste management systems. Characteristics of individual waste types (dioxins, PCBs, pesticides, heavy metal, etc.) and waste management in individual industries (steel, pulp and paper, petro-chemical, food processing, etc.).

CIVL9884
Environmental Engineering Science 1
Staff Contact: Prof T.D. Waite
C3 S1
Water chemistry: Basic concepts in aqueous chemistry: pH buffering, alkalinity, chemical equilibrium, kinetics of chemical reactions, neutralisation and precipitation, Henry's Law.

Introduction to Microbiology: Structure and metabolism of cells and micro-organisms; monitoring methods for pathogens and indicator organisms; impact of water and wastewaster treatment on disease transmission.

CIVL9885
Environmental Engineering Science 2
Staff Contact: Prof T.D. Waite
C3 S1
Classification of soils and improvement of the engineering properties of soils. Aspects of soil chemistry relevant to contaminant behaviour of soils.

Fundamentals of dispersion common to all environmental media (air, water, soil).

Air chemistry: interaction and degradation of gaseous pollutants in the atmosphere.

CIVL9887
Advanced Topics in Waste Management
Staff Contact: Mr S.J. Moore
C3 SS
Prerequisites or corequisites: CIVL9872, CIVL9881
Note/s: Not offered in 1995
A selection of at least 7 topics from the following to suit the class needs, expertise of visiting academics and researchers in the Cooperative Research Centre for Waste Management and Pollution Control, and issues of current interest. Background and basis of solid and hazardous waste classification and control systems; legislative and economic (market) regional pollution control mechanisms; developing techniques for waste minimisation; site selection and EIS preparation for waste facilities; dispersion of contaminants in the atmosphere; community consultation; detailed legislative requirements; application of systems concepts in waste management; environmental management plans; risk assessment at waste facilities; contaminated site characterization and remediation; topics of interest to visiting academics; case studies by way of assignments.

CIVL9888
Environmental Management and Economics
Staff Contact: Mr S.J. Moore
C3 S2
Spectrum of modern environmentalism, sustainable development and urban growth. The structure of the environmental regulatory process. Decision making and management systems; case studies; introduction to micro-economics with reference to environmental issues, sustainable economic growth and zero growth. Environmental costing.

CIVL9889
Legislative Aspects of the Environment
Staff Contact: Mr S.J. Moore
C3 S2
Statutory and common law regulation of access to, use and management of natural resources and waste disposal in the natural environment. Case studies from waste treatment and disposal, water resources management, disposal of mine wastes and other areas as appropriate.

CIVL9890
Spatial Decision Support Systems in Water Resources
Staff Contact: Dr D. Djokic
C3 S2
Principles of spatial decision support systems as used in hydrology, water resources and catchment management. Expert systems methods for decision modelling. Use of geographic information systems in surface and subsurface data analysis, model integration and presentation. Development and use of databases for water resources applications. Review of techniques for spatial data collection including remote sensing and global positioning systems.

CIVL9891
Groundwater Contamination and Remediation
Staff Contact: Dr R. I. Acworth
Description of types of groundwater contaminants, sources of groundwater contamination, review of transport equations, mass transport in saturated media, advection and dispersion, biological and chemical transformation of groundwater contaminants, multiphase flow, migration of nonaqueous liquids. Groundwater sampling and analysis, monitoring well design and installation, soil-water and soil-gas monitoring. Treatment and prevention of groundwater contamination. Site investigation methods at contaminant sites. Size remediation: source control, pump and treat, soil vapour extraction, bioremediation.
CIVL9901
Special Topic in Civil Engineering
C3 SS
Note/s: Not offered in 1995
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

CIVL9902
Special Topic in Civil Engineering
C3 S2
Note/s: Not offered in 1995
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

CIVL9909
Project
C9
A minor research investigation involving analysis and interpretation of data, or a critical review and interpretation of literature on a selected topic, or a design project.

CIVL9915
Project Report
C15
School of Computer Science and Engineering

Head of School
Professor J. Hiller

Executive Assistant to Head of School
Dr G. R. Whale

Executive Officer
Mr P. Ivanov

Administrative Assistant
Ms V. Joubert

The School, which was formerly the Department of Computer Science in the School of Electrical Engineering and Computer Science, was established on 1 January 1991. The School of Computer Science and Engineering and the restructured School of Electrical Engineering have joint responsibility for the curriculum of the Computer Engineering course.

The staff of the School are grouped around the activity areas of Artificial Intelligence, Formal Methods and Software Engineering, Computer Architecture and VLSI Design, Information Science, Algorithms and Programming Techniques, Networks and Operating Systems and Human-computer interaction. Subjects in these areas are offered to students taking major studies in computer science or computer engineering, while introductory-level computing subjects are available more generally to students studying Science, Arts or Engineering. Computer science has links with discrete mathematics, which furnishes the theory behind the algorithms that computer software implements, and electrical engineering, which supplies the present technology underlying physical computing devices.

The School, together with the School of Electrical Engineering, jointly administers the BE Computer Engineering 3645. It also offers a major in Computer Science in the BSc (Science and Mathematics), combined BE BSc degree courses 3651, 3725, 3726, combined BE BA course 3722 and combined BSc LLB course 4770.

The formal graduate courses offered are the Master of Cognitive Science 8155, Master of Computer Science 8680, Master of Information Science 8508, Graduate Diploma in Computer Science 5452, Graduate Diploma in Information Science and Graduate Diploma in Computer Education 5464. Opportunities are provided for graduate research leading to the award of the degree of Master of Engineering and Doctor of Philosophy 1650.

Summary of Undergraduate Courses

Normal full-time

<table>
<thead>
<tr>
<th>Course and Degree(s)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3645 BE in Computer Engineering</td>
<td>4 years</td>
</tr>
<tr>
<td>3722 BE BA in Computer Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3725 BE BSc in Electrical Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3726 BE BSc in Computer Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3730 BE BSc in Civil Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3811 BE BSc in Aerospace Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3661 BE BSc in Manufacturing Management</td>
<td>5 years</td>
</tr>
<tr>
<td>3681 BE BSc in Mechanical Engineering</td>
<td>5 years</td>
</tr>
</tbody>
</table>
56 ENGINEERING

3701 BE BSc in Naval Architecture
3746 BE BSc in Geomatic Engineering

Majors

Course and Degree
3970 BSc
3400 BA
3420 BSocSc
4770 BSc LLB

Duration
3 years (Pass) 4 years (Hons)
3 years (Pass) 4 years (Hons)
3 years (Pass) 4 years (Hons)
5 years

For a description of the combined BE BSc courses, see the entries in this Handbook for the schools conducting the engineering major. The BSc degree course is described in the Science Handbook. Majors are offered in Computer Science and Psychology, and Computer Science and Philosophy; for the BA and BSocSc degree courses, see the Arts and Social Sciences Handbook and for the BSc LLB course, see the Law Handbook.

Undergraduate Study

Computing Requirements

Information regarding recommended computing equipment for the courses offered by the School is available from the School Office.

Course Outlines

3645

Computer Engineering - Full-time Course
Bachelor of Engineering
BE

Whilst jointly administered by the Schools of Computer Science and Engineering and Electrical Engineering, for convenience, day-to-day administration of the course is conducted through the Computer Science and Engineering School Office, Room 313, to which enquiries should be directed.

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9001</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>ACCT9002</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>COMP1011</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>COMP1021</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>ELEC1011</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1131</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1141</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1241</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1081</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>PHYS1969</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Totalling</td>
<td>25.5</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2011</td>
<td>Data Organization 5 S1 0 S2</td>
</tr>
<tr>
<td>COMP2021</td>
<td>Digital System Structures 5 S1 0 S2</td>
</tr>
<tr>
<td>COMP2031</td>
<td>Concurrent Computing 0 S1 5 S2</td>
</tr>
<tr>
<td>ELEC2011</td>
<td>Systems Theory 0 S1 2.5 S2</td>
</tr>
<tr>
<td>ELEC2030</td>
<td>Circuit Theory + Laboratory 3.5 S1 0 S2</td>
</tr>
<tr>
<td>ELEC2033</td>
<td>Analog Electronics + Laboratory 0 S1 4.5 S2</td>
</tr>
<tr>
<td>MATH2510</td>
<td>Real Analysis or 2.5 S1 0 S2</td>
</tr>
<tr>
<td>MATH2610</td>
<td>Higher Real Analysis 2.5 S1 0 S2</td>
</tr>
<tr>
<td>MATH2520</td>
<td>Complex Analysis or 2.5 S1 0 S2</td>
</tr>
<tr>
<td>MATH2620</td>
<td>Higher Complex Analysis 2.5 S1 0 S2</td>
</tr>
<tr>
<td>MATH2849</td>
<td>Statistics SE1 0 S1 2 S2</td>
</tr>
<tr>
<td>MATH3150</td>
<td>Transform Methods 0 S1 2 S2</td>
</tr>
<tr>
<td>PHYS2959</td>
<td>Introductory Semiconductor Physics 1.5 S1 0 S2</td>
</tr>
<tr>
<td>General Education Cat. A 0 S1 4 S2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>20 S1 20 S2</td>
</tr>
</tbody>
</table>

Students must attain a mark of 70CR or better in MATH1032 or MATH1042 or MATH1231 or MATH1241 in order to do Higher Level MATH subjects.

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP3111</td>
<td>Software Engineering 0 S1 5 S2</td>
</tr>
<tr>
<td>COMP3121</td>
<td>Algorithms and Programming Techniques 5 S1 0 S2</td>
</tr>
<tr>
<td>COMP3211</td>
<td>Computer Organization and Design 4 S1 0 S2</td>
</tr>
<tr>
<td>COMP3221</td>
<td>Microprocessors and Interfacing 0 S1 5 S2</td>
</tr>
<tr>
<td>ELEC3032</td>
<td>Signals, Spectra and Filter + Lab. 3.5 S1 0 S2</td>
</tr>
<tr>
<td>MATH2501</td>
<td>Linear Algebra or 3.5 S1 0 S2</td>
</tr>
<tr>
<td>MATH2601</td>
<td>Higher Linear Algebra 4.5 S1 0 S2</td>
</tr>
<tr>
<td>MATH2859</td>
<td>Statistics SE2 2 S1 0 S2</td>
</tr>
<tr>
<td>MATH3141</td>
<td>Numerical and Mathematical Methods 0 S1 3.5 S2</td>
</tr>
<tr>
<td>COMP0001</td>
<td>Total Quality Management 0 S1 3 S2</td>
</tr>
<tr>
<td>Option A</td>
<td>5 S1 0 S2</td>
</tr>
<tr>
<td>Option B</td>
<td>0 S1 5 S2</td>
</tr>
<tr>
<td>General Education Cat. B 0 S1 4 S2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>24 S1 25.5 S2</td>
</tr>
</tbody>
</table>
Recommended Options for the four streams are listed below:

Communications Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3013 Communications Systems 1

Electronics Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3016 Electronic Signal Processing

Systems and Control Stream
Option A: ELEC3031 Integrated Electronics + Laboratory
Option B: ELEC3014 Systems and Control 1

Students who elect the Communications, Electronics or Systems and Control Stream must also take the following subjects in year 3 or year 4:
- COMP3131 Parsing and Translation and/or COMP3231 Operating Systems and/or COMP3331 Computer Networks and Applications or ELEC4351 Digital Communication and Computer Networks

Computing Stream
Option A: Any level 3/4 Computer Science subjects or ELEC3031 Integrated Electronics + Laboratory
Option B: Any level 3/4 Computer Science subject

Professional Electives

<table>
<thead>
<tr>
<th>Communications Stream</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3016 Electronic Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ELEC4042 Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ELEC4303 Electromagnetic Wave Propagation</td>
<td></td>
</tr>
<tr>
<td>ELEC4313 Optical Communications</td>
<td></td>
</tr>
<tr>
<td>ELEC4323 Digital and Analogue Communications</td>
<td></td>
</tr>
<tr>
<td>ELEC4351 Digital Communication and Computer Networks</td>
<td></td>
</tr>
<tr>
<td>ELEC4352 Data Networks 2</td>
<td></td>
</tr>
<tr>
<td>ELEC4503 Advanced Electronic Circuits</td>
<td></td>
</tr>
<tr>
<td>ELEC4512 Semiconductor Devices</td>
<td></td>
</tr>
<tr>
<td>ELEC4522 Microelectronics Design and Technology</td>
<td></td>
</tr>
<tr>
<td>ELEC4532 Integrated Digital Systems</td>
<td></td>
</tr>
<tr>
<td>ELEC4540 Applied Photovoltaics</td>
<td></td>
</tr>
<tr>
<td>ELEC4042 Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ELEC4412 Systems and Control 2</td>
<td></td>
</tr>
<tr>
<td>ELEC4413 Digital Control</td>
<td></td>
</tr>
<tr>
<td>ELEC4432 Instrumentation and Control</td>
<td></td>
</tr>
<tr>
<td>ELEC4503 Advanced Electronic Circuits</td>
<td></td>
</tr>
<tr>
<td>ELEC4512 Semiconductor Devices</td>
<td></td>
</tr>
<tr>
<td>ELEC4522 Microelectronics Design and Technology</td>
<td></td>
</tr>
<tr>
<td>ELEC4532 Integrated Digital Systems</td>
<td></td>
</tr>
<tr>
<td>ELEC4540 Applied Photovoltaics</td>
<td></td>
</tr>
</tbody>
</table>

Systems and Control Stream
Option A: Any level 3/4 Computer Science subjects or ELEC3031 Integrated Electronics + Laboratory
Option B: Any level 3/4 Computer Science subject

Computing Stream
Option A: Any level 3/4 Computer Science subjects or ELEC3031 Integrated Electronics + Laboratory
Option B: Any level 3/4 Computer Science subject

Notes:
1. Professional Electives may be chosen from level 3/4 Computer Science Subjects and the Electrical Engineering Professional Elective Subjects listed below. Students should also note the compulsory subjects which must be taken in Year 3 or Year 4, listed in the previous section.
2. All students in the BE Computer Engineering course must complete at least 60 days of approved industrial training before the end of year 4.
3. IROB2721 Managing People satisfied the requirements for General Education, Category C.
Combined Courses

Students in Computer Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. (The two degrees referred to here are the Bachelor of Engineering/Bachelor of Science BE BSc and the Bachelor of Engineering/Bachelor of Arts BE BA). Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Computer Science and Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate. Students wishing to enrol in, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisite study, sequencing and academic attainment average (a creditable performance, ie 65%) of both the Course Authorities concerned.

Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. AUSTUDY support is available for the five years of the combined degree courses.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However, the choice of subjects and the time taken to complete the program can be seriously affected by this. Thus, students considering course 3726 should contact the School of Computer Science and Engineering before completing the Year 2 enrolment. Students may opt to join the BE BA course 3722 in year 1, whereas transfer to 3726 normally occurs after year 2.

Re-enrolment of students in Courses 3722 and 3726 each year is arranged by the School of Computer Science and Engineering.

3722
BE BA in Computer Engineering

With this combined degree course students can add their choice of Arts program to the standard, professionally accredited engineering course offered by the School of Computer Science and Engineering. The full range of Arts programs is available.

Because the engineering and arts programs have common content, such as mathematics and physics, only one more year of study is normally required to gain the additional qualification of Bachelor of Arts.

Eligibility

Anyone who meets the entry requirements for both Engineering and Arts is eligible for the combined course. Students may enter directly in first year or may apply to transfer from the normal engineering course later, although with late transfer it might not be possible to complete the course in minimum time.

Organization

The BE BA course is administered by the School of Computer Science and Engineering.

Students should start discussing their program with representatives of the School and the Faculty of Arts and Social Sciences as soon as possible - preferably well before enrolment. Enquiries should be directed to the Executive Assistant to the Head of School of Computer Science & Engineering and the Executive Assistant to the Dean of the Faculty of Arts and Social Sciences.

Students should work out for themselves the Arts program they would like to add to their chosen engineering course. The Arts and Social Sciences Faculty Handbook describes the options, and the School of Computer Science and Engineering can supply sample programs showing what previous students have arranged.

There are no special rules on what to include in each year. Students should schedule the arts and engineering components to suit their preferences while meeting the constraints of timetables and prerequisites. The sample programs can help here too.

The Arts component must be approved by the Faculty of Arts and Social Sciences.

The final program and schedule must be approved by the School of Computer Science and Engineering.

Rules

1. In addition to the BE course, students must complete a major sequence offered within the BA course and meet the additional requirements listed below:

 Faculty which provides the chosen major
 Faculty of Arts and Social Sciences:
 Arts Credit Points required (minimum) 48 total, including major sequence
 Other Faculties:
 Major sequence plus at least 12 Credit Points from Schools of the Faculty of Arts and Social Sciences
 Mathematics majors are not usually permitted. BE BSc combined degrees are more appropriate for this.

2. Students in the BE BA course are exempt from both Category A and Category B General Education. However, if at any time a student reverts to the single degree program, the usual General Education requirements for that course apply.

3. There will be a testamur for each part of the combined degree course.

4. Students who complete the BE program first may proceed to graduation with the degree of Bachelor of Engineering in the usual way.

5. Students who complete the requirements for their Arts program and the first two years of the BE program may proceed to graduation with the degree of Bachelor of Arts.
3726

BE BSc in Computer Engineering

Students who achieve a creditable performance in the first two years of their Computer Engineering course many apply to transfer to the combined Bachelor of Engineering/Bachelor of Science BE BSc course. The combined degree course normally requires an additional year of study and enables students to complete a major sequence in Mathematics or Physics in the Faculty of Science while completing their studies in Computer Engineering.

Students wishing to enrol in the combined course may do so only on the recommendation of the Head of School and with the approval of the Board of Studies in Science and Mathematics. Because of the need to include appropriate prerequisites, students considering course 3726 should contact the School of Computer Science & Engineering before completing their Year 2 enrolment. Application to transfer to the combined degree course must be made in writing to the Head of School at the end of Year 2.

Students in the BE BSc program are exempt from Category A General Education requirements only. If at any time a student reverts to the single degree program the usual General Education requirements for that course apply.

After completing Years 1, 2 and 3 (modified where necessary as indicated below) of the Computer Engineering course, students in their fourth year complete a specific program consisting of four Level III Science units from related disciplines, the appropriate General Education electives and no less than four other Level II or Level III units. The subjects chosen should be in accord with the rules of the BSc course 3970 leading to a major in Mathematics or Physics. In their fifth year students complete Year 4 of the Computer Engineering course 3645. The program below outlines the course of study:

Year 1 (Standard Program for course 3645)
ACCT9001, ACCT9002
COMP1011, COMP1021,
ELEC1011,
MATH1131 or MATH1141,
MATH1231 or MATH1241,
MATH1081,
PHYS1969

Year 2
COMP2011, COMP2021, COMP2031,
ECON1103,
ELEC2011, ELEC2030, ELEC2033, ELEC4532,
MATH2610, MATH2620, MATH2849, MATH3150,
PHYS2959,
For Physics majors the 1.5 hour subject PHYS2959 must be replaced by the 4.5 hour subject PHYS2989 Solid State Physics. Mathematics subjects may be taken at the ordinary level.

Mathematics majors must add MATH2110 and may include MATH2601 from the Year 3 program.

Year 3
COMP3111, COMP3121, COMP3211, COMP3221,
ELEC3032,
MATH2601, MATH2859, MATH3141
Elective subjects in Computer Science and/or Electrical Engineering, General Education (Category B).

Mathematics majors should take the higher level subject MATH2601 in Year 2 or Year 3.

Physics majors are required to add the following subjects to their program in place of General Education and a five hour Computer Science subject in Session 1 (these will be taken in Year 4):
MATH2100 Vector Calculus (S1 L1.5 T.5)
PHYS2979 Electromagnetic Theory (S1 L2 T1.5)
PHYS2999 Mechanics and Thermal Physics (F L1.5 T.5)

Year 4
Mathematics
56-hour General Education subject (Category B).
Choose at least 5 Mathematics units, 4 of which are Level III.
Choose 3 Level II or Level III units from those available in Program 1000 of course 3970 (see Sciences handbook for details).

Physics
56-hour General Education subject (Category B).
Choose 7 Level II or Level III units from those available in program 0100 of course 3970 of which four must be Level III Physics units chosen to include PHYS3010, PHYS3021, PHYS3030 and PHYS3060.

Computer Science subject deferred from Year 3 of the Computer Engineering course.

Year 5
Year 4 of the Computer Engineering course.
Graduate Study

The formal graduate courses offered are the Master of Cognitive Science 8155, Master of Computer Science 8680, Master of Information Science 8508. Graduate Diploma in Information Science 5453, Graduate Diploma in Computer Science 5452, and Graduate Diploma in Computer Education 5464. Opportunities are provided for graduate research leading to the award of the degree of Master of Engineering 2665, Master of Science 2765, and Doctor of Philosophy 1650.

Course Work Programs

8155
Master of Cognitive Science
MCogSc

For course details see School Office, School of Computer Science and Engineering.

8508/8680
Master of Information Science/
Master of Computer Science
MInfSc/MCompSc

These degrees allow for flexibility of choice between formal coursework and research.

Candidates are required to complete a program totalling 36 and 48 credits for formal coursework for the MInfSc, MCompSc degrees respectively. Alternatively, a degree may be awarded for the completion of formal coursework and a report on a project. The number of credits for a project report is 18.

Candidates may undertake interdisciplinary studies after having met the requirements of the specialization and, subject to approval, are able to take subjects from any school in the Faculty, other faculties of the University and other universities or institutions. By means of this system, programs of studies best suited to the needs of the candidate may be selected.

Period of candidature: The normal period for the degrees are three sessions full time for the degree of MInfSc and 4 sessions full time for the degree of MCompSc if the full 48 credits are required. The maximum period of candidature is six academic sessions for both degrees. In special cases an extension of time may be granted. A candidate is not permitted to continue in a course if the credit value of subjects failed totals more than six.

I. Major Project Option

Compulsory Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9314</td>
<td>Advanced Data Base Management A</td>
<td>3</td>
</tr>
<tr>
<td>COMP9315</td>
<td>Advanced Data Base Management B</td>
<td>3</td>
</tr>
<tr>
<td>COMP9511</td>
<td>Human Interface Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP9514</td>
<td>Advanced Decision Theory for Information Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will take at least one of:

- GEOG9240 Geographic Information Systems 3
- GEOG9290 Image Analysis in Remote Sensing 3
- GMAT9604 Land Information Systems 3
- LIBS0817 Information Storage and Retrieval 3

It is necessary that subjects of at least three credits be taken in one of the areas of expert systems, knowledge-based systems, artificial intelligence, or decision support systems.

II. Coursework Option

Compulsory subjects:

At least one subject from each of the above subject groupings plus:

- COMP9311 Introduction to Data Base Systems 3 (For students with limited knowledge of Data Bases)
- COMP9596 Advanced Topics in Information Science 3
- ELEC9336 Digital Communication Networks 1

The remaining three subjects may be chosen from subjects offered in the specializations:

- Computer Science/Computer Engineering
- Digital Communications and Systems
- Signal Processing
- Cybernetic Engineering and Advanced Robotics

It could also be appropriate to select subjects dealing with behavioural aspects of judgement and choose from the programs offered by other schools.

Students should note that the decision to take Coursework or Project options will not be made until the first 12 credits of coursework has been completed. The Project option will not be available to all students and high grades in the first four subjects will be needed to obtain approval to select that option.
Candidates are required to complete a course totalling at least 48 credits but those who consider that they have extensive knowledge of computing may request exemption from 12 credits of Level 1 subjects.

The program of study may be taken in one of two ways:

Project Option
- 18 credit project COMP9918
- 12 credits from Level 1 subjects
- at least 9 credits from Level 2 subjects
- remaining subjects to be chosen from Computer Science Level 3 electives or

Coursework Option
- 12 credit Level 1 subjects
- 12 credits from Level 2 subjects
- 12 credits from Computer Science Level 3 subjects
- remaining subjects to be chosen from Computer Science or other specializations subject to approval

Level 1 Subjects
- COMP9021 Introduction to Computer Science
- COMP9022 Digital System Structures
- COMP9023 Concurrent and Functional Programming
- COMP9024 Data Structures, File Systems and Data Bases

Level 2 Subjects
- COMP9008 Software Engineering
- COMP9101 Design and Analysis of Algorithms
- COMP9102 Compiling Techniques and Programming Languages
- COMP9201 Operating Systems
- COMP9211 Computer organization and Design
- COMP9221 Microprocessor Systems
- COMP9231 Integrated Digital Systems
- COMP9331 Computer Networks and Applications
- COMP9414 Artificial Intelligence
- COMP9415 Computer Graphics
- COMP9416 Expert Systems and Deductive Data Bases

Level 3 Subjects
- COMP9114 Formal Specification
- COMP9115 Programming Languages: Fundamental Concepts
- COMP9214 Computer Architecture
- COMP9215 VLSI Systems Architecture and Design

Note that the Course Structure is currently under review.

5452
Graduate Diploma in Computer Science
GradDip

5453
Graduate Diploma in Information Science
GradDip

5464
Graduate Diploma in Computer Education
GradDip

For Graduate Diploma course details of recommended programs of study may be obtained from the School Office. Subjects offered in the Masters programs may be taken in the Graduate Diploma programs subject to the approval of the course coordinator. The following extra subjects are offered for the Graduate Diploma in Computer Education:

- COMP9011 Literacy and Programming 3
- COMP9012 Software Engineering and Tools 3
- COMP9013 Data Bases and Expert Systems 3
- COMP9014 Computer organization and Interfacing 3
- COMP9015 Issues in Computing 3
- COMP9018 Computer Graphics and Applications 3
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

COMP0001
Total Quality Management for Computer Engineering
Staff Contact: Prof G. Hellestrand
S2 HPW3
Prerequisites: MATH2859

Presentation of the relevant statistical methods underlying quality management. Understanding processes. Instrumenting processes. Identifying indicators for hardware and software. Implementing a quality program relevant to computer engineering. Experimenting with processes: principles of experiment design, analysis of data from experimentation. Presentation of industrial experiences and best practice.

A group project is undertaken by students to demonstrate the practical application of TQM in both hardware and software design and manufacture.

COMP1011
Computing 1A
Staff Contact: Dr A. Taylor
S1 or S2 HPW6
Prerequisites: as for MATH1131
Co-requisites: MATH1131 or MATH1141
Note/s: Excluded COMP1811, 6.611, 6.600

COMP1021
Computing 1B
Staff Contact: Dr J. Shepherd
S1 or S2 HPW6
Prerequisites: COMP1011
Note/s: Excluded COMP1821, 6.621, 6.021D

COMP2011
Data Organizations
Staff Contact: Dr G. Whale
S1 or S2 HPW5
Prerequisites: COMP1021 or COMP1821
Note/s: Excluded 6.641

Data types and data structures: abstractions and representations; dictionaries, priority queues and graphs; AVL trees, splay trees, B-trees, heaps. File Structures: storage device characteristics, keys, indexes, hashing. Memory management. Lab: programming assignments including group project.

COMP2021
Digital System Structures
Staff Contact: Dr G. Heiser
S1 or S2 HPW5
Prerequisites: COMP1021 or COMP1821
Note/s: Excluded ELEC2012

Digital Systems: switches and gates, boolean algebra, minimisation techniques, combinational and sequential design, timing analysis, finite state machines; analysis, design and realisation of modest digital subsystems, understanding major subsystems in a model computer. Assembly language programming: translation of higher level programming abstractions and data structures to a real computer using an assembler as a target; study of the relationships between the programming model and the hardware model of a computer; understanding of instruction execution. Lab: take-home logic kits; programming assignments.

COMP3111
Software Engineering
Staff Contact: Mr K. Robinson
S1 or S2 HPW5
Prerequisites: COMP2011
Note/s: Excluded 6.642, 6.660G

Informal specification: Data flow diagram methodology, analysis, design, testing, management and documentation of software. Formal specification: set theory, logic, schema calculus, case studies. The Z specification notation. Managing the project lifecycle. CASE tools. A major group project is undertaken.
COMP3121 Algorithms and Programming Techniques
Staff Contact: Dr A. Goswami
S1 HPW5
Prerequisites: COMP2011
Note/s: Excluded 6.642, 6.660G, COMP9101

COMP3131 Parsing and Translation
Staff Contact: Mr K. Robinson
S2 HPW5
Prerequisites: COMP2011
Note/s: Excluded 6.643, 6.664G, COMP9102

COMP3211 Computer Organizations and Design
Staff Contact: Prof G. Hellestrand
S1 HPW4
Prerequisites: COMP2021 or ELEC2012
Note/s: Excluded 6.654G, COMP9211
Combinational and sequential circuit design; synchronisation, communication and arbitration; register transfer specification (Modal). Arithmetic Design Strategies. Memory Organizations: physical and virtual address space; operating system and compiler support; memory mapping and caching. Communications Organizations: shared memory, memory mapping; network systems. Processor Design: the instruction pipeline; hardwired and micro-programmed control; instruction sets; RISC and object-based processor Organizations. Error Detection/Correction and Fault Tolerance; coding theory. Lab: major design project.

COMP3221 Microprocessors and Interfacing
Staff Contact: Dr S. Matheson
S2 HPW5
Prerequisites: COMP2021
Note/s: Excluded 6.0318, 6.060G, 6.613, 6.732E, ELEC3020, COMP9221
The concept of a microprocessor system, busses, address spaces, memory devices, bus timing, bus standards, the VME bus, I/O device interfacing, polling, interrupts, DMA interfaces, the 68000 processor family, the C programming language, device drivers, the device driver software environment, other microprocessors, advanced topics. Laboratory work involves interfacing to and programming MC68000-series microprocessor-based systems. Lab: experimental work involving hardware and software.

COMP3231 Operating Systems
Staff Contact: Dr Jayasooriah
S1 or S2 HPW5
Prerequisites: COMP2011, COMP2031 OR ELEC3020
Note/s: Excluded 6.632, 6.672, COMP9201

COMP3311 Database Systems
Staff Contact: Dr A. Ngu
S1 HPW5
Prerequisites: COMP2011
The relational database model object-oriented databases, 4GL query languages, optimization, database design principles are realized through a major project involving both design and implementation of a database application using a sophisticated DBMS system. Lab: programming assignments.

COMP3321 Business Systems Organizations
Staff Contact: School Office
SS HPW5
Prerequisites: COMP2011
Review of the Organizations of accounting systems: journals, accruals, merchandising. The structure, design, development, and integration of various business systems selected from the following: general ledger; financial reporting; debtors; creditors; stock control; invoicing; purchasing and receiving; fixed assets; payroll. Systems for generating application systems and packages. User interfaces. File specifications and B-tree index files. Distributed commercial systems. The partial implementation of a business system is undertaken as a group project.

COMP3331 Computer Networks and Applications
Staff Contact: A/Prof J. Lions
S2 HPW5
Prerequisites: COMP2011
Note/s: Excluded 6.633, 6.659G, COMP9331
COMP3411
Artificial Intelligence
Staff Contact: A/Prof C. Sammut
S1 HPW5
Prerequisites: COMP2011
Note/s: Excluded 6.666G, COMP9414

COMP3421
Computer Graphics
Staff Contact: Dr T. Lambert
SS HPW5
Prerequisites: COMP2011
Note/s: Excluded 6.666G, COMP9415

COMP3511
Human-Computer Interaction
Staff Contact: Dr C. N. Quinn
S1 HPW5
Prerequisites: COMP2011
Note/s: Excluded 6.006G, COMP9511

Introduces analysis and design of user-system interactions. A cognitive approach focuses on user goals and enabling technologies, progressing from principles to process. Topics: human information processing system, interaction devices and components, communication models, the design cycle, and evaluation. Lab: User interface design; group project.

COMP4011
Occasional Elective S1 (Computer Engineering)
Staff Contact: School Office
S1 HPW5
Prerequisites: Any 4 level 3 Computer Science subjects

A program of advanced coursework offered by a new or visiting staff member in an area of computer science/engineering. Syllabus details will be available from the school office before the start of session.

COMP4012
Occasional Elective S2 (Computer Engineering)
Staff Contact: School Office
S2 HPW5
Prerequisites: Any 4 level 3 Computer Science subjects

A program of advanced coursework offered by a new or visiting staff member in an area of computer science/engineering. Syllabus details will be available from the school office before the start of session.

COMP4121
Parallel Algorithms and Architectures
Staff Contact: School Office
SS HPW4
Prerequisites: COMP3121 or COMP9101
Note/s: Not offered in 1995.

COMP4131
Programming Language Semantics
Staff Contact: Mr K. Robinson
S2 HPW4
Prerequisites: Any 4 level 3 Computer Science subjects

Formal methods for specifying the semantics of programming languages and that of programs expressed in those languages. Denotational Semantics: application to language design and the implementation of translators and compilers. Axiomatic semantics, weakest-precondition, refinement. Concrete and abstract syntax, the lambda calculus, semantic functions, denotations, recursion.

COMP4141
Theory of Computation
Staff Contact: Dr A. Sharma
S1 HPW4
Prerequisites: Two level 3 Computer Science subjects or equivalent

COMP4211
Advanced Architectures and Algorithms
Staff Contact: Dr S. Matheson
SS HPW4
Prerequisites: COMP3211

COMP4215
VLSI Systems Architecture and Design
Staff Contact: Prof G. Hellestrand
SS HPW4
Prerequisites: ELEC4532, COMP3221 or ELEC3020
Note/s: Excluded COMP9215
Review of electronics and technology. Integrated digital subsystems. Analog functions in VLSI. Testing and testability. Integrated digital systems. VLSI design tools. Project work involves specification and simulation of a significant subsystem in the MODAL hardware description language, followed by fabrication and testing.

COMP4216
Distributed Operating Systems
Staff Contact: Dr I. Gorton
SS HPW4
Prerequisites: COMP3211, COMP3231, COMP3331
Note/s: Excluded COMP9216
Communication Models: IPC, RPC and Session models; broadcast, multicast; distributed virtual memory; Naming and Security; Cryptographic authentication and capability-based protection schemes Distributed File Systems: File services; Sharing and cache consistency; transaction services; availability, scaling, replication, recoverability. Object-Orientation: weak, supportive and strong models; remote invocation versus server-based interaction; naming of operations; persistence and inheritance models. Fault Tolerance. Process Management: migration, static and dynamic load balancing.

COMP4411
Artificial Intelligence: Knowledge-Based Systems
Staff Contact: A/Prof C. Sammut
SS HPW4
Prerequisites: COMP3411
Topics will be selected from Expert Systems: applications of expert systems; the expert system life cycle; knowledge representation; reasoning for expert systems; knowledge acquisition; knowledge maintenance; expert system project and Machine Learning: learning as search; concept description languages; reinforcement learning; induction; learning theories; theory revision; learning project.

COMP4412
Artificial Intelligence: Interacting with the World
Staff Contact: Dr A. Sowmya
SS HPW4
Prerequisites: COMP3411
Topics selected from Intelligent Robotics: image processing and computer vision; simulation; programming languages for robots; path and motion planning under constraints; design and control models; planning and learning; Robotics Project and Natural Language Processing: overview of linguistics; grammars and languages; basic parsing techniques; semantic analysis and representation structures; cognitive modelling; natural language generation; natural language systems; natural language project.

COMP4415
Artificial Intelligence: Foundations
Staff Contact: Dr A. Hoffmann
S1 HPW4
Prerequisites: COMP3411 and one other Level 3 Computer Science subject.
Note/s: Excluded COMP4412
Knowledge level, first order logic, theorem proving, foundations of logic programming, reasoning under uncertainty and vagueness, non-monotonic reasoning, abductive reasoning, temporal reasoning, and spatial reasoning.

COMP4416
Artificial Intelligence: Machine Learning
Staff Contact: Dr A. Sharma
S2 HPW4
Prerequisites: COMP3411 and one other Level 3 Computer Science subject.
Note/s: Excluded COMP4411
A tour of machine learning systems based on propositional logic and a discussion of their limitations, theoretical issues in identification of computer programs from graphs of computable functions, learning by enumeration, theoretical issues in identification of grammars from positive data and from both positive and negative data, machine learning systems employing inductive logic programming, probably approximately correct (PAC) learning and illustration of its use in analyzing connectionist learning algorithms.

COMP4444
Neural Networks
Staff Contact: Dr T. Gedeon
SS HPW4
Prerequisites: Any 4 level 3 Computer Science subjects or equivalent
Network architectures: Perceptrons, Hopfield and Kohonen nets, ART models, back-propagation trained feed-forward networks, recurrent nets, weightless nets. Hardware based neural nets; fuzzy logic; fuzzy and neural control; practical applications; input and output coding; selecting the right model; designing successful applications of neural networks. Lab project: real data neural net application.

COMP4903
Industrial Training
Staff Contact: School Office
Students enrolled in courses 3645, 3722 and 3726 must complete a minimum of 60 days' industrial training. At least some of this should be obtained in Australia. Students are required to submit to the School evidence from their employers confirming completion of the prescribed training and a report, typically 2000 words long, summarising the work done and training received.
Students will formally enrol in the subject in year 4, although they are strongly encouraged to complete as much industrial experience as possible in the breaks between the early years of the course.
COMP4910
Thesis Part A

COMP4911
Thesis Part B
This is done in the last two sessions of the BE degree course. For full-time students, seven hours per week in the first session and fourteen hours per week in the second session are devoted to directed laboratory and research work on an approved subject under guidance of members of the lecturing staff. Generally, the thesis involves the design and construction of experimental apparatus or software, or both, together with appropriate laboratory tests. Each student is required to present a seminar, and a written thesis must be submitted on each project by the Tuesday of the fourteenth week of Session 1 or Session 2.

COMP9008
Software Engineering
Staff Contact: Mr K. Robinson
C3 S1 HPW3
Assumed knowledge: COMP9024
Note/s: Excluded COMP3111
Informal specification: Data flow diagram methodology, analysis, design, testing, management and documentation of software. Formal specification: set theory, logic, schema, calculus, case studies. The Z specification notation. Managing the project lifecycle. CASE tools. A major group project is undertaken.

COMP9011
Literacy and Programming
Staff Contact: School Office
C3 S1 HPW3
Note/s: Not offered in 1995.
In this subject the student will be introduced to a number of the packages such as: spreadsheets, word processing, data base systems, hypertext, graphics, networking. It will be necessary that skills be acquired with these systems. There will also be an introduction given to both procedural and functional programming.

COMP9012
Software Engineering and Tools
Staff Contact: School Office
C3 S1 HPW3
Note/s: Not offered in 1995.
This subject introduces the Data Flow/Process Interaction model of software specification and architecture. The techniques of Software Engineering involved in specification, analysis, design, implementation, testing, debugging, maintenance, and modification are discussed. Modern CASE tools are discussed and used. Software Tools: reusability, packages, libraries, processes, concurrency, intercommunication channels, windows, graphics, data bases, translators, pattern matchers, sorters, and user interfaces are discussed and used in the context of a programmers' shell.

COMP9013
Data Bases and Expert Systems
Staff Contact: School Office
C3 S1 HPW3
Note/s: Not offered in 1995.
This subject will introduce some basic material on data structures. It will provide experience with commercial relational data base systems and an application generator. Some of the notions of data base design and the redundancy efficiency tradeoff will be discussed. There will be an overview given of expert systems, artificial intelligence, knowledge based systems and decision support systems.

COMP9014
Computer Organizations and Interfacing
Staff Contact: School Office
C3 S1 HPW3
Note/s: Not offered in 1995.

COMP9015
Issues in Computing
Staff Contact: School Office
C3 SS HPW3
A review of issues that affect the use of Computer Systems. Topics that may be covered include: computer implications of computing systems, the affect of computing operations on organizational structure, software copyright, privacy, the role of computing systems and information systems in decision making, the significance of the timeliness of information and its implication on the value of decision making and the requirements for a computing system.

COMP9018
Computer Graphics and Applications
Staff Contact: School Office
C3 S1 HPW3
Note/s: Not offered in 1995.
This subject will provide both a series of lectures on topics such as the basics of graphic systems and graphic devices. Application areas to be considered may include business, entertainment, computer-based training, mapping. The laboratory work will involve use of sophisticated hardware for drawing, animation, simulation and CAD operations.

COMP9021
Introduction to Computer Science
Staff Contact: Dr A. Amin
C3 S1 or S2 HPW3
COMP9022
Digital System Structures
Staff Contact: Dr A. Hoffman
C3 S1 or S2 HPW3
Assumed knowledge: COMP9021 or COMP1021
Note/s: Excluded COMP2021

Digital Systems: switches and gates, boolean algebra, minimization techniques, combinational and sequential design, timing analysis, finite state machines; analysis, design and realization of modest digital subsystems, understanding major subsystems in a model computer.

Assembly language programming: translation of higher level programming abstractions and data structures to a real computer using an assembler as a target; study of the relationships between the programming model and the hardware model of a computer; understanding of instruction execution. Lab: take-home logic kits and programming assignments.

COMP9023
Concurrent and Functional Programming
Staff Contact: Dr J. Zic
C3 S2 HPW3
Assumed knowledge: COMP9021 or COMP1021

COMP9024
Data Structures, File Systems and Data Bases
Staff Contact: Dr A. Goswami
C3 S2 HPW3
Assumed knowledge: COMP9021 or COMP1021

The abstraction and representation of information. Data structures and abstract data types; Lists, stacks and recursion, queues, trees, graphs. Internal sorting. Practical work will use Modula-2. Internal (memory) and external (file system) representation of information; B-trees, B'-trees, Hash tables; Files: sequential files, direct access files, indexed files. Introduction to databases and query languages. Lab: programming assignments.

COMP9102
Compiling Techniques and Programming Languages
Staff Contact: Mr P. Ho
C3 SS HPW3

COMP9114
Formal Specification
Staff Contact: Mr K. Robinson
C3 SS HPW3

Introduction to formal specification techniques; use of predicate logic and modern set theory to describe computing systems; Schema notation for structuring large specifications; Schema calculus to prove properties of specifications: Refinement techniques for transformation of specifications into executable programs; refinement of abstract data types.

COMP9115
Programming Languages: Fundamental Concepts
Staff Contact: Mr K. Robinson
C3 SS HPW3

Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP9008, COMP9101 and COMP9102

Fundamental aspects of programming language definition, semantics and implementation models. The current approach uses denotational semantics. Denotational semantics is a formal method for describing the abstract meaning of programming languages.

COMP9201
Operating Systems
Staff Contact: Dr Jayasooriah
C3 S2 HPW3

Assumed knowledge: COMP9023 and COMP9024

Services provided by operating systems. System calls and user commands (command languages, menus, etc). Virtual machines. Efficient techniques and methods of process management, memory management, input/output and communication handling. Performance evaluation and tuning. Protection and security. Lab: programming assignments.
COMP9211
Computer Organization and Design
Staff Contact: Prof. G. Hellestrand
C3 S1 HPW4
Assumed knowledge: ELEC2021 or COMP9022
Note/s: Excluded COMP9211

Topics will be chosen from:
Advanced Design Strategies: combinational and sequential circuit design and realisation; synchronisation, communication and arbitration; register transfer specification (Modal). Arithmetic Design Strategies. Memory Organization: physical and virtual address space; memory hierarchy; operating system and compiler support; memory mapping and caching.

Communications Organization: shared memory, memory mapping; network systems. Processor Design: the instruction pipeline; hardwired and micro-programmed control; instruction sets; RISC and object-based processor organization. Error Detection/Correction and Fault Tolerance; testing and testability; faults, errors and failures; coding theory; diagnosing and correcting errors. Lab: major design project.

COMP9214
Computer Architectures
Staff Contact: Dr S. Matheson
C3 S1 HPW3
Assumed knowledge: ELEC2021 or COMP9022
Note/s: Not offered in 1995.

Review of conventional computer architectures, description methods and performance evaluation. Alternative approaches to CPU, memory, communication, buses and I/O organization. Influences on computer architecture, including technological innovation and new application areas. Case studies of specialized machines, including array, associative and functional processors and general-purpose machines that aim for high performance, ultra-reliability or minimal cost.

COMP9215
VLSI System Design
Staff Contact: Prof G. Hellestrand
C3 SS HPW3
Assumed knowledge: Background in electronic design equivalent to ELEC4532 or COMP9213
Note/s: Excluded COMP4215

The design and implementation of very large scale integrated systems, using both nMOS and CMOS technologies. The use and construction of CAD tools, including simulators, layout generators, and plot utilities. MOS failure modes, testing and design for testability. A study of some digital subsystems, digital architectures and design styles will be carried out. An integral part of the course is an MSI LSI design project. Selected project designs will be submitted for fabrication and returned to students for testing.

COMP9216
Parallel and Distributed Computing Systems
Staff Contact: School Office
C3 SS HPW3
Assumed knowledge: Background to final year Computer Science level, equivalent to subjects COMP3111, COMP3121 and COMP3131
Note/s: Not offered in 1995.

Parallelism and concurrency in functionally coupled and distributed computationally coupled, computing systems. Topics selected from: Synchronisation, communication and arbitration; Computational paradigms -s; concurrent synchronous processing, lists, trees; Computational paradigms -p: vectors, arrays, APL tables, associative look-up structures; Synchronous bit-serial architectures: n-operands arithmetic, n-operands comparison; Pure pipeline and Systolic architectures and problems; Pipelined ALUs-Memory-Processor architecture. Object based systems; Languages with communication and processes; CSP, ADA, C; Locally and geographically distributed systems: Failure tolerant computer systems.

COMP9231
Integrated Digital Systems
Staff Contact: Prof G. Hellestrand
C3 S1 HPW4
Assumed knowledge: ELEC2012 or COMP9022
Note/s: Excluded ELEC4532

Integrated circuit logic families with emphasis on MOS technologies, structured chip design, custom and semi-custom approaches, system architecture, computer aided design, layout considerations, timing estimates, circuit failures, faults, fault modelling, testing, design for testability. Lab: design project.

COMP9221
Microprocessor Systems
Staff Contact: Dr I. Gorton
C3 S1 HPW4
Assumed knowledge: COMP9021, COMP9022

Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The MC68000 family and assembly programming language. Other microprocessors. The subject includes two hours per week of laboratory work involving interfacing to and programming MC68000-series microprocessor-based systems.

COMP9311
Data Base Systems
Staff Contact: Prof J. Hitler
C3 S1 or 2 HPW3
Assumed knowledge: Familiarity with storage structures
Note/s: Excluded 6.659G, 55.823G

A first subject on data base management systems to be presented at a level appropriate for a graduate subject. The material to be covered will include a selection from: the relational, hierarchic/network, and inverted file data models; normalisation and the problems of redundancies; views and their updates; high level query languages; distributed systems; deductive data bases; object data bases; data definitions; application generators.

COMP9314
Advanced Data Base Management A
Staff Contact: Dr A. Ngu
C3 S1 HPW3
Assumed knowledge: COMP9311

This subject will examine in detail some of the commercially oriented issues associated with recent developments in
data base management systems. Topics to be treated may include: functional analysis and data base design, object data bases, application generators, and office data systems. Lab: the subject will involve the students in performance of a significant data base design task.

COMP9315
Advanced Data Base Management B
Staff Contact: Dr A. Ngu
C3 S2 HPW3
Assumed knowledge: COMP9311

This subject will examine in detail some of the technical issues associated with recent developments in data base management systems. Topics to be treated may include: query optimization, concurrent processing and its control, recovery and restart, and distributed dbms. Lab: implementation using Ingres/Postgres.

COMP9331
Computer Networks and Applications
Staff Contact: A/Prof J. Lions
C3 S1 HPW3
Note/s: Excluded COMP3331

COMP9414
Artificial Intelligence
Staff Contact: Mr P. Staines, School of Philosophy
C3 S1 HPW3
Assumed knowledge: COMP9024

Note/s: Excluded COMP3411

Overview of current research in Artificial Intelligence. Some of the topics are: the representation of knowledge, search techniques, problem solving, machine learning, expert systems, natural language understanding, and languages for Artificial Intelligence. Students are also required to prepare a report and give a seminar on one aspect of A.I., such as: robotics, vision, language understanding, speech recognition, A.I. languages, learning.

COMP9415
Computer Graphics
Staff Contact: Dr T. Lambert
C3 SS HPW3
Assumed knowledge: Background to final year Computer Science levels, equivalent to subjects COMP9101, COMP9102

COMP9416
Expert Systems and Deductive Data Bases
Staff Contact: A/Prof C. Sammut
C3 SS HPW3
Assumed knowledge: COMP9311, and some familiarity with rule based systems and reasoning procedures.

