The University of New South Wales

Sciences
Board of Studies in Science and Mathematics
Faculty of Biological Sciences
Faculty of Science

1981 Faculty Handbook
How to use this Handbook

The information in this book has been divided into seven parts.

General Information (the yellow coloured pages) lists what you need to know about the University as a whole, introduces some of the services available and notes the most important rules and procedures. You should read this part in its entirety.

For further information about the University and its activities, see the University Calendar.

Faculty Information.

Undergraduate Study outlines the courses available in each school in the faculty.

Graduate Study is about higher degrees.

Subject Descriptions lists each subject offered by the schools in the faculty. The schools are listed numerically.

Information includes:
- Subject number, title and description
- Prerequisite, co-requisite and excluded subjects, where applicable
- Additional information about the subject such as unit values, credit hours, teaching hours per week, sessions when taught.

Financial Assistance to Students is a list of scholarships and prizes, available at undergraduate and graduate level in the faculty.

Staff list.

For detailed reference, see the list of **Contents.**
The address of the University of New South Wales is:

PO Box 1, Kensington,
New South Wales, Australia 2033

Telephone: (02) 663 0351
Telegraph: UNITECH, SYDNEY
Telex AA26054

The University of New South Wales Library has catalogued this work as follows:

<table>
<thead>
<tr>
<th>UNIVERSITY OF NEW SOUTH WALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences: faculty handbook</td>
</tr>
<tr>
<td>Kensington.</td>
</tr>
<tr>
<td>1976 +</td>
</tr>
<tr>
<td>Annual.</td>
</tr>
<tr>
<td>Handbook of the Board of Studies in Science and Mathematics, the Faculty of Biological Sciences, and the Faculty of Science.</td>
</tr>
</tbody>
</table>

University of New South Wales—Board of Studies in Science and Mathematics—Periodicals
University of New South Wales—Faculty of Biological Sciences—Periodicals
University of New South Wales—Faculty of Science—Periodicals

Printed in Australia by Macarthur Press (Books) Pty Ltd.
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 8 September 1980, but may be amended without notice by the University Council.

Contents

General Information .. 1
Some People Who Can Help You 1

Calendar of Dates
The Academic Year ... 2
1981 .. 2
1982 .. 4

Organization of the University 5
Arms of the University/Council/Professional Board/Faculties/Boards of Study/Schools/Executive Officers/
Administration/Student Representation/Award of the University Medal/Subject Numbers/Textbook Lists/Co-operative
Bookshop/General Studies

Student Services and Activities
Accommodation ... 7
Residential Colleges ... 7
Other Accommodation ... 7
Associations, Clubs and Societies 7
The Sports Association 7
School and Faculty Associations 8
Australian Armed Services 8
Chaplaincy Centre .. 8
Deputy Registrar (Student Services) 8
Student Amenities and Recreation Section 8
Physical Education and Recreation Centre 8
Student Counselling and Research Unit 9
Student Employment Section 9
Student Health Unit .. 9
The Students' Union ... 9
The University Library 10
The University Union 10

Financial Assistance to Students 11
Tertiary Education Assistance Scheme/Other Financial Assistance/Financial Assistance to Aboriginal Students/Fund for Physically Handicapped and Disabled Students
4070 Mathematics/4080 Science Education Degree Courses

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>4070 Mathematics Education Degree Course</td>
</tr>
<tr>
<td>Objectives</td>
</tr>
<tr>
<td>Honours and Pass Degree Requirements</td>
</tr>
<tr>
<td>Components</td>
</tr>
<tr>
<td>Enrolment Requirements</td>
</tr>
<tr>
<td>Programs</td>
</tr>
</tbody>
</table>

4080 Science Education Degree Course

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
</tr>
<tr>
<td>Honours and Pass Degree Requirements</td>
</tr>
<tr>
<td>Components</td>
</tr>
<tr>
<td>Enrolment Requirements</td>
</tr>
<tr>
<td>Programs</td>
</tr>
</tbody>
</table>

Table 1: Units offered by the Board of Studies in Science and Mathematics

Table 2: Course 3970 — Units available in specific programs

Table 3: Level IV units offered by the Board of Studies in Science and Mathematics

Faculty of Biological Sciences

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
</table>

Course Outline 3430

3430 Psychology Degree Course (BSc) Full-time

Rules governing the Psychology Course

Rules governing admission to the Psychology Course with advanced standing

Recommended Psychology Course patterns

Compulsory Psychology Subjects for all Courses

Faculty of Science

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
</table>

Course Outlines

3910 Pure and Applied Chemistry Course

Electives offered by the School of Chemistry

3910 Pure and Applied Chemistry (BSc) Full-time

Part-time 124

3950 Optometry Course (BOptom) Full-time

Conditions for the Award of the double degree of BSc BOptom in the Faculty of Science

Sciences

Graduate Student

Faculty of Biological Sciences and Faculty of Science Enrolment Procedures

Faculty of Biological Sciences

Biotechnology

5320 Biochemical Engineering Graduate Diploma Course (GradDip) 128
5340 Biotechnology Graduate Diploma Course (GradDip) 128
8260 Master of Science (Biotechnology) (MSc(Biotech)) 129

Psychology

6250 Master of Psychology (MPsychol) Full-time 130

Faculty of Science

Chemistry

6770 Master of Chemistry (MChem) 130
5510 Food and Drug Analysis Graduate Diploma (DipFDA) 131

History and Philosophy of Science

8780 Master of Science and Society (MScSoc) 131

Mathematics

8740 Master of Mathematics (MMath) 132
8750 Master of Statistics (MStats) 132

Optometry

8760 Master of Optometry (MOptom) 133

Physics

8730 Master of Physics (MPhysics) 133
Graduate Study: Conditions for the Award of Higher Degrees

- Doctor of Philosophy: 134
- Master of Chemistry: 136
- Master of Mathematics: 139
- Master of Optometry: 140
- Master of Physics: 141
- Master of Psychology: 142
- Master of Science: 143
- Master of Science without supervision: 144
- Master of Science (Biotechnology): 145
- Master of Science and Society: 146
- Master of Statistics: 146
- Graduate Diploma: 147

Subject Descriptions

Identification of Subjects by Numbers: 148

<table>
<thead>
<tr>
<th>Subject</th>
<th>Undergraduate Study</th>
<th>Graduate Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>150</td>
<td>154</td>
</tr>
<tr>
<td>Chemistry</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Industrial Engineering</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>164</td>
<td>171</td>
</tr>
<tr>
<td>Psychology</td>
<td>172</td>
<td>175</td>
</tr>
<tr>
<td>Economics</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Applied Geology</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>General Studies</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Organizational Behaviour</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Optometry</td>
<td>183</td>
<td>185</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td>186</td>
<td>187</td>
</tr>
<tr>
<td>Botany</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Zoology</td>
<td>191</td>
<td></td>
</tr>
</tbody>
</table>

Sciences

Graduate Study: Conditions for the Award of Higher Degrees: 134

- Doctor of Philosophy: 136
- Master of Chemistry: 139
- Master of Mathematics: 139
- Master of Optometry: 140
- Master of Physics: 141
- Master of Psychology: 142
- Master of Science: 143
- Master of Science without supervision: 144
- Master of Science (Biotechnology): 145
- Master of Science and Society: 146
- Master of Statistics: 146
- Graduate Diploma: 147

Subject Descriptions

Identification of Subjects by Numbers: 148

<table>
<thead>
<tr>
<th>Subject</th>
<th>Undergraduate Study</th>
<th>Graduate Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>150</td>
<td>154</td>
</tr>
<tr>
<td>Chemistry</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Industrial Engineering</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>164</td>
<td>171</td>
</tr>
<tr>
<td>Psychology</td>
<td>172</td>
<td>175</td>
</tr>
<tr>
<td>Economics</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Applied Geology</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>General Studies</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Organizational Behaviour</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Optometry</td>
<td>183</td>
<td>185</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td>186</td>
<td>187</td>
</tr>
<tr>
<td>Botany</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Zoology</td>
<td>191</td>
<td></td>
</tr>
</tbody>
</table>
General Information

To obtain the maximum benefit from your studies you should make an effort to learn what facilities the University offers, to investigate the best methods of study and to discover as much as possible about the course for which you are enrolled.

