COMBINED
FACULTY OF BIOLOGICAL SCIENCES
AND FACULTY OF SCIENCE
1974 HANDBOOK
EIGHTY CENTS

THE UNIVERSITY OF NEW SOUTH WALES
P.O. Box 1, Kensington, N.S.W., 2033
Phone: 663 0351
The University of New South Wales Library has catalogued this work as follows:—

UNIVERSITY OF NEW SOUTH WALES— 378.94405
Faculty of Biological Sciences
Combined Faculty of Biological Sciences
and Faculty of Science handbook.
Annual. Kensington.
1969†.

Continues UNIVERSITY OF NEW SOUTH WALES
—Faculty of Science Handbook.

University of New South Wales—Faculty of Biological Sciences—
Periodicals
University of New South Wales—Faculty of Science—Periodicals
University of New South Wales—Faculty of Science (aae)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>A6</td>
</tr>
<tr>
<td>CALENDAR OF DATES</td>
<td>A9</td>
</tr>
<tr>
<td>STAFF LIST</td>
<td></td>
</tr>
<tr>
<td>Faculty of Biological Sciences</td>
<td>A13</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>A18</td>
</tr>
<tr>
<td>ADMISSIONS AND ENROLMENT PROCEDURE</td>
<td></td>
</tr>
<tr>
<td>Admissions Office</td>
<td>A26</td>
</tr>
<tr>
<td>Admissions Procedure</td>
<td>A27</td>
</tr>
<tr>
<td>Enrolment Procedure</td>
<td>A27</td>
</tr>
<tr>
<td>University Union Card</td>
<td>A33</td>
</tr>
<tr>
<td>REQUIREMENTS FOR ADMISSION</td>
<td></td>
</tr>
<tr>
<td>Matriculation Requirements</td>
<td>A34</td>
</tr>
<tr>
<td>FEES</td>
<td></td>
</tr>
<tr>
<td>Student Fees</td>
<td>A41</td>
</tr>
<tr>
<td>Late Fees</td>
<td>A43</td>
</tr>
<tr>
<td>Withdrawal from Course</td>
<td>A44</td>
</tr>
<tr>
<td>RULES RELATING TO STUDENTS</td>
<td></td>
</tr>
<tr>
<td>General Conduct</td>
<td>A46</td>
</tr>
<tr>
<td>Attendance at Classes</td>
<td>A46</td>
</tr>
<tr>
<td>Indebtedness to the University</td>
<td>A47</td>
</tr>
<tr>
<td>Course Transfers</td>
<td>A47</td>
</tr>
<tr>
<td>Admission with Advanced Standing</td>
<td>A48</td>
</tr>
<tr>
<td>Changes in Course Programme</td>
<td>A48</td>
</tr>
<tr>
<td>Student Records</td>
<td>A49</td>
</tr>
<tr>
<td>Resumption of Courses</td>
<td>A49</td>
</tr>
<tr>
<td>Annual Examinations</td>
<td>A49</td>
</tr>
<tr>
<td>Deferred Examinations</td>
<td>A52</td>
</tr>
<tr>
<td>Application for Admission to Degree or Diploma</td>
<td>A53</td>
</tr>
<tr>
<td>Restriction upon Students Re-enrolling</td>
<td>A53</td>
</tr>
<tr>
<td>Re-admission after Exclusion</td>
<td>A57</td>
</tr>
</tbody>
</table>

A3
Ownership of Students’ Work A57
Change of Address A57
Notices A58
Lost Property A58
Parking A58
Application of Rules A58

STUDENT SERVICES
The Library A59
The University Union A59
Student Accommodation A60
Student Amenities Unit A61
Student Employment Unit A62
Chaplaincy Service A62
Student Health Unit A62
Student Counselling and Research Unit A63
Financial Assistance to Students A63
Financial Assistance to Aboriginal Students A65
Co-operative Bookshop A65

STUDENT ACTIVITIES
The Students’ Union A66
The Sports Association A66
Physical Education and Recreation Centre A67
Student Clubs and Societies A67
The University Regiment A67
The N.S.W. University Squadron A67
Royal Australian Navy A67

SCHOLARSHIPS, BURSARIES, CADETSHIPS AND PRIZES
Scholarships A68
Tertiary Allowances Scheme A68
Australian Postgraduate Awards A70
Other Awards A70
Bursaries A71
Cadetships A72
Prizes A73
UNDERGRADUATE COURSES

Science Course

Regulations Governing the Science Course

Definitions

Regulations

Schedule of Units

Pattern of Studies

Part-time Study

Advanced Standing

Pure and Applied Chemistry Course

Optometry Course

Psychology Course

POSTGRADUATE COURSES

SUBJECT INFORMATION AND TEXTBOOK LISTS

School of Anatomy

School of Applied Physics and Optometry

Department of Applied Physics

Department of Optometry

School of Biochemistry

School of Biological Technology

School of Botany

School of Chemistry

Computer Science

Engineering

General and Human Biology

School of Geography

School of Geology

School of History and Philosophy of Science

School of Human Genetics

School of Mathematics

Statistics

School of Microbiology

School of Philosophy

School of Physics

School of Physiology and Pharmacology

School of Psychology

School of Zoology
INTRODUCTION

The Science Course is offered in a unit system in all three years of the pass degree. In this system, the traditional subjects, such as Mathematics, are broken up into smaller units: first year subjects into two units, second year subjects into three units and third years subjects into four units.

First year subjects, which count as two units, differ from those of later years in that they must be taken as a whole. In other words one unit cannot be taken without the other. All students in the Science Course must enrol in Mathematics I, which is offered in three versions each of which counts as two units: Mathematics I, Higher Mathematics I and Mathematics IT. One only is required, but care must be taken in making the choice. In general, Mathematics IT considerably limits the choice of units in following years.

Students proceeding to a degree in Science will be associated principally with schools within the Faculties of Biological Sciences and Science. However, in accordance with the regulations, students may elect to take subjects from schools in other faculties.

Some schools do not offer a full range of level III units in the evening. Students in the part-time course are urged to take note of these Schools, since a science major involving any of them will only be possible for day-time attendances. The Schools concerned are marked below with ‡.

Students seeking advice should contact the representative of the relevant School. A list appears below:

Faculty of Applied Science
‡School of Applied Geology Mr. G. J. Baldwin

Faculty of Arts
School of Geography* Professor J. A. Mabbutt
School of Philosophy** Professor C. L. Hamblyn
‡School of History and Philosophy of Science Dr. J. Saunders
Faculty of Biological Sciences

General and Human Biology* (prerequisite for all other units in this Faculty excepting Psychology) Dr. A. E. Wood
School of Psychology ... Mr. P. J. Cleary (Science Course)
Mrs. N. Binks (Psychology)
‡School of Biochemistry† ... Professor E. O. P. Thompson
‡School of Biological Technology Professor B. J. Ralph
‡School of Botany† Dr. M. M. Hindmarsh
‡School of Microbiology† ... Professor J. Vincent
‡School of Zoology† Mrs. Patricia Dixon

Faculty of Engineering

School of Mechanical and Industrial Engineering (Engineering I*) Associate Professor R. G. Robertson
School of Electrical Engineering (Computer Science†) Mr. K. A. Robinson

Faculty of Medicine

‡School of Anatomy† Associate Professor B. R. A. O'Brien
‡School of Human Genetics ... Mr. A. E. Stark
‡School of Physiology† Dr. D. G. Garlick
Faculty of Science

School of Applied Physics and Optometry Professor C. J. Milner (Applied Physics)
Associate Professor J. Lederer (Optometry)

School of Chemistry Mr. W. J. Dunstan

‡School of Mathematics Associate Professor W. E. Smith

School of Physics Mr. K. Mann

In addition to the Science subjects, all undergraduates in Science are required to pass in three subjects in General Studies. A wide choice is available and students should consult the Department of General Studies handbook which is provided free of charge.

Students who wish to be admitted with advanced standing should obtain the necessary forms from the Admissions Office. Copies of recommended courses may be obtained from the Faculty Office (Room 57, Main Building).

C.J.Q.
N.C.S.

* First year level only
** First and Second year levels only
† Second and Third year levels only
‡ Schools which do not offer a full range of level III units in the evening
CALENDAR OF DATES FOR 1974

Session 1: March 4 to May 19
May Recess May 20 to May 26
May 27 to June 16
Midyear Recess June 17 to July 21

Session 2: July 22 to August 25
August Recess August 26 to September 1
September 2 to November 3
Study Recess November 4 to November 10

JANUARY

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday 1</td>
<td>New Year's Day—Public Holiday</td>
</tr>
<tr>
<td>Friday 11</td>
<td>Last day for application for review of results of annual examinations</td>
</tr>
<tr>
<td></td>
<td>Last day for application for admission under “show cause” rules</td>
</tr>
<tr>
<td>Monday 14</td>
<td>Timetable for deferred examinations available</td>
</tr>
<tr>
<td>Tuesday 15</td>
<td>Last day for acceptance of applications from students graduating in 1974 for admission to University degrees and diplomas</td>
</tr>
<tr>
<td>Friday 18</td>
<td>Last day for application for deferred examinations</td>
</tr>
<tr>
<td></td>
<td>Last day for acceptance of applications to enrol by new students and students repeating first year</td>
</tr>
<tr>
<td>Monday 28</td>
<td>Australia Day—Public Holiday</td>
</tr>
<tr>
<td>Tuesday 29</td>
<td>Deferred examinations begin</td>
</tr>
</tbody>
</table>

FEBRUARY

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday 8</td>
<td>Last day for students to appeal against exclusion under the re-enrolment rules</td>
</tr>
<tr>
<td>Saturday 9</td>
<td>Deferred examinations end</td>
</tr>
<tr>
<td>Monday 18</td>
<td>Enrolment period begins for new students and students repeating first year</td>
</tr>
<tr>
<td>Monday 25</td>
<td>Enrolment period begins for students re-enrolling (second and later years)</td>
</tr>
</tbody>
</table>

MARCH

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday 1</td>
<td>Last day for application for review of deferred examination results</td>
</tr>
<tr>
<td></td>
<td>Last day for students with deferred examinations to appeal against exclusion under the re-enrolment rules</td>
</tr>
</tbody>
</table>
| Monday 4 | *Session 1 begins*
Faculty of Biological Sciences meeting, 2 p.m. |
MARCH
Friday 15 Last day for acceptance of enrolments by new students (late fee payable)
Tuesday 19 Faculty of Science meeting, 2 p.m.
Wednesday 20 Board of Studies in Science meeting, 2 p.m.
Friday 22 Last day for application for review of results of deferred examinations
Friday 29 Last day for changes in course programmes
Last day for acceptance of enrolments by students re-enrolling (late fee payable)

APRIL
Thursday 4 Last day for discontinuation without failure of subjects which extend over the first session only
Friday 12 to Monday 15 Easter
Thursday 25 Anzac Day—Public Holiday

MAY
Tuesday 7 Provisional timetable for June/July examinations published
Tuesday 14 Last day for acceptance of corrected enrolment details forms
Monday 20 May Recess begins
Last day for students to advise of examination timetable clashes
Sunday 26 May Recess ends
Last date for discontinuation without failure of subjects which extend over the academic year

JUNE
Monday 3 Faculty of Biological Sciences meeting, 2 p.m.
Tuesday 4 Timetable for June/July examinations published
Tuesday 11 Faculty of Science meeting, 10 a.m.
Sunday 16 Session 1 ends
Monday 17 Queen’s Birthday—Public Holiday
Midyear Recess begins
Tuesday 18 Midyear examinations begin
Sunday 30 Last date for acceptance of applications for re-admission after exclusion under rules governing re-enrolment

JULY
Tuesday 2 Midyear examinations end
Wednesday 17 Board of Studies in Science meeting, 2 p.m.
Sunday 21 Midyear Recess ends
Monday 22 Session 2 begins

AUGUST
Thursday 1 Foundation Day
Monday 12 Faculty of Biological Sciences meeting, 2 p.m.
AUGUST
Thursday 22 Last day for discontinuation without failure of subjects which extend over the second session only
Monday 26 August Recess begins
 Holiday for non-academic staff

SEPTEMBER
Sunday 1 August Recess ends
Tuesday 10 Provisional timetable for annual examinations published
Monday 16 Last day for return of corrected enrolment details forms
Monday 23 Last day for students to advise of examination timetable clashes

OCTOBER
Tuesday 1 Faculty of Science meeting, 2 p.m.
Monday 7 Eight Hour Day—Public Holiday
Wednesday 23 Board of Studies in Science meeting, 2 p.m.
Monday 28 Faculty of Biological Sciences meeting, 2 p.m.
Tuesday 29 Timetable for annual examinations published

NOVEMBER
Monday 4 Study Recess begins
Sunday 10 Session 2 ends
Monday 11 Annual examinations begin

DECEMBER
Tuesday 3 Annual examinations end
Wednesday 25 Christmas Day—Public Holiday
Thursday 26 Boxing Day—Public Holiday

1975

Session 1: March 3 to May 11
May Recess: May 12 to May 18
May 19 to June 15
Midyear Recess: June 16 to July 20

Session 2: July 21 to August 24
August Recess: August 25 to August 31
September 1 to November 2
Study Recess: November 3 to November 9

JANUARY
Wednesday 1 New Year's Day—Public Holiday
Friday 10 Last day for application for review of results of annual examinations
JANUARY

Monday 13 Timetable for deferred examinations published
Friday 17 Last day for application for deferred examinations
 Last day for acceptance of applications to enrol by
 new students and students repeating first year
Monday 27 Australia Day—Public Holiday
Tuesday 28 Deferred examinations begin

FEBRUARY

Saturday 8 Deferred examinations end
Monday 17 Enrolment period begins for new students and
 students repeating first year
Friday 21 Results of deferred examinations available
Monday 24 Enrolment period begins for students re-enrolling
 (second and later years)

THE ACADEMIC YEAR

The academic year is divided into two sessions, each containing 14
weeks for teaching. There is a recess of five weeks between the two
sessions as well as short recesses of one week within each of the sessions.

Session 1 commences on the first Monday of March.
FACULTY OF BIOLOGICAL SCIENCES

Dean—Professor B. J. F. Ralph
Chairman—Professor E. O. P. Thompson
Administrative Officer—P. J. MacGinley

SCHOOL OF BIOCHEMISTRY

Professor of Biochemistry and Head of School
E. O. P. Thompson, MSc DipEd Syd., PhD Camb., ARACI

Associate Professors
J. B. Adams, MSc Syd., PhD N.S.W., ARACI
C. A. Marsh, BSc Lond., PhD Aberd., ARCS
K. G. Rienits, MSc Syd., PhD Birm.
J. F. Williams, MSc PhD N.S.W., ASTC, FRACI

Senior Lecturer
P. J. Schofield, BSc PhD N.S.W.

Lecturers
K. D. Barrow, MSc PhD Adel.
M. R. Edwards, MA PhD Camb.
A. J. MacKinlay, MSc PhD Syd.
K. E. Moon, MSc PhD N.S.W.
T. S. Stewart, BSc Syd., PhD N.S.W.
R. Tirrell, BSc Syd., PhD N.S.W.
G. Zalitis, BSc PhD W.Aust.

Senior Tutor
Mrs. Jill L. Gibbons, BSc Syd.

Tutors
Helen Dunn, BSc Syd.
K. O'Toole, BSc PhD Syd.
P. Stroobant, BSc Syd., PhD A.N.U.
Anne Waite, BSc Syd.

Teaching Fellows
Pamela F. Como, BSc A.N.U.
P. Cook, BSc N.S.W.
S. L. Pun, BSc N.S.W.
N. T. Rajaretnam, BSc N.S.W.

Professional Officers
A. L. d'Assumpcao, BSc Syd.
N. G. Baptist, BSc PhD Lond.
W. S. Golder, BPharm MSc PhD Syd., ASTC
SCHOOL OF BIOLOGICAL TECHNOLOGY

PROFESSOR OF BIOCHEMISTRY AND HEAD OF SCHOOL
B. J. F. Ralph, BSc Tas., PhD Liv., FRACI

SENIOR LECTURERS
Mrs. Pamela A. D. Rickard, BSc Syd., MSc N.S.W., PhD Lond.
P. L. Rogers, BE Adel., DPhil Oxon.

LECTURER
N. W. Dunn, MSc Melb., PhD Monash

PROFESSIONAL OFFICERS
T. Babij, BSc Syd., MSc N.S.W., ARACI
R. B. Doble, BSc N.S.W.
W. C. L. Wong, MSc PhD N.S.W.

SCHOOL OF BOTANY

PROFESSOR OF BOTANY AND HEAD OF SCHOOL
D. J. Anderson, BSc Nott., PhD Wales

Associate Professors
C. J. Driscoll, MSc Agr Syd., PhD Corn., DSc N.S.W.
Mary M. Hindmarsh, BSc PhD Syd.

SENIOR LECTURERS
M. J. K. Macey, BSc Lond., MSc PhD N.S.W.
J. H. Palmer, BSc PhD Sheff., BIBiol
C. J. Quinn, BSc Tas., PhD Auck.
R. S. Vickery, BSc Agr PhD Syd.
H. J. Willetts, MSc Brist., PhD N.S.W.

LECTURERS
J. T. Waterhouse, BSc Syd., MSc N.S.W., MSc R’dg., FLS
A. E. Wood, BSc Agr Syd., PhD N.S.W.

TUTOR
C. E. May, MSc Auck.

TEACHING FELLOWS
G. J. Olson, BSc Syd.
A. L. Wong, BSc N.S.W.

PROFESSIONAL OFFICERS
M. Kratochvil, IngAgr Prague
E. Leis, DipVetSc Tartu

SCHOOL OF MICROBIOLOGY

PROFESSOR OF MEDICAL MICROBIOLOGY AND HEAD OF SCHOOL
G. N. Cooper, MSc PhD Melb.

PROFESSOR OF MICROBIOLOGY
Vacant
Department of Medical Microbiology

ASSOCIATE PROFESSOR OF BACTERIOLOGY
D. D. Smith, MD ChB Glas., MPCA, MCPATH (seconded from School of Pathology)

SENIOR LECTURERS
R. A. Hawkes, BScAgr Syd., PhD A.N.U.
G. D. F. Jackson, BSc PhD Adel.
A. Lee, BSc PhD Melb.

SENIOR TUTOR
Mrs. Elizabeth H. Hegarty, MSc Qld.

TUTOR
W. D. Leach, BSc Car.

TEACHING FELLOW
C. M. Wolnizer, BSc N.S.W.

PROFESSIONAL OFFICER
K. G. Kenrick

Department of Microbiology

ASSOCIATE PROFESSORS OF MICROBIOLOGY
A. D. Brown, MSc Syd., PhD ManC.
A. J. Wicken, BSc PhD Cape T., MA Camb., FNZIC, ARIC

LECTURER
Mrs. Yvonne M. Barnet, BScAgr Syd., PhD N.S.W.

SENIOR TUTOR
B. P. McBrien, MSc N.S.W., ASTC

TEACHING FELLows
A. J. Markides, BSc N.S.W.
Judith Simpson, BSc N.S.W.

PROFESSIONAL OFFICERS
Mrs. Beverley Humphrey, BSc Syd.
M. H. M. Wilson

HONORARY ASSOCIATE (School)
Phyllis M. Rountree, DSc Melb., DipBact Lond.

SCHOOL OF PSYCHOLOGY

PROFESSOR OF PSYCHOLOGY AND HEAD OF SCHOOL

PROFESSOR OF PSYCHOLOGY
Vacant

ASSOCIATE PROFESSOR
R. T. Martin, BA DipPubAdmin Syd., MBPsychoanalSoc
EXECUTIVE ASSISTANT TO HEAD OF SCHOOL

A. K. Olley, BA Syd.

SENIOR LECTURERS

S. Bochner, BA Syd., MA Hawaii, PhD N.S.W.
A. E. Cary, BSc Lond.
E. E. Davies, MA Syd., PhD N.S.W.
K. R. Llewellyn, BA PhD Syd.
D. R. Martin, BA DipEd Syd.
D. McNicol, BA Adel., PhD Camb.
A. K. Olley, BA Syd.
R. C. Winkler, BA Syd., PhD N.S.W.

LECTURERS

K. D. Bird, BSc N.S.W.
J. C. Clarke, MA N.Z., PhD N.Y.
P. J. Cleary, BSc Qld., PhD N.S.W.
R. G. Farmer, BA PhD Qld.
Una Gault, MA Syd., PhD N.S.W.
W. Hopes, BA Syd.
C. P. Kenna, BA BSc Syd.
T. McKinnon, MA PhD Syd.
J. C. Murray, BA Syd.
G. Paxinos, AB Calif., MA PhD McG.

TEACHING FELLOWS

Mrs. Helen R. Disney, BA Oxon., MPsychol N.S.W.
Mrs. Darien L. Hayes, BA Adel.
Elizabeth A. Kennedy, BA Syd.

TUTORS

L. C. Jones, BS Texas
Marian M. Lawson, BA N'cle.
J. L. Levy, BA Syd., MSc Monash
Sue E. Lewis, BA N.E.
Mrs. Marie J. Waterhouse, BA Melb.
Barbara White, BSc Vic., B.C.

SCHOOL OF ZOOLOGY

PROFESSOR OF ZOOLOGY AND HEAD OF SCHOOL

T. J. Dawson, BRurSc PhD N.E.

ASSOCIATE PROFESSOR

A. K. O'Gower, MSc PhD Syd.

SENIOR LECTURERS

C. K. Goddard, BSc Edin., PhD St.And.
R. L. Hughes, BSc Tas.
R. J. MacIntyre, MSc Cant., PhD McG.
Ada M. Richards, MSc PhD N.Z.
E. Shipp, BSc Syd., PhD N.S.W.
LECTURERS
M. L. Augee, BSc Williamette, PhD Monash
C. J. F. Harrop, BSc Adel., PhD Camb.
Eleanor Russell, BSc Qld., PhD Camb.
A. Woods, MA Oxon., FRES, MIBiol

 SENIOR TUTOR
Mrs. Patricia I. Dixon, BSc N.S.W., DipEd Syd.

 TUTOR
Mrs. Barbara M. Bohdanowicz, BSc DipEd Syd.

TEACHING FELLOWS
K. R. Brown, BSc N.S.W.
F. N. Carrick, BSc N.S.W.
R. Degabriele, BSc N.S.W.
T. R. Grant, BSc Cant.

PROFESSIONAL OFFICERS
L. Lehoczky, MD Szeg.
G. A. Settle, BSc Syd.

HONORARY ASSOCIATE
R. Strahan, MSc W.Aust., FSIH

First Year Biology Teaching Unit

DIRECTOR
A. E. Wood, BScAgr Syd., PhD N.S.W.

SENIOR TUTOR
Mrs. Helen P. Ramsay, MSc PhD Syd.

TUTORS
R. J. Begg, BSc Syd.
I. G. Coleman, BSc N.S.W.
Lynn P. Day, BA Macq.
J. Otton, BSc Bath
W. G. Read, BSc N.S.W.

PROFESSIONAL OFFICER
A. R. Smith-White, BSc Syd.

RESEARCH ASSISTANT
Jill M. Griffin, BScAgr Syd.
FACULTY OF SCIENCE

Dean—Professor S. J. Angyal
Chairman—Professor R. M. Golding
Dean's Representative—Associate Professor N. C. Stephenson, MSc Syd.,
PhD DSc N.S.W., FRACI
Graduate Assistant—Mrs. Emma S. Rossi, BA Syd.

SCHOOL OF APPLIED PHYSICS AND OPTOMETRY

Professor of Applied Physics and Head of School
C. J. Milner, MA PhD Camb., FInstP, FAIP

Department of Applied Physics

Associate Professor
D. H. Morton, MA Oxon., FInstP, FAIP

Tutor Demonstrator
V. V. Hoi, BSc BE N.S.W.

Senior Lecturer
V. R. Howes, BSc PhD Lond.

Department of Optometry

Associate Professors
G. Amigo, BSc(OptSc) PhD N.S.W., ASTC, FIO, FAAO
J. Lederer, BSc Syd., MSc N.S.W., AS1C, FIO

Senior Lecturer
M. McN. Lang, BSc PhD N.S.W., ASTC, FIO, FAAO

Lecturers
J. A. Alexander, MSc N.S.W., ASTC, FIO, FAAO
B. A. Holden, BAppSc Melb., PhD City, LOSc, FAAO

Professional Officer
G. L. Dick, ASTC, FIO

SCHOOL OF CHEMISTRY

Professor of Analytical Chemistry and Head of School
L. E. Smythe, MSc Syd., PhD Tas., FRACI

A18
FACULTIES OF BIOLOGICAL SCIENCES AND SCIENCE

PROFESSOR OF ORGANIC CHEMISTRY
S. J. Angyal, PhD Bud., DSc N.S.W., FAA, FRACI

PROFESSOR†
G. W. K. Cavill, MSc Syd., PhD DSc Liv., FAA, FRACI

PROFESSOR OF THEORETICAL AND PHYSICAL CHEMISTRY
R. M. Golding, MSc Auck., PhD Camb., FNZIC, MInstP

PROFESSOR* AND HEAD OF DEPARTMENT OF INORGANIC CHEMISTRY
S. E. Livingstone, PhD DSc N.S.W., FSTC, FRACI

PROFESSOR OF CHEMISTRY
J. S. Shannon, DIC, PhD Lond., DSc Adel., FRACI

EXECUTIVE ASSISTANT TO HEAD OF SCHOOL
W. J. Dunstan, MSc Syd., ARACI

ADMINISTRATIVE OFFICER
R. Sutton, MVO, AFAIM

HONORARY ASSOCIATES
L. G. Clark, ASTC, ARACI
J. A. Mills, MSc Adel., PhD Camb.

Department of Analytical Chemistry

SENIOR LECTURERS
N. R. Davies, BSc PhD Lond., FRIC
E. C. Martin, MSc N.S.W., ASTC, FRACI

LECTURERS
P. W. Alexander, MSc PhD Syd., ARACI
S. Dilli, BSc PhD N.S.W., ASTC, ARACI

TEACHING FELLOW
D. V. Pillai, BSc N.S.W.

Department of Applied Organic Chemistry

ASSOCIATE PROFESSOR
E. R. Cole, MSc Syd., PhD N.S.W., FRACI, FAIFST

SENIOR LECTURER
G. Crank, MSc Qu., PhD Monash

LECTURER
P. T. Southwell-Keely, BSc Syd., PhD N.S.W.

SENIOR TUTOR
D. S. N. Murthy, MSc And., PhD Syd., ARIC

† In the field of organic chemistry
* In the field of inorganic chemistry
Department of Inorganic Chemistry

ASSOCIATE PROFESSORS
D. P. Graddon, MSc PhD Manch., FRIC
N. C. Stephenson, MSc Syd., PhD DSc N.S.W., FRACI

SENIOR LECTURERS
J. R. Backhouse, MSc Syd., PhD N.S.W.
H. A. Goodwin, BSc PhD Syd., ARACI
I. K. Gregor, BSc N.E., MSc PhD N.S.W.
D. J. Phillips, BSc PhD Lond.

LECTURERS
Mrs. Sidonie Lenzer, PhD Vienna, FRACI
B. S. Morris, MSc Syd., ARACI

SENIOR DEMONSTRATOR
Elisabeth Goldschmied, BSc BA BEd DipEd Melb., MSc N.S.W., ARMTC, ARACI

TEACHING FELLOW
M. Das, BSc Calc., MSc Patna, PhD Boston

Department of Nuclear and Radiation Chemistry

ASSOCIATE PROFESSOR
D. J. Carswell, MSc PhD DipEd Syd., FRACI

SENIOR LECTURER
N. T. Barker, MSc PhD N.S.W., ARACI

LECTURER
M. A. Long, MSc PhD Auck., ANZIC

Department of Organic Chemistry

ASSOCIATE PROFESSORS
P. S. Clezy, BSc PhD Tas., ARACI
R. A. Eade, MSc Syd., PhD Liv., FRACI
R. J. L. Martin, MSc Melb., PhD Lond., ARACI
J. J. Simes, MSc DipEd Syd., PhD Liv., FRACI

SENIOR LECTURERS
J. L. Courtney, BSc PhD N.S.W., ASTC, ARACI
W. J. Dunstan, MSc Syd., ARACI
M. J. Gallagher, MSc Qld., PhD Camb., ARACI
J. D. Stevens, BSc Tas., PhD N.E., ARACI

LECTURER
G. V. Baddeley, BSc Manch., DPhil Oxon.

SENIOR TUTOR
I. Salasoo, BSc PhD N.S.W., ASTC, ARACI
Department of Physical Chemistry

ASSOCIATE PROFESSOR
J. L. Garnett, MSc N.S.W., PhD Chic., ASTC, ARACI

SENIOR LECTURERS
G. S. Buchanan, MSc Syd., ARACI
B. R. Craven, MSc PhD N.S.W., ASTC
T. J. V. Findlay, BSc PhD St. And., ARACI
P. D. Lark, BSc Syd., MSc PhD N.S.W., ASTC, ARACI

LECTURERS
D. S. Alderdice, MSc Syd., PhD Lond.
Ruby Foon, MSc PhD Melb.
W. D. Johnson, BSc Syd., MSc N.E., PhD N.S.W.
B. J. Orr, MSc Syd., PhD Brist., ARACI
A. D. Rae, MSc PhD Auck., ANZIC

SENIOR TUTOR
M. P. Boggard, BSc PhD Syd.

TUTOR
R. O. Pascual, BSPharm Philippines, MA PhD Col.

First Year Chemistry

DIRECTOR OF FIRST YEAR CLASSES IN CHEMISTRY
June C. Griffith, MSc N.S.W., PhD Syd.

LECTURER
C. R. Taylor, BSc Syd.

SENIOR TUTOR
P. S. K. Chia, MSc PhD N.S.W.

TUTOR DEMONSTRATORS
V. C. Bien, MSc Syd.
G. B. Morris, BSc Syd.

CHIEF LECTURE DEMONSTRATOR
V. Shuk, DipChemIng Kiev

MICRO-ANALYST (SCHOOL)
E. Challen, DrIng Berl., ARACI

PROFESSIONAL OFFICERS (SCHOOL)
J. Bell, BE N.S.W., ASTC
D. C. Craig, BSc Syd., MSc N.S.W.
V. Djohadze, BSc N.S.W
R. J. Finlayson, BSc N.S.W., ARACI
A. M. Ingster, IngESE Paris, AMIRE(Aust.)
P. A. James, BSc N.S.W., ASTC
V. A. Pickles, MSc N.S.W., ASTC, ARACI
J. F. Rockwell, BSc N.S.W., ASTC
R. B. Rogers, BSc N.S.W., ARMTC
G. T. See, BSc N.S.W., ASTC
J. Sussman, BSc Syd.
M. K. Withers, MSc N.S.W.
SCHOOL OF MATHEMATICS

Professor of Applied Mathematics and Head of School
V. T. Buchwald, BSc Manc., MSc PhD Lond.

Professor of Applied Mathematics
J. M. Blatt, BA Cinc., PhD Corn. and Prin., FAA, FAPS

Professor of Pure Mathematics
G. Szekeres, DiplChemEng Bud., FAA

Professor of Statistics
A. M. Hasofer, BEE Faruk, BEc PhD Tas., MIEAust

Director of First Year Studies
Associate Professor A. H. Low, MSc DipEd Syd., PhD N.S.W.

Administrative Assistant
Pamela J. Monk, BSc N.E.

Professional Officer
G. J. P. Tomis, AB Carrol, Montana, BA Montana, MA Arizona

Department of Pure Mathematics

Associate Professor
J. L. Griffith, BA MSc DipEd Syd.

Senior Lecturers
S. A. Morris, BSc Qld., PhD Flin.
J. St. A. Sandiford, MSc Syd.
A. J. Van der Poorten, BA BSc PhD MBA N.S.W.

Lecturers
C. D. Cox, BSc DipEd Qld.
S. A. R. Disney, BA Adel., DPhil Oxon.
P. W. Donovan, BA Syd., DPhil Oxon.
J. D. Gray, BA Syd., PhD N.S.W.
D. C. Hunt, BSc Syd., MSc PhD Warw.
R. K. James, BSc PhD Syd.
J. H. Loxton, MSc Melb.
E. S. Noussair, BA Cairo, PhD Br.Col.
J. F. Price, MSc Melb., PhD A.N.U.
D. G. Tacon, BSc N’cle.(N.S.W.), PhD A.N.U.

Postdoctoral Teaching Fellow
L. J. Dickson, BS Seattle, PhD Prin.

Senior Tutors
Mary R. Freislich, BA Rand., MA N.S.W.
Mrs. Agnes V. Nikov, DiplMath DiplEd Bud.

Tutors
M. C. Cullinan, BSc Adel.
Susan J. M. Cullity, BSc W.Aust.
Department of Applied Mathematics

ASSOCIATE PROFESSORS
I. H. Sloan, BA BSc *Melb.*, MSc *Adel.*, PhD *Lond.*
W. E. Smith, MSc *Syd.*, BSc *Oxon.*, PhD *N.S.W.*, MInstP

SENIOR LECTURER
K. Okamoto, BS PhD *Tokyo* and *Louisiana State*

LECTURERS
M. L. Banner, BE MEngSc *Syd.*, PhD *Johns H.*
B. J. Burn, MSc Otago, PhD *Camb.*
B. S. Goh, BSc PhD *Cant.*
E. J. Moore, MSc W.Aust., PhD *Harv.*
A. H. Opie, BSc DipEd *Melb.*, PhD *Monash*

SENIOR TUTORS
M. Brender, MSc *McG.*
Nola G. Cooper, BSc *Melb.*, PhD *N.S.W.*

TUTORS
Felicity A. Dewar, BSc *Qu.*
C. Kidd, BSc *Syd.*

HONORARY ASSOCIATE
B. V. Hamon, BSc BE *Syd.*, MAIP

Department of Statistics

ASSOCIATE PROFESSORS OF MATHEMATICAL STATISTICS
J. B. Douglas, MA BSc DipEd *Melb.*
C. A. McGilchrist, BSc BEd *Qld.*, MSc PhD *N.S.W.*

SENIOR LECTURERS
A. G. L. Elliott, BSc W.Aust.
P. J. Staff, BSc DipEd *Syd.*, MSc PhD *N.S.W.*
M. K. Vagholkar, MSc *Bom.*, PhD *Lond.*, DIC

LECTURERS
P. J. Cooke, MSc N.E., MS PhD *Stan.*
R. B. Davis, BSc *Syd.*, MSc *N.S.W.*, DipEd *N.E.*
J. A. Eccleston, BSc *Syd.*, MSc Man., PhD *Corn.*

TUTORS
V. J. Gebski, BA *N.S.W.*
G. J. Newell, BSc *N.S.W.*
K. G. Russell, BA *Macq.*

Department of Engineering Mathematics

ASSOCIATE PROFESSOR
S. J. Prokhovnik, BA MSc *Melb.*

SENIOR LECTURERS
C. M. Groden, DiplMath *Zür.*
C. B. Kirkpatrick, MSc *Syd.*, AInstP
LECTURERS
M. G. Greening, MA Lond.
D. E. Mackenzie, BSc Tas.
D. A. Mustard, BSc Syd., MSc N.S.W.
W. J. Pretorius, MSc Rhodes, DIC

TUTORS
D. S. Craig, BSc Qld.
A. T. Daoud, BSc R'dg.
J. T. Goozeff, MSc N.S.W.
B. C. Raphael, DipTechSc N.S.W.I.T.

SCHOOL OF PHYSICS

PROFESSOR OF PHYSICS AND HEAD OF SCHOOL
E. P. George, BSc PhD Lond., DSc N.S.W., FInstP, FAIP

PROFESSORS OF EXPERIMENTAL PHYSICS
H. J. Goldsmid, BSc PhD DSc Lond., FInstP, FAIP
K. N. R. Taylor, BSc PhD Birm., FInstP

PROFESSOR OF THEORETICAL PHYSICS
Vacant

ASSOCIATE PROFESSORS
D. Haneman, DSc Syd., PhD R'dg., FAIP
J. C. Kelly, BSc Syd., PhD R'dg., FInstP, AAIP
J. F. McConnell, MSc Syd., PhD N.S.W., MInstP, AAIP
L. G. Parry, BSc DipEd Syd., MSc PhD N.S.W., MInstP, AAIP
H. F. Pollard, MSc W.Aust., PhD N.S.W., MInstP, MAAS, MASA, AAIP

EXECUTIVE ASSISTANT TO HEAD OF SCHOOL
K. Mann, BSc Qld., MSc N.S.W.

DIRECTOR OF FIRST YEAR STUDIES
J. E. Giutronich, BSc Syd., PhD N.S.W., AAIP

ADMINISTRATIVE OFFICER
C. C. Rosario

SENIOR LECTURERS
H. G. L. Coster, MSc PhD Syd., MInstP, AAIP
J. E. Giutronich, BSc Syd., PhD N.S.W., AAIP
J. R. Hanscomb, BSc Qld., MSc PhD N.S.W., AAIP, GradInstP
N. R. Hansen, BSc DipEd Syd., MSc N.S.W., MInstP, AAIP
L. B. Harris, BSc Lond., BA DipEd Durh., PhD N.S.W., AIM, AInstP
B. R. Lawn, BSc PhD W.Aust., GradInstP
R. G. Simons, BSc Syd., MSc Tel Aviv, PhD N.S.W.
LECTURERS
J. I. Dunlop, BSc PhD N.S.W., AAIP, MAAS ATI
C. T. Grainger, BSc DipEd Syd., MSc N.E., PhD N.S.W., MInstP, AAIP
E. Harting, BSc PhD N.S.W., ASTC
Veronica J. James, BA BSc Qld., PhD N.S.W., AAIP
P. J. Jennings, BSc W.Aust., PhD Harv.
K. Mann, BSc Qld., MSc N.S.W.
K. H. Marsden, BSc Lond., MSc N.S.W., MInstP, ARCS, AAIP
P. Mitchell, BSc PhD Adel., AAIP
J. Oitmaa, BSc PhD N.S.W., AAIP
G. L. Paul, MSc Syd., PhD Edin., AAIP
G. J. Russell, BSc PhD N.S.W., GradInstP, GradAIP
J. R. Shepanski, MSc Syd., AAIP
A. M. Stewart

SENIOR TUTOR
I. R. Dunn, BSc BA Melb., MIEEE

SENIOR TUTOR DEMONSTRATOR
M. D. Knight, BSc N.S.W.

TUTOR DEMONSTRATORS
E. P. Eyland, BSc N.S.W., BD Lond.
R. K. Katsch, BSc DipEd Syd.
Z. Kerestes, BSc Syd.
D. Littler, BSc N.S.W.
R. Outhred, MSc Syd., PhD N.S.W.
A. Pavey, BSc N.S.W.
P. Pick, BSc PhD Syd.
M. Varady, BSc Syd.
D. J. Wheeler, BSc N.S.W., GradAIP

TEACHING FELLOWS
R. L. Calvert, BSc S'ton., MSc Qu.
J. T. H. Ho, BSc H.K.
J. L. Menendez-Cortinas, LicSci(Phys) Barcelona
L. B. Shaw, BSc N.S.W., GradAIP
C. Uher, BSc N.S.W., GradAIP

HONORARY ASSOCIATES
J. S. Dryden, MSc Melb., PhD Lond., DIC, FAIP
G. H. Godfrey, MA BSc Syd., FInstP, FAIP, HonFIO
J. L. Symonds, BSc Adel., PhD Birm., FInstP, FAIP
G. K. White, MSc Syd., DPhil Oxon., FAA, FInstP, FAIP

HONORARY VISITING FELLOW
L. Lynch, BSc PhD N.S.W., GradAIP

PROFESSIONAL OFFICERS
H. Hofer, PhD Vienna, AAIP
V. Kastalsky, BSc PhD N.S.W., ASTC, MInstP, AAIP
B. Pantic, DipEng Belgrade, MIEAust
F. G. M. Steenbeeke, DiplMechEng Arnhem T.H.
ADMISSIONS AND ENROLMENT
PROCEDURE

ADMISSIONS OFFICE

The Admissions Office which is located in the Chancellery on the upper campus provides intending students (both local and overseas) with information regarding courses, admission requirements, scholarships and enrolment. Office hours are from 9.00 a.m. to 1.00 p.m. and 2.00 p.m. to 5.00 p.m. Monday to Friday and an evening service is provided during the enrolment period.

Applications for special admission, admission with advanced standing and from persons relying for admission on overseas qualifications are processed by the Admissions Office. The Office also receives applications from students who wish to transfer from one course to another, resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled. It is essential that the closing dates for lodgment of applications are adhered to, and, for further details the sections on “Rules Relating to Students” and “Enrolment Procedure for Undergraduate Courses” should be consulted.

Applications for admission to undergraduate courses from students who do not satisfy the requirements for admission (see section on “Requirements for Admission”), from students seeking admission with advanced standing, and from students who have had a record of failure at another university, are referred by the Admissions Office to the Admissions Committee of the Professorial Board.