Introduction to Expert Systems including knowledge representation, inference, reasoning under uncertainty, qualitative modelling and knowledge acquisition. Students will build and expert system using a shell. Introduction to deductive database including logic programming, clause indexising and query optimization, integration of deductive databases and expert systems.

COMP9511
Human-Computer Interaction
Staff Contact: Dr C. N. Quinn
C3 S1 HPW3
*Co-requisites: Knowledge of data base query languages
Note/s: Excluded 55.821G*

Introduces theories and models of user-system interaction. A scientific approach emphasizes the literature and methodological issues in HCI design, using a cognitive engineering framework. Topics: models of mind, interaction formalisms and tools, and theories of design. Lab: user interface design; group project.

COMP9514
Advanced Decision Theory for Information Science
Staff Contact: Prof J. Hiller
C3 SS HPW3
Assumed knowledge: A graduate level in expert systems or 55.821G or equivalent

This subject will links results from fields such as information theory, the economics of information, the theory of judgement and choice, certainty theory and the theory of evidence. There will be a review of maximum utility theory decision making and the associated axioms. Developments of maximum expected utility theory including prospect theory, regret theory and duality theory will be introduced. The results will be linked to system design.

COMP9596
Advanced Topics In Information Science
Staff Contact: Prof J. Hiller
C6 S1 or S2 HPW6
Assumed knowledge: 55.821G or equivalent

This subject will integrate information science skills in an experimental situation involving software development and assessment. The subject will be project oriented. There may be a lecture portion that relates to statistical aspects of experimental design and hypothesis testing.
Head of School
Professor G. A. Rigby

Executive Assistant to Head of School
Dr T. Hesketh

Executive Officer
Mr K. J. Flynn

Administrative Assistant
Miss A. G. M. Johnson

The School comprises four departments and a Special Research Centre: Communications (all aspects of theory, applied electronics and engineering relating to communication systems and networks such as telephones, broadcasting and television); Electric Power (electrical machines and generation, distribution and utilisation of electric energy); Electronics (electronic circuits, devices, micro-electronics and application of electronics to such areas as solar power generation); Systems and Control (development of theories for the control of complex systems and the application of these theories including computer simulation). The Centre for Photovoltaic Devices and Systems conducts research into energy efficient silicon solar cells for electricity generation.

Electrical Engineering has close links with the pure sciences and mathematics. Its technology is changing rapidly, and the School's teaching and research programs are constantly under review to meet the ever changing challenges of present and future needs.

The School offers undergraduate and graduate training in all branches of the profession of electrical engineering. A number of inter-departmental and specialized groups (such as Digital Systems, Biomedical Engineering, Measurement, Microelectronics, etc.) are also active.

Summary of Undergraduate Courses

Normal full-time

<table>
<thead>
<tr>
<th>Course and Degree(s)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3640 BE in Electrical Engineering</td>
<td>4 years</td>
</tr>
<tr>
<td>3645 BE in Computer Engineering</td>
<td>4 years</td>
</tr>
<tr>
<td>3720 BE BA in Electrical Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3725 BE BSc in Electrical Engineering</td>
<td>5 years</td>
</tr>
<tr>
<td>3727 BE MBiomedE in Electrical Engineering</td>
<td>5 years</td>
</tr>
</tbody>
</table>

Course 3645 is jointly administered by the Schools of Computer Science and Engineering, and Electrical Engineering.

The undergraduate curriculums are being progressively revised to provide a flexible training to suit the needs of today and tomorrow. Individual student needs can be further met by quite extensive substitution provisions within the course programs.

In a new initiative with the Graduate School of Biomedical Engineering there is also available a concurrent degree program leading to the award of Bachelor of Engineering/Master of Biomedical Engineering.

The formal graduate courses offered are: Master of Engineering Science in Electrical Engineering 8501; Graduate Diploma in Electrical Engineering 5458. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2660, Master of Science 2760 and Doctor of Philosophy 1640.
Substitution of Subjects

General Education
Students must apply to the Director, Centre for Liberal and General Studies, for permission to substitute a subject for part, or all, of their General Studies (old rules) or General Education (new rules) requirement.

Other Subjects
To suit the special abilities or needs of individual students a limited amount of substitution is permitted within each course. Any such substitution must have prior approval of the Head of School who will ensure that:
1. The replacement subject is at least the same length and level as the prescribed subject it replaced; and
2. The resulting overall program of study is suited to the award of the degree as applicable. Substitution is not permitted in Year 1.

Examples
(i) The normal Year 4 of the BE degree program includes 5 Professional Electives. Students may substitute for one of these electives, a subject of suitable level and difficulty from an area outside the School relevant to the profession of Electrical Engineering. A graduate subject of the School may also be substituted in this way, provided that the student has passed the Year 3 Electrical Engineering subjects at an adequate level.
(ii) Part-time BE students in full-time employment may request substitution of Industrial Electives (ELEC0931, ELEC0932, ELEC0933) for up to three subjects in the BE degree course. See Industrial Elective subject descriptions for details.

Undergraduate Study

Computing Requirements
Information regarding recommended computing equipment for the courses offered by the School is available from the School Office.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1006</td>
<td>Chemistry 1EE</td>
<td>3</td>
</tr>
<tr>
<td>COMP1011</td>
<td>Computing 1A</td>
<td>0</td>
</tr>
<tr>
<td>ELEC1010</td>
<td>Introduction to Electrical Engineering</td>
<td>1.5</td>
</tr>
<tr>
<td>ELEC1011</td>
<td>Electrical Engineering 1</td>
<td>6</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td></td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td>6</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td>0</td>
</tr>
<tr>
<td>MATH1090</td>
<td>Discrete Mathematics</td>
<td>0</td>
</tr>
<tr>
<td>ELEC1041</td>
<td>Digital Circuits</td>
<td>0</td>
</tr>
<tr>
<td>PHYS1969</td>
<td>Physics 1</td>
<td>6</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>22.5</td>
</tr>
</tbody>
</table>

Course Outlines

3640
Electrical Engineering - Full-time Course
Bachelor of Engineering
BE

Course 3640 is being revised and is shown below.
3640
Electrical Engineering - Part-time Course
Bachelor of Engineering
BE

Note: As from 1989 no formal part-time course is being offered. However, after completing Year 1 full-time it is possible for students to progress on a semi-part-time basis with a reduced program. It should also be noted that very few undergraduate subjects are offered in the evenings.

3640
Electrical Engineering - Sandwich Course
Bachelor of Engineering
BE

Note: No new enrolments will be accepted into the Sandwich course from 1990.

After the successful completion of Year 1 of the full-time course 3640, a sandwich pattern is available, comprising alternate periods of full-time study and full-time employment with part-time study.

3645
Computer Engineering - Full-time course
Bachelor of Engineering
BE

This course is jointly administered by the Schools of Electrical Engineering, and Computer Science and Engineering. For course details refer to the entry under the School of Computer Science and Engineering.

Technical Electives - all courses

<table>
<thead>
<tr>
<th>Subject</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
</tr>
<tr>
<td>CIVL0626</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>COMP2011</td>
<td>Data Organization</td>
</tr>
<tr>
<td>COMP2031</td>
<td>Concurrent Computing</td>
</tr>
<tr>
<td>ELEC3401</td>
<td>Reliability Engineering in Design and Development</td>
</tr>
<tr>
<td>ELEC3402</td>
<td>Introductory Physiology for Engineers</td>
</tr>
<tr>
<td>FUEL0020</td>
<td>Fuels and Energy</td>
</tr>
<tr>
<td>MATS9640</td>
<td>Materials Science and Engineering for Electrical Engineers</td>
</tr>
<tr>
<td>PHYS2999</td>
<td>Mechanics and Thermal Physics</td>
</tr>
<tr>
<td>SAFE9533</td>
<td>Electrical Safety</td>
</tr>
</tbody>
</table>
Electrical Engineering Professional Electives - all courses

Professional Elective subjects in the Computer Science area require either COMP2011 or COMP2031 as a prerequisite. A free choice may not be possible. Each elective is 5 hours per week for one session.

- ELEC4042 Signal Processing
- ELEC4202 Power Systems
- ELEC4215 Industrial Electrical Systems
- ELEC4216 Electric Drive Systems
- ELEC4240 Power Electronics
- ELEC4303 Electromagnetic Wave Propagation
- ELEC4313 Optical Communications
- ELEC4323 Digital and Analog Communications
- ELEC4333 Communication Systems 2
- ELEC4351 Data Communications and Computer Networks
- ELEC4352 Data Networks 2
- ELEC4412 Systems and Control 2
- ELEC4413 Digital Control
- ELEC4432 Computer Control and Instrumentation
- ELEC4483 Biomedical Engineering
- ELEC4503 Advanced Electronic Circuits
- ELEC4512 Semiconductor Devices
- ELEC4522 Microelectronics Design and Technology
- ELEC4532 Integrated Digital Systems
- ELEC4540 Applied Photovoltaics
- COMP3211 Computer Organization and Design
- COMP3231 Operating Systems
- COMP3311 Database Systems
- COMP3411 Artificial Intelligence

Because of timetable clashes not all combinations of subjects are possible. The program selected by each student must be approved by the Head of School. Not all electives are offered each session, nor is the full range available to part-time students. Students are advised each year of the timetable of available electives. Substitution is not permitted if it unduly restricts the range of subjects studied to only one area of electrical engineering or computer science.

Combined Courses

Students in Electrical Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. (The two degrees referred to here are the Bachelor of Engineering/Bachelor of Science BE BSc and the Bachelor of Engineering/Bachelor of Arts BE BA). Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Electrical Engineering and with the approval of the Faculty of Engineering and either the Faculty of Arts or the Board of Studies in Science and Mathematics, as appropriate. Students wishing to enrol in, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisite study, sequencing and academic attainment (a creditable performance, i.e. 65% average) of both the Course Authorities concerned.

Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. AUSTUDY support is available for the five years of the combined degree courses.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However, the choice of subjects and the time taken to complete the program can be seriously affected by this. Thus, students considering course 3725 or course 3720 should contact the Electrical Engineering School before completing their Year 2 enrolment. Application for transfer to a combined course must be made in writing to the Head of School by the start of the third week of December in the year that they complete Year 2 of the BE degree course.

Re-enrolment of students in Courses 3720 and 3725 each year is arranged by the School of Electrical Engineering.

3720
BE BA in Electrical Engineering

With this combined degree course students can add their choice of arts program to the standard, professionally accredited engineering course offered by the School of Electrical Engineering. The full range of Arts programs is available.

Because the engineering and arts programs have common content, such as mathematics and physics, only one more year of study is normally required to gain the additional qualification of Bachelor or Arts.

Eligibility

Anyone who meets the entry requirements for both Engineering and Arts is eligible for the combined course. Students may enter directly in first year or may apply to transfer from the normal engineering course later, although with late transfer it might not be possible to complete the course in minimum time.

Organization

The BE BA course is administered by the School of Electrical Engineering.

Students should start discussing their program with representatives of the School and the Faculty of Arts and Social Sciences as soon as possible - preferably well before enrolment. Enquiries should be directed to the Executive Assistant to the School and the Executive Assistant to the Dean of the Faculty of Arts and Social Sciences.

Students should work out for themselves the arts program they would like to add to their chosen engineering course. The Arts and Social Sciences Faculty Handbook describes the options, and the School of Electrical Engineering can supply sample programs showing what previous students have arranged.
There are no special rules on what to include in each year. Students should schedule the arts and engineering components to suit their preferences while meeting the constraints of timetables and prerequisites. The sample programs can help here too.

The Arts component must be approved by the Faculty of Arts and Social Sciences.

The final program and schedule must be approved by the School of Electrical Engineering.

Rules

1. In addition to the BE course, students must complete a major sequence offered within the BA course and meet the additional requirements listed below:

Faculty which provides the chosen major
Faculty of Arts and Social Sciences:
(minimum) 48 credit points total, including major sequence

Other Faculties:
Major sequence plus at least 12 Credit Points from Schools of the Faculty of Arts and Social Sciences.
Mathematics majors are not usually permitted. BE BSc combined degrees are more appropriate for this.

2. Students in the BE BA course are exempt from both Category A and Category B General Education. However, if at any time a student reverts to the single degree program, the usual General Education requirements for that course apply.

3. There will be a testamur for each part of the combined degree course.

4. Students who complete the BE program first may proceed to graduation with the degree of Bachelor of Engineering in the usual way.

5. Students who complete the requirements for their Arts program and the first two years of the BE program may proceed to graduation with the degree of Bachelor of Arts.

BE BSc in Electrical Engineering

As noted above students wishing to transfer to the combined degree should contact the Electrical Engineering School Office before completing their Year 2 enrolment. After completing Years 1, 2 and 3 (modified where necessary as indicated below) of the Electrical Engineering course, students in their fourth year complete a specific program consisting of four Level III Science units chosen from related disciplines, the appropriate General Education electives and three or four other Level II or Level III units. The subjects chosen should be in accord with the rules of the BSc course 3970 leading to a major in Computer Science, Mathematics or Physics. In their fifth year students complete year 4 of the Electrical Engineering course.

Students may open up a wider choice of subjects in their Science year by including additional Computer Science (viz COMP2011 and COMP2031), in Years 2 and 3 or Physics (viz PHYS2999) in years 2 or 3 of their Electrical Engineering program. Any Electrical Engineering subject omitted will have to be taken later in the course. The extra subject in year 2 may be credited towards either the BE or the BSc requirements but not both.

Students who plan to specialize in Computer Science, Mathematics or Physics in a BE/BSc degree course should consult the School before enrolling in year 2.

Students in the BE BSc program are exempt from Category A General Education requirements only. If at any time a student reverts to the single degree program the usual General Education requirements for that course apply.

Year 1 (Revised) Standard program for course 3640
CHEM1806, COMP1011, ELEC1010, ELEC1011, ELEC1041
MATH1131 or MATH1141, MATH1231 or MATH1241, MATH1090, PHYS1969

Year 2 (Revised)
COMP1021, ELEC2011, ELEC2015, ELEC2030, ELEC2033, ELEC2042, ELEC2042, MATH2110, MATH2610, MATH2620, MATH2849, MATH3150, PHYS2949

Computer Science majors add COMP2011 (as their Year 3 technical elective) in Session 2 by moving 2 hours of General Education to Session 1.

Higher Mathematics subjects may be taken at the ordinary level.

Physics majors may take the Higher Mathematics subjects at the ordinary level.

Year 3
ELEC3010, ELEC3011, ELEC3012, ELEC3013, ELEC3014, ELEC3020, ELEC3110, MATH2601, MATH2859, MATH3141

Two from ELEC3015, ELEC3016 and Technical Elective, General Education (Category B).

Computer Science majors must take COMP2031 (Towards their Science). The Higher Mathematics subject MATH2061 may be taken at the ordinary level.

Physics majors must take PHYS2999 (Towards their Science). The Higher Mathematics subject MATH2601 may be taken at the ordinary level.

Year 4
Refer to course 3970 in the Science Handbook for subject details. Any General Education deferred from Year 2 or 3 should be taken during this year.

Computer Science
Choose at least another 7 Level II or Level III units including at least 4 Computer Science units at Level III with the balance being chosen from Level III Computer Science units and other Level II or Level III units from the Science Program 0600. (COMP2031 is the 8th unit).

Mathematics
Choose at least 5 Mathematics units, 4 of which are Level III.

Choose at least 3 Level II or Level III units from the Science Program 1000.
Physics
Choose another 7 Level II or Level III units of which at least 4 must be Level III Physics units chosen to include PHYS3010, PHYS3031, PHYS3030 and PHYS3060. (PHYS2999 is the 8th unit).

Year 5
Year 4 of the Electrical Engineering course.

3727
Electrical Engineering/Biomedical Engineering
- Full-time Course
Bachelor of Engineering Master of Biomedical Engineering
BE MBiomedE

Course 3727 is a concurrent BE in Electrical Engineering and Master of Biomedical Engineering. Further details can be found in the Graduate School of Biomedical Engineering section.

Graduate Study

The formal graduate courses offered are: Master of Engineering Science in Electrical Engineering 8501; Graduate Diploma in Electric Power Engineering 5435 and the Graduate Diploma in Electrical Engineering 5458. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2660, Master of Science 2760 and Doctor of Philosophy 1640.

Course Work Programs

8501
Master of Engineering Science in Electrical Engineering
MEngSc

Candidates may commence in Session 1 or Session 2 and must possess an appropriate level of knowledge for the program subjects chosen.

All candidates elect to study in at least one of the specific programs offered by the School of Electrical Engineering: each Program Co-ordinator will advise if applicants are adequately qualified to undertake the proposed subjects and must approve the chosen program.

All candidates must register in one of the following major areas and in at least one of its programs:

Major Area
Communications
Program Co-ordinator: Dr H. Mehrpour
Programs:
1. Communication Electronics
2. Digital Communication and Systems
3. Microwave and Optical Communications
4. Signal Processing

Electric Power
Program Co-ordinator: A/Prof T.R. Blackburn
Programs:
1. Power Systems Engineering
2. Electrical Power Technology
3. Photovoltaics

Electronics
Program Co-ordinator: Dr C.Y. Kwok
Programs:
1. Solid State Devices
2. Microelectronics
3. Photovoltaics

Systems and Control
Program Co-ordinator: Professor N.W. Rees
Programs:
1. Digital Systems and Control
2. Cybernetic Engineering and Advanced Robotics
3. Biomedical Engineering (see co-ordinator)

Programs as listed normally consist of 18 credits of course work and correspondingly a 12 credit project. However, other appropriate programs or subjects in the same major area or other areas may be substituted for the project allowing completion of the 30 credits by course work only.

Specialist Programs

Communications
Candidates must normally do 18 credits from the Communications area (a 12 credit project and 6 credits of coursework or 18 credits of coursework within one of the following programs).
1. Communication Electronics
One elective subject may be chosen from outside this program.

Core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9340</td>
<td>Communication Electronics</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP9215</td>
<td>VLSI System Architecture and Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP9221</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9338</td>
<td>Television and Video Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1 - Fundamental Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343</td>
<td>Principles of Digital Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9353</td>
<td>Microwave Circuits: Theory and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9354</td>
<td>Microwave and Optical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9403</td>
<td>Real Time Computing and Control</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9503</td>
<td>Integrated Circuit Design</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Digital Communication and Systems
At least three subjects must be taken from the following list and the remaining subjects from other graduate programs within the Department and School.

Core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9336</td>
<td>Digital Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9337</td>
<td>Data Networks</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9338</td>
<td>Television and Video Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343</td>
<td>Principles of Digital Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9347</td>
<td>Digital Modulation</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1 - Fundamental Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9353</td>
<td>Microwave Circuits: Theory and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9355</td>
<td>Antenna Design and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9356</td>
<td>Microwave Circuits: Theory and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9357</td>
<td>Optical Communications Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Microwave and Optical Communications
One of the three elective subjects may be chosen from outside this program.

Core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9350</td>
<td>Theory of Optical Fibres and Optical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9351</td>
<td>Propagation and Transmission of Electromagnetic Waves</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9354</td>
<td>Microwave and Optical Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9351</td>
<td>Antenna Design and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9353</td>
<td>Microwave Circuits: Theory and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9355</td>
<td>Optical Communications Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

4. Signal Processing
One of the four elective subjects may be chosen from outside the program.

Core subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1 - Fundamental Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9342</td>
<td>Signal Processing 2 - Advanced Techniques</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9340</td>
<td>Communication Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9343</td>
<td>Principles of Digital Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9350</td>
<td>Theory of Optical Fibres and Optical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9370</td>
<td>Digital Image Processing Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH5054</td>
<td>Advanced Mathematics for Electrical Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Electric Power

Normally 18 credits of coursework and a 12 credit project are appropriate. A program in another area offered by the School may be substituted for the project.

At least three subjects should be chosen from one of the two programs below (items 1 and 2), with the remainder from the other program or from the list of relevant subjects in item 3.

1. Power Systems Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC4202</td>
<td>Power Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>ELEC4215</td>
<td>Industrial Electrical Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9201</td>
<td>Power System Planning and Economics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9202</td>
<td>Power Systems Operation and Control</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9203</td>
<td>Power System Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9204</td>
<td>Protection of Power Apparatus and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9223</td>
<td>Power Engineering Seminars</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Electrical Power Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC4202</td>
<td>Power Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>ELEC4215</td>
<td>Industrial Electrical Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9204</td>
<td>Protection of Power Apparatus and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9214</td>
<td>Power System Equipment</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9231</td>
<td>Electrical Drive Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9223</td>
<td>Power Engineering Seminars</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9226</td>
<td>Electrical Services in Buildings</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Relevant Subjects from other areas and disciplines

Relevant coursework subjects from other areas and disciplines are listed below. A limited number of credits from this group may be taken as part of an Electric Power program. Subject to the approval of the Postgraduate Advisor, a limited number of other elective subjects offered in the School of Electrical Engineering may also be included in the program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9062</td>
<td>Accounting for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>COMP9221</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC4240</td>
<td>Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9341</td>
<td>Signal Processing 1 - Fundamental Methods</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9401</td>
<td>Computer Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9504</td>
<td>Solar Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9507</td>
<td>Solar Cells and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9509</td>
<td>Photovoltaics</td>
<td>3</td>
</tr>
<tr>
<td>MANF9400</td>
<td>Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>SAFE9213</td>
<td>Introduction to Safety Engineering (M)</td>
<td>3</td>
</tr>
</tbody>
</table>

Electronics

Normally 18 credits of coursework and a 12 credit project as appropriate. At least three subjects should be chosen from one of the programs below.

The remaining subjects may be chosen from one of the program lists or from the list of electives appropriate to that program.

Subject to the approval of the Electronics Department Program Co-ordinator, previously listed, a limited number of other subjects outside these lists may also be included in the program.

1. Solid State Devices

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9354</td>
<td>Microwave and Optical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9501</td>
<td>Advanced Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9502</td>
<td>Integrated Circuit Technology</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9504</td>
<td>Solar Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9507</td>
<td>Solar Cells and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELEC9509</td>
<td>Photovoltaics</td>
<td>3</td>
</tr>
</tbody>
</table>
2. Microelectronics

COMP9215 VLSI Systems Architecture Design 3
ELEC9340 Communication Electronics 3
ELEC9501 Advanced Semiconductor Devices 3
ELEC9502 Integrated Circuit Technology 3
ELEC9503 Integrated Circuit Design 3

Additional elective subjects for programs 1 and 2:
COMP9221 Microprocessor Systems 3
ELEC4240 Power Electronics 3
ELEC4532 Integrated Digital Systems 3
ELEC9341 Signal Processing 1 - Fundamental Methods 3
ELEC9342 Signal Processing 2 - Advanced Techniques 3
ELEC9343 Principles of Digital Communications 3
ELEC9353 Microwave Circuits: Theory and Techniques 3

3. Photovoltaics

ELEC9501 Advanced Semiconductor Devices 3
ELEC9502 Integrated Circuit Technology 3
ELEC9504 Solar Energy Conversion 3
ELEC9507 Solar Cells and Systems 3
ELEC9508 High Efficiency Silicon Solar Cells 3
ELEC9509 Photovoltaics 3

Additional electives for program 3:
COMP9221 Microprocessor Systems 3
ELEC4202 Power Systems 3
ELEC4240 Power Electronics 3
ELEC9201 Power System Planning and Economics 3
ELEC9202 Power System Operation, Control and Planning 3
MECH9720 Solar Thermal Energy Design 3
MECH9741 Energy Conservation and System Design 3
SAFE9213 Introduction to Safety Engineering 3

3. Photovoltaics

ELEC9501 Advanced Semiconductor Devices 3
ELEC9502 Integrated Circuit Technology 3
ELEC9504 Solar Energy Conversion 3
ELEC9507 Solar Cells and Systems 3
ELEC9508 High Efficiency Silicon Solar Cells 3
ELEC9509 Photovoltaics 3

Additional electives for program 3:
COMP9221 Microprocessor Systems 3
ELEC4202 Power Systems 3
ELEC4240 Power Electronics 3
ELEC9201 Power System Planning and Economics 3
ELEC9202 Power System Operation, Control and Planning 3
MECH9720 Solar Thermal Energy Design 3
MECH9741 Energy Conservation and System Design 3
SAFE9213 Introduction to Safety Engineering 3

Systems and Control

1. Digital Systems and Control

All coursework or 18 credits of course work and a 12 credit project. 12 credit projects are subject to the availability of a suitable supervisor.

Core subjects

ELEC9401 Computer Control Systems 1 3
ELEC9402 Computer Control Systems 2 3
ELEC9403 Real Time Computing and Control 3
ELEC9404 Topics in Digital Control 3

Elective subjects

COMP9221 Microprocessor Systems 3
ELEC9342 Signal Processing 2 - Advanced Techniques 3
ELEC9405 Advanced Control Topics 3
ELEC9410 Robotics, Automation and Productivity Technology 3
ELEC9415 Optimization and Optimal Control 3
ELEC9416 Non-Linear Systems and Simulation 3

2. Cybernetic Engineering and Advanced Robotics

Normally 9 credits of course work and a 12 credit project.

Remaining 9 credits may be taken from the elective list or other programs and subjects.

Core subjects

ELEC9407 Cybernetic Engineering 3
ELEC9409 Cybernetic, Machine and Robot Vision 3
ELEC9410 Robotics, Automation and Productivity Technology 3

Elective subjects

COMP9221 Microprocessor Systems 3
ELEC9342 Signal Processing 2 - Advanced Techniques 3
ELEC9370 Digital Image Processing Systems 3
ELEC9403 Real Time Computing and Control 3
ELEC9405 Human Movement Control Systems 3

5435 Graduate Diploma in Electric Power Engineering GradDip

The Graduate Diploma in Electric Power Engineering is aimed at providing an award course of postgraduate education in electric power engineering that will enable engineers to develop their knowledge and skills in areas that are important both for the efficient operation and development of industry and also for the career development of the individual engineer. The course will extend the education provided at undergraduate level to provide in-depth treatments of chosen specialist topic areas.

It is intended that the Graduate Diploma will fit into a national framework for the enhancement of skills in electric power engineering, that is being developed for the electricity supply industry by the Electricity Supply Association of Australia Ltd., working nationally with universities teaching electric power engineering.

The course requirements are

Coursework Short courses 12 credits
- typically 6 courses at 2 credits each
Project ELEC9912 Project Report 12 credits
Total: 24 credits

The coursework component will, in general, be obtained through satisfactory completion of courses offered in the program of short courses offered by ESAA Ltd. This will, in general, entail the completion of six short courses. (In exceptional circumstances other programs of study may be approved by the Head of School.)

The short courses are provided by a number of universities throughout Australia and will in general reflect the special expertise of the university involved. It is expected that up to 10 courses per annum will be available, some of these on a rolling basis.

For each short course there will be further reading and assignment tasks leading to the submission of work for assessment. This material will usually be assessed by the course presenters or staff of the university offering the course and records will be kept by ESAA.

The topic and scope of the project will be determined by the Department of Electric Power Engineering in consultation with the student and preferably his/her employer, and will be supervised by a member of the staff of the Department.
of Electric Power Engineering and co-supervised by an industry colleague.

The GradDip is to be completed within five years from the commencement of the first short course. The short courses must have been completed within a period of four years and prior to commencement of the project. Enrolment can be at any time after the completion of eight credits, and, in any event, prior to the commencement of the project.

The graduate Diploma is inherently part-time and the project is to be completed within two Sessions from enrolment. A minimum of one month must be spent full-time within the Department of Electric Power Engineering.

The Graduate Diploma in Electric Power Engineering is available only on a full-fee basis. Individual course fees will normally apply to each short course. The fee for the project component will be payable to UNSW.

5458
Graduate Diploma in Electrical Engineering GradDip

Details of the recommended programs of study may be obtained from the Head of the School of Electrical Engineering. Subjects offered in the Masters programs can be taken in the Graduate Diploma programs subject to the approval of the course coordinator.

Not all electives are necessarily offered in any particular year.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

ELEC0802
Electrical Power Engineering
Staff Contact: Dr B. Farah
S2 L2 T1
Prerequisite: PHYS1002 or equivalent (PHYS2920 for students in Course 3140)
The course deals with the principles and practice of electrical power apparatus, particularly the transformer, the dc motor and the ac motor. It also covers some of the electronic power converters for power supplies and for control of electrical machinery. The course commences with the basic circuit theory and phasor algebra relevant to the analysis of the above systems and then proceeds to the consideration of distribution of electrical power. It then covers the operation, analyses and characteristics of transformers, dc motors, ac motors and a few semiconductor power converter circuits. Rating and thermal considerations of electrical apparatus are also treated.

ELEC0805
Electronics for Measurement and Control
Staff Contact: Dr B. Farah
S2 L2 T1
The use of electronics in mechanical systems and the processing of signals by analog and digital techniques. Revision of basic circuit theory, operational amplifier circuits and filtering. Digital logic using integrated circuits. Microcomputers and Microprocessors. Techniques for A/D and D/A conversion, measurement system interfacing to microprocessors.

ELEC0931
Industrial Elective
ELEC0932
Industrial Elective
ELEC0933
Industrial Elective
Prerequisites: for ELEC0931, ELEC0932, ELEC0933
Students must be in at least the third stage of part-time BE degree course and be in full-time approved employment or be pursuing an approved sandwich course.
Note/s: New enrolments in the part-time BE or sandwich course are not accepted, as those courses are no longer offered.
Each Industrial Elective represents one year of appropriate quality concurrent industrial experience for students in approved full-time employment. Students must submit evidence and a written report to the satisfaction of the Head of School. Some attendance at the University for verbal reporting may also be required.
A maximum of three such electives can be taken and they may be substituted for certain subjects in course 3640.

ELEC1010
Introduction to Electrical Engineering
Staff Contact: A/Prof H.R. Outhred
S1 L1 T.5
Prerequisite: HSC Exam Score Range Required - 2 unit English (General) 53-100, or 2 unit English 49-100, or 3 unit English 1-50, 2 unit Contemporary English 60-100
Introduction to the nature and scope of electrical engineering, including communications, computing, electrical energy, electronics and systems. Careers for electrical engineers in public and private enterprise, organization, verbal and written communication and research skills in engineering.

ELEC1011
Electrical Engineering 1
Staff Contact: Dr E.H. Fooks
S1 & S2 L3 T3
Corequisite: PHYS1969 or equivalent

ELEC1041
Digital Circuits
Staff Contact: Dr W.J. Dewar
S2 L2 T1
Prerequisites: ELEC1011
Excluded: ELEC2012, COMP2021

ELEC2010
Circuit Theory
Staff Contact: Prof I.F. Morrison
S1 L2 T.5
Prerequisites: ELEC1011, MATH1032 or MATH1231 or MATH1042 or MATH1241
Corequisite: MATH2620 or MATH2520
Dynamic response of linear circuits: 1st and 2nd order circuits with DC sources, introduction to higher order circuits. Sinusoidal steady state operation: phasors,
impedance and admittance; dynamic response of circuits driven by sinusoidal sources; linearity, network theorems; resonance, bandwidth, and quality factor. Two-port network: parameters, circuits as filters. Power in steady-state circuits; average and reactive power, power factor, power factor correction. Three-phase circuits: balanced and unbalanced steady-state operation; real and reactive power in balanced circuits, transient analysis. Operational amplifiers and ideal transformers.

ELEC2011 Systems Theory
Staff Contact: Dr D.J. Clements
S2 L2 T.5
Prerequisites: ELEC2030, MATH2610 or MATH2510
Corequisites: MATH3150, MATH2620, MATH2520
Continuous and discrete signals and their transformations. Properties of continuous and discrete systems. Linear time invariant systems. Low order differential and difference equations. Diagrammatic representations of systems. Impulse responses, step responses, convolution. Frequency responses, poles, zeros. Introduction to feedback, stability. Examples of systems will be taken from areas of circuits, analog and digital electronics, power and mechanical engineering, communications and control.

ELEC2012 Digital Circuits
Staff Contact: Dr T. Hesketh
S2 L2 T.5
Prerequisite: ELEC1011

ELEC2015 Electromagnetic Applications
Staff Contact: A/Prof T.R. Blackburn
S2 L2 T.5
Prerequisites: PHYS2949
Note/s: Excluded 6.825.

ELEC2016 Electrical Design and Practice
Staff Contact: Dr K.C. Daly
S1 L1 T1 S2 L1 T4
Prerequisites: ELEC1011, ELEC1010, PHYS1969
Corequisites: ELEC2010, ELEC2020, ELEC2012
Note/s: Excluded ELEC2110, ELEC2111, ELEC2014.

ELEC2020 Analog Electronics
Staff Contact: A/Prof S.R. Wenham
S2 L2 T.5
Prerequisites: ELEC2010, PHYS2989 or PHYS2859
Operating principles and terminal characteristics of PN diodes, solar cells, bipolar and field effect transistors. Small signal models of devices. Analysis and design of low-frequency Class-A amplifiers, including choice of biasing method. Consideration is given to stability, impedance matching, gain, output voltage swing and the various accompanying trade-offs.

ELEC2030 Circuit Theory
Staff Contact: Prof I.F. Morrison
S1 L2 T1.5
Prerequisites: ELEC1011, MATH1032 or MATH1231 or MATH1042 or MATH1241
Corequisites: MATH2620 or MATH2520
Note/s: Excluded ELEC2010.

ELEC2033 Electronics 1
Staff Contact: A/Prof S.R. Wenham
S2 L2 T2.5
Prerequisites: ELEC2030, PHYS2949 or PHYS2859
Note/s: Excluded ELEC2020.
Operating principles and terminal characteristics of PN diodes, bipolar and field effect transistors, and thyristors. Small signal models of devices. Analysis and design of low-frequency Class-A amplifiers, including choice of biasing method. Consideration is given to stability,
impedance matching, gain, output voltage swing and the various accompanying trade-offs.

Laboratory work on circuits, devices and systems. Computer aided experimental work.

ELEC2041
Microprocessors and Interfacing
Staff Contact: Dr W.S. Matheson
S2 L2 T2
Prerequisites: COMP1011, ELEC1041
Co-requisite: COMP1021
Note/s: Excluded ELEC3020, COMP3221, COMP9221.

ELEC2042
Real Time Instrumentation
Staff Contact: Dr T. Heskeh
S2 L2 T2
Prerequisites: ELEC1041, ELEC2041

ELEC3011
Integrated Electronics
Staff Contact: Dr C. Honsberg
S1 L2 T.5
Prerequisite: ELEC2020
Corequisite: ELEC3110

ELEC3012
Signals, Spectra and Filters
Staff Contact: School Office
S1 L2 T.5
Prerequisite: ELEC2011, MATH3150
Corequisite: MATH2849, MATH2859, ELEC3110

ELEC3013
Communication Systems 1
Staff Contact: Mr G. Kbar, Dr C. Phillips
S2 L2 T2
Prerequisite: ELEC3012 or ELEC3032
Overview of information acquisition, transmission and processing. Aims to enable students not specializing in this field to understand the communication problems they are likely to meet in their career, and to provide a background if they intend to specialize in communications. Topics include analogue to digital conversion (sampling, quantising, aliasing, pulse code modulation, delta modulation, time and frequency division multiplexing). Modulation and demodulation (amplitude, frequency and phase modulation, signal to noise ratio, noise figure, error probability, bandwidth, spectrum, intersymbol interference). Communication systems (radio wave propagation, antennas and arrays, telephone systems, modems, networks, repeaters, equalisers, line coding).

ELEC3014
Systems and Control 1
Staff Contact: A/Prof P.D. Neilson
S2 L2 T2
Prerequisite: ELEC3012 or ELEC3032
Consolidation and extension of basic material on continuous-time and discrete-time systems, and the relationships between them. Includes dynamic systems modelling, block diagrams, signal flow graphs, frequency and time domain relationships, stability criteria, Nyquist diagrams and root locus methods. Also includes introductory state space analysis.

ELEC3015
Signals, Spectra and Filters
Staff Contact: School Office
S1 L2 T.5
Prerequisite: ELEC2011, MATH3150
Corequisite: MATH2849, MATH2859, ELEC3110
ELEC3015
Electrical Energy
Staff Contact: A/Prof C. Grantham
S2 L2 T2
Prerequisite: ELEC3010

ELEC3016
Electronic Signal Processing
Staff Contact: Dr C.Y.Kwok
S2 L2 T2
Prerequisites: ELEC3011 or ELEC3031, ELEC3012 or ELEC3032

ELEC3020
Microprocessors and Interfacing
Staff Contact: Dr W.S. Matheson
S1 L2 T.5
Prerequisite: ELEC2012
Note/s: Excluded COMP3221.
Concepts of a microprocessor system: address spaces, memory devices, bus timing and standards, the VME bus. Input/output interfacing: polling and interrupts. DMA interfaces. The 68000 family and assembly programming language. Other microprocessors.

ELEC3031
Integrated Electronics + Laboratory
Staff Contact: Dr C. Honsberg
S2 L2 T2.5
Prerequisite: ELEC2012
Note/s: Excluded COMP3221.
Analysis and design of bipolar and field effect transistor amplifiers. Applications of negative feedback. Differential amplifiers. Properties and applications of operational amplifiers. Analysis and design of sinusoidal oscillators. Includes the appropriate laboratory component from ELEC3110 Electrical Engineering Laboratory 3.

ELEC3032
Signals, Spectra and Filters + Laboratory
Staff Contact: School Office
S1 L2 T1.5
Prerequisites: ELEC2011, MATH3150
Corequisites: MATH2849, MATH2859
Note/s: Only available to course 3645.

ELEC3110
Electrical Engineering Laboratory 3
Staff Contact: Dr R. Radzyner
S1 T6
Prerequisite: ELEC2016
Corequisites: ELEC3020, ELEC3010, ELEC3011, ELEC3012
A programme of experiments and laboratory-based design exercises in electrical energy, electronic devices and circuits, signal processing and microprocessors.

ELEC3120
Electrical Energy Strand of ELEC3110 Electrical Engineering Laboratory 3
Staff Contact: Dr R. Radzyner
S1 T1
Note/s: Excluded ELEC3110
A program of experiments and laboratory-based design exercises in electrical energy.

ELEC3121
Electronics Strand of ELEC3110 Electrical Engineering Laboratory 3
Staff Contact: Dr R. Radzyner
S1 T2
Note/s: Excluded ELEC3110
A program of experiments and laboratory-based design exercises in electronic devices and circuits.

ELEC3122
Signals, Spectra and Filters Strand of ELEC3110 Electrical Engineering Laboratory 3
Staff Contact: Dr R. Radzyner
S1 T1
Note/s: Excluded ELEC3110
A program of experiments and laboratory-based design exercises in signal processing.

ELEC3123
Microprocessor and Interfacing Strand of ELEC3110 Electrical Engineering Laboratory 3
Staff Contact: Dr R. Radzyner
S1 T2
Note/s: Excluded ELEC3110
A program of experiments and laboratory-based design exercises in microprocessors and their applications.

ELEC3401
Reliability Engineering for Design and Development
Staff Contact: Dr H. Mehrpour
S2 L2 T2
Prerequisite: MATH2849 attempted
Corequisite: MATH2859
Note/s: Excluded 6.044.
Quantified reliability, maintainability, availability achievement in design and development. Prediction of reliability. Redundancy design. Fault tree analysis.

ELEC3402
Introductory Physiology for Engineers
Staff Contact: A/Prof B.G. Celler
S1 L2 T2

An introduction to biophysics and physiology for engineers. Cells, tissues and organ systems with emphasis on their functional and regulatory characteristics and their interaction. An introduction to computer models of physiological control systems demonstrating their value in understanding the dynamics of complex neural, hormonal and circulatory responses to changes in homeostasis.

ELEC4010
Introduction to Management for Electrical Engineers
Staff Contact: Prof G.A. Rigby
S1 L3 T1
Prerequisite: ELEC2016

The purpose of this subject is to introduce students to key management concepts and techniques in the content of electrical engineering. Topics to be discussed will be taken from accounting, economics, finance, marketing, decision-making techniques, operations research, project and strategic management, human resources, industrial relations and law.

ELEC4011
Ethics and Electrical Engineering Practice
Staff Contact: A/Prof H.R. Outhred
S2 L1 T1
Prerequisite: ELEC4010

An introduction to the nature and origins of ethical systems; the application of ethical bases to engineering practice with particular reference to electrical engineering and computing; codes of ethics in the professions, with special reference to the Code of Ethics of the Institution of Engineers, Australia; social, political, environmental and economic considerations.

ELEC4042
Signal Processing
Staff Contact: Dr C.J.E. Phillips
S1 L2 T3
Prerequisite: ELEC3012

Analysis and processing of continuous-time (analog) and discrete-time (digital) signals and systems with emphasis on digital signal processing. Design and implementation of finite and infinite duration impulse response (FIR and IIR) digital filters. Aspects of nonlinear filtering techniques. Applications of the discrete Fourier transform (DFT), fast Fourier transform (FFT) algorithms and applications. Processing and analysis of random signals and noise; correlation functions, mean square estimation, Wiener filters and linear prediction. Adaptive signal processing; adaptive FIR filters, least mean-square (LMS) algorithm and applications. Spectrum estimation.

ELEC4202
Power Systems
Staff Contact: Dr R.J. Kaye, Dr D. Sutanto
SS L2 T3
Prerequisite: ELEC3015

Review of basic concepts used in power systems analysis: phasors, complex power, systematic network analysis, three phase systems, the per-unit methodology. Some aspects of power systems analysis, including load flow and fault analysis. Distribution systems. An introduction to power system protection. Power systems planning: electricity pricing, demand side options, co-ordinated pricing and planning, practical tariffs.

ELEC4215
Industrial Electrical Systems
Staff Contact: A/Prof T.R. Blackburn
S1 L2 T3
Prerequisite: ELEC3010

The design, operation, and maintenance of large industrial electric power systems. Protection and fault calculations. Choice and use of protective equipment, including circuit interrupters, surge diverters and personnel protection. Equipment rating. Relevance of Standards (including safety and general wiring procedures). Insulation systems, their design and practical limitations. High voltage testing techniques and their use in insulation assessment of high, medium and low voltage industrial systems. Electromagnetic compatibility with electronic equipment.

ELEC4216
Electrical Drive Systems
Staff Contact: A/Prof C. Grantham
SS L2 T3
Prerequisite: ELEC3010

ELEC4240
Power Electronics
Staff Contact: Dr K.C. Daly
SS L2 T3
Prerequisites: ELEC2020, ELEC3010, MATH3150

Note/s: Excluded 6.212.

The course will be of interest to intending electronic specialists who want to know about techniques of designing high current electronic circuits using devices in the switching mode rather than in the linear mode as well as to power specialists who want to know of techniques of power conversion by other than electromechanical means. The course starts with coverage of the full spectrum of modern power semiconductor devices, their characteristics - both static and switching, their drive circuit design and protection techniques including the snubber. Topologies of power electronic circuits for applications in controlled rectification, inversion, dc-dc conversion and ac-ac conversion, their control techniques and characteristics will then be treated.
Effects of power electronic circuits on supply systems will also be covered.

ELEC4303

Electromagnetic Wave Propagation
Staff Contact: Dr I. Skinner
Prerequisite: ELEC2015 or MATH3141

ELEC4313

Optical Communications
Staff Contact: Prof P.L. Chu
Prerequisite: ELEC3013

ELEC4323

Digital and Analog Communications
Staff Contact: A/Prof I. Korn
Prerequisites: ELEC3013, MATH3150, MATH2859

ELEC4333

Communications Systems 2
Staff Contact: A/Prof T.B. Vu
Prerequisites: ELEC3013, ELEC3016

Modern communications systems from a systems point of view. Topics selected from: radar: Fundamentals of radio systems, CW radar, MTI and Pulse Doppler radar, tracking radar, synthetic aperture radar, electronic navigation aids, radio direction finding, VOR and doppler VOR, DME, hyperbolic systems of navigation aids, television systems: Monochrome and colour television systems, teletext, terrestrial and satellite TV transmission, the MAC transmission format and HDTV systems; satellite communications systems: satellite channel, antenna systems, effect of rainfall and atmospheric losses, receiver noise, link analysis, satellite transponders, FDMA, TDMA, CDMA, mobile satellite communications systems.

ELEC4351

Data Communication and Computer Networks
Staff Contact: Dr W.J. Dewar
Prerequisites: ELEC3013, ELEC3020

ELEC4352

Data Networks 2
Staff Contact: H. Mehrpour
Prerequisite: ELEC4351

Data transmission on telephone networks. High speed Local Area Networks (HSLANs) and Metropolitan Area Networks (MANs). Local area network interconnection. Protocol modelling and verification techniques. Analysis of protocols for data link, network and transport layers. TCP/IP protocols. Operating system views of communications; network protocol drivers, network servers.

ELEC4412

Systems and Control 2
Staff Contact: Prof N.W. Rees
Prerequisites: ELEC3012, ELEC3014

ELEC4413

Digital Control
Staff Contact: Dr D.J. Clements
Prerequisites: ELEC3014, MATH2849, MATH2859

Covers the design and implementation of digital control systems. The topics covered include: identification of discrete-time model parameters; pole placement and linear-quadratic controller design; observers; noise models and stochastic systems; minimum variance controllers; Kalman filtering; LQG control; introduction to ideas of adaptive control and robustness. Aspects of implementation are constantly emphasized.
ELEC4432
Computer Control and Instrumentation
Staff Contact: A/Prof K.W. Lim
SS L2 T3
Prerequisites: ELEC3014, ELEC3020
Note/s: ELEC3016 recommended prerequisite.

Design, evaluation and implementation of computer and microprocessor based control systems and instrumentation. The program is laboratory intensive. Topics covered include software systems for process control, the organization of hardware systems for computer control, programmable logic controllers, robust implementation of digital controllers, smart sensors and instrumentation networks.

ELEC4483
Biomedical Engineering
Staff Contact: A/Prof B.G. Cellar
SS L2 T3
Prerequisites: ELEC3402, ELEC3014, ELEC3016

Application of signals and systems theory to the analysis and computer modelling of dynamic properties of physiological systems. Topics include descriptions of typical biomedical signals, statistical properties of signals, optimal filtering of physiological signals, ARIMA stochastic models of time series, forecasting or prediction methods, estimation of transfer function - noise models using least squares procedures, identification of multivariable nonlinear systems, computer modelling of stochastic signals and dynamic systems, and physiological adaptive control processes. Several laboratory experiments will be run concerned with computer simulation and analysis of models of cardiac, respiratory and nervous systems.

ELEC4503
Advanced Electronic Circuits
Staff Contact: Prof G.A. Rigby
SS L2 T3
Prerequisites: ELEC2020, ELEC3011
Note/s: ELEC3016 recommended

Electronic devices circuits and subsystems for use in communications and signal processing. The emphasis is on high performance applications which require an understanding of device behaviour and advanced circuit design techniques. Topics include: high frequency models for bipolar and field effect devices, noise in systems, tuned amplifiers, power amplifiers, controlled gain amplifiers, voltage-controlled oscillators, multipliers, modulators and phase-locked loops.

ELEC4512
Semiconductor Devices
Staff Contact: Dr C. Honsberg
SS L2 T3
Prerequisite: ELEC3011

Principles of operation and circuit characteristics of a range of semiconductor devices including bipolar diodes and transistors, MOS devices and circuits, charge-coupled devices, solar cells, light-emitting diodes, and semiconductor lasers. The lectures are supplemented by experimental work with a selection of these devices.

ELEC4522
Microelectronics Design and Technology
Staff Contact: Dr C.Y. Kwok
SS L2 T3
Prerequisites: ELEC3011, ELEC3016

ELEC4532
Integrated Digital Systems
Staff Contact: Prof G.R. Hellestrand
SS L2 T3
Prerequisites: ELEC2012 or COMP2021

Integrated circuit logic families with emphasis on MOS technologies, structured chip design, custom and semi-custom approaches, system architecture, computer aided design, layout considerations, timing estimates, circuit failures, faults, fault modelling, testing, design for testability.

ELEC4540
Applied Photovoltaics
Staff Contact: A/Prof S.R. Wenham
SS L2 T3

The use of solar cells (photovoltaic devices) as electrical power supplies based on the direct conversion of sunlight into electricity. The emphasis is placed on applications including system design and construction, although the properties of sunlight, the operating principles of solar cells and the interaction between sunlight and the cells are also treated.

ELEC4903
Industrial Training
Staff Contact: Dr D. Sutanto

Students enrolled in courses 3640, 3725 and 3720 must complete a minimum of 60 days industrial training. At least some of this must be obtained in Australia. Overseas employment must have prior approval. Students are required to submit to the School evidence from their employers confirming completion of the prescribed training and a report, typically 1500 words long, summarising the work done and training received. Experience claimed as an industrial elective covers requirements for this subject. Students will formally enrol in this subject as part of the program for year 4.