This Handbook has been specially designed as a detailed source of reference for you in all matters related to your Faculty. This General Information Section is intended to help you put the Faculty into perspective with the University as a whole, to introduce you to some of the services available to students and to note some of the most important rules and procedures.

For fuller details about some aspects of the University and its activities you might need to consult the University Calendar.

Some people who can help you

If you are experiencing difficulties in adjusting to the requirements of the University you will probably need advice. The best people to talk to on matters relating to progress in studies are your tutors and lecturers. If your problem lies outside this area there are many other people with specialized knowledge and skills who may be able to help you.

The Deputy Registrar (Student Services), Mr Peter O'Brien, and his Administrative Assistant, Mrs Anne Beaumont, are located on the first floor of the Chancellery. They will help those students who need advice and who have problems but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with general enquiries they are especially concerned with the problems of physically handicapped and disabled students and those in need of financial assistance. The latter students should see Mrs Beaumont. Enquire at room 148E, phone 2482 (general enquiries) or 3164 (financial assistance).

The Assistant Registrar (Admissions and Examinations), Mr Jack Hill, is located on the ground floor of the Chancellery. General enquiries should be directed to 3715. For information regarding examinations, including examination timetables and clash of examinations, contact the Administrative Officer, Mr John Grigg, phone 2143.

Note: All phone numbers below are University extension numbers. If you are outside the University, dial 663 0351 and ask for the extension or dial 662 - and then the extension number. This prefix should only be used when you are certain of the extension that you require. Callers using 662 cannot be transferred to any other number.
The Assistant Registrar (Student Records, Higher Degrees and Scholarships), Mr Peter Wildblood is located on the ground floor of the Chancellery. For particular enquiries regarding the Student Records Unit, including illness and other matters affecting performance in examinations, academic statements, graduation ceremonies, prizes, release of examination results and variations to enrolment programs, phone 3711.

The Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery and is available for personal interview. For an appointment phone 3453.

The Assistant Registrar (Student Employment), Mr Jack Foley, is located in the Chancellery. Enquiries should be directed to 3259.

The Housing Officer, Mrs Judy Hay, is located in the Student Amenities and Recreation Section in the huts at the foot of Basser Steps. For assistance in obtaining suitable lodgings phone 3260.

The Student Health Unit is located in Hut E15b at the foot of Basser Steps. The Director is Dr Geoffrey Hansen. For medical aid phone 2679 or 3275.

The Student Counselling and Research Unit is located at the foot of Basser Steps. For assistance with educational or vocational problems ring 3681, 3685 or 2696 for an appointment.

The University Librarian is Mr Allan Horton. Library enquiries should be directed to 2048.

The Chaplaincy Centre is located in Hut E15a at the foot of Basser Steps. For spiritual counselling phone Anglican - 2684; Catholic - 2379; Greek Orthodox - 2683; Lutheran - 2683; Uniting Church - 2685.

The Students' Union is located on the second floor of Stage III of the University Union, where the SU President, Secretary-Treasurer, Education Vice-President, Welfare-Research Officer, and Director of Overseas Students are available to discuss any problems you might have.

Cashier’s Hours The University Cashier’s office is open from 9.30 am to 1.00 pm, and from 2.00 pm to 4.30 pm, Monday to Friday. It is open for additional periods at the beginning of Session 1. Consult noticeboards for details.

Calendar of Dates

The Academic Year

The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of five weeks between the two sessions and there are short recesses of one week within each of the sessions. Session 1 commences on the first Monday of March.

1981

<table>
<thead>
<tr>
<th>Session 1</th>
<th>2 March to 10 May</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14 weeks)</td>
<td>May Recess: 11 May to 17 May</td>
</tr>
<tr>
<td></td>
<td>18 May to 14 June</td>
</tr>
<tr>
<td>Tuesday</td>
<td>Midyear Recess: 15 June to 19 July</td>
</tr>
<tr>
<td>16 June</td>
<td>Examinations begin</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Examinations end</td>
</tr>
<tr>
<td>1 July</td>
<td>20 July to 23 August</td>
</tr>
<tr>
<td>Session 2</td>
<td>August Recess: 24 August to 30 August</td>
</tr>
<tr>
<td>(14 weeks)</td>
<td>31 August to 1 November</td>
</tr>
<tr>
<td>Monday 9</td>
<td>Examinations begin</td>
</tr>
<tr>
<td>November</td>
<td>Examinations end</td>
</tr>
<tr>
<td>Friday 27</td>
<td>November</td>
</tr>
</tbody>
</table>

January

- Thursday 1: New Year’s Day – Public Holiday
- Friday 2: Last day for applications for review of results of annual examinations
- Friday 9: Last day for acceptance of applications by Admissions Office for transfer to another undergraduate course within the University
- Monday 26: Australia Day – Public Holiday

February

- Thursday 5: Enrolment period begins for new undergraduate students and undergraduate students repeating first year
- Monday 16: Enrolment period begins for second and later year undergraduate students and graduate students enrolled in formal courses
March

Monday 2

Session 1 commences
Last day for undergraduate students who have completed requirements for pass degrees to advise the Registrar they are proceeding to an honours degree or do not wish to take out their degree for any other reason

Wednesday 11

List of graduands for April/May ceremonies and of 1980 prize-winners published in *The Sydney Morning Herald*

Friday 13

Last day for acceptance of enrolment by new undergraduate students (late fee payable thereafter)

Monday 16

Last day for notification of correction of details published in the press on 11 March concerning April/May graduation ceremonies

Friday 27

Last day for acceptance of enrolment by undergraduate students re-enrolling in second and later years (late fee payable thereafter)

April

Friday 17 to Monday 20

Easter

Thursday 16

Last day for undergraduate students to discontinue without failure subjects which extend over Session 1 only

Saturday 25

Anzac Day – Public Holiday

Monday 27

Confirmation of Enrolment forms despatched to all students

May

Wednesday 6

Last day for undergraduate students completing requirements for degrees or diplomas at the end of Session 1 to submit *Application for Admission to Degree* form

Monday 11

May Recess begins

Thursday 14

Publication of provisional timetable for June/July examinations

Sunday 17

May Recess ends

Friday 22

Last day for students to advise of examination timetable clashes

June

Tuesday 2

Publication of timetable for June/July examinations

Monday 8

Queen's Birthday – Public Holiday

Sunday 14

Session 1 ends

Tuesday 16

Examinations begin

July

Wednesday 1

Examinations end

Monday 13

Examination results mailed to students

Tuesday 14

Examination results displayed on University noticeboards

Tuesday 14 to Friday 17

Students to amend enrolment programs following receipt of June examination results

Sunday 19

Monday 20

Midyear Recess ends

Session 2 begins

Thursday 30

Foundation Day (no classes held)

Friday 31

Last day for students to discontinue without failure subjects which extend over the whole of academic year

August

Monday 24

August Recess begins

Sunday 30

August Recess ends

September

Tuesday 1

Last day for undergraduate students who have completed requirements for pass degrees to advise the Registrar they are proceeding to an honours degree or do not wish to take out their degree for any other reason

Wednesday 9

List of graduands for October graduation ceremonies published in *The Sydney Morning Herald*

Monday 14

Confirmation of Enrolment form forwarded to all students

Wednesday 23

Last day for applications from undergraduate students completing requirements for degrees and diplomas at the end of Session 2 to submit *Application for Admission to Degree* form

Last day for acceptance of corrected *Confirmation of Enrolment* forms

October

Thursday 1

Last day to apply to UCAC for transfer to another tertiary institution in New South Wales

Publication of provisional examination timetable
Monday 5
Friday 9
Thursday 22
November
Sunday 1
Monday 2
Sunday 8
Monday 9
Friday 27
1982

Faculty of Medicine
First and
Second Years
Term 1 (10 weeks) 26 January to 4 April
Term 2 (9 weeks) 13 April to 9 May
May Recess: 10 May to 16 May
Term 3 (9 weeks) 26 June to 29 August
Term 4 (10 weeks) 6 September to 14 November
Fifth Year
Term 1 (8 weeks) 26 January to 21 March
Term 2 (8 weeks) 29 March to 23 May
Term 3 (8 weeks) 31 May to 25 July
Term 4 (8 weeks) 2 August to 26 September
Term 5 (8 weeks) 5 October to 28 November

Faculties other than Medicine
Session 1
Session 1 begins - all courses except Medicine III, IV and V
Session 1 (14 weeks) 1 March to 9 May
May Recess: 10 May to 16 May
17 May to 13 June
Midyear Recess: 14 June to 18 July
15 June to 30 June
Examinations
15 June to 30 June

Session 2
Session 2 (14 weeks) 19 July to 22 August
August Recess: 23 August to 29 August
August 30 August to 31 October
Study Recess: 1 November to 7 November
Examinations
8 November to 26 November

January
Friday 1
Public Holiday
Monday 4
Last day for applications for review of results of annual examinations
Friday 8
Last day for acceptance of applications by Admissions Office for transfer to another undergraduate course within the University

February
Monday 1
Australia Day – Public Holiday
Tuesday 2
Enrolment period begins for new undergraduate students and undergraduate students repeating first year
Monday 15
Enrolment period begins for second and later year undergraduate students and students enrolled in formal graduate courses

March
Monday 1
Session 1 begins – all courses except Medicine III, IV and V

April
Friday 9 to
Monday 12
Easter – Public Holiday
Sunday 25
Anzac Day
Monday 26
Public Holiday
Organization of the University

Rapid development has been characteristic of the University of New South Wales since it was first incorporated by an Act of Parliament in 1949, under the name of the New South Wales University of Technology.