Students seeking to register as higher degree candidates should discuss their proposals initially with the Head of the School in which they wish to register. An application is then lodged on a standard form and the Admissions Office, after obtaining a recommendation from the Head of the School, refers the application to the appropriate Faculty or Board of Studies Higher Degree Committee.
ADMISSIONS PROCEDURE

Details of the procedure to be followed by students seeking entry to first year courses at the University may be obtained from the Admissions Office or the Metropolitan Universities Admissions Centre.

Persons seeking entry to first year courses in one or more of the three Universities in the Sydney Metropolitan Area (Macquarie University, The University of New South Wales and the University of Sydney) are required to lodge a single application form with the Metropolitan Universities Admissions Centre, Third Floor, 13-15 Wentworth Avenue (near Liverpool Street), Sydney. Postal address: P.O. Box 7049, G.P.O., Sydney 2001. Telephone: 26 6301. On the application form, provision is made for applicants to indicate preferences for courses available in any of the three Universities. Students are notified individually of the result of their applications and provided with information regarding the procedures to be followed in order to accept the offer of a place at this University and complete their enrolment at the Enrolment Bureau, Unisearch House, 221 Anzac Parade, Kensington.

ENROLMENT PROCEDURE FOR UNDERGRADUATE COURSES

In 1974, it will be necessary for the University to limit entry into each Faculty and Board of Studies.

The enrolment procedure for the different classes of undergraduate students is as follows:

First Enrolments

(a) New South Wales residents already qualified for admission and persons who are applying for enrolment on the basis of qualifications gained or about to be gained outside New South Wales must lodge an application for enrolment with the Metropolitan Universities Admissions Centre, 13-15 Wentworth Avenue, Sydney (P.O. Box 7049, G.P.O., Sydney 2001) by 26th October, 1973.

(b) New South Wales residents qualifying for admission by the 1973 New South Wales Higher School Certificate Examination or the 1974 Sydney University Matriculation Examination and those who have attended a University in New South Wales in 1973 must apply for enrolment to the Metropolitan Universities
Admissions Centre, 13-15 Wentworth Avenue, Sydney (P.O. Box 7049, G.P.O., Sydney 2001) by 18th January, 1974.

Students whose applications for enrolment are accepted will be required to complete their enrolment at a specified appointment time before the start of Session 1. Compulsory fees must be paid on the day of the appointment. However, in special circumstances and provided class places are still available, students may be allowed to complete their enrolment after the prescribed week subject to the payment of a late fee.

Application forms for enrolment and details of the application procedures may be obtained on application to the Registrar, P.O. Box 1, Kensington 2033.

Failure in First Year

First year students who failed all subjects at the 1973 Annual Examinations and who were not granted any deferred examinations will NOT follow the above procedure. They are required to “show cause” why they should be allowed to continue in the course, and should await instructions in writing from the Registrar as to the procedure.

Later Year Enrolments

All students enrolling other than for the first time and not included above must attend at the time and place during Enrolment Week as set out in the booklet published each year on enrolment procedures. Enrolment forms for these students will be prepared and available at the enrolment centre.

All full-time and part-time students in the Pure and Applied Chemistry course are required to complete an enrolment form in the last fortnight of Session 2. The forms may be obtained from the office of the School of Chemistry (Mr. A. Funnell). An appointment will then be made to complete enrolment in accordance with the special arrangements made by the school. These arrangements are also published in the booklet on enrolment procedures.

A late fee of $10 will be incurred by students failing to enrol during Enrolment Week.

Miscellaneous Subjects
(students not proceeding to a degree or diploma)

Students may be accepted for enrolment in miscellaneous
subjects provided the University considers that the subject/s will be of benefit to the student and there is accommodation available. Only in exceptional circumstances will subjects taken in this way count towards a degree or diploma.

Students seeking to enrol in miscellaneous subjects should obtain a letter of approval from the Head of the appropriate School or his representative permitting them to enrol in the subject concerned. The letter should be given to the enrolling officer at the time of enrolment. Where a student is under exclusion he may not be enrolled in any miscellaneous subjects unless given approval by the Professorial Board.

Unless otherwise instructed, students who have obtained written permission to enrol should attend the Unisearch House enrolment centre (see next pages) on Friday 1st March, 2.00 p.m. to 6.00 p.m.

Students unable to enrol at the above time may enrol by attending the Admissions Office, Chancellery, at the times shown below, with a written permission to enrol from the Head of School.

Week commencing 4th March: Monday to Friday
9.30 a.m. to 1.00 p.m.
2.00 p.m. to 4.30 p.m.
5.30 p.m. to 8.00 p.m.

Week commencing 11th March: Monday to Friday
9.30 a.m. to 1.00 p.m.
2.00 p.m. to 4.30 p.m.
Wednesday and Friday
5.30 p.m. to 8.00 p.m.

Preliminary Enrolment

Board of Studies in Science: Science Course

Before the end of Session 2, each student must obtain his or her personal enrolment form and 1974 programme form (form SC74) plus instruction forms from the Faculty of Science Office, Room 57, Main Building.

After notification of the annual examination results, the student should complete form SC74 and lodge it, together with re-enrolment form filled in as far as possible, at the Science Faculty office not later than 18th January, 1974. Students whose programme forms and re-enrolment forms are not received by 18th January, 1974, must re-enrol at a late re-enrolment session and an additional charge will be made.
Pure and Applied Chemistry Course and Optometry Course

Before proceeding on vacation students are required to attend the Office of the School to complete the necessary preliminary enrolment procedures.

Enrolment forms must be completed as far as possible and left with the School office.

BSc in Psychology Course

Each student must obtain his or her personal enrolment form and Personal Programme FORM AP/RE from the School of Psychology. The forms are available from 22nd October, 1973. After notification of the annual examination results the student should indicate the subjects already completed and the proposed programme for 1974 on FORM AP/RE and forward this, together with his enrolment form (completed except for the entry of subjects) to reach the Enrolment Officer, School of Psychology, not later than Friday, 18th January, 1974.

Enrolment Timetable

Board of Studies in Science: Science Course

After fulfilling preliminary enrolment requirements, students should complete their re-enrolment at Unisearch House in accordance with the following timetable:

Full-time Course

Year 2 & Year 1 Repeats

<table>
<thead>
<tr>
<th>Surname Range</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to G</td>
<td>Wednesday 27th February</td>
<td>9.30 a.m. to 12.30 p.m.</td>
</tr>
<tr>
<td>H to M</td>
<td>Wednesday 27th February</td>
<td>2.00 p.m. to 4.30 p.m.</td>
</tr>
<tr>
<td>N to R</td>
<td>Thursday 28th February</td>
<td>9.30 a.m. to 12.30 p.m.</td>
</tr>
<tr>
<td>S to Z</td>
<td>Thursday 28th February</td>
<td>2.00 p.m. to 4.30 p.m.</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Surname Range</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to J</td>
<td>Monday 25th February</td>
<td>2.00 p.m. to 4.30 p.m.</td>
</tr>
<tr>
<td>K to R</td>
<td>Tuesday 26th February</td>
<td>9.30 a.m. to 12.30 p.m.</td>
</tr>
<tr>
<td>S to Z</td>
<td>Tuesday 26th February</td>
<td>2.00 p.m. to 4.30 p.m.</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>All students</th>
<th>Friday 1st March</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.30 a.m. to 12.30 p.m.</td>
<td>2.00 p.m. to 4.30 p.m.</td>
</tr>
</tbody>
</table>
New Students with Advanced Standing

Friday 1st March
9.30 a.m. to 12.30 p.m.
2.00 p.m. to 4.30 p.m.

Part-time Course

Stage 2 & Stage 1 Repeats
Monday 25th February
6.00 p.m. to 8.00 p.m.

Stage 3 and Stage 4 Students
Tuesday 26th February
6.00 p.m. to 8.00 p.m.

Stage 5 & Later Stages
Wednesday 27th February
6.00 p.m. to 8.00 p.m.

New Students with Advanced Standing
Thursday 28th February
6.00 p.m. to 8.00 p.m.

Pure and Applied Chemistry Course

Students in the course are required to attend Unisearch House in accordance with the following timetable:

a. Full-time Course
 Year 2 & Year 1 repeats
 Monday 25th February
 2.00 p.m. to 4.30 p.m.
 Year 3
 Wednesday 27th February
 9.30 a.m. to 12.30 p.m.
 Year 4
 Friday 1st March
 9.30 a.m. to 12.30 p.m.

b. Part-time Course
 Stage 1 repeats & Stages 2 and 3
 Tuesday 26th February
 2.00 p.m. to 4.30 p.m.
 6.00 p.m. to 8.00 p.m.
 Stage 4
 Wednesday 27th February
 2.00 p.m. to 4.30 p.m.
 Stages 5, 6 & later
 Tuesday 26th February
 2.00 p.m. to 4.30 p.m.
 6.00 p.m. to 8.00 p.m.

c. New Students with Advanced Standing
 Wednesday 27th February
 2.00 p.m. to 4.30 p.m.

Optometry Course

All students are required to attend Unisearch House, 221 Anzac Parade (across from Main Campus).

All students
Monday 25th February
2.00 p.m. to 4.30 p.m.
School of Psychology

BSc in Psychology students must attend for re-enrolment at the School of Psychology, The Sciences Building, as follows:

Full-time Students
Year 2 and Year 1 repeats
Tuesday 26th February
10.00 a.m. to 12 noon
Years 3 and 4
Tuesday 26th February
2.00 p.m. to 4.00 p.m.

Part-time Students
All Stages
Wednesday 27th February
6.00 p.m. to 7.30 p.m.

Students who are unable to attend personally should send a representative at the specified time with a letter of authority to collect their form for them.

Students who fail to do this or fail to attend personally will be required to attend one of the late enrolment periods.

Students who have completed the final examinations but have a thesis still outstanding are required to enrol for the period necessary to complete the thesis and to pay the requisite fees.

Course details must be completed during the prescribed Enrolment Week. For details of fee requirements, including late fee provisions, see under Fees.

Enrolment Centre

School of Psychology Level 10
The Sciences Building

Final Dates for Completion of Enrolment

No enrolments will be accepted from new students after the end of the second week of Session 1 (15th March, 1974) except with the express approval of the Registrar and the Head of the School concerned; no later year enrolments will be accepted after 31st March without the express approval of the Registrar which will be given in exceptional circumstances only.
UNIVERSITY UNION CARD

All students other than miscellaneous students are issued with a University Union membership card. This card must be carried during attendance at the University and shown on request.

The number appearing on the front of the card above the student’s name is the student registration number used in the University’s records. This number should be quoted in all correspondence.

The card must be presented when borrowing from the University libraries, when applying for travel concessions and when notifying a change of address. It must also be presented when paying fees on re-enrolment each year when it will be made valid for the year and returned. Failure to present the card could result in some inconvenience in completing re-enrolment.

A student who loses a Union card must notify the University Union as soon as possible.

New students will be issued with University Union cards at the University Union Enquiry Desk as soon as practicable after payment of fees. In the meantime, fees receipt form should be carried during attendance at the University and shown on request. A period of at least three weeks should be allowed to elapse after payment of fees before making application for the card. Cards will not be posted under any circumstances.
REQUIREMENTS FOR ADMISSION

A person who seeks to become a candidate for any degree of Bachelor of the University must first have qualified for matriculation and have satisfied the requirements for admission to the particular Faculty, Course or Subject* chosen.

In addition to complying with these conditions, candidates must be selected before being permitted to enrol in a course. In 1974, it will be necessary for the University to limit the number of students enrolling in all undergraduate courses.

Special Assistance for Aboriginal Students

The University may admit suitably qualified persons of Aboriginal descent outside of any quota restrictions.

Upon receipt of an application under this provision, the University will assess the applicant's potential to cope with University studies, and will make Student Counsellors available to discuss the choice of a course and subsequent career opportunities.

All enquiries relating to this scheme should be directed to the Registrar.

Matriculated Student

A candidate who has satisfied the conditions for matriculation and for admission to a course of study shall be classed as a "matriculated student" of the University, after enrolment.

A person who has satisfactorily met the conditions for admission may be provided with a statement to that effect on the payment of the prescribed fee.

SECTION A

General Matriculation and Admission Requirements

1. A candidate may qualify for matriculation by attaining in recognized matriculation subjects at one New South Wales

* Students who have gained a 2S level pass in Mathematics and/or Science, while being admitted, may have difficulties in their chemistry, physics and mathematics studies and are strongly advised to attend the bridging courses in these subjects.
Higher School Certificate Examination or at one University of Sydney Matriculation Examination a level of performance determined by the Professorial Board from time to time.

2. The level of performance required to qualify for matriculation shall be

(a) passes in at least five recognised matriculation subjects, one of which shall be English and three of which shall be at Level 2 or higher;

and

(b) the attainment of an aggregate of marks, as specified by the Professorial Board, in not more than five recognized matriculation subjects, such marks being coordinated in a manner approved by the Board.

3. The following subjects, and such other subjects as may be approved by the Professorial Board from time to time, shall be recognized matriculation subjects:

- English
- Greek
- Chinese
- Mathematics
- Latin
- Japanese
- Science
- French
- Hebrew
- Agriculture
- German
- Dutch
- Modern History
- Italian
- Art
- Ancient History
- Bahasa Indonesia
- Music
- Geography
- Spanish
- Industrial Arts
- Economics
- Russian

4. A candidate who has qualified to matriculate in accordance with the provisions of Clauses 1, 2 and 3 may be admitted to a particular Faculty, course or subject provided that:

(a) his qualification includes a pass at the level indicated in the subject or subjects specified in Schedule A as Faculty, course or subject prerequisites;

or

(b) the requirements regarding these particular Faculty, course or subject prerequisites, as specified in Schedule A, have been met at a separate Higher School Certificate or University of Sydney Matriculation Examination.

5. Notwithstanding any of the provisions of Clauses 1 to 4, the Professorial Board may grant matriculation status to any candidate at the Higher School Certificate or University of Sydney Matriculation Examination who has reached an acceptable standard and may admit him to any Faculty, course or subject.
NOTE

1. For the purposes of clause 2 (a), Mathematics and Science BOTH PASSED at first level or second level full course shall together count as three subjects.

2. For the purposes of clause 2 (b), Mathematics and Science TAKEN either singly or together at first level or second level full course shall each count as one and one half subjects.
<table>
<thead>
<tr>
<th>FACULTY OR COURSE</th>
<th>FACULTY OR COURSE PREREQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Science</td>
<td>(a) Science at Level 2S or higher</td>
</tr>
<tr>
<td>(excl. Applied Geography and Wool and Pastoral Sciences courses)</td>
<td>AND</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>(b) either Mathematics at Level 2F or higher</td>
</tr>
<tr>
<td>Engineering</td>
<td>OR</td>
</tr>
<tr>
<td>Industrial Arts Course</td>
<td>Mathematics at Level 2S, provided that the candidate's performance in this subject and his general level of attainment are at standards acceptable to the Professorial Board.</td>
</tr>
<tr>
<td>Medicine</td>
<td>(a) Science at Level 2S or higher</td>
</tr>
<tr>
<td>Military Studies</td>
<td>AND</td>
</tr>
<tr>
<td>(Engineering course and Applied Science course)</td>
<td>(b) Mathematics at Level 2S or higher</td>
</tr>
<tr>
<td>Science</td>
<td>OR</td>
</tr>
<tr>
<td>Bachelor of Science (Education)</td>
<td>Either Mathematics at Level 2F or higher</td>
</tr>
<tr>
<td>Architecture</td>
<td>OR</td>
</tr>
<tr>
<td>Applied Geography</td>
<td>Mathematics at Level 2S, provided that the candidate's performance in this subject and his general level of attainment are at standards acceptable to the Professorial Board.</td>
</tr>
<tr>
<td>(Biogeography and Pedology specializations)</td>
<td>(See over)</td>
</tr>
<tr>
<td>Wool and Pastoral Sciences courses</td>
<td>(See over)</td>
</tr>
<tr>
<td>Applied Geography</td>
<td>(See over)</td>
</tr>
<tr>
<td>(Economic Geography specialization)</td>
<td>(See over)</td>
</tr>
<tr>
<td>FACULTY OR COURSE</td>
<td>FACULTY OR COURSE PREREQUISITES</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Arts</td>
<td>English at Level 2 or higher</td>
</tr>
</tbody>
</table>
| Commerce | (a) Mathematics at Level 2S or higher
| | AND |
| | (b) either English at Level 2 or higher
| | OR |
| | English at Level 3, provided that the candidate's performance in this subject and his general level of attainment are at standards acceptable to the Professorial Board. |
| Law | Nil |
| Combined Jurisprudence/Law | Nil |
| Combined Arts/Law | As for Arts |
| Combined Commerce/Law | As for Commerce |
| Military Studies (Arts Course) | English at Level 2 or higher;
| | OR |
| | English at Level 3, provided that the candidate's performance in this subject and his general level of attainment are at standards acceptable to the Professorial Board, and provided that a candidate so qualified shall not enrol in a course of English literature. |
| Social Work course | English at Level 2 or higher
<p>| | OR |
| | English at Level 3, provided that the candidate's performance in the subject and his general level of attainment are at standards acceptable to the Professorial Board, and provided that a candidate so qualified shall not enrol in English I. |</p>
<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>SUBJECT PREREQUISITES</th>
</tr>
</thead>
</table>
| 1.011—Higher Physics I
1.001—Physics I | As for Faculty of Science |
| 2.001—Chemistry I
17.011—Human Biology
25.001—Geology I
25.111—Geoscience I | Science at Level 2S or higher |
| 10.011—Higher Mathematics I | Mathematics at Level 2F or higher |
| 10.001—Mathematics I | Either Mathematics at Level 2F or higher
OR
Mathematics at Level 2S, provided that the candidate's performance in the subject and his general level of attainment are at standards acceptable to the Professorial Board. |
| 10.021—Mathematics IT | Mathematics at Level 2S or higher |
| 15.102—Economics II | As for Faculty of Commerce |
| 50.111—English I
51.111—History IA
51.121—History IB | English at Level 2 or higher |
| 56.111—French I | French at Level 2 or higher |
| 59.111—Russian I | Russian at Level 2 or higher |
| 64.111—German I | German at Level 2 or higher |
| 65.111—Spanish I | Spanish at Level 2 or higher |
| 59.001—Russian IZ
64.001—German IZ
65.001—Spanish IZ | A foreign language, other than that in which enrolment is sought, at Level 2 or higher |
SECTION B

Supplementary Provisions for Matriculation

Notwithstanding the provisions of Section A above, candidates may be accepted as “matriculated students” of the University under the conditions which are listed in the University Calendar.
FEES

Payment of Fees

As from 1st January, 1974, no fees for tuition will be payable. Other fees and charges will still be payable. These include those charges raised to finance the expenses incurred in operating student activities such as the University Union, the Students' Union, the Sports Association and the Physical Education and Recreation Centre. Late fees are also charged where a student fails to observe required procedures by the appropriate time. Charges may also be payable, sometimes in the form of a deposit, for the hiring of kits of equipment which are lent to students for their personal use during attendance in certain subjects. Accommodation charges and costs of subsistence on excursions, field work etc. and for hospital residence (medical students) are payable in appropriate circumstances. In order to become a student member of the University in any particular course of study it is necessary to meet the entrance requirements for the course and to enrol formally in it. To effect enrolment it is necessary to present a duly completed and authorized enrolment form to the University cashier together with where payable, either the appropriate fees, or an authority authorizing those fees to be charged to some other person or institution.

Completion of Enrolment

All students are required to attend the appropriate enrolment centre during the prescribed enrolment period* for authorization of course programme. Failure to do so will incur a late fee of $10.

First year students (including students repeating first year) must complete enrolment (including fee payment) before they are issued with class timetables or permitted to attend classes. A first year student who has been offered a place in a course to which entry is restricted and who fails to complete enrolment at the appointed time may lose the place allocated.

Fees should be paid during the prescribed enrolment period but will be accepted during the first two weeks of Session 1. (For late fees see below.) No student is regarded as having completed an enrolment until fees have been paid. Fees will not be accepted

* The enrolment periods for Sydney students are prescribed annually in the leaflets on enrolment procedures.

A41
(i.e. enrolment cannot be completed) from new students in year-long courses after the end of the second week of Session 1 (i.e. 15th March, 1974), and after 31st March from students who are re-enrolling, except with the express approval of the Registrar, which will be given in exceptional circumstances only.

Students enrolling for the first time in any year at the commencement of Session 2 are required to pay all fees due within the first two weeks of that session. Student Activities fees due will be one half of the annual fees.

These arrangements also apply to medical students and although the structure of the academic year in the later years of the course in Medicine differs from that followed in other courses, medical students are required to observe the same dates for payment as apply to students in other courses.

Assisted Students

Scholarship holders or sponsored students who have not received an enrolment voucher or appropriate letter of authority from their sponsor at the time when they are enrolling should complete their enrolment paying their own fees. A refund of fees will be made when the enrolment voucher or letter of authority is subsequently lodged with the Cashier.

Extension of Time

Any student who is unable to pay fees by the due date may apply in writing to the Deputy Registrar (Student Services) for an extension of time. Such application must state year or stage, whether full-time or part-time, and the course in which enrolment is sought, describe clearly and fully the reasons why payment cannot be made and what extension is required, and must be lodged before the date on which a late fee becomes payable. Normally the maximum extension of time for the payment of fees is one month for fees due in Session 1 and for one month from the date on which a late fee becomes payable in Session 2.

Where an extension of time is granted to a first year student in Session 1, such student may only attend classes on the written authority of the Registrar, but such authority will not normally be given in relation to any course where enrolments are restricted.

Failure to Pay Fees or Other Debts

Any student who fails to pay prescribed fees or charges or is otherwise indebted to the University and who fails to make a satisfactory settlement of his indebtedness upon receipt of due notice ceases to be entitled to the use of University facilities. Such
A student is not permitted to register for a further session, to attend classes or examinations, or to be granted any official credentials.

No student is eligible to attend the annual examinations in any subject where any portion of his fees for the year is outstanding after the end of the fourth week of Session 2 (16th August, 1974).

In very special cases the Registrar may grant exemption from the disqualification referred to in the two preceding paragraphs upon receipt of a written statement setting out all relevant circumstances.

STUDENT FEES*

All undergraduate students and students taking miscellaneous subjects (with the exception of External students) will be required to pay —

<table>
<thead>
<tr>
<th>Fee Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Union**</td>
<td>$20.00</td>
</tr>
<tr>
<td>Student Activities Fees</td>
<td></td>
</tr>
<tr>
<td>University Union**</td>
<td>$30.00</td>
</tr>
<tr>
<td>Sports Association**</td>
<td>$4.00</td>
</tr>
<tr>
<td>Students' Union**</td>
<td>$7.00</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$17.00</td>
</tr>
</tbody>
</table>

(The miscellaneous fee is used to finance expenses generally of a capital nature relating to student activities. Funds are allocated to the various student bodies for projects recommended by the Student Affairs Committee and approved by the University Council.)

Depending on the subject being taken, students may also be required to pay —

Pathology Instrument Kit — $10. (Refundable on return in satisfactory condition.)

Special Examination Fees

Examinations conducted under special circumstances — $11 for each subject.

Review of examination results — $11 for each subject.

* Fees quoted in the schedule are current at the time of publication and may be amended by the Council without notice.

** Life members of these bodies are exempt from the appropriate fee or fees.
LATE FEES

Session 1 — First Enrolments

Fees paid in the late enrolment period and before commencement of Session 1 $10
Fees paid during the 1st and 2nd weeks of Session 1 $20
Fees paid after the commencement of the 3rd week of Session 1 with the express approval of the Registrar and Head of the School concerned $40

Session 1 — Re-enrolments

Failure to attend enrolment centre during enrolment week $10
Fees paid after the commencement of the 3rd week of Session 1 to 31st March $20
Fees paid after 31st March where accepted with the express approval of the Registrar $40

Session 2 — All Enrolments

Fees paid in 3rd and 4th weeks of Session 2 $20
Fees paid thereafter $40

WITHDRAWAL FROM COURSE

1. Students withdrawing from a course are required to notify the Registrar in writing.

2. Where notice of withdrawal from a course is received by the Registrar before the first day of Session 1 a refund of all fees paid will be made.

3. On notice of withdrawal:
 (a) a partial refund of the University Union Entrance Fee will be made on the following basis: any person who has paid the entrance fee in any year and who withdraws from membership of the University Union after the commencement of Session 1 in the same year, or who does not renew his membership in the immediately succeeding year may on written application to the Warden receive a refund of half the entrance fee paid.
(b) A partial refund of other Student Activities Fees will be made on the following basis:
University Union — $7.50 in respect of each half session.
University of New South Wales Students' Union — where notice is given prior to the end of the fifth week of Session 1, $3.50; thereafter no refund.
University of New South Wales Sports Association — where notice is given prior to the fifth week a full refund is made; thereafter no refund.
Miscellaneous Student Activities Fee — $4.25 in respect of each half session.

4. Where initial enrolment is made at commencement of Session 2 in any year and the student subsequently withdraws, a refund of fees based on the above rules may be made.

Cashier's Hours
The cashier's office is open for the payment of fees from 9.30 a.m. to 1.00 p.m., and from 2.00 p.m. to 4.30 p.m. Monday to Friday. It is open for additional periods during the first four weeks of Session 1. Students are advised to consult noticeboards for details.
RULES RELATING TO STUDENTS

GENERAL CONDUCT

Acceptance as a member of the University implies an undertaking on the part of the student to observe the regulations, by-laws and other requirements of the University, in accordance with the declaration signed at the time of the enrolment.

In addition, students are expected to conduct themselves at all times in a seemly fashion. Smoking is not permitted during lectures, in examination rooms or in the University Library. Gambling is also forbidden.

Members of the academic staff of the University, senior administrative officers, and other persons authorised for the purpose, have authority, and it is their duty, to check and report on disorderly or improper conduct or any breach of regulations occurring in the University.

ATTENDANCE AT CLASSES

Students are expected to be regular and punctual in attendance at all classes in the course or subject in which they are enrolled. All applications for exemption from attendance at lectures or practical classes must be made in writing to the Registrar.

In the case of illness or of absence for some other unavoidable cause a student may be excused by the Registrar from non-attendance at classes for a period of not more than one month, or on the recommendation of the Dean of the appropriate Faculty for any longer period.

Applications to the Registrar for exemption from re-attendance at classes, either for lectures or practical work, may only be granted on the recommendation of the Head of the appropriate School. The granting of an exemption from attendance does not carry with it exemption from payment of fees.

Application forms for exemption from lectures are available at the Admissions Office and should be lodged there (with a medical certificate where applicable). If session examinations have been missed this fact should be noted in the application.
Where a student has failed a subject at the annual examinations in any year and re-enrols in the same course in the following year, he must include in his programme of studies for that year the subject in which he has failed. This requirement will not be applicable if the subject is not offered the following year; is not a compulsory component of a particular course; or if there is some other cause, which is acceptable to the Professorial Board, for not immediately repeating the failed subject.

Where a student has attended less than eighty per cent of the possible classes, he may be refused permission to sit for the examination in that subject.

INDEBTEDNESS TO THE UNIVERSITY

Any student who is indebted to the University and who fails to make a satisfactory settlement of his indebtedness upon receipt of due notice ceases to be entitled to membership and privileges of the University. Such a student is not permitted to register for a further session, to attend classes or examinations, or to be granted any official credentials.

In very special cases the Registrar may grant exemption from the disqualification referred to in the preceding paragraph upon receipt of a written statement setting out all relevant circumstances.

COURSE TRANSFERS

Students wishing to transfer from one course to another must apply on an application form obtainable from the Admissions Office, Chancellery, by Friday, 18th January. As the number of places in each course is limited, failure to apply by 18th January, 1974, will probably result in the application for transfer being unsuccessful.

Students whose applications to transfer are successful are required to comply with the enrolment procedures for the year/stage of the new course in which they expect to enrol. Unless otherwise instructed they must present the letter granting approval of the transfer to the enrolling officer.

Students who have not received advice regarding their application to transfer before the date on which they are required to enrol should check with the Admissions Office.

Students should also advise the Enrolling Officer of the School in which they are enrolled of their intention to transfer.
ADMISSION WITH ADVANCED STANDING

Any person who makes application to register as a candidate for any degree or other award granted by the University may be admitted to the course of study leading to such degree or award with such standing on the basis of previous attainments as may be determined by the Professorial Board.

Students should consult the University Calendar for complete details regarding "Admission with Advanced Standing".

CHANGES IN COURSE PROGRAMMES AND WITHDRAWAL FROM SUBJECTS

Students seeking approval to substitute one subject for another (including change of session), add one or more subjects to their programme or discontinue part or all of their programme must make application to the Registrar through the Head of the School responsible for the course on forms available from School offices. The Registrar will inform students of the decision. Application to enrol in additional subjects must be submitted by 31st March.

Approval of withdrawal from subjects is not automatic, each application being determined after considering the circumstances advanced as justifying withdrawal.

It is emphasized that:

1. Withdrawal from a subject, tuition in which extends over the academic year, at any time after the May recess;
2. withdrawal from a subject, tuition in which extends over only one session, at any time after one month from the commencement of the subject; or
3. failure to sit for the examinations in any subject in which the student has enrolled,

shall be regarded as failure to satisfy the examiners in the subject, unless written approval to withdraw without failure has been obtained from the Registrar.

If a student applies after the following dates, to withdraw from a subject he will most likely be awarded a failure in the subject:

- Subject taken over Session 1 only 4th April 1974
- Subject taken over Session 2 only 22nd August 1974
- Subject taken over both sessions 26th May 1974
STUDENT RECORDS

All students will receive enrolment details forms by 30th April and 2nd September. It is not necessary to return the forms unless any information recorded thereon is incorrect. Amended forms must be returned to the Examinations and Student Records Section by 14th May and 16th September respectively. Amendments notified after the closing date will not be accepted unless exceptional circumstances exist and approval is obtained from the Registrar. Amended forms returned to the Registrar will be acknowledged in writing within fourteen days.

RESUMPTION OF COURSES

Students wishing to resume their studies after an absence of twelve months or more are required to apply to the Admissions Office for permission to re-enrol by 18th January, 1974. Students re-enrolling in this way will normally be required to satisfy conditions pertaining to the course at the time of re-enrolment. This condition applies also to students who have been re-admitted to a course after exclusion under the rules restricting students re-enrolling.

ANNUAL EXAMINATIONS

Formal examinations in most faculties are held in June-July and November-December. Provisional timetables including the dates and times of examinations are posted on the central notice boards in the Wallace Wurth Medical School, Biological Sciences Building, the Chancellery, Central Lecture Theatre Block, Dalton (Chemistry) Building, Main Building (Mining and Physics), outside the Science Theatre and in the Western Grounds Area on 7th May and 10th September. Students must advise the Examinations Unit (Chancellery) of clash of examinations by 20th May and 23rd September. Final timetables will be displayed, and individual copies available for students, on 4th June and 29th October.

Misreading of the timetable is not an acceptable excuse for failure to attend an examination.

A student suffering from a physical disability which puts him at a disadvantage in written examinations should apply to the Registrar in writing, as early as possible, for special provisions to be made for him to take examinations. The request should be supported by medical or other evidence.
Examinations are conducted in accordance with the following rules and procedure:—

(a) Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.

(b) Candidates are required to be in their places in the examination room not less than ten minutes before the time for commencement.

(c) No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.

(d) No candidate shall be admitted to an examination after thirty minutes from the time of commencement of the examination.

(e) No candidate shall be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.

(f) No candidate shall be re-admitted to the examination room after he has left it unless during the full period of his absence he has been under approved supervision.

(g) A candidate shall not by any improper means obtain, or endeavour to obtain, assistance in his work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.

(h) Smoking is not permitted during the course of examinations.

(i) All answers must be in English unless otherwise directed. Foreign students who have the written approval of the Officer-in-Charge of Examinations may use standard translation dictionaries.

(j) A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room and to such further penalty as may be determined in accordance with the By-laws.

A student who through serious illness or other cause outside his control is unable to attend an examination is required to bring the circumstances (supported by a medical certificate or other evidence) to the notice of the Registrar not later than seven days after the date of the examination, and may be required to submit to medical examination.
A student who attempts an examination yet claims that his performance is prejudiced by sickness on the day of the examination, must notify the Registrar or Examination Supervisor, before, during or immediately after the examination and may be required to submit to medical examination.

A student who believes that his performance at an examination has been affected by serious illness during the year or by other cause outside his control, and who desires these circumstances to be taken into consideration in determining his standing is required to bring the evidence (supported by medical certificates or other evidence) to the notice of the Registrar not later than seven days after the date of the examination.

In the assessment of a student's progress, consideration is given to work in laboratory and class exercises and to any term or other tests given throughout the year, as well as to the results of written examinations.

Final examination results are posted to the term addresses of students and it is therefore essential that any change of address be advised to the Examination and Student Records Section. Results are also posted on School notice boards and in the foyer of the Library. No examination results will be given by telephone.

Examination results may be reviewed for a fee of $11 a subject, which is refundable in the event of an error being discovered. Such a review will consist primarily in ensuring that all questions attempted by candidates have been marked and that the total of all marks awarded are correct. Applications for review must be submitted on the appropriate form to the Examinations and Student Records Section, together with the necessary fee by the date indicated on the notification of results.

Examination Results

Graded Passes

- Passes will be graded as follows:
 - High Distinction (indicates a quite superior performance).
 - Distinction (indicates a superior performance).
 - Credit (indicates a good, but not superior performance).
 - Pass (indicates the achievement of an acceptable minimum level of competence in relation to the course objectives).

Pass Conceded

A pass conceded may be granted to students where the mark in the subject is slightly below the required standard and whose overall performance warrants it.
Terminating Pass

A terminating pass may be granted where the mark for the subject is below the required standard. A terminating pass will not permit a student to progress further in the subject or to enrol in any other subject for which a pass in the subject is a co-requisite or prerequisite. A student granted a terminating pass may attempt a deferred examination, if available, to improve his performance, but if the student fails the deferred examination, the terminating pass will stand.

DEFERRED EXAMINATIONS

Deferred examinations may be granted in the following cases:—

(i) When a student through illness or some other acceptable circumstance has been prevented from taking the annual examination or has been placed at a serious disadvantage during the annual examinations. Applications for deferred examination in this category must be lodged with the Registrar with appropriate evidence of the circumstances (e.g., medical certificate) not later than seven days after the examination concerned. All such applications shall be reported to the Head of the School responsible for the subject. Before a deferred examination is granted on medical grounds, regard shall be paid to the student's class and assignment work in the subject, to his general performance in the year, and to the significance of the annual examination in compiling the composite mark.

(ii) To help resolve a doubt as to whether a student has reached the required standard in a subject.

(iii) To allow a student by further study to reach the required standard in a subject. The granting of a deferred examination in such cases will be based on the general quality of the student's performance.

(iv) Where a student's standing at the annual examinations is such that his progression or graduation could depend on his failure in one subject only, then his position in that subject shall be again reviewed with a view to determining whether a deferred examination may be granted notwithstanding his failure otherwise to qualify for such concession.

Deferred examinations must be taken at the centre in which the student is enrolled, unless he has been sent on compulsory industrial training to remote country centres or interstate. In this case
the student must advise the Registrar, on a form available from his school or the Enquiry Desk, Chancellery, of relevant particulars, before leaving for his destination, in anticipation that deferred examination papers may have to be forwarded to him. Normally, the student will be directed to the nearest University for the conduct of the deferred examination.

A student eligible to sit for a deferred examination must lodge with the Accountant an application accompanied by the fee of $8 per subject, by the date indicated on the notification of results.

Conceded Deferred Examination

A conceded deferred examination, may be granted to a student where the mark in the subject is below the standard at which deferred examinations have been granted in the subject but whose overall performance warrants such a concession.

APPLICATION FOR ADMISSION TO DEGREE OR DIPLOMA

Applications for admission to a degree or diploma of the University must be made on the appropriate form in a student’s final year. Applicants should ensure that they have completed all requirements for the degree or diploma, including industrial training where necessary. Any variation such as cancelling of application in order to proceed to an honours degree or submission of an application following discontinuation of honours programme, must be submitted in writing to the Registrar no later than 30th January.

RESTRICTION UPON STUDENTS RE-ENROLLING

The University Council has adopted the following rules governing re-enrolment with the object of requiring students with a record of failure to show cause why they should be allowed to re-enrol and retain valuable class places. These rules apply retrospectively from 1st January, 1971.

1. (i) A student shall show cause why he should be allowed to repeat a subject in which he has failed more than once. (Failure in a deferred examination as well as in the initial examination counts, for the purpose of this regulation, as one failure). Where such subject is prescribed as a part of the student’s course he shall be required to show cause why he should be allowed to continue the course.
Notwithstanding the provisions of Clause 1(i)

(ii) A student enrolled in the first year or first stage of any course who has failed in more than half the programme in which he is enrolled for that year or stage shall be required to show cause why he should be allowed to continue in the course.

(iii) A student enrolled in the first year of the Medical course who has failed in more than one subject of that year shall be required to show cause why he should be allowed to continue in the Medical course.

(iv) The provisions of sections (ii) and (iii) of this rule shall be deemed to apply to any student on transfer from another course or institution whose programme of studies in the first year of enrolment immediately following transfer is comprised of subjects so chosen that half or more of such subjects are listed in the University Calendar as first year subjects.

2. Notwithstanding the provisions of Clause 1, a student shall be required to show cause why he should be allowed to continue a course which he will not be able to complete in the time set down in the following schedule:

<table>
<thead>
<tr>
<th>Number of years in course</th>
<th>Total time allowed from first enrolment to completion (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

3. No full-time student shall, without showing cause, be permitted to continue a course unless all subjects of the first year of his course are completed by the end of his second year of attendance. No student in the Faculty of Arts shall, without showing cause, be permitted to continue a course unless he completes four subjects by the end of his second year of attendance. No full-time student in the Bachelor of Social Work course shall without showing cause be permitted to continue with the course unless he completes the equivalent of four full subjects by the end of his second year of attendance.
No part-time student in a course in which progression is by stage shall without showing cause be permitted to continue a course in which he will not be able to complete all subjects of the first two stages by the end of his fourth year of attendance and all subjects of the third year and fourth stages of his course by the end of his seventh year of attendance.

No part-time student in the Science course shall without showing cause be permitted to continue a course in which he will not be able to complete level one Mathematics and six other level one units by the end of his fourth year of attendance and fourteen units inclusive of at least three at level two of his course by the end of his seventh year of attendance.

No student in the Faculty of Medicine shall, without showing cause, be permitted to continue with the medical course unless he completes the second year of the course by the end of his third year of attendance, and the third year of the course by the end of his fourth year of attendance.

4. A student who has a record of failure in a course at another University shall be required to show cause why he should be admitted to this University. A student admitted to a course at this University following a record of failure at another University shall be required to show cause, notwithstanding any other provisions in these rules, why he should be permitted to continue in that course if he is unsuccessful in the annual examinations in his first year of attendance at this University.

5. Any student excluded under any of the Clauses 1-3 may apply for re-admission after two academic years and such application shall be considered in the light of any evidence submitted by him.

6. A student wishing "to show cause" under these provisions shall do so in writing to the Registrar. Any such application shall be considered by a committee, hereinafter referred to as the Re-enrolment Committee appointed by the Professorial Board, which shall determine whether the cause shown is adequate to justify his being permitted to continue his course or re-enrol as the case may be.
The Vice-Chancellor may on the recommendation of the Re-enrolment Committee exclude from attendance in a course or courses any student who has been excluded from attendance in any other course under the rules governing re-enrolment and whose record at the University demonstrates, in the opinion of the Re-enrolment Committee and the Vice-Chancellor, the student's lack of fitness to pursue the course nominated.

A student who has failed, under the provisions of Clause 6 of these rules, to show cause acceptable to the Re-enrolment Committee why he should be permitted to continue in his course, and who has subsequently been permitted to re-enrol in that course or to transfer to another course, shall also be required to show cause, notwithstanding any other provisions in these rules, why he should be permitted to continue in that course if he is unsuccessful in the annual examinations immediately following the first year of resumption or transfer of enrolment as the case may be.

Any student who is excluded from attendance in any course or subject under the provisions of these rules may appeal to an Appeal Committee constituted by Council for this purpose. The decision of the Appeal Committee shall be final.

The notification to any student of a decision by the Re-enrolment Committee to exclude the student from attendance in any course or subject shall indicate that the student may appeal against the decision to an Appeal Committee. In lodging such appeal the student shall ensure that a complete statement is furnished of all grounds on which the appeal is based and shall indicate whether or not the student wishes to appear in person before the Appeal Committee.

In considering an appeal the Appeal Committee, on the basis of the student's academic record and the stated grounds of appeal, shall decide:

(i) whether there are grounds which justify the Committee seeing the student in person, or

(ii) whether there is sufficient information available to the Committee to allow decision without seeing the student in person.
and so proceed to determine the application accordingly.