ELEC4910
Thesis Part A
Staff Contact: Dr C.J.E. Phillips
S1 HPW6

86 ENGINEERING
This is done in the last two sessions of the BE degree course for full-time students, six hours per week in the first session, and twelve hours per week in the second session are devoted to directed laboratory and research work on an approved subject under guidance of members of the lecturing staff. Part-time students may need to attend the University full-time in their final session or attend for one further part-time session, if facilities are not available for the thesis to be done at work. Generally, the thesis involves the design and construction of experimental apparatus together with laboratory tests. Each student is required to present a seminar, and a written thesis must be submitted on each project by the Tuesday of the 14th week of Session 1 or Session 2.

ELEC9201

Power System Planning and Economics

Staff Contact: A/Prof H.R. Outhred and Dr R.J. Kaye

C3

Review of conventional planning techniques and their limitations. Introduction of a novel approach based on welfare maximisation. Examples of its application to coordinated supply and demand side planning in problems such as demand forecasting, supply reliability, maintenance scheduling, transmission planning and demand management.

ELEC9202

Power Systems Operation and Control

Staff Contact: Dr R.J. Kaye

C3

Introduction to the main techniques currently used in the operation and control of power systems, including operations planning. Current trends in the evolution of the structure of electricity industries in various parts of the world and their implications for power system operations. The subject is in three parts: A: Practices in Power System Operation and Control, B: Trends in Power Industry Structure, C: Operations and Scheduling in a Decentralized Power System.

ELEC9203

Power System Analysis

Staff Contact: Dr D. Sutanto

C3 S2

Prerequisite: Assumed knowledge ELEC4202 or equivalent

Note/s: Excluded 6.203.

ELEC9204

Protection of Power Apparatus and Systems

Staff Contact: Prof I.F. Morrison

C3

Prerequisite: Assumed knowledge ELEC4202 or equivalent

ELEC9214

Power System Equipment

Staff Contact: A/Prof T.R. Blackburn

C3

Prerequisite: Assumed knowledge ELEC4202 or equivalent

Operating characteristics and design features of the major equipment components of a power system. Includes a general treatment of equipment rating, thermal design, electrodynamic forces, equipment protection and data acquisition. Specific items of equipment include power transformers, instrument transformers, switchgear, overhead lines and underground cables, surge arrestors, gas insulated systems. Protection of electrical equipment. Effects of electromagnetic fields on personnel. Condition monitoring and testing of power equipment.

ELEC9215

Fields and Materials

Staff Contact: A/Prof T.R. Blackburn

C3

General description of the inter-relationship between the different types of fields (electric, magnetic and thermal) and materials when used in various areas of electric power engineering. Topics include: a general coverage of dielectric, conducting, magnetic and thermal materials; solution of Poisson's Laplace's and Fourier's equations for simple geometries and calculation of electric, magnetic and thermal fields, including boundary effects; a selection of typical applications from thermal rating, electric heating, contact effects, laser action, surface electron emission, etc; a brief outline of some measurement techniques applicable to the above.

ELEC9221

Special Topic in Power

Staff Contact: Prof I.F. Morrison

C3

This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

ELEC9222

Special Topic in Power

Staff Contact: Prof I.F. Morrison

C3

This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.
ELEC9223
Power Engineering Seminar
Staff Contact: Prof I.F. Morrison
C3
Weekly seminars given by members of the staff, postgraduate students and invited speakers, covering aspects of power and energy engineering. Outside speakers will be drawn from other universities, research institutions and industry. The purpose of the course is to expose students to the range of research and development activities within the power engineering discipline. Subject is taken over two consecutive sessions commencing session 1 or session 2.

ELEC9224
Special Topic In Power
Staff Contact: Prof I.F. Morrison
C2
The content of this subject changes to allow presentation of a special topic of current interest in a short course format.

ELEC9225
Special Topic In Power
Staff Contact: Prof I.F. Morrison
C2
The content of this subject changes to allow presentation of a special topic of current interest in a short course format.

ELEC9226
Electrical Services In Buildings
Staff Contact: Dr D. Sutanto
C3
Prerequisite: Assumed knowledge: ELEC3010, ELEC3015

ELEC9231
Electrical Drive Systems
Staff Contact: A/Prof C. Grantham, Dr F. Rahman
C3
Note/s: Excluded ELEC4216

ELEC9330
Special Topic
Staff Contact: Dr H. Mehrpour
C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

ELEC9336
Digital Communication Networks
Staff Contact: A/Prof T.B. Vu
C3
Note/s: Excluded ELEC9337, ELEC4351, ELEC4352.
Introduction to data communication. Analog versus digital transmission. Transmission media. LAN’s; WAN’s, ISDN. Protocols: IEEE standards for LAN’s; fibre optic networks; satellite networks. OSI reference model. Some design issues and examples: topics include error detection and correction; routing and congestion control; internetworking; connection management; data representation and coding; file management; electronic mail.

ELEC9337
Data Networks 2
Staff Contact: Dr W.J. Dewar
C3
Prerequisite: ELEC4351.

ELEC9338
Television and Video Signal Processing
Staff Contact: Dr R.A. Zakarevicius
C3
Note/s: Excluded ELEC4333.

ELEC9340
Communication Electronics
Staff Contact: Dr R.A. Zakarevicius
C3
Prerequisite: Assumed knowledge ELEC9316 or similar
Electronic aspects of modern analogue and digital communication systems. Topics selected from: electronic system noise; analogue modulators, demodulators, frequency conversion circuits, AM and FM transmitters and receivers; television electronics; phase locked loops; switched capacitor and other practical filter techniques; surface acoustic wave devices.
ELEC9341
Signal Processing 1 - Fundamental Methods
Staff Contact: A/Prof W.H. Holmes, Dr R. Radzyner
C3
Note/s: Excluded ELEC4042.
Analysis and processing of analogue and digital signals with emphasis on digital methods. The topics covered are: Convolution, correlation, energy and power density spectra for signals and linear systems; sampling and analogue to digital conversion; the discrete Fourier transform (DFT) and fast Fourier transform (FFT) algorithms and applications; fundamentals of digital filter design and realization; finite word length effects in digital filters; digital processing of analogue signals, especially implementations on programmable digital signal processing (DSP) chips.

ELEC9342
Signal Processing 2 - Advanced Techniques
Staff Contact: Dr R. Radzyner, A/Prof W.H. Holmes
C3
Prerequisite: ELEC4042, ELEC9341 or similar
Advanced techniques and applications of digital signal processing. Topics covered are: advanced frequency domain signal analysis, including spectral estimation; advanced digital filtering methods: signal processing with finite word lengths; sampling rate conversion and multirate signal processing; least square detection and estimation methods, including linear prediction; adaptive filtering in detection and estimation problems; nonlinear digital signal processing; two and three dimensional signal processing; applications in communications, control, radar, sonar and in the processing of speech, audio, image and seismic signals (e.g. equalization, echo cancellation, noise reduction, deconvolution).

ELEC9343
Principles of Digital Communications
Staff Contact: Dr R. Radzyner/Dr T. O. Tsun
C3
Prerequisite: ELEC3012 or similar
Note/s: Excluded ELEC4323.
Random processes: Autocorrelation and power spectral density. Modulation and detection of binary and M-ary symbols: Error probability, bandwidth, energy-to-noise ratio and complexity. Information Theory: Entropy, source coding, channel capacity. Coding theory: Block, cyclic and convolutional codes; Viterbi decoding; Trellis coded modulation. Spectrum control; link analysis. Matched filter receiver; power limited and bandwidth limited transmission. Intersymbol interference and eye patterns.

ELEC9347
Digital Modulation
Staff Contact: A/Prof I. Korn
C3
Prerequisite: ELEC9343 or similar
A research orientated, advanced treatment of digital modulation and detection in Gaussian and fading channels. Modulation includes: M-ary ASK, PSK, DPSK, QASK, OQASK, FSK and CPM (including MSK). Detection includes: coherent, partially coherent and noncoherent like differential phase detection for DPSK, FSK and CPM and limiter-discriminator detection and limiter-discriminator-integrator detection for FSK and CPM. Channels include: Gaussian, Rician (Satellite Mobile), Rayleigh (Land Mobile) with frequency selective fading and Doppler frequency shifts. Analysis and design includes: probability of error formulas and bounds; power spectral density and bandwidth; effect of intersymbol, cochannel and adjacent channel interference; symbol constellations, eye diagrams, equalization; partial response, full response and Nyquist signals; complexity and comparisons.

ELEC9350
Theory of Optical Fibres and Optical Signal Processing
Staff Contact: Prof P.L. Chu
C3

ELEC9351
Propagation and Transmission of Electromagnetic Waves
Staff Contact: Dr E.H. Fooks
C3

ELEC9352
Antenna Design and Applications
Staff Contact: A/Prof T.B. Vu
C3
Prerequisite: ELEC9351
Principles of phased arrays and reflector antennas with some emphasis on space-borne and ground-terminal antennas for satellite communications. Analysis and synthesis of phased array, null steering theory. Single and dual reflector antennas, offset-reflector systems, optimization techniques. Effects of satellite orbital saturation on design of ground terminal antennas. Monopulse tracking antennas. Antenna tolerance theory.

ELEC9353
Microwave Circuits: Theory and Techniques
Staff Contact: Dr E.H. Fooks
C3
ELEC9354
Microwave and Optical Devices
Staff Contact: Dr R.A. Zakarevicius
C3
Principles and applications of microwave amplifying and control devices. Includes microwave transistors, Gunn and impact diodes and recent developments in ultra high speed transistors. Principles and applications of optical sources and detectors. Includes lasers, LEDs, optical detectors.

ELEC9355
Optical Communications Systems
Staff Contact: Prof P.L. Chu
C3
Prerequisites: ELEC9350, ELEC9354

ELEC9370
Digital Image Processing Systems
Staff Contact: Dr C.J.E. Phillips
C3
The fundamentals of digital image processing with topics selected from the following: Visual perception and the image model, transforms, enhancement, sharpening and smoothing, restoration, encoding, segmentation, reconstruction of images from projections and tomography, satellite imaging and imaging in remote sensing; image processing hardware and systems; picture processing; measurement and inspection.

ELEC9401
Computer Control Systems 1
Staff Contact: A/Prof P.D. Neilson
C3
An introduction to the use of CAD packages and coverage of the control theory necessary to understand the design of fundamental control systems. Selected computer packages, sampling and conversion, difference equation models, polynomial forms, z-transforms, differential equation models, operator forms, s-transforms, block diagrams, flow diagrams and state space models, connections between discrete and continuous models, classical continuous design, Root locus, Nyquist, Bode, classical discrete design, w-transforms, PID controllers, simple controller design schemes (time polynomial), Dahlin Higham, pole placement, approximations, Smith predictor, deadbeat, stochastic observers, pre-whitening, stochastic processes, time domain, frequency domain, correlation, identification, moving average models.

ELEC9402
Computer Control Systems 2
Staff Contact: A/Prof P.D. Neilson
C3
Prerequisite: ELEC9401
Builds on the material of ELEC9401, completing coverage of basic material considered necessary for modern control system synthesis and design. Revision of model forms: discrete-continuous, polynomial-state space. Observability, controllability, observers - deterministic, stochastic processes, stochastic models, innovation models, prediction, multivariable PI tuning, linear quadratic regulator design, Kalman filtering, stochastic control, LOG, disturbances, measured disturbances, feedforward control, estimated disturbances, identification, simultaneous estimation of states and parameters, simple adaption, servomechanism problems, cascade control, multiple sampling rates, non-linear elements.

ELEC9403
Real Time Computing and Control
Staff Contact: Dr T Heseltine
C3
Prerequisites: ELEC9401 or assumed knowledge equivalent to ELEC4432 or ELEC4413
Examines the implementation of modern control techniques and associated instrumentation using distributed computers. Practical hardware aspects, including measurement and actuation, data conditioning, acquisition and transmission, microprocessor devices, and other distributed computing components. Commercial realisations ranging from PLCs to full process control computing systems. Software: executive operating systems, concurrency, control algorithms, numerical problems, languages and development tools in the real-time context. Design of the man-machine interface using interactive computer display systems. The role of simulation and other CAD tools. Steps of engineering development from concept to commissioning. The viewpoint of industrial design is maintained throughout.

ELEC9404
Topics in Digital Control
Staff Contact: Prof N.W. Rees
C3
Prerequisites: ELEC9401, ELEC9402
Possible modules include: identification, estimation, multivariable systems, robust control, optimization, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, variable structure systems, expert systems and fuzzy control, neural networks.

ELEC9405
Advanced Control Topics
Staff Contact: A/Prof P.D. Neilson
C3
Prerequisites: ELEC9401, ELEC9402
From one to three models, covering advanced control theory, with an emphasis on applications. The modules are not limited to digital control. Typical modules include: identification, estimation, multi-variable systems, robust control, optimization, adaptive control, biomedical applications, instrumentation and sensors, robotics, industrial design case studies, non-linear identification,
non-linear control, variable structure systems, expert systems and others to be decided.

ELEC9407
Cybernetic Engineering
Staff Contact: A/Prof K.E. Tait
C3
The genesis of cybernetics; fundamentals of cybernetic engineering; machines modelled on life and their evolution to robots. Topics include biological information transmission, memory and efficiency with aspects of biochemical coding and control, genetic and neural; basics of brain models and the development of pattern recognition techniques, learning machines and syntactic structures; includes the Perceptron view and brain modelling; neural networks and neural computing; the albus approach to robotics, anthropomorphic robots; the social consequences of the dual evolution of robots.

ELEC9409
Cybernetic, Machine and Robot Vision
Staff Contact: A/Prof K.E. Tait
C3
Material oriented towards image understanding, scene analysis and world models for robots incorporating vision; including imaging techniques and geometries for vision, modelling the imaging process and image understanding, edges, range information, surface orientation, boundaries and regions, motion and optic, flow, texture, structural description, matching and inference, vision robotics.

ELEC9410
Robotics, Automation and Productivity Technology
Staff Contact: A/Prof K.E. Tait
C3
Principles of Robotics relevant to trends in automating the manufacturing process. Such aspects as arm configurations, dynamics and control with relevant sensing methods; assembly and control together with trends in artificial intelligence for Robotics are discussed.

ELEC9411
Introductory Physiology for Engineers
Staff Contact: A/Prof B.G. Celler
C3 S1 L2 T2
Note/s: Excluded ELEC3402.
This subject is intended primarily for Biomedical Engineering students. It is compulsory for Strand A, part-time students ONLY who are unable to do PHPH2112.
An introduction to biophysics and physiology for Engineers. Cells, tissues and organ systems with emphasis on their functional and regulatory characteristics and their interaction. An introduction to computer models of physiological control systems demonstrating their value in understanding the dynamics of complex neural, hormonal and circulatory responses to changes in homeostasis.

ELEC9412
Biological Signal Analysis
Staff Contact: A/Prof P.D. Neilson
C3
Note/s: Excluded ELEC9341.
Digital computer methods of extracting information from biological signals using filtering and averaging, expectation density functions, correlation functions, spectral analysis and other techniques. Methods of constructing models of biological systems.

ELEC9415
Optimization and Optimal Control
Staff Contact: Dr D.J. Clements
C3 SS
Prerequisites: 1 undergraduate Control subject plus MATH2501
Constrained and unconstrained optimization. Linear quadratic and geometrical programming techniques, the simplex method, Kuhn-Tucker necessary conditions, gradient methods. Dynamic optimization, dynamic programming, the optimum principle. Design control systems by optimization methods, optimization of parameters, and other methods.

ELEC9416
Non-linear Systems and Simulation
Staff Contact: Prof N.W. Rees
C3 SS
Prerequisites: 1 undergraduate Control subject plus MATH2501
Dynamic and static non-linear systems; Non-linear control, phase plane, describing function, stability, Liapunov, Popov and the circle criterion; Feedback Linearisation. Simulation and non-linear systems, numerical methods, simulation languages and shells.

ELEC9501
Advanced Semiconductor Devices
Staff Contact: Dr C. Honsberg
C3
Note/s: Excluded ELEC4512.
Theory and operating characteristics of a range of semiconductor devices including bipolar diodes and transistors, MOS devices and circuit connections, charge coupled devices, solar cells, light emitting diodes and semiconductor lasers.

ELEC9502
Integrated Circuit Technology
Staff Contact: Dr R.S. Huang
C3
Technologies for the fabrication of bipolar, CMOS, and BiCMOS VLSI integrated circuits. Includes technology modules of Crystal growth, wafer preparation, maskmaking, photolithography, oxidation, diffusion, ion implantation, plasma processing, thin film deposition and metallization. Advanced technologies such as GaAs high speed IC and SOI for radiation hard or 3-D integration are briefly discussed. Process integration and the link of device physics, circuit design to technology development are emphasized.

ELEC9503
Integrated Circuit Design
Staff Contact: Dr C.Y. Kwok
C3
Prerequisite: Assumed knowledge ELEC3016 or 6.322
An advanced treatment of the design of integrated circuits with emphasis on the relationships between technology, device characteristics and circuit design. Includes properties and modelling of bipolar and MOS circuit components, circuit analysis and simulation, layout rules, analog functions such as operational and power amplifiers;

ELEC9504
Solar Energy Conversion
Staff Contact: A/Prof S.R. Wenham/Dr A.B. Sproul
C3

ELEC9506
Special Topic in Electronics
Staff Contact: Dr R.S. Huang
C3
This syllabus changes to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

ELEC9507
Solar Cells and Systems
Staff Contact: A/Prof S. Wenham
C3
Prerequisite: ELEC4540 or similar
Harnessing of sunlight by using solar cells to convert it directly into electricity. The main emphasis is placed on applications including systems design, construction and operation with this subject building on the material introduced in the subject Applied Photovoltaics. Grid connected systems receive particular attention. Factors important in the design of solar cells are also studied with regard to their effects on spectral response, temperature sensitivty, resistive losses, current generation and open circuit voltages. A range of solar cell technologies are considered both at the laboratory and commercial levels. Advanced concepts and designs for photovoltaic modules and batteries are considered. Experience will be gained with the computer aided design procedures for photovoltaic systems. Management and entrepreneurial approach in relation to starting a small business within the photovoltaic industry are considered.

ELEC9508
High Efficiency Silicon Solar Cells
Staff Contact: Prof M.A. Green
C3
Prerequisite: ELEC9501 (or equivalent)
This is an advanced level subject for those with a good background in semiconductor device physics and an interest in silicon solar cells or related devices. After a brief review of the crystal structure, energy bands and phonon spectra of silicon, the course examines silicon's optical, recombintation and transport properties in some detail. Next comes a discussion of efficiency limits upon photovoltaic energy conversion, with particular emphasis upon light trapping and the potential for exceeding conventional limits. After discussion of presently achievable surface and bulk material properties, the final section of the course studies in detail the design of silicon cells upon both crystalline and multicrystalline substrates and under concentrated and non-concentrated sunlight.

ELEC9509
Photovoltaics
Staff Contact: A/Prof S.R. Wenham
S1
Assumed knowledge: ELEC2020 or equivalent
Note/s: Excluded ELEC4540
Brief consideration of the operating principles of solar cells and their interaction with sunlight to facilitate electricity generation. Solar cell electrical output characteristics are studied, leading to system design considerations based on the interconnection of large numbers of solar cells. Considerable emphasis is placed on photovoltaic applications, including design approaches, and evolutionary trends.

ELEC9912
Project Report
Staff Contact: A/Prof K.E. Tait
C12
The project is done in a major area, in which it is offered under the supervision of an academic member of staff. Where the work is carried out externally a suitable co-supervisor may be required. Projects can take many forms such as the design and construction of experimental equipment or a theoretical investigation. At the end of the work a comprehensive project report giving an account of the student's own research must be submitted. Information on the preparation of project reports is contained in the University Calendar.
Head of School
Professor J.C. Trinder

Administrative Assistant
Mr L. Daras

Geomatics is a modern scientific term to describe an integrated approach to the acquisition, analysis, storage, distribution, management and application of spatially-referenced data. It embraces the traditional area of surveying and mapping, as well as the comparatively new fields of remote sensing and spatial information systems.

Today, a geomatic engineer may choose to work in one of the specialized areas of:

- **Satellite Surveying** (position determination techniques using satellite signals)
- **Geodesy** (determining the mathematical model of the Earth, and its gravity field, and the practice of control network surveying)
- **Hydrography** (mapping the seabed and waterways for navigation and off-shore resource management)
- **Engineering Surveying** (precise surveying for engineering projects)
- **Cadastral Surveying** (knowledge of the laws and practices for survey of property boundaries)
- **Land Management and Development** (environmental assessment for resource management and change of land use)
- **Land Information Management** (the use of computer-based information systems of spatially related data for planning and administration purposes)
- **Geographic Information Systems (GIS)** (computer-based information systems for environmental assessment and monitoring)
- **Photogrammetry and Remote Sensing** (the use of airborne and spaceborne remotely sensed images for mapping and resource surveys).

The two undergraduate degrees in the School are the Bachelor of Engineering in Geomatic Engineering course 3741 and the combined degree of Bachelor of Engineering in Geomatic Engineering, Bachelor of Science in Computer Science course 3746.

Formal graduate courses lead to the award of the degree of Master of Engineering Science in Geomatic Engineering 8652 and of the graduate diploma in Geomatic Engineering 5492, and opportunities are provided for graduate research leading to the award of the degrees of Master of Geomatic Engineering 2721 and Doctor of Philosophy 1680.

The School of Geomatic Engineering is also involved in the Centre for Remote Sensing and Geographic Information Systems in association with the School of Geography in the Faculty of Applied Science. The Centre supports graduate programs leading to the award of the degree of Master of Engineering Science 8641 or Master of Applied Science 8026 or the Graduate Diploma in Remote Sensing and Geographic Information Systems 5026 or 5496 in addition to supervision for the degree of Doctor of Philosophy.
Bachelor of Engineering (Geomatic Engineering) Course

The School offers a full-time course of four years duration leading to the award of the degree of Bachelor of Engineering - BE (Geomatic Engineering). Alternatively, the course may be taken in a sandwich form in which a student may, after completing the first year of the course on a full-time basis, alternate his or her studies with one or more periods of employment by taking leaves of absence of up to two consecutive sessions. The BE (Geomatic Engineering) degree course is a well rounded course aimed at preparing the graduate for a broad range of career opportunities in the various branches of Geomatic Engineering and in associated fields referred to above. The course recognizes that its graduates may be called on to act as survey practitioners, consultants, managers, teachers or researchers, and indeed a single graduate may take on several of these roles during his or her career. To this end, the BE (Geomatic Engineering) degree course covers general scientific principles with special emphasis on computing, as well as specialized Geomatic Engineering applications. Throughout the course, theoretical studies are complemented by practical exercises in the field and in the laboratory.

Bachelor of Engineering in Geomatic Engineering/Bachelor of Science in Computer Science Course

This combined degree course of five years full-time study enables a student to qualify for the award of the two degrees of Bachelor of Science in Computer Science and Bachelor of Engineering in Geomatic Engineering. The course authority for the combined degree is the School of Geomatic Engineering. All students admitted to the combined course will be part of the Geomatic Engineering UAC quota (NSU Code) but must also have achieved a level equivalent to the Computer Science cut-off (NCS) for the year of admission.

The course is specifically designed for students wishing to enter a career in computer science specializing in surveying satellite positioning, spatial data handling for land and geographic information systems, remote sensing, digital mapping and terrain analysis. The content of the course comprises subjects from the BSc in Computer Science and BE degree courses with some variations to accommodate the requirements of both degrees. It should be possible to complete the requirements for the award of the BE degree after four years study and the BSc degree after five years.

Recognition

The degree of BE (Geomatic Engineering) is recognized by the New South Wales Surveyors' Board as meeting all examination requirements for registration as a Registered Surveyor in New South Wales, and is recognized by the Institution of Surveyors, Australia for admission as corporate members.

Students wishing to become Registered Surveyors with the New South Wales Surveyors' Board after graduation are advised to gain practical experience under a Registered Surveyor during their course. Details are obtainable from the Registrar, Surveyors' Board, Department of Lands, Bridge Street, Sydney 2000.

Field Excursions

Students must complete all necessary fieldwork for any subject and be prepared to pay all the appropriate costs, and must be in attendance at all scheduled examinations except in exceptional circumstances.
Undergraduate Study

Computing Requirements

Information regarding recommended computing equipment for the courses offered by the School is available from the School Office.

Course Outlines

3741
Geomatic Engineering
Bachelor of Engineering in Geomatic Engineering BE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>GMAT1111</th>
<th>Introduction to Computing</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMAT1712</td>
<td>Introduction to Surveying</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT1042</td>
<td>Survey Data Presentation</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT2111</td>
<td>Principles of Computer Processing</td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GMAT2122</td>
<td>Computer Graphics 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT2221</td>
<td>Introduction to Geodetic Science</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS1929</td>
<td>Physics 1</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>GMAT3012</th>
<th>Surveying Instruments</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMAT3111</td>
<td>Survey Computations</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT3231</td>
<td>Geodetic Computations</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT4051</td>
<td>Survey Camp 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT4011</td>
<td>Surveying Techniques</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>GMAT4111</td>
<td>Data Analysis and Computing 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT4221</td>
<td>Geodetic Positioning 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH2009</td>
<td>Engineering Mathematics 2</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH2829</td>
<td>Statistics SU</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PHYS2969</td>
<td>Physics of Measurements</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>General Education Subject Cat.A</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>CIVL646</th>
<th>Engineering for Surveyors 1</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CIVL656</td>
<td>Engineering for Surveyors 2</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT5011</td>
<td>Engineering Surveying</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT5111</td>
<td>Data Analysis and Computing 2</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT5122</td>
<td>Computer Graphics 2</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT5221</td>
<td>Geodetic Positioning 2</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT5621</td>
<td>Cadastral Surveying 1</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT6051</td>
<td>Survey Camp 2</td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GMAT6511</td>
<td>Photogrammetry and Mapping 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT6522</td>
<td>Remote Sensing and Resource Surveys</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT6532</td>
<td>Spatial Information Systems 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT6621</td>
<td>Cadastral Surveying 2</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT6811</td>
<td>Land Economics and Valuation</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PLAN9111</td>
<td>Town Planning</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28-hr General Education Subject Cat.B</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>GMAT7051</th>
<th>Survey Camp 3</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMAT7311</td>
<td>Offshore Surveying</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT7511</td>
<td>Photogrammetry and Mapping 2</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT7532</td>
<td>Spatial Information Systems 2</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT7612</td>
<td>Land Management and Development Project 1 (General Education Subject Cat. C)</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT7722</td>
<td>Project Management 1</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT7811</td>
<td>Land Subdivision and Development</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GMAT8001</td>
<td>Project</td>
<td></td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>GMAT8011</td>
<td>Project Surveying</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT8221</td>
<td>Advanced Geodesy</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GMAT8612</td>
<td>Land Management and Development Project 2 (General Education Subject Cat. C)</td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GMAT8711</td>
<td>Professional Practice</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GMAT8722</td>
<td>Project Management 2</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>20</td>
</tr>
</tbody>
</table>
Combined Course

3746
Bachelor of Engineering in Geomatic Engineering/Bachelor of Science in Computer Science
BE BSc in Computer Science

The structure of this new course is flexible to accommodate timetabling but a recommended program which will satisfy prerequisites throughout the course is:

Year 1
COMP1011 or GMAT6811
GMAT1042, GMAT1111, GMAT1712 (General Education Cat.C), GMAT2221, GMAT2122,
MATH1131 or MATH1141, MATH1231 or MATH1241, PHYS1929

Year 2
COMP1011 or GMAT6811, COMP1021,
GMAT3012, GMAT3111, GMAT3012, GMAT3231,
GMAT4011, GMAT4051, GMAT4111, GMAT4221,
MATH2841, MATH2501, MATH2510, MATH2520,
PHYS2969,

Year 3
CIVL0646, CIVL0656
COMP2011, MATH2100, MATH2120,
GMAT5011, GMAT5111, GMAT5221, GMAT5621,
GMAT6051, GMAT6511, GMAT6532, GMAT6621,
PLAN9111, General Ed. Cat. B.

Year 4
GMAT6522, GMAT7051, GMAT7311, GMAT7511,
GMAT7612 (General Education Cat.C),
GMAT7722, GMAT7811, GMAT8001, GMAT8011,
GMAT8221, GMAT8612 (General Education Cat.C),
GMAT8711, GMAT8732, GMAT8722

Plus 2 units (4 or 5 hours per week each) at level II or higher
either from Table 1 of the Sciences Handbook, or from
Table 2 for Program 0600.

Graduate Study

Formal graduate courses lead to the award of the degree of Master of Engineering Science 8652 and of the graduate diploma in Geomatic Engineering 5492, and opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2721 and Doctor of Philosophy 1680.

The School of Geomatic Engineering is also involved in the Centre for Remote Sensing and Geographic Information Systems in association with the School of Geography in the Faculty of Applied Science. The Centre supports graduate programs leading to the award of the degree of Master of Engineering Science 8641 or Master of Applied Science 8026 or the Graduate Diploma in Remote Sensing and Geographic Information Systems 5026 or 5496 in addition to supervision for the degree of Doctor of Philosophy 1685.

Candidates are allowed a wide choice in selecting programs. Subjects can be selected to suit individual student needs and typical programs can be supplied by the School on request. The program of study must total at least 30 credits. One credit is normally equal to attendance for one hour per week for one session but some senior undergraduate subjects may be taken for partial credit towards the degree. The program normally includes a Project of 12 credits. Examples of suitable external subjects are electronic computing, statistics, oceanography, and a range of others.

Master of Engineering Science
MEngSc

Programs of study leading to the degree of MEngSc are offered by the School of Geomatic Engineering in a range of topics including:

- advanced surveying
- geodesy
- photogrammetry
- land development and management
- land and geographic information systems

8652
Geographic Information Systems

Master of Engineering Science
MEngSc

Candidates are required to complete a course totalling at least 30 credits made up of compulsory subjects, elective subjects and a project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject approved by the appropriate Head of School. The course normally comprises one year of full-time study or two years of part-time study.
GEOMATIC ENGINEERING 97

Core subjects
GEOG9240 Principles of Geographic Information Systems 3
GEOG9241 Advanced Geographic Information Systems or 3
GEOG9280 Application and Management of GIS or 3
GMAT9604 Land Information Systems 3

Elective subjects
COMP9311 Data Base Systems 3
ELEC9336 Digital Communication Networks 1 3
GEOG9150 Remote Sensing Applications 3
GEOG9290 Image Analysis in Remote Sensing 3
GMAT9107 Special Topic in Geomatic Engineering B 3
GMAT9532 Data Acquisition and Terrain Modelling 3
GMAT9600 Principles of Remote Sensing 3
GMAT9606 Microwave Remote Sensing 3
LIBS0815 Economics of Information Systems 3
LIBS0817 Information Storage and Retrieval Systems 3

Project 12

Other elective subjects may be added with the approval of the Head of School.

The Masters degree program in Geographic Information Systems is offered in both the Faculty of Engineering and the Faculty of Applied Science. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.

GEOMATIC ENGINEERING 97

Elective subjects
Candidates may include additional subjects selected from the following listed elective subjects, or from other relevant subjects offered within the University, as approved by the appropriate Head of Schools.

COMP1011 Computing 1A 4
COMP1021 Computing 1B 4
ELEC9370 Digital Image Processing Systems 3
ELEC9408 Computer Display Systems and Interactive Instrumentation 3
GEOG9210 Computer Mapping and Data Display 3
GEOG9240 Principles of GIS 3
GEOL0360 Remote Sensing Applications in Geoscience 3
GMAT9213 Physical Meteorology 3
GMAT9602 Remote Sensing Procedures 3
GMAT9604 Land Information Systems 3
GMAT9605 Field Data Collection and Integration 3
GMAT9241 Advanced Geographic Information Systems 3
GMAT9280 Application and Management of GIS 3

Graduate Diploma in Geomatic Engineering GradDip

GradDip

Remote Sensing

Master of Engineering Science
MEngSc

Candidates are required to complete a course totalling at least 30 credits, made up of compulsory subjects, elective subjects and a project. Compulsory subjects not offered in a particular year may be substituted by an equivalent subject, approved by the appropriate Head of School. The degree will normally comprise one year of full-time study (two sessions of 15 credits) or two years of part-time study.

Compulsory subjects
GEOG9150 Remote Sensing Applications 3
GEOG9290 Image Analysis in Remote Sensing 3
GMAT9600 Principles of Remote Sensing 3
GMAT9606 Microwave Remote Sensing 3
Project in Remote Sensing (one elective project to be chosen from the list below)* 12

*The subject number for these subjects varies according to the school in which the candidate is enrolled.

Graduate Diploma in Remote Sensing
GradDip

Details of the recommended programs of study may be obtained from the Head of the School of Geomatic Engineering. Subjects from the Masters programs can be taken in the Graduate Diploma programs subject to the approval of the course coordinator.

Note: Electronic Calculators - Students are required to equip themselves with an electronic calculator. Advice on the purchase of this equipment is given to students at the commencement of their course.
Subject Descriptions

GMAT0411
Surveying for Builders
Staff Contact: School Office
C2 S1 L1 T2
Note/s: This is a servicing subject taught within courses offered by other schools and faculties.
A compulsory subject.

GMAT0441
Surveying for Engineers
Staff Contact: School Office
S2 L2 T2.5
Note/s: This is a servicing subject taught within courses offered by other schools and faculties.

GMAT0491
Survey Camp
Staff Contact: School Office
Note/s: This is a servicing subject taught within courses offered by other schools and faculties.
A one-week field camp for students studying GMAT0441 Surveying for Engineers.

GMAT0580
Mining Surveying
Staff Contact: School Office
S1 L2 T1
Prerequisite: GMAT0441
Note/s: This is a servicing subject taught within courses offered by other schools and faculties.
Revision of traverse, set out and levelling (14 hours field work).

GMAT0752
Remote Sensing Techniques and Applications
Staff Contact: School Office
S1 L3 T1
Note/s: This is a servicing subject taught within courses offered by other schools and faculties.
The physics of various remote sensing techniques; interpretation of conventional aerial photography in exploration; Inra-red remote sensing techniques; side-looking airborne radar; theory and applications of Landsat imagery; interpretation of Landsat photographic products. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

GMAT0901
Introduction to Mapping
Staff Contact: School Office
S1 L1 T.5
Note/s: This is a servicing subject taught within courses offered by other schools and faculties.

GMAT1042
Survey Data Presentation
Staff Contact: School Office
S1 L2 T2

GMAT1111
Introduction to Computing
Staff Contact: School Office
S1 L2 T2
Revision of plane trigonometry and co-ordinate systems. Join, polar, area calculations using hand calculators. Spherical trigonometry. Principles of calculation; representation of numbers, round-off errors, significant figures, orders of magnitude. Introduction to computers; computer hardware, computer software, operating systems, programs. Program design and documentation. Introduction to FORTRAN; constant types, data elements, selection control, loop control, input and output, program modules.

GMAT1712
Introduction to Surveying
Staff Contact: School Office
F L2 T1
Principles of surveying; geodetic positioning, photogrammetry and remote sensing; cadastral surveying and land information management; engineering, mining, geophysical and hydrographic surveying mapping. Error

GMAT2111
Principles of Computer Processing
Staff Contact: School Office
S2 L2 T2
Corequisite: GMAT1111

Operating systems; VAX/VMS, or command language. Software; spreadsheets, compilers. Program structure; subroutines, functions, control structures. Program libraries; creation, system libraries. Data structures; arrays, stacks, lists, queues, trees. Data files; types and organizations. Sorting, searching, merging. Data bases; concepts, types, information access.

GMAT2122
Computer Graphics 1
Staff Contact: School Office
S2 L2 T1

Descriptive geometry and perspectives. Computer aided drawing. Use of commercial software for survey computations and drawing.

GMAT2221
Introduction to Geodetic Science
Staff Contact: School Office
S2 L2.5 T.5

GMAT3012
Surveying Instruments
Staff Contact: School Office
S1 L3 T2
Prerequisite: GMAT1711

Survey tapes and bands; measurement, calibration, reductions. Precise levelling instruments; principles, construction, applications, testing and adjustment, ancillary equipment. Optical and electronic theodolites; principles, construction, testing and adjustment.

GMAT3111
Survey Computations
Staff Contact: School Office
S1 L2 T1
Prerequisite: GMAT1111

Intersection, resection, trilateration, with and without redundant data, semigraphic solutions. Missing data problems, road intersections. Subdivision calculations. Transformations. Traverse computations. Introduction to PCs and MS DOS.

GMAT3231
Geodetic Computations
Staff Contact: School Office
S1 L2 T1
Corequisites: MATH2009, GMAT1111

Principles of map projections. Surveying and mapping projections; transverse Mercator projection. Geometry of the ellipsoid; ellipsoidal computations. Corrections to field observations; arc-to-chord, scale factor and grid convergence.

GMAT4011
Surveying Techniques
Staff Contact: School Office
S2 L4.5 T1.5
Prerequisite: GMAT1042
Corequisites: GMAT3012, GMAT3111

Principles, reduction of observations and errors in survey techniques of horizontal and zenith angle measurement, trigonometric heighting, traversing, vertical staff tacheometry. Electronic distance measurement; principles, corrections, reductions, calibration, electro-optical distance meters.

GMAT4051
Survey Camp 1
Staff Contact: School Office
S2 T3
Prerequisite: GMAT1712
Corequisites: GMAT3012, GMAT4011

Note/s: Students are required to attend a one-week survey camp, which is equivalent to 3 class contact hours per week.

GMAT4111
Data Analysis and Computing 1
Staff Contact: School Office
S2 L2 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, GMAT2111
Corequisite: GMAT3111

GMAT4221
Geodetic Positioning 1
Staff Contact: School Office
S2 L2 T1
Prerequisite: GMAT2221
Corequisites: GMAT1111, GMAT3231

GMAT5011
Engineering Surveying
Staff Contact: School Office
S1 L3.5 T.5
Corequisites: GMAT3111, GMAT4011

Design and computation of horizontal and vertical curves, volume determination, route surveys. Setting out surveys: techniques, setting out of roads, buildings and large structures. Introduction to mine surveying: height and azimuth transfer.

GMAT5111
Data Analysis and Computing 2
Staff Contact: School Office
S1 L2 T1
Prerequisite: MATH2829
Corequisite: GMAT3111, MATH2009

GMAT5122
Computer Graphics 2
Staff Contact: School Office
S2 L2 T1

Overview of graphics systems and their relation to computer assisted mapping and information systems. Acquisition, processing, presentation of data. Graphics data structures, algorithms and transformations. Graphics programming using a high level language and graphics language. Use of interactive graphics display terminals.

GMAT5221
Geodetic Positioning 2
Staff Contact: School Office
S1 L2 T1
Prerequisite: GMAT4221
Corequisite: GMAT4111

Introduction to satellite positioning; review of reference systems in satellite geodesy; absolute and relative positioning; ranging methods and review of satellite technology. Introduction to the GPS system; measurement modes. Surveying with GPS; planning a survey, instrumentation, field and office procedures. Modelling the observations; principles of data processing. Combination of terrestrial and GPS data. Height determination using GPS. Case studies.

GMAT5621
Cadastral Surveying 1
Staff Contact: School Office
S1 L2 T1

The legal system in Australia and NSW; the nature of land law including land tenure, estates in land, interests in land. Land title systems. Land administration in Australia and NSW. Boundary surveying principles. Cadastral mapping in NSW.

GMAT5651
Survey Camp 2
Staff Contact: School Office
S2 T4
Prerequisite: GMAT4051
Corequisite: GMAT5011

Note/s: Students are required to attend a one week Survey Camp which is equivalent to 3 class contact hours per week together with 1 hour per week evaluation.

One week survey project of substantial extent, followed by one hour per week computations, plan and report preparation at the School of Geomatic Engineering.

GMAT6511
Photogrammetry and Mapping I
Staff Contact: School Office
S2 L2 T2

Properties of photogrammetric and remotely sensed images; photography, electro-optical, linear array, microwave systems. Photograph geometry; camera calibration, inner orientation, collinearity equations, deviations from collinearity. Stereoscopic vision; Principles of instrumentation for analogue and analytical photogrammetry. Exterior orientation; relative and absolute orientation, ground control point selection.

GMAT6522
Remote Sensing and Resources Surveys
Staff Contact: School Office
S1 L2 T1

GMAT6532
Spatial Information Systems 1
Staff Contact: School Office
S1 L2 T1

Overview and background of Spatial Information Systems. Explanation of definitions and terminology; LIS, GIS, MPC. Management and institutional issues; land information as maps and records; existing systems; problems. Technological issues; digital maps and data base management; data acquisition; data storage; editing; raster and vector representations; topology. Modelling and analysis.

GMAT6621
Cadastral Surveying 2
Staff Contact: School Office
S2 L2 T1
Corequisite: GMAT5621

Survey investigation for both artificial and natural boundaries; survey and title searching. Field note preparation for cadastral surveying. Survey marking and preparation of plans of survey. Study of appropriate statutes and regulations. Cadastral survey techniques for urban and rural properties; the status of roads in NSW, strata plan surveys, identification surveys, consents for MHWM,
railways, rivers, kerbs in Sydney. The role of coordinates in cadastral surveying.

GMAT6811
Land Economics and Valuation
Staff Contact: School Office
S2 L2 T1
The surveyor's role in the economic use of land. Variation of land use and land value. Temporal change in land use due to supply and demand, and its effect on land development and urbanisation. Location theory; public measures for directing land use. Introduction to valuation; factors affecting value of land, valuation principles and practice.

GMAT7051
Survey Camp 3
Staff Contact: School Office
S1 T7
Prerequisites: all Year 3 subjects
Two weeks survey camp for projects (equivalent to 6 class contact hours per week) selected from areas of cadastral, engineering and geodetic surveying, followed by (one hour per week) computations, plan and report preparation at the School of Geomatic Engineering.

GMAT7311
Offshore Surveying
Staff Contact: School Office
S1 L2 T1

GMAT7511
Photogrammetry and Mapping 2
Staff Contact: School Office
S1 L2 T1
Prerequisite: GMAT6511
Aerial triangulation; semi and analytical methods, block adjustment by models and bundles, control requirements for block adjustment. Differential rectification; orthophotos. Map production; map compilation by photogrammetric techniques, map production processes. Project planning. Non-topographic methods of photogrammetry.

GMAT7532
Spatial Information Systems 2
Staff Contact: School Office
S2 L2 T1
Management of Land Information Systems; system lifecycle; development; costs and benefits; examples in Australia and overseas. Data management; combination of attribute and graphical data; continuous mapping; indexing; computer considerations; standards for cartography, software, hardware and communications. Future developments. Modelling and analysis with a GIS software system.

GMAT7612
Land Management and Development Project 1
Staff Contact: School Office
S1 L1 T1
Corequisite: GMAT7811
Design and studio project for a residential neighbourhood development. Constraint and site analysis: preparation of maps of land use, vegetation, surface and soils, drainage and terrain, slopes, climate and aspect; composite overlay maps. Structure plan design: residential precincts, schools, commercial areas, industrial areas, active and passive recreation, pedestrian ways and road hierarchy.

GMAT7722
Project Management 1
Staff Contact: School Office
S1 L2 T1

GMAT7811
Land Subdivision and Development
Staff Contact: School Office
S1 L2 T1
Subdivision and development control in New South Wales. Administration of subdivision and development under Local Government and environmental planning and assessment legislation; procedures and legal controls. Statutory requirements for land development and subdivision of land, particularly as they apply to broad-acre subdivisions.

GMAT8001
Project
Staff Contact School Office
S1 T1 S2 T8
Prerequisite: all Year 3 subjects
The project is undertaken in the final year of the BE Course with one hour per week in the first session and 8 hours per week in the second session. Students must undertake Geomatic Engineering projects or research tasks in the field or laboratory on a topic approved by the Head of School, under the guidance of academic staff. Each student is required to submit a written report in prescribed format by a specific date at the end of the second session.

GMAT8011
Project (Surveying)
Staff Contact: School Office
S2 L2 T1
Corequisites: GMAT5011
Selected topics from: monitoring of deformations and settlement of terrain, structures and machines; design and optimization of precise engineering networks; high precision distance measurement; 3-D measuring systems; computer controlled Geomatic Engineering; length transducers; alignment surveys; interferometer applications; collimation and auto-collimation techniques; optical tooling; principal and use of gyrotheodolite; electronic tiltmeters; inertial surveys.
GMAT8221
Advanced Geodesy
Staff Contact: School Office
S2 L2 T1
Prerequisite: GMAT5221
Selected topics from: space technologies including GPS for high precision positioning; satellite altimetry analysis; gravimetric geodesy; 4-D geodesy; inertial positioning technology; methods of kinematic positioning.

GMAT8612
Land Management and Development Project 2
Staff Contact: School Office
S2 L2 T1
Prerequisite: GMAT7712
Corequisite: GMAT7811
Continuation of design and studio project for a residential neighbourhood development. Plan of detailed lot layout: consideration of access, grades, drainage reserves, parks and pedestrian ways. Engineering design and plans: catchment details, road longitudinal and cross-sections, drainage layout, flow schedule, hydraulic grade line calculations, longitudinal sections of kerb profiles.

GMAT8711
Professional Practice
Staff Contact: School Office
F T1
Students must complete 60 days of approved professional practice prior to the commencement of this subject. Professional practice is to be taken during the vacation periods. Students are required to provide evidence of this practice in a special log-book (available from the School). A detailed report must be submitted and a seminar must be presented summarising the work done and the experience gained during the professional practice period. Students are required to perform several practical surveying tasks (including instrument adjustment, levelling, traversing and resection) which will be examined.

GMAT8722
Project Management 2
Staff Contact: School Office
S2 L2 T1
Corequisite: GMAT7722
Aims and forms of project organization. Preparation of contracts and specifications: contract law, subcontracting, contract work, bidding. Project scheduling, control and documentation. Project teams in a corporation. Psychology of professionals. Qualifications of a project manager. Decision making process in project management: authority, power, interaction, leadership, assignments. Human resource management: small group behaviour, learning curve, management of teams in professional practice, professional liabilities and responsibilities. Short term field planning. Logistics of field work. Case studies in the application of project management to surveying projects.

GMAT9107
Special Topic In Surveying B
C3
A special subject taken by an individual student or a small group of students by private study in conjunction with tutorial sessions with the member(s) of staff in charge of the subject.

GMAT9121
Network and Deformation Analysis
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Geodetic datum and invariant quantities, measures of accuracy, testing of hypotheses, out-lier detection, internal and external reliability and sensitivity criteria, variance component estimation, design and optimization of deformation monitoring networks, two-epoch analysis, multi-epoch analysis, case studies of monitoring networks.

GMAT9122
Elements of Geodetic Equipment
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Measuring system definition and design; principles of signal analysis, analogue to digital conversion, modulation techniques, phase and delay lock loops. Satellite receivers: design of satellite ranging systems, propagation effects, generation, reception and processing of GPS signals, GPS antenna and receiving design. Inertial sensors: principle and design of gyroscopes and accelerometers. Electronic theodolites: absolute and incremental angle encoders and electronic circle, tilt sensors, surveying robots. Electronic distance meters: principle of precision distance meters and laser interferometers, phase and time measuring techniques.

GMAT9161
Advanced Estimation Techniques
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Generalised least squares estimation, sequential least squares estimation, matrix partitioning techniques, Kalman Filtering, covariance analysis, management of large data sets, application in satellite geodesy, network analysis and analytical photogrammetry.

GMAT9162
Mathematical Methods
Staff Contact: School Office
C3 SS L2 T1
Selected topics from: Principles and applications of spectral analysis techniques, spherical harmonic expansion of the Earth's gravity field, methods of curve fitting, numerical methods of differentiation and integration, case studies in satellite orbit dynamics.

GMAT9210
Satellite Surveying
Staff Contact: School Office
C3 SS L2 T1
Concepts of satellite surveying: nomenclature, TRANSIT system, GPS for point and relative positioning, vertical control. Geomatic Engineering with GPS: planning a survey, field and office procedures, case studies.
Considerations for high-precision applications: aspects of satellite geodesy, modelling the observable, dual frequency observations, orbit determination, short-arc techniques.