In 1980 the University had 18,359 students and over 3,700 staff who worked in more than eighty buildings. These figures include staff and students at Broken Hill (W.S. and L.B. Robinson University College), Duntroon (the Faculty of Military Studies) and Jervis Bay.

Arms of the University of New South Wales

The arms of the University are reproduced on the front cover of this handbook. The arms were granted by the College of Heralds in London, on 3 March 1952, and the heraldic description is as follows:

Argent on a Cross Gules a Lion passant guardant between four Mullets of eight points Or a Chief Sable charged with an open Book proper thereon the word SCIENTIA in letters also Sable.

The lion and the four stars of the Southern Cross on the Cross of St George have reference to the State of New South Wales which brought the University into being; the open book with SCIENTIA across its page reminds us of its original purpose. Beneath the shield is the motto 'Manu et Mente', which is the motto of the Sydney Technical College, from which the University has developed. The motto is not an integral part of the Grant of Arms and could be changed at will; but it was the opinion of the University Council that the relationship with the parent institution should in some way be recorded.

The Council

The chief governing body of the University is the Council which has the responsibility of making all major decisions regarding its policy, conduct and welfare.

The Council consists of 44 members from the State Parliament, Industry and commerce, agriculture, the trade unions, professional bodies, the staff, the students and the graduates of the University.

The Council meets six times per year and its members also serve on special committees dealing with, for example, academic matters, finance, buildings and equipment, personnel matters, student affairs and public relations.

The Chairman of the Council is the Chancellor, the Hon. Mr Justice Samuels, and the Deputy Chancellor is Dr F.M. Mathews.

The Professorial Board

The Professorial Board is one of the two chief academic units within the University and includes all the professors from the various faculties. It deliberates on all questions such as matriculation requirements, the content of courses, the arrangement of syllabuses, the appointment of examiners and the conditions for graduate degrees. Its recommendations on these and similar matters are presented to Council for its consideration and adoption.

The Faculties/Boards of Study

The Dean, who is also a professor, is the executive head of the Faculty or Board of Study. Members of each Faculty or Board meet regularly to consider matters pertaining to their own areas of study and research, the result of their deliberations being then submitted to the Professorial Board.

The term 'faculty' is used in two distinct senses in the University. Sometimes it is used to refer to the group of Schools comprising the Faculty; and at others to the deliberative body of academic members of the Schools within the Faculty.

The eleven Faculties are Applied Science, Architecture, Arts, Biological Sciences, Commerce, Engineering, Law, Medicine, Military Studies, Professional Studies and Science together with the Australian Graduate School of Management. In addition, the Board of Studies in General Education fulfils a function similar to that of the faculties. The Board of Studies in Science and Mathematics, which was established to facilitate the joint academic administration of the Science and Mathematics degree course by the Faculties of Biological Sciences and Science, considers and reports to the Professorial Board on all matters relating to studies, lectures and examinations in the science and mathematics degree course.

The Schools

Once courses of study have been approved they come under the control of the individual Schools (e.g. the School of Chemistry, the School of Mathematics). The Head of the School in which you are studying is the person in this academic structure with whom you will be most directly concerned.
Executive Officers

As chief executive officer of the University, the Vice-Chancellor and Principal, Professor Rupert Myers, is charged with managing and supervising the administrative, financial and other activities of the University.

He is assisted in this task by three Pro-Vice-Chancellors, Professor John Thornton, Professor Ray Golding and Professor Rex Vowels, together with the Deans and the three heads of the administrative divisions.

Award of the University Medal

The University may award a bronze medal to undergraduate students who have achieved highly distinguished merit on completion of their final year.

Identification of Subjects by Numbers

For information concerning the identifying number of each subject taught in each Faculty as well as the full list of identifying numbers and subjects taught in the University, turn to the first page of the section Subject Descriptions. This list is also published in the Calendar.

Textbook Lists

Textbook lists are no longer published in the Faculty handbooks. Separate lists are issued early in the year and are available at key points on the campus.

Students should allow quite a substantial sum for textbooks. This can vary from $250 to $600 per year depending on the course taken. These figures are based on the cost of new books. The Students' Union operates a secondhand bookshop. Information about special equipment costs, accommodation charges and cost of subsistence on excursions, field work, etc, and for hospital residence (medical students) are available from individual schools.

Co-operative Bookshop

Membership is open to all students, on initial payment of a fee of $10, refundable when membership is terminated. Members receive an annual rebate on purchases of books.

General Studies Program

Almost all undergraduates in Faculties other than Arts and Law are required to complete a General Studies program. The Department of General Studies within the Board of Studies in General Education publishes its own Handbook which is available free of charge. All enquiries about General Studies should be made to the General Studies Office, Room G56, Morven Brown Building, phone 3476.

General Administration

The administration of general matters within the University comes mainly within the province of the Registrar, Mr Ian Way, the Bursar, Mr Tom Daly, and the Business Manager (Property).

The Registrar’s Division is concerned chiefly with academic matters such as the admission of students, and the administration of examinations as well as the various student services (health, employment, amenities, and counselling).

The Bursar’s Division is concerned with the financial details of the day-to-day administration and matters to do with staff appointments, promotions, etc.

The Property Division is responsible for the building program and the ‘household’ services of the University (including electricity, telephones, cleaning, traffic and parking control and maintenance of buildings and grounds).

Student Representation on Council and Faculties/Boards

Three members of the University Council may be students elected by students. All students who are not full-time members of staff are eligible to stand for a two-year term of office. The students who are elected to the Council are eligible for election to the Committees of Council.

Students proceeding to a degree or a graduate diploma may elect members for appointment by the Council to their Faculty/Board. Elections are for a one-year term of Office.

Open Faculty/Board Meetings

If you wish you may attend a Faculty/Board meeting. You should seek advice at the office of the Faculty whose meeting you wish to attend, as the faculties have their own rules for the conduct of open meetings.

Textbook Lists

Textbook lists are no longer published in the Faculty handbooks. Separate lists are issued early in the year and are available at key points on the campus.

Students should allow quite a substantial sum for textbooks. This can vary from $250 to $600 per year depending on the course taken. These figures are based on the cost of new books. The Students' Union operates a secondhand bookshop. Information about special equipment costs, accommodation charges and cost of subsistence on excursions, field work, etc, and for hospital residence (medical students) are available from individual schools.

Co-operative Bookshop

Membership is open to all students, on initial payment of a fee of $10, refundable when membership is terminated. Members receive an annual rebate on purchases of books.

General Studies Program

Almost all undergraduates in Faculties other than Arts and Law are required to complete a General Studies program. The Department of General Studies within the Board of Studies in General Education publishes its own Handbook which is available free of charge. All enquiries about General Studies should be made to the General Studies Office, Room G56, Morven Brown Building, phone 3476.
Student Services and Activities

Accommodation

Residential Colleges
There are seven residential colleges on campus. Each college offers accommodation in a distinctive environment which varies from college to college, as do facilities and fees. A brief description of each college is given below, and further information may be obtained directly from the individual colleges. In addition to basic residence fees, most colleges make minor additional charges for such items as registration fees, caution money or power charges. Intending students should lodge applications before the end of October in the year prior to the one in which they seek admission. Most colleges require a personal interview as part of the application procedure.