RE-ADMISSION AFTER EXCLUSION

Applications for re-admission must be made on the standard form and lodged with the Registrar not later than 30th June of the year prior to that for which re-admission is sought. An application should include evidence of appropriate study in the subjects (or equivalents) on account of which the applicant was excluded. In addition, evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity, should be furnished. An applicant may be required to take the annual examinations in the relevant subjects as qualifying examinations in which case re-admission does not imply exemption from the subject. Late applications cannot be considered where, in the opinion of the University, insufficient time will be available for the student to prepare himself for any qualifying examinations which may be required.

It should be noted that a person under exclusion may not be enrolled in miscellaneous subjects unless he has received the approval of the Professorial Board on the recommendation of the Admissions Committee.

Persons who intend applying for re-admission to the University at a future date may seek advice as to ways in which they may enhance their prospects of qualifying for re-admission. Enquiries should be made on a form obtainable from the Examinations and Student Records Section, and lodged with the Registrar.

OWNERSHIP OF STUDENTS' WORK

The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, theses or other work executed by students as part of their courses, or submitted for any award or competition conducted by the University.

CHANGE OF ADDRESS

Students are requested to notify the Student Records Section of the Registrar's Division of any change in their address, as soon as possible. Failure to do this could lead to important correspond-
ence not reaching students. The University cannot accept responsibility if official communications fail to reach students who have not notified their change of address. A Change of Address Advice form is available at Faculty and School offices and at the Enquiry Counters on the Ground Floor of the Chancellery Building.

NOTICES

Official University notices are displayed on the notice boards and students are expected to be acquainted with the contents of those announcements which concern them.

LOST PROPERTY

All enquiries concerning lost property should be made to the Superintendent on Extension 2503 or to the Lost Property Office at the Union.

PARKING WITHIN THE UNIVERSITY GROUNDS

Because of the limited amount of parking space available, only the following categories of students may apply for a permit; motor cycle owners (annual fee $3.90); higher degree students (limited issue, annual fee $7.80); postgraduate, and senior undergraduate students who have completed three years of a full-time or part-time course (annual fee $3.90). A permit will allow access to the campus between 5 p.m. and 11 p.m. on weekdays and during library hours on Saturdays, Sundays and public holidays. Enquiries should be made to the Property Section, Room 240, The Chancellery Building, or phone 663 0351, extension 2920. It should be noted that increasing demand for parking space may require the imposition of further restrictions.

APPLICATION OF RULES

General

Any student who requires information on the application of these rules or any service which the University offers may make inquiries from the Admissions Office, the Student Counselling Centre or the Registrar.

Appeals

Section 5(c) of Chapter III of the By-laws provides that "Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action by the Vice-Chancellor, whether on appeal or otherwise, to the Council".
STUDENT SERVICES

THE LIBRARY

The University library is on the upper campus and adjacent to the Chancellery, and the Arts and Commerce Buildings. The Biomedical Library is in the Biological Sciences Building with a branch at Prince Henry Hospital (Phone: 661 0111). The Law Library is temporarily housed on the 4th Floor of the Science Building on the upper campus.

The Library’s Undergraduate Collection covers the teaching and research interests of the Faculty, and students are expected to read widely and critically from it.

It is recommended that students attend the “Introduction to the Library” which is held at advertised times during Orientation Week and the first week of Session 1. The “Introduction” uses audio-visual aids to describe the physical layout of the undergraduate library and the services available to readers.

Copies of the booklet, Guide to the Library, are available on request.

Students who are interested in a subject approach to information may attend a course which outlines methods of searching for information in libraries. This course runs for eight hours over a period of one week.

Individual assistance for readers with specific library problems is provided by the Reader Assistance Unit which is located in the foyer.

Staff and students must use a machine readable identification card to borrow from the main University Library. Personal identification is required in the other libraries listed. For students a current union card is acceptable. Staff must apply to the Library for a library card.

THE UNIVERSITY UNION

The University Union, housed in the circular building and joined by a courtyard to an adjacent rectangular building, is located near the entrance to the Kensington campus from Anzac
Parade. The third building in the Union complex was completed in 1971. Membership of the Union is compulsory for all registered students of the University and is also open to all members of staff and graduates of the University.

On the lower campus the range of facilities provided by the Union includes a cafeteria service and other dining facilities, a large shopping centre, cloakroom, banking and hairdressing facilities, showers, a women’s lounge, common, games, reading, meeting, music, practice, craft and dark rooms. Photocopying, sign printing and stencil cutting services are also available. On the upper campus there is a cafeteria and coffee bar on the ground floor of the Sciences Building, a vending area and lounge off the Science Plaza, a similar facility off the Commerce Courtyard and a Snack Bar at the Golf House on the corner of High and Botany Streets.

The Union also sponsors and conducts courses in many facets of the arts including weaving, photography, creative dance and yoga.

STUDENT ACCOMMODATION

The Kensington Colleges

Accommodation for students is provided within the group of The Kensington Colleges which comprise Basser College, Goldstein College and Philip Baxter College. The group houses 450 men and women students, as well as staff members. Tutors in residence provide tutorial assistance in a wide range of subjects.

Board and residence fees, which are payable on a session basis, amount to $336 per session. Intending students should apply in writing to the Master, Box 24, Post Office, Kensington, N.S.W. 2033, from whom further information is available.

International House

International House accommodates over 180 students of whom half are Australian; the remaining half is made up of students from some 20 different countries. First-year students who have come to the University straight from school are not eligible for residence because preference is given to mature undergraduates and postgraduate students. Fees are $24 per week.

Students should apply as soon as possible if they wish to reside at International House at a later date. They should write to the Warden, International House, P.O. Box 88, Kensington, N.S.W. 2033 for information.
New College

This Church of England College is the first of the independent Colleges on the Campus of the University. There are no religious tests, and accommodation is available for 220 men and women in single study-bedrooms. Fees are $25 per week and may change in 1974.

Enquiries should be addressed to The Master, New College, Anzac Parade, Kensington, N.S.W. 2033.

Warrane College

This College, an affiliated Roman Catholic residential college, was completed in 1970, and provides accommodation for 200 students and fourteen resident tutors.

Basic fees are $28 per week for board and residence, payable on a session basis, and a registration fee of $20. Fees may change in 1974. Intending students should write to The Master, Warrane College, Box 123, P.O. Kensington, N.S.W. 2033.

Shalom College

Shalom College, which opened in 1973, provides accommodation for 86 men and women students. The basic fee for residents is $28 a week although this may change in 1974. Non-resident membership is available to students who wish to avail themselves of the Kosher dining room and tutorial facilities.

Applications for residence and further information should be addressed to The Master, Shalom College, The University of New South Wales, Box 1, P.O. Kensington, N.S.W. 2033.

Other Accommodation

Students requiring other than Residential College accommodation may make personal application to the Housing Officer (Ext. 3260) at the Student Amenities Unit. Current lists are kept of accommodation available at recognized boarding houses, private homes, and in serviced and unserviced apartments.

STUDENT AMENITIES UNIT

The Amenities Unit is concerned with student welfare and its activities are associated with sport and recreation, travel and student accommodation. It works in close liaison with the Sports Association, assisting the various clubs, and administers sporting facilities for both grade and social competitions. The Unit also has the added responsibility of the Physical Education and Research
Centre where attractive recreational programmes for students and staff are provided. Concessional application forms for all types of travel may also be obtained at the Enquiry Desk in the Chancellorry or at the Student Amenities Unit. A Housing Officer is also available to assist students with any off-campus accommodation problems.

Location: The Student Amenities Unit is located in Hut B at the foot of Basser Steps.

Phone: 663 0351, Extension 2235 Sports Association; 3271 Physical Education and Recreation Centre; 3261 Travel; and 3260 Accommodation.

STUDENT EMPLOYMENT UNIT

The Student Employment Unit offers assistance with career employment for final year students and graduates of the University. This service includes the mailing of regular job vacancy notices to registered students and a campus interview programme for final year students. Careers advice and assistance is also available to undergraduates. Assistance is offered in finding vacation employment which gives either course related experience or industrial training experience where this is a course requirement. Information and advice regarding cadetships, undergraduate and postgraduate scholarships is also available.

The Service is located in the Chancellery on the ground floor. Telephone: 663 0351 ext. 3259 for employment and careers advice, or 663 0351 ext. 2086 for cadetships and industrial training information.

CHAPLAINCY SERVICE

This service is provided for the benefit of students and staff by five Christian Churches and by the Jewish congregation. Chaplains are in attendance at the University at regular times. A Chapel is also available for use by all denominations.

The University Chapel and full-time chaplains are located in Hut F near the Chemistry Building. They may be contacted by phone at the following extensions: Anglican, 2684; Jewish, 3273; Roman Catholic, 2379; Churches of Christ, Methodist and Seventh Day Adventist, 2683.

STUDENT HEALTH UNIT

A student health and first aid centre is situated within the University. It is staffed by two qualified medical practitioners,
assisted by a nursing sister and two secretaries. This medical service, although therapeutic, is not intended to replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected, the student is referred to a private practitioner or to an appropriate hospital for specialist opinion and/or treatment. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.

The service is available to all enrolled students by appointment, free of charge between 9 a.m. and 5 p.m. Mondays to Fridays, and additionally to part-time students from 6 p.m. to 8 p.m. on Tuesdays and Thursdays during session. For staff members, immunizations are available, and first-aid service in the case of injury or illness on the campus.

The centre is located in Hut E on the northern side of the campus in College Road.

Appointments may be made by calling at the centre or by telephoning extension 2679 or 3275 during the above hours.

STUDENT COUNSELLING AND RESEARCH UNIT

The Student Counselling and Research Unit offers a free, confidential counselling service to help students, individually or in groups, to deal with problems, and to make plans and decisions associated with their personal, academic, and vocational progress.

Interviews, and group programmes, are available between 9 a.m. and 8 p.m. each week-day. Appointments may be made at the Unit, which is located at the foot of Basser Steps, or by ringing 663 0351, extensions 2600-2605 between 9 a.m. and 5 p.m.

FINANCIAL ASSISTANCE TO STUDENTS

In addition to the Tertiary Allowances Scheme financed by the Australian Government (see Scholarships for details), the following forms of assistance are available.

(a) The Students' Union and the University have co-operated to provide assistance to students who are in financial difficulties which are considered likely to prejudice their progress with their studies.

Three main forms of assistance are available:
1. Deferment of Payment of Fees

Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided the deferment is requested prior to the due date for fee payments.

In exceptional circumstances the University may consider granting deferments for up to twelve months or even longer. In cases where payment is deferred to 31st December, examination results will not be published or made available until such time as the outstanding fees are paid. Where deferments are granted to a date beyond 31st December, the University may require the student to enter into a formal agreement to repay the fees.

2. Short Term Cash Loans

Donations from the Students’ Union, the University Union and other sources have made funds available for urgent cash loans not exceeding $100.00. These loans are normally repayable within one month.

3. Long Term Cash Loans

An amount of up to $300.00 is available from this fund, repayable usually after twelve months or within twelve months of graduation or upon withdrawal from the course. This scheme is funded jointly by the University and the Students’ Union. Students are required to enter into a formal agreement with the University to repay such a loan.

(b) Early in 1973 the Australian Government made funds available to the University to provide loans to students in financial difficulty. The loans are to provide for living allowances and other approved expenses associated with attendance at University. Under this scheme allowances are paid approximately monthly during the academic year. Repayment usually commences after twelve months of graduation or upon withdrawal from the course. Students are required to enter into a formal agreement with the University to repay the loan.

From the same source of funds as mentioned in the preceding paragraph students who are in extremely difficult financial circumstances may apply for assistance by way of non-repayable grant. In order to qualify for a grant a student must generally show that the financial difficulty has arisen from misfortune beyond his control.

Applications for all forms of assistance may be made personally to the Deputy Registrar (Student Services).
FINANCIAL ASSISTANCE TO ABORIGINAL STUDENTS

Financial assistance is available from a number of sources to help Aboriginal students. Apart from the Australian Government’s Tertiary Allowances Scheme, to be introduced in 1974, there is a Commonwealth Aboriginal Study Grant Scheme. Furthermore, the University may assist Aboriginal students with some essential living expenses in exceptional circumstances.

All enquiries relating to this scheme should be directed to the Deputy Registrar (Student Services).

UNIVERSITY CO-OPERATIVE BOOKSHOP LTD.

Membership is open to all students, on payment of a fee of $5, refundable when membership is terminated. Members receive an annual rebate on purchases of books.
STUDENT ACTIVITIES

THE STUDENTS' UNION

The Students' Union was formed in 1952 as an organization, duly recognised by the University Council, to represent the student body and to provide a central organization for the administration of student activities. In the words of its constitution, "The Students' Union is formed for the purpose of advancing the interests of University men and women, facilitating their general scientific and technical education, and fostering a University spirit among them."

The Union affords a recognised means of communication between the student body and the University administration, and represents its members in all matters affecting their interests. It aims to promote the cultural, educational and recreational life of the University and to encourage a permanent interest among graduates in the life and progress of the University.

Membership of the Union is compulsory for all registered students of the University and the annual subscription is $7.

The Students' Union is governed by a Council consisting of student representatives from the various faculties of the University, representatives of Life Members, overseas students, and of the University and the Sports Association. The Council is elected annually.

THE SPORTS ASSOCIATION

The Sports Association is a student organization within the University, and it caters for a variety of competitive sports for both men and women.

In December 1952 the University Council approved the establishment of the Sports Association which consisted of five clubs. As the University has grown, the Association has expanded, and today includes over thirty clubs.

The controlling body of the Association is the General Committee which consists of a President, Secretary, Treasurer, eight Vice-Presidents and two delegates from each of the affiliated clubs.

Membership of the Association is compulsory for all registered students, and the annual subscription is $4.
PHYSICAL EDUCATION AND RECREATION CENTRE

The Physical Education and Recreation Centre consists of eight squash courts and a main building. The latter has a large gymnasium and ancillary practice rooms for fencing, table tennis, judo and weightlifting. The Supervisor of Physical Recreation is responsible for this Centre and provides a recreational programme for both students and staff. Those who desire to participate in the recreational programmes should contact the Supervisor on Extension 3271.

STUDENT CLUBS AND SOCIETIES

Students have the opportunity of joining a wide range of clubs and societies. Affiliated with the Students’ Union are the School and Faculty associations, and the numerous religious, social and cultural clubs. There are also many sporting clubs (33) affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students’ Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

THE UNIVERSITY REGIMENT

Enquiries should be made to the Adjutant at the Regimental Depot in Day Avenue just west of Anzac Parade.

THE N.S.W. UNIVERSITY SQUADRON

Enquiries should be made to the Commanding Officer at Squadron Headquarters at the corner of City and Darlington Streets, Darlington 2008.

ROYAL AUSTRALIAN NAVY

Enquiries should be made to the Royal Australian Naval Liaison Officer, Professor J. S. Ratcliffe, Commander, R.A.N.V.R., at the School of Chemical Engineering. Phone 663 0351, ext. 2406.
SCHOLARSHIPS, BURSARIES, CADETSHIPS AND PRIZES

SCHOLARSHIPS

Students undertaking courses in the Faculty of Science are eligible to apply for the following scholarships. Not all scholarships are offered each year. Towards the end of December prospective applicants should enquire from the Student Employment and Scholarships Unit which scholarships are available.

Except where otherwise specified, applications on the forms obtainable from the Admissions Office ('phone: 663 0351, ext. 2485) must be lodged with the Registrar, the University of New South Wales, P.O. Box 1, Kensington 2033. A separate application must be lodged for each category of scholarship.

In addition to these scholarships, a number of industrial organizations and Government Departments sponsor students at the University. In the past, such students generally had their University fees paid by the employer and were employed at cadet rates of pay during the course. However, these schemes, details of which are set out in Section B of the University Calendar, are currently under review and interested persons should contact the relevant organization or department for up-to-date information.

TERTIARY ALLOWANCES SCHEME

In 1974, no new awards will be offered under the Commonwealth University Scholarship Scheme. Instead a new system of Australian Government Assistance for tertiary students, called the Tertiary Allowances Scheme, will operate. This scheme will apply to students who commence approved courses—in 1974 as well as those who commenced their courses earlier.

Means-tested living and other allowances will be available to full-time students enrolled in an approved course who satisfy certain academic and residence requirements, are unbonded and who do not receive assistance in excess of $350 from other scholarships. No age limit will apply.

Students enrolled in the following types of university courses will be eligible for assistance:
• Undergraduate and postgraduate bachelor degree courses
• Postgraduate diplomas
• Combined bachelor degree courses offered by institutions
• Master's qualifying courses

Benefits

Means-tested Living Allowance: The maximum rates of living allowance are $850 per annum for students living at home and $1,400 per annum for students living away from home.

The maximum rates of living allowance will be paid where the adjusted family income is equal to or less than $5,300 per annum. The adjusted family income is assessed by subtracting from the gross income of both parents business expenses and an amount of $450 for each dependent child other than the student.

When the adjusted family income exceeds $5,300 p.a. the amount of living allowance will be reduced by $2 for every $10 of income until the family income exceeds $10,600 per annum. After this level, the living allowance will be reduced by $3 for every $10 of income.

A concession may be made where there are other children in the family undertaking tertiary education with scholarship assistance from schemes other than the Tertiary Allowances Scheme of less than $350 p.a.

Students qualifying for living allowance will also receive the following allowances where appropriate:

Incidentals Allowance: The Incidentals Allowance of $100 is designed to help the students meet the cost of those fees which have not been abolished — the Students’ Union, University Union and sports fees — and other expenses associated with their studies.

Travel Allowance: Students whose home is in the country may be reimbursed the cost of three return trips per year, during vacation time.

Dependent’s Allowance: This is made up of allowances of $8 per week for a dependent spouse and $4.50 per week for each child.

How to apply: Higher School Certificate students will be able to obtain application forms from their school. Students who do not already hold a scholarship may obtain forms from the
Admissions Office, or from The Regional Director, New South Wales State Office, Department of Education, Sydney Plaza Building, 59 Goulburn Street, Sydney, N.S.W. 2000. (Telephone 20929).

N.B.: Current Commonwealth Scholarship holders will have application forms posted to them. All forms should be returned to the above address as soon as possible.

AUSTRALIAN POSTGRADUATE AWARDS

Australian Postgraduate Course Awards

The Australian Government provides a number of awards for full-time postgraduate study in courses leading to the degree of Master by formal course work. Persons permanently domiciled in Australia who are under 45 years of age on 1 January of the year in which the award is to be taken up and who are University graduates or will graduate in the current academic year, are eligible for the awards. Award holders receive a living allowance of $2,900 paid over the academic year. Other allowances may also be paid in certain cases.

Application for awards tenable at the University must be lodged with the Registrar by 30 September each year.

Australian Postgraduate Research Awards

The Australian Government also provides each year a number of awards for full-time postgraduate study and research. The awards are renewable annually up to a maximum duration of two years in the case of a candidate for a Masters degree or three years in the case of a PhD candidate. In special circumstances, a PhD candidate may be granted an extension of tenure into a fourth year. Persons permanently domiciled in Australia who are under 35 years of age on 1 January of the year in which the award is to be taken up and who are University graduates or will graduate in the current academic year, are eligible for the awards. Award holders receive a living allowance of $3,050 per annum. Other allowances may also be paid in certain cases. The closing date for applications is 31 October each year.

OTHER AWARDS

Scholarships in Optometry

The Australian Optometrical Association (New South Wales Division) and Gibb & Beeman (Spectacle Makers) Pty. Ltd.,
offer annually one scholarship each to the value of $500 per annum. These scholarships are available to students who desire to enrol in the full-time degree course in Optometry leading to the degree of Bachelor of Optometry at the University of New South Wales. Applicants must be residents of New South Wales.

The Australian Optometrical Association offers annually a scholarship open to any student enrolling in the first or second year of the full-time degree course in Optometry, and provides him benefits of $250 p.a. if enrolled in Year 1 and $500 p.a. if enrolled in subsequent years. If his home address is more than 50 miles away from the University he receives an additional allowance of up to $150 p.a. and his first class return surface travel ticket to his home each year. The scholarship is open to students whose parents are ordinarily permanent residents of Australia or who are themselves permanent residents of Australia.

Further details are available in the University Calendar.

Applications on the prescribed form available from the Registrar should be lodged with the Registrar by the 14th January each year.

The Fell Scholarship (University Residential Colleges)

The Fell Scholarship is available to any undergraduate who is or will be in residence at one of the Colleges under the administration of Kensington Colleges Ltd. during the year of the award. The annual value of the Scholarship is $100. It may be held concurrently with other scholarships.

In awarding the scholarship the academic merit and financial need of the applicant will be taken into consideration.

Applications must be made on the appropriate form and lodged with the Master, Kensington Colleges Ltd., Box 24, P.O., Kensington 2033 (telephone 663 0651).

BURSARIES

Bursaries Awarded by the Bursary Endowment Board

A number of Bursaries tenable at the University are awarded to candidates of merit at the Higher School Certificate Examination whose family income falls within certain limits prescribed by the Bursary Endowment Board.

Applications should be made to the Secretary, Bursary Endowment Board, Box 7077, G.P.O., Sydney 2001.
CADETSHIPS

Sponsored Students

Many private industrial and commercial organisations sponsor students in Science courses. The conditions under which students are sponsored vary from company to company, but in general the company meets all compulsory fees. Industrial training is generally undertaken with the sponsoring company.

Students are advised to consult the Admissions Office or the Student Counselling Unit at Kensington for further details concerning scholarships and cadetships and for information concerning companies sponsoring students.
<table>
<thead>
<tr>
<th>School/Department</th>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Sydney Technical College Union Award</td>
<td>50.00</td>
<td>Leadership in the development of student affairs and academic proficiency throughout the course.</td>
</tr>
<tr>
<td></td>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit—students in their final or graduating year.</td>
</tr>
<tr>
<td>School of Botany</td>
<td>E. O. Tout Memorial</td>
<td>40.00</td>
<td>Best aggregate any five units offered by School of Botany.</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td>Abbott Laboratories Pty. Ltd.</td>
<td>50.00</td>
<td>2.622 Organic Chemistry II.</td>
</tr>
<tr>
<td></td>
<td>Australian Chemical Holdings Ltd.</td>
<td>21.00</td>
<td>2.001 Chemistry I.</td>
</tr>
<tr>
<td></td>
<td>Australian Consolidated Industries Ltd.</td>
<td>30.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Borden Chemical Co. (Aust.) Pty. Ltd.</td>
<td>50.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Chamber of Manufactures of New South Wales</td>
<td>10.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>C.S.R. Chemicals Ltd.</td>
<td>100.00</td>
<td>Chemistry Honours.</td>
</tr>
<tr>
<td></td>
<td>Inglis Hudson Bequest</td>
<td>6.00</td>
<td>2.611 Organic Chemistry I.</td>
</tr>
<tr>
<td></td>
<td>Merck, Sharp & Dohme (Aust.) Pty. Ltd.</td>
<td>52.50</td>
<td>Chemistry—Level 2 Units Science Course.</td>
</tr>
<tr>
<td></td>
<td>The Nestlé Co. (Aust.) Ltd.</td>
<td>20.00</td>
<td>Chemistry—Level 3 Units Science Course.</td>
</tr>
<tr>
<td>School/Department</td>
<td>Donor/Name of Prize</td>
<td>Value $</td>
<td>Awarded for</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>School of Chemistry (cont.)</td>
<td>Parke Pope</td>
<td>10.50</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>V. S. Rawson</td>
<td>10.50</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Science Association</td>
<td>(i) 10.50</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 10.50</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Tooheys Ltd.</td>
<td>10.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Tooth & Co. Ltd.</td>
<td>10.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td>Univeler Aust. Pty. Ltd.</td>
<td>21.00</td>
<td>2.322 Physical Chemistry II.</td>
</tr>
<tr>
<td></td>
<td>George Wright</td>
<td>10.50</td>
<td>2.001 Chemistry I—Full-time students only.</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>School of Mathematics</td>
<td>25.00</td>
<td>Higher Mathematics I.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.00</td>
<td>Higher Pure Mathematics II.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.00</td>
<td>Higher Applied Mathematics II.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.00</td>
<td>Higher Pure Mathematics III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.00</td>
<td>Higher Applied Mathematics III.</td>
</tr>
<tr>
<td></td>
<td>The Broken Hill Proprietary Co. Ltd.</td>
<td>50.00</td>
<td>Higher Theory of Statistics II.</td>
</tr>
<tr>
<td></td>
<td>The W.D. & H.O. Wills (Aust.) Ltd. Prize</td>
<td>50.00</td>
<td>Higher Theory of Statistics III.</td>
</tr>
<tr>
<td></td>
<td>I.C.I. Australia Ltd.</td>
<td>50.00</td>
<td>Theory of Statistics IV.</td>
</tr>
<tr>
<td></td>
<td>Statistical Society of Australia (New South Wales Branch)</td>
<td>20.00</td>
<td>General proficiency—Theory of Statistics subjects.</td>
</tr>
<tr>
<td>Department of Optometry</td>
<td>Australian Optometrical Association</td>
<td>30.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td></td>
<td>10.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td>Arthur Cocks & Co. Ltd.</td>
<td></td>
<td></td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td>Contavue Laboratories Pty. Ltd.</td>
<td></td>
<td>10.50</td>
<td>Trial fitting set of contact lenses</td>
</tr>
<tr>
<td>Filmer Sceats</td>
<td></td>
<td>25.00</td>
<td>31.812 Optometry II.</td>
</tr>
<tr>
<td>International Optical Corporation Ltd.</td>
<td></td>
<td>21.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td>L. G. Darcey Memorial</td>
<td></td>
<td>21.00</td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td>Martin Wells Pty. Ltd.</td>
<td></td>
<td></td>
<td>31.811 Optometry I.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31.821 Special Anatomy and Physiology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31.831 Diseases of the Eye.</td>
</tr>
<tr>
<td>G. Nissel & Co. Aust. Pty. Ltd.</td>
<td></td>
<td>150.00</td>
<td>Final Year Essay.</td>
</tr>
<tr>
<td>Optical Products Pty. Ltd.</td>
<td></td>
<td></td>
<td>31.813 Optometry III and 31.841 Clinical Optometry. Contact Lenses sections.</td>
</tr>
<tr>
<td>Opticians and Optometrists' Association of N.S.W.</td>
<td></td>
<td></td>
<td>Subject selected by Head of School.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subject selected by Head of School.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Physics</th>
<th>Head of School's Prize in Physics</th>
<th>20.00</th>
<th>Area selected by Head of School.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physics Staff</td>
<td>60.00</td>
<td>Physics III.</td>
</tr>
<tr>
<td></td>
<td>Physics IV Prize</td>
<td>40.00</td>
<td>Physics IV.</td>
</tr>
<tr>
<td></td>
<td>School Prize for Physics II</td>
<td>40.00</td>
<td>Physics II.</td>
</tr>
</tbody>
</table>

| School of Psychology | Australian Psychological Society | 50.00 | A Year IV Psychology subject selected by Head of School. |
There are two types of courses available within the Faculties of Science and Biological Sciences. The first is the Science Course, which allows a student to select sequences from a variety of the sciences. The second type of course is of a more specialized nature. Such courses are offered in Pure and Applied Chemistry, Optometry and Psychology. Details of each of these courses are given below.

SCIENCE COURSE

The Science Course is administered by the Dean of the Faculty of Science through his nominated representative on behalf of the Schools within the Faculty of Biological Sciences and the Faculty of Science, as well as the Schools of Applied Geology, Anatomy, Physiology and Pharmacology, History and Philosophy of Science, and the Department of Electronic Computation (School of Electrical Engineering).

The pass degree (Bachelor of Science) is based on a unit structure. A unit in experimental subjects comprises 90 hours of lectures, tutorials and laboratory work, and in theoretical subjects comprises an equivalent loading of lectures and tutorials. A unit may be of 14 or 28 weeks' duration.

The unit structure has been chosen to allow flexibility in the choice of a course of study and the regulations have been framed so that a student may choose a pattern suitable for:—

(1) a general scientific education.
(2) the training of science teachers.
(3) professional training in a specific discipline.
(4) professional training in interdisciplinary areas.

Units are grouped according to levels. Level I subjects are all double units. Level II units normally follow after level I prerequisites. Level III units in most cases follow after level II prerequisites.

The requirements of a pass degree may be met by completing units in accordance with the regulations set out below and which
constitute a major in one of the disciplines of the Schools of the Faculties of Science and Biological Sciences, or the Schools of Applied Geology (Faculty of Applied Science), Physiology or Anatomy (Faculty of Medicine). Some units may also be included from Schools in the Faculties of Arts and Engineering. A major normally includes four level III units chosen from those offered by a particular School.

All students are required to complete three General Studies subjects. Patterns and outlines of these subjects are listed in the Department of General Studies Handbook, which is available free of cost.

The minimum time required to complete a pass degree is three years' full-time study or an equivalent period part-time. Some subject groupings cannot, however, be completed in the minimum time due to timetable difficulties.

A student may be admitted, subject to meeting conditions defined in the regulations, to an honours course which involves an extra year of full-time study or two years of part-time study. Those intending to seek admission to an honours year should consult the Head of the appropriate school on completion of the first year subjects.

Any arrangement of units to be studied must be approved by the Dean of the Faculty of Science. Advice on recommended course patterns may be obtained from the Education Officer of the School in which a student intends to major.
REGULATIONS GOVERNING THE SCIENCE COURSE

1. Definitions

The Science course is administered by the Dean of the Faculty of Science through his nominated representative.

The pass degree is based on a unit structure. A unit may be of 14 or 28 weeks' duration, and units are grouped according to levels. Level I subjects are all double units, level II units normally follow after level I prerequisites and level III units, in most cases, follow after level II prerequisites. A major sequence normally includes four level III units chosen from those offered by a particular school, although a number of schools offer more than four such units.

A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed. A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed. An excluded unit is one which cannot be counted together with the unit which excludes it towards the degree qualification. In exceptional circumstances, on the recommendation of the head of the appropriate school, the Dean of the Faculty of Science may waive or vary a particular prerequisite or co-requisite.

CARE SHOULD BE TAKEN IN THE CHOICE OF UNITS TO ENSURE THAT THE PATTERN COMPLIES WITH THE REGULATIONS SET OUT IN SECTION 3(a). CERTAIN COMBINATIONS OF UNITS CANNOT BE COMPLETED IN THE MINIMUM TIME DUE TO THE RESTRICTIONS OF TIMETABLES. COPIES OF TYPICAL COURSE PATTERNS ARE AVAILABLE FROM THE FACULTY OFFICE.
2. Regulations governing the Science course

(a) Requirements for a pass degree

In order to qualify for admission to the degree of Bachelor of Science under these regulations a candidate shall attend classes and satisfy the examiners in Science units and General Studies subjects chosen as follows—

(i) At least 23 Science units shall be included from the list set out in section 3(a) and three General Studies subjects from the list in section 3(b).

(ii) The 23 Science units shall comply with the pre-requisites, co-requisites and exclusion conditions set out in section 3(a) and also shall conform to the following restrictions:

not less than 8 units, nor more than 10 units may be from level I;

not less than 4 units may be from level III, and these four shall be chosen from related disciplines.

(iii) One of 10.001 Mathematics I, OR

10.011 Higher Mathematics I, OR

10.021 Mathematics IT

shall be included.

(iv) In addition to the specific prerequisites listed in Clause 3(a), additional general prerequisites are required by some schools as a preliminary to certain advanced level units. These units, which are scheduled below, should be taken in the first year of enrolment together with compulsory mathematics. Eight units are normally taken in first year.

School of Chemistry

1.001 or 1.011

School of Applied Geology

1.001 or 1.011 and 2.001 Chemistry.
School of Biochemistry

School of Botany

School of Microbiology

School of Zoology

School of Anatomy

School of Physiology

2.001 Chemistry.

17.011 Human Biology and 17.021 Comparative Functional Biology; plus one other subject.

Note: In making their choice students should consider carefully, in their first year, the requirements of level II and level III units.

17.011 Human Biology and 17.021 Comparative Functional Biology.

2.001 Chemistry and 17.011 Human Biology and 17.021 Comparative Functional Biology.

(v) Only one from each of the following subjects/units may be included:

(a) 12.001 Psychology or 26.121 Psychology.
(b) 52.111 Philosophy or 26.521 Philosophy.
(c) Any unit listed in Section 3(a) or the equivalent unit offered at Wollongong University College which contains similar syllabus material.

(vi) A full-time student is required to complete the appropriate level I Mathematics and six other approved level I units in the first two years of attendance or else show cause to the satisfaction of the Professorial Board why he should be allowed to re-enrol. The remaining units of the course may be completed in any order consistent with the requirements concerning prerequisite and co-requisite units as set out in Clause 3(a).

(vii) The proposed course must be approved by the Dean of the Faculty of Science or his representative at enrolment. In special circumstances, the Dean may grant a student permission to defer enrolment in certain level I units until the second year of the course. Where any alteration in the course approved at enrolment is desired, the student must obtain the approval of the Dean or his representative for the new course.
(b) Requirements for an honours degree

(i) In order to qualify for admission to the honours degree of Bachelor of Science a candidate shall:

1. Satisfy the requirements for a pass degree but without proceeding to graduation;
2. Undertake an extra year of full-time or two extra years of part-time study.

(ii) Admission to an honours course is granted by the Head of School. Students wishing to proceed to an honours degree must apply to the Head of the appropriate school on completion of pass degree requirements.

(iii) A suitably qualified candidate may be admitted to an honours course in one of the following:

- Anatomy
- Applied Mathematics
- Applied Physics
- Biochemistry
- Biological Technology
- Botany
- Chemistry
- Computer Science
- Entomology
- Geoscience
- History and Philosophy of Science
- Microbiology
- Physics
- Physiology
- Psychology
- Pure Mathematics
- Theory of Statistics
- Zoology

(iv) To qualify for admission to an honours course, a student must have completed successfully 8 level III units in the pass degree course* except that in special cases the Head of the appropriate school may approve entry without such a qualification.

(v) Further to requirements listed in paragraph 2(b) (iv), to qualify for entry into an honours year a student must have completed any special units at required grades as determined by the Head of the School, prior to admission to the Honours year.

* For the honours course in Applied Physics the corresponding normal requirement is both (a) at least six level III units to be completed and (b) at least eight units at levels II and III to be completed at Credit grade or better or in the respective Higher version.

† The Honours subject is 12.014 Psychology IV.

** The honours year will be offered in 1976 and subsequent years.
In order to ascertain any such special conditions, a student contemplating honours is advised to consult the Head of School at the end of the first year of study.

(vi) Upon admission to the honours course a student must attend lectures, read and engage in laboratory work as required by the Head of School.

3. Schedule of Units

(a) Science units

These are listed under the Schools which provide the instruction and are divided into levels. Students must observe the prerequisites and co-requisites. Some Schools offer higher units to which special prerequisites apply and which are designed to lead to honours. Students contemplating honours studies must ensure that they have selected appropriate units. Some units are terminating so that students taking these may not qualify to continue studies in that School. When selecting terminating units students must ensure that a choice of a major sequence is still available. Note that many units are of half year duration so that it is necessary to choose units which give a balanced programme of study over the year.

The Dean of the Faculty has the power to vary in exceptional cases the prerequisites and/or co-requisites set down below on the recommendation of the Head of the appropriate school.

See following pages B8-B27.

(b) General Studies

Turn to page B28.
FACULTY OF SCIENCE
SCHOOL OF PHYSICS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites‡</th>
<th>Co-requisites‡</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td>I</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>Sc. Faculty Ent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.011</td>
<td>Higher Physics I</td>
<td>IH</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>Sc. Faculty Ent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHYSICS LEVEL II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites‡</th>
<th>Co-requisites‡</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.112A</td>
<td>Electromagnetism</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>1.001, 10.001</td>
<td>10.211A</td>
<td>1.122A</td>
</tr>
<tr>
<td>1.112B</td>
<td>Modern Physics</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td></td>
<td>10.211A</td>
<td>1.122B, 1.212C</td>
</tr>
<tr>
<td>1.112C</td>
<td>Waves in Continuous Media</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>1.001, 10.001</td>
<td></td>
<td>1.122C</td>
</tr>
<tr>
<td>1.212T</td>
<td>Physics II (any two of II</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>1.001 or 10.011; 10.001 or 10.011 or 10.021</td>
<td>1.122B (excluded by 1.212C only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.212A, 1.212B, 1.212C, 1.212D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HIGHER PHYSICS LEVEL II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites‡</th>
<th>Co-requisites‡</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.122A</td>
<td>Electromagnetism</td>
<td>IIH</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>1.011, 10.001</td>
<td>10.211A</td>
<td>1.112A</td>
</tr>
<tr>
<td>1.122B</td>
<td>Quantum Physics</td>
<td>IIH</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>1.011, 10.001</td>
<td>10.211A</td>
<td>1.112B</td>
</tr>
<tr>
<td>1.122C</td>
<td>Thermodynamics and Mechanics</td>
<td>IIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>1.011, 10.001</td>
<td>10.211A</td>
<td>1.112C</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hours p.w.</td>
<td>Prerequisites‡</td>
<td>Co-requisites‡</td>
<td>Excluded</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1.113A</td>
<td>Wave Mechanics and Spectroscopy</td>
<td>III</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>1.112B, 1.112C</td>
<td>10.211A</td>
<td>1.123A and 1.123D</td>
</tr>
<tr>
<td>1.113B</td>
<td>Electromagnetic Fields and Physical Optics</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>1.112A, 10.211A</td>
<td></td>
<td>2.023A and 10.222F</td>
</tr>
<tr>
<td>1.113C</td>
<td>Statistical Mechanics and Solid State</td>
<td>III</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>1.112B and 1.112C</td>
<td>1.113A</td>
<td>1.123B and 1.123C</td>
</tr>
<tr>
<td>1.113D</td>
<td>Astrophysics and Nuclear Physics</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>1.112B</td>
<td>1.113A$ or 10.222F</td>
<td>1.123C</td>
</tr>
</tbody>
</table>

HIGHER PHYSICS LEVEL III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites‡</th>
<th>Co-requisites‡</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.123A</td>
<td>Quantum Mechanics</td>
<td>IIIH</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>1.122B, 1.122C, 1.122A, 10.211A, 10.111A, 10.111B</td>
<td></td>
<td>1.113A, 2.023A, 10.222F</td>
</tr>
<tr>
<td>1.123B</td>
<td>Electromagnetic Theory and Statistical Mechanics</td>
<td>IIIH</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>1.122C, 1.122A</td>
<td>10.211A</td>
<td>1.113C, 10.212C, 10.222C</td>
</tr>
<tr>
<td>1.123C</td>
<td>Solid State and Nuclear Physics</td>
<td>IIIH</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>1.122B, 10.211A</td>
<td>1.113A or 1.123A</td>
<td>1.113C and 1.113D</td>
</tr>
<tr>
<td>1.123D</td>
<td>Atomic Physics and Spectroscopy</td>
<td>IIIH</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>1.122B, 1.122A</td>
<td>1.123A or 10.222F</td>
<td>1.113A</td>
</tr>
</tbody>
</table>
SCHOOL OF PHYSICS (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p w</th>
<th>Prerequisites†</th>
<th>Co-requisites‡</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.133A</td>
<td>Electronics</td>
<td>III**</td>
<td>1</td>
<td></td>
<td>Session 1</td>
<td>6</td>
<td>1.001 or 1.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.143A</td>
<td>Biophysics</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 1</td>
<td>5</td>
<td>1.112C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.143B</td>
<td>Solid State Devices and Electronics</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>6</td>
<td>1.133A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.143C</td>
<td>Magnetism</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>5</td>
<td>1.112A, 1.112B</td>
<td>10.211A</td>
<td></td>
</tr>
<tr>
<td>1.143D</td>
<td>Conceptual Framework of Physics</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>5</td>
<td>1.112C†</td>
<td>1.112A, 1.112B</td>
<td></td>
</tr>
<tr>
<td>1.143E</td>
<td>Electrical and Optical Properties of Solids</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>5</td>
<td></td>
<td>1.113C</td>
<td>1.123D</td>
</tr>
<tr>
<td>1.143F</td>
<td>Marine Acoustic and Seismic Methods (Oceanography Unit)</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td></td>
<td>3</td>
<td>10.211A or 10.221A or 10.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.153A</td>
<td>Hydrodynamics and Magnetohydrodynamics</td>
<td>IIIH</td>
<td>1</td>
<td></td>
<td>Full yr.</td>
<td>4</td>
<td>1.122A, 1.122B</td>
<td>10.211A, 10.111A</td>
<td>10.111B</td>
</tr>
<tr>
<td>1.153B</td>
<td>Relativity and Electromagnetism</td>
<td>IIIH</td>
<td>1</td>
<td></td>
<td>Full yr.</td>
<td>4</td>
<td>1.122A and 1.122C</td>
<td>10.211A, 10.111A</td>
<td>10.212C and 10.222C</td>
</tr>
</tbody>
</table>

† This unit may be a co-requisite in special cases.
‡ Students should note the additional mathematics prerequisite to units of Higher Physics III. Where a unit is specified at level II as a prerequisite or co-requisite the level III unit may be substituted. Students must apply to the Head of School for admission to Physics honours and they must have completed at least Physics units 1.123A, 1.123B, 1.123C and 1.123D.