GMAT9211
Introduction to Geodesy
Staff Contact: School Office
C3 S1 L2 T1

GMAT9213
Physical Meteorology
Staff Contact: School Office
C3 S2 L2 T1

GMAT9217
Gravimetric Geoid Evaluations
Staff Contact: School Office
C3 SS L2 T1

GMAT9530
Analytical Photogrammetry
Staff Contact: School Office
C3 SS L2 T1

Fundamental relationship, image and object space. Interior orientation, deviations from collinearity. General orientation of one and two images by collinearity. Simultaneous block adjustment by bundles. Additional parameters. Calibration of metric and non-metric cameras. Control requirements in analytical photogrammetry.

GMAT9532
Data Acquisition and Terrain Modelling
Staff Contact: School Office
C3 SS L2 T1

GMAT9600
Principles of Remote Sensing
Staff Contact: School Office
C3 S1 L2 T1

GMAT9602
Remote Sensing Procedures
Staff Contact: School Office
C3 S2 L2 T1

Review of atmospheric correction procedures and application to multi-temporal Landsat MSS data. Review of image registration, enhancement and classification procedures with particular reference to multi-source remote sensing data sets. Analysis of techniques over a varied land use area. Land use change project and analysis using multi-source and multi-temporal remotely sensed imagery, including Landsat MSS, TM, SPOT and SAR.

GMAT9604
Land Information Systems
Staff Contact: School Office
C3 SS L2 T1

Land information as maps and records. Methods of data collection. Integrated surveys and coordinate systems. Legal boundaries. Land tenure, identifiers. Computerization of land information. Data input methods. Data storage methods. Data processing and manipulation, including management, searching, existing data base languages, and interactive data editing. Data output, including computer graphics, line printer maps, and digital plotters. Application of Arc-info LIS software.

GMAT9605
Field Data Collection and Integration
Staff Contact: School Office
C3 S1 HPW3

The spectral, temporal and spatial characteristics of various surfaces, and the available sensors to effect maximum differentiation. Ground and image comparisons. Instruments available for field measurements. Field investigation procedures including positioning and sampling considerations.

GMAT9606
Microwave Remote Sensing
Staff Contact: School Office
C3 S1 HPW3

Use of passive and active (radar) microwave techniques in remote sensing of earth resources. Topics include: real and synthetic aperture radar systems; passive microwave radiometry; energy-surface interactions; interpretation of microwave image data; applications in agriculture, geology, oceanography and hydrology; issues in signal and image processing; characteristics of airborne and spaceborne microwave sensors.
GMAT9608
Cadastral Systems
Staff Contact: School Office
C3 SS L2 T1

GMAT9906
Major Assignment
C6

GMAT9909
Project
C9

GMAT9912
Project
C12

GMAT9918
Project Report
C18
School of Mechanical and Manufacturing Engineering
(incorporating Aerospace Engineering and Naval Architecture)

Head of School
Professor B.E. Milton

Executive Assistant to Head of School
A/Prof E.M. Kopalinsky

Administrative Officer
Mr A.D. Bauman

The School comprises seven departments: Aerospace Engineering (design, manufacture, and operation of aircraft and spacecraft); Applied Mechanics (engineering mechanics and mechanics of solids); Design (conceptual design, machine systems design, optimization and failure analysis); Fluid and Thermal Engineering (energy utilization and power generation, refrigeration and air conditioning, gas and liquid handling); Industrial Technology and Management (economic analysis, production planning and control, product and process design, methods engineering and operations research); Mechatronics (interface between mechanical engineering and electronic engineering); Naval Architecture (analysis and design of marine vehicles such as ferries, catamarans, yachts and ships).

The School offers courses in Aerospace Engineering, Mechanical Engineering, Manufacturing Management and Naval Architecture, either singly or in combination with Science or Arts degree courses.

No formal part-time courses are offered by the School. However, it is possible for students to undertake studies with a reduced program. Students intending to take a reduced program are advised that very few undergraduate subjects are offered in the evening.

Formal graduate courses offered are: the Master of Engineering Science in Industrial Engineering 8531 and in Mechanical Engineering 8541, and the Graduate Diploma in Industrial Engineering 5455 and Mechanical Engineering 5456. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2680 and 2692 and Doctor of Philosophy 1662.

The Co-operative Program
The School offers the Co-op Program, an industry-linked course, for the above degrees. In the Co-op Program, students are funded from scholarships awarded by Australia’s premier industries.

Co-operative scholars are selected largely on the basis of academic attainment, personal skills and motivation, as well as on non-academic achievements. Together with receiving a rigorous and broadly-based academic education, scholars gain first-hand experience in a wide variety of industries during 4 industrial training periods. These take place at the end of year 1, end of year 2 and two periods in year 4. Hence, the total duration of the course is 5 years, comprising the normal 4 academic years and more than 1 year of experience in industry.

The twelve month period is spent at two different industries. Scholars must be prepared to sacrifice leisure during non-academic periods to gain the considerable practical training available.
Undergraduate Study

Course Outlines

Summary of Courses

The courses, which lead to the award of the degree of Bachelor of Engineering (BE) are planned to provide the appropriate academic training for the professional engineer in the fields of aerospace, manufacturing and mechanical engineering, and for the naval architect.

The School also offers combined courses in conjunction with other faculties of the University, leading to the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc) or Bachelor of Engineering and Bachelor of Arts (BE BA). These combined courses enable students to major in the area of computer science, materials science, mathematics, physics, statistics or another relevant field, in addition to studying their chosen engineering specialty. In a new initiative with the Graduate School of Biomedical Engineering there is also available a concurrent degree program leading to the award of Bachelor of Engineering/Master of Biomedical Engineering. It is anticipated that in 1995 a Bachelor of Engineering in Mechatronics will be made available.

For the four current BE courses, the study of the basic sciences - mathematics, physics and chemistry - together with an introduction to engineering, comprise year 1. In year 2 further mathematical studies are undertaken, together with a study of the engineering sciences - thermodynamics, fluid mechanics, engineering mechanics, mechanics of solids - and their application in the field of design.

The first halves of the courses of Mechanical Engineering, Manufacturing Management, Aerospace Engineering and Naval Architecture are identical, and students attend classes together. The latter halves of these four courses contain a number of common core subjects together with specific disciplinary requirements. In the final year in the Mechanical Engineering course, in addition to core subjects and disciplinary requirements, provision is made for a limited degree of specialization in one or more elective subjects. A student with a good academic record may also take, subject to the approval of the Head of School, some graduate subjects offered by the School in lieu of an equivalent quantity of final year undergraduate electives. Each student is required to submit a thesis at the end of the final year and to deliver a short paper on the subject of the thesis.

General Education Program

Requirements for General Education elective and prescribed subjects are as follows: year 2 - one 56 hour or two 28 hour subject/s from Category A; year 3 - one 56 hour or two 28 hour subject/s from Category B. The key questions and issues to be addressed in Category C will be considered in the following subjects: MECH1000/MECH2000/MECH3000/MECH4001 Professional Studies 1-4, MECH1100/MECH2100/MECH3100 Mechanical Engineering Design 1-3, MANF3400 Engineering Economics, MANF4400 Engineering Management, MECH4002 The Engineer in Society.

Industrial Experience

Industrial experience is an integral part of the courses. This can be taken within Australia or overseas. Students must complete a total of sixty working days of approved industrial experience between years 2 and 3 and years 3 and 4. Students are strongly recommended to gain as much industrial experience as possible between years 1 and 2. Students who have had suitable experience in industry may qualify for exemption from certain subjects. The Head of School should be contacted for details.

Recognition

The Institution of Engineers, Australia, recognizes the degree of BE in any of the undergraduate courses offered by the School as meeting the examination requirements for admission to graduate and corporate membership. Substantial or complete recognition is accorded to the BE degree courses by overseas engineering institutions.

The award of the BE degree in Aerospace Engineering is recognized by the Royal Aeronautical Society as giving exemption from the formal examination requirements for corporate membership. Advancement from graduate membership to associate membership grade is awarded on a case by case basis after a further period of some years of professional experience.

The award of the BE degree in Naval Architecture is recognized by the Royal Institution of Naval Architects (RINA), London, as the academic qualification for corporate membership of that body.

Course Progression Guidelines

The student's attention is directed to the Faculty's General Rules for Progression contained in this Handbook. As well, the following points should be noted.

- A student who is faced with compiling a mixed year's program must give preference to subjects from the lower year of the course.
- In the event of a student dropping one or more subjects from a mixed year's program, the discarded subjects must be chosen from the higher year's selection.
- The subjects MECH4000 Thesis, MECH4001 Professional Studies 4 and MECH4002 The Engineer in Society can be taken only in the final year of a student's program.

Computing Requirements

Information regarding recommended computing equipment for the courses offered by the School is available from the School Office.
3610
Aerospace Engineering

3663
Manufacturing Management

3680
Mechanical Engineering

3700
Naval Architecture

Bachelor of Engineering

BE

Year 1 of all courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1807</td>
<td>Chemistry 1ME</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MANF1100</td>
<td>Workshop Technology</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MANF1110</td>
<td>Manufacturing Technology</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MECH1000</td>
<td>Professional Studies 1</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MECH1100</td>
<td>Mechanical Engineering Design 1</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MECH1110</td>
<td>Graphical Analysis and</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH1300</td>
<td>Engineering Mechanics 1</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH1400</td>
<td>Mechanics of Solids 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH1500</td>
<td>Computing 1M</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS1919</td>
<td>Physics 1 (Mechanical Engineering)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td></td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>

An alternative ‘Science compatible’ course which can be undertaken by all students, and which must be undertaken by potential combined degree BE BSc students, is:

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1807</td>
<td>Chemistry 1ME</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MANF1100</td>
<td>Workshop Technology</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MANF1110</td>
<td>Manufacturing Technology</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MECH1000</td>
<td>Professional Studies 1</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MECH1100</td>
<td>Mechanical Engineering Design 1</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MECH1110</td>
<td>Graphical Analysis and</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH1300</td>
<td>Engineering Mechanics 1</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH1400</td>
<td>Mechanics of Solids 1</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics 1</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>and</td>
<td>CHEM1201 Chemistry 1B (required for Materials Science majors)</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>or</td>
<td>COMP1011 Computing 1A (required for Computer Science majors)</td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>

For MATH2009 students may substitute MATH2501, MATH2510, MATH2100 and MATH2120. Also, if they satisfy prerequisites, they may take one or more of these at the higher level.

3610
Aerospace Engineering

Bachelor of Engineering

BE

Years 3 and 4

The Aerospace Engineering course covers the analysis, design and operation of aircraft and spacecraft. Graduates work mainly on the design and manufacture of flight vehicles, their operation with major or satellite airlines and research for civil and military aerospace organizations. Owing to the international nature of the aerospace industry, the topics studied cover a similar area and to, in general, the same depth of understanding as professional training programmes in aerospace in other industrial countries. The aerospace industry is one of Australia's major exporters of high value added manufactured goods.

Subject to the Head of the School being satisfied that the present extent of equivalences is maintained, and on his recommendation, Faculty has approved an arrangement by which students who satisfy the requirements of the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to a two-year program leading to the Bachelor of Engineering degree in Aerospace Engineering.
Traditional engineering courses do not embrace the education necessary to carry out an industrial job and its related problems of quality and cost. The disposition of buildings and of equipment within them to methods and sequence of manufacturing operations; the ultimate economics of production; product and process design; labour and personnel relations; and, finally, the problem of distribution and sales.

The financial and economic aspects are studied as the problem in manufacturing has not been solved until the final translation of the product into money has been accomplished successfully. While it is not intended to develop an expert in accounting practice or economics, it is intended to produce an engineer with an appreciation of the problems of cost and one who can apply considerations of ultimate economy to all industrial problems. The techniques of operations research may be applied here, where mathematical models of real-life situations are constructed and manipulated to yield optimal solutions as guides to management.

An engineer trained in Manufacturing Management may initially be employed in any of the following major areas of industrial activity: industrial economic analysis; planning and control of production; product and process design; methods engineering; operations research.

Manufacturing Management

Bachelor of Engineering

BE

Years 3 and 4

The Manufacturing Management course is designed for students with engineering ability whose interests lie in the planning, development and control of manufacturing or service operations.

In the Manufacturing Management subjects, the problems associated with the practical economics of manufacturing operations are stressed. The aim is to provide students with the education necessary to carry out an industrial job and to examine it critically in the light of economic efficiency. Traditional engineering courses do not embrace the problems which are characteristic of Manufacturing Management. These problems include the analysis of a product to ensure satisfactory functioning with regard to methods and sequence of manufacturing operations; the disposition of buildings and of equipment within them to permit efficient handling of materials; the avoidance of bottlenecks; the related problems of quality and cost control, testing and inspection; labour and personnel relations; and, finally, the problem of distribution and sales.

HPW

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO3100</td>
<td>Aerospace Design 1</td>
<td>3</td>
</tr>
<tr>
<td>AERO3400</td>
<td>Analysis of Aerospace Structures 1</td>
<td>4</td>
</tr>
<tr>
<td>AERO3601</td>
<td>Aerodynamics 1</td>
<td>0</td>
</tr>
<tr>
<td>AERO3602</td>
<td>Flight Dynamics 1</td>
<td>0</td>
</tr>
<tr>
<td>ELECT0802</td>
<td>Electrical Power Engineering</td>
<td>0</td>
</tr>
<tr>
<td>MANF3400</td>
<td>Engineering Economics</td>
<td>0</td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td>1.5</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0</td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis</td>
<td>0</td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids 3</td>
<td>4</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td>2</td>
</tr>
<tr>
<td>MECH3800</td>
<td>Numerical Methods</td>
<td>0</td>
</tr>
<tr>
<td>General Education subject/s (Cat B)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>23.5</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO4100</td>
<td>Aerospace Design 2</td>
<td>3</td>
</tr>
<tr>
<td>AERO4201</td>
<td>Aerospace Systems</td>
<td>2</td>
</tr>
<tr>
<td>AERO4202</td>
<td>Space Engineering</td>
<td>0</td>
</tr>
<tr>
<td>AERO4400</td>
<td>Analysis of Aerospace Structures 2</td>
<td>3</td>
</tr>
<tr>
<td>AERO4601</td>
<td>Aerodynamics 2</td>
<td>2</td>
</tr>
<tr>
<td>AERO4602</td>
<td>Flight Dynamics 2</td>
<td>3</td>
</tr>
<tr>
<td>AERO4700</td>
<td>Aerospace Propulsion</td>
<td>2</td>
</tr>
<tr>
<td>MANF4400</td>
<td>Engineering Management</td>
<td>2</td>
</tr>
<tr>
<td>MECH4000</td>
<td>Thesis</td>
<td>6</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Professional Studies 4</td>
<td>0</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society</td>
<td>0</td>
</tr>
<tr>
<td>MECH4090</td>
<td>Industrial Training</td>
<td>0</td>
</tr>
<tr>
<td>General Education subject/s (Cat B)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>22.5</td>
</tr>
</tbody>
</table>

3663

Manufacturing Management

Bachelor of Engineering

BE

Years 3 and 4

The Manufacturing Management course is designed for students with engineering ability whose interests lie in the planning, development and control of manufacturing or service operations.

In the Manufacturing Management subjects, the problems associated with the practical economics of manufacturing operations are stressed. The aim is to provide students with the education necessary to carry out an industrial job and to examine it critically in the light of economic efficiency. Traditional engineering courses do not embrace the problems which are characteristic of Manufacturing Management. These problems include the analysis of a product to ensure satisfactory functioning with regard to methods and sequence of manufacturing operations; the disposition of buildings and of equipment within them to permit efficient handling of materials; the avoidance of bottlenecks; the related problems of quality and cost control, testing and inspection; labour and personnel relations; and, finally, the problem of distribution and sales.

The financial and economic aspects are studied as the problem in manufacturing has not been solved until the final translation of the product into money has been accomplished successfully. While it is not intended to develop an expert in accounting practice or economics, it is intended to produce an engineer with an appreciation of the problems of cost and one who can apply considerations of ultimate economy to all industrial problems. The techniques of operations research may be applied here, where mathematical models of real-life situations are constructed and manipulated to yield optimal solutions as guides to management.

An engineer trained in Manufacturing Management may initially be employed in any of the following major areas of industrial activity: industrial economic analysis; planning and control of production; product and process design; methods engineering; operations research.

HPW

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT9001/2</td>
<td>Introduction to Accounting A/B</td>
<td>1.5</td>
</tr>
<tr>
<td>MANF3200</td>
<td>Product Design and Manufacturing Technology</td>
<td>4</td>
</tr>
<tr>
<td>MANF3300</td>
<td>Design of Manufacturing Facilities 1</td>
<td>0</td>
</tr>
<tr>
<td>MANF3400</td>
<td>Engineering Economics</td>
<td>2</td>
</tr>
<tr>
<td>MANF3410</td>
<td>Quality Systems 1</td>
<td>4</td>
</tr>
<tr>
<td>MANF3500</td>
<td>Computers in Manufacturing 1</td>
<td>0</td>
</tr>
<tr>
<td>MANF3600</td>
<td>Information and Decision Making Technology</td>
<td>4</td>
</tr>
<tr>
<td>MANF3800</td>
<td>Introduction to Numerical Methods</td>
<td>0</td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td>2</td>
</tr>
<tr>
<td>General Education subject/s (Cat B)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>22.5</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF4010</td>
<td>Manufacturing Systems Design</td>
<td>2</td>
</tr>
<tr>
<td>MANF4300</td>
<td>Design of Manufacturing Facilities 2</td>
<td>0</td>
</tr>
<tr>
<td>MANF4410</td>
<td>Quality Systems 2</td>
<td>2</td>
</tr>
<tr>
<td>MANF4411</td>
<td>Introduction to Total Quality Management</td>
<td>0</td>
</tr>
<tr>
<td>MANF4420</td>
<td>Management of Manufacturing Systems</td>
<td>6</td>
</tr>
<tr>
<td>MANF4500</td>
<td>Computers in Manufacturing 2</td>
<td>2</td>
</tr>
<tr>
<td>MANF4600</td>
<td>Information and Decision Making Technology</td>
<td>4</td>
</tr>
<tr>
<td>MECH4000</td>
<td>Thesis</td>
<td>6</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Professional Studies 4</td>
<td>0</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society</td>
<td>0</td>
</tr>
<tr>
<td>MECH4090</td>
<td>Industrial Training</td>
<td>0</td>
</tr>
<tr>
<td>General Education subject/s (Cat B)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>22.5</td>
</tr>
</tbody>
</table>
Mechanical Engineering

Bachelor of Engineering

BE

Years 3 and 4
The Mechanical Engineering course provides a versatile, comprehensive coverage of areas involving the conception and design of machinery and mechanical plant, the supervision of its construction, operation and maintenance, the planning and supervision of large engineering projects, and general engineering management. Due to its wide range, a number of options are provided as Technical Electives in the final year. These are preferentially linked to provide a direction appropriate to the needs of Australian industry and to the specific interests of students, although some flexibility is available if required. Typical fields which may be encompassed by the course include building services, computer-aided design, power generation, energy and environmental systems, gas and liquid handling, bio-mechanics, materials handling, control systems, mechatronics and robotics, and transport. An emphasis is placed on the application of engineering science, development and management in these fields.

Mechanical Engineering Technical Electives

At least 12 session-hours must be selected from the Mechanical Engineering list. The remaining 9 session hours may be taken from years 3 or 4 of other courses in the School, provided that pre- and corequisites can be satisfied. A student with a good academic record may be permitted to choose some post-graduate subjects as Technical Electives with the approval of the Head of School. Express approval is also required for the selection of a subject from outside the School and such choice will normally be limited to three session-hours. The selection of certain subjects or combinations of subjects might require the approval of the Head of School as will any variation from the foregoing guidelines.

It is unlikely that all of the Technical Electives listed below can be offered each year. Those to be made available are decided on the basis of staff availability and demand. Students are advised in September of each year which Technical Electives will be offered in the following year.

Applied Mechanics

<table>
<thead>
<tr>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4301</td>
<td>Plane Mechanism Kinematics</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4310</td>
<td>Advanced Vibration Analysis</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4321</td>
<td>Engineering Noise 1</td>
<td>3</td>
</tr>
<tr>
<td>MECH4322</td>
<td>Engineering Noise 2</td>
<td>0</td>
</tr>
<tr>
<td>MECH4361</td>
<td>Lubrication</td>
<td>0</td>
</tr>
<tr>
<td>MECH4400</td>
<td>Fracture Mechanics</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4410</td>
<td>Engineering Applications of Finite Elements</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4420</td>
<td>Plates and Shells</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4440</td>
<td>Theory of Plasticity</td>
<td>3 or 3</td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4110</td>
<td>Design Project</td>
<td>3</td>
</tr>
<tr>
<td>MECH4120</td>
<td>Design Technology</td>
<td>3</td>
</tr>
<tr>
<td>MECH4130</td>
<td>Computer-Aided Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>MECH4131</td>
<td>Advanced CAD Modelling and Applications</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4140</td>
<td>Design Activity: Morphology, Strategies and Tools</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4150</td>
<td>Design and Maintenance of Components</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4160</td>
<td>Design and Management of Large Systems</td>
<td>3 or 3</td>
</tr>
</tbody>
</table>

Fluid and Thermal Engineering

<table>
<thead>
<tr>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4610</td>
<td>Advanced Fluid Dynamics</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4690</td>
<td>Special Fluid Mechanics Elective</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4700</td>
<td>Turbomachines and Engines</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4720</td>
<td>Solar Energy</td>
<td>3</td>
</tr>
<tr>
<td>MECH4730</td>
<td>Multiphase Flow</td>
<td>3</td>
</tr>
<tr>
<td>MECH4740</td>
<td>Thermal Power Plants</td>
<td>3</td>
</tr>
<tr>
<td>MECH4751</td>
<td>Refrigeration and Air Conditioning</td>
<td>3 or 3</td>
</tr>
<tr>
<td>MECH4790</td>
<td>Special Thermodynamics Elective</td>
<td>3 or 3</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4020</td>
<td>Group Engineering Project</td>
<td>3</td>
</tr>
<tr>
<td>MECH4800</td>
<td>Optimal Engineering Strategies</td>
<td>3</td>
</tr>
</tbody>
</table>

Possible External Technical Electives

<table>
<thead>
<tr>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS9530</td>
<td>Materials Engineering</td>
<td>3 or 3</td>
</tr>
<tr>
<td>SAFE9213</td>
<td>Introduction to Safety Engineering (M)</td>
<td>3</td>
</tr>
</tbody>
</table>

Totalling

Year 3

<table>
<thead>
<tr>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH4300</td>
<td>Mechanical Engineering Design 3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4320</td>
<td>Engineering Experimentation 1.5</td>
<td>3</td>
</tr>
<tr>
<td>MECH4311</td>
<td>Linear Systems 3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4312</td>
<td>Principles of Control of Mechanical Systems 3</td>
<td>0</td>
</tr>
<tr>
<td>MECH4330</td>
<td>Engineering Mechanics 2</td>
<td>0</td>
</tr>
<tr>
<td>MECH4331</td>
<td>Vibration Analysis 0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4340</td>
<td>Mechanics of Solids 3</td>
<td>4</td>
</tr>
<tr>
<td>MECH4350</td>
<td>Computing 2M</td>
<td>0</td>
</tr>
<tr>
<td>MECH4360</td>
<td>Fluid Mechanics 2</td>
<td>2</td>
</tr>
<tr>
<td>MECH4370</td>
<td>Thermodynamics 2</td>
<td>0</td>
</tr>
<tr>
<td>MECH4372</td>
<td>Heat Transfer 0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4350</td>
<td>Numerical Methods 0</td>
<td>3</td>
</tr>
<tr>
<td>General Education subject/s (Cat B) 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>23.5</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANF4400</td>
<td>Engineering Management 2</td>
<td>0</td>
</tr>
<tr>
<td>MANF4412</td>
<td>Total Quality Management 0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4000</td>
<td>Thesis 6</td>
<td>6</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Professional Studies 4</td>
<td>0</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society 0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4090</td>
<td>Industrial Training 0</td>
<td>0</td>
</tr>
<tr>
<td>MECH4500</td>
<td>Computing 3M 2</td>
<td>0</td>
</tr>
<tr>
<td>Technical Electives 12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>22</td>
<td>21</td>
</tr>
</tbody>
</table>
Naval Architecture

Bachelor of Engineering
BE

Years 3 and 4
Naval Architecture is the branch of engineering which is concerned with the design, building and utilisation of all types of ships and marine vehicles. Naval architects must be conversant with a wide variety of skills, including most forms of engineering and architecture. This is because a ship or a boat must be a completely self-sufficient vehicle containing a number of systems and able to withstand the loads from the sea. Yachts, fishing boats, frigates, ferries, catamarans and pleasure craft are just a few of the types of vessels that are studied during the course, which is the only Naval Architecture university degree (Bachelor) course in Australia.

The Faculty of Engineering has approved an arrangement whereby, upon the recommendation of the Head of School, any other Australian tertiary institution may be admitted to students who satisfy the requirements for the first two years of the Mechanical Engineering full-time degree course at any other Australian tertiary institution may be admitted to the final two years of the BE degree course in Naval Architecture.

The combined degree course of five years full-time study enables a student in the School to qualify for the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc). The course enables such combined degree students to major in the areas of computer science, materials science, mathematics, physics or statistics. It is administered by the Faculty of Engineering.

All students who are accepted into the year 1 'Science compatible' course in the School may enrol directly into this course. Continued enrolment in year 2 requires a pass in all subjects by the end of year 1 and students who fail to achieve this will automatically be transferred to the normal Engineering program. Alternatively, students may transfer into the year 2 of this course, provided they have passed all subjects of the 'Science compatible' course by the end of year 1.

Students in the BE BSc program are exempt from Category A General Education requirements only. This exemption is not available to students who withdraw from the combined program and complete only the BE or BSc course. Normally, students enrolled in this BE BSc degree course are awarded their degrees at the conclusion of five years study. However, it is possible for students to take out the Science degree prior to the Engineering degree provided they have:

1. completed the requirements for years 1, 2 and 3,
2. obtained approval from the Board of Studies in Science and Mathematics.

Students who commence the course and do not complete the Engineering component may take out a BSc degree on completion of one of the approved programs in the Science and Mathematics course. Similarly, students not wishing to complete the BSc degree course may revert to the normal Engineering program with appropriate credit for subjects satisfactorily completed.

Year 1 of the combined course is equivalent to the year 1 'Science compatible' course in the School of Mechanical and Manufacturing Engineering. Having completed years 2 and 3, as outlined below, students in years 4 and 5 do year 3 and year 4 of their selected Engineering course except that significant repetition of subject material is not allowed. Instead, students are required to substitute either an
appropriate Technical Elective or an appropriate Level II or III subject from relevant undergraduate offerings in the Science Handbook, or in exceptional circumstances, some other equivalent subject with the permission of the Head of the School of Mechanical and Manufacturing Engineering.

In order to limit the combined degree courses to five years, the workload in the first three years is higher than in the single degree course. Students who have barely satisfied the minimum entrance requirements are therefore advised against enrolling for the combined degree course. Those who do enrol and whose average mark at the end of Session 1 of year 1 is less than 65% are advised to contact the School to see whether or not they should continue in the combined course in Session 2 of year 1, as the workload in Session 2 is higher than in Session 1.

Year 2
All students should note that the Mathematics subjects are also offered at a higher level.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPW</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>CIVL0696</td>
<td>1.5</td>
</tr>
<tr>
<td>MECH1500</td>
<td>0</td>
</tr>
<tr>
<td>MECH2300</td>
<td>3</td>
</tr>
<tr>
<td>MECH2401</td>
<td>2</td>
</tr>
<tr>
<td>MECH2402</td>
<td>0</td>
</tr>
<tr>
<td>MATH2100</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2120</td>
<td></td>
</tr>
<tr>
<td>MATH2501</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2510</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2520</td>
<td>0</td>
</tr>
<tr>
<td>4.5 Level II units^</td>
<td>9+</td>
</tr>
<tr>
<td>Totaling</td>
<td>23+</td>
</tr>
</tbody>
</table>

Year 3
MECH2000 Professional Studies 2
MECH2100 Mechanical Engineering Design 2
MECH2310 Engineering Mechanics 2B
MECH2600 Fluid Mechanics 1
MECH2700 Thermodynamics 1
At least 5 appropriate Level II or III units of which at least 4 must be Level III^1
10+ 10+
Totaling 17+ 19+

Subject selections which satisfy the specific requirements for the various majors are summarised below. Provided co- and prerequisites are satisfied, there is scope for some subjects to be taken either in year 2 or year 3.

Computer Science Majors
Quota restrictions apply to certain Computer Science Level III units and application must be made in writing to the Head of the School of Computer Science and Engineering before the end of Session 2 in the preceding year. Prospective Computer Science Majors should aim for a creditable academic attainment (65%) over years 1 and 2.

Materials Science Majors

Mathematics Majors

Computer Science Majors
Year 2
CHEM20118, CHEM2021^6
CIVL0696, MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH2110), MATH2120 (or MATH2130), MATHS9520, MECH1500^5, MECH2300, MECH2401, MECH2402

Year 3
ELEC0805 MATH2841 (or MATH2839), MECH2000, MECH2100, MECH2310, MECH2600, MECH2700
4 Level III units from undergraduate offerings of the School of Computer Science and Engineering for course 3681 in the Science Handbook.

Materials Science Majors

Mathematics Majors

Computer Science Majors
Year 2
Same year 2 as for Computer Science or Materials Science or Physics or Statistics majors or
CIVL0696, ELEC0805, MATH2501 (or MATH2601), MATH2510 (or MATH2610), MATH2520 (or MATH2620), MATH2100 (or MATH2110), MATH2120 (or MATH2130), MATHS9520, MECH1500, MECH2300, MECH2401, MECH2402
3.5 appropriate Level II units from undergraduate offerings for course 3681 in the Science Handbook including some from the School of Mathematics.

Year 3
MECH2000, MECH2100, MECH2310, MECH2600, MECH2700, MATH2841 (or MATH2839)
4 Level III units from School of Mathematics undergraduate offerings in the Science Handbook.
Physics Majors

Year 2

CIVL0696
MATH2501 (or MATH2601), MATH2510 (or MATH2610),
MATH2520 (or MATH2620),
MATH2100 (or MATH2110) MATH2120 (or MATH2130)
MATS9520
MECH1500, MECH2300, MECH2401, MECH2402
PHYS2001, PHYS2011, PHYS2021, PHYS2031

Year 3

MATH2841 (or MATH2839)
MECH2000, MECH2100, MECH2310, MECH2600,
MECH2700
PHYS3010, PHYS3021, PHYS3030, PHYS3041

1 Level III unit from School of Physics undergraduate offerings in the Science Handbook.

Statistics Majors

Year 2

ELEC08056
MATH2501 (or MATH2601), MATH2510 (or MATH2610),
MATH2520 (or MATH2620),
MATH2100 (or MATH2110), MATH2120 (or MATH2130),
MATH2801 (or MATH2901),
MATH2821 (or MATH2921), MATH2810 (or MATH2910),
MATH2830 (or MATH2930)
MATS9520
MECH2300, MECH2400, MECH1500

0.5 appropriate Level II unit.

Year 3

MECH2000, MECH2100, MECH2310, MECH2600,
MECH2700

4 Level III units from Statistics undergraduate offerings in the Science Handbook

1 Level II or III unit from School of Mathematics or School of Physics undergraduate offerings in the Science Handbook.

Notes

1. The following considerations pertain to the choice of additional units in years 2 and 3 listed in undergraduate offerings in the Science Handbook:

(a) The Level III units satisfy the relevant major requirements.
(b) They be from the Schools of Chemistry, Computer Science and Engineering, Electrical Engineering, Mathematics, Materials Science and Engineering and/or Physics.
(c) They include MATH2841 Statistics or MATH2839 Statistics SM or MATH2821 Basic Inference.
(d) They include PHYS2031 Laboratory or ELEC0805 Electronics for Measurement and Control.
(e) They include MATS9520 Engineering Materials or MATS1253 Ferrous Alloys.
(f) They exclude MATH2301 Mathematical Computing.
(g) All pre and corequisites are satisfied.

2. With permission of the School of Mechanical and Manufacturing Engineering, students may delay this subject till year 3.

3. These Mathematics Majors need to add ELEC0805 Electronics for Measurement and Control to year 3.

4. These Mathematics Majors should substitute 1 Level II or III units from the Schools of Physics, Chemistry or Mathematics undergraduate offerings for MATH2841 Statistics in Year 3.

5. Students may substitute PHYS2031 Laboratory for ELEC0805 plus a 0.5 Level II unit.

6. Under special circumstances, with permission of the Head of the School of Physics, a student may substitute alternative Physics Level III undergraduate offerings of equivalent unit value.

7. Students who have satisfactorily completed CHEM1807 Chemistry 1ME and CHEM1201 Chemistry 1B will be considered to have satisfied the prerequisites for CHEM2011 Physical Chemistry and CHEM2021 Organic Chemistry.

Combined Courses

Bachelor of Engineering/Bachelor of Arts

3612
BE BA in Aerospace Engineering

3665
BE BA in Manufacturing Management

3682
BE BA in Mechanical Engineering

3702
BE BA in Naval Architecture

The BE BA Program

With these combined degree courses students can add their choice of an Arts program to any of the standard, professionally accredited engineering courses offered by the School of Mechanical and Manufacturing Engineering. The full range of Arts programs is available. Because the Engineering and Arts programs have common content, such as mathematics and physics, only one more year of study is normally required to gain the additional qualification of Bachelor of Arts.

Eligibility

Anyone who meets the entry requirements for both Engineering and Arts is eligible for the combined course. Students may enter directly in year 1 or may apply to transfer from the normal engineering course later, although with late transfer it might not be possible to complete the course in minimum time.

Organization

The BE BA course is administered by the School of Mechanical and Manufacturing Engineering.

Students should start discussing their program with representatives of the School and the Faculty of Arts and Social Sciences as soon as possible - preferably well before enrolment. Enquiries should be directed to the Executive Assistant to the Dean of the Faculty of Arts and Social Sciences.

Students should work out for themselves the arts program they would like to add to their chosen engineering course. The Arts and Social Sciences Faculty Handbook describes
the options, and the School of Mechanical and Manufacturing Engineering can supply sample programs showing what previous students have arranged.

There are no special rules on what to include in each year. Students should schedule the arts and engineering components to suit their preferences while meeting the constraints of timetables and prerequisites. The sample programs can help here too.

The Arts component must be approved by the Faculty of Arts and Social Sciences.

The final program and schedule must be approved by the School.

Rules

1. In addition to their chosen BE course, students must complete a major sequence offered within the BA course and meet the additional requirements from the Faculty which provides the chosen major. The required Arts credit points are:

 Faculty of Arts and Social Sciences:
 48 total including major sequence.

 Other Faculties:
 Major sequence plus at least 12 credit points from Schools of the Faculty of Arts and Social Sciences.

Mathematics majors are not usually permitted. BE BSc double degrees are more appropriate for this.

2. Students in the BE BA course are exempt from both Category A and Category B General Education. However, if at any time a student reverts to the single degree program, the usual General Education requirements for that course apply.

3. There will be a testamur for each part of the combined degree course.

4. Students who complete the BE program first may proceed to graduation with the degree of Bachelor of Engineering in the usual way.

5. Students who complete the requirements for their Arts program and the first two years of the BE program may proceed to graduation with the degree of Bachelor of Arts.

Concurrent Degree Course

3683 Mechanical Engineering/Biomedical Engineering - Full-time Course

Bachelor of Engineering Master of Biomedical Engineering
BE MBiomedE

Course 3683 is a concurrent BE in Mechanical Engineering and Master of Biomedical Engineering. Further details on the course can be found in the Graduate School of Biomedical Engineering section.
Graduate Study

Formal graduate courses offered are: the Master of Engineering Science in Industrial Engineering 8531 and in Mechanical Engineering 8541, and the Graduate Diploma in Industrial Engineering 5455 and Mechanical Engineering 5456. Opportunities are provided for graduate research leading to the award of the degrees of Master of Engineering 2680 and 2692 and Doctor of Philosophy 1662.

8531
Industrial Engineering

8541
Mechanical Engineering

Master of Engineering Science MEngSc

A major field of study is required to be nominated and two-thirds of the 30 credits required for the degree must be taken in that major field. (Examples of major fields are applied mechanics, fluid mechanics, manufacturing management, mechatronics and design. Consult School Advisers for further details.)

All candidates take a 12 credit project on a topic in their major field.

Formal lecture subjects are not restricted to the School of Mechanical and Manufacturing Engineering, Faculty of Engineering or this University, but two-thirds of all credits must be taken at the University of New South Wales.

In consultation with their School Adviser, candidates at enrolment put together a program which is based on these requirements, but which may be modified from time to time in the light of changes in availability of subjects. These requirements also apply to a number of specialist courses which are offered by the School of Mechanical and Manufacturing Engineering and which are described below. Some of these specialist programs may not run if the resources are not available.

Specialist Programs

1. Aerospace Engineering C

12 credits of core subjects:

AERO9105 Aerospace Vehicle Design and Manufacture 3
AERO9415 Finite Element Analysis and Applications for Aerospace Structures 3
AERO9606 Aerodynamics 3
AERO9705 Aerospace Propulsion 3

and 12 credit project:

AERO9010 Project 12

The remaining 6 credits may be selected from:

AERO9543 CAD/CAM for Aerospace Structures 3
AERO9607 Flight Dynamics 3

or such subjects (based on availability) as may be approved by the Head of School.

2. Aerospace Structures

This program will be run jointly with the University of Sydney. Before enrolling in the program a student has to get appropriate approval from the Aerospace Engineering Department of the University of New South Wales and the Aeronautical Engineering Department of the University of Sydney.

9 credits of core subjects must be selected from:

AERO9105 Aerospace Vehicle Design and Manufacture 3
AERO9415 Finite Element Analysis and Applications for Aerospace Structures 3
AERO9543 CAD/CAM for Aerospace Structures 3

and 12 credit project:

AERO9010 Project 12

3. Computational Fluid Dynamics and Heat Transfer

Note: Subject descriptions for ANCE subjects are listed in this handbook under the Centre for Advanced Numerical Computation in Engineering and Science. Only four ANCE subjects may be chosen.

6 credits of core subjects

ANCE8001 Computational Mathematics 3
ANCE8002 Supercomputing Techniques 3

and 12 credit project:

MECH9010 Project 12

The remaining 12 credits may be chosen from the following:

ANCE8101 Graphical Interfaces and Scientific Visualisation Techniques 3
ANCE8102 Mesh Generation 3
ANCE8105 Computational Fluid Dynamics or Computational Techniques for Fluid Dynamics 3

MECH9610 Advanced Fluid Dynamics 3
MECH9750 Industrial Applications of Heat Transfer 3

4. Computer Integrated Manufacturing

12 credits of core subjects:

MANF9470 Production Management 1 3
MANF9560 Computer Integrated Manufacturing 3
MANF9543 CAD/CAM 3
MANF9544 Concurrent Product and Process Design 3
MANF9040 Seminar (Manufacturing) 0

and 12 credit project:

MANF9010 Project 12

The remaining 6 credits may be selected from the following electives:

MANF9410 Total Quality Management 3
MANF9601 Economic Decisions in Industrial Management 3
MANF9400 Industrial Management 3
MECH9410 Finite Element Applications 3
MANF9340 Flexible Manufacturing Systems 3
MANF9500 Computer-Aided Programming for Numerical Control 3
5. Industrial Management
Before enrolling in the program a student should have had one year's relevant industrial experience and have access to industry for his/her project topic.

12 credits of core subjects:

- MANF9400 Industrial Management 3
- MANF9470 Production Management 1 3
- MANF9410 Total Quality Control 3
- MANF9040 Seminar (Manufacturing) 0
- SAFE9224 Principles of Ergonomics 3

and 12 credit project:
- MANF9010 Project 12

The remaining 6 credits may be selected from the following electives:

- ACCT9062 Accounting for Engineers 3
- MANF9601 Economic Decisions in Industrial Management 3
- MANF9340 Flexible Manufacturing Systems 3
- MANF9543 CAD/CAM 3
- MANF9544 Concurrent Product and Process Design 3
- MANF9560 Computer Integrated Manufacturing 3
- SAFE9213 Introduction to Safety Engineering (M) 3

6. Refrigeration and Air Conditioning
Students undertaking the postgraduate program in Refrigeration and Air Conditioning must complete the following subjects which are offered in even years (e.g. 1995, 1996):

- MECH9751 Refrigeration and Air Conditioning 1 3
- MECH9752 Refrigeration and Air Conditioning 2 3
- MECH9753 Refrigeration and Air Conditioning Design 1 3
- MECH9754 Refrigeration and Air Conditioning Design 2 3

The remaining 6 credits for MEngSc students may be selected in even years (e.g. 1995, 1996) from:

- MECH9325 Fundamentals of Noise 3
- MECH9326 Advanced Noise 3
- MECH9610 Advanced Fluid Dynamics 3
- MECH9720 Solar Thermal Energy Design 3
- MECH9750 Industrial Applications of Heat Transfer 3

or in odd years (e.g. 1995, 1997) from:

- MECH9325 Fundamentals of Noise 3
- MECH9326 Advanced Noise 3
- MECH9730 Multiphase Flow 3
- MECH9741 Energy Conservation and System Design 3
- MECH9757 Ambient Energy Air Conditioning 2

and 12 credit project:
- MECH9010 Project 12

The remaining 9 credits may be selected from the above list or from other subjects as approved by the Head of School.

8. Mechanical Design
9 credits from the following subjects:

- MECH9120 Design Technology 3
- MECH9130 Computer-Aided Engineering Design 3
- MECH9131 Advanced CAD Modelling and Applications 3
- MECH9140 The Design Activity: Morphology, Strategies and Tools 3
- MECH9150 Design and Maintenance of Components 3
- MECH9160 Design and Management of Large Systems 3

and a 12 credit project:
- MECH9010 Project 12

The remaining 9 credits may be selected from the above subjects or:

- MANF9400 Industrial Management 3
- MANF9544 Concurrent Product and Process Design 3
- MANF9601 Economic Decisions in Industrial Management 3
- MECH9221 Modelling and Control of Mechatronic Systems 3
- MECH9222 Industrial Robotics 3
- MECH9310 Advanced Vibration Analysis 3
- MECH9325 Fundamentals of Noise 3
- MECH9400 Mechanics of Fracture and Fatigue 3
- MECH9410 Finite Element Applications 3
- MECH9740 Power Plant Engineering 3
- SAFE9224 Principles of Ergonomics 3

9. Noise and Vibration
9 credits of core subjects:

- MECH9311 Fundamentals of Vibration 3
- MECH9312 Fundamentals of Noise and Vibration Measurement 3
- MECH9325 Fundamentals of Noise 3

and 12 credit project:
- MECH9010 Project 12

The remaining 9 credits may be selected from:

- MECH9310 Advanced Vibration Analysis 3
- MECH9323 Environmental Noise 3
- MECH9324 Building Acoustics 3
- MECH9326 Advanced Noise 3

or such other subjects (based on availability) as may be approved by the Head of School.

5455
Industrial Engineering

5456
Mechanical Engineering

Graduate Diploma
GradDip

Details of recommended programs of study may be obtained from the Head of School. Subjects from the Master of Engineering Science degree programs are offered in the Graduate Diploma programs subject to the approval of the course coordinator.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

AER03100
Aerospace Design 1
Staff Contact: Mr J.R. Page
F HPW3
Prerequisites: MATS9520, MECH2100, MECH2401, MECH2402
Corequisites: AERO3602

Introduction to the special constraints involved in the design of an aerospace vehicle. The development of detail design skills and the methodology of aerospace design. An introduction to airworthiness regulations, ESDU data sheets and the use of computer-aided design techniques. The production of engineering design reports on selected areas and the design work carried out.

AER03400
Analysis of Aerospace Structures 1
Staff Contact: A/Prof D.W. Kelly
S2 L3 T1
Prerequisites: MATH2009, MECH2401, MECH2402

Aerospace applications of plane frames and space structures. Open and closed section thin walled beams, tapered beams. Semi-monocoque structures, ribs and bulkheads. Stresses due to torsion and shear in multiecel tubes. Deflections. Structural instability, buckling of perfect and imperfect columns, bending and buckling of thin flat plates. Introduction to composite materials, sandwich panels.

AER03601
Aerodynamics 1
Staff Contact: Dr N.E.A. Ahmed
S1 HPW4
Prerequisites: MATH2009, MECH2600, MECH2700
Corequisites: AERO3602

AERO3602
Flight Dynamics 1
Staff Contact: Mr J.R. Page
S1 HPW2
Prerequisites: MECH2300, MECH2310, MECH2600
Corequisite: AERO3601

AER04100
Aerospace Design 2
Staff Contact: Mr J.R. Page
F L2 T1
Prerequisites: AERO3100, AERO3601, AERO3602

The students are formed into project teams to carry out initial design of an aerospace vehicle. A lecture program supports this work, along with tutorials and project team meetings.

AER04201
Aerospace Systems
Staff Contact: Mr J.R. Page
S1 HPW2
Prerequisites: AERO3601, AERO3602, MECH3212, MECH3310
Corequisite: AERO4602

A basic understanding of information, power and mass transport systems used on current craft; how the systems interface with the flight management on the vehicle.

AERO4202
Space Engineering
Staff Contact: Mr J.R. Page
S2 HPW2
Prerequisites: AERO3602
Corequisite: AERO4201

Introduction to the particular problems in vehicles that operate outside the sensible atmosphere. The dynamics of such vehicles, their on-board systems and their management and control.

AER04400
Analysis of Aerospace Structures 2
Staff Contact: A/Prof D.W. Kelly
F L2 T1
Prerequisites: AERO3400, MECH3400
Note/s: Excluded MECH4410, MECH9410.

Finite element analysis of aerospace structures. Selection of applications from linear and nonlinear elasticity using commercial finite element programs. Fracture mechanics including residual strength of cracked components, crack
growth, arrest and damage tolerance. Introduction to aeroelasticity. Thermal stresses. Advanced analysis of composite structures.

AERO4601
Aerodynamics 2
Staff Contact: Dr N.E.A. Ahmed
F L1.5 T.5
Prerequisite: AERO3601
Concentrates on high-speed flow and viscous compressible flows. As well as obtaining a good theoretical grounding, the student is introduced to the measurement of the properties of these flows in the laboratory and the use of computer modelling techniques (CFD).

AERO4602
Flight Dynamics 2
Staff Contact: Mr J.R. Page
S1 L2 T1
Prerequisites: AERO3602, MECH3211
An introduction to the dynamic stability and control of atmospheric vehicles, including an understanding of the characteristics of such vehicles and their testing in flight and evaluation.

AERO4700
Aerospace Propulsion
Staff Contact: Dr R.T. Casey
F L1.5 T.5
Prerequisites: MECH2600, MECH2700

AERO9105
Aerospace Vehicle Design and Manufacture
Staff Contact: Mr J.R. Page, Dr N.A. Ahmed
C3 SS HPW3
Design objectives and constraints: function, cost, durability. Design process: configuration design, structural design, systems. Integration Design. Production Methods. Quality control: design manufacture, operation. Design development: prototyping, component and system testing (ground and flight), manufacture. The above topics will be dealt with in the context of workshops associated with an intensive design project.

AERO9415
Finite Element Analysis and Applications for Aerospace Structures
Staff Contact: A/Prof D.W.Kelly
C3 SS HPW3
Theoretical foundations. Linear static and dynamic analysis. Non-linear material behaviour and geometrically non-linear behaviour. Validation of models. Project: Each student will undertake a project involving the finite element modelling of a structure and the analysis of its static and dynamic characteristics. A major finite element package will be used for the conduct of this project.

AERO9543
CAD/CAM for Aerospace Structures
Staff Contact: Mr J.R. Page, Dr K. Hoang
C3 SS HPW3

AERO9606
Aerodynamics
Staff Contact: Dr N.A.Ahmed
C3 SS HPW3
Potential flow and wing theory. Low speed, inviscid and incompressible flow; high-speed viscous and compressible flow. Visualisation in the laboratory and the use of computer modelling techniques.