The Kensington Colleges
The Kensington Colleges comprise Basser College, Goldstein College and Philip Baxter College. They house 50 men and women students, as well as staff members. Fees are payable on a session basis. Apply in writing to the Master, Mr K. W. Bromham, PO Box 24, Kensington, NSW 2033.

International House
International House accommodates 154 students from Australia and up to thirty other countries. Preference is given to more senior undergraduates and graduate students. Apply in writing to the Warden, Emeritus Professor J. S. Ratcliffe, International House, PO Box 1, Kensington, NSW 2033.

New College
New College is an Anglican college and it provides accommodation (with all meals) for 220 graduates and undergraduates, without regard to race, religion, or sex. The College has its own resident tutors, and sponsors a wide range of sporting and social activities. Apply to Dr Stuart Barton Babbage, Master, New College, Anzac Parade, Kensington 2033 (telephone 662 6066).

Shalom College
Shalom College is a Jewish residential college. It provides accommodation for 86 men and women students. Non-resident membership is available to students who wish to avail themselves of the Kosher dining room and conference facilities. Rates are payable on a session basis. Apply in writing to the Master, Dr S. Engelberg, Shalom College, the University of New South Wales, PO Box 1, Kensington, NSW 2033.

Warrane College
Warrane College provides accommodation for 200 men and is open to students of all ages, backgrounds and beliefs. A comprehensive tutorial program is offered along with a wide range of activities and opportunities to meet members of the University staff informally. Non-resident membership is available to male students who wish to participate in College activities and make use of its facilities. Warrane is directed by the Catholic lay association Opus Dei. Apply in writing to the Master, Dr J. F. Martins, Warrane College, PO Box 123, Kensington, NSW 2033.

Creston Residence
Creston Residence offers accommodation for 25 full-time undergraduate and graduate women students without restriction of denomination or nationality. Non-resident membership provides students with the opportunity to participate in the activities of the Residence and to make use of its facilities. Creston is directed by the Women's Section of Opus Dei, a Catholic lay association. Enquiries should be addressed to the Principal, 36 High Street, Randwick, NSW 2031.

Other Accommodation
Off-campus Accommodation
Students requiring other than College accommodation may contact the Housing Officer in the Student Amenities and Recreation Section for assistance in obtaining suitable accommodation in the way of full board, room with cooking facilities, flats, houses, share flats etc. Extensive listings of all varieties of housing are kept up-to-date throughout the year and during vacations. Accommodation in the immediate vicinity of the University is not usually easy to find at short notice, and is expensive. No appointment is necessary but there may be some delay in February and March. The Housing staff are always happy to discuss any aspect of accommodation. Special pamphlets on accommodation, lists of estate agents and hints on house-hunting are available on request.

Associations, Clubs and Societies

The Sports Association
The Sports Association is a student organization within the University which caters for a variety of sports for both men and women. In December 1952 the University Council approved the establishment of the Sports Association, which then consisted of five clubs. As the University has grown, the Association has expanded, and now includes some thirty-eight clubs. The Association office is situated in Hut E15C near the foot of Basser Steps, and can be contacted on extension.
The control of the Association is vested in the General Committee comprising delegates from the thirty-eight clubs.

Membership is compulsory for all registered students, and the annual fee is $11. Membership is also open to all members of staff and graduates of the University on payment of an annual fee as prescribed in the By-Laws of the Association. All members are invited to take part in any of the activities arranged by the Association, and to make use of the University's sporting and recreational facilities.

The Association is affiliated with the Australian Universities Sports Association (AUSA) which is the controlling body for sport in all Australian universities.

School and Faculty Associations

Many schools and faculties have special clubs with interests in particular subject fields. Enquire at the relevant Faculty or School Office for information.

Australian Armed Services

The University maintains links with the Royal Australian Navy, the Citizen Military Forces and the Royal Australian Air Force, and opportunities exist for student participation in their activities. See the General Information section of the Faculty Handbooks for details.

Chaplaincy Centre

The University Chapel

The University provides a small chapel for the use of all faiths. In its temporary housing it is located in Hut E15a near the Chemistry Building. The chapel is available for services of worship by arrangement with the full-time chaplains. At other times it is available for private meditation to all members of the University.

Chaplaincy Service

A Chaplaincy Service is available within the University of New South Wales for the benefit of students and staff.

The Service offers fellowship, personal counselling and guidance, together with leadership in biblical and doctrinal studies and in worship. The Chaplains maintain close liaison with student religious societies.

The chaplains are located in Hut E15a at the foot of Basser steps, which also contains the temporary chapel.

Deputy Registrar (Student Services)

The Deputy Registrar (Student Services), Mr Peter O’Brien, and his administrative Assistant, Mrs. Anne Beaumont, are located on the first floor of the Chancellery.

They will help those students who have problems and need advice but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with general enquiries they are especially concerned with the problems of physically handicapped and disabled students and those in need of financial assistance. The latter students should see Mrs Beaumont.

All enquiries should be made either at room 148E or by telephoning extension 2482 (general enquiries) or 3164 (financial assistance).

Student Amenities and Recreation Section

In general the Student Amenities and Recreation Section seeks ways to promote the physical, social and educational development of students through their leisure time activities, and to provide some services essential to their day-to-day university life.

The Section is responsible for the continuing management of the Physical and Recreational Centre at which recreational programs are available for both students and staff; makes bookings for use of sports facilities; and in consultation with the Sports Association assists various recognized clubs.

Mr I. Moutray is the Head of the Section, which is located in the huts at the foot of Basser Steps. The various services may be contacted by phone on the following extensions: Recreation Program 3271; Grounds Bookings 2235; Sports Association 2673.

Physical Education and Recreation Centre

The Student Amenities and Recreation Section provides a recreational program for students and staff at the Physical Education and Recreation Centre. The Centre consists of eight squash courts, a main building, and a 50-metre indoor heated swimming pool. The main building has a large gymnasium and practice rooms for fencing, table tennis, judo, weight-lifting, karate and jazz ballet, also a physical fitness testing room. The recreational program includes intramurals, teaching/coaching, camping. The Centre is located on the lower campus adjacent to High Street. The Supervisor at PERC may be contacted on extension 3271.
Student Counselling and Research Unit

The Student Counselling and Research Unit has both service and research and development functions. The service function is to help clients - students, prospective students, parents and other concerned persons - improve their approach to planning, decision-making and coping with academic, vocational and personal aspects of their life. The research and development function is to develop and evaluate counselling practices and programs and to assist in improving the quality of student life.

Appointments for counselling consultations are available from 9 am to 7 pm, and may be made by telephoning 663 0351 extension 3681 and 3685 or by calling at the Unit, which is located at the foot of Basser Steps. In urgent cases interviews can be given on a walk-in basis between 9 am and 5 pm.

Student Employment Section

The Student Employment Section provides assistance with careers and employment.

Assistance with careers and permanent employment opportunities includes: the regular mailing of a Job Vacancy Bulletin to registered students and graduates, a Library, and a Campus Interview Program in which final year students have the opportunity to speak to employers regarding employment prospects.

Assistance is also provided in obtaining course-related industrial or professional employment during long vacations as required by undergraduates in Engineering and Applied Science.

The Section is located in the Chancellery.

For further information, telephone as follows: careers and employment assistance 3259 or 3630; long vacation industrial training 2086.

Student Health Unit

A student health clinic and first aid centre is situated within the University. The medical service although therapeutic is not intended to replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected the student may be referred to a private practitioner or to an appropriate hospital. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.

The service is available to all enrolled students by appointment, free of charge, between 9 am and 5 pm Mondays to Fridays. For staff members, immunizations are available, and first aid service in the case of injury or illness on the campus.

The centre is located in Hut E15b on the northern side of the campus in College Road at the foot of the Basser Steps.

Appointments may be made by calling at the centre or by telephoning extension 2679, 3275 or 3841 during the above hours.

The Family Planning Association of NSW conducts clinics at the Student Health Unit and at the adjacent Prince of Wales Hospital, which are available for both, staff, and students. Appointments may be made for the Student Health Unit clinic by telephoning 588 2833 or for the Prince of Wales Hospital clinics by telephoning 399 0111.