** This unit may be taken in second year of the course provided prerequisites have been completed.
§ This co-requisite may be waived under certain circumstances subject to the approval of the School of Physics.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.001</td>
<td>Chemistry I</td>
<td>I</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>H.S.C. Science 2S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>II</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.001 and 10.001, or 10.011 or 10.021 and 1.001 or 1.011 or 1.041 or 1.031 or 1.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002B</td>
<td>Organic Chemistry</td>
<td>II</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.001 and 10.001, or 10.011 or 10.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002C</td>
<td>Inorganic Chemistry</td>
<td>II</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.001 and 10.001, or 10.011 or 10.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003A</td>
<td>Physical Chemistry</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.002A</td>
<td>2.013A, 2.023A</td>
<td></td>
</tr>
<tr>
<td>2.003B</td>
<td>Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003C</td>
<td>Inorganic Chemistry</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.002C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003D</td>
<td>Analytical Chemistry</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.002A, 2.002C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.002A*, 2.002C*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013A</td>
<td>Theoretical Chemistry</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.002A, and 10.031 or 10.211A</td>
<td>2.003A, 2.023A</td>
<td></td>
</tr>
<tr>
<td>2.023A</td>
<td>Chemical Physics</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>10.211A (or equiv.) and 2.002A or 1.112B</td>
<td>1.113A, 1.123A</td>
<td>2.013A, 2.003A</td>
</tr>
<tr>
<td>2.033A</td>
<td>Macromolecules</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>2.002A and 2.002B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If taken as one unit independently, prerequisites may be waived subject to the approval of Head of School.
‡ All three level II units must be taken by students majoring in Chemistry.
§ This is a unit which may be taken in conjunction with units of Applied Mathematics or Physics. It cannot be included as a Chemistry level III unit.
** Entry to this course requires permission from the Head of School.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.001</td>
<td>Mathematics</td>
<td>I</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I</td>
<td>III</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.021</td>
<td>Mathematics IT</td>
<td>IT</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.031‡</td>
<td>Mathematics</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.032§</td>
<td>Mathematics</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.031 or 10.021 Credit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATHEMATICS

PURE MATHEMATICS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.111A</td>
<td>Linear Algebra</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td>10.121A</td>
<td></td>
</tr>
<tr>
<td>10.111B</td>
<td>Analysis</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td>10.121B</td>
<td></td>
</tr>
<tr>
<td>10.111C</td>
<td>Algebra and Geometry</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td>10.111A, 10.111B, 10.211A</td>
<td></td>
</tr>
<tr>
<td>10.121A</td>
<td>Algebra</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2½</td>
<td>10.011 or 10.021 Credit</td>
<td>10.111A</td>
<td></td>
</tr>
<tr>
<td>10.121B</td>
<td>Real and Complex Analysis</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2½</td>
<td>10.011 or 10.021 Credit</td>
<td>10.111A, 10.111B, 10.121A</td>
<td></td>
</tr>
<tr>
<td>10.121C‡</td>
<td>Number Theory and Geometry</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2½</td>
<td>10.011 or 10.021 Credit</td>
<td>10.111A, 10.111B, 10.211A</td>
<td></td>
</tr>
<tr>
<td>10.112A</td>
<td>Number Theory and Algebra</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.111A or 10.011 or 10.021 Credit</td>
<td>10.111A, 10.111B, 10.211A</td>
<td></td>
</tr>
<tr>
<td>10.112B</td>
<td>Real Analysis</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.111B or 10.011 or 10.021 Credit</td>
<td>10.111A, 10.111B, 10.211A</td>
<td></td>
</tr>
<tr>
<td>10.112C</td>
<td>Differential Geometry</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.111A or 10.011 or 10.021 Credit</td>
<td>10.111B</td>
<td></td>
</tr>
<tr>
<td>10.112D</td>
<td>Topology and Set Theory</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.001 or 10.011 or 10.021 Credit</td>
<td>10.111A, 10.111B, 10.211A</td>
<td></td>
</tr>
</tbody>
</table>
SCHOOL OF MATHEMATICS (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.112E</td>
<td>Complex Analysis and Differential Equations</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.111B, 10.211A</td>
<td>10.122E</td>
<td></td>
</tr>
<tr>
<td>10.122A</td>
<td>Algebra</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2‡</td>
<td>10.121A</td>
<td>10.112A</td>
<td></td>
</tr>
<tr>
<td>10.122B</td>
<td>Integration and Functional Analysis</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2‡</td>
<td>10.121B</td>
<td>10.112B</td>
<td></td>
</tr>
<tr>
<td>10.122C</td>
<td>Topology and Differential Geometry</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2‡</td>
<td>10.121A, 10.121B</td>
<td>10.112B, 10.112C</td>
<td></td>
</tr>
<tr>
<td>10.122E</td>
<td>Complex Analysis and Differential Equations</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2‡</td>
<td>10.121B</td>
<td>10.112E</td>
<td></td>
</tr>
</tbody>
</table>

* If a unit in this column is counted the corresponding unit in the first column may not be counted.

† 1. Admission to Higher Pure Mathematics II normally requires completion of 10.011 Higher Mathematics I; students who gain a superior pass in 10.001 Mathematics I may, subject to the approval of the Head of the School of Mathematics, be permitted to proceed to Higher Pure Mathematics II units.

2. Students majoring in Physics who wish to take Higher Pure Mathematics II should attempt 10.121A, 10.121B and either 10.221A or 10.221B.

3. Students aiming at Honours in Pure Mathematics must take 10.121A, B and C and either 10.221A or 10.221B.

‡ Mathematics 10.031 is included for students desiring to attempt only one level II Mathematics unit. If other level II units in Pure Mathematics, Applied Mathematics are taken, 10.031 Mathematics will not be counted.

§ Mathematics 10.032 is included for students desiring to attempt only one level III Mathematics unit. If other level III units in Pure Mathematics, Applied Mathematics are taken, 10.032 Mathematics will not be counted.

¶ In special circumstances 10.121C may be completed as a level III unit for students proceeding to honours in mathematics.

** Students wishing to attempt Level IIIH units should consult with the School of Mathematics prior to enrolment. Pre- and co-requisites may be varied in special circumstances with the permission of the Head of the School.

*** Students will not normally be permitted to attempt a level III Pure Mathematics unit unless they have completed at least one level II unit from 10.111A, 10.111B and 10.211A and are concurrently attempting the remaining units of these three units.

APPLIED MATHEMATICS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.211A</td>
<td>Mathematical Methods</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.001</td>
<td>10.221A</td>
<td></td>
</tr>
<tr>
<td>10.211B</td>
<td>Analytical Dynamics</td>
<td>II</td>
<td>1</td>
<td>Session 1*</td>
<td>4</td>
<td>10.001, 1.001</td>
<td>10.211A, 10.221B</td>
<td></td>
</tr>
<tr>
<td>10.211C</td>
<td>Hydrodynamics</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>4</td>
<td>10.001, 1.001</td>
<td>10.211A, 10.221C</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hours p.w.</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded **</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>10.221A</td>
<td>Mathematical Methods</td>
<td>IIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.011†</td>
<td>10.221A or 10.211A</td>
<td></td>
</tr>
<tr>
<td>10.221B</td>
<td>Analytical Dynamics</td>
<td>IIH</td>
<td>1</td>
<td>Session 1</td>
<td>4</td>
<td>10.011†, 1.011†</td>
<td>10.221A or 10.211A</td>
<td></td>
</tr>
<tr>
<td>10.221C</td>
<td>Hydrodynamics</td>
<td>IIH</td>
<td>1</td>
<td>Session 2</td>
<td>4</td>
<td>10.011†, 1.011†</td>
<td>10.221A or 10.211A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Mathematics Level III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.212A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>1½</td>
<td>10.111A, 10.211A</td>
<td>10.222A</td>
<td></td>
</tr>
<tr>
<td>10.212C</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>1½</td>
<td>10.211A, 10.111A, 10.111B</td>
<td>10.032, 10.222D; 10.222E</td>
<td></td>
</tr>
<tr>
<td>10.212L</td>
<td>Optimization Techniques</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>1½</td>
<td>10.111A, 10.111B, 10.211A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.412</td>
<td>Dynamical and Physical Oceanography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.001 or 1.011 & 10.211A or 10.221A or 10.031</td>
<td>§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher Applied Mathematics Level III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.222A</td>
<td>Numerical Analysis</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>1½</td>
<td>10.111A (or better)</td>
<td>10.212A</td>
<td></td>
</tr>
<tr>
<td>10.222B</td>
<td>Continuum Mechanics</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.111A, B, 10.221A, B, C</td>
<td>10.212B</td>
<td></td>
</tr>
<tr>
<td>10.222C</td>
<td>Maxwell's Equations and Special Relativity</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.221A, 10.121B†, 1.001</td>
<td>1.113B, 1.123B, 1.153B</td>
<td>10.212D</td>
</tr>
<tr>
<td>10.222D</td>
<td>Mathematical Methods</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.221A, 10.121A</td>
<td>10.121B‡</td>
<td></td>
</tr>
<tr>
<td>10.222F</td>
<td>Quantum Mechanics</td>
<td>IIIH</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.221A, 10.121A, 10.222D</td>
<td>1.113A, 1.123A</td>
<td></td>
</tr>
</tbody>
</table>

* The evening course for 10.211B runs at 2 hours per week throughout the year.

† A student who gains a superior pass in 10.001 Mathematics I and/or 1.001 Physics I may apply to proceed to Higher Applied Mathematics units.

‡ 10.111A, B and 10.211A with a sufficiently good pass may be substituted as a prerequisite in place of 10.121A, B and 10.221A.

§ It is recommended that one of the following be taken concurrently: 10.211C or 10.221C or 1.112C or 1.143F.

** If a unit in this column is counted the corresponding unit in the first column may not be counted.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites (all units Level Value Offered p.w. named except as governed by or)</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.311</td>
<td>Theory of Statistics Level II</td>
<td>II</td>
<td>3</td>
<td>Full yr.</td>
<td>7</td>
<td>10.001 or 10.011 or 10.021 Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probability and Random Variables Sampling Distributions and Estimation Tests of Hypotheses and Regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.321</td>
<td>Higher Theory of Statistics Level II</td>
<td>IIH</td>
<td>3</td>
<td>Full yr.</td>
<td>8</td>
<td>10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probability and Random Variables Sampling Distributions and Estimation Tests of Hypotheses and Regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.331</td>
<td>Statistics SS</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2</td>
<td>10.001 or 10.011 or 10.021 Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory of Statistics Level III</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>4</td>
<td>10.311 or 10.321 or 10.331; 10.111A or 10.121A; 10.111B or 10.121B; 10.211A or 10.221A</td>
<td></td>
<td>10.322A</td>
</tr>
<tr>
<td>10.312A</td>
<td>Stochastic Processes and Applications</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>4</td>
<td>10.311 or 10.321 or 10.331; 10.111A or 10.121A; 10.111B or 10.121B; 10.211A or 10.221A</td>
<td></td>
<td>10.322B</td>
</tr>
<tr>
<td></td>
<td>(Applications) and Sampling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.312B</td>
<td>Experimental Design (Applications) and Sampling</td>
<td>III</td>
<td>1</td>
<td>Session 1</td>
<td>4</td>
<td>10.311 or 10.321 or 10.331; 10.111A or 10.121A; 10.111B or 10.121B; 10.211A or 10.221A</td>
<td>10.211A or 10.221A</td>
<td>10.322C</td>
</tr>
<tr>
<td></td>
<td>(normally Cr.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.312C</td>
<td>Experimental Design (Theory) and Project</td>
<td>III</td>
<td>1</td>
<td>Session 1</td>
<td>4</td>
<td>10.311 or 10.321 or 10.331; 10.111A or 10.121A; 10.111B or 10.121B; 10.211A or 10.221A</td>
<td>10.312B or 10.322B*</td>
<td>10.322D</td>
</tr>
<tr>
<td></td>
<td>(Theory) and Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.312D</td>
<td>Probability Theory and Contingency Tables</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>4</td>
<td>10.311 or 10.321 or 10.331; 10.111A or 10.121A; 10.111B or 10.121B; 10.211A or 10.221A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCHOOL OF MATHEMATICS (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
</table>

STATISTICS (Continued)

10.322A
Stochastic Processes and Applications
IIIH 1 Session 2 4½
Prerequisites: 10.321; 10.111A or 10.121A; 10.322B†

10.322B
Experimental Design (Applications) and Sampling
IIIH 1 Session 1 4½
Prerequisites: 10.111B or 10.121B; 10.211A or 10.221A

10.322C
Experimental Design (Theory) and Project
IIIH 1 Session 1 4½
Prerequisites: 10.312A or 10.312B

10.322D
Probability Theory and Contingency Tables
IIIH 1 Session 2 4½
Prerequisites: 10.312C

SCHOOL OF APPLIED PHYSICS AND OPTOMETRY

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
</table>

31.113A
Physics of Materials
III 1 Session 1 and Full yr. 6 1.112B or 1.122B and 2.001 or 2.011

31.113B
Physics of Measurement
III 1 Full yr. 3 1.112B or 1.122B

31.113C
Applications of Radiation
III 1 Session 2 6 1.112B or 1.122B

* If a unit in this column is counted the corresponding unit in the first column may not be counted.
† Plus any two level III Pure Mathematics or Applied Mathematics units.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.001</td>
<td>Psychology I</td>
<td>I</td>
<td>2</td>
<td>Full yr.</td>
<td>5</td>
<td>Sc. Faculty Entrance</td>
<td></td>
</tr>
<tr>
<td>12.152</td>
<td>Research Methods II</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.252</td>
<td>Learning II</td>
<td>II</td>
<td>½</td>
<td>Not offered in 1974</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.302</td>
<td>Personality II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.322</td>
<td>Motivation II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.372</td>
<td>Psychological Assessment II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.412</td>
<td>Physiological Psychology II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td>12.402</td>
</tr>
<tr>
<td>12.452</td>
<td>Human Information Processing II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.472</td>
<td>Perception II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.502</td>
<td>Social Psychology II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.552</td>
<td>Developmental Psychology II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.602</td>
<td>Abnormal Psychology II</td>
<td>II</td>
<td>½</td>
<td>Half yr.</td>
<td>3</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.153</td>
<td>Research Methods IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.152</td>
<td></td>
</tr>
<tr>
<td>12.163</td>
<td>Research Methods III B</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.153</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hours p.w.</td>
<td>Prerequisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>12.173</td>
<td>Psychological Issues</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.253</td>
<td>Learning IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.263</td>
<td>Learning IIIB</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.253</td>
<td></td>
</tr>
<tr>
<td>12.303</td>
<td>Personality IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.313</td>
<td>Personality IIIB</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.323</td>
<td>Motivation IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.373</td>
<td>Psychological Assessment (Testing) IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.372</td>
<td>12.042</td>
</tr>
<tr>
<td>12.383</td>
<td>Psychological Assessment (Psychometric Theory) IIIB</td>
<td>III</td>
<td>1</td>
<td>Not offered in 1974</td>
<td>6</td>
<td>12.372</td>
<td></td>
</tr>
<tr>
<td>12.413</td>
<td>Physiological Psychology IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td>12.402</td>
</tr>
<tr>
<td>12.423</td>
<td>Physiological Psychology IIIB</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.412</td>
<td></td>
</tr>
<tr>
<td>12.453</td>
<td>Human Information Processing IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.463</td>
<td>Human Information Processing IIIB</td>
<td>III</td>
<td>1</td>
<td>Not offered in 1974</td>
<td>6</td>
<td>12.452</td>
<td></td>
</tr>
<tr>
<td>12.473</td>
<td>Perception IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hours p.w.</td>
<td>Prerequisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>12.483</td>
<td>Perception IIIB</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.472 or 12.473</td>
<td></td>
</tr>
<tr>
<td>12.503</td>
<td>Social Psychology IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.513</td>
<td>Social Psychology IIIB</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.502</td>
<td></td>
</tr>
<tr>
<td>12.553</td>
<td>Developmental Psychology IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.563</td>
<td>Developmental Psychology IIIB</td>
<td>III</td>
<td>1</td>
<td>Not offered in 1974</td>
<td>6</td>
<td>12.552</td>
<td></td>
</tr>
<tr>
<td>12.603</td>
<td>Abnormal Psychology IIIA</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.613</td>
<td>Abnormal Psychology IIIB</td>
<td>III</td>
<td>1</td>
<td>Not offered in 1974</td>
<td>6</td>
<td>12.602</td>
<td></td>
</tr>
<tr>
<td>12.623</td>
<td>Guidance & Counselling III</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.372 or 12.373</td>
<td></td>
</tr>
<tr>
<td>12.653</td>
<td>Industrial Psychology III</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
<tr>
<td>12.703</td>
<td>Psychological Techniques III</td>
<td>III</td>
<td>1</td>
<td>Half yr.</td>
<td>6</td>
<td>12.001</td>
<td>12.042</td>
</tr>
<tr>
<td>12.713</td>
<td>Behavioural Control and Modification</td>
<td>III</td>
<td>1</td>
<td>Not offered in 1974</td>
<td>6</td>
<td>12.001</td>
<td></td>
</tr>
</tbody>
</table>

* (a) In any year some level II and level III units will be mutually exclusive. Details of these exclusions and of advisable sequences will be announced before the end of the preceding academic year so that students are fully informed prior to their lodging of pre-enrolment forms and their finalising of enrolment. All students proposing to undertake level II and level III units should consult with the School's Science Course advisers before completing enrolment.

(b) Not all courses will be offered each year.
GENERAL BIOLOGY

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.011</td>
<td>Human Biology</td>
<td>I</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>Sc. Faculty Entrance</td>
<td>7.021, 2.001, 10.001 or 10.011 or 10.021; if level II or level III Biology Units in the Faculty of Biological Sciences are to be taken subsequently.</td>
<td></td>
</tr>
<tr>
<td>17.021</td>
<td>Comparative Functional Biology</td>
<td>I</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>Sc. Faculty Entrance</td>
<td>17.011, 2.001, 10.001, or 10.011 or 10.021; if level II or level III Biology Units in the Faculty of Biological Sciences are to be taken subsequently.</td>
<td></td>
</tr>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>III*</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>17.001 or 17.011 and 17.021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This unit may be taken in *either* second or third year of the Science Course provided that prerequisites have been completed.

SCHOOL OF BIOCHEMISTRY†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.101A</td>
<td>Chemistry of Biologically Important Molecules</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>For any level II unit: 41.101B*</td>
<td>41.101B*</td>
</tr>
<tr>
<td>41.101B</td>
<td>Metabolism</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>17.001† or 17.011 and 17.021 and 2.001†</td>
<td>41.101A</td>
</tr>
<tr>
<td>41.101C</td>
<td>Control Mechanisms</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>both 41.101A and 41.101B</td>
<td></td>
</tr>
<tr>
<td>41.102A</td>
<td>Biochemistry of Macromolecules and Cell Biochemistry</td>
<td>III</td>
<td>2</td>
<td>Session 1</td>
<td>12</td>
<td>For any level III unit: 41.101A, 41.101B and 41.101C and two level II Chemistry units, including 2.002B and preferably 2.002A as the second Chemistry unit.</td>
<td></td>
</tr>
<tr>
<td>41.102B</td>
<td>Metabolic Pathways and Control Mechanisms</td>
<td>III</td>
<td>2</td>
<td>Session 2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Third level units available only during the daytime.
*41.101A may be taken as a single unit under special circumstances and at the discretion of the Head of School.
**In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
† Terminating pass not acceptable.
SCHOOL OF BIOLOGICAL TECHNOLOGY

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites*</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.102</td>
<td>Fermentation Technology</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>44.102</td>
</tr>
</tbody>
</table>

* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.

SCHOOL OF BOTANY†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.101A</td>
<td>Genetics and Biometry</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>17.001</td>
</tr>
<tr>
<td>43.101B</td>
<td>Plant Evolution and Ecology</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>17.001 or 17.011 and 17.021</td>
</tr>
<tr>
<td>43.101C</td>
<td>Plant Physiology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>17.001 or 17.011 and 17.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.001 or 1.001**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.031**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.041**</td>
</tr>
<tr>
<td>43.102A</td>
<td>Advanced Genetics</td>
<td>III*</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>43.101A</td>
</tr>
<tr>
<td>43.102B</td>
<td>Plant Taxonomy</td>
<td>III*</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>43.101B; 43.101A pre- or co-requisite</td>
</tr>
<tr>
<td>43.102C</td>
<td>Plant Physiology & Biochemistry</td>
<td>III*</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>41.101A; 41.101B; 43.101C</td>
</tr>
<tr>
<td>43.102D</td>
<td>Mycology</td>
<td>III*</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>17.001 or 17.011 & 17.021</td>
</tr>
<tr>
<td>43.102E</td>
<td>Environmental Botany</td>
<td>III*</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>17.001 or 17.011 & 17.021; 1.001** or 1.031** or 1.041**</td>
</tr>
<tr>
<td>43.102F</td>
<td>Plant Pathology</td>
<td>III*</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>17.001 or 17.011 & 17.021</td>
</tr>
</tbody>
</table>

NOTE: Students taking four or more units in the School of Botany must take Genetics and Biometry 43/45.101A and at least two level II units in Biochemistry, or Chemistry, or Physics, or Mathematics.

† Third level courses conducted by the School of Botany are available only during the daytime to part-time students enrolling for the first time in 1973 or later.

* These units may be taken in either second or third year of the Science course provided that prerequisites have been completed.

** This unit may be taken as a co-requisite in some circumstances.
SCHOOL OF MICROBIOLOGY†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites*</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101</td>
<td>Introductory Microbiology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>17.00 or 17.011 & 17.021</td>
</tr>
<tr>
<td>44.111</td>
<td>Microbiology**</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>44.101, 43.101A, 41.101A and 41.101B</td>
</tr>
<tr>
<td>44.102</td>
<td>General Microbiology</td>
<td>III</td>
<td>2</td>
<td>Session 1</td>
<td>12</td>
<td>44.102</td>
</tr>
<tr>
<td>44.112</td>
<td>Applied Microbiology</td>
<td>III</td>
<td>2</td>
<td>Session 2</td>
<td>12</td>
<td>44.102</td>
</tr>
<tr>
<td>44.122</td>
<td>Immunology</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>17.001 or 17.011 and 17.021; 41.101A, 41.101B</td>
</tr>
<tr>
<td>44.132</td>
<td>Virology</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>44.102</td>
</tr>
</tbody>
</table>

† All level units available only during the daytime.

* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.

** For students not intending to major in Microbiology and not taking level II Biochemistry. This unit is not acceptable as a prerequisite for level III Microbiology, except on the recommendation of the Head of School.

SCHOOL OF ZOOLOGY†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.101A</td>
<td>Genetics and Biometry</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>17.001 or 17.011 & 17.021; 2.001 or 2.011</td>
<td></td>
</tr>
<tr>
<td>45.101B</td>
<td>Invertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>10.001 or 10.011 or 10.021</td>
<td></td>
</tr>
<tr>
<td>45.101C</td>
<td>Vertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>43.101A</td>
<td>45.101B or 45.101C</td>
</tr>
<tr>
<td>45.101D**</td>
<td>Field Ecology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6*</td>
<td>43.101A</td>
<td>45.101B or 45.101C</td>
</tr>
</tbody>
</table>
SCHOOL OF ZOOLOGY† (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.102A</td>
<td>Marine Ecology</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 1</td>
<td>6</td>
<td>17.001 or 17.011 and 17.021 plus three other first year science subjects.</td>
</tr>
<tr>
<td>45.102B</td>
<td>Animal Behaviour</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>6</td>
<td>43.101A/45.101A</td>
</tr>
<tr>
<td>45.102C</td>
<td>Comparative and Environmental Physiology</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>6</td>
<td>41.101A & B; 1.001 or 45.101C 1.011 or 1.041</td>
</tr>
<tr>
<td>45.102D†</td>
<td>Comparative Reproductive Physiology</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>6</td>
<td>41.101A & B and 70.012E 45.101C</td>
</tr>
<tr>
<td>45.102E</td>
<td>Invertebrate Physiology</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 1</td>
<td>6</td>
<td>} As for 45.101B</td>
</tr>
<tr>
<td>45.102F**</td>
<td>Invertebrate Behaviour</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>6</td>
<td>} As for 45.101B</td>
</tr>
<tr>
<td>45.201A</td>
<td>Insect Structure and Classification</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 1</td>
<td>6</td>
<td>45.101A & 45.101B</td>
</tr>
<tr>
<td>45.201B</td>
<td>Insect Physiology</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 1</td>
<td>6</td>
<td>45.201A</td>
</tr>
<tr>
<td>45.201C</td>
<td>Applied Entomology</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>6</td>
<td>45.201B</td>
</tr>
<tr>
<td>45.201D</td>
<td>Project</td>
<td>III</td>
<td>1</td>
<td></td>
<td>Session 2</td>
<td>6</td>
<td>45.201B</td>
</tr>
</tbody>
</table>

NOTE: Students taking four or more units in the School of Zoology must take Genetics and Biometry 43/45.101A and at least two level II units of Biochemistry, or Chemistry, or Physics or Mathematics, or Geology.

* This unit includes a two-week camp in November/December.

† Third level courses conducted by the School of Zoology are available only during the daytime to part-time students enrolling for the first time in 1973 or later.

‡ May not be counted towards a degree which includes 70.012E Comparative Embryology.

** Not available in 1974.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.111*</td>
<td>Geoscience I</td>
<td>I</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>Sc. Faculty Ent.</td>
<td>2.001</td>
</tr>
<tr>
<td>25.112A**</td>
<td>Geoscience IIA</td>
<td>II</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>25.111</td>
<td></td>
</tr>
<tr>
<td>25.112B**</td>
<td>Geoscience IIB</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>25.111</td>
<td>2.001</td>
</tr>
<tr>
<td>25.113A***</td>
<td>Geoscience IIIA</td>
<td>III</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>25.112A and</td>
<td>25.112B</td>
</tr>
<tr>
<td>25.113B***</td>
<td>Geoscience IIIB</td>
<td>III</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>25.112A and</td>
<td>25.112B</td>
</tr>
<tr>
<td>25.603A†</td>
<td>Geological Oceanography</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>25.111 and</td>
<td>25.112B</td>
</tr>
</tbody>
</table>

* Three field tutorials, up to five days in all, are an essential part of the course. Attendance is compulsory.

** Field work: approximately seven days will be spent on field tutorials throughout the year. Attendance is compulsory.

*** Field work is an essential part of the course and consists of approximately ten days of field tutorials. Attendance is compulsory.

† Compulsory field work to be arranged.

SCHOOL OF GEOGRAPHY

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.031</td>
<td>Geography IS</td>
<td>I</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>Sc. Faculty Ent.</td>
<td></td>
</tr>
<tr>
<td>27.103*</td>
<td>Climatology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>3½</td>
<td>1.001 and</td>
<td>27.031</td>
</tr>
<tr>
<td>27.203*</td>
<td>Biogeography</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>5½</td>
<td>27.031</td>
<td></td>
</tr>
<tr>
<td>27.413*</td>
<td>Geomorphology</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>5½</td>
<td>27.031 or 25.111 or 25.001</td>
<td></td>
</tr>
</tbody>
</table>
SCHOOL OF GEOGRAPHY (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.423*</td>
<td>Pedology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>5½</td>
<td>2.001 and 27.031 or 25.111 or 25.001</td>
<td></td>
</tr>
</tbody>
</table>

* Field work (to be arranged by the School of Geography) is a compulsory component of each unit.

FACULTY OF ARTS

SCHOOL OF PHILOSOPHY

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.111</td>
<td>Philosophy I</td>
<td>I</td>
<td>2</td>
<td>Full yr.</td>
<td>4</td>
<td>Sc. Faculty Ent.</td>
<td></td>
</tr>
<tr>
<td>52.112</td>
<td>Philosophy II</td>
<td>II</td>
<td>3</td>
<td>Full yr.</td>
<td>4</td>
<td>52.111</td>
<td></td>
</tr>
<tr>
<td>52.122</td>
<td>Philosophy II (Honours)</td>
<td>IIH</td>
<td>3</td>
<td>Full yr.</td>
<td>5</td>
<td>52.111</td>
<td></td>
</tr>
</tbody>
</table>

SCHOOL OF HISTORY AND PHILOSOPHY OF SCIENCE

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.012</td>
<td>The Origins of Modern Science</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>A pass in two of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.001, 17.011 and 17.021, 2.001, 10.001, 25.111, 1.011, 10.011, 10.021, 27.031, 12.001</td>
<td></td>
</tr>
</tbody>
</table>
SCHOOL OF HISTORY AND PHILOSOPHY OF SCIENCE (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.022</td>
<td>The Social History of the Scientific Movement</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>A pass in two of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.001, 17.011 and 17.021, 2,001,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.001, 25.111, 1.011, 10.011,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.011, 10.021, 27.031, 12.001</td>
</tr>
<tr>
<td>62.032</td>
<td>Philosophy of Science</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

FACULTY OF ENGINEERING

SCHOOL OF MECHANICAL AND INDUSTRIAL ENGINEERING

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.010</td>
<td>Engineering A</td>
<td>I</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>Sc. Faculty Entrance</td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B</td>
<td>I</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>5.010</td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C</td>
<td>I</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>5.010</td>
</tr>
</tbody>
</table>

SCHOOL OF ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.601A</td>
<td>Introduction to Computing</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>5</td>
<td>10.001</td>
</tr>
<tr>
<td>6.601A*</td>
<td>Introduction to Computing</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>2½</td>
<td>10.001</td>
</tr>
<tr>
<td>6.601B</td>
<td>Assembler Programming & Non-numeric Computing</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>5</td>
<td>10.001</td>
</tr>
<tr>
<td>6.601B</td>
<td>Assembler Programming & Non-numeric Computing</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>5</td>
<td>10.001</td>
</tr>
<tr>
<td>6.602A</td>
<td>Computer Systems I</td>
<td>III</td>
<td>1</td>
<td>Session 1</td>
<td>5</td>
<td>6.601B</td>
</tr>
<tr>
<td>6.602B</td>
<td>Computer Systems II</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>5</td>
<td>6.602A</td>
</tr>
<tr>
<td>6.602C</td>
<td>Computer Applications</td>
<td>III</td>
<td>1</td>
<td>Session 1</td>
<td>5</td>
<td>6.601A</td>
</tr>
<tr>
<td>6.602D</td>
<td>Programming Languages</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>5</td>
<td>6.601A</td>
</tr>
</tbody>
</table>

* Offered only in the evening.
FACULTY OF MEDICINE

SCHOOL OF ANATOMY

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.011A</td>
<td>Mammalian Histology</td>
<td>II</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>17.011 and 17.021</td>
<td></td>
</tr>
<tr>
<td>70.011B</td>
<td>Mammalian Embryology</td>
<td>II</td>
<td>1</td>
<td>Session 2</td>
<td>6</td>
<td>17.011 and 17.021</td>
<td></td>
</tr>
<tr>
<td>70.011C</td>
<td>Systematic Anatomy I</td>
<td>II</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>17.001, 70.011A*</td>
<td>70.011A*</td>
</tr>
<tr>
<td>70.012A</td>
<td>Systematic Anatomy II</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>70.011A*, 70.011C*</td>
<td>70.011C*</td>
</tr>
<tr>
<td>70.012B</td>
<td>Systematic Anatomy III</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>70.011A*, 70.011C*</td>
<td>70.011C*</td>
</tr>
<tr>
<td>70.012C</td>
<td>Systematic Anatomy IV</td>
<td>III</td>
<td>1</td>
<td>Full yr.</td>
<td>3</td>
<td>70.011A*, 70.011C*</td>
<td>70.011C*</td>
</tr>
<tr>
<td>70.012D</td>
<td>Comparative Histology</td>
<td>III</td>
<td>1</td>
<td>Session 1</td>
<td>6</td>
<td>70.011A</td>
<td></td>
</tr>
</tbody>
</table>

* In some circumstances this subject may be taken as a co-requisite rather than a prerequisite.

SCHOOL OF HUMAN GENETICS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.201</td>
<td>Population Genetics Theory</td>
<td>III</td>
<td>1</td>
<td>Session 2</td>
<td>5</td>
<td>43.101A/45.101A, 43.102A</td>
<td>43.102A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hours p.w.</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.011A</td>
<td>Principles of Physiology</td>
<td>II</td>
<td>2</td>
<td>Full yr.</td>
<td>6</td>
<td>2.001</td>
<td>10.001 or 10.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.021</td>
<td>17.011 and 17.021</td>
</tr>
<tr>
<td>73.012</td>
<td>Physiology II</td>
<td>III</td>
<td>4</td>
<td>Full yr.</td>
<td>13</td>
<td>73.011A; 41.101 (A + B + C)</td>
<td>45.101A</td>
</tr>
</tbody>
</table>

NOTE: The above represent the normal prerequisites for the courses in Physiology, but the Head of School may recommend that students with a good academic record be granted exemption from them.
(b) *General Studies*

Almost all undergraduates in Faculties other than Arts and Law are required to complete a General Studies programme. Courses (in addition to the Faculties of Arts and Law) which do not have this requirement are Bachelor of Science in Psychology, Bachelor of Science in Economic Geography, Bachelor of Science (Education) and Bachelor of Health Administration. The Department of General Studies publishes its own Handbook which is available free of charge. All details regarding General Studies courses and requirements are contained in it, and students are advised to obtain a copy. All enquiries about General Studies should be made to the General Studies Office, Room G15, Morven Brown Building (663-0351 Extn. 2091).

Students shall select *three* general studies subjects (see General Studies handbook *and* School of History and Philosophy of Science in Subject Information and Textbook Lists section in this handbook); in addition, honours students shall be required to complete an Advanced General Studies Elective.

4. *Pattern of Studies*

In general, a student should select a course which is adequately distributed over the six half years of study. Typical course patterns are available from the Faculty Office.

A suggested pattern of study is:—

First year: The appropriate two units of level I Mathematics and six other level I units including those essential to the intended major sequence of units.

Second year: One general studies elective and eight units from level II or six units from level II and two from level I.

Third year: Two general studies electives and at least four level III units. The other units could be level II or III.

Fourth year: For an honours degree, an advanced general studies elective and such requirements as specified by the Head of the appropriate School.

5. *Part-time Study*

A student must select the units and general studies electives in accordance with these regulations save that Clause 2a(vi) is modified so that he must complete level I Mathematics and
RULES GOVERNING ADMISSION TO THE SCIENCE DEGREE COURSE WITH ADVANCED STANDING FOR THE PURPOSE OF OBTAINING A DOUBLE DEGREE

1. Undergraduates* of the University of New South Wales who have satisfied the examiners in at least the first two years of a degree course extending over four or more years and approved by the Faculty of Science for the purpose of double degrees, may be admitted to the Science degree course with advanced standing. Such undergraduates' performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. Students so admitted who have satisfied the examiners in General Studies subjects and/or Science course units shall be given advanced standing in such General Studies subjects and no more than 14 such Science course Units.

3. Students so admitted may be granted exemption from two other level II Science Units on the basis of other subjects completed by them.

4. In order to qualify for the award of the degree of B.Sc., students so admitted with advanced standing shall be required to complete the appropriate General Studies subjects and no less than four units of either level II or level III and four other level III units in accordance with the Science course regulations.

The units submitted for the Bachelor's degree under these regulations must include at least four level III units chosen from related disciplines in accordance with the Science course regulations. One of Mathematics 10.021 or 10.001 or 10.011 must be included in the course.

*In Rule 1, the word "undergraduates" includes graduands, i.e., a person may be admitted under these rules if he has met all requirements for a first degree which has not yet been conferred on him, and his admission under these rules shall be no bar to the subsequent award for the first degree.
RULES GOVERNING ADMISSION TO THE SCIENCE DEGREE COURSE WITH ADVANCED STANDING

1. Graduates of the University of New South Wales may be admitted to the Science degree course with exemption in all General Studies subjects completed by them and in no more than twelve Science course units completed by them.

2. Undergraduates of the University of New South Wales who transfer from another course to the Science degree course, may be admitted to the Science degree course with exemption in all General Studies subjects completed by them and in all Science course units completed by them. Further, where an undergraduate has completed a subject which contains the syllabus material of a Science course unit (or units) the Dean, with the agreement of the Head of the School offering the Science course unit (or units) may allow the unit (or units) so covered to be counted to a Bachelor of Science degree.

An undergraduate transferring to the Science course must take Mathematics 10.021 or 10.001 or 10.011 during his first year of enrolment in the course unless one of them has previously been completed.

3. Graduates or undergraduates of other universities or of other approved tertiary institutions may be admitted to the Science degree course with advanced standing.

4. Students admitted under Rule 3 who have satisfied the examiners in units of the same title or subject matter as Science course subjects in this University may, subject to the approval of the appropriate Heads of School, be granted exemption in no more than eleven Science course units but not including level III Science course units.

5. Notwithstanding the provisions of Rules 1, 2, 3 and 4, Faculty may determine a special programme to be completed by a student who wishes to be granted advanced standing for an honours degree of Bachelor of Science in this University.
PURE AND APPLIED CHEMISTRY COURSE

This course also leads to the Bachelor of Science degree, but provides a study in depth of one field only. It may be taken either as a full-time or part-time course.

Full-time Course

This course may be taken at pass or honours standard. The pass course requires full-time attendance at the University for three years. An additional year is required for the honours course.

First year is similar to Year I of Chemistry in the Science course. In the second year a core of chemistry subjects, similar in content to chemistry units in the science course, but treated in greater depth and with extended practical work, is supplemented by science units offered by the Faculties of Science, Applied Science and Biological Sciences. It will be possible to choose between a wide range of such units, which may include a further first year subject if desired. The most widely chosen electives are some combination of mathematics units or a group of biological science units, such as the level II Biochemistry units in the Science course. It is possible that some elective units at this level may be offered by the School of Chemistry in later years.

The first half of third year will consist of a further development of the core course in four chemistry subjects. At this stage the student will have studied chemistry to an extent comparable to the student who graduates from the Science course with a major in chemistry, but the Pure and Applied Chemistry student will have studied at rather greater depth. In the second half of the third year, students in the Pure and Applied Chemistry course will select three advanced elective subjects. While most of the electives available are provided by the School of Chemistry, the needs of students who see their future in the less technical areas of industry will be met by the provision of electives with an applied bias.

Third year electives are normally of 112 hours, equivalent to eight hours per week for the half year. They are arranged in four groups, corresponding to areas of scientific interest. Not more than two electives may be chosen from one group; at least one must be chosen from electives offered by the School of Chemistry and any pre- or co-requisites must be observed.
Group 1. Physical and theoretical chemistry, chemical physics, mathematics and statistics. 2.333, 2.303

Group 2. Organic chemistry, biochemistry 2.633

Group 3. Inorganic, analytical, nuclear and radiation chemistry 2.433, 2.533, 2.811

Group 4. Applied chemistry, interdisciplinary 2.513, 2.711, 2.911

Electives offered by School of Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.333</td>
<td>Physical Chemistry</td>
<td>2.322* or 2.303*</td>
</tr>
<tr>
<td>2.303</td>
<td>Theoretical Chemistry</td>
<td>2.302* or 2.322*</td>
</tr>
<tr>
<td>2.433</td>
<td>Inorganic Chemistry</td>
<td>2.422*</td>
</tr>
<tr>
<td>2.533</td>
<td>Analytical Chemistry</td>
<td>2.522*</td>
</tr>
<tr>
<td>2.513</td>
<td>Analytical Biochemistry</td>
<td>2.522*</td>
</tr>
<tr>
<td>2.633</td>
<td>Organic Chemistry</td>
<td>2.622*</td>
</tr>
<tr>
<td>2.711</td>
<td>Solid State Chemistry</td>
<td>2.311, 2.411</td>
</tr>
<tr>
<td>2.811</td>
<td>Nuclear and Radiation Chemistry</td>
<td>2.411</td>
</tr>
</tbody>
</table>
| 2.911 | Applied Chemistry | 2.311, 2.411, 2.511, 2.611

* May be taken as co-requisites if necessary.
391. PURE AND APPLIED CHEMISTRY
FULL-TIME COURSE

Hours per week for 2 sessions

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.011</td>
<td>Higher Physics I or Physics I</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2.001</td>
<td>Chemistry I</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I or Mathematics I</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>10.021</td>
<td>Mathematics IT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plus one of

5.010	Engineering A and Engineering B or Engineering C	3	3	6
17.011	Human Biology and Comparative Functional Biology	2	4	6
25.111	Geoscience I	2	4	6

<table>
<thead>
<tr>
<th>YEAR 2</th>
<th>Lec.</th>
<th>Lab.</th>
<th>Tut.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.311</td>
<td>Physical Chemistry</td>
<td>1½</td>
<td>3</td>
<td>4½</td>
</tr>
<tr>
<td>2.411</td>
<td>Inorganic Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.511</td>
<td>Analytical Chemistry</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2.611</td>
<td>Organic Chemistry</td>
<td>1½</td>
<td>3</td>
<td>4½</td>
</tr>
</tbody>
</table>

Science Electives* | 9 |
General Studies Elective | 1½ |

Recommended elective subjects in Second Year. Pre- and co-requisites for these subjects are shown under the Science course and must be observed.