AERO9607
Flight Dynamics
Staff Contact: Mr J. R. Page
C3 SS HPW3

AERO9705
Aerospace Propulsion
Staff Contact: Dr R. Casey
C3 SS HPW3

MANF0420
Production Management
Staff Contact: Dr K. Hoang
S1 HPW6

MANF1100
Workshop Technology
Staff Contact: Dr P. Mathew
SS HPW3
Note/s: Students who have done Industrial Arts for the HSC, have an appropriate trade or certificate qualification, or are suitably employed, may qualify for exemption from this subject.
The implementation of design and its interaction with manufacturing equipment and processes. Manufacturing capabilities and tolerancing. Approximately 30 hours of practical training including welding, fitting and machining.
MANF1110
Manufacturing Technology
Staff Contact: Dr P. Mathew
S2 HPW3
Corequisites: MECH1100, MECH1300, MECH1400

MANF3200
Product Design and Manufacturing Technology
Staff Contact: Mr K.C. Chan
S1 HPW4
Corequisites: MANF3410, MECH2100, MECH2401

Design for economic manufacture. Geometric analysis of product designs and the technology and economics of manufacturing and assembly processes. Provides a basis for rational process selection and the refinement of product design to suit the chosen manufacturing methods.

MANF3300
Design of Manufacturing Facilities 1
Staff Contact: Dr L.E. Farmer
S2 HPW4
Corequisites: MANF3200, MANF3410, MANF3500, MATH2839

The design of workplaces where operations such as assembly and measurement are performed by a human operator or robot. Documentation of manufacturing processes, characteristics of human operator and robots, workplace and methods design, measurement of workplace element characteristics.

MANF3400
Engineering Economics
Staff Contact: Mr M. Hasan
S1 HPW2
Prerequisite: MECH1500

Concept of Engineering economy; cost information; engineering and investment decision. Interest formulas; nominal and effective interest rate. Methods for evaluating investment; present worth, equivalent annual worth, payback period and rate of return. Comparing alternative investments. Replacement analysis. Depreciation; effect of income taxes on economic analysis; inflation and deflation; benefit-cost analysis.

MANF3410
Quality Systems 1
Staff Contact: Dr P. Mathew
S1 HPW4
Prerequisites: MANF1110, MATH2839

An introduction to the role of national and international standards in manufacturing, the principle and technology underlying dimensional metrology. The use of statistical methods in the design and analysis of experiments to investigate the performance of manufacturing processes.

MANF3500
Computers in Manufacturing 1
Staff Contact: Prof H. Kaemberick
S2 HPW4
Prerequisites: ELEC0805, MANF1110, MECH1500

Selection and use of computer-controlled devices such as robots and machine tools in manufacturing systems: principles of numerical control and PLCs, NC machine tools, NC programming, CNC/AC/DNC computer controls, accuracy of NC machines, fundamentals and applications of robots.

MANF3600
Information and Decision Making Technology 1
Staff Contact: A/Prof R.M. Kerr
S1 HPW4 S2 HPW2
Prerequisites: MATH2839, MECH1500
Note/s: Excluded MANF4610, MANF9620, MANF9629.

An introduction to the quantitative aspects of decision making and relevant computing tools including: decision theory, data modelling and data base management systems, operations research, spreadsheets, fourth generation languages and decision support systems.

MANF3800
Introduction to Numerical Methods
Staff Contact: Dr I. Maclaine-cross
S2 HPW1.5
Prerequisites: MATH2009, MECH1500
Note/s: Combined degree course students who have taken MATH3101 Numerical Analysis, should substitute a Technical Elective or a half Level II or Level III unit from relevant undergraduate offerings in the Science Handbook for this subject.

An introduction to the processes, data structures and numerical algorithms required for the solution of engineering problems including: numerical solution of equations, sets of simultaneous equations interpolation, differentiation and integration.

MANF4010
Manufacturing Systems Design
Staff Contact: Dr P. Mathew
F HPW2

Students will work in project teams to perform a complete manufacturing system design, involving activities such as: design for manufacture, process selection, tolerance optimization, workplace design, factory layout, production control system, detailed budget.

MANF4300
Design of Manufacturing Facilities 2
Staff Contact: Mr K.C. Chan
S2 HPW4
Corequisite: MANF3300

Introduction to plant layout design and materials handling system. Analysis and simulation and various types of manufacturing facilities.
MANF4400
Engineering Management
Staff Contact: Dr B. Kayis
S1 HPW2
Prerequisite: MANF3400
Summary of macro and micro economic issues from an engineering management perspective, management science models, industrial relations, human resource management, management of quality systems, engineering project management, management of technical change and innovation.

MANF4410
Quality Systems 2
Staff Contact: Dr L.E. Farmer
S1 HPW2
Prerequisite: MANF3410
Note/s: Excluded MANF9410.
Quality planning in service and manufacturing industries; statistical process control, process capability analysis, lot by lot acceptance sampling by attributes, additional acceptance sampling plan systems, quality management systems, national and international standards.

MANF4411
Introduction to Total Quality Management
Staff Contact: Dr B. Kayis
S2 HPW1
Corequisite: MANF4410
Note/s: Excluded MANF4412, MANF9410
Introduction to Total Quality Management; strategic quality planning; human resource development and management. Management of process quality; benchmarking; quality standards and accreditation; quality assurance; value added management.

MANF4412
Total Quality Management
Staff Contact: Dr B. Kayis
S2 HPW2
Note/s: Excluded MANF4411
Introduction to Total Quality Management; strategic quality planning; human resource development and management. Management of process quality; benchmarking; quality standards and accreditation; quality assurance; value added management. Basic analytical techniques and tools; statistical process control.

MANF4420
Management of Manufacturing Systems
Staff Contact: Dr K. Hoang
S1 HPW6 S2 HPW2
Prerequisites: MANF3400, MANF3410, MANF3600
Note/s: Excluded MANF0400, MANF4429, MANF9020.
Manufacturing industry dynamics. Porters Model; bases for competition; meaning of waste; value adding management; dynamics of materials flow; hierarchical planning; MRP, OPT, JIT, maintenance management; manufacturing performance monitoring; use of a production planning and control system in a simulated production company.

MANF4500
Computers in Manufacturing 2
Staff Contact: Prof H. Kaebemick
S1 HPW2
Prerequisite: MANF3500
Integration of the basic elements of manufacturing facilities into systems: selection of automation equipment, principles of group technology and cellular manufacturing, Flexible Manufacturing Cells, planning and layout of Flexible Manufacturing Systems, integration of CAD and CAM, computer integrated manufacturing, computer aided process planning.

MANF4600
Information and Decision Making Technology 2
Staff Contact: A/Prof R.M. Kerr
S1 HPW4
Prerequisite: MANF3600
Note/s: Excluded MANF3609, MANF4610, MANF9620, MANF9629.
More advanced linear programming; general mathematical optimization techniques including goal programming; examples from manufacturing industry. More advanced topics in simulation, design of simulation experiments; factory simulation packages. Knowledge based and expert systems and their role in integrated manufacturing.

MANF9010
Project
Staff Contact: Prof H. Kaebemick
C12

MANF9019
Project
C9

MANF9040
Seminar (Manufacturing)
Staff Contact: Prof H. Kaebemick
C0

MANF9340
Flexible Manufacturing Systems
Staff Contact: Prof H. Kaebemick
C3 SS HPW3
Corequisite: MANF9543

MANF9400
Industrial Management
Staff Contact: Dr B. Kayis
C3 SS HPW3
Evolution of management thought, the planning process; nature of managerial decision making, organizational structures; managing organizational change, motivation, performance, satisfaction, interpersonal and organizational communication, use of management information systems.
MANF9410
Total Quality Management
Staff Contact: Dr B. Kayis
C3 SS HPW3
Note/s: Excluded MANF4429
Quality control systems, quality assurance, planning for quality, total quality management (TQM) philosophy, implementation of TQM in service and manufacturing industries, national and international standards.

MANF9470
Production Management 1
Staff Contact: A/Prof R.M. Kerr
C3 SS HPW3
Dynamics of industry competitiveness: Porter's Model; waste elimination and value adding management; material flow dynamics; production planning and control techniques including MRP, OPT and JIT; maintenance management; purchasing; physical distribution; manufacturing strategy and performance monitoring.

MANF9500
Computer Aided Programming for Numerical Control
Staff Contact: Dr P. Mathew
C3 SS HPW3
Prerequisite: MECH1500 or equivalent
Note/s: Excluded MANF4509.
NC systems and manual programming. Computer assisted programming dealing with specific and generalized part programming. Mathematics for computer assisted part programming. Study of APT and CAD programming for manufacture. Selection of operating conditions.

MANF9543
Computer Aided Design/Computer Aided Manufacture
Staff Contact: Dr K. Hoang
C3 SS HPW3
Note/s: Student numbers are limited due to computer availability. Preference will be given to CIM Program students. Students must contact the Department of Industrial Technology and Management one week after enrolment to confirm enrolment.
Topics to be covered include: manufacturing systems; elements of CAM; computer process monitoring and control; production systems at the plant and operation levels; principles underlying the integration between a CAD/CAM package such as CATIA and a Manufacturing Management System such as Fourth Shift; applications to design and engineering processes.
MECH0430
Applied Mechanics
Staff Contact: A/Prof J. E. Baker
S2 L2 T1
Prerequisites: MECH0330 or MECH1300
Note/s: Excluded MECH1400, MECH2300
Stress and deformation of mechanical components under axial loading, bending and torsion. Compatibility and thermal strain. Strain energy. Deflections of trusses. Displacement relationships in planar mechanisms.

MECH0440
Engineering Statics
Staff Contact: A/Prof R.A.J. Ford
SS L2 T1
Prerequisites: As for MECH1300 Engineering Mechanics 1.
Note/s: Excluded MECH0330, MECH0360, MECH1300.

MECH1000
Professional Studies 1
Staff Contact: A/Prof R.A.J. Ford
S1 HPW1
Prerequisite: HSC Exam Score Range Required - 2 unit English (General) 53-100, or 2 unit English 49-100, or 3 unit English 1-50, or 2 unit Contemporary English 60-100
Note/s: If these prerequisites are not met, other remedial English studies can be taken concurrently.
To assess abilities in written expression; to develop a consciousness of the importance of written, pictorial and oral expression in engineering life; to begin to develop these skills, emphasising the significance of logical structure; to begin to develop an awareness of the professional attitude.

MECH1100
Mechanical Engineering Design 1
Staff Contact: A/Prof A.E. Churches
S1 HPW1 S2 HPW2
Corequisite: MECH1000
Introduction to hardware. Studies of a range of engineering components, considering: what they do, how they do it, how they were made, the range of possible forms for each item, why each item has its particular form. Systematic design techniques from conceptual through embodiment to the detail stage. Problem breakdown, search for solution concepts and decision techniques. Issues for sizing and form of designs, integration with manufacture and assembly. Investment decisions and cost analysis. Specification requirements and group projects.

MECH1110
Graphical Analysis and Communication
Staff Contact: Mr A.J. Barratt
S2 L1 T2
Note/s: Excluded MECH0130, MECH0160.
Freehand sketching of machine components, standard drawing methods, orthogonal projections and sections for analysis and communication, dimensions, tolerances and conventional symbols. Computer graphics modelling of components, assembly and production of detail drawings.

MECH1300
Engineering Mechanics 1
Staff Contact: Dr K. Zarrabi
S1 or S2 L2 T2
Prerequisite: HSC Exam Score Range Required - Either 2 unit Science (Physics) 53-100, or 3 unit Science 90-150, or 4 unit Science multistrand 1-50 or 2 unit Industrial Arts (Engineering Science) 53-100, or 3 unit Industrial Arts (Engineering Science) 1-50
Note/s: Excluded MECH0330, MECH0360. Students who wish to enrol in this subject in courses other than the full-time courses in Aerospace Engineering, Electrical Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of the first year.

MECH1400
Mechanics of Solids 1
Staff Contact: Dr M. Chowdhury
S1 or S2 L2 T1
Corequisite: MECH1300 or MECH0330 or MECH0360 or MECH0440
Note/s: Excluded MECH0430

MECH1500
Computing 1 M
Staff Contact: A/Prof J.A. Reizes
S2 HPW3
Introduction: history, applications, hardware, software, a model of a computer system, editors, operating systems. Program design and development: programming objectives, data structures, algorithms, symbolic names, translation of algorithms, steps in programming, programming style, syntax charts, errors and debugging. Data: data types, declarations, input output, file control. Programming constructs: arithmetic expressions, assignment, relational and logical expressions, selection, iteration, intrinsic functions, statement functions, subprograms, common, communication. Applications using existing programs: sorting, word processing, graphics and plotting, simultaneous linear algebraic equations. The computer language employed in this subject is FORTRAN.

MECH2000
Professional Studies 2
Staff Contact: Mr A.J. Barratt
S2 HPW4 total
Prerequisite: MECH1000
To introduce the student to the engineering working environment. To get the student curious about the engineering environment. To give practice in preparation for job applications. Preparation for Industrial Training.
MECH2100
Mechanical Engineering Design 2
Staff Contact: A/Prof J.A. Reizes
F L1 T2
Prerequisites: MANF1110, MECH1110, MECH1400

Design of basic engineering elements and simple systems. Selection and specification of materials and manufacturing processes for engineering items. Communication by means of engineering drawings (including tolerances) of manufacturing information for simple structures and assemblies. Application of standards and trade literature to design. Simple design-and-make project to meet a published specification and to demonstrate the product's performance.

MECH2300
Engineering Mechanics 2A
Staff Contact: Dr S.S. Leong
S1 or S2 L2 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, MECH1300 or MECH0360
Note/s: Excluded MECH0430

Kinetics of systems of particles; plane steady mass flow. Plane kinematics and kinetics of rigid bodies: moment of inertia; motion relative to translating and rotating frames of reference; equations of motion; work and energy, impulse and momentum. Virtual work for static and dynamic systems. Kinematics and kinetics of simple mechanisms.

MECH2310
Engineering Mechanics 2B
Staff Contact: Prof K.P. Byrne
S1 or S2 HPW2
Corequisite: MECH2300

MECH2401
Mechanics of Solids 2A
Staff Contact: Dr H.L. Stark
S1 L1 T1
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Corequisite: MECH1400
Note/s: Excluded MECH2400

Revision of Statics. The variation with orientation of stress at a point in 2D, Mohr's Circle. The variation with orientation of stress at a point in 3D given one principal stress. The variation with orientation of strain at a point, Mohr's Circle, strain gauges. The relationships between stress and strain during linear elastic deformation. The interdependence of elastic moduli. The variation with orientation of stress at a point in the general 3D case. Octahedral stresses. Strain energy stored in a linearly elastic body resulting from volume change and from distortion. Yield Criteria.

MECH2402
Mechanics of Solids 2B
Staff Contact: Dr H.L. Stark
S2 L1.5 T2
Prerequisite: MECH2401
Note/s: Excluded MECH2400

MECH2600
Fluid Mechanics 1
Staff Contact: A/Prof J.A. Reizes
F L1 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1919

MECH2700
Thermodynamics 1
Staff Contact: A/Prof E. Leonard
F L1 T1
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1919

MECH3000
Professional Studies 3
Staff Contact: A/Prof J.A. Reizes
S2 HPW2
Prerequisite: MECH2000

MECH3091
Co-operative Training A
Staff Contact: Dr R.A. Platfoot
Prerequisite: Completion of Year 3 of course.

Co-op scholars are required to do a 25 week period of industrial training in Session 1 of their year 4. The location of the training is at the site of one of the sponsors of scholarships for that year. At the end of the training, they are required to submit a report on the training, which is evaluated by their academic mentor, and normally make a presentation on this topic at the company to company representatives and the academic mentor.
MECH3092
Co-operative Training B
Staff Contact: Dr R.A. Platfoot
Prerequisite: Completion of Year 3 of course.
Co-op scholars are required to do a 25 week period of industrial training in Session 2 of their year 4. The location of the training is at the site of one of the sponsors of scholarships for that year. At the end of the training, they are required to submit a report on the training, which is evaluated by their academic mentor, and normally make a presentation on this topic at the company to company representatives and the academic mentor.

MECH3100
Mechanical Engineering Design 3
Staff Contact: Mr A.J. Barratt
F L2 T1
Prerequisite: MECH2100
Corequisites: MECH3300, MECH3400
Mathematical modelling in design with applications. More advanced design analyses, component and assembly design and drawing with individual and group projects of an interdisciplinary nature.

MECH3200
Engineering Experimentation
Staff Contact: Dr R.A. Willgoss
F HPW1.5
Prerequisites: ELEC0805, MECH2401, MECH2600, MECH2700
Scientific method, engineering method; report writing; error analysis; principles of transducers; dynamic response of instruments; digital data acquisition; interfacing transducers to computers; computer control of experiments; signal processing.

MECH3211
Linear Systems Analysis
Staff Contact: Dr M.J. Tordon
S1 L2 T1
Prerequisites: MATH2009, MECH1300
Note/s: Combined degree course students who have taken MATH3181 Optimal Control theory should substitute a Technical Elective or a half Level II or III unit from relevant undergraduate offerings in the Science Handbook.
Models of physical systems: differential equations for physical systems including mechanical, electrical, hydraulic, thermal and pneumatic systems; linearisation. System analysis techniques: solution by Laplace transform method. Transfer functions and block diagrams. System response: response of first and second order systems to impulse step, ramp, sinusoidal and periodic inputs; higher order system response; system stability, applications.
MECH3212
Principles of Control of Mechanical Systems
Staff Contact: Dr R.A. Willgoss
S2 L2 T1
Prerequisite: MECH3211
Introduction to modern systems analysis. Review of modelling; nonlinear systems. Digital and analogue representations. Stability; regulation; control and optimal control. Instrumentation; actuators; interfaces; control computers; programmable logic controllers. Implementation; various case studies, including microprocessor applications.

MECH3300
Engineering Mechanics 3
Staff Contact: A/Prof J.E. Baker
S1 HPW2
Prerequisites: MATH2009, MECH2300
Kinematics of gear tooth profiles; standard and non-standard gear proportions. Gear trains; epicyclic gears. Static and dynamic balancing of rotating and reciprocating mass systems. Three-dimensional kinematics and kinetics of a rigid body: co-ordinate transformations, general screw motion, angular momentum, inertia tensor, kinetic energy, Euler's equations of motion, planetary and satellite motions, gyroscope.

MECH3310
Vibration Analysis
Staff Contact: Prof C. Patterson
S2 HPW2
Prerequisites: MATH2009, MECH2310
Lagrange's equations of motion. Linear vibrations of multi-degree-of-freedom systems; normal modes; simple applications. Finite elements for structural dynamics; mass matrix; natural frequency and normal mode determinations; convergence; engineering applications.

MECH3400
Mechanics of Solids 3
Staff Contact: A/Prof E.J. Hahn
S1 L3 T1
Prerequisites: MATH2009, MECH2401

MECH3500
Computing 2M
Staff Contact: Dr J. Katupitiya
S1 HPW2
Prerequisite: MECH1500
Techniques for writing, debugging and documenting elegant, portable, robust and reliable programs quickly and economically. Material on the programming environment, programming style, numerical precision, storage management, database processing and program libraries. The computer languages employed in this subject are FORTRAN and C.

MECH3600
Fluid Mechanics 2
Staff Contact: A/Prof J.A. Reizes
S1 HPW2
Prerequisites: MATH2009, MECH2600, MECH2700
Dimensional Analysis, dynamic similarity, turbomachines; incompressible, inviscid flow; compressible flow.

MECH3701
Thermodynamics 2
Staff Contact: Dr R.T. Casey
S1 HPW2
Prerequisite: MECH2700
Availability - open and closed systems; general thermodynamic relations; kinetic theory of gases; non-reactive ideal gas mixtures; combustion.
MECH3702
Heat Transfer
Staff Contact: A/Prof M. Behnia
S2 HPW2
Corequisite: MECH3600

MECH3800
Numerical Methods
Staff Contact: Dr I.L. Maclaine-Cross
S2 L2 T1
Prerequisites: MATH2009, MECH1500
Note/s: Combined degree course students who have taken MATH2220 Applied Mathematics 2 - Continuous Time Systems or MATH3101 Numerical Analysis, should substitute a Technical Elective or a half Level II or Level III unit from relevant undergraduate offerings in the Science Handbook for this subject.

MECH4000
Thesis
Staff Contact: Dr M. Chowdhury
F T6
Corequisite: MECH4001
Note/s: To be taken in year of completion of course. For students in the BE degree courses in the School of Mechanical and Manufacturing Engineering.

MECH4001
Professional Studies 4
Staff Contact: Mr P. J. Helmore
S2 HPW2
Prerequisites: MECH3000
Corequisite: MECH4000, MECH4002
Development of skills in the use of various media of communication. Presenting oral and written reports. Conference organization and participation. Group projects in communications.

MECH4002
The Engineer in Society
Staff Contact: Dr R.T. Casey
S2 HPW2
Corequisite: MECH4001
Note/s: This subject satisfies the requirements of Category C of the General Education Program.
Reading, instruction and project work concerned with the organizational, environmental and social aspects of engineering. The subject is intended to integrate a student's prior and current studies over the range of scientific, technological and contextual areas and general education. Students will undertake socially directed projects in large groups and follow them up with more reflective individual tasks.

MECH4020
Group Engineering Project
Staff Contact: A/Prof M. Behnia
F HPW3
Project management and task definition. Selection of a project from a list of available projects in different design areas. Assessment of market potential and subsequent development of design. Consideration of environmental and safety impacts. Procedures for manufacture and/or construction and the industrial design. Preparation of the engineering report and seminar presentation.

MECH4090
Industrial Training
Staff Contact: Mr A.J. Barrett
S1
Prerequisite: MECH2000
Note/s: Excluded MECH3010, MECH4010
Students must complete a minimum of 60 days of appropriate industrial training and prepare a report summarising the work done and training received. The report is to be submitted by the end of week 2 of Session 1 with endorsement of employer confirming completion of training. Industrial experience may include workshop training, manufacturing, design, drafting, development, industrial relations, maintenance and/or management in an engineering environment.

MECH4110
Design Project
Staff Contact: A/Prof A.E. Churches
F L1 T2
Prerequisite: MECH3100
Note/s: Excluded MECH9120
Creative design and development leading to the detail design and possible building and testing of systems and devices to satisfy specified objectives of set projects.

MECH4120
Design Technology
Staff Contact: A/Prof R.B. Frost
S1 L2 T1
Prerequisite: MECH2100
Note/s: Excluded MECH9120
Aspects of mechanical engineering technology which form the basis for machinery design including: performance matching; hydraulic power components and circuits. Fluid couplings and torque converters; power flow analysis in multi-path machinery, and other selected topics.

MECH4130
Computer-Aided Engineering Design
Staff Contact: Dr R. A. Platfoot
S2 L2 T1
Prerequisite: MECH3000
Note/s: Excluded MANF9630, MECH9130
Mathematical modelling and analysis of component and system designs using the computer as a tool to optimise and investigate design solutions. Use of available CAD and computational engineering packages to develop and analyse designs of industrial equipment.
MECH4131
Advanced CAD Modelling and Applications
Staff Contact: Mr A.J. Barratt
SS HPW3
Note/s: Excluded MECH9131

Development of CAD modelling systems, 2D and 3D, wire frame, surface representation and solids. Advanced modelling techniques of complex geometry, surfaces, boundary operations and solids manipulation. Programming and database interfacing in a CAD environment. Development of engineering based applications using these facilities.

MECH4140
The Design Activity: Morphology, Strategies and Tools
Staff Contact: A/Prof R.B. Frost
Prerequisite: MECH3100
Note/s: Excluded MECH9140

Morphology: The nature of the design activity, creativity, synthesis, stereotypes, models, scenarios, the real struggles, determiners of success, factors of influence, protection. Strategies: Creativity enhancing, concept manipulation, modularity, evaluation, strategy generation. Tools: For synthesis: combinatorial methods, modellers. For analysis: FEM, CFD, DSL, HLL's AI, ES, etc. For representation: CAD, DATABASES.

MECH4150
Design and Maintenance of Components
Staff Contact: Dr R.A. Platfoot
SS HPW3
Prerequisite: MECH3100
Note/s: Excluded MECH9150

Functional specification for service life, manufacturing and material requirements. Design for function and strength. Design for manufacture and assembly. Overview of damage mechanisms and their maintenance burden, inspection procedures and damage prediction by mathematical modelling. Quality management including audit checks, inspection and quality in manufacture.

MECH4160
Design and Management of Large Systems
Staff Contact: Dr R.A. Platfoot
SS HPW3
Prerequisite: MECH3100
Note/s: Excluded MECH9160

MECH4301
Plane Mechanism Kinematics
Staff Contact: A/Prof J.E. Baker
SS L2 T1
Prerequisite: MECH2300
Note/s: Excluded MECH9301.

Algebraic displacement, velocity and acceleration analyses of simple and complex planar mechanisms. Instantaneous kinematics: centroides; inflection and Bresse circles; acceleration centre; Euler-Savary equation; cubic of stationary curvature; centring point curve. Coupler curves and their properties; curve cognates. Constraint and freedom; mobility; velocity closure of a loop; special configurations; singularities. Various methods of synthesis.

MECH4310
Advanced Vibration Analysis
Staff Contact: Mr R.B. Randall
SS L2 T1
Prerequisite: MECH3310
Note/s: Excluded MECH9310.

MECH4321
Engineering Noise 1
Staff Contact: Dr J.M. Challen
SS L2 T1
Note/s: Excluded MECH9325.

MECH4322
Engineering Noise 2
Staff Contact: Dr J.M. Challen
SS L2 T1
Prerequisite: MECH4321
Note/s: Excluded MECH9326.

MECH4361
Lubrication
Staff Contact: A/Prof E.J. Hahn
SS HPW3
Prerequisites: MECH2600, MATH2009
Note/s: Excluded MECH9361.

History of lubrication, types of bearings and bearing operation, nature of surfaces and their contact, modes of lubrication, properties of lubricants, viscous flow in pipes and channels, measurement of viscosity, infinitely long and short bearing approximations, one-dimensional analysis of short bearing, other slider bearing geometries, the effect of end leakage, hydrostatic or externally pressurised bearings, squeeze films.

MECH4400
Fracture Mechanics
Staff Contact: Dr K. Zarrabi
SS L2 T1
Prerequisite: MECH3400
Note/s: Excluded MECH9400

Fracture mechanics and its applications to various industries, including aerospace, power generation, etc. Review of mathematical theory of elasticity. Plastic collapse. Overview of damage tolerance analysis.

MECH4410
Engineering Applications of Finite Elements
Staff Contact: A/Prof D.W. Kelly
SS L2 T1
Prerequisite: MECH3400
Note/s: Excluded AERO4400, MECH9410.

MECH4420
Plates and Shells
Staff Contact: Dr H.L. Stark
SS L2 T1
Prerequisite: MECH3400
Note/s: Excluded MECH9421.

Bending of rectangular and circular plates under normal loading; thermal stresses. Shells; membrane stresses, bending stresses, discontinuities at junction of ends; design of pressure vessels.

MECH4440
Theory of Plasticity
Staff Contact: Dr C.V. Madhusudana
SS L2 T1
Prerequisite: MECH3400

Analysis of stress, strain, strain rate; plastic stress strain relations with description of experimental verification. Application of plasticity theory to a selection of problems including metal working processes such as extrusion and rolling and metallic friction and wear.

MECH4500
Computing 3M
Staff Contact: Dr J. Katupitiya
S1 HPW2
Prerequisite: MECH3500

Computer environments; PC and mainframe. User and machine interfacing with terminal controls, menus, mouse and I/O hardware. Use of graphics and special packages, e.g., spreadsheets for man/machine interaction. Communications protocol, serial and parallel transmission, interrupts polling and general housekeeping routines. Use of C language and comparison with other high level languages.

MECH4610
Advanced Fluid Dynamics
Staff Contact: A/Prof E. Leonardi
SS HPW3
Prerequisite: MECH3600
Note/s: Excluded MECH4600, MECH4710, MECH9610, MECH9710

MECH4690
Special Fluid Mechanics Elective
This subject is variable in content in order to allow the presentation of material of particular interest and merit by a visiting expert in a field not otherwise covered.

MECH4700
Turbomachines and Engines
Staff Contact: Prof B.E. Milton
SS HPW3
Prerequisite: MECH3701

MECH4720
Solar Energy
Staff Contact: Prof G.L. Morrison
SS L2 T1
Prerequisites: MATH2009, MECH3702
Note/s: Excluded MECH9720.

MECH4730
Multiphase Flow
Staff Contact: A/Prof M. Behnia
SS L2 T1
Prerequisite: MECH3600
Note/s: Excluded MECH9730

MECH4740
Thermal Power Plants
Staff Contact: A/Prof M. Behnia
SS HPW3
Prerequisites: MECH2600, MECH2700
Note/s: Excluded MECH9740.

MECH4751
Refrigeration and Air Conditioning
Staff Contact: A/Prof E. Leonardi
SS HPW3
Corequisite: MECH3702
Note/s: Excluded MECH9751.

Psychrometry and air conditioning calculations; heating and cooling load calculations; refrigerants; vapour compression refrigeration; multipressure systems; air conditioning systems; components of refrigeration and air conditioning systems; air distribution; refrigeration and air conditioning controls.

MECH4790
Special Thermodynamics Elective
This subject is variable in content in order to allow the presentation of material of particular interest and merit by a visiting expert in a field not otherwise covered.

MECH4800
Optimal Engineering Strategies
Staff Contact: A/Prof J.E. Baker
SS L2 T1
Prerequisites: MATH2009, MECH2300

Optimization: a selection of techniques and their applications from the calculus of variations, geometric programming, network analysis, linear programming, non-linear programming, etc. Strategies for design and analysis: system structure; variable classification; procedure generation; recycle optimization; the adjacency matrix.

MECH9130
Computer-Aided Engineering Design
Staff Contact: Dr R.A. Platfoot
C3 SS HPW3
Prerequisite: MECH3100 or equivalent
Note/s: Excluded MECH4130

Mathematical modelling and analysis of component and system designs using the computer as a tool to optimise and investigate design solutions. Use of available CAD and computational engineering packages to develop and analyse designs of industrial equipment.

MECH9131
Advanced CAD Modelling and Applications
Staff Contact: Mr A.J. Barret
C3 SS HPW3
Note/s: Excluded MECH4131

Development of CAD modelling systems, 2D and 3D, wire frame, surface representation and solids. Advanced modelling techniques of complex geometry, surfaces, bodian operations and solids manipulation. Programming and database interfacing in a CAD environment. Development of engineering based applications using these facilities.

MECH9140
The Design Activity: Morphology, Strategies and Tools
Staff Contact: A/Prof R. B. Frost
C3 SS HPW3
Prerequisite: MECH3100 or equivalent
Note/s: Excluded MECH4140

Morphology: The nature of the design activity; creativity, synthesis, stereotypes, models, scenarios, the real struggles, determiners of success, factors of influence, protection. Strategies: Creativity enhancing, concept manipulation, modularity, evaluation, strategy generation. Tools: For synthesis: combinatorial methods, modellers. For analysis: FEM, CFD, DSL, HLL's AI, ES etc. For representation: CAD, DATABASES.

MECH9150
Design and Maintenance of Components
Staff Contact: Dr R.A. Platfoot
C3 SS HPW3
Prerequisite: MECH3100 or equivalent
Note/s: Excluded MECH4150

Functional specification for service life, manufacturing and material requirements. Design for function and strength. Design for manufacture and assembly. Overview of damage mechanisms and their maintenance burden, inspection procedures and damage prediction by mathematical modelling. Quality management including audit checks, inspection and quality in manufacture.

MECH9160
Design and Management of Large Systems
Staff Contact: Dr R.A. Platfoot
C3 SS HPW3
Prerequisite: MECH3100 or equivalent
Note/s: Excluded MECH4160

Plant layout and specification. Modular design of large plants. Design for redundancy and critical path for breakdowns. Operation versus maintenance. Formulation of policies for condition monitoring, plant inspection, risk analysis and life forecasting. Rehabilitation including plant
flexibility, redesign and strategies for rehabilitation. Plant
modelling and component tracking, work flow tracking and
procedure libraries.

MECH9201
Digital Logic Fundamentals for Mechanical Engineers
Staff Contact: Dr M.J. Tordon
C3 SS HPW3
Introduction. Review of number theory. Symbolic logic. An
introduction to TTL compatible devices. Formulation and
implementation of problems in logic. Microprocessor
architecture. Components of a microprocessor based
system. Memory maps. Input/Output devices. Dedicated
and special purpose computers. Principal features of a
microprocessor based system. Laboratory complement to
lectures.

MECH9202
Microprocessor Fundamentals for Mechanical
Engineers
Staff Contact: Dr M.J. Tordon
C3 SS HPW3
Prerequisite: MECH9201 or equivalent
Note/s: Excluded COMP9221, ELEC4432, ELEC9406,
ELEC4351 and equivalent
Introduction to microprocessor programming. Machine
code programming. Instruction sets. Program branching
and condition codes. Addressing modes. Interrupts.
Address decoding and memory interface. Input/Output
interfacing techniques. Programmable peripheral devices.
Serial and parallel interfaces. Microprocessor control of
electromechanical devices. Laboratory complement to
lectures.

MECH9203
Industrial Applications of Microprocessors
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: MECH9202 or equivalent
Note/s: Excluded ELEC4432, ELEC9406, ELEC4351 and
equivalent.
Coding and programming. Transducer selection.
Information transfer. Data storage. Power output device
control. Application to industrial automation and control.
Laboratory complement to lectures.

MECH9204
Elements of Industrial Automation
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: MECH9204
An introductory overview of the elements of Industrial
Automation systems and the factors governing their use in
industry.

MECH9205
The Analysis and Use of Integrated CAD/CAM
Systems
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: MECH9204
Economic background to the use of CAD/CAM systems.
Elements in systems for use with machining centres, lathes
and sheet metal machinery. Data input techniques.
Coordinate handling. Machine specific post processors.
Data verification and output integrity analysis. Techniques
for interfacing machine tools with computers. Restrictions
imposed by requirements for real time control. Integration
with accounting and cost analysis systems. Choice of
computer. Factors in CAD CAM system selection.

MECH9211
Modelling and Control of Mechatronic Systems
Staff Contact: Dr J. Katupitiya
C3 SS HPW3
Prerequisite: MECH3212 or equivalent
Development of modelling technique and design of
controllers using digital computers, with special emphasis
on motion control. Typical examples of mechatronics
systems.

MECH9212
Control and Modelling of Mechanical Systems 2
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Prerequisite: MECH3211 or equivalent
Development of modelling techniques using both digital
and analogue computation, with special emphasis on the
representation of non-linearities. Typical examples of
mechanical systems.

MECH9221
Industrial Robotics
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
Applications survey. System structure, hardware, software,
handling. Linkage kinematic structure; power transmission.
Linkage structural design. Actuator choice. Interface
hardware. Feedback. Function programming philosophies.
Control algorithms. Problem specification; solution
preparation. Writing, storage, implementation of computer
algorithms.

MECH9222
Artificially Intelligent Machines
Staff Contact: Dr R.A. Willgoss
C3 SS HPW3
The principles of operation of machines into which limited
powers of decision making have been delegated. The
grouping of intelligent machines. Cognition; sensor
technology; parsing; information representation;
convolutions; software and hardware environments.

MECH9301
Advanced Mechanism Analysis and Synthesis 1
Staff Contact: A/Prof J.E. Baker
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2300 or
equivalent
Note/s: Excluded MECH4301.
Algebraic displacement, velocity and acceleration analyses
of simple and complex planar mechanisms. Instantaneous
kinematics: centroids; inflection and Bresse circles;
acceleration centre; Euler-Savary equation; cubic of
stationary curvature; centring point curve. Coupler curves
and their properties; curve cognates. Constraint and
freedom; mobility; velocity closure of a loop; special
configurations; singularities. Various methods of synthesis.
MECH9302
Advanced Mechanism Analysis and Synthesis 2
Staff Contact: A/Prof J.E. Baker
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2300 or equivalent
A selection of topics from Planar mechanisms: kinematic analysis of complex mechanisms; kinetic analysis; kinematic geometry; precision position synthesis. Cams: basic and common curves; equations of motion; development of profile; determination of system geometry and mechanical properties; noise, wear, backlash and manufacture. Spatial linkages: structural analysis; closure equations; screw system algebra; special configurations.

MECH9310
Advanced Vibration Analysis
Staff Contact: Mr R.B. Randall
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3310 or equivalent
Note/s: Excluded MECH4310.
Introduction to experimental vibration analysis using Fast Fourier Transform (FFT) techniques. Typical sources of vibration in machines. Analysis of continuous systems via classical and finite element techniques. Experimental modal analysis. Torsional vibrations, including geared shaft systems.

MECH9311
Fundamentals of Vibration
Staff Contact: A/Prof R.A.J. Ford
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2300, MATH2009 or equivalent
Note/s: Excluded MECH3310

MECH9312
Fundamentals of Noise and Vibration Measurement
Staff Contact: Dr J.M Challen
C3 SS HPW3

MECH9323
Environmental Noise
Staff Contact: Prof K.P. Byrne
C3 SS HPW3
Prerequisite: MECH4321 or equivalent

MECH9324
Building Acoustics
Staff Contact: Prof K.P. Byrne
C3 SS HPW3
Prerequisite: MECH4321 or equivalent
Room acoustics viewed from modal and energy aspects. Absorption and transmission performance of building elements such as carpets, windows and walls. Relationship between laboratory and field performance measurements. Noise problems associated with building services.

MECH9325
Fundamentals of Noise
Staff Contact: Dr J.M. Challen
C3 SS HPW3
Note/s: Excluded MECH4321, MECH9321

MECH9326
Advanced Noise
Staff Contact: Dr J.M. Challen
C3 SS HPW3
Prerequisite: MECH4321 or MECH9321 or MECH9325
Note/s: Excluded MECH4322, MECH9322
Development of the three dimensional acoustic wave equation. Applications of the three dimensional form of the acoustic wave equation in rectangular coordinates, including transmission of plane waves at oblique incidence between media, waves in rectangular ducts, standing waves in enclosures. Applications of the three dimensional wave equation in cylindrical and spherical coordinates. Basic structural-acoustic interaction.

MECH9361
Hydrodynamic Lubrication Theory and Design
Staff Contact: A/Prof E.J. Hahn
C3 SS HPW3
Note/s: Excluded MECH4361.
Types of hydraulic bearings and bearing operation; properties of lubricants; theory of steady state hydrodynamic lubrication; hydrostatic and squeeze film lubrication applied to slider and journal bearings; bearing design with side leakage; thermal balance. Journal bearing dynamics; instability analysis. Elastohydrodynamic lubrication. Bearing materials; friction and wear. Grease lubrication.

MECH9400
Mechanics of Fracture and Fatigue
Staff Contact: Dr K. Zarrabi
C3 SS HPW3
Note/s: Excluded MECH4400.
MECH9410
Finite Element Applications
Staff Contact: A/Prof D.W. Kelly
C3 SS HPW3
Note/s: Excluded MECH4410.

MECH9421
Stress Analysis for Mechanical Engineering Design 1
Staff Contact: Dr H.L. Stark
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3400 or equivalent

Plates, shells: primary, secondary and peak stresses, relations to strength. Pressure vessels. Current design philosophies.

MECH9610
Advanced Fluid Dynamics
Staff Contact: A/Prof E. Leonardi
C3 SS HPW3
Prerequisite: MECH3600 or equivalent
Note/s: Excluded MECH4600, MECH 4610, MECH4710, MECH9710

MECH9620
Computational Fluid Dynamics
Staff Contact: A/Prof J.A. Reizes
C3 HPW3

MECH9710
Numerical Fluid Dynamics and Heat Transfer
Staff Contact: A/Prof J.A. Reizes
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3800 or equivalent
Note/s: Excluded MECH4710

MECH9720
Solar Thermal Energy Design
Staff Contact: Prof G.L. Morrison
C3 SS HPW3
Note/s: Excluded MECH4720 and equivalent.

MECH9730
Two Phase Flow and Heat Transfer
Staff Contact: A/Prof M. Behnia
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3701 or equivalent
Note/s: Excluded MECH4730.

MECH9740
Power Plant Engineering
Staff Contact: A/Prof M. Behnia
C3 SS HPW3
Prerequisite: Assumed knowledge MECH2600 and MECH2700 or equivalent
Note/s: Excluded MECH4740.

MECH9741
Energy Conservation and System Design
Staff Contact: A/Prof J.A. Reizes
C3 SS HPW3

Examination of some existing systems, assessment of their energy losses and their improvement by tuning. Alternative energy sources and their availability, energy utilization and efficiency in various systems. Environmental aspects, assessment of emissions, means of improvement. Economically viable energy technology under present conditions. Expected trends in energy technology in the short and long term. A number of case studies.
MECH9742
Power Production Assessment
Staff Contact: A/Prof M. Behnia
C3 SS HPW3
Prerequisite: Assumed knowledge MECH3600 and MECH3701 or equivalent
Components of hydro, coal and nuclear fuel power station designs. Economics of power production. Operation and maintenance costs. Efficiency and heat balance calculations of thermal power stations. Comparison of electrical energy production costs of different power stations.

MECH9750
Industrial Applications of Heat Transfer
Staff Contact: A/Prof M. Behnia
C3 SS HPW3
Prerequisite: MECH3702 or equivalent

MECH9751
Refrigeration and Air Conditioning 1
Staff Contact: A/Prof E. Leonardi
C3 SS HPW3
Note/s: Excluded MECH4751.

MECH9752
Refrigeration and Air Conditioning 2
Staff Contact: A/Prof E. Leonardi
C3 SS HPW3
Prerequisite: Assumed knowledge MECH9751 or equivalent
Note/s: Candidates wishing to specialize in Refrigeration and Air Conditioning should select this subject.

MECH9753
Refrigeration and Air Conditioning Design 1
Staff Contact: Dr I.L. Madaene-cross
C3 SS HPW3
Prerequisite: Assumed knowledge MECH9730, MECH9751, MECH9752 or equivalent
Design of refrigeration equipment compressors; throttling devices; condensers; evaporators. Cooling towers: evaporative condensers; air conditioning coils. Piping systems. Air ducts. Steam raising and water heating equipment.

MECH9754
Refrigeration and Air Conditioning Design 2
Staff Contact: Dr I.L. Madaene-cross
C3 SS HPW3
Prerequisite: MECH9753 or equivalent
Generators and absorbers for absorption systems. Calculation of transient heating and cooling loads. Air conditioning systems. Load analysis and system capability.

MECH9755
Refrigeration and Air Conditioning Applications
Staff Contact: A/Prof E. Leonardi
C3 SS HPW3
Industrial, commercial and domestic applications of refrigeration and air conditioning. Refrigeration technology. The science and technology of foods. Building design and construction.

MECH9756
Refrigeration and Air Conditioning Experimentation
Staff Contact: A/Prof E. Leonardi
C3 SS HPW3
Prerequisites: MECH9751, MECH9752
Corequisites: MECH9753, MECH9754
Performance testing and system evaluation of multistage R22 brine system, R12 forced draft cooler system and dual duct air conditioning plant. Instrumentation, data acquisition and control of refrigeration plant. Use of calorimeter rooms for testing and rating of equipment. Transient performance characteristics of direct expansion coil and system, under different ambient conditions. Group project involving the designing, building, commissioning, instrumenting and testing of refrigeration and air conditioning equipment.

MECH9757
Ambient Energy Air Conditioning
Staff Contact: Dr I.L. Maclaine-cross
C2 SS HPW2
Prerequisite: Assumed knowledge MECH3701 or equivalent
MECH9761
Internal Combustion Engines 1
Staff Contact: Prof B.E. Milton
C3 SS HPW3

MECH9762
Internal Combustion Engines 2
Staff Contact: Prof B.E. Milton
C3 SS HPW3
Prerequisite: MECH9761 or equivalent

MECH9800
Ordinary Differential Equations In Mechanical Engineering
Staff Contact: A/Prof J.E. Baker
C3 SS HPW3
Solutions and their meaning, integration constants, linearity; special methods of solution; integration factors; variation of parameters; Euler, higher order linear equations; physical origins of ordinary differential equations and linear systems; linearization of engineering problems; stability of engineering systems.

MECH9920
Special Topic in Mechanical Engineering
C3 SS HPW3
MECH9930
Special Topic in Mechanical Engineering
C3 SS HPW3
These syllabi change to allow presentation of a special topic of current interest particularly by visitors with recognized expertise in the topic.

NAVL3400
Ship Structures 1
Staff Contact: Dr M. Chowdhury
F HPW2
Prerequisites: MATH2009, MATS9520, MECH2402
Corequisite: MECH3400

NAVL3600
Ship Hydrostatics
Staff Contact: Mr P.J. Helmore
F L2 T.5
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, MECH1300, MECH1500, PHYS1919
Basic concepts and integration methods. Hydrostatic particulars and approximate formulae. Intact stability, cross curves and righting arm, stability at small angles and free surface effects, the wall-sided formula, flooding and water tight subdivision. Damaged stability. Launching calculations and docking. Representation of hull surfaces for computer applications. Analysis of hull hydrostatics and stability by an integrated computer package.

NAVL3610
Ship Hydrodynamics
Staff Contact: A/Prof L.J. Doctors
F L2 T.5
Prerequisites: MATH2009, MECH2300, MECH2310, MECH2600

NAVL4000
Ship Management Economics
Staff Contact: A/Prof L.J. Doctors
S1 HPW2
Prerequisite: MATH2009
NAVL4100
Principles of Ship Design 2
Staff Contact: A/Prof L.J. Doctors
S1 HPW4 S2 HPW2
Prerequisite: NAVL3100
Corequisite: NAVL4400

NAVL4110
Ship Design Project
Staff Contact: A/Prof L.J. Doctors
S1 T3 S2 T4
Prerequisites: NAVL3100, NAVL3600, NAVL3610
Corequisites: NAVL4000, NAVL4100, NAVL4700
Each student is required to perform the following design tasks and submit the results: 1. Rationale, specifications, weights, inboard profile. 2. Power, capacities, freeboard, trim, stability, stern gear. 3. Sectional area curve, lines drawing, prelim midship section. 4. Hydrostatics, floodable length and stability curves. 5. Powering, propeller, systems-schematic drawing, detailed capacity. 6. Section modulus calculation, bulkhead, midship section, module concept. 7. Final weights, capacity drawing, operational data, and evaluation. 8. Specification.

NAVL4400
Ship Structures 2
Staff Contact: Dr M. Chowdhury
F HPW2
Prerequisite: NAVL3400
Corequisite: MECH3400

NAVL4700
Ship Propulsion and Systems
Staff Contact: Mr P.J. Helmore
F HPW4
Prerequisites: NAVL3600, NAVL3610
The Graduate School of Biomedical Engineering

Head of School
Professor Klaus Schindhelm

Administrative Assistant
Rhonwen Cuningham

The Graduate School of Biomedical Engineering is an interdisciplinary unit which promotes and co-ordinates biomedical engineering studies and research being conducted by various Schools and Departments within the University and its teaching hospitals. Biomedical Engineering is the application of engineering techniques and analysis to problem solving in medicine and the biological sciences. The engineering disciplines embraced within the scope of Biomedical Engineering include: Electrical Engineering, Mechanical Engineering, Computer Engineering and Chemical Engineering. Biomedical Engineering provides a direct input to enhancing the quality and scope of health care through the application of engineering analysis to biological systems and introducing engineering principles to medical and surgical interventions.

The Graduate School of Biomedical Engineering, in conjunction with the School of Mechanical and Manufacturing Engineering and the School of Electrical Engineering, offers concurrent courses in Mechanical Engineering/Biomedical Engineering 3683 and in Electrical Engineering/Biomedical Engineering 3727. The concurrent courses allow the completion of a Bachelor of Engineering and a Master of Biomedical Engineering within a 5 year period.

Formal graduate courses in Biomedical Engineering are offered. These are: the Master of Biomedical Engineering 8660, the Master of Engineering Science in Biomedical Engineering 8665, and the Graduate Diploma in Biomedical Engineering 5445.

Opportunities are provided for graduate research leading to the award of the degrees of Master of Science 2795, Master of Engineering 2675 and Doctor of Philosophy 1710.

Concurrent Degree Programs

The concurrent degree programs are specifically designed for undergraduate students wishing to pursue a career in Biomedical Engineering. The concurrent programs allow students to enter an integrated program which provides both the prerequisite engineering education and the specialist Biomedical Engineering training.

Students are expected to perform at a credit level average or better and without failure in their first three years to be permitted to progress to the Masters component of a concurrent degree program. Students who at the end of Year 3, do not satisfy the requirements for progression to the Masters component of the concurrent degree program may complete the Bachelor of Engineering. At the completion of the Bachelor of Engineering, students may enrol in the Graduate Diploma in Biomedical Engineering with advance standing for biomedical subjects previously completed.