The Students’ Union

The Students’ Union was formed in 1952 as an organization, duly recognized by the University Council, to represent the student body and to provide a central organization for the administration of student activities. In the words of its constitution, “The Students’ Union is formed for the purpose of advancing the interests of University men and women, facilitating their general scientific and technical education, and fostering a University spirit among them.”

The Students’ Union affords a recognized means of communication between the student body and the University administration, and represents its members in all matters affecting their interests. It aims to promote the cultural, educational and recreational life of the University and to encourage a permanent interest among graduates in the life and progress of student activities within the University. The Students’ Union also makes representations to government and other bodies outside the University on behalf of its members.

Membership of the Students’ Union is compulsory for all registered students of the University and the annual subscription is $17 for full-time students and $13 for part-time students. All Alumni of the University are eligible for Life Membership.

The Students’ Union is governed by a Council consisting of the members of the University Council, Life Members, the Staff Association and the Sports Association. The Council is elected annually.

A full-time President, elected each year by popular ballot, directs the entire administration of the Students’ Union and its activities, assisted by a Secretary-Treasurer.
Other officers are the Education Vice-President who works towards the implementation of Students' Union education policy, the Welfare-Research Officer concerned with helping students with problems they may encounter in the University, the Electronic Media Officer, and the Director of Overseas Students who deals with specific problems these students may encounter while in Australia.

The activities in which the Students' Union is involved include:

1. Infakt - a student-run information referral service for students who want someone to talk to or need help of any kind. Infakt is located in the bus at the foot of Basser Steps.
2. A casual employment service.
3. Organization of orientation for new students.
4. Organization of Foundation Day.
5. The University's two child care centres.
7. A free legal service run by a qualified lawyer employed by the Students' Union Council.
8. SU Record Shop which offers discount records and tapes.
9. The Nuthouse which deals in bulk and health foods.
10. Secondhand Bookshop for cheap texts.
11. CASOC (Clubs and Societies on Campus) which provides money from the SU for affiliated clubs and societies on campus.
12. The sale of electronic calculators and accessories at discount rates.

The Union is housed in three buildings near the entrance to the Kensington Campus from Anzac Parade. These are the Roundhouse, the Blockhouse and the Squarehouse. Membership of the Union is compulsory at $55 per year for all registered students and is open to all members of staff and graduates of the University.

The control of the Union is vested in the Board of Management whose Chief Executive Officer is the Warden, the President is Mr R. P. Hammond.

The full range of facilities provided by the Union includes a cafeteria service and other dining facilities, a large shopping centre, cloak room, banking and hairdressing facilities, showers, a women's lounge, common, games, reading, meeting, music, practice, craft and dark rooms. Photocopying, sign printing, and stencil cutting services are also available. The Union also sponsors special concerts (including lunchtime concerts) and conducts courses in many facets of the arts, including weaving, photography, creative dance and yoga. Full information concerning courses is contained in a booklet obtainable from the Union's program department.

The University Union should not be confused with the Students' Union or Students' Representative Council as it is known in some other universities. This latter body has a representative function and is the instrument whereby student attitudes and opinions are crystallized and presented to the University and the community.
Financial Assistance to Students

Tertiary Education Assistance Scheme
Under this scheme, which is financed by the Commonwealth Government, assistance is available for full-time study in approved courses, to students who are not bonded and who are permanent residents of Australia, subject to a means test on a non-competitive basis. The allowances paid are unlikely to be sufficient, even at the maximum rate, for all the living expenses of a student. Family help and/or incomes from vacation or spare-time work would also be needed.

Students in the following types of university courses are eligible for assistance:
- Undergraduate and graduate bachelor degree courses
- Graduate diplomas
- Approved combined bachelor degree courses
- Master's qualifying courses (one year)

The rates of allowance and conditions for eligibility are set out in a booklet obtainable from the Commonwealth Department of Education.

Tertiary students receiving an allowance, and prospective tertiary students, will be sent application forms in January 1981. Forms will also be available from the Admissions Section or the Student Employment Section, or from the Director, Department of Education, 59 Goulburn Street, Sydney, NSW 2000 (telephone 218 8800). Continuing students should submit applications as soon as examination results are available. New students should do so as soon as they are enrolled. All students should apply by 31 March 1981, otherwise benefits will not be paid for the earlier months of the year.

It is most important that students advise the TEAS office if at any time they change or discontinue their study programs, as their eligibility for benefits might be affected.

Rules and Procedures
The University, in common with other large organizations, has established rules and procedures which are designed for the benefit of all members of the University. In some cases there are penalties (eg fines or exclusion from examinations) for non-compliance. Therefore, any student who after reading the rules carefully requires further information on their application should contact the Admissions Office or the Registrar.

Other Financial Assistance
In addition to the Tertiary Education Assistance Scheme financed by the Australian Government the following forms of assistance are available:

1. Deferment of Payment of Fees: Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided the deferment is requested prior to the due date for fee payments.

2. Short Term Cash Loans: Donations from various sources have made funds available for urgent cash loans not exceeding $100. These loans are normally repayable within one month.

3. Early in 1973 the Commonwealth Government made funds available to the University to provide loans to students in financial difficulty. The loans are for the purpose of living allowances and other approved expenses or associated with attendance at university. Repayment usually commences after graduation or upon withdrawal from the course. Students are required to enter into a formal agreement with the University to repay the loan. The University is unable to provide from the fund amounts large enough for all or even a major part of the living expenses of a student.

From the same source students who are in extremely difficult financial circumstances may apply for assistance by way of a non-repayable grant. In order to qualify for a grant a student must generally show that the financial difficulty has arisen from exceptional misfortune. Grants are rarely made.

The University has also been the recipient of generous donations from the Arthur T. George Foundation, started by Sir Arthur George and his family, for the endowment of a student loan fund.

In all cases assistance is limited to students with reasonable academic records and whose financial circumstances warrant assistance.

Enquiries about all forms of financial assistance should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Financial Assistance to Aboriginal Students
Financial assistance is available to help Aboriginal students from the Commonwealth Government's Aboriginal Study Grant Scheme. Furthermore, the University may assist Aboriginal students with loans to meet some essential living expenses.

Enquiries relating to this scheme should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Fund for Physically Handicapped and Disabled Students
The University has a small fund (started by a generous gift from a member of staff who wishes to remain anonymous) available for projects of benefit to handicapped and disabled students. Enquiries should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.
General Conduct

The University has not considered it necessary to formulate a detailed code of rules relating to the general conduct of students. Enrolment as a student of the University, however, involves an undertaking to observe the regulations, by-laws and rules of the University, and to pay due regard to any instructions given by any officer of the University.

Appeals

Section 5(c) of Chapter III of the By-laws provides that "Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action, by the Vice-Chancellor, whether on appeal or otherwise, to the Council."

Admission and Enrolment

The Admissions Office, located in the Chancellery on the upper campus, provides information for students on admission requirements, undergraduate and graduate courses and enrolment procedures. Faculty handbooks and the Calendar may be purchased here. The Admissions Office is open from 9 am to 5 pm Monday to Friday. During enrolment the office is also open for some part of the evening.

The office provides information about special admission, advanced standing and admission on overseas qualifications. The office also receives applications from students who wish to transfer from one course to another, to resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled. It is essential that the closing dates for lodgement of applications are adhered to. For further details see the section on Undergraduate and Graduate Enrolment Procedures and Fees.

Applications for admission to undergraduate courses from students who do not satisfy the requirements for admission (see section on Requirements for Admission) are referred by the Admissions Office to the Admissions Committee of the Professorial Board.

Students seeking to register as higher degree candidates should first consult the Head of the School in which they wish to register. An application is then lodged on a standard form and the Higher Degrees Unit, after obtaining a recommendation from the Head of School, refers the application to the appropriate Faculty or Board of Studies Higher Degree Committee.

Details of the procedure to be followed by students seeking entry to first year undergraduate degree courses at the University may be obtained from the Admissions Office or the Universities and Colleges Admissions Centre.

An Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery, and is available for personal interview with those who require additional information about the University.

First Year Entry

Those seeking entry to first year courses in one or more of the three universities in the Sydney Metropolitan area (Macquarie University, the University of New South Wales and the University of Sydney) are required to lodge a single application form with the Universities and Colleges Admissions Centre, Challis House, 10 Martin Place, Sydney 2000. The application form provision is made for applicants to indicate preferences for courses available in any one of the three universities and eighteen other tertiary institutions. Students are notified individually of the result of their applications and provided with information regarding the procedures to be followed in order to accept the offer of a place at this University.