MATHEMATICS

10.031	Mathematics	2
10.331	Statistics SS	2
10.111A	Mathematics II	6

PHYSICS

| 1.212 | Physics IIT | 3 |

BIOLOGICAL SCIENCES

17.011	Human Biology	6
17.021	Comparative Functional Biology	6
41.101A	Chemistry of Biologically Important Molecules	6*
41.101B	Metabolism	6*
41.101C	Biochemical Control	6*
44.101A	Introductory Microbiology	3
73.011A	Principles of Physiology	6

* One session only.
GEOLOGY
25.111 Geoscience I ... 6
25.112A Geoscience IIA 6
25.112B Geoscience IIB 3

YEARS 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Lec.</th>
<th>Tut.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.322 Physical Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.422 Inorganic Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.522 Analytical Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.622 Organic Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Elective Subjects†</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

* Alternatively 2.013A Theoretical Chemistry (1, 1, 1†).

† Three to be selected from the following list in accordance with the groupings and other requirements detailed earlier:

<table>
<thead>
<tr>
<th>Course</th>
<th>Lec./Tut.</th>
<th>Lab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.333 Physical Chemistry</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.303 Theoretical Chemistry</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.433 Inorganic Chemistry</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.533 Analytical Chemistry</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.513 Analytical Biochemistry</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.633 Organic Chemistry</td>
<td>1½</td>
<td>2½</td>
</tr>
<tr>
<td>2.711 Solid State Chemistry</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.811 Nuclear and Radiation Chemistry</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.911 Applied Chemistry</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

YEAR 4 — HONOURS
Consult School for details.

Part-time Course

The part-time course in Pure and Applied Chemistry is equivalent to the full-time course and extends over six part-time years, leading to the degree of Bachelor of Science. Honours may be awarded on the completion of an additional year of full-time study or, in special circumstances, an additional two years of part-time study.

The part-time course has been designed for students employed in the chemical industry but employment in this industry is not obligatory for entrance to the course.

This course allows a student to choose electives from other faculties such as Commerce or Applied Science. Areas such as industrial chemistry, management and technical services can thus be covered by those students who feel that their vocational interests lie in one particular region.
391. PURE AND APPLIED CHEMISTRY
PART-TIME COURSE

STAGES 1 AND 2

Two of the following subjects will be taken in the first year and the other two in the second year (as directed).

<table>
<thead>
<tr>
<th>Hours per week for 2 sessions</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.011 Higher Physics I or 1.001 Physics I</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.001 Chemistry I</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10.001 Mathematics I or 10.021 Mathematics IT</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Plus one of

<table>
<thead>
<tr>
<th>Hours per week for 2 sessions</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.010 Engineering A and 5.020 Engineering B or 5.030 Engineering C</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>17.011 Human Biology and 17.021 Comparative Functional Biology</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25.111 Geoscience I</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>27.031 Geography IS</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Three field excursions, up to five days in all, are an essential part of the course.

STAGE 3

<table>
<thead>
<tr>
<th>Hours per week for 2 sessions</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.311 Physical Chemistry</td>
<td>1½</td>
<td>3</td>
<td></td>
<td>4½</td>
</tr>
<tr>
<td>2.411 Inorganic Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Science Electives*</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>13½</td>
</tr>
</tbody>
</table>

See footnote under Second Year Full-time Course.

STAGE 4

<table>
<thead>
<tr>
<th>Hours per week for 2 sessions</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.511 Analytical Chemistry</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.611 Organic Chemistry</td>
<td>1½</td>
<td>3</td>
<td>4½</td>
<td></td>
</tr>
<tr>
<td>Science Elective*</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td></td>
<td></td>
<td>1½</td>
</tr>
</tbody>
</table>

See footnote under Second Year Full-time Course.
<table>
<thead>
<tr>
<th>STAGE 5</th>
<th>Lab.</th>
<th>Tut.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.322 Physical Chemistry*</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.422 Inorganic Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.522 Analytical Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.622 Organic Chemistry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td></td>
<td></td>
<td>1½</td>
</tr>
<tr>
<td>Total</td>
<td>13½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Alternatively 2.013A Theoretical Chemistry (1, 1, 1½).

<table>
<thead>
<tr>
<th>STAGE 6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Elective Subjects**</td>
<td>12</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1½</td>
</tr>
<tr>
<td>Total</td>
<td>13½</td>
</tr>
</tbody>
</table>

**Three to be selected. See list and regulations under Third Year Full-time course.

Honours

The requirements for admission to the honours course are the same as for the full-time honours course. A student wishing to do honours on a part-time basis may complete the honours year over two part-time years. Students are, however, advised to make every effort to do the honours year full time.
The Department of Optometry provides a four year full-time course in Optometry leading to the degree of Bachelor of Optometry, which may be awarded at the pass or honours level. The first year of the course involves a study in the fundamental sciences of physics, chemistry, mathematics and general and human biology. Students who have completed the first year of a science course including physics, chemistry, mathematics and general and human biology or zoology at any Australian university are qualified for admission to the second year of the course. Second, third and fourth years are devoted to professional training in optometry including clinical optometry in the final year.

395. OPTOMETRY—FULL-TIME COURSE

Bachelor of Optometry

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>Lab.</th>
<th>Lec.</th>
<th>Tut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.001 Chemistry I</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10.001 Mathematics I or 10.011 Higher Mathematics I or 10.021 Mathematics IT</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17.011 Human Biology</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>17.021 General Functional Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2</th>
<th>Lab.</th>
<th>Lec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.811 Optometry I</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>31.821 Special Anatomy and Physiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>73.011A Principles of Physiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 3</th>
<th>Lab.</th>
<th>Lec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.001 Psychology I</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>31.812 Optometry II</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>31.831 Diseases of the Eye</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>
CONDITIONS FOR THE AWARD OF THE DOUBLE DEGREE OF BSc BOptom IN THE FACULTY OF SCIENCE

1. Undergraduates* of the University of New South Wales who have satisfied the examiners in at least the first two years of the Optometry degree course may be admitted to the Science degree course with advanced standing for the purpose of qualifying for the double degree of BSc BOptom. Such undergraduates' performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. In order to qualify for the award of the degree of BSc, students so admitted shall be required to complete the appropriate general studies subjects and no less than four units of either level II or level III and four other level III units, in accordance with the Science Course regulations.

The units submitted for the Bachelor's degree under these regulations must include at least four level III units chosen from related disciplines in accordance with the Science course regulations.

3. In order to qualify for the award of the degree of BOptom, students so admitted shall complete the requirements of the Optometry degree course.

*In Rule 1, the word "undergraduates" includes graduands, i.e., a person may be admitted under these rules if he has met all requirements for a first degree which has not yet been conferred on him, and his admission under these rules shall be no bar to the subsequent award of the first degree.
BACHELOR OF SCIENCE IN PSYCHOLOGY COURSE

The four year course in Psychology, which leads to the degree of Bachelor of Science, is designed to meet the requirements of students who intend to become professional psychologists, as either practitioners or research workers. It provides extensive study of psychological theory and practice, supported by an appropriate selection of other subjects.

The course is available on a full-time basis only.* Entry into the course is subject to a quota which is determined from time to time.

In the fourth year, students undertake a programme of study which includes courses selected from the School's advanced electives. Electives are offered in the major areas of general psychology and in a number of applied fields, e.g. clinical, industrial, human factors, and educational. In addition, the student must complete a research thesis or project.

Details of qualifications for admission to the Psychology BSc Course, the course requirements for Pass and Honours at graduation and rules governing admission with Advanced Standing are given below. Hours of attendance for the main subjects available in the course are shown in the Schedule of Course Subjects, followed by some recommended course patterns.

RULES GOVERNING THE PSYCHOLOGY BSc COURSE

I. Applicants for admission to the Course must be matriculated to this University; and also have either satisfied the entrance requirements for the Faculty of Science or, alternatively, have passed Mathematics I or General and Human Biology.

II. (A) In order to qualify for admission to the degree of BSc in Psychology under these regulations a candidate must attend classes and satisfy the examiners in the following subjects:—

* Any student who enrolled in the former BSc in Applied Psychology Course prior to 1973 on a part-time basis may continue enrolling on that basis, provided that the course of study is completed within the minimum time plus two years.
1. *Each of:*—
 12.001 Psychology I
 12.042 Psychology IIA

 and

 A total value of 11 units of Psychology (Level II and III)

 (In special cases, the Head of the School of Psychology or his representative may approve of the substitution of any other appropriate course or equivalent units).

 and

 12.004 Psychology IV.

2. *Five other subjects* (or their equivalent in units) selected to meet the following requirements:

 (a) that they shall include *at least* one of:

 (i) 10.011 Higher Mathematics I, *or*
 10.001 Mathematics I, *or*
 10.021 Mathematics IT

 or

 (ii) 17.011 Human Biology, *and*
 17.021 Comparative Functional Biology.

 [They may include both (i) and (ii).]

 (b) that they shall include *at least* one of:

 53.111 Sociology I
 15.101 Economics I
 54.111 Political Science I
 52.111 Philosophy I

 or with the approval of the Head of the School of Psychology, one other Arts I subject or two General Studies electives.

 (c) that they shall include at least one subject which together with the subject meeting the requirements of (a) or (b) immediately above constitutes a recognized sequence of two courses.

 Recognized sequences are:

 (i) 10.001 Mathematics I, followed by three Mathematics level II units (10.111A, 10.111B, 10.211A) or by 10.311 Theory of Statistics II.
(ii) 17.001 General and Human Biology (or both of 17.011 Human Biology and 17.021 Comparative Functional Biology) followed by 12.402 Physiological Psychology, or by the equivalent of one subject chosen from the following units according to the regulations of the Faculty of Biological Sciences:

\[
\begin{align*}
41.101A & \text{ Chemistry of Biologically Important Molecules} \\
41.101B & \text{ Metabolism} \\
& \quad (41.101A \text{ and } 41.101B \text{ must be taken together, and count as two units}) \\
41.101C & \text{ Biochemical Control} \\
45.101A & \text{ Genetics and Biometry} \\
45.101C & \text{ Vertebrate Zoology} \\
73.011A & \text{ Principles of Physiology I (equivalent to 2 units)}
\end{align*}
\]

(iii) 53.111 Sociology I, followed by 53.112 Sociology II

\[
\begin{align*}
15.101 & \text{ Economics I, followed by 15.102 Economics II} \\
54.111 & \text{ Political Science I, followed by 54.112 Political Science II} \\
52.111 & \text{ Philosophy I, followed by 52.112 Philosophy II.}
\end{align*}
\]

(B) The proposed course must be approved by the Head of the School of Psychology or his representative prior to or during enrolment. The courses must be chosen in such a way as will fit in with the timetable.

(C) Progression in the Course shall be by subjects, and the subjects in the Course may be completed in any order consistent with the requirements concerning prerequisites and co-requisites for the subjects chosen.

III. Prerequisites and Co-requisites

Before enrolling in any course (or equivalent units of a subject) the student shall have attended the classes and shall have satisfied the examiners in all relevant prerequisite subjects.
The student should refer to the appropriate Faculty Handbook or to the Calendar for a statement of subject prerequisites and/or co-requisites.

IV. The award of BSc in Psychology at graduation shall be at either Pass level or with Honours after a minimum of four years of full-time study.

RULES GOVERNING ADMISSION TO THE PSYCHOLOGY BSc COURSE WITH ADVANCED STANDING

1. Graduates of the University of New South Wales may be admitted to the Psychology BSc degree course with exemptions from no more than five subjects or their unit equivalents completed by them. No more than two Psychology subjects may be included in the subjects exempted.

2. Undergraduates of the University of New South Wales who transfer from another course to the Psychology BSc course may be admitted to the Psychology BSc course with exemption in no more than seven Psychology BSc course subjects or their unit equivalents.

3. Graduates or undergraduates of other universities may be admitted to the Psychology BSc course with advanced standing.

4. Students admitted under Rule 3 who have satisfied the examiners in subjects of the same title or subject matter as those permissible in the Psychology BSc course may, subject to the approval of the appropriate Heads of School, be granted exemption in no more than five subjects, of which no more than two may be Psychology subjects.

RECOMMENDED PSYCHOLOGY BSc COURSE PATTERNS

The course requirements have been so designed that they allow for:

(a) a solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques by way of the equivalent of 6 compulsory psychology subjects [although the student may choose from a number of level II, III and IV units];
(b) some supporting studies in mathematics and/or biology, of which a minimum of one course is compulsory;

(c) some supporting studies in the social sciences, of which a minimum of one course is compulsory; and

(d) the special needs, interests and academic or vocational background of the individual student to be considered when the balance of the five supporting subjects (or their equivalents in units) is selected in consultation with the Head of School or his representative.

For this reason, no course patterns are prescribed. The patterns to be completed by students who are admitted with advanced standing will take into account the subjects credited.

Students commencing university studies for the first time will arrange their patterns of supporting subjects in consultation with the Head of the School or his representative before completing enrolment. For such full-time students, some examples of patterns, based on supporting subject variants, are suggested below:
<table>
<thead>
<tr>
<th>Course</th>
<th>Year 1</th>
<th>Year II</th>
<th>Year III</th>
<th>Year IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.001</td>
<td>10.001</td>
<td></td>
<td>12.042</td>
</tr>
<tr>
<td>COMPULSORY</td>
<td></td>
<td>10.111A</td>
<td>10.111B</td>
<td>12.004</td>
</tr>
<tr>
<td>PSYCHOLOGY</td>
<td></td>
<td></td>
<td>and 10.211A</td>
<td></td>
</tr>
<tr>
<td>SUBJECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR ALL</td>
<td></td>
<td>Social</td>
<td>An approved</td>
<td></td>
</tr>
<tr>
<td>COURSES</td>
<td></td>
<td>Science</td>
<td>level I or II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subject</td>
<td>Subject (or equiv. units)</td>
<td></td>
</tr>
<tr>
<td>MAIN</td>
<td></td>
<td>Any approved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPORTING</td>
<td></td>
<td>level I</td>
<td>Subject</td>
<td></td>
</tr>
<tr>
<td>SUBJECT:</td>
<td></td>
<td>(2 Yrs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 Yrs.)</td>
<td></td>
<td>Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.111A unit</td>
<td></td>
<td>10.112A unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.111B unit</td>
<td>10.112B unit</td>
<td>10.112A unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.211A unit</td>
<td>10.112E unit</td>
<td>10.112B unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.111C unit</td>
<td></td>
<td>10.112B unit</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
<td>A Social Science Subject I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 Yrs.)</td>
<td>10.001</td>
<td>Any approved</td>
<td>An approved level I or II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>level I</td>
<td>Subject (or equiv. units)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year I</td>
<td>Year II</td>
<td>Year III</td>
<td>Year IV</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>17.011 and 17.021 2.001 10.001 or 10.021</td>
<td>41.101A 41.101B 41.101C</td>
<td>A Social Science Subject I</td>
<td></td>
</tr>
<tr>
<td>Zoology</td>
<td>17.011 and 17.021 2.001 10.001 or 10.021</td>
<td>45.101A unit 45.101C unit</td>
<td>A Social Science Subject I</td>
<td></td>
</tr>
<tr>
<td>(2 Yrs.)</td>
<td>(2 Yrs.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology</td>
<td>17.011 and 17.021 A Social Science Subject I Any approved level I Subject</td>
<td>73.011A Any approved level I or II Subject (or equiv. units)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 Yrs.)</td>
<td>(2 Yrs.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science Subject</td>
<td>17.011 and 17.021 2.001 10.001 or 10.021 or 17.011 and 17.021 Any approved level I Subject</td>
<td>73.011A 10.331 A Pure Maths II Unit</td>
<td>A Social Science Subject I</td>
<td></td>
</tr>
<tr>
<td>Year I</td>
<td>Year II</td>
<td>Year III</td>
<td>Year IV</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
</tbody>
</table>
| Social Science Subject (A) I
17.011 and 17.021
10.011 or 10.001 or 10.021
Any approved level I | Social Science Subject (A) II
12.402 | Social Science Subject (A) III | Social Science Subject B (I)
or Any approved level I or II |

General

(3 Yrs.):

A Social Science Subject (A) I
17.011 or 10.011 or 10.021 or any approved level I

Social Science Subject (A) II

Social Science Subject (A) III

Social Science Subject B (I)
or Any approved level I or II

Any approved level I or II
<table>
<thead>
<tr>
<th>No.</th>
<th>Subject or Unit</th>
<th>Level</th>
<th>Hours p.w.</th>
<th>When Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.001</td>
<td>Psychology I</td>
<td>I</td>
<td>5</td>
<td>Full yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.042</td>
<td>Psychology IIA*</td>
<td>II</td>
<td>6</td>
<td>Full yr.</td>
<td>12.001</td>
<td>12.012</td>
</tr>
<tr>
<td>12.004</td>
<td>Psychology IV</td>
<td>IV</td>
<td>15</td>
<td>Full yr.</td>
<td>All other Course requirements</td>
<td></td>
</tr>
<tr>
<td>12.402</td>
<td>Physiological Psychology</td>
<td>II</td>
<td>4</td>
<td>Full yr.</td>
<td>12.001, 17.001</td>
<td></td>
</tr>
<tr>
<td>12.042**</td>
<td>11 Psychology units</td>
<td>II & III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td>I</td>
<td>6</td>
<td>Full yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I</td>
<td>I</td>
<td>6</td>
<td>Full yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.021</td>
<td>Mathematics IT</td>
<td>I</td>
<td>6</td>
<td>Full yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.111A</td>
<td>Mathematics II</td>
<td>II</td>
<td>6</td>
<td>Full yr.</td>
<td>10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td>10.111B</td>
<td>Mathematics II</td>
<td>II</td>
<td>6</td>
<td>Full yr.</td>
<td>10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td>10.311</td>
<td>Theory of Statistics II</td>
<td>II</td>
<td>7</td>
<td>Full yr.</td>
<td>10.001 or 10.011 or 10.021 Cr.</td>
<td></td>
</tr>
<tr>
<td>10.321</td>
<td>Higher Theory of Statistics II</td>
<td>II</td>
<td>8</td>
<td>Full yr.</td>
<td>10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td>17.011</td>
<td>Human Biology</td>
<td>I</td>
<td>6</td>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.021</td>
<td>Comparative Functional Biology</td>
<td>I</td>
<td>6</td>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.101A</td>
<td>Chemistry of Biologically Important Molecules</td>
<td>II</td>
<td>6</td>
<td>Session 1</td>
<td>17.001</td>
<td>41.101B</td>
</tr>
<tr>
<td>41.101B</td>
<td>Metabolism</td>
<td>II</td>
<td>6</td>
<td>Session 1</td>
<td>2.001</td>
<td>41.101A</td>
</tr>
<tr>
<td>41.101C</td>
<td>Biochemical Control</td>
<td>II</td>
<td>6</td>
<td>Session 2</td>
<td>10.001 or 10.011 or 10.021</td>
<td>[41.101A, 41.101B]</td>
</tr>
<tr>
<td>No.</td>
<td>Subject or Unit</td>
<td>Level</td>
<td>Hours p.w.</td>
<td>When Offered</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ZOOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITS §</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.101A Genetics and Biometry</td>
<td>II</td>
<td>6</td>
<td>Session 1</td>
<td>17.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.101C Vertebrates</td>
<td>II</td>
<td>6</td>
<td>Session 2</td>
<td>2.001</td>
<td>10.001 or 10.011 or 10.021</td>
<td></td>
</tr>
<tr>
<td>PHYSIOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITS §</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.011A Principles of Physiology (Equiv. Unit Value = 2)</td>
<td>II</td>
<td>6</td>
<td>Full yr.</td>
<td>17.001</td>
<td>2.001</td>
<td>10.001 or 10.011 or 10.021</td>
</tr>
<tr>
<td>ECONOMICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.101 Economics I</td>
<td>I</td>
<td>3</td>
<td>Full yr.</td>
<td>15.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.102 Economics II</td>
<td>II</td>
<td>4</td>
<td>Full yr.</td>
<td>15.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILOSOPHY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.111 Philosophy I</td>
<td>I</td>
<td>4</td>
<td>Full yr.</td>
<td>52.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.112 Philosophy II</td>
<td>II</td>
<td>5</td>
<td>Full yr.</td>
<td>52.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.111 Sociology I</td>
<td>I</td>
<td>4</td>
<td>Full yr.</td>
<td>53.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.112 Sociology II</td>
<td>II</td>
<td>4½</td>
<td>Full yr.</td>
<td>53.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLITICAL SCIENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.111 Political Science I</td>
<td>I</td>
<td>3½</td>
<td>Full yr.</td>
<td>54.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.112 Political Science II</td>
<td>II</td>
<td>3½</td>
<td>Full yr.</td>
<td>54.112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Day-time attendance for tutorials and practical work, including visits to institutions, etc., is required.

** For details of level II and level III units, including pre- and co-requisites, refer to Science Course details under Faculty of Science.

§ For details of level II and level III units, including pre- and co-requisites, refer to Science course details under Faculty of Science. If units are taken, three level II units are equivalent to one level II subject; four level III units are equivalent to one level III subject.
POSTGRADUATE COURSES

On completion of a first degree course (BSc) the student may wish to proceed to a higher degree. This usually entails two or three years’ research under direction. A limited number of Scholarships are available at this and other Universities, and these are competitive.

The regulations governing higher degrees are to be found in the University Calendar. A candidate thinking of undertaking such a course should first discuss the matter with the Head of the School in which he wishes to study.

A course in Food and Drug Analysis is offered by the School of Chemistry on a part-time basis over two years and leads to a diploma (DipFDA). The course is designed to provide systematic training at an advanced level for chemists who wish to extend their acquaintance with analytical techniques, and is thus suitable for those who wish to practise as public analysts. The School also offers a formal graduate course for the degree of Master of Chemistry (MChem) in Analytical Chemistry, on a full-time basis for one year. It will not operate in 1974, but will run full-time in 1975. The programme may also be extended in the future to part-time students. For full details see Calendar.

The School of Psychology offers a postgraduate formal course leading to the award of Master of Psychology (MPsychol). It is available to selected graduates with Honours in Psychology and provides professional training in either Experimental Clinical Psychology or Psychodynamic Clinical Psychology.

The School of Biological Technology, conjointly with the School of Chemical Engineering, offers a course in biochemical engineering which leads to the award of a postgraduate diploma (DipBiochemEng). The course may be completed in one year of full-time study or part-time over two years and is intended for graduates in chemical engineering, chemistry, biological sciences and agriculture.

The School also offers advanced treatments of important areas of Biotechnology in a postgraduate formal course leading to the
award of Master of Science (Biotechnology) (MSc(Biotech)). It may be undertaken by graduates with honours in Biotechnology or those who have completed the preliminary or qualifying programmes available in the School. The course is of one year's duration full time but may be completed over a longer period by part-time study.

The School of Mathematics offers a postgraduate course which covers a wide range of statistical theory and practice. It leads to the award of the degree of Master of Statistics (MStats), and is available on a two-year full-time basis or on a four-year part-time basis.

The course provides advanced training for practising statisticians, and is available to graduates with a pass degree in statistics or an honours degree in a related field (commonly mathematics) with supporting study in statistics. Honours graduates in statistics may be exempted from a maximum of half the course.

The School of Physics offers a postgraduate course, with an emphasis on Solid State Physics, which leads to the award of MPhysics. The course may be completed in one year of full-time study or two years of part-time study.

A formal graduate course for the degree of Master of Optometry (MOptom) is given by the School of Applied Physics and Optometry. For details see page B54.
SUBJECT INFORMATION AND TEXTBOOK LISTS

The following pages list details of textbooks, subject descriptions, etc. Reference books are not included here but the reference lists will be made available by the various schools. Information concerning general studies subjects is contained in the Handbook of the Board of General Studies which is available free of charge.

SCHOOL OF ANATOMY

The School of Anatomy offers three Level II units and four Level III units for Science students. Level II units comprise Mammalian Histology, Mammalian Embryology and Systematic Anatomy I (cardio-pulmonary). The Level III units are Systematic Anatomy II (locomotion), Systematic Anatomy III (alimentary and urogenital), Systematic Anatomy IV (neuro-endocrine) and Comparative Histology. Students who major in Anatomy and who attain an adequate standard may proceed to a BSc degree with honours. Each Anatomy unit is offered once during the year as a day course only.

For details of level, unit value, when offered, hours per week, pre-requisites and co-requisites, see page B27.

70.011A Mammalian Histology

TEXTBOOK

70.011B Mammalian Embryology

TEXTBOOK

70.011C Systematic Anatomy I

TEXTBOOK

70.012A Systematic Anatomy II

TEXTBOOK

70.012B Systematic Anatomy III

TEXTBOOK

70.012C Systematic Anatomy IV

TEXTBOOK

70.012D Comparative Histology

TEXTBOOK
DEPARTMENT OF APPLIED PHYSICS

There are significant and increasing numbers of opportunities for employment of physicists along with other technologists in the research-and-development laboratories and other departments of Australian industrial firms. The kind of work done by industrial physicists is described as applied physics; and the Department of Applied Physics in this University has been set up to bring together industrial scientists and students and staff of the University.

The Department currently offers three level III units in the Science Course (31.113A, B and C). While these are intended as part of preparation for applied physics honours study, they are equally suitable for science students, whether majoring in physics or not, who have an interest in the application of physics in technology and have completed the prerequisite units (1.112B or 1.122B; and 2.001 for 31.113A).

Undergraduates who are majoring in Physics in the Science Course and whose interest is in applying their subject are offered the opportunity to achieve a BSc with Honours in Applied Physics on the basis of the fourth-year course which the Department conducts.

In accordance with Science Course regulations, suitably-qualified students may apply to the Head of the School for admission to the Honours year on completing pass degree requirements. Suitable qualifications include, besides the major in Physics, completion of the majority of a range of Science Course subjects and units which give appropriate support to applied physics study. A recommended pass degree programme is:

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 (or 1.011)</td>
<td>Physics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.001</td>
<td>Chemistry I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.001</td>
<td>Engineering I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.001 (or 10.011)</td>
<td>Mathematics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 units each)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.112 (or 1.122)</td>
<td>Physics II (units A, B & C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.111 (or 10.121)</td>
<td>Pure Mathematics II (units A & B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.211 (or 10.221)</td>
<td>Applied Mathematics II (unit A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 further units from the “Preferred List” below</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.113 (or 1.123 Higher Physics III (units A, B, C and D))</td>
<td>Physics III (units A, B and C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.113</td>
<td>Applied Physics III (units A, B & C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two (or one) further units from the “Preferred List” on next page to comprise a total of 8 units for the year.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B54
"Preferred List" of Science Course units

Level I*

- 17.011 General Biology
- 17.021 Comparative Functional Biology (1 unit each)
- 12.001 Psychology I
- 25.001 Geology I (2 units each)

Level II

- 1.212T Physics (including "A" option) (1 unit each)
- 2.002 Chemistry II (units A, B & C) (1 unit each)
- 6.601A Introduction to Computing (2 units each)
- 10.311T Statistics

Level III

- 1.133A Electronics
- 1.143 Physics (units A, B, C, E and F) One only of 6.601B, 6.602C and 6.602D

The honours course comprises lectures, laboratory studies, and project work in areas of the application of physics to practical objectives, some of which areas may be chosen by the student from a number of electives. Also included is "Introduction to Industrial Practice" in which aspects of the work of scientists in industry will be critically studied in depth. In this course, and in other parts of the honours year work, the Department has the support of a staff of visiting lecturers from industry.

Graduates with honours in applied physics, or in physics, may register as research students in the Department working for the MSc or the PhD degree. Research work in the Department is directed towards practical objectives. Students working part-time or externally in appropriate fields for the MSc are welcome and given full encouragement.

Graduates not holding an appropriate honours degree either must present evidence of research ability, or must complete a qualifying course prescribed by the Department, before being accepted as higher-degree research students.

Students coming from outside the Science Course should note the "Rules governing Admission to the Science Degree Course with Advanced Standing" and in particular Rule 5, which relates to admission for the purpose of obtaining an honours degree. The "special programme" which Faculty would be recommended to prescribe, in the case of a pass graduate or graduand with a major in physics, would normally comprise one year of preparatory studies followed by the normal applied physics honours year. Depending on circumstances, the preparatory work might be accomplished by one year's full-time study, or might involve more than one year if part-time.

31.113A Physics of Materials I

A study of the physical properties of all types of materials in relation to structure.

TEXTBOOK

* The Science Course Regulations (see 2(a)(ii)) require that not less than 8 nor more than 10 units be from level I.
Completion of a 24-unit pass degree programme (as indicated), and a majority of graded passes in the level II and level III units, is normally required for admission to the Honours year.
† Prior to 1974, 17.001 General and Human Biology (2 units).
REFERENCE BOOKS
Ferry, J. D. *Viscoelastic Properties of Polymers*. Wiley.
Tarlo, L. R. G. *The Physics of Rubber Elasticity*. O.U.P.

31.113B Physics of Measurement
The general principles of measuring physical quantities and analysing measurements. Techniques of measurement, their scope and limitations.

TEXTBOOK

REFERENCE BOOKS
Rowe, J. *An Introduction to Digital Electronics*. Electronics Australia, 1970.
Sears, F. W. *Optics*. Addison-Wesley, 1956.

31.113C Applications of Radiation
Long-wave to short-wave electromagnetic radiation; some uses of electron beams and other radiations.

TEXTBOOK
No set text.

REFERENCE BOOKS
Sears, F. W. *Optics*. Addison-Wesley, 1956.

Part of each unit will comprise relevant laboratory work and other exercises. In these, students will be to a significant extent associated with the current programme of research work of the Department.

DEPARTMENT OF OPTOMETRY

The following courses are offered by the Department.

(a) A four-year full-time course leading to the degree of Bachelor of Optometry at either pass or honours level. This degree (BOptom) fulfils the requirements defined in the N.S.W. Optometrists (Amendment Act, 1963), and is the only course of professional training for Optometrists given in this State. Full details of the course appear earlier in this handbook.

(b) An extended undergraduate course leading to the double degree BSc/BOptom.

(c) A formal graduate course for the degree of Master of Optometry (MOptom). This course involves the study of three elective postgraduate subjects and advanced clinical optometry, together with the preparation of a thesis on an assigned project. It may be completed in one year of full-time study, or in the case of practising optometrists, in two or three years of part-time study.

(d) Facilities for individual research are available and students who are considered as eligible may enrol with the university as candidates for the degrees of Master of Science or Doctor of Philosophy.

Further information on the foregoing may be obtained from the brochures issued by the Department of Optometry.

31.811 Optometry I

Geometrical and Physical Optics—Extension of Physics I content on the nature of light, reflection, refraction, thin lenses, optical instrument, dispersion and colour.

Lens systems and thick lenses, Interference, Diffraction, Polarisation, Photometry.

31.812 Optometry II

External and Internal Examination of the Eye—Case history and symptoms. Signs of local and/or general disease. Examination methods and instruments. Optometrical photography. Facial measurements and frame fitting.

Refraction—Theory and practice of keratometry, objective and subjective refraction, prescribing special visual aids. Theory of design and construction of apparatus.

Orthoptics and Pleoptics—Assessment of binocular sensory and motor functions. Diagnosis and treatment of anomalies. Instrumentation.

Reading Deficiency—The reading process and its anomalies. Remedial training. Instrumentation.

TEXTBOOKS
Bier, N. Correction of Sub-Normal Vision. 2nd ed. Butterworths.

REFERENCE BOOKS
Giles, G. H. The Practice of Orthoptics. Hammond.
Giles, G. H. The Principles and Practice of Refraction. Hammond.
Ogle, K. N. *Researches in Binocular Vision*. Saunders.
Schonell, F. J. *Backwardness in the Basic Subjects*. Oliver & Boyd.
Traquair, H. M. *An Introduction to Clinical Perimetry*. Kimpton.

31.813 Optometry III

Contact Lenses—Theory and practice of prescribing haptic and corneal lenses. Instruments.

Theory of Spectacle Lenses and Optical Instruments—Advanced geometrical optics and spectacle lens design. Aberrations and their control. The elements of macroscopic and microscopic systems.

Comparative Ophthalmology and Ocular Evolution—The anatomy and physiology of invertebrate and vertebrate visual organs. Evolution of binocular vision.

History of Optics—Discussion of the development of optics, ophthalmology and optometry against the background of a short history of science. Optometrical and interprofessional ethics.

TEXTBOOKS

Mandel, R. B. *Contact Lens Practice: Basic and Advanced*. Thomas.

REFERENCE BOOKS

Brindley, G. S. *Physiology of the Retina and the Visual Pathway*. Arnold.
Corson, R. *Fashion in Eyeglasses*. Owen.
31.821 Special Anatomy and Physiology

Histology, Anatomy, and Embryology of the Eye and Associated Structures—Anatomy and histology of the eyeball, ocular adnexae, bony orbit, visual nervous pathways and visual cortex. The blood vessels, muscles, and nerves of the orbit and associated structures. The motor and sensory pathways associated with the visual apparatus. Elementary embryology and the detailed development of the eye and adnexae. Developmental defects of the eye and adnexae.

Physiology of the Eye and Vision—Physiology of the eyelids and lacrimal apparatus, cornea, aqueous humour and intra-ocular pressure, iris and pupil, lens and accommodation of retina and photo-chemistry of vision. Sensory responses to ocular stimulation, luminosity curve, flicker, after-images, and contrast phenomena. Visual acuity. Light- and dark-adaptation, photopic and scotopic vision. Colour vision and colour blindness. Eye movements, binocular vision, and stereopsis. Theories of vision, visual perception.

TEXTBOOKS

REFERENCE BOOKS

Keeney, A. H. *Chronology of Ophthalmic Development*. Thomas.
Mann, I. *The Development of the Human Eye*. C.U.P.
Mann, I. *Developmental Abnormalities of the Eye*. C.U.P.
Polyak, S. L. *The Retina*. Chicago U.P.
Spooner, J. D. *Ocular Anatomy*. Hatton.
31.831 Diseases of the Eye

The Ocular Manifestation of Systemic Diseases—Ocular manifestations of: tuberculosis, syphilis, disorders of metabolism, dental sepsis, diseases of the kidneys, cardiovascular system, blood, endocrine system, central nervous system, phakomatoses and hereditary syndromes.

TEXTBOOKS

REFERENCE BOOKS

SCHOOL OF BIOCHEMISTRY

Biochemistry involves a study of the chemistry of living organisms, and it is a subject where those interested in biology and those interested in chemistry work together to increase our understanding of life.

Some of the most spectacular achievements of recent times have been in the unravelling of the chemistry and function of very large molecules, macromolecules, of proteins, nucleic acids and polysaccharides which occur in living organisms. This has resulted in a better understanding of the transmission of hereditary information and the adaptation of organisms to the environment by mutations and natural selection.

Major areas of interest in Biochemistry at the present time involve a study of the chemistry of these large molecules involved in body processes such as growth, movement and reproduction. The formation and breakdown of these large molecules is known as metabolism and necessarily includes the chemical processes, involving both large and small molecules present in foodstuffs, which provide the necessary energy and the simple molecules or monomers that are then used in biosynthesis of these larger molecules which constitute the organism.

Basic to any understanding of the reactions of living organisms is the process of promoting chemical reactions under physiological conditions, that is, at low temperatures. A considerable emphasis is placed on understanding the hundreds of different types of enzymes, large protein molecules, each specifically designed for promoting one particular chemical reaction, the speed with which they function and the factors which control their operation.

The integration and control of biochemical reactions involves the study of hormones, or chemical messengers, that are synthesised in certain glands and exert their effects on cells, often situated in distant parts of the body, after being transported in the circulating blood or other vascular fluid.

A knowledge of Biochemistry is essential in maintaining the health of living organisms and is vital to the study of Medicine. There is an overlap with other biological sciences so that Biochemistry is a co-requisite or pre-requisite for study in the disciplines of Biological Technology, Botany, Microbiology, Physiology and Zoology. Biochemistry on the other hand draws particularly on a background of Biology and Chemistry and some knowledge of Mathematics and Physics.

There are excellent prospects for advanced training at honours level, involving an additional year's training, mainly in research, and for graduate research work for the Master of Science degree or for the Doctorate in Philosophy.

Biochemistry plays a role in so many facets of human activity that for students majoring in Biochemistry there are good employment opportunities in educational institutions, in many research areas, e.g., in Universities, C.S.I.R.O., Public Health and hospital organizations, and in industries concerned with food, pharmaceuticals and agriculture.

For details of level, unit value, when offered, hours per week, prerequisites and co-requisites, see page B20.
41.101A Chemistry of Biologically Important Molecules

The chemical properties of amino acids, peptides and proteins, carbohydrates, nucleic acids and lipids and the biological roles of these compounds. The nature and function of enzymes. Practical work to illustrate the lecture course.

TEXTBOOKS

REFERENCE BOOK

41.101B Metabolism

The intermediary metabolism of carbohydrates, lipids and nitrogenous compounds. The molecular mechanism of gene expression and protein synthesis. Practical work to illustrate the lecture course.

TEXTBOOKS
As for 41.101A plus

REFERENCE BOOKS
As for 41.101A.

41.101C Control Mechanisms

The relation between structure and function of enzymes, hormones, vitamins and membranes. Photosynthesis. Metabolic networks and control mechanisms. Practical work to illustrate the lecture course.

TEXTBOOKS
As for 41.101B plus

REFERENCE BOOKS
As for 41.101B.

41.102A Biochemistry of Macromolecules and Cell Biochemistry

Polysaccharides and glycoproteins including bacterial cell walls. Chemistry and biology of polynucleotides. Methods of amino acid and nucleic acid sequence analysis. Protein structure and synthesis. Active centres of some proteins. Sub-unit organization of proteins. Cellular degradation. Practical work to illustrate the lecture course and to provide experience in modern biochemical techniques.
TEXTBOOKS
or

REFERENCE BOOKS

41.102B Metabolic Pathways and Control Mechanisms

Haemoproteins, and electron transport, photosynthesis, photophosphorylation and oxidative phosphorylation. The nature and function of co-enzymes. Interrelationships in mammalian intermediary metabolism. Biochemical control mechanisms including hormones and allosteric interactions. Enzyme kinetics. Practical work to illustrate the lecture course and to provide experience in modern biochemical techniques.

TEXTBOOKS
As for 41.102A above.

REFERENCE BOOKS

41.121 Biochemistry

Physical and chemical properties and functional roles of the principal biological constituents of man. Enzymology, energetics, metabolism of principal cell constituents in the organs and tissues of man, multicellular organisation, metabolic and hormonal regulation and whole body metabolism. The biochemistry of body fluids and specialized tissues. Energy storage in man, whole body metabolic economy and nutrition. Practical work to illustrate the lecture course.

TEXTBOOKS

REFERENCE BOOKS
Biotechnology is the interface between the biological sciences and their applications in industry, medicine and agriculture. It is an inter-disciplinary area in which considerable use is made of the techniques and methodologies of mathematics, the physical sciences and engineering.

Biotechnology is a firmly established area of study in relation to fermentation technology, enzyme technology and engineering, and the biodeterioration and biodegradation of materials, both organic and inorganic. In these areas, the principal basic biological sciences involved are biochemistry, microbiology and genetics, and considerable use is made of mathematical modelling and computer techniques, and of chemical engineering concepts. Other areas of biotechnology overlap with biomedical engineering in which various of the engineering disciplines intermesh with the medical sciences. Most of the activities of the School are collaborative with other schools and departments of the University, and in some areas with relevant industry.

The School offers one level III subject, Fermentation Technology, as an option to students taking major sequences in Microbiology and Biochemistry in the Science course (the subject is also available to students in the Food Technology course). The School also contributes to fourth year subjects in the Industrial Chemistry course (Processes) and in Electrical Engineering (Biomedical Engineering).

An honours programme in the fourth year of the Science course can be undertaken in the School by students who have reached a satisfactory standard in biochemical or microbiological subjects in the third year of the course. A graduate diploma course in Biochemical Engineering is offered in collaboration with the School of Chemical Engineering and is open to students in relevant disciplines. A Master's course (MSc(Biotech)) by formal study is offered for honours graduates in Biotechnology or other graduates who have reached the required entrance standards by appropriate routes. The course is of one year's duration full-time, but may be completed over a longer period on a part-time basis.

Registration for the research degrees of Master of Science or Doctor of Philosophy is offered to honours graduates in relevant disciplines or to those graduates who have completed the preliminary or qualifying programmes available in the School. *Financial support for higher degree studies is available.

The School is not interested in producing narrow specialists, but in the training of graduates who, by participation in formal courses and research programmes of a collaborative kind, are equipped to identify and solve a wide range of problems, and who are experienced in the multi-disciplinary approach and are appreciative of its potentialities.