Students may elect at any time to revert to the BE in Mechanical Engineering or BE in Electrical Engineering as appropriate. If, once entering a concurrent degree program, students wish to revert to the normal BE in Mechanical Engineering or BE in Electrical Engineering they will need to satisfy the requirements for the BE as set out in the relevant sections of this handbook. Since the concurrent degree programs introduce subjects additional to those in the BE, the student reverting to the normal BE program will require an additional year to achieve a BE after completing years 3 or 4 of the concurrent degree program.
Professional Recognition

The Institution of Engineers, Australia, has formed the College of Biomedical Engineers which takes its place as one of the five Colleges within the Institution. The formation of the College by the peak professional engineering body in Australia establishes biomedical engineering as a clearly identifiable branch of engineering with its own professional base. Formal accreditation of the concurrent BE/MBiomedE courses is being sought from the Institution of Engineers, Australia.

The Institution of Engineers, Australia, currently recognises the degrees of Bachelor of Engineering in Electrical Engineering and in Mechanical Engineering as meeting the examination requirements for admission to graduate and corporate membership in the appropriate college and the degrees are accorded substantial or complete recognition by overseas engineering institutions.

Undergraduate Study

Course Outlines

3683
Mechanical Engineering/Biomedical Engineering - Full-time Course

Bachelor of Engineering Master of Biomedical Engineering
BE MBiomedE

Course 3683 is a concurrent BE in Mechanical Engineering and Master of Biomedical Engineering. The course outline is given below.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM1000</td>
<td>Profesional Biomedical Studies</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CHEM1807</td>
<td>Chemistry 1ME</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MANF1100</td>
<td>Workshop Technology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MANF1110</td>
<td>Manufacturing Technology</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH1131</td>
<td>Mathematics 1A or</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1141</td>
<td>Higher Mathematics 1A</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MATH1231</td>
<td>Mathematics 1B or</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MATH1241</td>
<td>Higher Mathematics 1B</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MECH1000</td>
<td>Professional Studies 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MECH1100</td>
<td>Mechanical Engineering Design 1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MECH1110</td>
<td>Graphical Analysis and Communication</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH1300</td>
<td>Engineering Mechanics 1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH1400</td>
<td>Mechanics of Solids 1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH1500</td>
<td>Computing 1M</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS1919</td>
<td>Physics 1 (Mech)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT2111</td>
<td>Introductory Anatomy</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>CIVL0696</td>
<td>Mechanical Properties of Materials</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>MATH2100</td>
<td>Vector Calculus</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATH2120</td>
<td>Mathematical Methods for Differential Equations</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH2501</td>
<td>Linear Algebra</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2510</td>
<td>Real Analysis</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>MATH2520</td>
<td>Complex Analysis</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>MATS9520</td>
<td>Eng. Materials</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH2300</td>
<td>Eng. Mechanics 2A</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH2401</td>
<td>Mechanics of Solids 2A</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH2402</td>
<td>Mechanics of Solids 2B</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>PHPH2112</td>
<td>Physiology 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>One 56 hr or two 28 hr General Education subject/s (Cat. A)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM2010</td>
<td>Biomedical Engineering Practice</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>BIOM9410</td>
<td>Regulatory Requirements of Biomedical Technology</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9561</td>
<td>Mechanical Properties of Biomaterials</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ELEC0802</td>
<td>Electrical Power Engineering</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ELEC0805</td>
<td>Electronics for Measurement and Control</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MANF3400</td>
<td>Engineering Economics</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MATH2839</td>
<td>Statistics 3M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MECH2000</td>
<td>Professional Studies 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MECH2100</td>
<td>Mechanical Engineering Design 2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH2310</td>
<td>Engineering Mechanics 2B</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH2600</td>
<td>Fluid Mechanics 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MECH2700</td>
<td>Thermodynamics 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MECH3211</td>
<td>Linear Systems Analysis</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3400</td>
<td>Mechanics of Solids 3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MECH3500</td>
<td>Computing 2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>One 56 hr or two 28 hr General Education subject/s (Cat. B)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Totalling</td>
<td></td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>
Mechanical Engineering Technical Electives

Twelve session hours must be selected in Year 4. It is unlikely that all of the Mechanical Engineering Technical Electives listed below can be offered each year. Those to be made available are decided on the basis of demand and staff availability. Students are advised in September of each year which Technical Electives will be offered in the following year.

<table>
<thead>
<tr>
<th>Year 4</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9332</td>
<td>Biocompatibility</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9420</td>
<td>Clinical Laboratory Science</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MECH3000</td>
<td>Professional Studies 3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH3100</td>
<td>Mechanical Engineering Design 3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MECH3200</td>
<td>Engineering Experimentation</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>MECH3212</td>
<td>Principles of Control of Mechanical Systems</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH3300</td>
<td>Engineering Mechanics 3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3310</td>
<td>Vibration Analysis</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH3600</td>
<td>Fluid Mechanics 2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3701</td>
<td>Thermodynamics 2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MECH3702</td>
<td>Heat Transfer</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH3800</td>
<td>Numerical Methods</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MECH4500</td>
<td>Computing 3M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Engineering Technical Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering Elective</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>24.5</td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM5000</td>
<td>Thesis A</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>BIOM9006</td>
<td>Thesis B</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>BIOM9450</td>
<td>Biomedical Practical Measurement</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9541</td>
<td>Mechanics of the Human Body</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9551</td>
<td>Biomechanics of Physical Rehabilitation</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MANF4400</td>
<td>Engineering Management</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MANF4412</td>
<td>Total Quality Management</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4001</td>
<td>Professional Studies 4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4002</td>
<td>The Engineer in Society</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MECH4090</td>
<td>Industrial Training</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Biomedical Engineering Electives</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Totalling</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Biomedical Engineering Electives

In Years 4 and 5 electives from the list below need to be selected. All Biomedical Engineering Electives are at the graduate level.

<table>
<thead>
<tr>
<th>Year 4</th>
<th>HPW</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9027</td>
<td>Medical Imaging **</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9028</td>
<td>Radiation Physics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9060</td>
<td>Biomed. Systems Analysis</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9311</td>
<td>Mass Transfer in Medicine</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9321</td>
<td>Physiol. Fluid Mechanics</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9460</td>
<td>Clinical Information Sys.</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9621</td>
<td>Biological Signal Analysis</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BIOM9701</td>
<td>Dynamics of the Cardiovascular System</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>SAFE9224</td>
<td>Principles of Ergonomics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>PATH9603</td>
<td>Principles of Disease Processes</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisite required: BIOM9028 Radiation Physics.
3727

Electrical Engineering/Biomedical Engineering
- Full-time Course

Bachelor of Engineering Master of Biomedical Engineering
BE MBiomedE

Course 3727 is a concurrent BE in Electrical Engineering
and Master of Biomedical Engineering. The course outline
is given below.

<table>
<thead>
<tr>
<th>Year 4 (cont.)</th>
<th>HPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9028</td>
<td>S1</td>
</tr>
<tr>
<td>ELEC4010</td>
<td>3</td>
</tr>
<tr>
<td>ELEC4011</td>
<td>4</td>
</tr>
<tr>
<td>ELEC4483</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4432</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4903</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

Technical Electives for Course 3727

In Years 4 and 5 electives totalling 24 session hours need
to be selected from the list below. An attempt should be
made to choose 12 session hours from both the Biomedical
and Electrical Engineering Electives. All Biomedical
Engineering Electives are at the graduate level.

<table>
<thead>
<tr>
<th>Biomedical Engineering Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9311</td>
</tr>
<tr>
<td>BIOM9701</td>
</tr>
<tr>
<td>BIOM9332</td>
</tr>
<tr>
<td>BIOM9450</td>
</tr>
<tr>
<td>BIOM9510</td>
</tr>
<tr>
<td>ELEC9412</td>
</tr>
<tr>
<td>PATH9003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical Engineering Technical Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC9342</td>
</tr>
<tr>
<td>ELEC9370</td>
</tr>
<tr>
<td>ELEC9405</td>
</tr>
<tr>
<td>ELEC9407</td>
</tr>
<tr>
<td>ELEC9416</td>
</tr>
<tr>
<td>MATH3141</td>
</tr>
</tbody>
</table>

Because of timetable clashes not all combinations of subjects are possible.

The program selected by each student must be approved
by the Head of School. Not all electives are offered each
session. Students are advised each year of the timetable of
available electives. Substitution is not permitted if it unduly
restricts the range of subjects studied to only one area.
Graduate Study

Formal graduate courses in Biomedical Engineering are offered. These are: the Master of Biomedical Engineering 8660, the Master of Engineering Science in Biomedical Engineering 8665, and the Graduate Diploma in Biomedical Engineering 5445.

Opportunities are provided for graduate research leading to the award of the degrees of Master of Science 2795, Master of Engineering 2675 and Doctor of Philosophy 1710.

Course Work Programs

8660
Master of Biomedical Engineering
MBiomedE

The MBiomedE degree course is designed to cater for students with either a medical/biological science or engineering/physical science background. Initially, students with a medical/biological science background study basic engineering subjects such as mathematics, mechanics, electronics and computing, whilst students with a non-medical background take courses in physiology, anatomy, pathology and biochemistry. Later, both groups choose electives from biomechanics, biophysics, biomaterials, medical instrumentation and mass transfer in medicine, as well as undertaking a research project.

This degree is primarily obtained through course work but includes a project report conducted in either a hospital or other institution. The course of study offers scope for original research into the application of engineering principles and technology to medical problems. Candidates must complete a program totalling 60 credits, 40 of which must be for the study of subjects at graduate level.

Period of candidature: The normal period is four academic sessions (full-time) or six academic sessions (part-time) from the date of enrolment. The maximum period of candidature is eight academic sessions (full-time) and ten academic sessions (part-time). In special cases extensions may be granted. A candidate is not permitted to continue in the course if the credit value of the subjects failed totals more than twelve.

Strand A subjects are directed to candidates with an engineering/physical sciences background and Strand B to those with a medical/biological sciences background. Selection of subjects is not limited to those listed below. Relevant subjects from other areas may be undertaken subject to the approval of the Head of School. The 18 credit Project Report is compulsory and may be undertaken concurrently with other subjects. A research project is compulsory and may be undertaken concurrently with other subjects. An 18 credit Project Report is the normal requirement.

Session 1

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Notes</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand A Subjects, Engineering/Physical Sciences Candidates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAT2111</td>
<td>Introductory Anatomy</td>
<td>HR</td>
</tr>
<tr>
<td>PHPH2111</td>
<td>Physiology 1 (1 full year)</td>
<td>C</td>
</tr>
<tr>
<td>Strand B Subjects, Medical/Life Sciences Candidates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM9040</td>
<td>Analogue Electronics for Biomedical Engineers</td>
<td></td>
</tr>
<tr>
<td>BIOM9101</td>
<td>Mathematical Modelling for Biomedical Engineers</td>
<td>C</td>
</tr>
<tr>
<td>BIOM9501</td>
<td>Computing for Biomedical Engineers</td>
<td>C</td>
</tr>
<tr>
<td>General Subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM9028</td>
<td>Radiation Physics</td>
<td></td>
</tr>
<tr>
<td>BIOM9060</td>
<td>Biomedical Systems Analysis</td>
<td></td>
</tr>
<tr>
<td>BIOM9510</td>
<td>Introductory Biomechanics</td>
<td></td>
</tr>
<tr>
<td>BIOM9551</td>
<td>Biomechanics of Physical Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>BIOM9601</td>
<td>Biomedical Applications of Microcomputers (1)</td>
<td></td>
</tr>
<tr>
<td>BIOM9621</td>
<td>Biological Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>BIOM9701</td>
<td>Dynamics of the Cardiovascular System</td>
<td></td>
</tr>
<tr>
<td>ELEC9411</td>
<td>Introductory Physiology for Engineers</td>
<td>P</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM9010</td>
<td>Biomedical Engineering Practice</td>
<td>C</td>
</tr>
<tr>
<td>BIOM9012</td>
<td>Biomedical Statistics</td>
<td></td>
</tr>
<tr>
<td>BIOM9018</td>
<td>Project Report</td>
<td>C</td>
</tr>
<tr>
<td>BIOM9027</td>
<td>Medical Imaging</td>
<td></td>
</tr>
<tr>
<td>BIOM9050</td>
<td>Microprocessors and Circuit Design for Biomedical Engineers</td>
<td></td>
</tr>
<tr>
<td>BIOM9311</td>
<td>Mass Transfer in Medicine</td>
<td></td>
</tr>
<tr>
<td>BIOM9321</td>
<td>Physiological Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>BIOM9332</td>
<td>Biocompatibility</td>
<td></td>
</tr>
<tr>
<td>BIOM9541</td>
<td>Mechanics of the Human Body</td>
<td></td>
</tr>
<tr>
<td>BIOM9561</td>
<td>Mechanical Properties of Biomaterials</td>
<td></td>
</tr>
<tr>
<td>BIOM9602</td>
<td>Biomedical Applications of Microcomputers 2</td>
<td></td>
</tr>
<tr>
<td>BIOM9603</td>
<td>Image and Flow Cytometry</td>
<td></td>
</tr>
<tr>
<td>BIOM9612</td>
<td>Medical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>SAFE9533</td>
<td>Electrical Safety</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
C Compulsory
HR Highly recommended
P Part-time students only
(1) For students with no mechanics background
Master of Engineering Science

Candidates are required to complete a course totalling at least 30 credits composed of graduate level subjects, including a 12 credit project. Entry is for Engineering graduates only. Individual study programs, generally selected from the subjects listed below, are to be approved by the Head of School or his nominee. Although appropriate graduate level subjects may be taken from other schools within the University a minimum of half the coursework credits (i.e. 9 credits) are to be selected from subjects offered by the Graduate School of Biomedical Engineering (BIOM9xx). The degree will normally comprise one year (two sessions) of full-time study or two years (4 sessions) of part-time study.

Session 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Notes</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9028</td>
<td>Radiation Physics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOM9060</td>
<td>Biomedical Systems Analysis</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOM9510</td>
<td>Introductory Biomechanics</td>
<td>(1)</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9551</td>
<td>Biomechanics of Physical Rehabilitation</td>
<td>(2)</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9601</td>
<td>Biomedical Applications of Microcomputers 1</td>
<td>(3)</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9621</td>
<td>Biological Signal Analysis</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOM9701</td>
<td>Dynamics of the Cardiovascular System</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ELEC9411</td>
<td>Introductory Physiology for Engineers</td>
<td>(4)</td>
<td>3</td>
</tr>
</tbody>
</table>

Session 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Notes</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM9010</td>
<td>Biomedical Engineering Practice (4)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BIOM9012</td>
<td>Biomedical Statistics</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIOM9027</td>
<td>Medical Imaging</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIOM9311</td>
<td>Mass Transfer in Medicine</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIOM9321</td>
<td>Physiological Fluid Mechanics</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIOM9332</td>
<td>Biocompatibility</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOM9541</td>
<td>Mechanics of the Human Body</td>
<td>(2)</td>
<td>4</td>
</tr>
<tr>
<td>BIOM9561</td>
<td>Mechanical Properties of Biomaterials</td>
<td>(2)</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9602</td>
<td>Biomedical Applications of Microcomputers II</td>
<td>(6)</td>
<td>3</td>
</tr>
<tr>
<td>BIOM9603</td>
<td>Static and Flow Cytometry</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOM9612</td>
<td>Medical Instrumentation</td>
<td>(7)</td>
<td>5</td>
</tr>
<tr>
<td>SAFE9533</td>
<td>Electrical Safety</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOM9912</td>
<td>Project Report</td>
<td>(7)(8)</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

(1) For students with no mechanics background
(2) These three electives vary according to session offered. BIOM9510, or equivalent, is prerequisite for BIOM9541, and BIOM9541 is prerequisite for BIOM9551.
(3) Prerequisite BIOM9050 or equivalent. Class size restricted.
(4) Highly Recommended for 8665 MEngSc students
(5) Assumed knowledge/prerequisite BIOM9028
(6) Subject follows on from BIOM9601.
(7) Research project may be done concurrently with course work during the other sessions.
(8) Compulsory

5445
Graduate Diploma in Biomedical Engineering GradDip

Details of the recommended programs of study may be obtained from the Head of the Graduate School of Biomedical Engineering. Subjects from the Masters programs can be taken in the Graduate Diploma program subject to the approval of the the course coordinators.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order. Descriptions of subjects being offered in Mechanical or Electrical Engineering appear in the chapters associated with the School of Mechanical and Manufacturing Engineering or the School of Electrical Engineering. For academic advice regarding a particular subject, consult with the contact person for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

BIOM1000
Professional Biomedical Studies
Staff Contact: Prof K. Schindhelm
SS L1
Provides an introduction to biomedical engineering; examines the range of professional engineering activities; highlights ethical considerations associated with clinical applications; and develops skill in oral, written and graphical communication.

BIOM2010
Biomedical Engineering Practice
Staff Contact: Prof K. Schindhelm
S2 L2
Introduction to clinical situations in hospitals. Presentation of guest lectures by eminent people working in this field. Lecture topics include inter alia cardiology, neurology, orthopaedics and rehabilitation. Visits to various biomedical engineering units.

BIOM5000
Thesis A
Staff Contact: Prof K. Schindhelm
F HPW6
For BE(Mech)/MBiomedE students only. To be taken in the year of completion the BE(Mech)/MBiomedE degree course.

BIOM5910
Thesis A
Staff Contact: Prof K. Schindhelm
S2 HPW6
For BE(Elec)/MBiomedE students only.

BIOM5911
Thesis B
Staff Contact: Prof K. Schindhelm
S1 HPW12
For BE(Elec)/MBiomedE students only.

BIOM9006
Thesis B
Staff Contact: Prof K. Schindhelm
S2 HPW6
For BE(Mech)/MBiomedE students only. To be taken in the year of completion the BE(Mech)/MBiomedE degree course. A thesis is to be submitted at the end of the 14th week of the final session which reports the work of both BIOM5000 Thesis A and BIOM5001 Thesis B.

BIOM9010
Biomedical Engineering Practice
Staff Contact: Prof K. Schindhelm
C2 S2 L2
Note/s: Compulsory for all students
Introduction to clinical situations in hospitals. Presentation of guest lectures by eminent people working in this field. Lecture topics include cardiology, neurology, orthopaedics, rehabilitation, etc. Visits to various biomedical engineering units.

BIOM9012
Biomedical Statistics
Staff Contact: Dr R. Odell
C4 S2 L3 T1

BIOM9018
Project Report
Staff Contact: Prof K. Schindhelm
C18
Note/s: Compulsory for all MBiomedE students.
Projects are undertaken at the Graduate School or other relevant institutions towards the end of the course. Topics are chosen in collaboration with a supervisor from the Graduate School.

BIOM9027
Medical Imaging
Staff Contact: A/Prof C.D. Bertram
C4 S2 L2 T2
Prerequisites: Assumed knowledge/prerequisites BIOM9028, BIOM9010
Fundamentals of producing a medical image, image collection techniques, image reconstruction algorithms. Detailed examination of four main areas of medical imaging: Nuclear Medicine, Ultrasound, Diagnostic Radiology, Magnetic Resonance Imaging. Clinical application of each area.

BIOM9028
Radiation Physics
Staff Contact: A/Prof B.K. Milthorpe
C3 S1 L2 T1
Prerequisites: Mathematics at University year 1 level required.
BIOM9040
Analogue Electronics for Biomedical Engineers
\textit{Staff Contact: Dr B.K. Milthorpe}
C4 S1 L2 T2
\textbf{Note/s:} For students with no electronics background.
Basic theory of passive components, simple network analysis, small signal amplifiers, feedback and oscillators, operational amplifiers and their uses, analogue integrated circuits. Safety requirements for medical instruments, circuit diagram analysis and component identification. Laboratory work involves both design and construction of analogue circuits.

BIOM9050
Microprocessors and Circuit Design for Biomedical Engineers
\textit{Staff Contact: A/Prof B.K. Milthorpe}
C4 S2 L2 T2
\textbf{Prerequisite:} BIOM901, BIOM9040 or equivalents.
\textbf{Note/s:} Students should NOT have a digital electronics background.

BIOM9060
Biomedical Systems Analysis
\textit{Staff Contact: Dr R. Odell}
C3 S1 L2 T1
\textbf{Corequisite:} BIOM9101 at least
\textbf{Note/s:} Mathematics background required.

Analysis of compartmental systems in biology and medicine. Applications include pharmacology, physiology and nuclear medicine. Topics include the mathematics of linear compartmental systems, non-linear systems, tracer methods, parameter estimation by fitting models to date, the optimum design of experiments, and methods of control.

BIOM9010
Mathematical Modelling for Biomedical Engineers
\textit{Staff Contact: Dr R. Odell}
C4 S1 L3 T1
\textbf{Note/s:} Compulsory for Strand B students. This subject is also for students with 1 year university maths or less. Calculus Bridging Course is recommended for those with less.

BIOM9311
Mass Transfer in Medicine
\textit{Staff Contact: Dr R. Odell}
C4 S2 L2 T2

BIOM9321
Physiological Fluid Mechanics
\textit{Staff Contact: A/Prof C.D. Bertram}
C4 S2 L2 T2
Fundamentals of biological fluid flow by way of the governing equations. Kinematics and dynamics, viscous and inertial flow, boundary layers, separation, physiological flows (cardiac, vascular, pulmonary, urinary, etc.) and flow in artificial organs.

BIOM9332
Biocompatibility
\textit{Staff Contact: Prof. K. Schindhelm}
C3 S2 L2 T1
Interaction of biological fluids and cells with foreign surfaces, in vitro tests to assess biocompatibility and thrombogenicity, current status of biocompatible materials as applied to extracorporeal systems, surgical implants and prosthetic devices.

BIOM9410
Regulatory Requirements of Biomedical Technology.
\textit{Staff Contact: Prof K. Schindhelm}
S2 L2 T1
The regulatory requirements of medical devices in Australia, Japan, North America and Europe will be reviewed. Data collation and documentation methods are examined, case studies of medical device registration will be presented.

BIOM9420
Clinical Laboratory Science
\textit{Staff Contact: A/Prof B. K. Milthorpe}
S1 L2 T1
The technologies, tests and operation of a variety of clinical laboratories (biochemistry, haematology, immunology, histology). Engineering solutions to the automation of chemical and biochemical assays, design and development of instrumentation, limitations of automated systems. Data recording, tracking and validation. Routes to innovation in a clinical laboratory.

BIOM9430
Electromedical Standards
\textit{Staff Contact: Dr A. P. Avolio}
S2 L2 T1

BIOM9440
Biomedical Practical Measurement
\textit{Staff Contact: Dr N. Lovell}
S1 L2 T2
Hands-on practice in the use and testing of medical transducers and electromedical equipment and common use in hospitals and research laboratories to make measurements of biomedical variables of clinical significance.
The physical properties of materials having significance to the application of biomechanics principles to the areas of degradation and corrosion.

Bone; metals; polymers and ceramics. The effects of biomedical engineering; human tissues; skin; soft tissues; external prostheses and orthoses. Design of rehabilitation equipment, design of internal and performance testing and assessment, physical therapy, C3SSL2T1.

The principles of the mechanics of solid bodies, force systems, kinematics and kinetics of rigid bodies, stress-strain relationships, stress analysis of simple elements application to musculoskeletal system.

The physical properties of materials having significance to biomedical engineering; human tissues; skin; soft tissues; bone; metals; polymers and ceramics. The effects of degradation and corrosion.
BIOM9701
Dynamics of the Cardiovascular System
Staff Contact: A/Prof C.D. Bertram
C3 S1 L2 T1
Note/s: Some mathematics background desirable.
Structure of the heart; organization of the mammalian vasculature; mechanical, electrical and metabolic aspects of cardiac pumping; the solid and fluid mechanics of blood vessels; rheology of blood.

BIOM9812
Thesis C
Staff Contact: Prof K. Schindhelm
S2 HPW9

For BE(Elec)/MBiomedE students only. This comprises the third session of the thesis component for the BE(Elec)/MBiomedE degree course. Each student is required to submit a final thesis on their overall project (BIOM5910 Thesis A, BIOM5911 Thesis B and BIOM9912 Thesis C) by the Tuesday of the fourteenth week of the session.

BIOM9912
Project Report
C12
Note/s: Compulsory for MEngSc students.
Projects are undertaken at the Graduate School or other relevant institutions towards the end of the course. Topics are chosen in collaboration with a supervisor from the Graduate School.
The Graduate School in the Faculty of Engineering is a special unit set up to take study program initiatives on a non-subject oriented basis. The courses that run under its auspices are those that cannot properly be positioned within a particular School.

The two courses currently offered by the School through the MBT Program are the Master of Business and Technology and the Graduate Diploma in Industrial Management. Although the MBT Program is a joint initiative of the Faculties of Applied Science and Engineering, candidates enrol through the Faculty of Engineering.

These courses aim to provide professional engineers and other technical professionals with advanced technical management training. Principal amongst the aims and objectives of the MBT Program is a commitment to developing and enhancing links with industry and in so doing improve the quality and relevance of tertiary education and research services to the private and public sectors.

The skills and knowledge developed are directly related to candidates' roles within their organizations. It is, in effect, learning through working-organised study with the opportunity to draw on examples from leading experts. The program should become an integral component of training strategies used by organizations for preparing their professional technologists and other staff for middle management. It will ultimately be used to prepare outstanding personnel for the challenges of functional and general management. In addition to the traditional management training route of the MBA employers have highlighted the need for managers capable of integrating the technical, commercial and managerial skills appropriate to their businesses.

The MBT Program is strongly aligned to the open learning principles used in the Graduate Management Qualification (GMQ) developed by the Australian Graduate School of Management (AGSM) in order to maintain the University's unique standard of excellence in the professional development of managers.

Subjects from the Industrial Management Qualification (IMQ), the first in the series of articulated courses of the MBT Program, complement those of the GMQ so that it is possible to use subjects from both to qualify for the Master's award. Candidates successfully completing four MBT subjects will have the option of either being awarded an IMQ or proceeding to the second level, the Graduate Diploma in Industrial Management course. Those successfully completing the requirements for the Graduate Diploma may be eligible to transfer to the Master of Business and Technology award course subject to approval by the Head, Graduate School of Engineering. In each case candidates electing to continue to the higher award will normally be required to pass at credit level assessment tasks already undertaken, and may be granted advanced standing in subjects not already taken for an award. It is anticipated that a candidate may require a minimum of three years to complete all three levels of the MBT Program.

However, the time taken will depend upon a candidate's starting qualifications and attainment in the program. Special arrangements can be made to vary the normal route of progression subject to the approval of the Head of the Graduate School of Engineering. In order to fulfill the aims of the program candidates are normally expected to already have substantial industry experience. The subjects in the Program are full-fee paying.
Course Outlines

8616
Master of Business and Technology
MBT

The course can normally be completed in a minimum of six sessions and must be completed within ten sessions. To qualify for the Master of Business and Technology (MBT), a candidate must successfully complete a minimum of 30 credits. A candidate may do a project equivalent to 6, 9, or 12 credits and the balance may be taken from the following subjects:

Subjects
GSOE9101 Project Management 3
GSOE9102 Management of Manufacturing Systems 6
GSOE9103 Environmental Management 3
GSOE9104 Management of Innovation and Technological Change 3
GSOE9105 Risk Management 3
GSOE9106 Information Systems Management 3
GSOE9107 Maintenance Management 3
GSOE9109 Energy Management 3
GSOE9110 Management of Human Resources 3
GSOE9111 Organizations for Total Quality Management 3

or other subjects as may be approved by the Head of School.

Courses of study leading to the award of a Master of Business and Technology provide technical graduates with opportunities to extend their career paths into management. A candidate in appropriate cases may be granted advanced standing for similar work already completed but not used for another award, and may be permitted to count subjects from other courses up to a limit not exceeding 1/3 of the MBT Program. Each study subject is based on open learning principles and a 3 credit rating is expected to involve the candidate in a total work load equivalent to some 9 hours per week of study for a 14 week session.

5457
Graduate Diploma in Industrial Management
GradDiplng/Mgt

Candidates must complete a minimum program totalling 24 credits taken from MBT subjects or such other subjects as may be approved by the Head of School. Those successfully completing all 24 credits may elect to graduate with the Graduate Diploma in Industrial Management or if they wish to proceed to the Masters, contact the Head of School.

The Graduate Diploma in Industrial Management is offered only as a self-guided course. It can normally be completed in a minimum of four academic sessions. The maximum period of candidature is six academic sessions. In special circumstances extensions may be granted.

Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For further details and academic advice regarding the following subjects consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter 'Handbook Guide', appearing earlier in this book.

GSOE9101
Project Management
Co-ordinator: Prof David Carmichael
C3

Project Management involves the overall planning, control and co-ordination of a project. It is the process by which the responsibility for all phases is combined within one multi-disciplinary function.

This subject introduces you to the project management skills needed during the lifetime of a project by working through a chronological model.

GSOE9102
Management of Manufacturing Systems
Co-ordinator: A/Prof Roger Kerr
C6

Presents an integrated and coherent account of new production management philosophies to give you a sound basis in the modern principles and techniques of the manufacturing industry.

There is strong emphasis on strategic perspectives of manufacturing, the relationship between manufacturing and business strategies, and the implications of a given manufacturing strategy for detailed manufacturing management decisions, plans, policies and performance measures.

GSOE9103
Environmental Management
Co-ordinator: Prof Tony Fane
C3

Gives you an overview of the range of environment issues facing our community. By understanding the big picture you will be able to make sound economic decisions without losing your commitment to a sustainable environment.

The more specific issues and control strategies discussed will give you new insights into environmental control techniques and methods for handling environmental problems, ranging from legal aspects to quantitative risk assessment.

GSOE9104
Management of Innovation and Technological Change
Co-ordinator: Dr James Cariopio
C3

The world in which we live and the organizations in which we work are now best viewed as systems in which everything, everywhere, truly affects everything else. This subject provides you with the opportunity of learning some new tools and some new ways of thinking that are better suited to addressing the complex problems and opportunities inherent in our organizations today.
GSOE9105
Risk Management
Co-ordinator: Prof Jean Cross
C3
Enables you to identify, predict and manage the risks involved in engineering and technology projects through risk analysis and quantification and the use of probability and statistics. The effect of risk on financial, technical and legal outcomes of projects is examined. Also covered are risk management techniques, including: decision analysis, sensitivity analysis, forecasting and other quantitative methods, as well as insurance and occupational health and safety aspects.

GSOE9106
Information Systems Management
Co-ordinator: Mr Geoffrey Dick
C3
Addresses the need for information management, covering: Organizations and implementation of engineering and technological projects; uses and abuses of information technology; traditional and future ways of acquiring, generating, preparing, organising and disseminating information; analysis, design implementation (software and hardware).

GSOE9107
Maintenance Management
Co-ordinator: Dr Robin Platfoot
C3
Covers the following topics: maintenance policies and strategies; cost and productivity; equipment failure and reliability; repair and damage control; inspection and preventive maintenance programs; monitoring and measurement; failure characteristics of plant and equipment; systems engineering approaches; optimum decision making; the introduction of change to the workplace and risk management.

GSOE9109
Energy Management
Co-ordinator: A/Prof Geoffrey D. Sergeant
C3
Gives you an understanding of energy flows in the community, the choices of energy forms available now and possible in the future, and how to manage the selection and utilisation of the various energy forms in industry and commerce.

GSOE9110
Management of Human Resources
Co-ordinator: Prof David Carmichael
C3
Develops your skills and thinking in human resource management, particularly as they apply to engineering and technological situations, including projects. You will be looking at the roles and responsibilities, interrelationships, people skills, the use of people’s time and the personnel management function. An important aspect is the recognition of people as the basic unit of engineering productivity, which also involves taking into account the structure and function of organizations, interpersonal skills, conflict management, motivation and related issues.

GSOE9111
Organizations for Total Quality Management
Co-ordinator: A/Prof Peter Gibson
C3
Examines the central role that a commitment to quality can play in improving the productivity and competitive position of an Organizations. The key issues and techniques of quality management, and the skills needed to implement and consolidate TQM improvements, are investigated.
Centres in the Faculty of Engineering

The University has established Centres to encourage research and teaching in areas not readily covered by the established programs in Schools and Faculties. Most Centres have concentrated on multidisciplinary fields and have focussed on new initiatives in the expansion of teaching, research and professional services in specialized areas. The majority of Centres are formed within a School or Faculty or groups thereof although some operate as autonomous units.

The Faculty of Engineering has eight Centres either located within relevant Schools or in association with other Faculties.

Centre for Advanced Numerical Computation in Engineering and Science
Centre for Manufacturing and Automation
Centre for Photovoltaic Devices and Systems
Centre for Postgraduate Studies in Civil Engineering
Centre for Remote Sensing and Geographic Information Systems
Centre for Wastewater Treatment
Munro Centre for Civil and Environmental Engineering
UNSW Groundwater Centre

The Faculty is also actively involved in seven major Co-operative Research Centres. They are:

CRC for Waste Management and Pollution Control
CRC for Aerospace Structures
Australian Maritime Engineering CRC
CRC for Eye Research and Technology
CRC for Intelligent Manufacturing, Systems and Technologies
Australian Phototonics CRC
CRC for Cardiac Technology

Centre for Advanced Numerical Computation in Engineering and Science

Director:
Professor C.A.J.Fletcher

Senior Administrative Officer
Mr G.J. Harris

The Centre for Advanced Numerical Computation in Engineering and Science (CANCES) is a specialist research centre and is a joint initiative of the Faculties of Engineering and Science to provide a focus for the very active UNSW community of computational engineers and scientists exploiting state-of-the-art workstation clusters, vector and parallel supercomputers. The Centre contributes to graduate training through coursework and research programs, carries out both fundamental and applied research through developing and using computer codes, provides short courses for industry-based engineers and scientists and organizes conferences and workshops on the latest computational techniques. The Centre has three areas of special emphasis: a) Industrial Computational Fluids and Heat Transfer, b) Environmental Modelling, c) Finite Element Structural Analysis.

The Centre has its own subject identifier (ANCE). In addition to the majors the Centre offers in Civil Engineering and Mechanical Engineering, it offers a Graduate Diploma in Computational Science and a Master of Computational Science. Further information on course structure and subject descriptions can be found in the Faculty of Science Handbook of from the CANCES Office.

It is anticipated that a Master of Engineering Science (Computational Engineering) program will be available in 1995. Further information can be obtained from the CANCES Office.
Subject Descriptions

Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

ANCE8001
Computational Mathematics
Staff Contact: CANCES
C3 S1 HPW3
Discretisation, linear algebra, ODE and PDE solvers, appropriate for contemporary computational engineering and scientific applications.

ANCE8002
Supercomputing Techniques
Staff Contact: CANCES
C3 S1 HPW3
For understanding and efficiently using vector and parallel supercomputers for contemporary computational engineering and scientific applications.

ANCE8101
Graphical Interfaces and Scientific Visualisation Techniques
Staff Contact: CANCES
C3 SS HPW3
Case study usage of typical graphics systems and packages. Introduction to advanced data manipulation and presentation: videos, physical process evolution. Usage for error assessment. Relationship to post-processing.

ANCE8102
Mesh Generation
Staff Contact: CANCES
C3 SS HPW3
Algebraic and PDE grid generation techniques for structured and unstructured grids. Exposure to techniques used in commercial packages, such as PATRAN. Relationship to pre-processing. Relationship to solution accuracy and error control.

ANCE8105
Computational Techniques for Fluid Dynamics
Staff Contact: CANCES
C3 SS HPW3
General and specific computational techniques for fluid flow behaviour occurring in industrial, geophysical and chemical processes etc.

Centre for Manufacturing and Automation

Director:
Dr S.S. Leong

The Centre is located within the School of Mechanical and Manufacturing Engineering. Its main purpose is to offer short courses for professionals from industry to upgrade their technological and managerial skills.

Centre for Photovoltaic Devices and Systems

Director:
Professor M. A. Green

The Centre for Photovoltaic Devices and Systems was established in 1991 under the Commonwealth Special Research Centres Scheme. Its function is to carry out research into improved performance, lower cost photovoltaic solar cells and develop a co-ordinated set of activities in the photovoltaic systems area. The Centre is housed in the School of Electrical Engineering.

Centre for Remote Sensing and Geographic Information Systems

Director:
Dr E.G. Masters

The Centre for Remote Sensing and Geographic Information Systems is a joint multidisciplinary enterprise of the Faculties of Applied Science, and Engineering which promotes and co-ordinates remote sensing and GIS studies and research being conducted by various schools within the University. Remote sensing is the science of obtaining information about the earth’s surface (in particular) using electro-magnetic imaging systems mounted on aircraft and space platforms. GIS deals with the development, management and applications of geographically referenced information.

The Centre, in association with schools in the Faculties of Engineering and Applied Science supports graduate programs leading to the award of the degree of Master and Graduate Diploma in addition to supervision for the degree of Doctor of Philosophy. Students from a wide variety of backgrounds can undertake the programs which may include engineering, geography, geology, geomatic engineering, planning, biology and agricultural or environmental studies.

Graduate Programs in Geographic Information Systems

Master of Applied Science in Geographic Information Systems Course 8024

The Masters degree program in Geographic Information Systems is offered in both Geography and Geology within the Faculty of Applied Science. Entry into either discipline depends on the background of the applicant and the orientation of the proposed program. Detailed information on this course is listed under the School of Geography section in this handbook.
The Masters degree program is also offered in the Faculty of Engineering as a Master of Engineering Science Course 8652. This course has a stronger engineering bias.

Graduate Programs in Remote Sensing

The graduate programs in Remote Sensing are offered in both the Faculty of Applied Science and the Faculty of Engineering. Entry into either Faculty depends on the background of the applicant and the orientation of the proposed program.

Programs are available leading to the award of:
Master of Applied Science in Remote Sensing Course 8026
Graduate Diploma in Remote Sensing Course 5026 (Applied Science), 5496 (Engineering)
Detailed information on these courses is listed under the School of Geography and the School of Geology Sections in this handbook.

Entry into either the Faculty of Engineering or the Faculty of Applied Science depends on the background of the applicant and the orientation of the proposed program. The Schools involved in the Centre are the School of Geography and Geology in the Faculty of Applied Science and the School of Geomatic Engineering in the Faculty of Engineering.

Centre for Wastewater Treatment

Director:
Professor T.D. Waite

The Centre for Wastewater Treatment was established with a grant provided by the Australian Water Advisory Council. Wastewater treatment is concerned with the application of research to the solution of problems of wastewater and its treatment. The Centre's program comprises grant projects, sponsored research projects, consultancies, education and training elements. As well as supporting research students, the Centre provides professional refresher and other continuing education courses.

UNSW Groundwater Centre

Director:
Dr R.I. Acworth

The UNSW Groundwater Centre was established early in 1987 as a Federal National Centre (Centre for Groundwater Management and Hydrogeology). In 1992 the Centre was reorganized as a joint initiative of the Department of Applied Geology in the Faculty of Applied Science, and the School of Civil Engineering in the Faculty of Engineering, with the general objective of improving and continuing teaching technology and research in groundwater studies.

Information on the Centre's courses is listed under the School of Civil Engineering section in this handbook or the School of Mines, Department of Applied Geology section in the Faculty of Applied Science handbook. The following programs are available.

8021
Groundwater Studies Graduate Course
Master of Applied Science
MAppSc

The Master of Applied Science degree is undertaken through the Department of Applied Geology in the Faculty of Applied Science.

8612 (Internal)
8614 (External)
Waste Management Graduate Course
Master of Engineering Science
MEngSc

The Master of Engineering Science degree is undertaken through the School of Civil Engineering in the Faculty of Engineering.

5459 (Internal)
5498 (External)
Waste Management Graduate Diploma Course
Graduate Diploma
GradDip

The Graduate Diploma is undertaken through the School of Civil Engineering in the Faculty of Engineering.

Munro Centre for Civil and Environmental Engineering

Director:
Associate Professor Brian Shackel

The Munro Centre for Civil and Environmental Engineering was established in the School of Civil Engineering in 1992. Its purpose is to support the School, and to facilitate interaction between the School, the engineering profession, industry and government. The Centre promotes ongoing education in civil and environmental engineering by organizing conferences, courses and seminars.
Descriptions of all subjects are presented in alphanumeric order within organizational units. For academic advice regarding a particular subject consult with the contact for the subject as listed. A guide to abbreviations and prefixes is included in the chapter ‘Handbook Guide’, appearing earlier in this book.

The following subjects are offered by other Faculties at UNSW, and contribute as either part of courses contained in this handbook, or as electives.

ACCT9001
Introduction to Accounting A
Staff Contact: School Office
S1 L1.5
Introduces non-commerce students to the nature, purpose and conceptual foundation of accounting. Information systems including accounting applications. Analysis and use of accounting reports.

ACCT9002
Introduction to Accounting B
Staff Contact: School Office
S2 L1.5
Prerequisite: ACCT9001
Introduces non-commerce students to managerial accounting. Long-range planning, budgeting and responsibility accounting: cost determination, cost control and relevant cost analyses.

ACCT9062
Accounting for Engineers
Staff Contact: School Office
F L1.5
Prerequisites: CHEM1101, CHEM1201, CIVL2505
Problems related to industrial situations, and their relevance in decision-making. Manufacturing and cost accounts, budgeting and budgetary control, cost analysis and control and profit planning.

ANAT2111
Introductory Anatomy
Staff Contact: Dr P. Pandey
F HPW6
Prerequisites: BIOS1011, BIOS1021
Introduction to gross anatomy, based on a study of prosected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genito-urinary and nervous systems. General topographical and surface anatomy.

BIOS1021
Biology B
Staff Contact: Dr M.L. Augee
S2 L2 T4
Prerequisite: BIOS1011 (however, students without this prerequisite may seek the permission of the Co-ordinator of First Year Biology to enrol. Students enrolling in Environmental Engineering will be exempted)

The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes which will include dissection of a toad and a rat.

BIOS3111
Population and Community Ecology
Staff Contact: A/Prof B. Fox
S1 L2 T4
Prerequisite: BIOS1021 and MATH1032 or MATH1231 or MATH1042 or MATH1241 or MATH1021
Factors regulating dynamics of interacting populations, renewable resource management, ecosystem stability, cycles and chaos, simulation modelling in ecology, niche theory, competition, habitat selection, community structure, species diversity, island biogeography, ecological gradients. Succession in following disturbance (fire, mining, or logging). Participation in field work is essential.

CEIC0010
Mass Transfer and Material Balances
Staff Contact: A/Prof M. Brungs
F L1 T1
Prerequisites: CHEM1101, CHEM1201, CIVL2505
Note/s: servicing subject i.e. a subject taught within courses offered by other faculties.

CEIC0020
Fluid/Solid Separation
Staff Contact: A/Prof N. Foster
SS L1.5 T.5
Note/s: servicing subject i.e. a subject taught within courses offered by other faculties.

CEIC0030
Environmental Protection in the Process Industries
Staff Contact: Dr P. Crisp
SS L3 T3
Prerequisites: CEIC0010, INDC3070 INDC4120
Note/s: servicing subject i.e. a subject taught within courses offered by other faculties

Selection of 3 topics from:
Environmental Pollutants
The characteristics of pollutants in air and water. Consequences of pollutants by aqueous, gaseous and solid wastes; case histories. Standards and regulations; legislative aspects. Measurement, analysis and sampling - modern techniques of environmental chemical analysis.

Pollution Control Techniques

Water Pollution Control Engineering

Air Pollution Control

Laboratory for Environmental Analysis
14 hour laboratory unit developing techniques in modern environmental analysis.

Advanced Environmental Protection
This comprises a series of elective strands which build upon the core subject as follows:
1. Advanced treatment methods (water)
2. Advanced treatment methods (air)
3. Hazardous wastes
4. Computer-aided risk assessment
5. Advanced laboratory
6. Occupational Health Laboratory

INDC4120
Chemistry of the Industrial Environment
Staff Contact: Dr P. Crisp
S1 L2 T1
Prerequisites: CHEM1101, CHEM1201

CHEM1002 (Level 1 Subject)
Chemistry 1
Staff Contact: Dr P. Chia
F L3 T3
Prerequisites: HSC Exam Score Range required - 2 unit Mathematics 55-100 or 3 unit Mathematics 1-50 or 4 unit Mathematics 1-100 and 2 unit Chemistry 53-100, or 3 unit Science 90-150, or 4 unit Science 1-50, or 2 unit Physics 53-100
Note/s: CHEM1002 is the normal prerequisite for Level II Chemistry.

CHEM1201 (Level 1 Subject)
Chemistry 1B
Staff Contact: Dr P. Chia
S2 L3 T3
Prerequisites: CHEM1101
Note/s: The two subjects CHEM1101 and CHEM1201, taken sequentially, are equivalent to CHEM1002.

Molecular geometry, hybridization of orbitals. Periodicity of physical and chemical properties of elements and compounds. Organic chemistry, including stereoisomerism.

CHEM1806 (Level 1 Subject)
Chemistry 1EE
Staff Contact: Dr P. Chia
S1 L2 T1
Prerequisites: HSC Exam Score Range Required - 2 unit Mathematics 67-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100, and 2 unit Science (Physics) 53-100, or 2 unit Science (Chemistry) 53-100, or 4 unit Science 1-50, or 3 unit Science 90-150

CHEM1807 (Level 1 Subject)
Chemistry 1ME
Staff Contact: Dr P. Chia
S1 L3 T3
Note/s: Excluded CHEM1101, CHEM1201, CHEM1002. Restricted to Course 3681.

CHEM1808 (Level 1 Subject)
Chemistry 1CE
Staff Contact: Dr P. Chia
S2 L3 T3
Note/s: Excluded CHEM1101, CHEM1201, CHEM1002. Restricted to Course 3730.

CHEM2011 (Level II subject)
Physical Chemistry
Staff Contact: Prof R.F. Howe
S1 or S2 L3 T3
Prerequisites: CHEM1002, MATH1032 or MATH1231 or MATH1042 or MATH1241 or MATH1021

CHEM2031 (Level II subject)
Inorganic Chemistry and Structure
Staff Contact: Dr N. Duffy
S1 or S2 L3 T3
Prerequisites: CHEM1002

CHEM2041 (Level II subject)
Chemical and Spectroscopic Analysis
Staff Contact: Dr G. Moran
S1 or S2 L3 T3
Prerequisites: CHEM1002, MATH1032 or MATH1231 or MATH1042 or MATH1241 or MATH1021

CHEM3311 (Level III subject)
Environmental Chemistry
Staff Contact: Prof R. Howe
S2 L3 T3
Prerequisites: CHEM2011, CHEM2041
Note/s: Availability subject to demand

ECON1103
Microeconomic Principles
Staff Contact: Dr J. Lodewijiks
S1 HPW3
Prerequisite: HSC minimum mark required - Contemporary English 60, or 2 unit English (General) 60, or 2 unit English 53, or 3 unit English 1
Note/s: Excluded ECON1101.
Introduction to economics as a social science, scarcity, resource allocation and opportunity cost. Consumer and producer behaviour as the basis for supply and demand analysis. Introduction to marginal analysis. Applications of supply and demand analysis. Efficiency concepts and market forces.

FUEL0020
Fuels and Energy
Staff Contact: A/Prof G. Sergeant
S2 L3 T1
A servicing subject for students in Electrical Engineering which covers the topics, sources and properties of fuels and energy, energy use patterns, principles of combustion, combustion calculation, the technology of boilers and other fuel plant, thermodynamic cycles, new and emerging energy technologies, including solar, wind and nuclear energy.

FUEL5880
Unit Operations in Wastewater, Sludge and Solid Waste Management
Staff Contact: A/Prof G. Sergeant
C3
Please see subject description for FUEL5881.

FUEL5881
Unit Operations in Wastewater, Sludge and Solid Waste Management
Staff Contact: A/Prof G. Sergeant
C3
Note/s: FUEL5881 is for external students
GEOG1031
Environmental Processes
Staff Contact: Dr I. Prosser
S2 L3 T1
Note: Excluded GEOG1073.

The subject is an introduction to physical geography outlining the processes and history of physical and biological components of the environment. This knowledge is then used to improve our understanding of global environmental problems. Aspects of the environment considered include the Earth's energy balance, atmospheric systems, ecosystems, soils and erosion processes.