Enrolment is completed at the Enrolment Bureau, Unisearch House, 221 Anzac Parade, Kensington.

Deferment of First Year Enrolment

Students proceeding directly from school to University who have received an offer of a place may request deferment of enrolment for one year and will usually receive permission providing they do not enrol at another tertiary institution in that year.

Enrolment Procedures and Fees

Schedules 1981

1. Introduction

All students, except those enrolling in graduate research degree courses (see sections 5. and 6. below), must lodge an authorized enrolment form with the Cashier either on the day the enrolling officer signs the form or on the day any required General Studies electives are approved.

All students, except those enrolling in graduate research degree courses and those exempted as set out in section 17. below, should on that day also either pay the required fees or lodge an enrolment voucher or other appropriate authority.

Such vouchers and authorities are generally issued by the NSW Department of Education and the NSW Public Service. They are not always issued in time and students who expect to receive an enrolment voucher or other appropriate authority but have not done so must pay the fees and arrange a refund later. Such vouchers and authorities are not the responsibility of the University and their late receipt is not to be assumed as automatically exempting a student from the requirements of enrolling and paying fees.
If a student is unable to pay the fees the enrolment form must still be lodged with the Cashier and the student will be issued with a "nil" receipt. The student is then indebted to the University and must pay the fees by the end of the second week of the session for which enrolment is being effected. Penalties apply if fees are paid after that time (see section 16, below) unless the student has obtained an extension of time in which to pay fees from the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery). Such an application must be made before the fee is due. Payment may be made through the mail, in which case it is important that the student registration number be given accurately. Cash should not be sent through the mail.

2. New Undergraduate Enrolments

Persons who are applying for entry in 1981 must lodge an application for selection with the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1980. Those who are selected will be required to complete enrolment at a specified time before the start of Session 1. Compulsory fees should be paid on the day.

In special circumstances, however, and provided class places are still available, students may be allowed to complete enrolment after the prescribed time. Application forms and details of the application procedures may be obtained from the Admissions Office.

3. Re-enrolment

See also sections 4, 6, and 7 below.

Students who are continuing courses (or returning after approved leave of absence) should enrol through the appropriate School in accordance with the procedures set out in the current Enrolment Procedures booklet available from the Admissions Office and from School offices. Those who have completed part of a course and have been absent without leave need to apply for entry through the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1980.

4. Restrictions Upon Re-enrolling

Students who in 1980 have infringed the rules governing re-enrolment should not attempt to re-enrol in 1981 but should follow the written instructions they will receive from the Registrar.

5. New Research Students

Students enrolling for the first time in graduate research degree courses will receive an enrolment form by post. They have two weeks from the date of offer of registration in which to lodge the enrolment form with the Cashier and pay the appropriate fees. Completion of enrolment after this time will incur a penalty (see section 16, below).

6. Re-enrolling Research Students

Students enrolled in purely research degree programs will be re-enrolled each year and sent an account for any fees due, unless they have lodged a thesis or their registration has been cancelled or suspended.

7. Submission of Graduate Thesis or Project Report

Graduate students who at the commencement of Session 1 have completed all the work for a degree or diploma except for the submission of the relevant thesis or project report are required to re-enrol by the end of the second week of Session 1. Completion of enrolment after that time will incur a penalty (see section 16, below) but students enrolled in purely research degree programs will be re-enrolled automatically (see section 6, above).

Information about possible fees exemption is set out in section 17(10) below.

8. Enrolments by Miscellaneous Students

Enrolments by miscellaneous students are governed by the following rules:

(1) Enrolment in a particular subject or subjects as a miscellaneous student—i.e., as a student not proceeding to a degree or diploma—may be permitted provided that in every case the Head of School offering the subject considers that the student will benefit from the enrolment and provided also that accommodation is available and that the enrolment does not prevent a place in that subject being available to a student proceeding to a degree or diploma.

(2) A student who is under exclusion from any subject in the University may not be permitted to be enrolled as a miscellaneous student in that subject.

(3) A student who is under exclusion from any course in which the student offered the subject will benefit from the enrolment and provided also that accommodation is available and that the enrolment does not prevent a place in that subject being available to a student proceeding to a degree or diploma.

(4) A student who is subsequently admitted to a course of the University for which any subjects completed as a miscellaneous student form a part may receive standing for those subjects in accordance with the rules relating to Admission with Advanced Standing, save that a student may not receive standing for any subject completed as a miscellaneous student while under exclusion from a course of the University.

9. Final Dates for Completion of Enrolment

No enrolments for courses extending over the whole year or for Session 1 only will be accepted from new students after the end of the second week of Session 1 (1 March 1981) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned; no later year enrolments for courses extending over the whole year or for Session 1 only will be accepted after the end of the fourth week of Session 1 (27 March 1981) except with the express approval of the
Deputy Registrar (Student Services) and the Heads of the
Schools concerned; no later year enrolments for courses
extending over the whole year or for Session 1 only will
be accepted after the end of the fourth week of Session 1
(27 March 1981) except with the express approval of the
Deputy Registrar (Student Services) and the Heads of
Schools concerned. No enrolments for courses in
Session 2 only will be accepted after the end of the
second week of Session 2 (31 July 1981) except with the
express approval of the Deputy Registrar (Student
Services) and the Heads of Schools concerned.

10. University of New South Wales and
University Union Membership Card

All students enrolled in degree or diploma courses or as
miscellaneous students, except those exempt from fees
under provisions of section 17, below, are issued with a
University of New South Wales and University Union
Membership Card. This card must be carried during
attendance at the University and shown on official
request.

The number appearing on the front of the card above the
student’s name is the student registration number used in
the University’s records. This number should be quoted in
correspondence.

The card must be presented when borrowing from the
University libraries, when applying for travel concessions
and when notifying a change of address. It must also be
presented when paying fees on re-enrolment each year
when it will be made valid for the year and returned.
Failure to present the card could result in inconvenience
in completing re-enrolment.

Life members of the University Union and those exempt
from payment of University fees, if, enrolled in
degree or diploma courses or miscellaneous students
use the University’s fees receipt in place of the card when
applying for travel concessions and when notifying a
change of address. The University Library issues a library
borrowing card on production of the fees receipt.

A student who loses a card must notify the University
Union as soon as possible.

New students are issued with cards on enrolment if eligible.

11. Payment of Fees

There are no fees for tuition but other fees and charges
are payable. These include those charges raised to
finance the expenses incurred in operating activities such
as the University Union, the Students’ Union, the Sports
Association, and the Physical Education and Recreation
Centre. Penalty payments are also incurred if a student
fails to complete procedures as required. Charges may
also be payable, sometimes in the form of a deposit, for
the hiring of kits of equipment in certain subjects. Accom-
modation charges, costs of subsistence on excursions,
field work, etc., and fees for hospital, residents’ (medical
students) are payable in appropriate circumstances.

12. Assisted Students

Scholarship holders and sponsored students who have
not received an enrolment voucher or appropriate letter
of authority from their sponsor at the time when they are
enrolling should complete their enrolment by paying their
own fees.

A refund of fees will be made when the enrolment
voucher or letter of authority is subsequently lodged with
Cashier.

Those unable to pay their own fees in these circum-
cstances can apply to the office of the Deputy Registrar
(Student Services) (Room 148E, the Chancellery) for an
extension of time in which to pay. Such an application
must be made before the fees are due.

13. Extension of Time

Any student who is unable to pay fees by the due date
may apply to the office of the Deputy Registrar (Student
Services) (Room 148E, the Chancellery) for an extension
of time in which to pay. Such applications must be made before the due date.

14. Failure to Pay Fees and Other Debts

Any student who fails to pay prescribed fees or charges
or is otherwise indebted to the University and who fails
either to make a satisfactory settlement of his indebted-
ness upon receipt of due notice or to receive a special
extension ceases to be entitled to the use of University
facilities. Such a student is not permitted to register for a
further session, to attend classes or examinations, or to be granted any official credentials. In the case of a
student enrolled for Session 1 only or for both Sessions 1
and 2 this disbarment applies if any portion of fees is out-
standing after the end of the eighth week of Session 1 (24
April 1981). In the case of a student enrolled for Session
2 only this disbarment applies if any portion of fees is
outstanding after the end of the sixth week of Session 2
(28 August 1981).