42.102 Fermentation Technology

An introduction to the basic factors involved in the operation of microbial processes on an industrial scale, including: The selection, main-

* See Postgraduate Scholarships in Section C of the Calendar.
tenance and improvement of micro-organisms; the influence of physical and chemical factors on the microbial environment; the control of environmental factors; the effects of operational patterns in batch and continuous flow cultivation; the harvesting, purification and standardisation of products; process optimisation; disposal of waste materials; an examination of selected microbial processes for chemical, pharmaceutical and food production, against the basic characteristics of large-scale fermentation processes practical exercises, including the operation of various types of fermenters, to illustrate the principal aspects of the lecture course.

TEXTBOOKS

REFERENCE BOOKS

For details of level, unit value, when offered, hours per week, prerequisites and co-requisites, see page B21.

42.103 Biological Technology (Honours)
Advanced formal training in selected areas of biochemistry and/or microbiology and participation in one of the school's research projects.
Botany is concerned with all aspects of the structure and function of plants and the relation of plants to the environment. Knowledge gained by investigations in these fields is important in agriculture, forestry and conservation, as well as in understanding the fundamental properties of biological material.

The major aspects of the subject which are taught in undergraduate courses in the School are Plant Genetics, Plant Physiology and Biochemistry, Plant Morphology, Ecology, Environmental Botany, Mycology and Plant Pathology. Any of these courses are usually combined with appropriate subjects in Biochemistry, Microbiology and Zoology. By this means, students may complete their studies with a broad spread over a number of biological disciplines, or may concentrate more in botanical aspects, with other subsidiary supporting subjects.

Fourth year Honours courses are provided for students wishing to specialise in a particular branch of Botany.

Research facilities are available within the School of postgraduate study leading to a degree of Master of Science or Doctor of Philosophy.

Careers for graduates in Botany include teaching, at secondary or tertiary level, scientific and technological work in food and drug industries, and investigational, research or extension work in the science and agriculture laboratories of State or Commonwealth organizations.

For details of level, unit value, when offered, hours per week, prerequisites and co-requisites, see page B21.

43.101A/45.101A Genetics and Biometry

Analysis of the mitotic cycle; replication of DNA and its organization in the chromosomes; linkage, non-miotic recombination; mutation, structural changes, polyploidy, aneuploidy; population genetics; cytoplasmic inheritance; episomes; gene structure and function. An introduction to statistical methods and their application to biological data, including an introduction to analysis of variance and experimental design.

TEXTBOOKS

This unit is offered jointly by the Schools of Botany and Zoology.

43.101B Plant Evolution and Ecology

A study of the evolution of vegetative form and structure of vascular plants; an examination of their organization into terrestrial communities; identification, evolution and distribution of elements of the Australian flora. Students are required to attend field excursions, all of which form an integral part of the course.
TEXTBOOKS

43.101C Plant Physiology
A general introduction to the physiology of the whole plant including a consideration of photosynthesis, inorganic nutrition, transport, translocation, physiology of growth and development, and plant growth substances and their application in agriculture.

TEXTBOOKS

43.102A Advanced Genetics
Human genetics including chromosome analysis, genetics of haemoglobin variation and drug response. Twin studies. Serum and enzyme polymorphisms. DNA studies including polarity and transcription concepts. Hypothesis of genetic recombination. Evolutionary genetics. Allelic complementation and fine structure. Polyploid cytogenticis, particularly wheat cytogenetics. Genetics of pathogenicity. Quantitative genetics. Heritability estimates and selection. Students are required to attend to long-term experiments outside formal class time.

43.102B Plant Taxonomy
Considers the assessment analysis and presentation of data for classifying plants both at the specific and supra-specific level. Students are required to attend field excursions all of which form an integral part of the course.

TEXTBOOKS*

43.102C Plant Physiology and Biochemistry
Includes the pathway of carbon in leaves, lipid metabolism, hormone physiology and the cell wall. Modifications may include items of current interest in plant physiology. Projects are related to the above topics or to research in progress within the School, and may require attendance outside the hours set down in the timetable.

* Students should consult lecturers in the course before purchasing textbooks.
43.102D Mycology

TEXTBOOKS

43.102E Environmental Botany

An introduction to the soil and atmospheric environment in which terrestrial plants exist and a study of the behaviour and response of the flowering plant to its environment, both in nature and agriculture. Students are required to attend field excursions all of which form an integral part of the course.

43.102F Plant Pathology

History of plant pathology; pathogenic organisms; symptoms of disease. Specific diseases caused by fungi, nematodes, bacteria and viruses. Host-pathogen relationships including stages of infection, evolution of host-pathogen relationships, adaptation for successful parasitism, resistance mechanisms and genetics of resistance. Control of diseases by the use of fungicides, nematicides, crop rotation and breeding for resistance.

TEXTBOOKS
SCHOOL OF CHEMISTRY

Chemistry is the science of materials, their properties and their transformations. As such, it is both an experimental and a theoretical science. Chemistry provides a common language for the experimental sciences, comparable with the language of quantitative scientific thought provided by mathematics, and is central among them, lying between physics on the one hand, and biology on the other. The interdependence of chemistry and other sciences is exemplified in the fields of biochemistry, chemical physics, geochemistry and chemical engineering. Additional to its intrinsic value, chemistry provides the basis of modern technology, through its contributions to medicine, industry and agriculture.

Career opportunities in chemistry are available for graduates in chemical industry, particularly in the research and development, control and management sections. Opportunities are also available in the universities and tertiary institutes, and in secondary teaching. Further opportunities are provided within Commonwealth and State departments, and within research organizations including the CSIRO and the AAEC.

Chemistry forms a part of many undergraduate courses offered, for example, Chemistry in the Science course, and Pure and Applied Chemistry. Additionally, there are courses within the Faculty of Applied Science, such as Industrial Chemistry, Ceramic Engineering, Food Technology, Chemical Engineering, Textile Technology and Metallurgy, which are predominantly concerned with technological aspects of chemistry.

The School of Chemistry provides two main undergraduate courses, namely (1) Pure and Applied Chemistry, and (2) Chemistry (as a co-major) in the Science Course. Both courses lead to the BSc degree.

A study of Chemistry (as a co-major) in the Science course involves a study of two branches of science to an advanced level. For example, a combination of level III Chemistry with level III Mathematics will provide a useful basis for later specialization in X-ray crystallography or theoretical chemistry; a combination of level III Chemistry with level III Geology will be of assistance to those who later wish to specialize in geochemistry. Another possibility is to combine level III Chemistry with level III Biochemistry units. These courses are suitable for those who wish to acquire advanced knowledge of two fields of study, or of interdisciplinary subjects. The Science course, as an alternative to the BSc(Ed) course, is also suitable for those planning to teach Chemistry at the secondary level. On a full-time basis, the Science course may be taken in three years (pass) or four years (with honours). On a part-time basis, however, the Science course may, according to the choice of subjects, require seven years (pass).

The aim of the Pure and Applied Chemistry course is to provide both depth and choice of subject matter at pass and honours level, to meet the needs of students who will become professional chemists. The course consists of a study of the fundamental principles of chemistry and of electives which deal with topics in contemporary fields of chemistry. It may be taken either full-time (three years for pass, four years for honours) or part-time (six years for pass, eight years for honours). No industrial training is required, though it is customary for students taking the part-time course to find employment in some branch of the chemical industry.
The role of basic scientific research in the creation of modern industrial society is widely accepted. The usual introduction to research in chemistry is provided by the honours degree (in either the Science course, or the Pure and Applied Chemistry course), which may be followed by a higher research degree in Chemistry (e.g., MSc, PhD). These degrees are aimed at those whose interests are in research and/or teaching. Alternatively, postgraduate training in chemistry is provided through formal Diploma or Master's courses (e.g. the Diploma in Food and Drug Analysis, and the MChem in Analytical Chemistry).

REQUIREMENTS FOR HONOURS IN CHEMISTRY

Students desiring admission to the honours course must apply in writing to the Head of the School not later than 30th November of the year in which the third year of the full-time (or equivalent stage of the part-time) course is completed.

The requirement for admission to the honours course is a sufficiently meritorious record in the work of the pass degree.

The major part of the work for honours will consist of a research project on which a written thesis is submitted. There is also some formal course work. Attendance will be required at such lectures and seminars as the Head of the School directs. Honours will not be awarded in any particular branch of the subject, but in chemistry as a whole.

For admission to the honours chemistry course in Science, the applicant must complete at least eight level III units, of which at least four must be in Chemistry. Students who, at the beginning of their third year are already interested in taking honours in chemistry, are advised to seek guidance from the School about the most appropriate subject to accompany the level III Chemistry units.

Prospective Honours students in the Pure and Applied Chemistry course should seek guidance before choosing their final year elective subjects.

2.001 Chemistry I

Classification of matter and theories of the structure of matter. Atomic structure, the periodic table and chemical behaviour. Chemical bonds and molecular structure. Equilibrium and change in chemical systems. The structure, nomenclature and properties of organic compounds. Reactions of organic compounds.

TEXTBOOKS

Aylward, G. H. & Findlay, T. J. V. *SI Chemical Data*. Wiley, 1971

REFERENCE BOOKS

2.002A Chemistry II (Physical Chemistry)
Quantum mechanics; molecular energy and thermodynamics; chemical application of thermodynamics; surface and colloid chemistry.

TEXTBOOKS

REFERENCE BOOKS

2.002B Chemistry II (Organic Chemistry)
Chemistry of the more important functional groups: aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, alcohols, phenols, aldehydes, ketones, ethers, carboxylic acids and their derivatives, nitro compounds, amines and sulphonic acids.

TEXTBOOKS

Only if proceeding to 2.003B Chemistry III (Organic Chemistry):

2.002C Chemistry II (Inorganic/Analytical Chemistry)
Chemistry of non-metals; chemistry of typical metals; transition metals, lanthanides and actinides; introduction to nuclear chemistry. Quantitative inorganic analysis.
TEXTBOOKS

REFERENCE BOOKS

2.003A Chemistry III (Physical Chemistry)

Physico-chemical aspects of spectroscopy—quantum mechanical approach; electronic and vibrational spectra; nuclear magnetic resonance and electron spin resonance spectroscopy. Chemical kinetics—transition state theory; theories of uni-molecular reactions; chemistry of excited species.

TEXTBOOKS

REFERENCE BOOKS

2.003B Chemistry III (Organic Chemistry)

Stereochemistry of acyclic systems. *Alicyclic Chemistry*: the synthesis and properties of monocyclic systems, conformational aspects of cyclohexane and related systems, rearrangement reactions, and the chemistry of fused and bridged polycyclic compounds. *Heterocyclic Chemistry*: the chemistry of pyridine, quinoline, isoquinoline, and benzopyran and its derivatives; the chemistry of pyrrole, furan, and thiophene and their benzo derivatives; the chemistry of pyrimidine, imidazole and pyrazole,
TEXTBOOKS
 or

REFERENCE BOOKS
Whitham, G. H. *Alicyclic Chemistry*. Oldbourne.

2.003C Chemistry III (Inorganic Chemistry)
Molecular structure determination, with particular reference to complex salts, optical activity, crystal structure, systematic chemistry of the lanthanides and transition elements, further chemistry of nitrogen, sulphur and the halogens.

TEXTBOOKS

REFERENCE BOOKS

2.003D Chemistry III (Analytical Chemistry)
Ionic equilibria in solution; advanced qualitative analysis; advanced electrochemical analysis; advanced spectrophotometry; separations and preconcentrations.
TEXTBOOKS

2.003E Chemistry III (Nuclear and Radiation Chemistry)

Nuclear structure, reactions, transformations; radioactive properties and measurements, radiations, isotopes, radio-chemical techniques.

TEXTBOOKS

REFERENCE BOOKS

2.013A Theoretical Chemistry

A fundamental approach to wave mechanics—operators; solving the Schrödinger wave equation; variation and perturbation methods; many-electron problem; vector coupling; allowed transitions. Chemical kinetics—transition state theory; theories of unimolecular reactions; chemistry of excited species.

TEXTBOOKS

REFERENCE BOOKS
2.023A Chemical Physics

Wave mechanics—linear operators: Schrödinger wave equation, applications, methods of solution; variation principle; linear combinations; perturbation theory. The many-electron problem—central field method; electron spin; Fermi-Dirac statistics; angular momentum operators; Coulomb repulsion two-electron operator; spin-orbit coupling; Russell-Saunders and jj coupling; Zeeman effect; vector coupling and Wigner coefficients; allowed transitions. Group theory—symmetry operations; matrix representation; irreducible representation; characters of a group; non-rigid molecules; antisymmetry operations.

TEXTBOOK

2.004 Chemistry IV (Science Honours)
Advanced lectures and research project.

2.022 Chemistry II(M)
Units 2.002A (Physical Chemistry) and 2.002C (Inorganic Chemistry) of 2.002 Chemistry II (Science).

2.033A Macromolecules
Structural classes. Macromolecules in solution; determination of molecular size, conformation. Macromolecules in the solid state; methods of investigation.

TEXTBOOK

REFERENCE BOOKS

2.091 Project
For Honours students in Pure and Applied Chemistry.

2.211 Applied Organic Chemistry
A discussion of selected topics at advanced level of commercially important groups of organic materials.

Theoretical chemistry, physical properties, thermal and photo-initiated processes are treated together with methods of examination in an overall
unit approach correlating structure with behaviour. Emphasis is placed on breakdown to model systems.

TEXTBOOK
No set text.

REFERENCE BOOKS

2.221 Chemistry and Enzymology of Foods

Subject matter covers areas similar to 2.261 Chemistry and Enzymology of Foods with reduction in scope and depth. Emphasis is continued on the integration of different areas of chemistry.

TEXTBOOK
No set text.

REFERENCE BOOKS

Subsidiary lists are supplied from the Department.
2.261 Chemistry and Enzymology of Foods

Covers the chemistry of food constituents at an advanced level and provides a correct appreciation of the relationship between the chemistry and enzymology associated with the origin and post-harvest handling of the foodstuff. Treatment is given of deteriorative changes in colour and texture occurring during processing and storage. Analytical procedures, chemical and physical are discussed where necessary, integrated with the remainder of the subject matter.

General classification of constituents, role of moisture. Fixed oils and fats, rancidity of enzymic and autoxidative origin, anti-oxidants—natural and synthetic—theories on mechanisms of action, carbohydrates reactivity, role in browning processes, carbohydrate polymers, starch structure, enzymic susceptibility and mode of action, estimation, pectic substances and other gelling agents, gel structure. Proteins, sulphur chemistry of proteins, position in cereal chemistry, bleachers and improvers, theories on mode of action, redox and displacement reactions. Colour systems, origin, development and chemistry of natural food pigments, carotenoids, chlorophyll, etc. Stability and estimations, enzymic degradation and enzymic browning, vitamins, preservatives.

TEXTBOOK
No set text.

REFERENCE BOOKS

Subsidiary lists are supplied from the Department.

2.303 Theoretical Chemistry

Advanced physico-chemical topics of a theoretical nature; in two equal strands: (a) Wave mechanics, development and applications of group theory. (b) Any strand from 2.333 Physical Chemistry.

TEXTBOOK
(a)

2.311 Physical Chemistry I

Quantum mechanics; molecular energy and thermodynamics; chemical statistics, chemical application of thermodynamics; surface and colloid chemistry.
TEXTBOOKS

REFERENCE BOOKS

2.322 Physical Chemistry II

Subject description, text and reference book lists as for 2.003A Chemistry III (Physical Chemistry).

2.333 Physical Chemistry

Advanced physico-chemical topics, to be chosen from two of the following strands: (a) Statistical thermodynamics; its application to gases, liquids and chemical equilibria; states of matter. (b) Infrared, Raman, microwave and electronic spectroscopy; lasers; optical properties of molecules. (c) Non-ideal thermodynamics, electrode processes and electrolyte solution equilibria. (This series is intended to cover topics of interest in inorganic, organic and analytical chemistry.) (d) Physico-chemical properties of macromolecular systems; colligative and electrokinetic properties and conformation in solution; solid state structure and properties.

(A strand chosen as part of 2.303 Theoretical Chemistry cannot be chosen as part of this subject.)

TEXTBOOKS
(b)
(d)

REFERENCE BOOKS
(a)
(b)

(d)

2.391 Basic Diffraction Theory

TEXTBOOK

2.392 Structure Determination Methods

TEXTBOOK

2.393 Recording Methods
Photographic; powder, focussing methods, Laue, oscillation, Weissenberg procession. Counter methods; powder, parafocussing, three and four circle goniostats, linear diffractometers.

TEXTBOOK

2.394 Crystal Optics
Use of microscopics, polarising. Optical goniometer, birefringence, optical diffraction.

TEXTBOOK
2.411 Inorganic Chemistry I

TEXTBOOKS
or

REFERENCE BOOKS

2.422 Inorganic Chemistry II

Chemistry of groups VA, VIA, VIIA, the lanthanides and actinides. More advanced chemistry of groups IIIB, IVB, VB, VIB, VIIB and inert gases. Crystal field theory, formation constants of complex ions, unusual oxidation states of transition metals.

TEXTBOOK

REFERENCE BOOKS
2.433 Inorganic Chemistry

(i) Reaction mechanisms involving metal complexes. (ii) Thermodynamics of complex formation. (iii) Spectroscopic methods for investigating metal complexes, including infrared, electronic, NMR and Mossbauer spectroscopy. (iv) π-complexes.

TEXTBOOK

REFERENCE BOOKS

2.511 Analytical Chemistry I

Sampling; data evaluation; ionic equilibria in solution; electrochemical analysis; volumetric analysis; spectroscopy in analytical chemistry.

TEXTBOOKS

2.513 Analytical Biochemistry

TEXTBOOK

2.522 Analytical Chemistry II

Solution chromatography; gas chromatography; advanced electrochemical analysis; emission spectroscopy; instruments in analytical chemistry; precision absorption spectrophotometry in solution; evaluation and development of a spectrophotometric method; literature of analytical chemistry.
TEXTBOOKS

2.533 Analytical Chemistry III

Kinetics in analytical chemistry; emission and absorption spectroscopy in flames; spectrometric methods (IR, Mass, XRF, electron probe and NMR); chemical analysis of organic and biological materials; differential thermal analysis; complexes in analytical chemistry; automation and data processing in analytical chemistry.

TEXTBOOKS

2.611 Organic Chemistry I

As for 2.002B Chemistry II (Organic Chemistry).

TEXTBOOKS

Only if proceeding to 2.622 Organic Chemistry II:

2.622 Organic Chemistry II

Subject description, text and reference book lists as for 2.003B Chemistry III (Organic Chemistry).

2.633 Organic Chemistry

TEXTBOOK

REFERENCE BOOKS
Scott, A. I. Interpretation of the Ultraviolet Spectra of Natural Products. Pergamon, 1964.

2.711 Solid State Chemistry
(i) Symmetry, diffraction and determination of crystal structures. (ii) Typical structures, lattice defects, deviations from stoichiometry, semiconduction. (iii) Electronic structure and physical properties of solids, solid state reactions, surface properties and catalysis. Applications of EPR, NMR and mass spectrometry.

TEXTBOOKS

2.811 Nuclear and Radiation Chemistry
For the student who requires a general foundation in the subject, which he can later apply to other fields. Topics are: Fundamental particles; structure and properties of the nucleus; nuclear reactions and radioactive decay; origin, properties and measurement of nuclear radiations; nuclear instrumentation; preparation and applications of separated stable isotopes and of radioisotopes; radiation chemistry; radiochemical techniques; carbon dating and geochronology; the transuranium elements.

TEXT AND REFERENCE BOOKS
As for 2.003E Chemistry III (Nuclear and Radiation Chemistry).
2.911 Applied Chemistry

(a) Information utilization: introductory instrumentation and analogue computation (see also 22.143); an advanced treatment of Fortran programming, data reduction and analysis, regression analysis; information retrieval. (b) Chemical resources and environment: ecological relationships between man and the physical and biological world, resources of matter and energy, current and predicted states of human environment, pollution, corrosion; sociological implications of technological advances.

TEXTBOOKS
Students in the Science course may major in Computer Science. This course is provided by the Department of Computer Science within the School of Electrical Engineering; the course is available on a full-time basis only and leads to the degree of BSc (pass or honours).

Students of sufficient merit who have completed the undergraduate units in Computer Science may be admitted to the honours course in fourth year. Permission to enter the course is granted by the Head of the Department of Computer Science. The honours course consists of prescribed lectures, seminars and reading in the areas of mathematical theory of computation, computer applications, computer logic and organization.

6.601A Introduction to Computer Science

TEXTBOOKS

REFERENCE BOOKS

6.601B Assembler Programming and Non-numeric Processing

Computer structure, machine language, instruction execution, addressing techniques and digital representation of data. Symbolic coding. Manipulation of strings, lists and other data structures.

REFERENCE BOOKS
IBM System/360: Principles of Operation. Form A22-6821. IBM.
6.602A Computer Systems I

TEXTBOOK
Booth, T. L. *Digital Networks and Computer Systems*. Wiley.

6.602B Computer Systems II

REFERENCE BOOKS

6.602C Computer Applications

A selection of topics from: Computer simulation. Modelling of discrete event systems, with applications to queueing; Pseudo random member generation and testing; simulation languages, especially GPSS. Optimization techniques: "hill climbing", critical path method, dynamic programming, linear programming. The simplex and revised simplex methods. Job shop scheduling. Data processing; file and data management systems; use of COBOL; searching and sorting of files. Information retrieval: search on secondary keys, inverted files. Artificial intelligence. Social consequences of computer technology.

REFERENCE BOOKS
Gordon, G. *System Simulation*. Prentice-Hill.

6.602D Programming Languages and Compiling Techniques

Compiling Techniques: data structures; table look-up; language description; lexical analysis; syntax analysis; semantic analysis/code generation; interpretation/program execution.

Programming Languages: a comparative study.
REFERENCE BOOKS

Higman, B. *A Comparative Study of Programming Languages*. Macdonald/Elsevier.

Sammet, J. *Programming Languages: History and Fundamentals*. Prentice-Hall.

5.010 Engineering A

Prerequisite: None.

Introduction to Engineering Design: Engineering method, problem identification, creative thinking, mathematical modelling, computer aided design, materials and processes, communication of ideas, the place of engineering in society.

Materials: An introductory course on the production, structure and properties of the main types of engineering materials, with a brief introduction to the process used in shaping and fabricating them.

TEXTBOOKS
Svensson, N. L, Introduction to Engineering Design. N.S.W. U.P.
Walshaw, A C. SI Units in Worked Examples. Longman.

REFERENCE BOOKS
Harrisberger, L. Engineersmanship. Wadsworth.
Krick, E. V. Introduction to Engineering and Engineering Design. Wiley.
Meriam, J. L. Statics and Dynamics. Wiley.

For Materials:
Gilchrist, J. D. Extraction Metallurgy. Pergamon.
Guy, A. C. Physical Metallurgy for Engineers. Addison-Wesley.
Newton, J. Extractive Metallurgy. Wiley.

5.030 Engineering C

Engineering Drawing: Fundamental concepts of descriptive geometry, including reference systems, representation of point, line and plane; fundamental problems of position and measurement. Application of descriptive geometry to certain problems arising in engineering practice. Special emphasis on ability to visualize problems and processes involved in their

Introduction to Systems and Computers: Introduction to computers to follow the computer work in Mathematics I. To develop: (a) familiarity with algorithms; (b) the use of procedure oriented languages; and (c) an introduction to computing equipment. Systems. Introduction and concepts: concepts and introduction to systems. To give students an appreciation of some of the concepts used in engineering, to relate the concepts to phenomena within their experience, and to illustrate them by case histories and engineering examples. Quantities. Concepts. Components. Systems.

TEXTBOOKS

For Engineering Drawing:
Robertson, R. G. _Descriptive Geometry._ Pitman.
Thomson, R. _Exercises in Graphic Communication._ Nelson.

For Introduction to Systems and Computers:
17.001A Human Biology

TEXTBOOKS

REFERENCE BOOKS

17.001B Comparative Functional Biology

Maintenance of the organism: gas exchange systems in plants and animals; transport inside organisms; uptake, digestions, absorption; enzymes structure and function. Photosynthesis: process and structural relationships; metabolic systems, energy yields and pathways.

Developing organisms: sexual reproduction in plants and animals, general life cycle patterns; cell development and differentiation in flowering plants and mammals.

Control and co-ordination in organisms: organisms and water, uptake and effects; control mechanisms, urinary systems and kidney structure and function. Stimuli and responses: plant hormones, hormones in vertebrate animals, muscle activity and muscle structure, eye structure and vision mechanism; ear structure and hearing mechanism; nerves, central nervous system, nerve action, brain structure and functioning.
TEXTBOOKS

REFERENCE BOOKS

17.012 General Ecology

TEXTBOOKS

REFERENCE BOOKS

REQUIREMENTS FOR PRACTICAL WORK
A list of equipment required for practical work is posted on the notice board in the ground floor of the Biological Sciences Building. Students must purchase this material before the first practical class.
GEOGRAPHY

FOR STUDENTS IN THE SCIENCE COURSE

The geographer studies variations from place to place on the earth arising from the spatial relationships of the phenomena making up man's physical and social environment. Apart from its cultural value, an understanding of these relationships is necessary for the conservation and planned development of physical and economic resources. Geography should be of particular interest to those studying concurrently in the physical and biological sciences.

27.031 Geography IS

Part I

Economic Geography: The geographic problems of scale and distance. The relevance of theory and quantitative methods. Economic landscape systems. Patterns and structures of systems of agriculture, manufacturing and tertiary production. Geographic significance of population growth components in modernizing and advanced countries; natural increase, fertility and mortality patterns and internal and international migration. Includes an urban field tutorial of one day.

Laboratory classes consist of the application of statistical methods to areal and point data.

TEXTBOOKS

REFERENCE BOOKS
Chisholm, M. Rural Settlement and Land Use. Hutchinson.
Logan, M. I. & Missen, G. J. New Viewpoints in Urban and Industrial Geography. Reed Education.

B93

Part II

An introduction to Physical Geography: Controls of landform development, cyclic and equilibrium approaches to landform study; processes and factors of soil formation; the mature soil profile; vegetation structure; factors affecting vegetation distribution; plant and soil succession and the ecosystem; particular reference to the Sydney area. The radiation budget and atmospheric circulation; climatic distribution. Laboratory classes include: weather recording and analysis of climatic data; use of maps and air photos; soil profile description. Two field tutorials.

TEXTBOOKS

Strahler, A. N. *An Introduction to Physical Geography*. Wiley International.

REFERENCE BOOKS

Bird, E. *Coasts*. A.N.U.P.
Bloom, A. L. *The Surface of the Earth*. Prentice-Hall.
CSIRO. *The Australian Environment*. M.U.P.
Gentilli, J. *Sun Climate and Life*. Jacaranda.
Hare, F. K. *The Restless Atmosphere*. Hutchinson. Paperback.
Morisawa, M. *Streams, Their Dynamics and Morphology*. McGraw-Hill.
Riley, D. & Young, A. *World Vegetation*. C.U.P.
Taylor, G. *Sydneyside Scenery*. A. & R.
Trewartha, G. T. *An Introduction to Climate*. McGraw-Hill.

Practical classes throughout the year introduce the use of maps and diagrams, air photographs and geographical statistics. The approximate cost to students is about $5 for field tutorials and about $8 for the required drawing equipment and a topographic map.

Lecture, laboratory and tutorial arrangements for Geography IA are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Hours per week for two sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory</td>
<td>1½</td>
</tr>
<tr>
<td>Tutorials</td>
<td>1</td>
</tr>
</tbody>
</table>

27.103 Climatology

Components of the radiation and heat balance of the earth surface as affected by differing atmospheric, soil and surface cover conditions. Factors controlling evaporation and transpiration under freely-available and restricted water supply conditions, and methods for the measurement and estimation of evapotranspiration. Characteristic patterns of energy and water exchange
for differing types of natural or man-modified land surface. Man's modification of factors affecting the local climate in rural and urban settings.

Laboratory work is directed toward developing an appreciation of the operational principles and limitations of instruments commonly used in radiation and water balance studies. An introduction is given to the practical application of energy and water balance models for evaluation of the climatic environment as related to catchment hydrology, agricultural productivity and land resource management problems.

TEXTBOOKS
Sellers, W. D. Physical Climatology. Chicago U.P.

REFERENCE BOOKS

27.203 Biogeography

TEXTBOOKS

REFERENCE BOOKS
Curtis, J. T. The Vegetation of Wisconsin: an Ordination of Plant Communities. Madison.

Leeper, G. W. *The Australian Environment*. M.U.P.

Richards, P. W. *The Tropical Rain Forest*. C.U.P.

Walter, H. *Ecology of Tropical and Subtropical Vegetation*. Oliver & Boyd.

27.413 Geomorphology

Fluvial processes and valley features. Hillslopes and slope mantles. Coastal, volcanic, structural and neotectonic landforms. Case studies illustrating approaches to geomorphic investigations. Classification and mapping of landforms, including airphoto interpretation. Morphometry. Laboratory study of aeolian, fluvial, beach and colluvial materials.

TEXTBOOKS

Bird, E. F. C. *Coasts*. A.N.U.P.

Morisawa, M. *Streams: their Dynamics and Morphology*. McGraw-Hill.

REFERENCE BOOKS

Doornkamp, J. C. & King, C. A. M. *Numerical Analysis in Geomorphology*. Arnold.

Jennings, J. N. *Karst*. A.N.U.P.

King, C. A. M. *Beaches and Coasts*. Arnold.

King, C. A. M. *Techniques in Geomorphology*. Arnold.

Ollier, C. *Volcanoes*. A.N.U.P.

Thornbury, W. D. *Principles of Geomorphology*. Wiley.

Twidale, C. R. *Structural Landforms*. A.N.U.P.

Young, A. *Slopes*. Oliver & Boyd.
27.423 Pedology

History of Pedology. Morphological, physical and chemical properties of soil. Soil forming processes; rock weathering, silicate formation. Great Soil Groups; soil classification; soil-landscape relations and periodicity. Physical and chemical aspects of soil fertility; nutrient cycles; soil microbiology. Laboratory classes upon the measurement of soil properties; soil profile description; soil survey and mapping; analysis of soil maps. Up to four days field tutorials are an essential part of the course.

TEXTBOOK
Bridges, E. M. World Soils. C.U.P.

REFERENCE BOOKS
Alexander, M. Introduction to Soil Microbiology. Wiley.
Bear, F. E. ed. The Chemistry of the Soil. Arnold.
Bear, F. E. Soil in Relation to Crop Growth. Reinhold.
Black, C. A. Soil-Plant Relationships. Wiley.
Macmillan.
Clarke, G. C. & Beckitt, P. H. T. The Study of the Soil in the Field. O.U.P.
Northcote, K. H. A Factual Key for the Recognition of Australian Soils.
Rellim.
Piper, C. S. Soil and Plant Analysis. Adelaide U.P.
Russell, E. W. Soil Conditions and Plant Growth. Longman.
GEOLOGY

FOR STUDENTS IN THE SCIENCE COURSE

Students may major in Geoscience in the Science course (see the regulations governing this course). This course is available on both a full-time and a part-time basis and leads to the degree of Bachelor of Science, Pass or Honours. Students majoring in Geoscience will complete the following subjects:

First year—25.111 Geoscience I (as for 25.001 Geology I in the Applied Geology degree course).

Second year—25.112A and Geoscience IIA and 25.112B Geoscience B.

Third year—25.113A Geoscience IIIA and 25.113B Geoscience IIIB.

HONOURS IN GEOLOGY

Full-time students in the Faculty of Science who have completed the two third year Geology subjects and part-time students who have completed course requirements up to the end of the sixth year and whose programme includes the two third year Geology subjects may apply to the Head of the School of Applied Geology to read for an Honours degree in Geology. Students who have majored in either Physics and Geology or Chemistry and Geology, may also be admitted to the course which would include some studies in Geophysics or Geochemistry respectively.

The Honours course consists of:

A field assignment with appropriate work in the laboratory on material collected, the results of both the field and laboratory investigations to be presented in a graduation thesis. Advanced lectures, practical work and seminars. Short laboratory assignments on specific problems may be given.

Further details of the Honours course may be had from the Head of School.

Full-time students cover the Honours work in the fourth year of the course. Part-time students are required to commence their field thesis work at the end of the sixth year of their course and advanced laboratory assignments are done in the eighth year along with the further work necessary to complete the field thesis work.

Students seeking to do Honours in Geology must satisfy the Head of the School that they have attained a sufficient standard in their pass course work to indicate their ability to undertake geological studies at a more advanced level.

25.111 Geoscience I

B98

Petrology: Field occurrence, lithological characteristics and structural relationships of igneous, sedimentary and metamorphic rocks. Introduction to coal, oil and ore deposits.

Stratigraphy and Palaeontology: Basic principles of stratigraphy; introductory palaeontology. The geological time scale. The geological history of the Australian continent and more specifically that of New South Wales in introductory outline.

Practical Work: Preparation and interpretation of geological maps and sections. Map reading and use of simple geological instruments. Study of simple crystal forms and symmetry. Applied stereoscopic projection. Identification and description of common minerals and rocks in hand specimen. Recognition and description of examples of important fossil groups. Supplemented by three field tutorials, attendance at which is compulsory.

TEXTBOOKS
Tyrrell, G. W. The Principles of Petrology. Methuen.

25.112A Geoscience IIA

Mineralogy: Principles of optical crystallography; the construction and use of a polarizing microscope. Polymorphism; the crystal chemistry, crystallography and geological occurrence of the main groups of rock forming minerals. Description and recognition of common ore and rock forming minerals in both hand specimen and thin section.

Metamorphic Petrology: Principles, concepts and theories relating to the occurrence, origin and classification of metamorphic rocks. ACF and AKF diagrams. Metamorphic facies. Practical: megascopic and microscopic examination of selected metamorphic rocks. Field Work: at least one field trip to illustrate the above course.

Structural Geology: Description of structures, mesoscopic-macroscopic, fractures, joints, faults, folds and their structural elements; foliation, lineation. Introduction to tectonics and plate tectonics. Practical: stereographic projection; analysis of fractures, faults folds and their structural elements; foliation, lineation, strain analysis and rotation problems. Field Work: at least one compulsory field trip to illustrate the above course.
TEXTBOOKS

Mineralogy

Petrology (Igneous, Metamorphic and Sedimentary)
Williams, H., Turner, F. J., & Gilbert, C. M. *Petrography*. Freeman, 1954.

Structural Geology

25.112B Geoscience IIB

Palaeontology: Morphology and systematics of major fossil invertebrate phyla (Part 1) and their stratigraphic distribution. Practical: examination of representative fossils from each phylum.

Sedimentary Environments: Environments of deposition and sedimentary processes. Classification of sedimentary rocks.

TEXTBOOKS

Palaeontology

Sedimentary Environments and Stratigraphy

25.113A Geoscience IIIA

X-ray Crystallography: Principles of X-ray diffraction; simple application of X-ray powder cameras and diffractometers. Elementary single crystal camera theory.

Tectonics: The geophysical, sedimentological, petrological and structural geological aspects of global geotectonics.

TEXTBOOKS
Economic Geology

X-ray Crystallography

Mineralogical Techniques
As for 25.112B Mineralogy, plus:

Igneous Petrology

Tectonics

25.113B Geoscience IIIB

Biostratigraphy: Biostratigraphy and the use of selected fossil groups in stratigraphic correlation.

PAleontology: Morphology and systematics of major fossil invertebrate phyla and their stratigraphic distribution. Palaeobotany.

PAleoecology: Elements of palaeoecology and practical applications.

Vertebrate PAleontology: An introduction to evolution of vertebrates.

Field Work: To be held during the year. Includes a geological survey camp held in session 1 and ten days of field instruction. Attendance is compulsory.

TEXTBOOKS
Stratigraphy and Biostratigraphy
As for 25.112B Geoscience IIIB, plus
Berry, W. B. N. Growth of a Prehistoric Time Scale Based on Organic Evolution. Freeman, 1968.

Geophysics

Palaeontology
As for 25.112A Palaeontology.

Palaeoecology

Vertebrate Palaeontology

Oceanography

25.014 Geology IV (Honours)

TEXTBOOKS
Mining and Petroleum Geology

Geophysics

25.603A Geological Oceanography
The form and nature of ocean basins; the origin, transport and distribution of suspended matter, igneous and sedimentary rocks of the ocean floor and their distribution; the significance of oceanic igneous rocks, palaeontology, stratigraphical history and correlation of marine sedimentary rocks; magnetism and palaeomagnetism, tectonics of ocean basins.

TEXTBOOK

REFERENCE BOOKS
SCHOOL OF HISTORY AND PHILOSOPHY
OF SCIENCE

The division in educational curricula between science and the humanities obscures the fact that throughout history the natural sciences have been an integral component of general intellectual and cultural development. Until the nineteenth century, for example, the term "philosophy" included science. The principal aims of the History and Philosophy of Science courses in the Faculty of Science are to introduce students to the study of the history of science, to relate the sciences to the cultural environment which have given rise to them, to consider the social history of science, to look at analyses, changing through time, of its conceptual foundations, and to study the impact that the success of science has had on man's understanding of his own nature, and of the nature of knowledge.

In 1974, three level II units (62.012 The Origins of Modern Science, 62.022 The Social History of the Scientific Movement, 62.032 Philosophy of Science) are offered, two in Session 1, one in Session 2: the prerequisites for all three units are a pass in at least two of the following: 1.001, 17.011 and 17.021, 2.001, 10.001, 25.111, 1.011, 10.011, 10.021, 27.031, 12.001. Each unit has unit value 1, and requires six hours a week for one session, made up of three lectures, one tutorial, and two hours a week of library work.

Four units of History and Philosophy of Science II will be introduced at third-year level in 1975, and an Honours year in 1976. Students, intending to major in History and Philosophy of Science should take all three level II units. There is a small, but growing and distinctive range of career opportunities for students with a good science background combined with History and Philosophy of Science, especially in the field of science writing and science reporting, in the ABC Science Unit, the CSIRO Publications Branch, in industry and the newspapers. The programme is well suited for intending science teachers. A major in History and Philosophy of Science in the Faculty of Science would not constitute a formal training in science policy, but it would constitute a very good foundation for one. Problems of science policy and science administration arise in industry and the Public Service; this field is underdeveloped in Australia, but is unlikely to remain so. A major in History and Philosophy of Science is also a good foundation for a DipLib (for intending science librarians).

62.012 The Origins of Modern Science

An introductory course dealing with the Scientific Revolution of the seventeenth century, the philosophical issues being discussed in their historical context. The course will survey the major achievements of science during the period, the consequences of the Copernican Revolution, the construction of dynamics from Galileo to Newton, Harvey's physiology, the development of theories of light and of concepts such as atmospheric pressure. The cultural and intellectual background of these achievements and their effects on European thought will be discussed.
PRELIMINARY READING

TEXTBOOKS
Hall, A. R. *From Galileo to Newton 1603-1720*. Collins.

REFERENCE BOOKS
Barfield, O. *Saving the Appearances*. Harbinger.
Bell, A. E. *Newtonian Science*. Arnold.
Clark, G. N. *The Seventeenth Century*. O.U.P.
Descartes, R. *Discourse on Method and Other Writings*. Penguin.
Descartes, R. *Philosophical Writings*. Nelson.
Dijkstraeus, E. J. *The Mechanisation of the World Picture*. O.U.P.
Galilei, G. *Dialogues Concerning Two New Sciences*. Dover.
Gillispie, C. C. *The Edge of Objectivity*. Princeton U.P.
Hall, M. B. *Robert Boyle on Natural Philosophy. An Essay with Selections from his Writings*. Indiana U.P.
Harvey, W. *On the Motion of the Heart and Blood*. Everyman.
Hazard, P. *The European Mind 1680-1715*. Pelican.
Jones, R. F. *The Seventeenth Century*. Stanford U.P.
Kargon, R. H. *Atomism in England from Hariot to Newton*. O.U.P.
Keeling, S. V. *Descartes*. O.U.P.
Koyré, A. *From the Closed World to the Infinite Universe*. Johns Hopkins U.P.
Koyré, A. *Newtonian Studies*. Chicago U.P.
Ornstein, M. *The Role of Scientific Societies in the Seventeenth Century*. Chicago U.P.
Sabra, I. *Theories of Light from Descartes to Newton*. Oldbourne.
Willey, B. The Seventeenth Century Background. Pelican.

62.022 The Social History of the Scientific Movement

An account of the growth of the scientific movement, from the early seventeenth to the twentieth century, in relation to: (a) its social and cultural environment and the effects of social structures and social changes upon it; (b) its internal organization; (c) its effects upon society, intellectually and otherwise.

The course deals with such topics as: the different national contexts of the scientific movement; its social composition at various times; its relations with the state in different countries at different times, with the universities and other teaching institutions, and with the professions of medicine and engineering; the communications system in science; the nature and function of scientific societies and academies; the institutionalization and professionalization of science.

TEXTBOOKS

No suitable textbooks are available. Reading lists, selections from primary sources, and other material will be issued during the course.