GEOG2021
Introduction to Remote Sensing
Staff Contact: Mr A. Evans
S2 L2 T2
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts or equivalent as approved by the Head of School

Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airphoto interpretation techniques relevant to environmental assessment. Introduction to principles of the electromagnetic spectrum, photometry and radiometry. Sensor types, image formation and end products associated with selected satellite programs, including Landsat. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement.

GEOG2032
Geomorphology
Staff Contact: Dr W. Erskine, Dr I. Prosser
S2 L2 T2
Prerequisites: GEOG3051

Drainage basin processes including: weathering, the production of runoff and sediment, sediment tracing, sediment budgets and denudation histories. The processes of river channel change including sediment transport, hydraulics, hydrogeology, hydraulic geometry and channel patterns and floodplain formation. There will be an emphasis on the application of geomorphic principles to land management.

GEOG3011
Pedology
Staff Contact: A/Prof M. Melville
S1 L2 T2
Prerequisites: GEOG1073 and one of CHEM1101 or CHEM1401 or both GEOL1101 and GEOL1201 or both BIOS1011 and BIOS1021

Methodology of pedogenic studies and the application of these studies to the understanding of soil and form relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology.

GEOG3021
Biogeography
Staff Contact: A/Prof J. Dodson & A/Prof M. Fox
S2 L2 T2
Prerequisites: GEOG1073 and both BIOS1011 and BIOS1021

GEOG3032
Remote Sensing Applications
Staff Contact: Mr A. Evans
S1 L2 T2
Prerequisite: GEOG2021 or GMAT8711

Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multi-temporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

GEOG3042
Environmental Impact Assessment
Staff Contact: Prof B. Garner & Dr W. Erskine
S2 L2 T2
Prerequisites: GEOG1031 or GEOG1073 or by permission from Head of School

Rationale and basic objectives; history and legislative framework: standardized types of environmental impact assessment EIA, including matrix approach, adopted methods of EIA in Australia. Techniques of impact evaluation in terms of socio-economic criteria. Environmental decision making and planning under conditions of uncertainty. Case studies exemplifying procedures, techniques and issues. Trends, changes and possible future developments in EIA. Practical exercises representing components of typical EIAs.

GEOG3051
Soils and Landforms
Staff Contact: Drs W. Erskine, I. Prosser
S1 L2 T2
Prerequisite: GEOG1031 or GEOG1073

An introduction to soil classification schemes with particular emphasis on the soils and landforms of flood-plains and the Riverine Plain, NSW. Long term development of landscapes with emphasis on the evolution of mountain ranges. Arid zone and coastal landforms emphasising current processes and Quaternary history.
GEOG3062
Environmental Change
Staff Contact: A/Prof J. Dodson
S1 L2 T2
Prerequisite: Successful completion of a Year 2 Programme in Applied Science, Science, or Arts or equivalent as approved by the Head of School

GEOG3211
Australian Environment and Natural Resources
Staff Contact: A/Prof M. Fox and Dr I. Prosser
S1 L2 T2
Prerequisite: GEOG1051 or GEOG1031

The characteristics of Australia's physical and biotic environment: geology, climate, geomorphology, soils, vegetation and fauna. The problems of exploiting Australia's water and land resources including the degradation of land by erosion, salinization and soil fertility decline; and habitat loss and fragmentation.

GEOG9150
Remote Sensing Applications
Staff Contact: Drs A. Skidmore, Q. Zhou and Mr A. Evans
C3 S1 L1 T2

The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials; multitemporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in the coastal zone. Use of remote sensing in environmental management and in environmental impact assessment.

GEOG9240
Principles of Geographic Information Systems
Staff Contact: Dr Q. Zhou
C3 S1 L1 T3

Study of selected geographic information systems; problems of data capture and display, data storage and manipulation, system design and development; cartographic displays and computer mapping. INFO is used for database management, and ARC-INFO and GIMMS for cartographic manipulation and output.

GEOG9241
Advanced Geographical Information Systems
Staff Contact: Dr A. Skidmore
C3 S2 L1 T2
Prerequisite: GEOG9240

Advanced topics and concepts in GIS research and development. Focus is primarily on vector-based systems. Topics include data models, structures and capture; vector editing and algorithms; errors and data accuracy. Practical exercises based on ARCINFO; INFO is used for database management.

GEOG9280
Application and Management of Geographical Information Systems
Staff Contact: Dr A. Skidmore
C3 S1 L2 T1

The process and issues involved in an organization acquiring, implementing and managing a GIS will be considered using real examples. Applications using GIS in the management of natural resources (forest, park, soil etc), utilities and cadastra at the local, national and global scale will be critically reviewed. The course will involve the practical use of project management tools and the application of GIS to solve a management problem using ARCINFO or MAP. INFO is used for database management.

GEOG9290
Image Analysis in Remote Sensing
Staff Contact: Dr A. Skidmore and Mr A. Evans
C3 S1 L1 T1

Techniques for extracting information from satellite imagery including image enhancement techniques, classification and feature recognition, statistical methods and related procedures. Emphasis is on applications relating to vegetation cover and natural resource management. Practical work will be undertaken using the ERDAS imaging processing software.

GEOL0360
Remote Sensing Applications in Geoscience
Staff Contact: A/Prof G.R. Taylor
C3 S3 L2 T1

The physics of various remote sensing techniques. Consideration of various sources of imagery; Landsat, TM, SPOT, aircraft scanners etc. Spectral properties of rocks, soils and vegetation. Geological applications of visible, infrared, thermal and multi-parameter microwave imagery in resource exploration, tectonic studies, geological hazard recognition and environmental monitoring. Mapping and data integration methodologies.

GEOL5100
Geology for Civil and Environmental Engineers
Staff Contact: Dr P.G. Lennox
S2 L2 T1

Note/s: Fieldwork of up to 2 days is a compulsory part of this subject. Students will incur personal costs.

An introduction to mineralogy, petrology, structural geology, stratigraphy and geomorphology. Weathering of rocks and development of soils. The role of the geologist in civil and environmental engineering.
Structural geology including stereographic projection and fracture analysis as applied to mining operations. Origin and properties of coal, oil, oil shale and natural gas. Principles of hydrogeology including the significance of groundwater in mining operations. Mineralogy of important metallic and non-metallic resources, processes of ore formation. Exploration methods.

Hydrogeology: determination of intrinsic permeability in field and laboratory, tracer tests, finite difference modelling methods applied to groundwater flow, drilling methods for unconsolidate and consolidated deposits, piezometer design and installation, remote sensing methods for contaminated groundwater investigations, sampling methods.

Hydrogeochemistry: Chemical composition of natural and contaminated groundwater, inorganic parameters in groundwaters, chemical types of groundwaters, chemical reactions and processes, chemical evolution and chemical classification of groundwaters, chemical equilibrium, disequilibrium, acid-base chemistry, the carbonate system and pH control, oxidation and reduction.

Weathering reactions and geochemical processes, ion exchange, salt sieving and brine development, dryland salinity, fresh water - saline water interaction, application of stable and radioactive isotopes in groundwater studies, groundwater microbiology, corrosion and incrustation in groundwater bores, practical field and laboratory measurements, monitoring and sampling of contaminants in groundwater, sources and types of contaminants, groundwater quality and environmental standards, contaminant mass transport in groundwater - chemical dispersion, chemical diffusion and retardation, Kd - test, hydrogeochemical modelling, physical and empirical models, modelling of subsurface transport, trace metals in groundwater - speciation and transport, restoration and clean-up.

Managing in a rapidly changing environment. Leadership, decision-making and innovation. Power, legitimacy, and the socialization process. The structure and design of organizations, organization and domination, the evolution of ethical awareness. Intergroup conflict and conflict resolution. Skills of managing: communication, negotiation, coaching and objectives setting. Organizational culture and transformation.

Information as a resource. Effects of information technology on work and the distribution of wealth. Copyright, patents, licences and other systems aimed at ensuring appropriability of economic benefits from information. Market research and the pricing and distribution of information products and services.

Managing People
Staff Contact: Dr A. Donovan
S1 L2 T2
Managing in a rapidly changing environment. Leadership, decision-making and innovation. Power, legitimacy, and the socialization process. The structure and design of organizations, organization and domination, the evolution of ethical awareness. Intergroup conflict and conflict resolution. Skills of managing: communication, negotiation, coaching and objectives setting. Organizational culture and transformation.

Staff Contact: A/Prof C.J. Maguire
S1 HPW2

Information as a resource. Effects of information technology on work and the distribution of wealth. Copyright, patents, licences and other systems aimed at ensuring appropriability of economic benefits from information. Market research and the pricing and distribution of information products and services.

Information Storage and Retrieval Systems
Staff Contact: Mrs C.S. Wilson
S2 HPW3
Automatic indexing; Automatic thesaurus construction and maintenance; Online searching and information retrieval; Database construction and database software evaluation; Advanced information retrieval techniques; systems analysis, design and costing; advanced technologies for information storage and retrieval.

Litigation
Staff Contact: Dr Jill Hunter
C6 F HPW4
Introduces students to issues and problems in three areas: Civil pre-trial procedure: focuses on selected topics largely in the context of Supreme Court - actions parties to an action; pleadings; discovery and exchange of information. Supreme Court Rules are examined to determine the extent to which they facilitate just, accurate and speedy resolution of disputes. Problems of delay and cost are also addressed with particular reference to case-flow management techniques and alternative dispute resolution.

Criminal pre-trial procedure: the law and related issues associated with arrest, warrants, police searches, interrogation and the formulation of pleadings. Comparisons are drawn between the civil and criminal pre-trial processes.

Evidence: a basic understanding of the legal and philosophical principles related to the presentation of evidence in court. A comprehensive examination of the rules of evidence, including those designed to protect the accused at trial; the rule against hearsay evidence; the use of expert evidence; the treatment of unreliable evidence; proof and probability theory and questioning of witnesses in court.

The effect of pretrial procedures on the final outcome at trial highlighted.

Legal System Torts
Staff Contact: Mr Angus Corbett/Ms Prue Vines
C6 F HPW4
The legal significance of the arrival of the British in Australia; the principal institutions of the legal system, particularly the courts, the legislature, and the executive arms of government; the judiciary; the legal profession; their history, roles, interrelationships, operation and techniques; general constitutional principles and institutions; the notion and consequences of federalism; Bill of Rights proposals;
precedent and statutory interpretation, practice and theory; sources of Australian law, including the past and present status of Aboriginal customary law; origins of the common law; classifications within the common law; jurisdiction of Australian courts.

A number of torts, both intentional and unintentional, relating to economic interests as well as personal injury. The primary focus of the course is a thorough and comprehensive introduction to the tort of negligence. There is a detailed discussion of specific issues such as recovery for personal injury, for nervous shock, for pure economic loss as well as affirmative duties of care. In addition there is an introduction to the law relating to limitation periods, vicarious liability, defences to the tort of negligence and the law relating to the assessment of damages. The approach to teaching this material is via extensive discussion of a relatively limited number of leading cases. Students are thus able to build up an understanding of this body of law through their own analysis of case law and statute law.

A second strand of this course is to introduce students to the wide ranging debates about the appropriate role and function of tort law. This requires developing a working knowledge of a feminist and economic analysis of tort law and of the various corrective justice theories of tort. In developing this working knowledge students will be exposed to secondary materials which build upon and refer to the cases and statutes which are included in the course.

LAWS1410 Contracts
Staff Contact: Mr Denis Harley
C6 F HPW4
This course examines the nature of contractual obligations and how parties make and break contracts.
Topics include: how contracts are formed and the necessary elements of a validly constituted contract; express and implied terms of a contract and how such terms are imported into the contract; how courts interpret the terms of a contract; the consequences where a contract is induced by misrepresentation, mistake or unconscionability; exemption clauses; estoppel and contract; contracts which are illegal under statute or contrary to public policy; remedies for breach of contract and the damages payable for such breach.

Students are encouraged to examine the role of contract law from an historical and contemporary standpoint.

LAWS1610 Criminal Law
Staff Contact: A/Prof David Brown
C6 F HPW4
The principles of criminal law and criminal liability. Aims to: promote and refine research and social policy analysis skills; develop a rigorous analytic and socially oriented approach to the study of criminal law; investigate the constitution of concepts like crime, criminal and criminal law; question traditional approaches which assume a unified set of general principles; suggest an approach to criminal law as a number of diverse fields of regulation; acknowledge the importance of forms of regulation outside the criminal law; examine empirical material on the actual operation of the N.S.W. criminal process such as court statistics and a court observation exercise; examine the substantive rules developed in selected criminal offence areas; stress the importance and relevance of criminal law in an understanding of law, even (and especially) for those who do not intend to practise in the area. Topics include: the phenomenon of crime, the criminal process, criminal responsibility, homicide offences, public order offences, drug offences, offences against the person, offences of dishonest acquisition, general defences, complicity, conspiracy, sentencing and penal practices.

LAWS2150 Federal Constitutional Law
Staff Contact: Prof George Winterton/Mr Keven Booker
C3 S1 or S2 HPW4
Federal constitutional law, stressing the legislative and judicial powers of the Commonwealth and the judicial interpretation by the High Court of the extent of those powers, in particular: trade and commerce, external affairs, corporations, appropriation, grants and taxation powers, family law and industrial law powers, inconsistency of Commonwealth and State laws, freedom of interstate trade and commerce, excuse and implied limitations on Commonwealth and State powers. Techniques and approaches adopted by the High Court in interpreting the Australian Constitution, and occasionally, federal executive power.

Further study of constitutional law may be undertaken in LAWS2100 The High Court of Australia.

LAWS2160 Administrative Law
Staff Contact: Ms Melinda Jones
C3 S1 or S2 HPW4
This course considers the law concerning the accountability and control of government officials. Topics covered include: the regulation of delegated legislation; the problem of corruption; the duty to give reasons for administration decisions; freedom of information, the Ombudsman, the Administrative Appeals Tribunal; and judicial review of administrative action [the principles of legality and procedural fairness].

LAWS3010 Property and Equity
Staff Contact: A/Prof Chris Rossiter
C6 F HPW4
The basic principles of the law of property, transcending the traditional boundaries of real and personal property. For reasons of time and convenience, most topics are those usually considered in the context of 'real property'. Enquiry into the meaning of the concepts of property and the purposes that are or ought to be fulfilled by the law of property. Some of the traditional concepts and classifications adopted by the common law in the context of the study of fixtures. Topics: possession as a proprietary interest in land and goods; some basic concepts such as seisin and title; the fragmentation of proprietary interests, including the doctrines of tenure and estates; an introduction to future interests; the development of legal and equitable interests, including a comparative treatment of their nature, extent and sphere of enforceability and an introduction to trusts; legal and equitable remedies; the statutory regulation of proprietary interests in land, including an examination of the Torrens and deeds registration systems; co-ownership; an introduction to security interests; the acquisition of proprietary interests; the alienability of interests including trusts for sale;
commercial transactions involving leasehold estates in land and bailment of goods.

LAWS3410
Environmental Law
Staff Contact: Mr Ross Ramsay
C3 SS HPW4
This subject examines environmental law in both a theoretical and a practical sense. From the theoretical point of view, environmental law is considered through interdisciplinary perspectives in a policy setting. The non-legal perspectives in terms of which environmental law is considered include ecology, economics and philosophy. The practical orientation of the course is toward developing an understanding of the legal framework for environmental decision making in Australia, particularly in N.S.W. Topics to be covered include the relevance of ecology to environmental law, environmental ethics, environmental economics, international environmental law, Commonwealth powers with respect to the environment, a range of Commonwealth and NSW legislation relating to the environment, and different legal techniques for enhancing protection of the environment (e.g., regulation through the criminal law, through traditional common law techniques such as nuisance and private covenants, through economic incentive schemes, and through systems of consents and licenses). Alternative Dispute Resolution techniques will also be examined.

LAWS6210
Law, Lawyers and Society
Staff Contact: Dr Stan Ross
C3 S1 or S2 HPW4
1. The lawyer/client relationship, including who exercises control and the lawyers’ duties to accept work, to keep client confidences, to act competently and to avoid conflicts of interest; the social implications of lawyers’ professional behaviour. 2. The adversary system of litigation and the lawyers’ role therein, both generally and specifically as defence counsel and as prosecutor in criminal cases. 3. The structure of the profession and methods of regulation including discussion of the concept of professionalism, control of admission, discipline generally and conducting court specifically; selection and control of the judiciary. 4. Issues relating to the delivery of legal services, including specialization in lawyers’ practice, the structure and availability of legal aid, the regulation of lawyers’ fees, the extent of the lawyers’ monopoly and the role of non-lawyers in delivering legal services.

LAWS7410
Legal Research and Writing 1
Staff Contact: Ms Irene Nemes
C2 S1 HPW2
The literature, both legal and non-legal, relevant to the law in Australia. The contents of a law library, how it works and is ordered and how lawyers go about using it to find the law. Practice in handling the principal legal materials in the law library, notably law reports, collections of statutes, bibliographies, periodical indexes, digests and material on law reform. An introduction to case analysis and statutes. Principles of legal writing, including plain English, citation practice, word processing and logical argument. An introduction to the use of computerized legal research methods. The methods and objectives of legal and empirical research.

LAWS7420
Legal Research and Writing 2
Staff Contact: Ms Irene Nemes
C1 S2 HPW2
A revision of legal research skills acquired in LAWS7410 Legal Research and Writing 1, particularly the use of Australian digests, law reform materials, loose-leaf services and legal encyclopaedias. Practice in finding and updating the law on a topic. Foreign Legal systems and International law. Further instruction on the use of computers for retrieval of legal materials.

LAWS7430
Research Component
Staff Contact: Mr Ian Cameron
Note/s: Taken after or concurrently with LAWS7420.
This subject must be taken either concurrently with or after LAWS7420 Legal Research and Writing 2, though students are advised where possible to complete Legal Research and Writing 2 first so that they have a command of the relevant research techniques. Students must select one from amongst the subjects for which they are enrolled in which a piece of assessable work (a research essay or moot) will be allocated for Research Component, and must submit a Research Component Form to the Administrative Assistant (Undergraduate) by the end of Week 4 in the Session in which they elect to undertake Research Component. This form must identify the subject in which the work for Research Component will be undertaken, and must be signed by the teacher in the subject. Students must attach to the completed research essay or moot submission a written research report, outlining the research methods adopted in preparation for the essay or moot. The piece of assessable work chosen for allocation to Research Component must be worth no less than 30% of the total mark (in the case of a three-credit point subject, or 15% of the total mark in the case of a six-credit point subject). The assessment of Research Component will be made on the basis of the research report, in addition to the separate assessment of the essay or moot for the purpose of the subject selected. All subjects offered in the Law School are prima facie available to Research Component students for this purpose. Where for compelling reason no provision for a suitable essay or moot is or can be made in a program of assessment of a particular subject, the teacher of that subject may ask the student to select another subject. Research Component may also be satisfied by taking one or more of the Research Thesis electives (LAWS6510, LAWS6520, LAWS6530). There is no formal teaching in LAWS7430 Research Component and no credit points are awarded for it.

LAWS8320
Legal Theory
Staff Contact: A/Prof Martin Krygier
C3 S1 or S2 HPW4
Introduction to philosophical questions which underlie the practical workings of the law. The course concentrates on questions to do with legal reasoning, particularly the reasoning of judges, and of moral reasoning; and the interrelationships between law and morals and law and politics.
Examination of sociological assumptions about law, about society, and about the relationships between law, legal institutions and social ordering. Topics include: The role and functions of law within modern society, the extent to which law embodies implicit social theories and the nature of these theories, and the implications of social research on our understanding of the place of law in society.

LAWS8320 and LAWS8820 form part of the compulsory core of the LLB and BJuris degree courses with respect to students who entered the Faculty in 1981 or later. Students are required to take one of these two subjects to fulfill compulsory requirements and are permitted to take the other as an elective.

MATH1032
Mathematics 1
Note/s: No longer offered. Replaced by the two subjects MATH1131 Mathematics 1A and MATH1231 Mathematics 1B.

MATH1042
Higher Mathematics 1
Note/s: No longer offered. Replaced by the two subjects MATH1141 Higher Mathematics 1A and MATH1241 Higher Mathematics 1B.

MATH1081
Discrete Mathematics
Staff Contact: School of Mathematics First Year Office
U1 S1 or S2 HPW6
Prerequisites: HSC exam score range required: 2 and 3 unit Mathematics (145-150) or 3 and 4 unit Mathematics (186-200) (these ranges may vary from year to year.) Note/s: Excluded MATH1011, MATH1021, MATH1032, MATH1042, MATH1131, ECON2200, ECON2201, ECON2202.

MATH11090
Discrete Mathematics for Electrical Engineers
Staff Contact: School of Mathematics First Year Office
U.5 S2 HPW3
Corequisites: MATH1032 or MATH1042 or MATH1131 or MATH1141
Note/s: Excluded MATH1090.

MATH1131
Mathematics 1A
Staff Contact: School of Mathematics First Year Office
U1 S1 or S2 HPW6
Prerequisites: HSC exam score range required: 2 unit Mathematics (90-100) or 2 and 3 unit Mathematics (100-150) or 3 and 4 unit Mathematics (100-200) or MATH1011 (these ranges may vary from year to year). 2 unit Mathematics in this instance refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject. It does not refer to the subjects Mathematics in Society or Mathematics in Practice.
Note/s: Excluded MATH1011, MATH1032, MATH1042, MATH1141, ECON2200, ECON2201, ECON2202.
Complex numbers, vectors and vector geometry, linear equations, matrices and matrix algebra, determinants. Functions, limits, continuity and differentiability, integration, polar coordinates, logarithms and exponentials, hyperbolic functions, functions of several variables. Introduction to computing and the Maple symbolic algebra package.

MATH1141
Higher Mathematics 1A
Staff Contact: School of Mathematics First Year Office
U6 S1 HPW6
Prerequisites: HSC exam score range required: 2 and 3 unit Mathematics (145-150) or 3 and 4 unit Mathematics (186-200) (these ranges may vary from year to year.) Note/s: Excluded MATH1011, MATH1032, MATH1042, MATH1131, ECON2200, ECON2201, ECON2202.
As for MATH1131 but in greater depth.

MATH1231
Mathematics 1B
Staff Contact: School of Mathematics First Year Office
U6 S2 HPW6 or Summer Session HPW9
Prerequisite: MATH1131 or MATH1141
Note/s: Excluded MATH1021, MATH1032, MATH1042, MATH1131, ECON2200, ECON2201, ECON2202.

MATH1241
Higher Mathematics 1B
Staff Contact: School of Mathematics First Year Office
U6 S2 HPW6
Prerequisite: MATH1131 or MATH1141, each with a mark of at least 70.
Note/s: Excluded MATH1021, MATH1032, MATH1042, MATH1231, ECON2200, ECON2201, ECON2202.
As for MATH1231 but in greater depth.

MATH2009
Engineering Mathematics 2
Staff Contact: School Office
U2 F HPW4
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.
MATH2100
Vector Calculus
Staff Contact: School Office
U.5 S1 or S2 HP2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2110.
Properties of vectors and vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss and Stokes' theorems. Curvilinear coordinates.

MATH2110
Higher Vector Analysis
Staff Contact: School Office
U.5 S1 HP2.5
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, each with a mark of at least 70.
Note/s: Excluded MATH2100.
As for MATH2100 but in greater depth.

MATH2120
Mathematical Methods for Differential Equations
Staff Contact: School Office
U.5 S1 or S2 HP2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241.
Note/s: Excluded MATH2130.
Introduction to qualitative and quantitative methods for ordinary and partial differential equations. The following topics are treated by example. Ordinary differential equations: linear with constant coefficients, first-order systems, singularities, boundary-value problems, eigenfunctions, Fourier series. Bessel's equation and Legendre's equation. Partial differential equations: characteristics, classification, wave equation, heat equation, Laplace's equation, separation of variables methods, applications of Bessel functions and Legendre polynomials.

MATH2130
Higher Mathematical Methods for Differential Equations
Staff Contact: School Office
U.5 S1 or S2 HP2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241, each with a mark of at least 70
Note/s: Excluded MATH2120.
As for MATH2120 but in greater depth.

MATH2400
Finite Mathematics
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: MATH1081 Discrete Mathematics is advised.
Positional number systems, floating-point arithmetic, rational arithmetic, congruences. Euclid's algorithm, continued fractions, Chinese remainder theorem, Fermat's theorem, applications to computer arithmetic. Polynomial arithmetic, division algorithm, factorization, interpolation, finite field. Codes, error correcting codes, public-key cryptography.

MATH2501
Linear Algebra
Staff Contact: School Office
U.5 S1 or S2 HPW5 or F HPW2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2601.

MATH2510
Real Analysis
Staff Contact: School Office
U.5 S1 or S2 HP2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2610.
Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

MATH2520
Complex Analysis
Staff Contact: School Office
U.5 S1 or S2 HP2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2620.
Analytic functions, Taylor and Laurent series, integrals. Cauchy's theorem, residues, evaluation of certain real integrals.

MATH2601
Higher Linear Algebra
Staff Contact: School Office
U.5 S1 HPW5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241, each with a mark of at least 70
Note/s: Excluded MATH2501.
As for MATH2501, but in greater depth, and with additional material on unitary, self-adjoint and normal transformations.

MATH2610
Higher Real Analysis
Staff Contact: School Office
U.5 S1 HPW2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241, each with a mark of at least 70
Note/s: Excluded MATH2510.
As for MATH2510 but in greater depth.

MATH2620
Higher Complex Analysis
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241, each with a mark of at least 70
Note/s: Excluded MATH2520.
As for MATH2520, but in greater depth.
MATH2801
Probability and Random Variables
Staff Contact: School Office
U1 S1 HPW4
Prerequisite: MATH1021(Cr) or MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2819, MATH2841, MATH2901, BIOS2041.
Probability, random variables, standard discrete and continuous distributions, multivariate distributions, transformations, random sampling, sampling distributions, limit theorems.

MATH2810
Statistical Computing and Simulation
Staff Contact: School Office
U.S S1 HPW2
Prerequisites: MATH1021(Cr) or MATH1032 or MATH1231 or MATH1042 or MATH1241
Corequisite: MATH2801
Note/s: Excluded MATH2910. (The syllabus below is in the process of being changed.)
Introduction to APL, random variables, univariate transformation, simulation of random variables, APL programming, integer value random variables, random walks theory and simulation, introduction to Markov chains.

MATH2821
Basic Inference
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH2801
Note/s: Excluded MATH2921, MATH2841, MATH2819, BIOS2041.
Point estimation: general theory, estimation by moments, maximum likelihood, interval estimation with general theory and application, hypothesis testing using Neyman Pearson theory, linear regression and prediction, analysis of variance.

MATH2829
Statistics SU
Staff Contact: School Office
S1 HPW3
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Introduction to probability theory, random variables and distribution functions, sampling distributions, including those of chi-square, t and F. Estimation procedures, including confidence interval estimation with an emphasis on least squares and Geomatic Engineering problems, and computer based exercises.

MATH2830
Nonparametric Statistical Inference
Staff Contact: School Office
U.S S2 HPW2
Prerequisite: MATH2801.
Corequisite: MATH2821
Note/s: Excluded MATH2930.
Order statistics, one-sample and two-sample estimation and inference problems.

MATH2839
Statistics SM
Staff Contact: School Office
U1 F HPW2
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2841, MATH2801, MATH2821, MATH2901, MATH2921.
Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions with emphasis on those derived from the normal distribution: chi-square, t and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard test of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

MATH2841
Statistics SS
Staff Contact: School Office
U1 F HPW2
Prerequisite: MATH1021(CR) or MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2801, MATH2821, MATH2901, MATH2821, MATH2801, MATH2821, MATH2801, MATH2801, BIOS2041.
An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard univariate distributions: binomial, Poisson and normal, an introduction to multivariate distributions. Standard sampling distributions, including those of chi-square, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random effect models.

MATH2849
Statistics SE1
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Introduction to probability theory, random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions including those of chi-square, t and F.

MATH2859
Statistics SE2
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
MATH2869
Statistics SC
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241

MATH2901
Higher Probability and Random Variables
Staff Contact: School Office
U1 S1 HPW4
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241
Note/s: Excluded MATH2801, MATH2841, MATH2819, BIOS2041.
As for MATH2801 but in greater depth.

MATH2910
Higher Statistical Computing and Simulation
Staff Contact: School Office
U.5 S1 HPW4
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241.
Co-requisite: MATH2901
Note/s: Excluded MATH2810.
As for MATH2810 but in greater depth.

MATH2921
Higher Basic Inference
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH1032 or MATH1231 or MATH1042 or MATH1241.
Note/s: Excluded MATH2821, MATH2841, MATH2819, BIOS2041.
As for MATH2821 but in greater depth.

MATH2930
Higher Nonparametric Statistical Inference
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2901.
Corequisite: MATH2921
Note/s: Excluded MATH2830.
As for MATH2830 but in greater depth.

MATH3101
Numerical Analysis
Staff Contact: School Office
U1 S1 HPW4
Note/s: Excluded MATH3141.
Analysis of some common numerical methods. Iterative methods for solving nonlinear equations; interpolation using polynomials, splines and trigonometric functions; least-squares approximation and orthogonal functions; numerical differentiation and integration: extrapolation; finite difference methods for initial value problems for ordinary differential equations; iterative techniques for large systems of linear equations.

MATH3141
Electrical Engineering Mathematics 3
Numerical and Mathematical Methods
Staff Contact: School Office
S2 HPW3.5
Prerequisites: MATH2501, and either MATH2510 or MATH2100
Note/s: Excluded MATH2120, MATH2130, MATH3101.

MATH5045
Advanced Mathematics for Electrical Engineers
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials.

MATS1002
Microstructural Analysis
Staff Contact: Dr P. Krauklis
S2 L1 T2
Note/s: Restricted to combined degree course 3681

MATS1042
Crystallography and X-Ray Diffraction
Staff Contact: Dr A. Hellier
S1 L2 T1

MATS1062
Mechanical Properties of Materials
Staff Contact: Dr P. Krauklis
S1 L2 T2
Prerequisite: MECH0130
Mechanical properties of solids. Nature and significance of mechanical properties. Mechanical testing; the tension test, hardness testing and impact testing. Stress-strain-time relationships. Analysis of stress and strain...
transformation relationships, Mohr’s circle, elastic stress-strain relationships, application to various types of loading and metal working processes. Failure and yeilding criteria. Influence of stress state, temperature, strain rate and environment on mechanical behaviour.

MATS1072
Physics of Materials
Staff Contact: Dr A.K. Hellier
S1 L2 T1
Prerequisite: PHYS1002
Interatomic bonding in solid materials. Types of interatomic bonds, metallic, covalent, ionic. Introductory quantum mechanics in one dimension, free electron theory, effects of periodic potential, density of states curves. Effect of electron to atom ratio on conductivity and crystal structure; semiconductors; intrinsic, extrinsic. Exchange energy; ferromagnetism, anti-ferromagnetism. Elementary perturbation theory, covalent bond; crystal structures, properties. Ionic bond, force.

MATS1112
Phase Equilibria
Staff Contact: Dr B. Gleeson
S2 L1 T1

MATS1273
Ferrous Physical Metallurgy A
Staff Contact: Dr P. Krauklis
S2 L2 T2

MATS1283
Ferrous Physical Metallurgy B
Staff Contact: Dr P. Krauklis
S2 L2 T1

MATS2223
Phase Transformation
Staff Contact: Dr B. Gleeson
S2 L2 T1

MATS4513
Deformation of Metals
Staff Contact: School Office
S1 L2
Atomic and molecular description of deformation. Introduction to dislocation theory and its application to mechanical properties.

MATS4523
Strengthening Mechanisms in Metals
Staff Contact: Dr B. Gleeson
S2 L1 T1
Strengthening mechanisms, creep, fracture, grain size dependence of strength. Introduction to generation of deformation and recrystallization textures. Measurements of age-hardening, activation energy of strain ageing.

MATS9520
Engineering Materials
Staff Contact: Dr A.G. Crosky
S1 L2 T1
Microstructure and structure-property relationships of the main types of engineering materials (metals, ceramics, polymers and composites). Micromechanisms of elastic and plastic deformation. Fracture mechanisms for ductile, brittle, creep and fatigue modes of failure in service; corrosion. Metal forming by casting and wrought processes. Phase Equilibria of alloys; microstructural control by thermomechanical processing and application to commerical engineering materials. Laboratory and tutorial work includes experiments on cast and recrystallised structures, ferrous and non-ferrous microstructures and fracture and failure analysis.

MATS9530
Materials Engineering
Staff Contact: A/Prof C.C. Sorrell
S1 or S2 L2 T1
Prerequisite: MATS9520
Materials used in Mechanical Engineering and related fields (Manufacturing Engineering Management, Aerospace Engineering, Naval Architecture) are discussed with emphasis on the dependence of properties and performance on microstructure. Aspects of materials selection during the design of engineering components which affect the service performance in applications where failure can occur by brittle fracture, corrosion, creep or fatigue, will also be discussed.

MATS9640
Materials Science and Engineering for Electrical Engineers
Staff Contact: School Office
S2 L3 T1
Metallic, ceramic, organic, polymeric and composite materials and their technology for electrical engineering
applications. Structures and structure property relations, phase equilibria and their effect on mechanical, electrical, magnetic, thermal and chemical properties. The shaping, treating and joining of materials. Aqueous and gaseous corrosion. Metallic glasses, superconductors, fast ion conductors. The role of materials science in the development of electrical energy systems.

MINE1131
Mining of Metalliferous Deposits
Staff Contact: Mr D Panich
S1 L3
Prerequisites: MINE0210, MINE1420, GEOL5211

MINE1132
Mining of Coal Deposits
Staff Contact: Dr A.K. Bhattacharyya
S1 L3
Prerequisites: MINE0210, MINE1420, GEOL5211

MINE1140
Geotechnical Engineering
Staff Contact: Dr A.K. Bhattacharyya
F L1 T1
Prerequisites: MINE1231, MINE1232

MINE1231
Rock Mechanics
Staff Contact: Dr V.S. Vutukuri
S2 L2 T2
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, MINE0120

MINE1320
Fluid Mechanics and Thermodynamics
Staff Contact: Dr A.C. Partridge
F L1 T5
Prerequisites: MINE0010, MINE0110, PHYS1002, MATH1032 or MATH1231 or MATH1042 or MATH1241
Corequisite: MATH2001

MINE1330
Bulk Materials Handling and Transport
Staff Contact: A/Prof G.C. Sen
S2 L1.5 T5
Transport systems for minerals, waste and supplies. Descriptions and power requirements for: conveyors (belt and chain), rope haulage systems, free steered vehicles and locomotive haulage systems. Descriptions and pressure loss calculations for hydraulic and pneumatic transport systems. Mine winding systems for shafts: mechanics for hoisting; winding cycle diagrams; power requirements. Safety aspects and maintenance programs for haulage and winding systems.

MINE1420
Elements of Mining
Staff Contact: Mr D. Panich
S1 L1
Prerequisite: MINE0210
Note/s: Visits to mines and related undertakings are a requirement of this subject.
Exploration. Development of mines, infrastructure requirements; environmental assessment. Ore body parameters for surface and underground mines; stratified and non-stratified deposits; mine layout for surface and underground operations; underground access; introduction of techniques of rock breakage and support for coal and metal mines; processing of minerals; disposal of overburden and rejects rehabilitation.

MINE1524
Mining Conservation
Staff Contact: Dr V.S. Vutukuri
C3 S1 or S2 L2 T2
Government regulations. Examination and evaluation of current operations.

MINE1530
Power Supply In Mines
Staff Contact: Dr C.R. Daly
S1 L1 T1
Prerequisites: MINE0310, MINE1320, PHYS2920, ELEC0802

MINE1630
Excavation Engineering (Blasting)
Staff Contact: A/Prof G.C. Sen
S1 L2

MINE1740
Mining Legislation
Staff Contact: Dr C.R. Daly
S2 L2
An appreciation of the laws relating to coal and metal mining practice and to safety and health in mines.

MINE1830
Mine Ventilation and Environment
Staff Contact: Dr V.S. Vutukuri
S2 L2 T2
Prerequisites: MINE0210, MINE1320, MINE1420

MINE1940
Tunnel Engineering and Shaft Sinking
Staff Contact: A/Prof G.S. Sen
S1 L2

MINE2141
Mineral Economics
Staff Contact: Mr D. Panich
S1 L2
Prerequisites: MINE1131, MINE1132

MINE2142
Mine Planning and Design
Staff Contact: Mr D. Panich
F L1 T2
Prerequisites: MINE1131, MINE1132
Corequisite: MINE2141

MINE3040
Mine Safety Engineering
Staff Contact: Dr V.S. Vutukuri
S2 L1.5 T1.5
Prerequisites: MINE 0210, MINE1420

MINE7342
Minerals Engineering Processes
Staff Contact: Dr A.C. Partridge
F L1 T1
MINE7440
Mineral Process Technology
Staff Contact: Dr A.C. Partridge
S1 L1.5 T.5

Mid-year Start

Students who fail Session 1 of PHYS1002 are strongly advised to discontinue the subject and enrol in Session 2 in PHYS1011 Physics 1 (FT1). This subject covers the Session 1 material of PHYS1002 during Session 2. Then PHYS1021 covers the rest of the syllabus over the Summer Session.

Note: The Session 2 syllabus of PHYS1002 is not repeated in Session 1 of the next year.

PHYS1011
Physics 1 (FT1)
Staff Contact: First Year Director
U1 S2 HPW6

Prerequisites, corequisites and syllabus: identical to PHYS1002, S1

PHYS1021
Physics 1 (FT2)
Staff Contact: First Year Director
U1 Summer Session HPW9

Prerequisite: PHYS1011

Syllabus identical to PHYS1002, S2

PHYS1919
Physics 1 (Mechanical Engineering)
Staff Contact: First Year Director

Note/s: Not re-run in S2 and/or Summer Session

PHYS1929
Physics 1 (Geomatic Engineering)
Staff Contact: First Year Director

Note/s: Not re-run in S2 and/or Summer Session

PHYS1969 (Level 1 subject)
Physics 1 (Electrical Engineering)
Staff Contact: 1st Year Director
F L3 T3

Prerequisites: As for PHYS1002 Physics 1

Note/s: For students in the School of Electrical Engineering

Electrostatics, magnetostatics in vacuum, ferromagnetism, electromagnetic induction. Vectors, kinematics, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, rotational kinematics and dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics,

Mid-year Start

Students who fail Session 1 of PHYS1969 are strongly advised to discontinue the subject and enrol in Session 2 in PHYS1949 Physics 1 (EE, FT1). This subject covers the Session 1 material of PHYS1969 during Session 2. Then PHYS1959 covers the rest of the syllabus over the Summer Session.

Note: The Session 2 syllabus of PHYS1969 is not repeated in Session 1 of the next year.

PHYS1949
Physics 1 (EE, FT1)
Staff Contact: First Year Director
U1 S2 HPW6
Prerequisites, corequisites and syllabus: identical to PHYS1969

PHYS1959
Physics 1 (EE, FT2)
Staff Contact: First Year Director
U1 Summer Session HPW9
Prerequisites: PHYS1949
Syllabus identical to PHYS1969

PHYS1989 (Level 1 subject)
Physics 1 (Civil Engineering)
Staff Contact: 1st Year Director
S1 L2 T2 and S2 L2 T1
Prerequisites: As for PHYS1002
Note/s: Not re-run in S2 and/or Summer Session. For students in the School of Civil Engineering. In all first year Civil Engineering undergraduate degree courses students are advised to attempt PHYS1989 Physics1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt PHYS1002 Physics 1. However, students who intend to apply for transfer to the Combined BE BSc degree program involving Level 2/3 Physics subjects must enrol in PHYS1002.

PHYS2001 (Level II subject)
Mechanics, and Computational Physics
Staff Contact: Executive Assistant, School of Physics
U1 S1 HPW4
Prerequisites: PHYS1002, MATH1032 or MATH1231
Corequisite: MATH2100
Note/s: Excluded PHYS2999.

Harmonic motion, systems of particles, central force problems, Lagrange's equations, coupled oscillations, travelling waves, pulses, energy and momentum transfer, computer operating systems, introduction to FORTRAN, libraries and software packages, use of computers to solve problems in physics.

PHYS2011 (Level II subject)
Electromagnetism and Thermal Physics
Staff Contact: Executive Assistant, School of Physics
U1 S2 HPW4
Prerequisites: PHYS1002, MATH1032 or MATH1231
Corequisite: MATH2100
Note/s: Excluded PHYS2999.

Electric field strength and potential, Gauss' law, Poisson's and Laplace's equations, capacitance, dielectrics and polarisation, magnetism, electro-magnetic induction, Maxwell's equations, electromagnetic waves. Laws of thermodynamics, kinetic theory, microscopic processes, entropy, solid state defects, Helmholtz and Gibbs functions, Maxwell's relations, phase diagrams, chemical and electrochemical potential.

PHYS2021 (Level II subject)
Quantum Physics and Relativity
Staff Contact: Executive Assistant, School of Physics
U1 F HPW2
Prerequisites: PHYS1002, MATH1032 or MATH1231
Note/s: Excluded PHYS2989.

PHYS2031 (Level II subject)
Laboratory
Staff Contact: Executive Assistant, School of Physics
U1 F HPW3
Prerequisites: PHYS1002, MATH1032 or MATH1231
Note/s: Excluded PHYS2920.

Experimental investigations in a range of areas: x-ray diffraction, work function, semiconductor bandgap, Hall effect, carrier lifetimes, nuclear magnetic resonance, magnetic properties and electrostatics. Electronics bench experiments and tutorials on diodes, transistors, operational amplifiers, power supplies and digital electronics.

PHYS2949 (Level II subject)
Physics 2 (Electrical Engineering)
Staff Contact: Executive Assistant, School of Physics
S1 L4 T2
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1969
Note/s: Excluded PHYS2989 or PHYS2979

Electrostatics in vacuum and in dielectric materials. Magnetostatics in vacuum and magnetic media, magnetic materials and magnetic circuits. Time-varying fields. Capacitance and inductance calculations. General field concepts. Superconductivity, Maxwell's equation. Quantum mechanics; optical spectra and atomic structure, structural properties of solids, band theory and its applications, uniform electronic semiconductors in equilibrium, excess carriers in semiconductors.
PHYS2959 (Level II subject)
Introductory Semiconductor Physics (Computer Engineering)
Staff Contact: Executive Assistant, School of Physics
S1 L1 T.5
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1969 or PHYS1002
Note/s: Excluded PHYS2021, PHYS2999.
Structural properties of solids; free electrons in metals; introductory quantum physics; band theory; semiconductors in equilibrium.

PHYS2969 (Level II subject)
Physics of Measurement (Geomatic Engineering)
Staff Contact: Executive Assistant, School of Physics
S1 L1 T2
Prerequisite: PHYS1929
Resolution, accuracy and sensitivity of instruments. Errors of observation; transducers; thermometry; electrical noise; mechanical design of apparatus; optical instruments; optical fibres: photometry; analogue-to-digital conversion and digital instruments. Measurements of very large and very small quantities.

PHYS2999 (Level II subject)
Mechanics and Thermal Physics (Electrical Engineering)
Staff Contact: Executive Assistant, School of Physics
F L1.5 T.5
Prerequisites: MATH1032 or MATH1231 or MATH1042 or MATH1241, PHYS1969
Corequisite: MATH2100
Particle mechanics, harmonic motion, central force problems, systems of particles, Lagrange's equations with applications, coupled oscillations, wave equation. Thermodynamic laws, entropy, kinetic theory, M-B distribution, microscopic processes, Maxwell's relations, chemical potential, phase diagrams, multicomponent systems, electrochemical potential, statistics of defects in solids.

Level III

PHYS3010 (Level III subject)
Quantum Mechanics
Staff Contact: Executive Assistant, School of Physics
S1 L1.5 T.5
Prerequisite: PHYS2021
Corequisite: MATH2120
Foundation principles, harmonic oscillator systems, spherically symmetric systems, angular momentum, hydrogen atom, perturbation theory, variational methods, identical particles, quantum theory of atoms.

PHYS3021 (Level III subject)
Statistical Mechanics and Solid State Physics
Staff Contact: Executive Assistant, School of Physics
S1 L3 T1
Prerequisites: MATH2120, PHYS2011, PHYS2021
Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations.

PHYS3030 (Level III subject)
Electromagnetism
Staff Contact: Executive Assistant, School of Physics
S1 L1.5 T.5
Prerequisites: MATH2100, MATH2120, PHYS2011
Electromagnetic fields; Maxwell's equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Fresnel equations, waveguides, radiation fields, dipoles and antenna theory.

PHYS3041 (Level III subject)
Experimental Physics A
Staff Contact: Executive Assistant, School of Physics
F T4
Prerequisite: PHYS2031
Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems.

PLAN9111
Town Planning
Staff Contact: Ms S. Thompson
S1 L2 T1
Introduction to the purpose, scope and application of planning. The urban planning process. Objectives and means of planning environmental policies, regional environmental plans, local environmental plans. Problems in planning: equitable distribution of resources. Environment and environmental impact statements. Planning law and administration. Future of cities, housing and transportation.

POLY3010
Polymer Science
Staff Contact: A/Prof R. Burford
S1 L2 S2 Lab.2
Prerequisites: CHEM2Q\,\,*, MATH2021, MATH2819
Co- or prerequisites: INDC3090

SAFE9213
Introduction to Safety Engineering (M)
Staff Contact: Dr R. Rosen
C3
Prerequisite: Assumed knowledge SAFE9011 or PHYS1022
The treatment of the following topics covers similar material as SAFE9211, but assumes a basic knowledge of differential calculus. The following workplace topics are considered; safety management, ergonomics, equipment
design and task consideration, machine guarding, electrical safety, fire and explosion, management of dangerous materials, ventilation, radiation protection, noise and vibration control, environmental safety, transport safety, safety issues in different industries.

SAFE9224
Principles of Ergonomics
Staff Contact: Mr Roger Hall
C3
Assumed knowledge: Basic statistics
The subject will give an introduction to ergonomics, emphasizing the principles of designing user-centred, human-machine-environment systems. Topics include: definition of and justification for ergonomics, design and human error, human capabilities and limitations, controls and displays, design of human-machine-environment systems, job design and work organization, introduction to anthropometry, design of workplaces, introduction to manual handling and the physical environment, and, introduction to product design and human-computer interaction.

SAFE9232
Introduction to Occupational Health and Safety Law
Staff Contact: Head of School
C3
The concept of law; the creation and interpretation of statutes; the judicial and court systems; locus standi; common law and equity; basic principles of legal liability (civil and criminal); basic principles of administrative law and the liability of the Crown; the common law of employment; statutory regulation of employment; compulsory arbitration of industrial disputes. Outline of occupational health, safety and compensation legislation of the Australian States. Actions under the common law.

SAFE9242
Effective Behaviour in Organisations
Staff Contact: Ms Dianne Gardner
C3
Human behaviour as a major system factor in occupational safety and health. Learning and safety programs, Attitudes and attitude change, Safety compliance - individual and group factors affecting compliance, Work motivation and safety practice, Accident proneness and personnel selection, Individual differences in attitudes to work, Planning and implementing organizational change.

SAFE9533
Electrical Safety
Staff Contact: Prof Jean Cross
C3
Effects of current flow and magnetic and electric fields; elementary circuit representation, typical supply situations; likely dangerous conditions; static electricity; hazardous locations; standards and codes of practice; treatment of electric shock, Electrical causes of fire and explosion; prevention of electrical accidents.

SAFE9543
Management of Dangerous Materials
Staff Contact: Dr C. Winder
C3
Prerequisite: Assumed knowledge 1st year Chemistry
This subject covers chemicals legislation, regulatory assessment of chemicals, chemical information (labels/MSDS), workplace management of chemical safety (Workplace assessment, exposure control, storage of chemicals, personal protection, monitoring), emergency preparedness, pollution, management of hazardous wastes and disposal.
Conditions for the Award of Degrees

First Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the full list of undergraduate courses and degrees offered see Table of Courses by Faculty (Undergraduate) in the Calendar.

The following is the list of higher degrees, graduate diplomas and graduate certificates of UNSW together with the publication in which the conditions for the award appear.