In special cases the Registrar may grant exemption from
the disqualification referred to in the preceding paragraph
upon receipt of a written statement setting out all relevant
circumstances.

15. Student Fees

Fees and penalties quoted are current at the time of
publication but may be amended by the University
Council without notice.

All students (with the exceptions set out in section 17,
below) will be required to pay the following fees if enroll-
ing for a program involving two sessions. Those enrolling
for only one session will pay the full University Union
Entrance Fee, if applicable, and one half of any other fees
due.
17. Exemptions – Fees

Students often seek exemption from the fees for reasons other than those set out below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.

(1) Life members of the University Union, the Sports Association, and Students' Union are exempt from the relevant fee or fees*.

(2) Students enrolled in courses classified as External are exempt from all Student Activities Fees and the University Union Entrance Fee.

(3) Students enrolled in courses at the W. S. and L. B. Robinson University College and in the Faculty of Military Studies are exempt from the fees in section 15, above but shall pay such other fees and charges as the Council may from time to time determine.

(4) University Union fees and subscriptions may be waived by the Deputy Registrar (Student Services) for students enrolled in graduate courses in which the formal academic requirements are undertaken at a part of the University away from the Kensington campus.

(5) Students who while enrolled at and attending another university (or other tertiary institution as approved by the Vice-Chancellor) in a degree or diploma course are given approval to enrol at the University of New South Wales but only as miscellaneous students for subjects to be credited towards the degrees or diplomas for which they are enrolled elsewhere are exempt from all Student Activities Fees and the University Union Entrance Fee.

(6) Undergraduate students of a recognized university outside Australia who attend the University of New South Wales with the permission of the Dean of the appropriate faculty and of the Head of the appropriate school or department to take part as miscellaneous students in an academic program relevant to their regular studies and approved by the authorities of their own institution are exempt from all Student Activities Fees and the University Union Entrance Fee.

(7) Graduate students not in attendance at the University and who are enrolling in a project only other than for the first time, are exempt from all Student Activities Fees.

(8) Graduate students resubmitting a thesis or project only are exempt from all Student Activities Fees.

(9) All Student Activities Fees, for one or more sessions, may be waived by the Deputy Registrar (Student

Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the office of the Deputy Registrar (Student Services) or at the Cashier's office.

Institutions approved are: New South Wales Institute of Technology and Alexander Mackie College of Advanced Education.
(10) Graduate students who have completed all the work for a qualification at the commencement of Session 1 except for the submission of the relevant thesis or project report, may be exempted from the payment of Student Activities Fees by the Deputy Registrar (Student Services) on production of an appropriate statement signed by the relevant Supervisor or Head of School.

(11) Students enrolled in a session or sessions devoted entirely to training or experience away from the campus and its associated laboratories, hospitals, centres, institutes, and field stations are exempt from all Student Activities Fees for that session or sessions.

(12) Students whose registration is cancelled or suspended by the University shall receive refunds of fees paid in accordance with the provisions of section 18. (3) below except that a refund of one half of the fees shall be made if such cancellation or suspension takes place between the end of the fourth week of Session 1 and the end of the fourth week of Session 2.

18. Variations in Enrolment (including Withdrawal)

(1) Students wishing to vary an enrolment program must make application on the form available from the appropriate Course Authority.

(2) Students withdrawing from courses (and see also, information about withdrawal from subjects below) are required to notify the Registrar in writing. In some cases such students will be entitled to fee refunds (see below).

(3) Enrolment in additional subjects

Applications for enrolment in additional subjects must be submitted by:

27 March 1981 for Session 1 only and whole year subjects.

14 August 1981 for Session 2 only subjects.

(4) Withdrawal from subjects

Applications to withdraw from subjects may be submitted throughout the year but applications lodged after the following dates will result in students being regarded as having failed the subjects concerned, except in special circumstances:

(a) for one session subjects, the end of the seventh week of that session (17 April or 4 September)

(b) for whole year subjects, the end of the second week of Session 2 (31 July).

(5) Withdrawal from Course - Refunds

Whether or not a student's withdrawal entails academic penalties (covered in item (4) above) there are rules governing possible fee refunds in the case of complete withdrawal from a course, as follows:

(a) if notice of withdrawal from a course is received by the Registrar before the first day of Session 1: a refund of all fees paid will be made

(b) if notice of withdrawal is received on or after the first day of Session 1:

(i) a partial refund of the University Union Entrance Fee will be made on the following bases: any person who has paid the entrance fee in any year and who withdraws from membership of the University Union after the commencement of Session 1 in the same year, or who does not renew his membership in the immediately succeeding year, may on written application to the Warden receive a refund of half the entrance fee paid.

(ii) if the notice of withdrawal is given before the end of the fourth week of Session 1 (27 March 1981) a full refund of other Student Activities Fees paid will be made; if notice is given before the end of the fifth week of Session 1 (24 April 1981) a refund of one half of the other Student Activities Fees paid will be made; thereafter no refund will be made except that provided for in (iii) below.

(iii) if a student's enrolment in any year is for Session 2 only and the student gives notice of withdrawal prior to the end of the fourth week of Session 2 (14 August 1981) a full refund of Student Activities Fees paid (other than the University Union Entrance Fee for which see item (i) above) will be made; if notice is given before the end of the sixth week of Session 2 (15 September 1981) a refund of one half of the other Student Activities Fees paid will be made; thereafter no refund will be made.

(iv) the refunds mentioned in (ii) and (iii) above may be granted by the Deputy Registrar (Student Services) to a student unable to notify the Registrar in writing by the times required provided evidence is supplied that the student had ceased attendance by those times.

(6) Acknowledgements

The Registrar will acknowledge each application for a variation in enrolment (including withdrawals from subjects) as follows:

(a) variations lodged before the Friday of the seventh week of each session (17 April or 4 September) will be incorporated in the Confirmation of Enrolment Program notice forwarded to students on 27 April or 14 September as appropriate

(b) variations lodged after those dates will be acknowledged by letter

(c) withdrawals from a course are acknowledged individually whenever they are lodged

(7) It is emphasized that failure to attend for any assessment procedure, or to lodge any material stipulated as part of an assessment procedure, in any subject in which a student is enrolled will be regarded as failure in that assessment procedure unless written approval to withdraw from the subject without failure has been obtained from the Registrar.
19. Exemption – Membership

The Registrar is empowered to grant exemption from membership of any or all of the University Union, the Students’ Union, and the Sports Association to students who have a genuine conscientious objection to such membership, subject to payment of the prescribed fees to the Miscellaneous Fund.

Private Overseas Students

Private overseas students should visit the Commonwealth Department of Education immediately on first arrival in Australia. The address is Sydney Plaza Building, 59 Goulburn Street, Sydney.

Private overseas students continuing their studies should confirm their enrollment with the Commonwealth Department of Education as early as possible each year in order to ensure that arrangements for the extension of their temporary entry permits can be made.

All private overseas students must advise the Department if they change their term residential address during the year. Telephone enquiries should be directed to (02) 218 8923, and country students may reverse the charge for the call.

Leave of Absence

Leave of absence from an undergraduate course of study may be granted to students other than those in the first year of a course. Leave of absence has generally been restricted to one year but in special circumstances two years have been granted.

To apply for such leave of absence, a letter should be submitted to the Registrar immediately following the release of annual examination results and must include the student's full name, registration number, the course and stage in which enrolled in the previous year and, most important, the reason why leave is being sought. The letter advising the result of the application will provide details about how to re-enrol.

Students who withdraw from the first year of their course are not granted leave of absence and must again apply for a place through the Universities and Colleges Admissions Centre.

Course Transfers

Students wishing to transfer from one course to another must complete and submit an application form, obtainable from the Admissions Office, the Chancellery, by Friday 9 January 1981.

Students whose applications to transfer are successful, and who are transferring from one school to another are required to comply with the enrolment procedure laid down for new students with advanced standing. Students transferring from one course to another within the same school are required to attend the appropriate enrolment session for the course to which they have approval to transfer. Students who change their term residential address during the year. Telephone enquiries should be directed to (02) 218 8923, and country students may reverse the charge for the call.