REFERENCE BOOKS

Barber, B. Science and the Social Order. Collier.
Ben-David, J. The Scientist's Role in Society. Prentice-Hall.
Buchdahl, G. The Image of Newton and Locke in the Age of Reason. Sheed & Ward.
Farrington, B. Francis Bacon, Philosopher of Industrial Science. Collier.
Haberer, J. Politics and the Community of Science. Van Nostrand.
Lilley, S. Essays on the Social History of Science. Centaurus.
Paulsen, F. The German Universities: Their Character and Historical Development. Macmillan.
62.032 Philosophy of Science

A general introduction to some of the more fundamental problems of the philosophy of science. Special emphasis is placed on the nature, composition, and structure of scientific theories, and of the relations between theoretical statements and observational data.

A selection of such topics as the following is discussed: the logic of theory construction; the logical structure of theories; the status of scientific laws; the roles of regulative principles, correspondence rules, and methodological directives; the function of models and analogies; the nature of scientific explanation; the status of theoretical entities; the principles of theory establishment and rejection; the axiology and apologetics of science; the dynamics of scientific change, including the structure of scientific revolutions.

Examples selected from the history of the sciences are employed in order to illustrate the philosophical issues examined.

TEXTBOOKS
Kuhn, T. S. The Structure of Scientific Revolutions. 2nd ed. Chicago U.P.

REFERENCE BOOKS
Hansen, N. R. Patterns of Discovery. C.U.P.
Hempel, C. G. Philosophy of Natural Science. Prentice-Hall.
Kant, I. Prolegomena to Any Future Metaphysics. Manchester U.P. or Library of Liberal Arts.
Theobold, D.W. An Introduction to the Philosophy of Science. Methuen.
62.144 History and Philosophy of Biology

Available as an advanced elective in General Studies to the Fourth Year Honours students of the Faculty of Biological Sciences or with the permission of the Head of the School of History and Philosophy of Science.

Surveys of the history of biological ideas and conceptual developments in later nineteenth and in twentieth century biology, leading to a consideration of some specific issues relevant to the practice of contemporary biology, for example: explanation in the biological sciences; models, metaphors and paradigms; parts and wholes, levels of description, and reductionism; the nature of taxonomy, and the species problem; conceptual relations within the behavioural sciences; the attempt to found an ethic on evolutionary theory and primate ethology.

TEXTBOOKS
Coleman, W. Biology in the Nineteenth Century. Wiley.
Kuhn, T. S. The Structure of Scientific Revolutions. Chicago U.P.

REFERENCE BOOKS
Beckner, M. The Biological Way of Thought. California U.P.
Bunge, M. Metascientific Queries. Thomas.
Elsasser, W. M. Atom and Organism. Princeton U.P.
Greene, M. Approaches to a Philosophical Biology. Basic Books.
Hughes, A. A History of Cytology. Abelard-Schuman.
Pantin, C. F. A. The Relations between the Sciences. C.U.P.
The course in population genetics theory is relatively new, having been offered for the first time in 1972. This course is a Level III unit and may be taken by students in their third year. It is designed for students who intend to specialize in population genetics or in a field in which population genetics is applied. It is available as a day course only.

Approximately one-third of the lecture time (2 hours) is reserved for mathematics and statistics. The tutorial time (1 hour) is used to relate the models covered in the main part of the course with descriptive treatments of population processes covered in other courses. Students are expected to prepare material for and take an active part in tutorials. Laboratory time is 2 hours.

78.201 Population Genetics Theory

Models of genetic systems and growth of populations, with essential mathematical and statistical theory; illustrated by examples from human genetics. Limitations of models.

Models of population growth in discrete and continuous time with non-overlapping and overlapping generations. An extension of the Hardy-Weinberg principle to finite populations and several loci. The concept of inbreeding, calculation of coefficients of consanguinity, effects of inbreeding, effective population number. Fisher's Fundamental Theorem of Natural Selection. Advanced treatment of factors maintaining gene frequency equilibria in populations, including balance between mutation and selection, heterozygotic advantage, and genetic loads. Effects of finite population number, including random gene frequency drift.

TEXTBOOK

REFERENCE BOOKS
Traditionally, mathematics is classified into Pure Mathematics, Applied Mathematics and Statistics. The classification is not a very sharp one and there is considerable overlap and interaction between the three branches.

The Pure Mathematician is concerned with the study of mathematics in itself, striving to solve new problems, to attain ever greater insight into the relations between different parts of mathematics, and thus to render the whole structure of mathematics more complete, more transparent, and more unified. Possible applications of his subject to problems in science or industry are not his primary concern, but they interest him in so far as they provide stimuli for the growth of new mathematical theories. The main avenues of employment for a Pure Mathematician are the universities, the teaching services and some research establishments such as the CSIRO.

Applied Mathematics is concerned with the understanding of scientific phenomena by the construction, analysis, and interpretation of mathematical models. Problems may originate not only in the physical and engineering sciences, but also in the social, computing, biological, economic and management sciences. In the Department of Applied Mathematics at this University there are strong interests in modern theoretical physics, with an emphasis on quantum mechanics, nuclear theory and statistical mechanics; and in environmental mechanics, including theoretical oceanography and related subjects. However, the courses offered include all branches of Applied Mathematics, and specialization need not occur until the honours year.

Statistics is concerned with the evaluation of factual material as a basis for inference and decision making. Its mathematical foundation in the theory of probability, and statistical theory is applicable in various fields where probabilistic models are used to describe the observational results. The Department has strong interests in the areas of inference, sequential analysis, design of experiments, multivariate analysis, stochastic processes and geometric probability.

In the past the employment of mathematicians in Australian industry and commerce was rather uncommon. Over the last decade there has been a change, corresponding to the general recognition of the desirability of making quantitative what was previously merely qualitative. One important factor has been the introduction of high-speed computers, making possible the detailed mathematical analysis of complex practical situations in a way which would not have been possible without them. Courses in mathematics include training in programming for digital computers and in numerical analysis.

THE COURSES AND SUBJECTS PROVIDED BY THE SCHOOL

The School of Mathematics provides courses at the Pass and Honours levels in Pure Mathematics, Applied Mathematics and Theory of Statistics. Full details of the subjects and their relations with other subjects in the Science Course appear in the University Calendar. Any student who feels that he does not understand the situation should consult one of the enrolment officers of the School.
FIRST YEAR MATHEMATICS

10.001 Mathematics I

This is the standard course and is generally selected by the majority of students in the Faculties of Science, Biological Sciences, Engineering and Applied Science who intend to pursue further studies in mathematics, physics or chemistry.

For entry into 10.001 Mathematics I, students are required to have passed H.S.C. Mathematics at Level 2F or higher; or mathematics at Level 2S provided that the student's performance in mathematics and his general level of attainment are at standards acceptable to the Professorial Board. Students at the latter level are advised to undertake a bridging course before the beginning of lectures.

10.011 Higher Mathematics I (Day course only)

Covers all the material in 10.001 Mathematics I, plus other topics, at greater depth and sophistication. Though this course starts where Level 1 of the Higher School Certificate ends, some Level 2F students with ability might find it within their capabilities.

While it is expected that students aiming at the honours level in mathematics will take this course, it would be equally valuable for any mathematically able student whose course requires a considerable amount of mathematics.

10.021 Mathematics IT

This course provides for students who do not intend studying mathematics beyond first year but whose other studies require some knowledge of basic mathematical ideas and techniques. It is particularly designed to meet the needs of such students in Biological Sciences, Commerce, Optometry, Applied Psychology and Wool and Pastoral Sciences.

The course assumes that the student has a mathematical background up to H.S.C. Level 2S Mathematics only; entry is open to all with a pass at this level or better. However, students who select this course should weigh seriously the implications of their choice because no further mathematical units are normally available.

HIGHER LEVEL MATHEMATICS

Many subjects in the School are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered, the highest grade awarded in the ordinary level is Credit, except in exceptional cases.

MATHEMATICS MAJORS IN THE FACULTY OF SCIENCE

Any student who completes at least four level III units in the School of Mathematics is regarded as having majored in Mathematics as part of his BSc degree. Students should consider the merits of combining courses in Pure Mathematics, Applied Mathematics, Statistics and Computer Science in accordance with their future interests. Senior members of staff in the School of Mathematics are available for consultation by students who wish to discuss their courses.
If students wish to specialize and major in Pure Mathematics, Applied Mathematics or Theory of Statistics, the following minimum courses are suggested.

(i) **Pure Mathematics Majors**

In order to major in Pure Mathematics at the ordinary level, a student should pass in seven at least of the following units:

- 10.211A Applied Mathematics II;
- 10.111A, 10.111B, 10.111C Pure Mathematics II;
- 10.112A, 10.112B, 10.112C, 10.112D, 10.112E Pure Mathematics III.

In all cases the student must pass complementary units or subjects in accordance with Faculty rules.

(ii) **Applied Mathematics Majors**

In second year the student should take the level II units 10.211A, 10.211B and 10.211C Applied Mathematics, together with the units 10.111A and 10.111B Pure Mathematics. In third year the student should take the level III units 10.212A, 10.212B, 10.212D and 10.212L Applied Mathematics. Complementary units should be chosen in accordance with Faculty rules.

(iii) **Theory of Statistics Majors**

In second year the student should take 10.311 Theory of Statistics II; in addition, since he will be expected to take some level III Mathematics units in third year, he should take the level II units 10.111A and 10.111B Pure Mathematics and 10.211A Applied Mathematics.

In third year he should take the level III units 10.312A, 10.312B, 10.312C and 10.312D Theory of Statistics, together with at least two level III Mathematics units (Pure or Applied).

In each year he should also take complementary units in accordance with Faculty rules; the recommended complementary units are 6.601A Introduction to Computing in second year, and one or other of 6.602C Computer Applications or 10.212L Optimization Techniques together with further level III Mathematics units in third year.

HONOURS COURSES IN MATHEMATICS

There are three separate fourth year honours courses: Pure Mathematics, Applied Mathematics and the Theory of Statistics. The four-year course for an honours degree is intended primarily for professional pure mathematicians, statisticians and mathematical physicists or applied mathematicians, but will prove of interest also to intending specialists in fields such as theoretical physics, engineering and all other theoretical sciences. The minimum requirements for each honours course are given below but students seeking an honours degree in mathematics are advised to choose units or courses in mathematics according to their individual interests in consultation with senior members of staff of the School.

(i) **Honours Course in Pure Mathematics**

In the Faculty of Science in second year the student should attempt 10.121A, 10.121B, 10.121C Higher Pure Mathematics II, and 10.221A Higher Applied Mathematics II. In third year the student should attempt 10.122A, 10.122B, 10.122C and 10.122E Higher Pure Mathematics III.
In all cases complementary units or subjects must be chosen in accordance with Faculty rules.

Permission to enter fourth year in Pure Mathematics is granted only on the recommendation of one of the Professors of Pure Mathematics. Such recommendation is not usually granted unless the student's record contains a satisfactory number of graded passes.

(ii) Honours Course in Applied Mathematics

In the Faculty of Science in second year the student should attempt 10.221A, 10.221B and 10.221C Higher Applied Mathematics II, 10.121A and 10.121B Higher Pure Mathematics II. The student should also regard the inclusion of 1.122C Thermodynamics and Mechanics as desirable. Students intending to take mathematical physics options in later years of Applied Mathematics are advised to take at least one further level II Higher Physics unit.

In third year, students should attempt 10.222B, 10.222C, 10.222F and 10.222D Higher Applied Mathematics III; and at least one level III higher Pure Mathematics unit.

Students wishing to enter the third year of the honours course are advised to consult members of staff of the Department of Applied Mathematics before enrolment. Permission to enter fourth year is granted on the permission of a Professor of Applied Mathematics.

(iii) Honours Course in Statistics

In the Faculty of Science, in second year the student should take 10.321 Higher Theory of Statistics II, 10.111A and 10.111B Pure Mathematics II, or 10.121A and 10.121B Higher Pure Mathematics II, and 10.211A Applied Mathematics II or 10.221A Higher Applied Mathematics II; the student is strongly recommended to take also 6.601A Introduction to Computing. In third year he should take the level III Units 10.322A, 10.322B, 10.322C and 10.322D Higher Theory of Statistics, together with at least three level III Mathematics units (Pure or Applied).

In all cases complementary units or subjects must be chosen in accordance with Faculty rules.

Students wishing to attempt Third Year honours courses are advised to discuss their courses with a Professor of the Department of Statistics. Permission to enter the Fourth Year course in the Theory of Statistics is granted on the recommendation of a Professor of Statistics. Such permission will not usually be granted unless the applicant has obtained a graded pass in 10.322 Higher Theory of Statistics III and the student's record contains a satisfactory number of graded passes.

MATHEMATICS AS A SUBSIDIARY SUBJECT

The School also provides the sequence of two Units 10.031 and 10.032, at the second and third levels respectively, for students in the Faculty of Science who are mainly interested in the chemical and biological sciences. These courses offer an introduction to mathematical techniques for scientists and engineers. It should be noted, however, that these two units cannot be counted together with any second level or third level units in Pure and Applied Mathematics, except when 10.412 is taken as part of a marine science major.
There is also a single unit in Statistics, 10.331, which is recommended for those scientists who wish to have some knowledge of Statistics but who would not normally wish to proceed to further courses in this subject.

For both the above courses the entry qualification is a pass in 10.001 Mathematics I, but in appropriate cases students who have passed in 10.021 Terminating Mathematics I at a satisfactory level may be given permission to enrol.

SCHOOLTEACHERS

There is no doubt that in order to be well qualified as a high school teacher of mathematics it is desirable that the student should have completed a sequence of Mathematics units similar to that outlined under Pure Mathematics majors at Pass level and that other units should be selected from the Theory of Statistics or Applied Mathematics sequences. This extra work will broaden the prospective teacher's outlook and will certainly improve his teaching.

Those who feel that they may be interested in proceeding to a higher degree after graduation are advised to attempt some of the courses at the higher level.

Pure Mathematics level II, Unit C and Pure Mathematics level III, Unit D, should be of interest to schoolteachers.

STUDENTS WITH LOW MATHEMATICAL QUALIFICATIONS

The School of Mathematics arranges a Bridging Course in Mathematics for those students intending to enrol in Mathematics I and who have inadequate mathematical background. The Bridging Course covers the gap between 2S and 2F Mathematics and is a very useful refresher course generally. The course will be held at the University during the period January to February 1974.

Attention is also directed to the Calculus Bridging Course given over the University of N.S.W. Radio Station VL2UV. The radio course explains the ideas of Calculus and assumes no previous knowledge of the subject.

STUDENTS TRANSFERRING FROM OTHER COURSES

In some cases the mathematical subjects of the Science Course differ quite considerably from the mathematics taught to students following other courses (e.g., Engineering). Students transferring to the Science Course and wishing to obtain credit for work done in previous courses should make application through the Admissions Office as early as possible. The staff of the School will advise students in such cases but this does not relieve the student of the responsibility of making an early application through the correct channels.

SUBJECTS SUBSIDIARY TO MATHEMATICS

As mentioned above, a student wishing to major in Mathematics must pass other Science subjects in accordance with Science Course regulations. In this connection it is worth noting that the Applied Mathematics Course has a considerable content of mathematical physics and there is no doubt that Physics I and/or Physics II would assist the student.
Mathematics Prizes

There are prizes available for certain courses in the School of Mathematics. They are open to all Kensington students proceeding to an undergraduate degree or diploma but will not be awarded if there is no candidate of sufficient merit. An award of $25 and a suitably inscribed certificate are available in the following subjects: Higher Mathematics I, Higher Pure Mathematics II, Higher Applied Mathematics II, Higher Pure Mathematics III, Higher Applied Mathematics III.

Similarly, there are prizes of up to $40 available in Theory of Statistics subjects.

MATHEMATICS

10.001 Mathematics I

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

PRELIMINARY READING LIST

Courant, R. & Robbins, H. What is Mathematics. O.U.P.
Polya, G. How to Solve It. Doubleday Anchor.

TEXTBOOKS

Blatt, J. M. Introduction to Fortran IV Programming. Prentice-Hall.
Shields, P. C. Elementary Linear Algebra. Worth.

REFERENCE BOOKS

Lange, I. H. Elementary Linear Algebra. Wiley.

10.011 Higher Mathematics I

Calculus, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.
PRELIMINARY READING LIST

As for 10.001 plus:
David, F. N. *Games, Gods and Gambling*. Griffin.
Reid, C. *From Zero to Infinity*. Routledge.

TEXTBOOKS
Blatt, J. M. *Introduction to Fortran IV Programming*. Prentice-Hall.
Fagg, S. V. *Differential Equations*. English Universities P.
Spivak, M. *Calculus*. Benjamin.

REFERENCE BOOKS
As for 10.001 plus:
Abraham, R. *Linear and Multilinear Algebra*. Benjamin.
Burkhill, J. C. *A First Course in Mathematical Analysis*. C.U.P.
Crowell, R. H. & Williamson, R. E. *Calculus of Vector Functions*. Prentice-Hall.
Lang, S. *Linear Algebra*. Holt, Rinehart & Winston.
Spivak, M. *Calculus on Manifolds*. Benjamin.

10.021 Mathematics IT

Calculus, analysis, analytic geometry, algebra, probability theory, elementary computing.

TEXTBOOKS
Blatt, J. M. *Introduction to Fortran IV Programming*. Prentice-Hall.
Greening, M. G. *First Year General Mathematics*. N.S.W.U.P.

REFERENCE BOOKS
Hoyt, J. P. *A Brief Introduction to Probability Theory*. International Textbook Co.
10.031 Mathematics (one level II unit)*

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods.

TEXTBOOK

REFERENCE BOOKS
Hildebrand, F. B. *Advanced Calculus for Applications*. Prentice-Hall.

10.032 Mathematics (one level III unit)*

Vector Calculus; special functions; convolution theorem and applications; complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.

TEXTBOOK

REFERENCE BOOKS
Hildebrand, F. B. *Advanced Calculus for Applications*. Prentice-Hall.

10.111A Pure Mathematics II—Linear Algebra

Vector Spaces: inner products, linear operators, spectral theory, quadratic forms. Linear Programming: convex sets and polyhedra, feasible solutions, optimality, duality.

TEXTBOOKS

SESSION 1

SESSION 2

REFERENCE BOOKS
Lang, S. *Linear Algebra*. Addison-Wesley.

* These units are also available to Faculty of Science students as a sequence of two units constituting a terminating service course in mathematics. As such they are mutually exclusive to any other level II or level III units in Pure and/or Applied Mathematics.
10.111B Pure Mathematics II—Analysis
Complex variables: analytic functions, elementary functions, Taylor and Laurent series, integrals, Cauchy's theorem, residues, evaluation of certain real integrals, maximum modulus principles. Linear differential equations of the second order: equations with constant coefficients, power series solutions, Laplace transforms, Bessel functions.

TEXTBOOKS
SESSION 1

SESSION 2

REFERENCE BOOKS
Thomas, G. B. Calculus and Analytic Geometry. 4th ed. Addison-Wesley

10.111C Pure Mathematics II—Algebra and Geometry
Abstract Algebra: Euclidean algorithm, unique factorization theorem, mathematical systems, groups, determination of small groups, homomorphisms and normal subgroups. Geometry: elementary concepts of Euclidean, projective and affine geometries.

TEXTBOOKS
SESSION 1

SESSION 2

REFERENCE BOOK
Coxeter, H. S. M. Introduction to Geometry. Wiley.

10.121A Higher Pure Mathematics II—Algebra

TEXTBOOKS

REFERENCE BOOKS
Green, J. A. Sets and Groups. Macmillan.
Lang, S. Linear Algebra. W.S.S. Addison-Wesley.
10.121B Higher Pure Mathematics II—Real and Complex Analysis

Construction of reals; uniform convergence; implicit and inverse function theorems; analytic functions; Laurent and Taylor series; calculus of residues; conformal mapping.

TEXTBOOKS
SESSION 1
Williamson, R. E. Crowell, R. H. & Trotter, H. F. *Calculus of Vector Functions*. Prentice-Hall.

SESSION 2
Jamieson, G. J. D. *A First Course on Complex Functions*. Chapman & Hall.

REFERENCE BOOKS
Knopp, K. *Elements of the Theory of Functions*. Dover.
Lang, S. *Calculus of Several Variables*. Addison-Wesley.
Spivak, M. *Calculus*. Benjamin.

10.121C Higher Pure Mathematics II—Number Theory and Geometry

Galois fields, quadratic reciprocity, quadratic forms, continued fractions, number theoretic functions; axioms for a geometry, affine geometry, Desargues' theorem, projective geometry.

TEXTBOOK

REFERENCE BOOK
Hardy, G. H. & Wright, E. M. *The Theory of Numbers*. O.U.P.

10.112A Pure Mathematics III—Number Theory and Algebra

Euclidean algorithm, congruences, sums of squares, diophantine equations, rings, polynomials, fields.

TEXTBOOKS
SESSION 1

SESSION 2
Dean, R. A. *Elements of Abstract Algebra*. Wiley.

REFERENCE BOOKS
Birkhoff, G. & MacLane, S. *A Survey of Modern Algebra*. Macmillan.
Hardy, G. H. & Wright, E. M. *Introduction to the Theory of Numbers*. O.U.P.
10.112B Pure Mathematics III—Real Analysis
Convergence of sequences; Cauchy sequences; lim sup and lim inf; convergence tests for series; sequences and series of functions; uniform convergence; Taylor and Fourier series; evaluation of integrals and solutions of differential equations via series; metric spaces; contraction mapping principle and its applications.

TEXTBOOK
Youse, B. K. *Introduction to Real Analysis*. Allyn & Bacon.

REFERENCE BOOKS
Spivak, M. *Calculus*. Benjamin.

10.112C Pure Mathematics III—Differential Geometry

TEXTBOOK

REFERENCE BOOK
Willmore, T. *Differential Geometry*. O.U.P.

10.112D Pure Mathematics III—Topology and Set Theory
Cardinal and ordinal numbers. Elementary topology of surfaces.

TEXTBOOKS
SESSION 1

SESSION 2

REFERENCE BOOKS

10.112E Pure Mathematics III—Complex Analysis and Differential Equations
Complex analysis and ordinary differential equations.

TEXTBOOKS
SESSION 1

SESSION 2
10.122A Higher Pure Mathematics III—Algebra
Field theory and theory of rings and modules.

TEXTBOOK
Lang, S. *Algebra*. Addison-Wesley.

10.122B Higher Pure Mathematics III—Integration and Functional Analysis
Lebesgue Integration; Fourier series; normed vector spaces; Hilbert spaces; measure theory.

TEXTBOOK

10.122C Higher Pure Mathematics III—Topology and Differential Geometry
The axiom of choice, metric and topological spaces, compactness. Compact surfaces, triangulations, geodesics, Gauss-Bonet theorem.

TEXTBOOK

10.122E Higher Pure Mathematics III—Complex Analysis and Differential Equations
Analytic continuation; entire and meromorphic functions; elliptic functions; normal families and further advanced topics in complex analysis. Existence and uniqueness theorems for ordinary differential equations; linear systems; qualitative theory of autonomous systems; equations on manifolds.

TEXTBOOKS
Cartan, H. *Elementary Theory of Analytic Functions of One or Several Complex Variables*. Addison-Wesley.

10.211A Applied Mathematics II—Mathematical Methods
Review of functions of two and three variables, divergence, gradient, curl; line, surface, and volume integrals; Green's and Stokes' theorems. Special functions, including gamma and Bessel functions. Differential equations and boundary value problems, including vibrating string and vibrating circular membrane; Fourier series.

TEXTBOOKS
Blatt, J. M. *Introduction to Fortran IV Programming*. Prentice-Hall.

REFERENCE BOOKS
10.211B Applied Mathematics II—Analytical Dynamics

Kinematics of particles and rigid bodies. Dynamics of particles, including simple harmonic motion and motion in a central force field. Dynamics of systems of particles, conservation principles, collisions, rocket motion. Dynamics of rigid bodies, including compound pendulum and Euler's equations. Lagrange's and Hamilton's equations.

TEXTBOOK

REFERENCE BOOK

10.211C Applied Mathematics II—Hydrodynamics

Conservation laws and Bernoulli's equation for one-dimensional flow. Equations of continuity and Euler's equation. Kelvin's theorem. Incompressible, irrotational flow in two and three dimensions, including applications of complex variables, method of images, harmonic functions, and axially symmetric flow. Introduction to compressible and viscous fluids.

TEXTBOOK

10.221A Higher Applied Mathematics II—Mathematical Methods

As for 10.211A but in greater depth.

TEXTBOOKS
Williamson, R. E., Crowell, R. H. & Trotter, H. F. Calculus of Vector Functions. Prentice-Hall.

REFERENCE BOOKS

10.221B Higher Applied Mathematics II—Analytical Dynamics

As for 10.211B but in greater depth.

TEXTBOOK
McCuskey, S. W. Introduction to Advanced Dynamics. Addison-Wesley.

REFERENCE BOOKS
10.221C Higher Applied Mathematics II—Hydrodynamics
As for 10.211C but in greater depth.

TEXTBOOK

REFERENCE BOOKS

10.212A Applied Mathematics III—Numerical Analysis
Polynomial approximation, interpolation and extrapolation, numerical quadrature, solution of ordinary differential equations, sets of linear equations, matrix eigenvalues and eigenvectors, boundary value problems, partial differential equations. A knowledge of FORTRAN programming is essential.

TEXTBOOK

REFERENCE BOOKS
Fox, L. & Mayers, D. F. Computing Methods for Scientists & Engineers. O.U.P.

10.212B Applied Mathematics III—Continuum Mechanics

TEXTBOOK

REFERENCE BOOK

10.212D Applied Mathematics III—Mathematical Methods
Sturm-Liouville equation, eigenvalues, expansion in orthonormal functions. Fourier, Fourier-Bessel and Legendre series as special cases. Fourier and Laplace transforms, with application to ordinary and partial differential equations. Diffusion equation and transmission-line equation. Wave equation.

TEXTBOOKS

REFERENCE BOOKS
Schelkunoff, S. A. Applied Mathematics for Engineers and Scientists. Van Nostrand.
10.212L Applied Mathematics III—Optimization Techniques

TEXTBOOK

10.222B Higher Applied Mathematics III—Continuum Mechanics
As for 10.212B but in greater depth.

REFERENCE BOOKS
Fung, Y. C. A First Course in Continuum Mechanics. Prentice-Hall.

10.222C Higher Applied Mathematics III—Maxwell’s Equations and Special Relativity

TEXTBOOKS
Jackson, J. D. Classical Electrodynamics. Wiley.
Lawden, D. F. Tensor Calculus and Relativity. Methuen.

REFERENCE BOOKS
Moller, C. The Theory of Relativity. O.U.P.

10.222D Higher Applied Mathematics III—Mathematical Methods

REFERENCE BOOKS
Watson, G. N. & Whittaker, E. T. A Course in Modern Analysis. C.U.P.
10.222F Higher Applied Mathematics III—Quantum Mechanics

TEXTBOOK

REFERENCE BOOKS

10.223 Applied Mathematics IV

Specialized study in selected topics for students who intend to graduate with honours. Includes preparation of an undergraduate thesis.

TEXTBOOK
No set text.

10.412 Dynamical and Physical Oceanography

(a) The physical properties of the oceans and their measurement, including: salinity, temperature, density, dynamic heights. Currents, waves and tides. (b) Theoretical models of current and waves.

Up to seven days field/laboratory work per year.

REFERENCE BOOK

STATISTICS

10.311 Theory of Statistics II

INTRODUCTORY READING

TEXTBOOKS
Statistical Tables.
REFERENCE BOOKS
Hartley, H. O. & Pearson, E. S. *Biometrika Tables for Statisticians*. C.U.P.

10.321 Higher Theory of Statistics II
10.311 at greater depth and covering a slightly wider field.

TEXTBOOKS
As for 10.311, plus:

REFERENCE BOOK

10.312A Theory of Statistics III—Stochastic Processes and Applications
Conditional expectations, generating functions, branching processes, finite Markov chains, introduction to finite-state space Markov processes in continuous time, applications of stochastic processes in genetics.

TEXTBOOK
Bailey, N. J. T. *Elements of Stochastic Processes with Applications to the Natural Sciences*. Wiley.

REFERENCE BOOKS

10.312B Theory of Statistics III—Experimental Design (Applications) and Sampling
Principles of good experimental design, analyses of fully randomized and randomized block designs, factorial treatment structure, components of variance, multiple comparisons; finite populations, simple random sampling, stratified random sampling, optimum allocation, estimation of sample size.

REFERENCE BOOKS
10.312C Theory of Statistics III—Experimental Design (Theory) and Project

Multivariate normal distribution, quadratic forms, multiple regression, theory of the general linear hypothesis and its application to experimental designs.

TEXTBOOK

REFERENCE BOOK

Characteristic functions, convergence of probability distributions, the central limit theorem, expansions related to the normal distributions, extreme value distributions; general theory of the 2×2 contingency table, χ^2 test and exact test, $m \times n$ contingency table, subdivision of χ^2.

TEXTBOOK

REFERENCE BOOKS

10.322A Higher Theory of Statistics III

As for 10.312A but in greater depth.

TEXTBOOK

REFERENCE BOOKS
As for 10.312A, plus:
Bailey, N. J. T. Elements of Stochastic Processes with Applications to the Natural Sciences. Wiley.

10.322B Higher Theory of Statistics III

As for 10.312B but in greater depth.

TEXTBOOKS

REFERENCE BOOKS
10.322C Higher Theory of Statistics III
As for 10.312C but in greater depth.

TEXTBOOK
As for 10.312C.

REFERENCE BOOKS
As for 10.312C plus:

10.322D Higher Theory of Statistics III
As for 10.312D but in greater depth.

TEXTBOOK

REFERENCE BOOKS
As for 10.312D, plus:

10.323 Theory of Statistics IV

TEXTBOOKS
Cox, D. R. & Smith, W. *Queues.* Methuen.
John, P. W. M. *Statistical Design and Analysis of Experiments.* Macmillan.
Kempthorne, O. *The Design and Analysis of Experiment.* Wiley.
Wald, A. *Sequential Analysis.* Wiley.

REFERENCE BOOKS
Bradley, J. V. *Distribution-free Statistical Tests.* Prentice-Hall.
Fraser, D. A. S. *The Structure of Inference*. Wiley.
Ghosh, B. K. *Sequential Tests of Statistical Hypotheses*. Addison-Wesley.
Moran, P. A. P. *An Introduction to Probability Theory*. O.U.P.
Scheffe, H. *The Analysis of Variance*. Wiley.
Wald, A. *Statistical Decision Functions*. Wiley.
Yaglom, A. M. *An Introduction to the Theory of Stationary Random Functions*. Prentice-Hall.

10.331 Statistics SS

An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions: binomial, Poisson and normal; an introduction to multivariate distributions. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models, involving multiple comparisons and estimation of variance components.

TEXTBOOKS

Statistical Tables.

REFERENCE BOOKS

Davies, O. L. *Statistical Methods in Research and Production*. Oliver & Boyd.
Microbiology is concerned with the nature and behaviour of the microscopic and submicroscopic forms of living organisms, particularly the fungi, bacteria and viruses. These agents have innumerable effects on human welfare, some of which are beneficial and others, clearly harmful. Thus, some microorganisms may aid in the decomposition of organic waste materials, increase the fertility of soils or be directly involved in the production of foodstuffs, beverages, pharmaceuticals (including antibiotics) and other industrially important compounds; others are important agents of human, animal and plant diseases, of food spoilage or destruction of a variety of structural materials. Knowledge of the behaviour of microorganisms can be applied directly both to increasing their benefits to man or minimizing their harmful effects. In the latter case, particularly human or animal disease, a knowledge of the "twin-science", immunology, is important for appreciating or developing methods for specific prevention or treatment of certain diseases. Additionally, fundamental studies in microbiology are being used to advance our knowledge of the nature of living organisms and the basic processes of life, particularly in the areas of molecular biology, genetics and metabolism.

Students may undertake Microbiology as a major or minor Science course, as part of the medical degree or in Food Technology, and in other courses in the Faculty of Applied Science, in Biological Technology, Public Health Engineering and Food and Drug Analysis or for the degree of BSc(Ed).

Microbiology and/or Immunology can be taken to the honours level and for the Master of Science and Doctor of Philosophy degrees. Medical students can interrupt their course to undertake the BSc(Med) degree in Microbiology while higher medical degrees may also be taken in this subject. Such advanced studies will include research work as well as additional reading programmes and in some cases, formal instruction. Students who have not majored in Microbiology but have otherwise suitable basic training may enrol for a higher degree.

It is essential that students who wish to enrol in any course offered by the School should ensure that they have satisfied all the prerequisites; only in special circumstances may these be waived or varied with the permission of the Head of School. The School's education advisory officer should be consulted for advice on the best course structure which might satisfy the student's particular interests.

For graduation with microbiology as a major subject students must have taken, as a minimum requirement, the two double units 44.102 General Microbiology and 44.112 Applied Microbiology. For those who specifically wish to make a career in this discipline it is advised they should also take the single units 44.122 Immunology and 44.132 Virology which along with 44.112 are offered in Session 2 of the year. As alternatives to 44.122 and 44.132 students could take the single units 43.102D Mycology (School of Botany), 42.102 Fermentation Technology (School of Biological Technology) or the double unit 41.102B Metabolic Pathways and Control Mechanisms (School of Biochemistry) assuming 41.102 has been taken;
a double major in Microbiology and Biochemistry would be possible under the last alternative.

Students not wishing to major in Microbiology may choose one or more units from 44.102 Basic General Microbiology or 44.122 Immunology. Ordinarily 44.112 Applied Microbiology and 44.132 Virology cannot be taken without having done 44.102.

A student wishing to take an honours course will be expected to have achieved a high standard in courses taken for the pass degree and to have majored in Microbiology. Additionally he must receive the permission of the Head of School.

For details of level, unit value, when offered, hours per week and prerequisites, see page B22.

44.101 Introductory Microbiology

The general nature, occurrence and importance of microorganisms. A systematic review of the major groups of microorganisms: the eucaryotic protista (micro-algae, protozoa and fungi); procaryotic protista (blue-green algae, "higher" bacteria, typical unicellular bacteria and small bacteria-like forms); plant, animal and bacterial viruses. The relationship between microorganisms and their environment; ecological considerations. Interactions between microorganisms and higher organisms.

TEXTBOOK
or
or
or

Note: Hawker and Linton is recommended for students wishing to major in Microbiology in the following year.

44.102 General Microbiology

Double unit, level III.

Systems for the isolation, identification and taxonomic description of microorganisms; fine structure, cyto-chemistry, genetics of bacteria and viruses; metabolic requirements of microorganisms; microorganisms and their environment; growth, inhibition and death; energy-yielding and biosynthesizing systems; genotypic and phenotypic control systems.

TEXTBOOKS
As for 44.101 if not taking other Microbiology units. Otherwise:
44.112 Applied Microbiology

Double unit, level III.

Endeavours to relate the basic facts about microorganisms to a variety of practical conditions. The occurrence, importance, activity and control of microorganisms in soil, air, water and in their relationship with higher organisms (other than man); their industrial applications including manufacture, preservation and spoilage of food and dairy products. The nature of bacterial and fungal diseases of man, their cultural and serological diagnosis, epidemiology, treatment and prevention will be discussed in some detail.

TEXTBOOKS
As for 44.102.

44.122 Immunology

Single unit, level III.

Basic immunology and immunological techniques. The interdisciplinary nature of the subject makes this unit suitable for students taking any major sequence in biological science and also for higher degree students who require a background training in immunology. The course includes phylogeny and ontogeny of the immune response; antigen and antibody structure; antigen-antibody reaction; immunochemistry; immunogenetics, clinical immunology; transplantation.

TEXTBOOKS

44.132 Virology

Single unit, level III.

The structure, replication and behaviour of animal, plant and bacterial viruses; applications of virological techniques; virus diseases of animals and plants, their epidemiology and control.

TEXTBOOKS

As for 44.102.

44.103 Microbiology II (Honours)

Advanced formal study in approved subjects, together with a research project. The results of the latter are embodied in a thesis.

44.111 Microbiology

A short introductory course to microbiology which is designed to familiarize students, without previous biological training, with microorganisms and with the methods used in their isolation and identification. The content of the course is similar to that of 44.101.

TEXTBOOK

or
The study of philosophy is partly the study of perennial problems of common interest to everyone; for example, the foundations of morality, the grounds of religious belief, the source and reliability of knowledge, and the relation between body and mind. Philosophy also leans out to and illuminates other fields of study. Consequently courses in philosophy are designed to make it possible for students to pursue a philosophical interest related to their other interests.

The first year course in philosophy is a wide-ranging course which is intended to give a broad introduction to the subject and assumes no previous acquaintance with it. It is broken into two sessions, with an examination at the end of each session, but Arts students take it as a whole and other students are advised to do so. There is no distinction between Pass and Honours.

For second year, Pass courses are presented and examined in session-length units. This arrangement makes it possible to offer a wide range of units from which students may select freely, subject only to certain stipulations regarding prerequisites. In a normal course, students take two course units in each session.

SELECTION OF UNITS

The pattern of courses after the first year is intended to give students a wide range. Constraints are imposed by, firstly, the prerequisites of the various subjects; secondly, the distribution of courses as between Sessions 1 and 2; and to some extent, timetabling. The following details will assist students with their initial choice.

The course-units available in Session 1 having no prerequisite apart from Introductory Philosophy A and B are:
- Predicate Logic;
- Descartes;
- British Empiricism;
- Greek Philosophy;
- Scientific Method;
- Philosophy of Biology;
- Existentialism.

Of these, Predicate Logic is prerequisite to a range of advanced logic courses, and some of the others are also prerequisites, alone or as alternatives, to certain other subjects.

HONOURS COURSES

There is no division of students into Pass and Honours during the first year. From the second year special additional course-units are provided for Honours students.

52.111 Philosophy I

The course-units Introductory Philosophy A and Introductory Philosophy B as detailed below. There will be examinations at the end of each session but the course will be treated as an integrated whole-year one.
52.112 Philosophy II

Four course-units, normally two in each session.

52.122 Philosophy II (Honours)

Three course-units in Session 1 and two in Session 2, plus Honours Seminar A.

COURSE UNITS

Introductory Philosophy A (Session 1)

A first course for students new to the subject. The course divides into two strands: 1. Plato: A study of some dialogues of Plato, paying special attention to Socratic Definition and to Plato's Theory of Forms. 2. Informal Logic: An approach to logic by way of language, treating such topics as the uses of utterances, the truth and significance conditions of statements, the non-formal analysis of arguments, and the logical relations of propositions.

Students who would like to read some philosophy before starting the course might look at Problems of Philosophy by Bertrand Russell, or Philosophy Made Simple by R. H. Popkin and A. Stroll.

TEXTBOOKS

1. Plato

REFERENCE BOOKS

1. Plato
 Bluck, R. S. Plato's Phaedo. Routledge.
 Burnet, J. Greek Philosophy. Macmillan.
 Cornford, F. M. The Republic of Plato. O.U.P.
 Guthrie, W. K. C. Socrates. C.U.P.
 Robinson, R. Plato's Earlier Dialectic. O.U.P.
 Taylor, A. E. Plato. Methuen.

2. Informal Logic
 Hamblin, C. L. Elementary Formal Logic—A Programmed Course. Hicks Smith and University Paperbacks.
 Taylor, D. M. Explanation and Meaning. C.U.P.

Introductory Philosophy B (Session 2)

A continuation of Introductory Philosophy A. The course divides into two strands: 1. Hume: A study of some sections of Hume's Enquiry. Topics to be discussed may include: the miraculous and the existence of God, the
mind-body problem and personal identity, the freedom of the will. 2. *Formal Logic*: An introduction to a system of Natural Deduction sufficient for the symbolization of such ordinary language arguments and the construction of such proofs as lie within the field of propositional logic and simple predicate logic.

TEXTBOOKS
1. Hume

2. *Formal Logic*

REFERENCE BOOKS
1. Hume
 Berofsky, B. *Free Will and Determinism*. Harper & Row.
 Flew, A. *Body, Mind and Death*. Macmillan.
 Smart, N. *Philosophers and Religious Truth*. S.C.M.
 Taylor, D. M. *Explanation and Meaning*. C.U.P.

Predicate Logic (Session 1)
 Prerequisite: Introductory Philosophy A and B.

 A system of natural deduction is presented for the first order predicate calculus, including identity and definite descriptions. Emphasis is upon construction of formal derivations, methods of showing the invalidity of formal arguments, and the evaluation of informal arguments by symbolization.

TEXTBOOK

REFERENCE BOOK

Descartes (Session 1)
 Prerequisite: Introductory Philosophy A and B.

 A study of the main issues raised in the philosophy of Descartes and their importance for the development of modern philosophy. Emphasis is on the *cogito ergo sum* argument, the Cartesian method and the search for rational certainty, his theory of ideas, the body-mind problem, and his account of freedom.

TEXTBOOK

REFERENCE BOOKS
 Buchdahl, G. *Metaphysics and the Philosophy of Science*. Blackwell.
Keeling, S. V. Descartes. O.U.P.
Popkin, R. H. Scepticism from Erasmus to Descartes. Van Gorcum.