Higher Degrees

For details of graduate degrees by research and course work, arranged in faculty order, see Table of Courses (by faculty) in the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Doctor of Education</td>
<td>EdD</td>
<td>Medicine</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>and all handbooks</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Art</td>
<td>MArt</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Administration</td>
<td>MArtAdmin</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Education</td>
<td>MArtEd</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Art Education(Honours)</td>
<td>MArtEd(Hons)</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Arts (Honours)</td>
<td>MA(Hons)</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Art Theory</td>
<td>MArtTh</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEnv</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Building Conservation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA(Exec)</td>
<td>AGSM</td>
</tr>
<tr>
<td>(Executive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master of Business and Technology</td>
<td>MBT</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Clinical Education</td>
<td>MClinEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Cognitive Science</td>
<td>MCogSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Master of Community Health</td>
<td>MCH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Computational Science</td>
<td>MComputationalSc</td>
<td>Science</td>
</tr>
<tr>
<td>Master of Computer Science</td>
<td>MCompSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Construction Management</td>
<td>MConstMgt</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Couple and Family Therapy</td>
<td>MCFT</td>
<td></td>
</tr>
<tr>
<td>Master of Defence Studies</td>
<td>MDefStud</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Design (Honours)</td>
<td>MDes(Hons)</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Education</td>
<td>ME</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Education in Creative Arts</td>
<td>MEca</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Education in Teaching</td>
<td>MEteach</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>without supervision</td>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Environmental Engineering Science</td>
<td>MEnvEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Equity and Social Administration</td>
<td>MEqSocAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Fine Arts</td>
<td>MFA</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Higher Education</td>
<td>MHEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Information Management</td>
<td>MIM</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Information Science</td>
<td>MInfSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of International Social Development</td>
<td>MIntSocDev</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Medicine</td>
<td>MMed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Landscape Planning</td>
<td>MLP</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Management Economics</td>
<td>MMgtEc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Medicine</td>
<td>MMed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Mining Management</td>
<td>MMinMgmt</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Music (Honours)</td>
<td>MMus(Hons)</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Music Education (Honours)</td>
<td>MMusEd(Hons)</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Policy Studies</td>
<td>MPS</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Project Management</td>
<td>MProjMgt</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Public Health</td>
<td>MPH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychological Medicine</td>
<td>MPM</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of Psychology (Applied)</td>
<td>MPsychol</td>
<td>Science†</td>
</tr>
<tr>
<td>Master of Psychology (Clinical)</td>
<td>MPpsychol</td>
<td>Science†</td>
</tr>
<tr>
<td>Master of Real Estate</td>
<td>MRE</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Real Property</td>
<td>MRProp</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Sports Science</td>
<td>MSpSc</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Sports Medicine</td>
<td>MSpMed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Taxation</td>
<td>MTax</td>
<td>ATAX</td>
</tr>
<tr>
<td>Master of Town Planning</td>
<td>MTP</td>
<td>Built Environment</td>
</tr>
<tr>
<td>Master of Urban Development and Design</td>
<td>MUDD</td>
<td>Built Environment</td>
</tr>
</tbody>
</table>

Graduate Diplomas

<table>
<thead>
<tr>
<th>Graduate Diploma</th>
<th>GradDip</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGSM</td>
<td>AGSM</td>
</tr>
<tr>
<td>Applied Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>Arts and Social Sciences</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Commerce and Economics</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>Professional Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Science†</td>
<td>Science†</td>
</tr>
</tbody>
</table>

- GradDipC/F Therapy
- GradDipClinEd
- GradDipEq&SocAdmin
- GradDipHEd
- GradDipHEd
- GradDiplIndMgt
- GradDiplIntSocDev
- GradDipPaed
- GradDipSpMed
- DipEd
- GradDiplM-Archiv/Rec
- GradDiplM-Lib
- DipFDA

Graduate Certificates

- GradCertHealthAdmin
- GradCertHEd
- GradCertPhilT

*Faculty of Science
†Faculty of Biological and Behavioural Sciences
Doctor of Philosophy (PhD)

1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

Enrolment

3. (1) An application to enrol as a candidate for the degree shall be lodged with the Registrar at least one month prior to the date at which enrolment is to begin.

(2) In every case before making the offer of a place the Committee shall be satisfied that initial agreement has been reached between the School and the applicant on the topic area, supervision arrangements, provision of adequate facilities and any coursework to be prescribed and that these are in accordance with the provisions of the guidelines for promoting postgraduate study within the University.

(3) The candidate shall be enrolled either as a full-time or a part-time student.

(4) A full-time candidate will present the thesis for examination no earlier than three years and no later than five years from the date of enrolment and a part-time candidate will present the thesis for examination no earlier than four years and no later than six years from the date of enrolment, except with the approval of the Committee.

(5) The candidate may undertake the research as an internal student i.e. at a campus, teaching hospital, or other research facility with which the University is associated, or as an external student not in attendance at the University except for periods as may be prescribed by the Committee.

(6) An internal candidate will normally carry out the research on a campus or at a teaching or research facility of the University except that the Committee may permit a candidate to spend a period in the field, within another institution or elsewhere away from the University provided that the work can be supervised in a manner satisfactory to the Committee. In such instances the Committee shall be satisfied that the location and period of time away from the University are necessary to the research program.

(7) The research shall be supervised by a supervisor and where possible a co-supervisor who are members of the academic staff of the School or under other appropriate supervision arrangements approved by the Committee. Normally an external candidate within another organisation or institution will have a co-supervisor at that institution.

Progression

4. The progress of the candidate shall be considered by the Committee following report from the School in accordance with the procedures established within the School and previously noted by the Committee.

(i) The research proposal will be reviewed as soon as feasible after enrolment. For a full-time student this will normally be during the first year of study, or immediately following a period of prescribed coursework. This review will focus on the viability of the research proposal.

(ii) Progress in the course will be reviewed within twelve months of the first review. As a result of either review the Committee may cancel enrolment or take such other action as it considers appropriate. Thereafter, the progress of the candidate will be reviewed annually.
Thesis

5.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall comply with the following requirements:
 (a) it must be an original and significant contribution to knowledge of the subject;
 (b) the greater proportion of the work described must have been completed subsequent to enrolment for the degree;
 (c) it must be written in English except that a candidate in the Faculty of Arts and Social Sciences may be required by the Committee to write a thesis in an appropriate foreign language;
 (d) it must reach a satisfactory standard of expression and presentation;
 (e) it must consist of an account of the candidate’s own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate’s part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

6.(1) There shall be not fewer than three examiners of the thesis, appointed by the Committee, at least two of whom shall be external to the University.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that one of the following:
 (a) The thesis merits the award of the degree.
 (b) The thesis merits the award of the degree subject to minor corrections as listed being made to the satisfaction of the head of school.
 (c) The thesis requires further work on matters detailed in my report. Should performance in this further work be to the satisfaction of the higher degree Committee, the thesis would merit the award of the degree.
 (d) The thesis does not merit the award of the degree in its present form and further work as described in my report is required. The revised thesis should be subject to re-examination.
 (e) The thesis does not merit the award of the degree and does not demonstrate that resubmission would be likely to achieve that merit.

(3) If the performance at the further work recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to represent the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners’ reports and the results of any further work, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

Fees

7. A candidate shall pay such fees as may be determined from time to time by the Council.

Note: All new PhD candidates in the Faculty of Engineering must complete and pass three subjects as approved by the Head of School, normally in the first year of candidature.
Master of Biomedical Engineering (MBiomedE)

1. The degree of Master of Biomedical Engineering may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed, and shall submit a project report. The program of advanced study, including the preparation of the project report, shall total a minimum of 60 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the Director of the Centre for Biomedical Engineering (hereinafter referred to as the head of the school).

(3) The progress of the candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or five sessions in the case of a part-time candidate. The maximum period of candidature shall be five academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Project Report

4.(1) A candidate shall be required to undertake a project on an approved topic.

(2) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.

(3) The candidate shall give in writing to the Registrar two months notice of intention to submit a report on the project.

(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports for higher degrees.

(5) It shall be understood that the University retains three copies of the project report submitted for examination and is free to allow the project report to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report in whole or in part, in microfilm or other copying medium.

Examination

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Note: All new research masters candidates in the Faculty of Engineering must complete and pass three subjects as approved by the Head of School, normally in the first year of candidature.

Master of Business and Technology (MBT) (subject to approval)

1. The degree of Master of Business and Technology by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) Alternatively a candidate for the Master of Business and Technology shall obtain a grade point average of at least credit in the Graduate Diploma in Industrial Management at the first attempt of each of the subjects. A candidate may then be granted advanced standing in the Master of Business and Technology for the subjects already completed in the Graduate Diploma in Industrial Management up to a limit of 18 credits with the provision that the candidate has not already graduated.

(3) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(4) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Graduate School of Engineering at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of six academic sessions from the date of enrolment in the case of a part-time candidate or two academic sessions in the case of a full-time candidate. The maximum period of candidature shall be ten academic sessions from the date of enrolment for a part-time candidate and five academic sessions for a full-time candidate. In special cases a variation to these times may be granted by the Committee.
Fees

4. A candidate shall pay such fees as may be recommended from time to time by the Graduate School of Engineering.

Master of Cognitive Science (MCogSc) at Honours Level (under review)

1. The degree of Master of Cognitive Science at Honours level may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation. The degree shall be awarded either with the grade of Honours Class 1 or with the grade of Honours Class 2.

Qualifications

2. (1) A candidate for the degree shall:
 (a) have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee, and
 (b) have completed the requirements for the award of the degree at Pass level.
 (2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.
 (3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment to carry out such work as it may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.
 (2) In every case, before permitting a candidate to enrol, the Chair of the Master of Cognitive Science Management Committee (hereinafter referred to as the Chair of the Management Committee) shall be satisfied that adequate supervision and facilities are available.
 (3) An approved candidate shall be enrolled in one of the following categories:
 (a) full-time attendance at the University;
 (b) part-time attendance at the University;
 (c) external - not in regular attendance at the University and using research facilities external to the University.
 (4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such assessment and perform such other work as may be prescribed by the Committee.
 (5) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.
 (6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the Chair of the Management Committee and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.
 (7) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time or external candidate. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.
 (8) A full-time candidate for the degree shall present for examination not later than four academic sessions from the date of enrolment. A part-time or external candidate for the degree
shall present for examination not later than eight academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate’s own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied on the candidate’s part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses or higher degrees.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5.(1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 without further examination; or

(b) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or department where a department is not within a school, or schools or departments where the research is being undertaken in more than one school or department; or

(c) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2) (c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

*“School” is used here and elsewhere in these conditions to mean any teaching unit authorized to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
Master of Cognitive Science (MCogSc) at Pass Level

1. The degree of Master of Cognitive Science at Pass level may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment. The maximum period of candidature shall be eight academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Computer Science (MCompSc)

1. The degree of Master of Computer Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.
(2) A candidate for the degree shall:
(a) undertake such formal subjects and pass such assessment as prescribed, or
(b) undertake an approved combination of the above and demonstrate ability to undertake research
by the submission of a project report embodying the results of an original investigation of an approved
topic.

(3) The program of advanced study shall total a minimum of 48 credits. The number of credits allocated
for each subject shall be determined by the Committee on the recommendation of the appropriate
head of school.

(4) A candidate's proposed program shall be approved by the head of the Department of Computer
Science prior to enrolment.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as
a result of its review the Committee may cancel enrolment or take such other action as it considers
appropriate.

(6) No candidate shall be awarded the degree until the lapse of three academic sessions from the
date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time
candidate. The maximum period of candidature shall be six academic sessions from the date of
enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an
extension of these times may be granted by the Committee.

18 Credit Project Report

4.(1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic
under the direction of a supervisor appointed from the full-time academic members of the University
staff.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project
report.

(3) The project report or thesis shall present an account of the candidate's own research. In special
cases work done conjointly with other persons may be accepted, provided the Committee is satisfied
about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related
to the thesis.

(5) Three copies of the project report or thesis shall be presented in a form which complies with the
requirements of the University for the preparation and submission of project reports and theses for
higher degrees.

(6) It shall be understood that the University retains the three copies of the project report or thesis
submitted for examination and is free to allow the project report or thesis to be consulted or borrowed.
Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or
thesis in whole or in part, in microfilm or other copying medium.

Examination of 18 Credit Project Report

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Committee,
and some of whom shall be external to the University unless the Committee is satisfied that this is
not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise
report on the project report and shall recommend to the Committee that:
(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the
satisfaction of the head of the school; or
(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in
a revised form after a further period of study and/or research; or
(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of
assessment in the prescribed formal subjects, recommend whether or not the candidate may be
awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall
determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.
Master of Engineering (ME) and Master of Science (MSc)

1. The degree of Master of Engineering or Master of Science by research may be awarded by the Council on recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of the thesis embodying the results of an original investigation.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.
(2) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the degree.
(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work the Committee may prescribe.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.
(2) In every case, before permitting a candidate to enrol, the head of the school* in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.
(3) An approved candidate shall be enrolled in one of the following categories:
(a) full-time attendance at the University;
(b) part-time attendance at the University;
(c) external - not in regular attendance at the University and using research facilities external to the University.
(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.
(5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.
(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school* in which the candidate is enrolled and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.
(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.
(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present, for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4.(1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

*School is used here and elsewhere in these conditions to mean any teaching unit authorized to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
(2) The candidate shall give in writing two months notice of intention to submit the thesis.
(3) The thesis shall present an account of the candidate's own research. In special cases work done jointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.
(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.
(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.
(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5.(1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.
(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:
(a) the candidate be awarded the degree without further examination; or
(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or
(c) the candidate be awarded the degree subject to further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.
(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.
(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Note: All new Masters research candidates in the Faculty of Engineering must complete and pass three subjects as approved by the Head of School, normally in the first year of candidature.
Master of Engineering (ME) and Master of Science (MSc) without supervision

1. The degree of Master of Engineering or Master of Science without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

Qualification

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor of the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

Enrolment and Progression

3. An application to enrol as candidate for the degree without supervision shall be made in the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should, in his or her own interest seek at an early stage the advice of the appropriate head of school (or department) with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available.

Thesis

4. (1) A candidate shall submit a thesis embodying the results of the investigation.
 (2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.
 (3) The thesis shall present an account of the candidate’s own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate’s part in the joint research.
 (4) The candidate may also submit any work previously published whether or not related to the thesis.
 (5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.
 (6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.
 (2) Before the thesis is submitted to the examiners the head of the school in which the candidate is enrolled shall certify that it is prima facie worthy of examination.
 (3) At the conclusion of the examination each examiner shall submit to the Committee that:
 (a) the candidate be awarded the degree without further examination; or
 (b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school (or department); or
 (c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
 (d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
 (e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.
 (4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.
(5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering Science (MEngSc)

1. The degree of Master of Engineering Science or Master of Surveying Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:

(a) undertake such formal subjects and pass such assessment as prescribed, or

(b) Undertake an approved combination of the above and demonstrate ability to undertake research by the submission of a project report embodying the results of an original investigation of an approved topic.

(3) The program of advanced study shall total a minimum of 30 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school.*

(4) A candidate's proposed program shall be approved by the appropriate head of school* prior to an enrolment. For the purposes of this requirement the appropriate head of school shall normally be the head of the school providing the major field of study.

(5) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(6) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

*"School" is used here and elsewhere in these conditions to mean any teaching unit authorized to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
18 Credit Project Report

4.(1) A candidate who undertakes an 18 credit project shall carry out the work on an approved topic supervised by a supervisor or supervisors or under other appropriate supervision arrangements approved by the Committee.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

(3) The project report shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) Three copies of the project report shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

(5) It shall be understood that the University retains the three copies of the project report submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.

Examination of 18 Credit Project Report

5.(1) There shall be not fewer than two examiners of the project report, appointed by the Committee.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or

(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or

(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or

(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

(3) The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Environmental Engineering Science (MEnvEngSc)

1. The degree of Master of Environmental Engineering Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.
Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A Candidate for the degree shall undertake such formal subjects and pass such assessment as prescribed and undertake an approved combination of the above and demonstrate ability to undertake research by submission of a project report embodying the results of an original investigation.

(3) A candidate's proposed program shall be approved by the head of the School of Civil Engineering prior to enrolment.

(4) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(5) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Information Science (MInfSc)

1. The degree of Master of Information Science may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2.(1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Engineering (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which the enrolment is to begin.

(2) A candidate for the degree shall:

(a) undertake such formal subjects and pass such assessment as prescribed, or

(b) undertake an approved combination of the above and demonstrate ability to undertake research by the submission of a project report embodying the results of an original investigation of an approved topic.

(3) The program of advanced study shall total a minimum of 36 credits. The number of credits allocated for each subject shall be determined by the Committee on the recommendation of the appropriate head of school.
A candidate's proposed program shall be approved by the head of the Department of Computer Science prior to enrolment.

The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

No candidate shall be awarded the degree until the lapse of three academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

18 Credit Project Report

A candidate who undertakes an 18 credit project shall carry out the work on an approved topic under the direction of a supervisor appointed from the full-time academic members of the University staff.

The candidate shall give in writing to the Registrar two months notice of intention to submit a project report.

The project report or thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

The candidate may also submit any work previously published whether or not such work is related to the thesis.

Three copies of the project report or thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of project reports and theses for higher degrees.

It shall be understood that the University retains the three copies of the project report or thesis submitted for examination and is free to allow the project report or thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the project report or thesis in whole or in part, in microfilm or other copying medium.

Examination of 18 Credit Project Report

There shall be not fewer than two examiners of the project report, appointed by the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

At the conclusion of the examination each examiner shall submit to the Committee a concise report on the project report and shall recommend to the Committee that:

(a) the project report be noted as satisfactory; or
(b) the project report be noted as satisfactory subject to minor corrections being made to the satisfaction of the head of the school; or
(c) the project report be noted as unsatisfactory but that the candidate be permitted to resubmit it in a revised form after a further period of study and/or research; or
(d) the project report be noted as unsatisfactory and that the candidate be not permitted to resubmit it.

The Committee shall, after considering the examiners' reports and the candidate's results of assessment in the prescribed formal subjects, recommend whether or not the candidate may be awarded the degree. If it is decided that the project report is unsatisfactory the Committee shall determine whether or not the candidate may resubmit it after a further period of study and/or research.

Fees

A candidate shall pay such fees as may be determined from time to time by the Council.
Graduate Diploma (GradDip)

1. A Graduate Diploma may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2. (1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the diploma.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of two academic sessions* from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and six sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

*Failure of 6 credit points may result in exclusion from the graduate diploma.

*For the Graduate Diploma in Computer Science no candidate shall be awarded the diploma until a lapse of three academic sessions from the date of enrolment.

Graduate Diploma in Industrial Management (GradDip)

1. The Graduate Diploma in Industrial Management may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2. (1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) Alternatively a candidate for the Graduate Diploma in Industrial Management shall obtain a grade point average of at least credit in the Industrial Management Qualification at the first attempt of each of the subjects. Candidates will then be granted advanced standing in the Graduate Diploma in Industrial Management for the subjects already completed in the Industrial Management Qualification.

(3) An applicant who submits evidence of such other academic or professional attainment as may be approved by the Committee may be permitted to enrol for the diploma.
(4) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe before permitting enrolment.

Enrolment and Progression

3.(1) An application to enrol as a candidate for the diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of four sessions from the date of enrolment for a part-time candidate. The maximum period of candidature shall be six sessions from the date of enrolment for a part-time candidate or three sessions for a full-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be recommended from time to time by the Graduate School of Engineering.
Scholarships and Prizes

The scholarships and prizes listed below are available to students whose courses are listed in this book. Each faculty handbook contains in its Scholarships and Prizes section the scholarships and prizes available with that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University. Applicants should note that the awards and conditions are subject to review.

Key: \(V \) Value \(T \) Year/s of Tenure \(C \) Condition

Scholarships

Undergraduate Scholarships

Listed below is an outline in summary form of undergraduate scholarships available to students. Full information may be obtained from the Student Centre located on the Lower Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be submitted to the Scholarships Unit (c/- Student Centre) by 31 January each year. Please note that not all of these awards are available every year.

General

ANSETT Travel Awards

\(V \) A limited number of return tickets for travel within Australia on ANSETT Australia or to an international destination serviced by ANSETT International (currently Hong Kong, Indonesia and Japan) will be provided by the award.

\(C \) Applicants must be permanent residents or Citizens of Australia. The scholarship may be awarded to a student(s) undertaking full-time study in a 4th year honours program. The scholarship will be awarded on the basis of a number of factors including academic performance and the relevance and merit of the proposed travel. Applications close 31 October with the Scholarships Unit.

Australian Development Co-operation Scholarship (ADCOS)

\(V \) Tuition fees. Some students may be eligible for airfares and a stipend.

\(T \) Determined by normal course duration

\(C \) This award is for international students from selected countries only. Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country. The closing date is normally early in the year before the year of study.

Sam Cracknell Memorial

\(V \) Up to $1500 pa payable in fortnightly instalments

\(T \) 1 year

\(C \) Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need. Applications close 7 March.
Girls Realm Guild
V Up to $1500 pa
T 1 year with the prospect of renewal subject to satisfactory progress and continued demonstration of need
C Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need

University Honours Year Scholarships
V $1000
T 1 year
C 25 scholarships will be awarded on the basis of academic merit for students entering an 'add-on' honours year, that is the honours year in a degree course which is normally a pass degree but which has the option of a further year of study at Honours level. Applications close with the Scholarships Unit on 28 October.

W.S. and L.B. Robinson
V Up to $6500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology, electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science. Applications close 30 September each year. Apply directly to PO Box 460, Broken Hill, NSW 2880.

Alumni Association
V Up to $1500 pa
T 1 year with the possibility of renewal
C Available to students enrolled in any year of a full-time course. Candidates must be the children or grandchildren of Alumni of the University of New South Wales and may be either permanent residents of Australia or international students. Applications close 13 January.

Sporting Scholarships
V $2000 pa
T 1 year with possibility of renewal
C Available to students who are accepted into a course of at least two years duration. Prospective applicants should have an outstanding ability in a particular sport and are expected to be an active member of a UNSW Sports Club. Apply directly to Sport and Recreation Section, UNSW, Sydney 2052 (tel: (02) 385 4878).

General Accident Australian Bicentennial St Andrews Scholarship
V £Stg4840
T Approximately 12 months
C Applicants should be Australian citizens who are proceeding to Honours in Economics, History, Philosophy, Economic and Social History or Social Anthropology. The awards are for study at St Andrews, United Kingdom. Applications close 12 November.

Engineering

Telecom Scholarship for Women in Electrical Engineering
V Up to $1000 pa
T 1 year
C Available to female students enrolled in Year 1 of the electrical Engineering degree course. Candidates must be residents of Australia.

Environmental Engineering

Connell Wagner Scholarship
V $1500
T 1 year only
C Available to students enrolled in Year 3 of the degree course in Environmental Engineering

Geomatic Engineering

The Institution of Surveyors
V Up to $1000 pa
T 1 year renewable for the duration of the course, subject to satisfactory progress
C Permanent residence in Australia and eligibility for admission to the full-time degree course in Surveying. Selection is based on academic merit, personal qualities and financial need.

Surveyor Generals Scholarship for Women in Surveying
V Up to $2000 pa
T 1 year
C Available to female students entering Year 1 of the degree course in Surveying course, Candidates must be residents of Australia
Mechanical and Manufacturing Engineering

Rheem Australia Ltd

V Up to $2500 pa
T 1 year only
C Permanent residence in Australia. Applicants should be in their second-last (penultimate) or final year of the degree course in Mechanical or Manufacturing Engineering. Students offered the award in their penultimate year may reapply for the scholarship in their final year.

The UNSW Co-op Program

The University of New South Wales has industry-linked education scholarships to the value of $9800 per annum in the following areas: Accounting (and Economics or Finance; Business Information Technology; Aerospace, Bioprocess, Ceramic, Chemical, Civil, Electrical, Environmental, Materials, Mechanical, Metallurgical, Mineral, Mining and Petroleum Engineering; Food Science and Technology, Industrial Chemistry, Manufacturing Management, Textile Management, Textile Technology, and Wool and Pastoral Science.

Graduate Scholarships

Listed below is an outline in summary form of Graduate Scholarships available to students. Application forms and further information are available from the Scholarships Unit and Student Centre, located on the Ground Floor of the Chancellery, unless an alternative contact address is provided. Normally applications become available four to six weeks before the closing date.

The following publications may also be of assistance: 1. Awards for Postgraduate Study in Australia, 2. Awards for Postgraduate Study Overseas, 3. Directory of Postgraduate Study, published by the Graduate Careers Council of Australia, PO Box 28, Parkville, Victoria 3052;* 4. Study Abroad, published by UNESCO.*

Details of overseas awards and exchanges administered by the Department of Employment, Education and Training can be obtained from: Awards and Exchanges Section, Department of Employment, Education and Training, PO Box 826, Woden, ACT 2606.

Where possible, the scholarships are listed in order of faculty. Applicants should note that the awards and conditions are subject to review.

*Available for reference in the University Library.

General

ANSETT International Travel Awards

V A limited number of tickets for travel with ANSETT International (currently services Hong Kong, Indonesia and Japan)
C The scholarship is only available to international students. Students living in Hong Kong, Indonesia or Japan and proposing to commence study at the University may apply for a single ticket at the start of their course. Students currently in Australia may apply for a return ticket. The scholarship will be awarded on the basis of a number of factors including academic performance and the relevance and merit of the proposed travel. Applications close with the Scholarships Unit on 31 October.

ANSETT Travel Awards

V A limited number of return tickets for travel within Australia on ANSETT Australia or to an international destination serviced by ANSETT International (currently Hong Kong, Indonesia and Japan) will be provided by the award.
C Applicants must be permanent residents or Citizens of Australia. The scholarship may be awarded to a student(s) undertaking full-time study in a postgraduate course (Postgraduate Diploma, Masters by Coursework or Research or PhD). The scholarship will be awarded on the basis of a number of factors including academic performance and the relevance and merit of the proposed travel. Applications close with the Scholarships Unit on 31 October.

Australian Awards for Research in Asia (AARA)

T 3-12 months
C The awards are for postgraduate study or fieldwork in Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Sri Lanka, Taiwan, Thailand and Vietnam. Applicants must be Australian citizens, or have Permanent Resident status, and have lived in Australia for the 12 months prior to the close of applications on 17 June.

Caltex National Scholarship for Women

V $50,000 over two years
T Up to 2 years
C Applicants must be Australian citizens or have resided continuously in Australia for 5 years and have completed, or will complete, in 1994 an award from an
Australian institution. Applicants may be proposing to undertake study in any discipline overseas. Application to the Honorary Secretary, Caltex National Scholarship, University by 16 September.

Kobe Steel Scholarship for Postgraduate Study at St Catherine's College, Oxford University

V £14,520
T Up to 2 years
C Applicants must be Australian nationals. Students should have a past or future interest in Japan. Applications close on 31 October with Kobe Steel Australia P/L, Level 32 Gateway, 1 Macquarie Place, Sydney, 2000.

Australian Postgraduate Awards

V $11,687 to $18,679 (1993 rates). Other allowances may also be paid. Tax free.
T 1-2 years for a Masters and 3-4 years for a PhD degree
C Applicants must be honours graduates or equivalent or scholars who will graduate in current academic year, and who are domiciled in Australia. Applications to Registrar by 31 October.

Australian Development Co-operation Scholarship (ADCOS)

V Tuition fees. Some students may be eligible for air fares and a stipend.
T Determined by normal course duration
C This award is for international students from selected countries only. Information should be obtained from Australian Diplomatic Posts in the home country. Conditions and entitlements vary depending on the home country.

Overseas Postgraduate Research Scholarships

V Tuition fees only
T 2 years for a Masters and 3 years for a PhD degree
C Eligibility is confined to postgraduate research students who are citizens of countries other than Australia or New Zealand. Applications to the Registrar by 30 September

Australian American Educational Foundation Fulbright Award

V $11,500 pa and travel expenses
T 1 year, renewable
C Applicants must be graduates who are domiciled in Australia and wish to undertake research or study for a higher degree in America. Applications close 30 September with The Secretary, DEET, AAEF Travel Grants, PO Box 826, Woden, ACT 2606. Application forms are available from the Associate Registrar, University of Sydney, NSW 2006 (tel: (02) 692 2222).

Australian Federation of University Women

V Amount varies, depending on award
T Up to 1 year
C Applicants must be female graduates who are members of the Australian Federation of University Women. Further enquiries may be directed to the Secretary of the Federation, tel: (02) 232 5629.

Commonwealth Scholarship and Fellowship Plan

V Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.
T Usually 2 years, sometimes 3
C Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Tenable in Commonwealth countries other than Australia. Applications close with the Registrar in early October.

The English-Speaking Union (NSW Branch)

V $8000
T 1 year
C Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April with The Secretary, Ground Floor, School of Arts, 275c Pitt Street, Sydney, NSW 2000.

Frank Knox Memorial Stipend of Fellowships

V $US11,500 pa plus tuition fees
T Up to 2 years tenable at Harvard University
C Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with the Academic Registrar mid-October.

Robert Gordon Menzies Scholarship to Harvard

V Up to $US 25,000
T 1 year
C Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra, ACT 2601.

Gowrie Scholarship Trust Fund

V $6000 pa. Under special circumstances this may be increased.
T 2 years
C Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with the Academic Registrar by 31 October.
SCHOLARSHIPS AND PRIZES

Harkness Fellowships of the Commonwealth Fund of New York

- Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA
- 12-21 months
- Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 35 years of age.
- Applications close 30 September with the Academic Registrar. Forms available from Mr J. Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra, ACT 2601.

The Packer, Shell and Barclays Scholarships to Cambridge University

- Living and travel allowances, tuition expenses
- 1-3 years
- Applicants must be Australian citizens who are honours graduates or equivalent, and under 26 years of age.
- Applications are available from The Secretary, Cambridge Commonwealth Trust, PO Box 252, Cambridge CB2 1TZ, England. The scholarship closes on 15 October.

The Rhodes Scholarship to Oxford University

- Approximately $15,000 pa and fees
- 2 years, may be extended for a third year
- Unmarried Australian citizens aged between 19 and 25 who have an honours degree or equivalent.
- Applications close in September each year with The Secretary, University of Sydney, NSW 2006.

Australian Institute of Nuclear Science and Engineering Student Scholarships

- Basic stipend $11,103 pa plus allowances and some University expenses
- 1-3 years
- Applicants must be honours graduates in Science or Engineering. At least one quarter of the period of tenure must be spent at the Institute at Lucas Heights, NSW. Applications close 31 December.

Energy Research and Development Corporation (ERDC) Postgraduate Awards

- $20,000 pa, tax free
- Up to 3 years
- ERDC awards are based on academic excellence or a proven track record of excellence, in research which indicates potential to contribute to the energy industry. Contact ERDC Postgraduate Award, tel: (06) 274 4804, for an application. Applications close 30 September.

Harold G. Conde Memorial Fellowship

- $5000 pa
- Maximum of 3 years
- Applicants should be honours graduates permanently domiciled in Australia. The Fellowship is a supplementary award to be held in conjunction with another scholarship and is for graduate study or research in a field related to the electricity industry.
- Applications close with the Registrar by 10 April. The scholarship is offered subject to funds.

Sir Robert Menzies Memorial Scholarships in Engineering, Law and Medicine for study in the United Kingdom

- Tuition fees and allowances for living, travel and equipment expenses
- Up to 2 years
- Applicants must be between 21 and 35 years of age and domiciled in Australia. Tenable at universities in the United Kingdom. Applications close 31 August with Sir Robert Menzies Memorial Trust, 210 Clarendon Street, East Melbourne, Vic 3002. Applications are available from the Scholarships Unit.

Land and Water Resources Research and Development Corporation (LWRRDCC)

- $20,000 pa
- 2 years for a Masters 3 years for a PhD degree
- The scholarships are available for research that will lead to better management, sustainable use and conservation of land, water and vegetation resources in Australia. Applications close with the LWRRDCC on 30 July. Applications should be forwarded to the LWRRDCC, GPO Box 2182, Canberra, ACT (tel: (06) 2573379).

Engineering

Australian Institute of Nuclear Science and Engineering (AINSE) Postgraduate Supplement

- $7500 (supplement to an APA)
- Up to 3 years
- Applicants must be honours graduates in Science or Engineering. At least one quarter of the period of tenure must be spent at the Institute at Lucas Heights, NSW. Applications close 31 December with the Scholarships Unit. Studentships are also available through AINSE, PMB, Menai 2243.
Australian Telecommunications and Electronics Research Board Postgraduate Scholarships

V $9000 (tax free) intended as a supplement to other awards
T Up to 3 years for a PhD
C Applicants must be first class honours graduates or equivalent or scholars who will graduate with honours in the current academic year, who are Australian citizens or permanent residents. Preference will be given to applicants who are aged under 30 years as at 1 January. Applications close 1 November with ATERB, PO Box 93, North Ryde, NSW 2113.

Shell Scholarship in Science and Engineering

V $20,000 pa
T 2 years for a Masters and 3 years for a PhD
V Applicants must be Australian citizens or permanent residents. Applicants should intend to study a Masters degree or Doctorate in science, engineering, economics/commerce, computer science, or a closely related discipline.
Prizes

Undergraduate University Prizes

The following information summarizes undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded. Law prizes are awarded only for students enrolled in the LLB or Jurisprudence courses.

Information regarding the establishment of new prizes may be obtained from the Enrolments and Assessment Section located on the Ground Floor of the Chancellery.

General

The Sydney Technical College Union Award
V $400.00 and Bronze Medal
C Leadership in student affairs combined with marked academic proficiency by a graduand

The University of New South Wales Alumni Association Prize
V Statuette
C Achievement for community benefit by a student in the final or graduating year

Faculty of Engineering

The Institution of Engineers Australia Award
V $200.00 and medal
C The best performance by a student in the final or equivalent year leading to the award of the BE or BSc(Eng) degrees offered by the Schools of Civil Engineering, Electrical Engineering and Computer Science, Mechanical and Manufacturing Engineering, Chemical Engineering and Industrial Chemistry, and the Departments of Mining Engineering and Textile Technology (Engineering option only)

The John Fraser Memorial Award
V $130.00
C The best performance by a student in Year 1 or part-time equivalent of a Bachelor degree offered by the Faculty of Engineering

School of Civil Engineering

The Association of Consulting Structural Engineers of New South Wales Prize
V $225.00
C The best performance in CIVL4203 Structural Engineering in the Bachelor of Engineering degree course in Civil Engineering

The Association of Consulting Structural Engineers of New South Wales Prize
V $175.00
C The best performance in CIVL3303 Structural Design in the Bachelor of Engineering degree course in Civil Engineering

The Australian Conservation Foundation Prize
V $50.00
C The best performance in the subjects which develop environmental management concepts for the Civil Engineer

The Australian Institute of Traffic Planning and Management Prize
V $200.00
C The best performance in CIVL4844 Transport major in the Bachelor of Engineering degree course in Civil Engineering

The Boulderstone Hornibrook Prize
V $500.00
C The best performance in Engineering Construction and Management in the Bachelor of Engineering degree course in Civil Engineering

The Computing and Graphics Prize (Donor P W Kneen)
V $400.00
C The best performance in CIVL1106 Computing and Graphics by a student in the Bachelor of Engineering in Civil Engineering or Bachelor of Engineering in Environmental Engineering
The Crawford Munro Memorial Prize
V $300.00
C The best performance in CIVL3705 Water Resources in the Bachelor of Engineering degree course in Civil Engineering

The Hardie’s Pipeline Award
V $250.00 and plaque
C The best performance in CIVL4605 Water Supply and Wastewater Disposal in the Bachelor of Engineering degree course in Civil Engineering

The Institution of Engineers Environmental Engineering Prize
V $200.00
C The best performance in CIVL1007 Engineering Practice in the Bachelor of Engineering in Environmental Engineering course

The James Hardie Co Pty Ltd Prize
V $225.00
C The best performance in CIVL2505 Hydraulics 1 in the Bachelor of Engineering degree course in Civil Engineering

The Jeffery and Katauskas Prize
V $500.00
C The best performance in CIVL3402 Geotechnical Engineering 1 by a student in the Bachelor of Civil Engineering or Bachelor of Environmental Engineering degree courses

The Water Board Gold Medal
V $200.00 and Gold Medal
C The highest aggregate in CIVL4855 Water Major by a student in the Bachelor of Engineering in Civil Engineering degree course

The Welding Technology Institute of Australia Prize
V Books to the value of $200.00, 1 year membership of the Institute
C The best performance in CIVL4403 Materials Engineering 2

School of Computer Science and Engineering

The Logica Pty Limited Prize
V $1000.00
C The best performance by a graduand in a Computer Science degree course at honours level

School of Electrical Engineering

The Electricity Supply Engineers’ Association of New South Wales Prize
V $100.00
C The best overall performance including proficiency in electric power distribution in Year 3 full-time or equivalent part-time stages of the Bachelor of Engineering degree course in Electrical Engineering

The Institution of Electrical Engineers NSW International Centre Prize
V $200.00
C The best performance in Year 3 studies of the Bachelor of Engineering degree course in Electrical Engineering

The Institution of Electrical Engineers UK Prize
V £100.00, IEE Certificate, and 2 years’ free membership of the IEE
C The best performance in the final year thesis/project by a student proceeding to the award of the degree of Bachelor of Engineering in Electrical Engineering

The J. Douglas Macirucan Prize
V $60.00 book order
C Outstanding performance in the field of Control Systems in the final year of the Bachelor of Engineering degree course in Electrical Engineering

The Telecom Australia Prize
V $300.00
C The best telecommunications related thesis by a final year student proceeding to the award of the degree of Bachelor of Engineering in Electrical Engineering or Computer Engineering
Photovoltaic Devices and Systems

The Photovoltaics Prize (Applied Photovoltaics)
V $500.00
C The best performance in ELEC4540 Applied Photovoltaics in the Bachelor of Engineering degree course

The Photovoltaics Thesis Prize
V $500.00
C The best performance for an undergraduate thesis in the area of photovoltaics in the Bachelor of Engineering degree course

The Photovoltaics Prize (Advanced Photovoltaics)
V $500.00
C The best performance in ELEC9505 Solar Cells leading to the award of the Bachelor of Engineering or Master of Engineering Science or Doctor of Philosophy degrees

School of Geomatic Engineering

The Angus-Leppan Prize
V $300.00
C The best performance in Spatial Information subjects in the Bachelor of Surveying or Bachelor of Engineering in Geomatic Engineering degree courses

The School of Geomatic Engineering Prize
V $2000.00
C The best overall performance by a first year student proceeding to second year in the Bachelor of Surveying, or the Bachelor of Engineering in Geomatic Engineering degree courses

The Land Information Centre Prize
V $1000.00
C The best overall performance by a second year student proceeding to third year in the Bachelor of Surveying, or Bachelor of Engineering in Geomatic Engineering degree courses

The B.H.P. Engineering Prize in Surveying
V $2000.00
C The best overall performance by a student in year 3 proceeding to year 4, of the Bachelor of Surveying, or the Bachelor of Engineering in Geomatic Engineering degree courses

The R. S. Mather Memorial Prize
V $250.00
C The best performance in Geodesy subjects in the Bachelor of Surveying, or Bachelor of Engineering in Geomatic Engineering degree courses

The Australian Photogrammetric and Remote Sensing Society (NSW) Prize
V. $150.00
C The best performance in Photogrammetric subjects in the Bachelor of Surveying, or the Bachelor of Engineering in Geomatic Engineering degree courses

The Institution of Surveyors N.S.W. Incorporated Prizes
V An inscribed plaque and books to the value of $200
C The best performance in the graduating year of the Bachelor of Surveying, or the Bachelor of Engineering in Geomatic Engineering degree courses

The Board of Surveyor's Medal
V Medal
C The best performance in the final year of the Bachelor of Surveying, or Bachelor of Engineering in Geomatic Engineering degree courses

School of Mechanical and Manufacturing Engineering

The Ansett Australia Prize
V $200.00 and bronze medal
C The best overall performance in the Bachelor of Engineering degree course in Aerospace Engineering

The Atlas Copco Prize
V $125.00
C The best overall performance in the Bachelor of Engineering degree course in Mechanical Engineering

The ABB Power Plants Prize
V $100.00 book voucher
C The best performance in MANF1110 Manufacturing Technology

The Carrier Air Conditioning Pty Limited Prize
V $250.00
C The best performance in MECH2700 Thermodynamics
The Computer-based Engineering Design Prize
V $100.00
C The best undergraduate or postgraduate thesis making a contribution to computer-based Engineering design in the School of Mechanical and Manufacturing Engineering

The David Garment Memorial Prize
V $500.00 and Bronze Medal
C The best overall performance in the final year of the Bachelor of Engineering degree course in Naval Architecture

The Pacific Power Award
V $250.00
C The best performance in MECH4740 Thermal Power Plants

The Jeremy Hirschhorn Prize in Mechanical Engineering
V $100.00
C The best performance in a subject selected by the Head of School

The John Harrison Prize
V $100.00
C The best performance in MECH3400 Mechanics of Solids 3

The R.A.A. Bryant Prize
V $1260.00 (indexed per year since 1989)
C A student graduating with first class honours and the University Medal in Mechanical Engineering

The R.E. Jeffries Memorial Prize
V $500.00
C The best overall performance in the final year of the Bachelor of Engineering degree course in Manufacturing Management

The Shell Refining (Australia) Pty Ltd Prize
V $100.00
C The best performance in MECH1110 Graphical Analysis and Communication

The Shell Refining (Australia) Pty Ltd Prize
V $100.00
C The best undergraduate thesis by a student in the final year of the Bachelor of Engineering degree course in Mechanical Engineering

The Shell Refining (Australia) Pty Ltd Prize
V $100.00
C The best performance in the subject MANF3400 Engineering Economics by a student in the Bachelor of Engineering degree course

The Shell Refining (Australia) Pty Ltd Prize
V $100.00
C The best performance in MECH3212 Principles of Control of Mechanical Systems

The Spruson and Ferguson Prize
V $250.00
C The best performance in MECH3100 Mechanical Engineering Design 3 by a student in the Bachelor of Engineering degree course in Mechanical Engineering.

The Staedtler (Pacific) Pty Ltd Prize
V Products to the value of $350.00
C The best overall performance by a student in Year 2 of the Bachelor of Engineering degree course in Mechanical Engineering

The TRW Products Limited Prize
V $1000.00
C The best overall performance in the Bachelor of Engineering degree course in Manufacturing Management

The Royal Institution of Naval Architects (Australian Division) Prize
V $250.00
C The best ship design by a student in the final year of the Bachelor of Engineering degree course in Naval Architecture
Graduate University Prizes

The following information summarizes graduate prizes awarded by the University.

School of Civil Engineering

The Maunsell Waste Management Prize
V $500.00
C The best aggregate performance by a stage 1 student in CIVL8872/CIVL9872 Solid Waste Management by a student in the Master of Engineering Science or Master of Applied Science degree courses

The Institute of Advanced Motorists Prize
V $50.00
C The best performance in Traffic Planning and Control

The Maunsell Project Report Prize
V $500.00
C The best performance in CIVL8909 or CIVL9909 Project Report (9 credits) or GEOL9504 or GEOL9604 Project Report (9 credits) by a student in the Master of Engineering Science or Master of Applied Science degree courses

School of Mechanical and Manufacturing Engineering

The Computer-based Engineering Design Prize
V $100.00
C The best undergraduate or postgraduate thesis making a contribution to computer-based Engineering design in the School of Mechanical and Manufacturing Engineering
The University of New South Wales • Kensington Campus

Theatres
Biomedical Theatres E27
Central Lecture Block E19
Chemistry Theatres
(Dwyer, Mellor, Murphy, Nyholm, Smith) E12
Classroom Block (Western Grounds) H3
Fig Tree Theatre B14
Io Myers Studio D9
Keith Burrows Theatre J14
MacAuley Theatre E15
Mathews Theatres D23
Parade Theatre E3
Physics Theatre K14
Quadrangle Theatre E15
Rex Vowels Theatre F17
Science Theatre F13
Sir John Clancy Auditorium C24
Webster Theatre G15

Buildings
Applied Science F10
Arcade D24
Architecture H14
Barker Street Gatehouse N11
Basser College (Kensington) C18
Central Store B13
Chancellery C22
Dalton (Chemistry) F12
Goldstein College (Kensington) D16
Golf House A27
Gymnasium B5
Heffron, Robert (Chemistry) E12
International House C6
John Goodsell (Commerce and Economics) F20
Kensington Colleges (Office) C17
Library (University) E21
Link B6
Main, Old K15
Maintenance Workshop B13
Mathews F23
Menzies Library E21
Morven Brown (Arts) C20
New College L6
Newton J12
NIDA D2
Parking Station H25
Parking Station N18

Pavilions E24
Philip Baxter College (Kensington) D14
Quadrangle E15
Sam Cracknell Pavilion H8
Samuels Building F26
Shalom College N9
Webster, Sir Robert G14
Unisearch House L5
University Regiment J2
University Union (Roundhouse) E6
University Union (Blockhouse) G6
University Union (Squarehouse) E4
Wallace Wurth School of Medicine C27
Warrane College M7

General
Aboriginal Resource & Research Centre E20
Aboriginal Student Centre A29
Accommodation (Housing Office) E15
Accounting E15
Admissions C22
Adviser for Prospective Students C22
Alumni Relations: Pindari, 76 Wentworth St, Randwick
Anatomy C27
Applied Bioscience D26
Applied Economic Research Centre F20
Applied Geology F10
Applied Science (Faculty Office) F10
Archives, University E21
Arts and Social Sciences (Faculty Office) C20
Audio Visual Unit F20
Australian Graduate School of Management G27
Banking and Finance E15
Biochemistry and Molecular Genetics D26
Biological and Behavioural Sciences (Faculty Office) D28
Biomedical Engineering F25
Biomedical Library F23
Biotechnology F25
Built Environment (Faculty Office) H14
Centre for Archives Services C22
Cashier's Office C22
Centre for Membrane Science & Technology F10, K14
Chaplains E4
Chemical Engineering and Industrial Chemistry F10
Chemistry E12
Civil Engineering H20
Co-op Bookshop E15

Commerce and Economics (Faculty Office) F20
Communications Law Centre C15
Community Medicine D26
Computer Science and Engineering G17
Cornea and Contact Lens Research Unit
22-32 King St, Randwick
Economics F20
Education Studies G2
Educational Testing Centre E4
Electrical Engineering G17
Energy Research, Development & Information Centre F10
Engineering (Faculty Office) K17
English C20
Equal Employment Opportunity: 30 Botany Street Randwick
Examinations C22
Facilities Department C22, B14A
Fees Office C22
Fibre Science and Technology G14
Food Science and Technology B8
French C20
Geography K17
Geomatic Engineering K17
German and Russian Studies C20
Graduate School of the Built Environment H14
Groundwater Management and Hydrogeology F10
Health Service, University E15
Health Services Management C22
History C20
Human Resources C22
Industrial Design G14
Industrial Relations and Organizational Behaviour F20
Information, Library & Archives Studies F23
Information Systems E15
Information Technology Unit F25
International Student Centre F25
International Student Centre F9
IPACE Institute F23
Japanese Economic and Management Studies E15
Law and Justice Architecture K15
Law (Faculty Office) F21
Law Library F21
Legal Studies & Taxation F20
Liberal and General Studies C20
Library Lawn D21
Local Property C22
Marine Science D26
Marketing F20
Materials Science and Engineering E8
Mathematics F23
Mechanical and Manufacturing Engineering J17
Media Liaison C22
Medical Education C27
Medicine (Faculty Office) B27
Microbiology and Immunology D26
Michael Birt Gardens C24
Mines K15
Music and Music Education B11
News Service C22
Optometry J12
Pathology C27
Performing Arts B10
Petroleum Engineering D12
Philosophy C20
Physiology K15
Physics K15
Political Science C20
Printing Section C22
Professional Development Centre E15
Professional Studies (Faculty Office) G2
Psychology F23
Publications Section C22
Remote Sensing K17
Research Office: 34-36 Botany Street Randwick
Safety Science B11a
Science (Faculty Office) E12
Science and Technology Studies C20
Social Science and Policy C20
Social Policy Research Centre F25
Social Work G2
Sociology C20
Spanish and Latin American Studies C20
Sport and Recreation Centre B6
Squash Courts B7
Student Centre (off Library Lawn) C22
Student Services:
Counselling, Loans, Housing etc E15
Counselling E15
Students' Guild E15
Swimming Pool B4
Textile Technology G14
Theatre and Film Studies B10
Town Planning K15
WHO Regional Training Centre C27
Wool and Animal Sciences G14
Works and Maintenance B14A