British Empiricism (Session 1)
Prerequisite: Introductory Philosophy A and B.
A survey of the empiricist tradition with special concentration on Locke and Berkeley.

TEXTBOOKS

REFERENCE BOOKS
References will be given in lectures.

Greek Philosophy: Thales to Plato (Session 1)
Prerequisite: Introductory Philosophy A and B.
The leading ideas of the Greek Philosophers from Thales to Plato, with special reference to the Pre-Socratics.

PRINCIPAL REFERENCE BOOK

REFERENCE BOOKS
Burnet, J. Early Greek Philosophy. Black.
Burnet, J. Greek Philosophy. Macmillan.
Cornford, F. M. Plato and Parmenides. Routledge.
Freeman, K. Ancilla to the Pre-Socratic Philosophers. Blackwell.
Jaeger, W. The Theology of the Early Greek Philosophers. O.U.P.
Kahn, C. H. The Verb 'Be' in Ancient Greek. Reidel.
Kirk, G. S. Heraclitus. The Cosmic Fragments. C.U.P.
Kirk, G. S. & Raven, G. E. The Pre-Socratic Philosophers. C.U.P.
Lee, H. D. P. Zeno of Elea. C.U.P.
O'Brien, D. *Empedocles' Cosmic Cycle: A Reconstruction from the Fragments and Secondary Sources.* C.U.P.

Philip, J. A. *Pythagoras and Early Pythagoreanism.* O.U.P.

Raven, J. E. *Pythagoreans and Eleatics.* C.U.P.

Robinson, R. *Essays in Greek Philosophy.* O.U.P.

Seligman, P. *The Apeiron of Anaximander.* Unv. of London.

Scientific Method (Session 1)

Prerequisite: Introductory Philosophy A and B.

A study of the nature of empirical knowledge as exemplified in the physical and social sciences and in history, with emphasis on the concept of explanation, the nature of induction and scientific laws, counterfactual statements, and the paradoxes of confirmation.

TEXTBOOKS

Hempel, C. G. *Philosophy of Natural Science.* Prentice-Hall.

Rudner, R. S. *Philosophy of Social Science.* Prentice-Hall.

REFERENCE BOOKS

Barker, I. F. *Induction and Hypothesis.* Cornwall U.P.

Brown, R. *Explanation in Social Science.* Routledge.

Dray, W. H. *Laws and Explanation in History.* O.U.P.

Hintikka, J. & Suppes, P. *Aspects of Inductive Logic.* North Holland.

Mill, J. S. *A System of Logic.* Longmans Green.

Nagel, E. *The Structure of Science.* Routledge.

Pap, A. *An Introduction to the Philosophy of Science.* Free Press.

Popper, K. R. *The Logic of Scientific Discovery.* Hutchinson.

Scheffler, I. *The Anatomy of Inquiry.* Knopf.

Strawson, P. F. *Introduction to Logical Theory.* Methuen.

Philosophy of Biology (Session 1)

Prerequisite: Introductory Philosophy A and B.

An introduction to some of the problems associated with the philosophy of biology. Main consideration is the autonomy of biology; i.e., whether biology is in principle reducible to the physical sciences and, ultimately, to physics, or whether the biologist necessarily employs types of description and explanation that have no application in the explanation and description of merely physical phenomena. No prior knowledge of biology is assumed but candidates will be expected to familiarize themselves with the attitudes of various biologists to these issues.

TEXTBOOK

Nagel, E. *The Structure of Science.* Routledge.
REFERENCE BOOKS

Beckner, M. The Biological Way of Thought. Columbia U.P.
Bertalanffy, L. von. Modern Theories of Development. O.U.P.
Braithwaite, R. B. Scientific Explanation. C.U.P.
Haldane, J. S. Mechanism, Life and Personality. Murray.
Lillie, R. S. General Biology and Philosophy of Organism. Chicago U.P.
Russell, E. S. The Directiveness of Organic Activities. C.U.P.
Sommerhoff, G., Analytical Biology. O.U.P.
Tinbergen, N. The Study of Instinct. O.U.P.
Woodger, J. H. Biology and Language. C.U.P.

Oppression and Liberation (Session 2)

Prerequisite: Introductory Philosophy A and B.

A discussion of oppression and liberation, both in general and with special reference to the oppression of women and its ideology.

REFERENCE BOOKS

Existentialism (Session 1)

Prerequisite: Introductory Philosophy A and B.

Sartre's account of man-in-the-world. Sartre's ontology, his use of a phenomenological method and his ethics.

TEXTBOOKS

Sartre, J.-P. *Being and Nothingness*. Methuen.

REFERENCE BOOKS

Cranston, M. *Freedom*. Longman.
Molina, F. *Existentialism as Philosophy*. Prentice-Hall.

Foundations of Mathematics (Session 2)

Prerequisite: Predicate Logic.

An introduction to a selection of problems concerning the foundations of Mathematics including the following topics: Non-Euclidean Geometry and consistency proofs, Axiomatics, Antinomies of naive set theory, Logicism, Intuitionism, Formalism, Gödel's Incompleteness result.

TEXTBOOK

Wilder, R. S. *An Introduction to the Foundations of Mathematics*. Wiley.

REFERENCE BOOKS

Argument (Session 2)
- Prerequisite: Introductory Philosophy A and B.

A theoretical study of practical argumentation in the courtroom, politics and everyday life as compared with argument in logic, mathematics and theoretical science. Confirmation and probability, authority, testimony, precedent; rules of debate; criteria of validity; problem of mechanization of practical arguments; logical rationalism and scepticism.

REFERENCE BOOKS
- Hamblin, C. L. *Fallacies*. Methuen.
- Kneale, W. C. *Probability and Induction*. O.U.P.
- Passmore, J. A. *Philosophical Reasoning*. Duckworth.
- Toulmin, S. *The Uses of Argument*. C.U.P.

Logical Atomism (Session 2)
- Prerequisite: Introductory Philosophy A and B.

A survey of the logical atomism of Russell and Wittgenstein and of the logical positivist movement.

TEXTBOOKS

REFERENCE BOOKS
- Reference books will be given in lectures.

Philosophy of Psychology (Session 2)
- Not offered in 1974.
- Prerequisite: Scientific Method.

A critical examination of some aspects of fundamental theory of psychology, with special emphasis on classical and contemporary behaviourism and behaviourist orientated psychology, and on the general conceptions of 'behaviour' and 'purpose'.

While Psychology I is not a prerequisite for this course, a preparatory survey of the introductory chapters of J. O. Whittaker's *Psychology* will be of value to students.

TEXTBOOK

Aesthetics (Session 2)
- Prerequisite: Introductory Philosophy A and B.

An examination of the central concepts, types of judgment and theories occurring in the fields of aesthetics, art criticism and literary criticism.
TEXTBOOK

REFERENCE BOOKS
Boyce Gibson, A. Muse and Thinker. Methuen.
Elton, W. ed. Aesthetics and Language. O.U.P.
Margolis, J. The Language of Art and Art Criticism. Wayne State U.P.
Ziff, P. Philosphic Turnings: Essays in Conceptual Appreciation. O.U.P.

Plato (Session 2)
Prerequisite: Greek Philosophy: Thales to Plato.
A course centred around some of the later dialogues of Plato (Parmenides, Theaetetus, Sophist).

TEXTBOOK

REFERENCE BOOKS
Burnet, J. Greek Philosophy. Macmillan.
Cornford, F. M. Plato and Parmenides. Routledge.
Crombie, I. M. An Examination of Plato's Doctrines. Vol. II. Plato on Knowledge and Reality. Routledge.
Robinson, R. Plato's Earlier Dialectic. O.U.P.
Robinson, R. Essays in Greek Philosophy. O.U.P.
Ross, W. D. Plato's Theory of Ideas. O.U.P.

Spinoza and Leibniz (Session 2)
Prerequisite: Descartes.
A study of the main issues raised in the philosophy of the two great seventeenth century rationalists, with emphasis upon the development of their metaphysical systems in response to unresolved problems in the philosophy of Descartes and to contemporary scientific thinking. Their ethical views.

TEXTBOOKS

REFERENCE BOOKS
Alexander, H. G. ed. The Leibniz-Clarke Correspondence. Manchester U.P.
Set Theory (Session 1)
Prerequisite: Predicate Logic.

An axiomatic development of Zermelo-Fraenkel set theory, including a construction of the natural numbers, equinumerosity, ordinal and cardinal numbers, the axiom of choice and some of its consequences.

TEXTBOOK

REFERENCE BOOKS
Halmos, P. Naive Set Theory. Van Nostrand.
Quine, V. W. Set Theory and Its Logic. Harvard U.P.

Honours Seminar A (Session 2)
For Honours students in their second year. The course is based on articles from recent issues of philosophy journals. Students will be expected to read and prepare papers on an individual basis.

REFERENCE BOOKS
To be advised in class.
The School of Physics provides both pass and honours courses. The pass course with major studies is available by taking Physics or Higher Physics units and may be completed in three years. This course may include the core units which aim to present a broad and balanced treatment of all branches of physics without undue emphasis on topics which may be temporarily prominent, and also a choice of elective units which aim to present more specific and detailed study in certain specialized areas. The course including Higher Physics units is normally a prelude to entry into the Honours year. These studies which are completed within the framework of the Science Course (see earlier) provide unit groupings which are appropriate for students seeking qualification as professional physicists, whether they intend to engage in research, industrial practice or the teaching of science.

A student intending to take a pass degree with a major in Physics must complete Physics 1.001, Physics units 1.112A, B and C, and four level III Physics units of which three must be from 1.113A, B, C or D. Note that 10.001 Mathematics is a prerequisite of all Physics level II units and that 10.211A Applied Mathematics is a co-requisite of all Physics level II units. Students are also advised to take units 10.111A and 10.111B of Pure Mathematics in second year. Additional Mathematics units are prerequisite to Higher Physics level III units (see regulations). Students are also advised to complete supporting units in accordance with the Science Course regulations and will normally include 2.001 Chemistry I. It should be understood that units of corresponding higher subjects can often be substituted for those mentioned above.

HONOURS

A student intending to take Honours in Physics will normally complete the sequence of Higher Physics units 1.011; 1.122 A, B and C; 1.123 A, B, C and D. However, students with a very good record in Physics 1.001 or in 1.112 A, B and C may be considered for admission to Higher Physics units on application to the Head of School. Applied Mathematics 10.211A (or the Higher Applied Mathematics equivalent) is a co-requisite of Higher Physics level II units and Pure Mathematics 10.111A and B (or the Higher Pure Mathematics equivalents) are prerequisites to Higher Physics level III units. Students are also strongly advised to take Applied Mathematics units 10.212A and D (or equivalents) in their third year of study.

The following show typical programmes which, together with the prescribed General Studies subjects, complete requirements for a degree.

A. Pass Course Majoring in Physics (suitable for Science Teachers)

<table>
<thead>
<tr>
<th>Level</th>
<th>No. Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>I 2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>I 2</td>
</tr>
<tr>
<td>Chemistry</td>
<td>I 2</td>
</tr>
<tr>
<td>General Biology</td>
<td>I 2</td>
</tr>
</tbody>
</table>

B142
SECOND YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>II</td>
<td>3</td>
</tr>
<tr>
<td>Pure Mathematics</td>
<td>II</td>
<td>2</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>Geoscience</td>
<td>I</td>
<td>2</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>III</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td>II</td>
<td>3</td>
</tr>
<tr>
<td>Other Units</td>
<td>II/III</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

B. Pass Course Majoring in Physics

FIRST YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Physics</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Other Units</td>
<td>I</td>
<td>2</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Physics</td>
<td>II</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Unit A</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>Pure Mathematics Unit B</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>Other Units</td>
<td>I/II</td>
<td>4</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Physics</td>
<td>III</td>
<td>4</td>
</tr>
<tr>
<td>Pure Mathematics Unit A (if not previously taken)</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>Other Units</td>
<td>II/III</td>
<td>2 or 3</td>
</tr>
</tbody>
</table>

C. Leading to Honours in Physics

FIRST YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Physics</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Other Units</td>
<td>I</td>
<td>2</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Physics</td>
<td>II</td>
<td>3</td>
</tr>
<tr>
<td>Pure Mathematics Units A, B</td>
<td>II</td>
<td>2</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>Other Units</td>
<td>II</td>
<td>2</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Higher Physics A, B, C and D</td>
<td>III</td>
<td>4</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>III</td>
<td>1</td>
</tr>
<tr>
<td>Physics Electives</td>
<td>III</td>
<td>1</td>
</tr>
<tr>
<td>Or other Units</td>
<td>III</td>
<td>3</td>
</tr>
</tbody>
</table>

For footnotes, see overleaf.
* Admission to Physics level II units requires completion of 1.001 Physics or 1.011 Higher Physics. Admission to Higher Physics II units normally requires completion of 1.011, Higher Physics I, but students who complete 1.001 Physics I at a high standard and pass 10.001 Mathematics I or 10.011 Higher Mathematics I may be admitted with the approval of the Head of School.

† Students must note that certain Applied Mathematics level III units cannot be counted with certain Physics level III units.

Physics Prizes

The following prizes are offered annually:

- The School Prize, for the best overall performance in Physics level II units or Higher Physics level II units, value $40.

- The Physics Staff Prize, for the best overall performance in Physics level III Units or Higher Physics level III Units. Value $60.

- The Head of School's Prize, for the best performance in laboratory work at level III in the School of Physics, value $20.

- The Physics IV Prize for the best performance in Physics IV, value $40.

1.001 Physics I

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertial mass, energy, momentum, charge, potential, fields. Application of the conservation principles to solution of problems involving charge, energy and momentum. Electrical circuit theory, application of Kirchoff's Laws to AC and DC circuits. Uniform circular motion, Kepler's Laws and rotational mechanics.

The application of wave and particle theories in physics. A review of the atomic theory of matter and the structure and properties of atomic nuclei. A molecular approach to energy transfer, kinetic theory, gas laws and calorimetry. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization. Interaction of radiation with matter, photoelectric effect, Compton effect, spectroscopy. Resolution of the wave — particle paradox by means of wave mechanics and the uncertainty principle.

TEXTBOOK

Bueche, P. *Introduction to Physics for Scientists and Engineers*. McGraw-Hill.

REFERENCE BOOKS

1.011 Higher Physics I

TEXTBOOKS

REFERENCE BOOKS

Physics Level II Units
1.112A Electromagnetism

Electrostatics in vacuum and in dielectrics. Magnetostatics in vacuum and in magnetic materials. Maxwell’s equations and simple applications.

TEXTBOOK

1.112B Modern Physics

TEXTBOOK
1.112C Waves in Continuous Media and Thermodynamics

TEXTBOOKS

1.122A Electromagnetism

TEXTBOOK

1.122B Quantum Physics

Syllabus as for 1.112B but treated at a higher level and including some solid state physics.

TEXTBOOK

1.122C Thermodynamics and Mechanics

Thermodynamics: as for 1.112C Thermodynamics but at higher level and with some additional topics. Mechanics: oscillations and forced vibrations. Lagrange’s equation, variational principles, Hamilton’s equations.

Note: 1.122A, B and C are units of Higher Physics II and the prerequisite is normally 1.011 Physics.

TEXTBOOKS

1.212 Physics IIT

Any two of the following half-units.

1.212A Geometrical Optics

Reflection, Refraction. Thin and thick lenses and lens systems. Instruments and their aberrations. Photometry.

TEXTBOOK
Fincham, W. Optics. Hatton.
1.212B Electronics
Vacuum tubes and applications. Conduction in solids; solid state diodes, transistors, amplifiers, feed back.

TEXTBOOK

1.212C Introduction to Solids
Introductory quantum mechanics and atomic physics; crystal structure; point and line defects; introductory band theory; conductors, semiconductor and insulators; energy level diagrams.

TEXTBOOK

1.212D Biophysics

TEXTBOOK
To be announced in class.

Physics Level III Units
1.113A Wave Mechanics and Spectroscopy
Concepts, harmonic oscillator, uncertainty principle, the free particle, barriers, the hydrogen atom, many electron atoms, removal of degeneracy, spectroscopy, molecules, periodic potentials, band structure, perturbations.

TEXTBOOK

1.113B Electromagnetic Fields and Physical Optics
Wave equation; propagation in dielectrics and ionized media; reflection and transmission; guided waves; coherence of radiation; interaction of radiation with matter; stimulated emission; laser oscillators; properties of laserlight; interferometry; diffraction; convolution theorem X-ray and neutron diffraction.

TEXTBOOK

1.113C Statistical Mechanics and Solid State
Thermodynamic potentials, ensembles and partition functions, lattice vibrations, the grand canonical ensemble, Pauli exclusion principle, Bose-Einstein and Fermi-Dirac distributions.
Structure of crystals, imperfections, specific heat. Band theory of solids, semiconductors.

TEXTBOOKS

1.113D Astrophysics and Nuclear Physics

The observational environment, optical astronomy, radio astronomy, X-ray astronomy, stellar evolution, radio sources, the sun.

Detecting instruments and accelerators for nuclear particles, radioactive processes, nuclear reactions, angular distributions, mesons, baryons, excited nuclear states.

TEXTBOOK

Higher Physics Level III Units

1.123A Quantum Mechanics

TEXTBOOK

1.123B Electromagnetic Theory and Statistical Mechanics

Metallic boundary conditions, eigenfunctions and eigenvalues, cavities, wave guides, scattering by a conductor, wave equation for potentials, radiation fields, Hertz potential, dipole and multi-pole radiation, radiated energy and angular momentum.

Statistical mechanics: Kinetic theory, the Boltzmann equation, Maxwell-Boltzmann distribution, Boltzmann's H-theorem; classical statistical mechanics: postulates, equipartition, ensembles, difficulties; quantum statistical mechanics; postulates, ensembles, Fermi and Bose statistics.

TEXTBOOK

REFERENCE BOOK

Knox, J. H. *Molecular Thermodynamics*. Wiley.

1.123C Solid State and Nuclear Physics

Crystallography, binding energy, phonons, lattice conduction, free electron gas, band theory.

Nuclear models, binding energy, nuclear forces, elementary particles, nuclear reactions, radioactive decay.
TEXTBOOKS

1.123D Atomic Physics and Spectroscopy

Collision parameters, transport coefficients, potential functions, atomic collisions, scattering of heavy particles, scattering of electrons, avalanche formation, recombination, radiation processes, stimulated emission, detectors.

Spectrum of hydrogen, fine structure, electron spin, vector treatment of spectroscopy, emission and absorption of radiation, diatomic molecules.

TEXTBOOKS

Physics Level III Supplementary Units

1.133A Electronics

A.C. circuit analysis, band theory of semiconductors, diode, field effect transistor, rectifier circuits, power supplies, single and multistage amplifiers, positive feedback, oscillators.

TEXTBOOKS

1.143A Biophysics

Ear and sound, eye and light, impulses by nerves, the brain, hearing, vision muscles, heart-beat, structure of proteins, nucleic acid, radiation effects, enzymes, diffusion and permeability.

TEXTBOOK

1.143B Solid State Devices and Electronics

(Syllabus follows on from 1.133A which is a prerequisite.)

Generalized amplifiers, negative feedback, special amplifiers, regulated power supplies, modulation, pulse circuits, silicon-controlled rectifier circuits, instruments.

TEXTBOOKS

1.143C Magnetism

Diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, domains, technical magnetism, geomagnetism, magnetic resonances as a tool in solid state research.

TEXTBOOK
No set text.
1.143D Conceptual Framework of Physics

Physics and Metaphysics: The place of speculation in theory formation. Space and Time: Systems of coordinates, the nature and arrow of time, parity, micro causality. Fundamental Physical Phenomena: The fundamental phenomena on which physical theories have been based; electrical, gravitational, inertial nuclear and entropy/probability. Field Theory: In particular e.m. and gravitational field theory. Mathematical formalization of physical phenomena, action at a distance, field propagation, field energy, connection to relativity. Relativity: The fundamental postulates, simultaneity, limiting speeds, connection with field theory, mass and energy. Relationship between Micro- and Macro-Cosmos: Divisibility of matter (molecules, atoms, nuclei, nucleon), matter and anti matter, statistical nature of the behaviour of large aggregates or systems, the concept of entropy, the second law of thermodynamics. The place of determinism in physics. Matter and Energy: Conservation laws, inertial mass, equivalence principle, field energy, spatial delimitation of material particles. Theory of Quantum Processes: Granularity effects, uncertainty principle, effects of measurements, virtual processes. Determinism vs. indeterminism in physics, application to nuclear phenomena.

TEXTBOOK
No set text.

1.143E Electrical and Optical Properties of Solids

Equilibrium properties of semiconductors and insulators, conductivity, excess carriers, flow equations, contact barriers; luminescence, relaxation phenomena.

TEXTBOOKS

1.143F Marine Acoustic and Seismic Methods (Oceanography Unit)

Prerequisite: 10.211A or 10.221A or 10.031.

Cave Theory: General wave equation for fluids, viscoelastic media and solids. Travelling and standing wave solutions. Wave Guides: Fluid and solid waveguides, ray and mode theories. Sound Transmission in the Ocean: Applications of reflection and refraction theory, scattering and diffraction effects. Experiments relating to the above: Including fluid waveguide, solid waveguide, measurement of absorption and reflection coefficients.

REFERENCE BOOKS
Physics Higher Level III Supplementary Units

1.153A Hydrodynamics and Magnetohydrodynamics
Not offered in 1974.

1.153B Relativity and Electromagnetism

TEXTBOOK
No set text.

1.114 Physics IV (Honours)
Four compulsory courses:

Quantum Mechanics

TEXTBOOK

Solid State Physics

TEXTBOOKS

Low Energy Nuclear Physics

TEXTBOOK

Statistical Mechanics

TEXTBOOK

Four electives chosen from:

Non-equilibrium Statistical Mechanics

TEXTBOOK
No set text.

Methods of Solid State Physics

TEXTBOOK
No set text.

Solid State Applications

TEXTBOOK
Dielectric and Defect Properties of Solids
TEXTBOOK
No set text.

Biophysics
TEXTBOOKS

Physical Acoustics
TEXTBOOK
No set text.

Quantum Electrodynamics
TEXTBOOK
No set text.

Nuclear Fields
TEXTBOOK
No set text.

Diffraction Theory
TEXTBOOK
No set text.

Structural Properties of Materials
TEXTBOOK
No set text.
Courses in physiology for students in the Science Course were commenced in 1963. During the second and third years of their BSc course, students may take Principles of Physiology and Physiology II. Students reaching an adequate standard in these subjects may proceed to a BSc degree with honours by taking Physiology III during the fourth year of the course.

For details of level, unit value, when offered, hours per week, prerequisites and co-requisites, see page B27.

73.011A Principles of Physiology

An introductory course in physiology. It considers in some detail the basic problems of homeostasis encountered in man and animals. Function is considered at cellular and systemic levels, and examples are drawn from mammalian and invertebrate species.

TEXTBOOK

73.012 Physiology II

An advanced course in the principles of physiology, centred on four major areas: circulation, respiration, membrane biophysics and neuro-physiology.

TEXTBOOKS
Lists given from time to time.

The course consists of lectures, tutorials, seminars and laboratory work. On some occasions students may be required to attend at other times for the maintenance and treatment of experimental animals.
The study of psychology as a formal discipline in undergraduate courses is traditional in Australian Universities. Psychology as a subject is concerned with the systematic study of human behaviour and associated mental processes. The School of Psychology offers psychology as a major subject in the full-time Arts and Science Courses and also offers a full-time undergraduate professional degree course in psychology in the Faculty of Biological Sciences.

In the Science course, Psychology may be studied as a major sequence in accordance with Science course regulations. A student who wishes to proceed to Honours in Psychology should refer to the requirements set out in Clause 2(b) of the same regulations.

The four-year course in Psychology, which leads to the degree of Bachelor of Science in the Faculty of Biological Sciences, is a full-time course designed to meet the requirements of students who intend to become professional psychologists, as either practitioners or research workers. It provides extensive study of psychological theory and practice, supported by an appropriate selection of other subjects. Full details of this course are given on pages B17-19.

Prizes in Psychology

The Australian Psychological Society Prize in Psychology is awarded annually to a fourth-year student. The Society also awards annually two-years Student Subscriberships to the Australian Journal of Psychology to two outstanding students at the end of second year.

The Staff Prize in Psychology is awarded annually to an outstanding second-year student.

12.001 Psychology I

An introduction to the content and methods of psychology as a behavioural science, with special emphasis on (a) the biological and social bases of behaviour, (b) learning, and (c) individual differences.

The course includes training in methods of psychological enquiry, and the use of elementary statistical procedures.

Part A: Theory

TEXTBOOKS

There is no set text for this course, but students are advised to obtain, as a general reference, an introductory text such as one of the following:—C.R.M. Psychology Today. CRM Books, Del Mar, 1970, or 2nd ed., 1972. Dember, W. N. & Jenkins, J. J. General Psychology. Prentice-Hall, 1970. Morgan, C. T. & King, R. A. Introduction to Psychology. 4th ed. McGraw-Hill, 1971.

REFERENCE BOOKS
Allport, G. W. Personality. Holt, 1937.

Part B: Practical

TEXTBOOK

12.004 Psychology IV
Psychology IV in the BSc (Psychology) course. A program of selected study from the School's Advanced Electives. In consultation with the Head of School or his representative, plus a research thesis or project. Combinations of electives are available for students intending to specialize in areas of professional practice (e.g., clinical, industrial, educational psychology) or in research.

TEXTBOOKS
To be determined in consultation with Head of School.

12.042 Psychology IIA
(BSc Psychology students only.)
Observational methods and laboratory instrumentation in applied psychology.

REFERENCE BOOKS
12.152 Research Methods II

General introduction to the design and analysis of experiments; hypothesis testing, estimation, power analysis; general treatment of simple univariate procedures; correlation and regression.

TEXTBOOKS

REFERENCE BOOKS

12.153 Research Methods IIIA

Introduction to analysis of variance—one way and complete factorial designs. Elementary Fortran programming, emphasizing editing of data for use in package programmes.

TEXTBOOKS

or

12.163 Research Methods IIIB

Experimental Design; complex analysis of variance; planned and post hoc comparisons; multivariate procedures as data reduction techniques.

TEXTBOOKS

REFERENCE BOOKS

12.252 Learning II

REFERENCE BOOKS
As for 12.253 Learning IIIA.
12.253 Learning IIIA

Current experimental and theoretical problems in learning; classical and operant conditioning; reinforcement issues.

REFERENCE BOOKS

12.263 Learning IIIB

REFERENCE BOOKS

12.302 Personality II

History of the study of personality. Developmental influences. Tests and assessments and their applications in the prediction of behaviour.

REFERENCE BOOKS
As for 12.303 Personality IIIA.

12.303 Personality IIIA

The development and structure of personality, with reference to biological and social determinants. Problems of theory and measurement.

REFERENCE BOOKS
Major Reference Books

This course cannot be covered adequately by any one book. Consequently reference books only are listed. The first four of these are considered to be the more significant. It is suggested that students could form themselves into syndicates and thereby acquire these four reference books.
Other Reference Books

12.313 Personality IIIB
The psychology of interpersonal relationships and transactions. Techniques of interpersonal influence.

TEXTBOOKS

12.322 Motivation II
The spectrum of human motivation and emotion: hunger, sex, fear, stress, achievement, altruism, personal causation.

TEXTBOOK

12.323 Motivation IIIA
A study of the conditions governing the arousal and direction of behavioural sequences, with particular reference to the social determinants of the goals of behaviour.

TEXTBOOKS

REFERENCE BOOKS

12.372 Psychological Assessment II

Introduction to the theory of psychological measurement. Properties of scales; elementary scaling methods. Test theory.

TEXTBOOKS

12.373 Psychological Assessment (Testing) IIIA

Principles and techniques of psychological assessment. Types of tests and their application in selection and allocation procedures.

TEXTBOOK

REFERENCE BOOKS

12.383 Psychological Assessment (Psychometric Theory) IIIB

Uni-dimensional and multi-dimensional scaling models. Test theory, factor analysis, and other multivariate methods.

TEXTBOOKS

REFERENCE BOOKS

12.402 Physiological Psychology

(BSc Psychology students only.)

Neural and endocrinal bases of behaviour, psychophysiology, comparative behaviour (including ethology), behaviour genetics, with brief treatments of the behavioural effects of drugs and physiological malfunction.

TEXTBOOK

REFERENCE BOOK

12.412 Physiological Psychology II

Elementary neurophysiology and neuroanatomy. Neural and endocrinal bases of sensory and motor processes, motivation, emotion and learning.

TEXT AND REFERENCE BOOKS
As for 12.402 Physiological Psychology.

12.413 Physiological Psychology IIIA

Advanced treatment of physiology of motivation, emotion and learning with practical work. Psychopharmacology; psychophysiology; genetics and behaviour.

TEXT AND REFERENCE BOOKS
As for 12.402 Physiological Psychology.

12.452 Human Information Processing II

An introduction to psychophysical methods by which man's ability to make discriminations is measured, and the application of these methods to problems of perception, learning and memory.
TEXTBOOKS

REFERENCE BOOKS

12.453 Human Information Processing IIIA
A study of the stages involved in the reception of stimulus information from the environment, its analysis, storage, and translation into responses. Particular emphasis will be given to the perception and storage of verbal information. Topics include attention, vigilance, discrimination, memory and retrieval.

TEXT AND REFERENCE BOOKS
As for 12.452 Human Information Processing II.

12.472 Perception II
Modern approaches to the study of perception and their historical antecedents. Consideration will be given to the differing emphases of theories in terms of the phenomena considered and the variables utilized in the attempted explanations.

TEXTBOOK

REFERENCE BOOKS

12.473 Perception IIIA
The characteristics and processes of visual perception. Topics include the basic requirement for visual perception and the relative contributions of the observer and the stimulus in a range of visual situations.

TEXT AND REFERENCE BOOKS
As for 12.472 Perception II.
12.483 Perception IIIB

Man in a spatial environment. A study of the organization and stability of the visual world with particular reference to the constancies, object movement, eye movement and locomotion.

TEXTBOOK

REFERENCE BOOKS

12.502 Social Psychology II

A study of behaviour in a variety of interpersonal situations. Culture and social structure as determinants of the range and content of behaviour.

TEXTBOOKS

12.503 Social Psychology IIIA

The bases of interpersonal attraction; class and race as determinants of behaviour; the experimental study of social processes in small groups; cross-cultural studies of social influence.

TEXTBOOKS
As for 12.502 Social Psychology II.

12.552 Developmental Psychology II

A study of the acquisition, maintenance and modification of behaviour in the developing human organism.

TEXTBOOKS

REFERENCE BOOKS

12.553 Developmental Psychology IIIA

The study of individual differences and basic psychological processes within a developmental framework. Psychological processes at various stages from infancy to senescence. The study of exceptional individuals within a developmental framework.

TEXT AND REFERENCE BOOKS
As for 12.552 Developmental Psychology II.

12.602 Abnormal Psychology II

Concepts of normality, neurosis and psychosis. The range of behaviour disorders. Medical, dynamic and behavioural models of psychopathology.

TEXTBOOKS

REFERENCE BOOKS

12.603 Abnormal Psychology IIIA

Conflict, anxiety and avoidance behaviour. Anti-social behaviour, somatic disorders, brain pathology, mental deficiency, schizophrenia, depression, methods of diagnosis and treatment.

TEXTBOOKS
REFERENCE BOOKS

12.623 Guidance and Counselling III

The application of Psychological Tests and other techniques of appraisal to educational and vocational selection and guidance. Advice, and other procedures used to assist client decision making.

TEXTBOOK

REFERENCE BOOKS

12.653 Industrial Psychology III

The role of the psychologist in industry. Social, psychological and physical conditions affecting work behaviour. Selected aspects of human factors engineering and of human and industrial relations.

TEXTBOOKS

REFERENCE BOOKS

12.703 Psychological Techniques III

Laboratory techniques, including the use of recording stimulating, and control equipment. Observation, and other forms of appraisal.

REFERENCE BOOKS

12.713 Behaviour Control and Modification III

Aversive and appetitive reinforcement in the control and modification of undesirable behaviour. The conditions of attitude change and behavioural influence. Ethical Issues.

TEXTBOOKS

REFERENCE BOOKS

12.741 Psychology (Optometry)

Visual Perception—The nature and characteristics of visual perception. Topics to be discussed include: psychophysics, the organization of visual perception, the influence of context, and the effects of learning and motivation on perception. Throughout the course emphasis will be placed on an examination of relevant experimental data. Abnormal Psychology—The concept of normality-abnormality, and an examination of the principle psychodynamic processes. Causes and symptoms of various mental
disorders are introduced with some emphasis on symptoms and their importance in optometrical practice.

Part A—Visual Perception
TEXT AND REFERENCE BOOKS
As for 12.472 Perception II.

Part B—Abnormal Psychology
TEXTBOOK
SCHOOL OF ZOOLOGY

The School provides undergraduate courses in Zoology and Entomology taught as part of a Unit pattern. The School offers nine units of Zoology and four units of Entomology and contributes to a unit of Biometry and Genetics offered jointly with the School of Botany. All courses leading to a Science degree in Zoology are dependent on an adequate background in Biochemistry and in Genetics and Biometry. The units offered place an emphasis on experimental Animal Physiology, experimental and applied Entomology and an ecological approach to Marine Science.

Graduates at the bachelor level may find employment in scientific and technical departments of various State and Commonwealth organizations, in certain industries and in teaching. Students intending to pursue research careers in any of the various branches of Zoology are urged to complete the requirements for Honours, Master's or Doctor's degrees.

Courses in Zoology are taught mainly in the lecture theatres and laboratories, but field work, including field camps and excursions, is an essential part of all courses. To this end, the School maintains an undergraduate teaching Field Station at Smith's Lake, where compulsory courses are taught during vacations. The animal physiology teaching is strongly oriented towards Australian invertebrate and vertebrate animals, and the School has interests in field stations at which marsupials are studied.

For details of level, unit value, when offered, hours per week, prerequisites and co-requisites, see pages B22-23.

HONOURS IN ZOOLOGY OR ENTOMOLOGY

Students must receive permission of the Head of School before proceeding to Honours. Generally speaking they should have completed all subjects or units required for a Bachelor's degree and have achieved a consistently high standard in relevant units offered by the School of Zoology.

43.101A/45.101A Genetics and Biometry

For details of this course, which is offered jointly by the Schools of Zoology and Botany, see under School of Botany.

45.101B Invertebrate Zoology

A comparative study of the major invertebrate phyla with emphasis on morphology, systematics and phylogeny. Practical work to illustrate the lecture course. Obligatory field camp.

TEXTBOOK

REFERENCE BOOKS

45.101C Vertebrate Zoology

A comparative study of the Chordata. Morphology, systematics, evolution, natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement the lecture course. Field excursions as arranged.

TEXTBOOKS

REFERENCE BOOKS

45.101D Field Ecology

A lecture series on the basic principles of ecology followed by an examination and evaluation of the field methods used to measure the environment and the distribution and abundance of organisms.

TEXTBOOK

This unit is offered as a lecture series (two per week) and a two-week camp in November/December at the University's Smith's Lake Field Station.

45.102A Marine Ecology

A study of the metabolic, regulatory and reproductive activities of marine organisms with particular reference to the physical, chemical and biological environment in which they occur. Both field and laboratory practical work are included.
TEXTBOOK

REFERENCE BOOKS

45.102B Animal Behaviour
An introduction to Ethology, the biological study of behaviour. Physiological, ecological, developmental and evolutionary aspects of behaviour are examined as important elements of the study of causal factors underlying behaviour. Both field and laboratory work are included.

TEXTBOOKS

REFERENCE BOOKS

45.102C Comparative and Environmental Physiology
A study of the physiology of the various classes of vertebrate animals with particular emphasis on the adaptation of the animal to its environment. Includes: osmotic and ionic regulation, respiration and circulation, temperature regulation, nerve and muscle function, digestion and metabolism.

TEXTBOOKS

REFERENCE BOOK

45.102D Comparative Reproductive Physiology
A survey of reproductive mechanisms, reproductive histology, reproductive endocrinology, and embryology, with particular reference to the comparative aspects in vertebrate species. A detailed treatment of marsupial and monotreme reproduction.
TEXTBOOKS

REFERENCE BOOK

45.102E Invertebrate Physiology

An examination of certain aspects of general and reproductive physiology of invertebrates, including studies on body water and salts, excretion, vascular systems, respiration, digestion and absorption, the effects of temperature on invertebrate physiology, gametogenesis, fertilization, egg cleavage, reproductive cycles and endocrinology. The embryonic and evolutionary aspects of modes of larval development are also considered.

TEXTBOOKS

REFERENCE BOOKS

45.102F Invertebrate Behaviour

Phylogenetic examination of behaviour in relation to the increasing complexity of invertebrates, with emphasis on orientation and movement; feeding, defensive, reproductive, social and rhythmic behaviour. Involves both exogenous and endogenous contributions to invertebrate behaviour.

TEXTBOOKS

REFERENCE BOOKS

45.201A Insect Structure and Classification

A comparative study of the internal anatomy and external morphology of insects. Classification and bionomics of major groups and families. A collection of insects is to be made. Practical work to include dissections, a study of mouthparts, wing venations, segmentation, etc. Field excursions as arranged.

TEXTBOOK
REFERENCE BOOKS
Imms, A. D. Textbook of Entomology. Methuen.

45.201B Insect Physiology
A study of the functions of the various organ systems and of the whole insect. Various aspects of reproduction, growth and metabolism. Experimental work to illustrate the lecture course.

TEXTBOOK

REFERENCE BOOKS
Dethier, V. G. The Physiology of Insect Senses. Methuen.
Wigglesworth, V. B. Principles of Insect Physiology. Methuen.

45.201C Applied Entomology
Fundamentals of insect control. Pest species and types of damage caused. Control by insecticides, physical and biological means. Insect toxicology. Insecticide resistance. Practical work to illustrate the above and also various aspects of bioassay in Entomology. Field excursions as arranged.

TEXTBOOK

45.201D Project
Detailed studies of selected aspects of insect physiology; ecology and toxicology. Treatment of topics will be in depth rather than breadth. Practical work will illustrate the lectures and will place emphasis on design and planning of experiments.

REFERENCE BOOKS
Bunning, E. The Physiological Clock. Springer Verlag.
Dethier, V. G. To Know a Fly. Holden-Day.
Lees, A. D. Diapause in Arthropods. C.U.P.
NOTES
NOTES
HELP IMPROVE YOUR HANDBOOK

It is important to the University and to yourself that you understand its conventions and regulations. The University Calendar and faculty handbooks are means by which the University attempts to convey, amongst other things, information regarding the facilities it has to offer, and the rules and regulations which govern the conduct and progress of students. You can help us assess the efficacy of the handbooks by completing this questionnaire, and thereby help yourself and your fellow students in the years to come.

1. Name of faculty Course Yr./Stage

A. CONTENTS

2. What information in your handbook did you find most useful? ...

3. (a) What information did you find least useful? ...

 (b) Why was the information of so little use to you? ..

4. How would you rate the following information areas for inclusion in the handbook?

 (TICK APPROPRIATE SQUARE) ESSENTIAL INTERESTED UNNECESSARY TO HAVE THEM

 Calendar of dates
 List of academic staff
 Course outlines or rules governing course
 Descriptions of subjects
 Textbook lists
 Reference book lists
 Requirements for admission
 Admission and enrolment procedures
 Course fees
 Rules relating to students
 Student services
 Scholarships
 Student activities
 Examination procedures
 Timetables

5. Please comment on any aspect of the information areas listed in Question 4 and particularly, if you think necessary, on the form of presentation i.e., its content, layout, position ..

..
6. If there is any section which you feel might be expanded, please list and state why you feel it should be expanded.

7. Would you like any of the following included in the handbook?
 - Photographs of senior academic and administrative personnel
 - Prices of textbooks
 - Names of lecturers listed alongside subject descriptions
 - Timetables
 - Map of the Campus
 - Any other items

 YES NO
 ☐ ☐
 ☐ ☐
 ☐ ☐
 ☐ ☐
 ☐ ☐
 ☐ ☐

8. Do you use the textbook lists in your handbook when buying your books?
 If 'NO', please state where you obtained a list of the required textbooks

9. Do you use your handbook when selecting reference books?
 If 'NO', please state where you obtained your list of reference books

10. The handbooks are generally available at the latest by mid-December. Is this date early enough for your purposes?
 If 'NO', please nominate a month when you feel they should be on sale

11. Have you ever sought information from the University Calendar because it was not available in the handbook?
 If 'YES', please indicate which information

12. If you had any difficulty in obtaining a copy of your handbook, please outline problem

B. FORMAT

13. Is the handbook a convenient size?

14. Would you prefer some of the information to be presented differently, e.g., in tabular form, or expressed in a less complex manner or perhaps communicated in some other way?
 If 'YES', please give examples of what you would like changed, and how you would change it

15. Have you any comments which you would like to make on either the contents or format?

When you have completed this form, please either return it personally to Marianne Devin, Publications Officer, Room 307, The Chancellery, or post it via the internal mail system. Thank you for your co-operation.