Students must present approval to transfer to the enrolling officer, and those who have not received advice regarding their application to transfer before the date on which they are required to enrol should check with the Admissions Office.

Students should also advise the enrolling officer in the school in which they were enrolled in 1980 of their intention to transfer.

Admission with Advanced Standing

Any person who makes application to register as a candidate for any degree or other award granted by the University may be admitted to the course of study leading to such degree or award with such standing on the basis of previous attainments as may be determined by the Professorial Board provided that:

1. the Board shall not grant such standing under these rules as is inconsistent with the rules governing progression to such degree or award as are operative at the time the application is determined;

2. where a student transfers from another university such student shall not in general be granted standing in this University which is superior to what he has in the University from which he transfers;

3. the standing granted by the Board in the case of any application based on any degree/s or other awards already held by the applicant shall not be such as will permit the applicant to qualify for the degree or award for which he seeks to register without completing the courses of instruction and passing the examinations in at least those subjects comprising the latter half of the course, save that where such a program of studies would involve the applicant repeating courses of instruction in which the Board deems the applicant to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof;

4. the standing granted by the Board in the case of any application based on partial completion of the requirements for any degree or other award of another institution shall not be such as will permit the applicant to qualify for the degree or award for which he seeks to register by satisfactory completion of a program of study deemed by the Board to be less than that required of a student in full-time attendance in the final year of the course in which the applicant seeks to register;

5. the standing granted by the Board in the case of any application based on the partial completion of the
requirements for any degree or other award of the University may be such as to give full credit in the course to which the applicant seeks to transfer for work done in the course from which the student transfers. Where the identity between the requirements for any award of the University already held and that of any other award of the University is such that the requirements outstanding for the second award are less than half the requirements of that award, then a student who merely completes such outstanding requirements shall not thereby be entitled to receive the second award but shall be entitled to receive a statement over the hand of the Registrar in appropriate terms.

Resumption of Courses

Students who have had a leave of absence for twelve months and wish to resume their course should follow the instructions about re-enrolling given in the letter granting leave of absence. If these instructions are not fully understood or have been lost, students should contact the Admissions Office before November in the year preceding the one in which they wish to resume their course.

If students have not obtained leave of absence from their course and have not been enrolled in the course over the past twelve months or more, they should apply for admission to the course through the Universities and Colleges Admissions Centre before 1 October in the year preceding that in which they wish to resume studies.

Examinations

Examinations are held in June/July and in November/December.

Provisional timetables indicating the dates and times of examinations are posted on the University noticeboards.

Students must advise the Examinations Unit (the Chancellery) of any clash in examinations. Final timetables indicating the dates, times, locations, and authorized aids are available for students two weeks before the end of each session.

Misreading of the timetable is not an acceptable excuse for failure to attend an examination.

Assessment of Course Progress

In the assessment of a student's progress in a course, consideration may be given to work in laboratory and class exercises and to any term or other tests given throughout the year as well as to the results of written examinations.

Examination Results

Grading of Passes

Passes will be graded as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Distinction</td>
<td>an outstanding performance</td>
</tr>
<tr>
<td>Distinction</td>
<td>a superior performance</td>
</tr>
<tr>
<td>Credit</td>
<td>an acceptable level of performance</td>
</tr>
<tr>
<td>Pass</td>
<td>satisfactory completion of a subject for which graded passes are not available</td>
</tr>
</tbody>
</table>

Pass Conceded

A pass conceded may be granted to a student whose overall performance warrants consideration in a subject where the mark obtained is slightly below the standard required for a pass.

A pass conceded in a subject will normally allow progression to another subject for which the former subject is a prerequisite. In a particular subject, however, a subject authority may specify that a pass conceded is insufficient to meet a particular subject prerequisite.

Availability of Results

Final examination results will be posted to a student's term address, or vacation address if requested. Change of address forms and forms requesting that results be posted to a vacation address are included in the examination timetable and are obtainable at the Student Enquiry Counter, the Chancellery. Both forms can be accepted up to Friday 27 November. Results are also posted on School noticeboards and in the University Library. Results on noticeboards are listed by Student Registration Number.

No examination results are given by telephone.

Review of Results

A student may make application to the Registrar for the review of a result. The application form, accompanied by an appropriate fee, must be submitted not later than fifteen working days after the date of issue of the Notification of Examination Result form.

In reviewing a result, the subject authorities shall ensure that all components of the assessment have been assessed and a mark assigned.

A review of a result is not a detailed reassessment of a student's standard of knowledge and understanding of, and skills in, the subject. It is rather a search for arithmetic error in arriving at the composite mark and for gross and obvious error in assignment of marks in components of the final composite mark.

When a change in grade is recommended, the application fee will be refunded by the Registrar.

Special Consideration

Students who believe that their performance in a subject, either during session or in an examination, has been
adversely affected by sickness or any other reason should inform the Registrar and ask for special consider-
the Registrar and ask for special consideration in the determination of their standing.

Such requests should be made as soon as practicable after the occurrence. Applications made more than seven days after the final examination in a subject will only be
considered in exceptional circumstances.

When submitting a request for special consideration students should provide all possible supporting evidence (eg medical certificates) together with their registration number and enrolment details.

Physical Disabilities

Students suffering from a physical disability which puts them at a disadvantage in written examinations should advise Student Records (Ground Floor, the Chancellery) immediately their disability is known. If necessary, special arrangements will be made to meet the student’s requirements.

Students who are permanently disabled and need the Examinations Unit to make special arrangements for their examinations, should contact Student Records as soon as the final timetable becomes available.

Use of Electronic Calculators

Where the use of electronic calculators has been approved by a faculty or school, examiners may permit their use in examinations. Authorized electronic calculators are battery operated with the minimum operations of addition, subtraction, multiplication and division and are of a type in common use by university students. They are not provided by the University, although some schools may make them available in special circumstances.

Examinations Held Away from the Campus

Except in the case of students enrolled in external courses, examinations will not be permitted away from the campus unless the candidate is engaged on compulsory industrial training. Candidates must advise the Officer-in-charge, Examinations Unit, immediately the details of the industrial training are known. Special forms for this purpose are available at the Student Enquiry Counter in the north wing of the Chancellery.

Arrival at Examinations

Examination Rooms will be open to students twenty-five minutes before the commencement of the examination. Candidates are requested to be in their places at least fifteen minutes before the commencement to hear announcements. The examination paper will be available for reading ten minutes before commencement.

Use of Linguistic Dictionaries

The answers in all examinations and in all work submitted must be in English unless otherwise directed. Students may apply for permission to use standard linguistic dictionaries in the presentation of written work for assessment. Such applications should be made in writing to the Examinations Unit not later than 14 days prior to the need to use the linguistic dictionary.

Conduct of Examinations

Examinations are conducted in accordance with the following rules and procedure:

1. Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.

2. Candidates are required to be in their places in the examination room not less than fifteen minutes before the time for commencement.

3. No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.

4. Candidates shall not be admitted to an examination after thirty minutes from the time of commencement of the examination.

5. Candidates shall not be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.

6. Candidates shall not be re-admitted to the examination room after they have left it unless, during the full period of their absence, they have been under approved supervision.

7. Candidates shall not by any improper means obtain, or endeavour to obtain, assistance in their work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.

8. All answers must be in English unless otherwise stated. Foreign students who have the written approval of the Registrar may use standard linguistic dictionaries.

9. Smoking is not permitted during the course of examinations.

10. A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room and to such further penalty as may be determined in accordance with the By-Laws.

Acknowledgement of Sources

Students are expected to acknowledge the source of ideas and expressions used in submitted work. To provide adequate documentation is not only an indication of academic honesty but also a courtesy enabling the marker to consult sources with ease. Failure to do so may constitute plagiarism, which is subject to a charge of academic misconduct.
Further Assessment

In special circumstances further assessment including assessment or further assessment on medical or compassionate grounds may be granted.

Further assessment may be given by the subject authority at his or her discretion at any time prior to the meeting of the relevant faculty assessment committee (normally the fourth week of the Midyear Recess and the second week of December). Further assessment may also be awarded at the faculty assessment committee and students affected may need to be free to undertake that further assessment in the last week in the Mid-year Recess and in the period up to the end of the second week in January; students should consult their subject authority for details of further assessment immediately their results are known.

Restrictions upon Students Re-enrolling

The University Council has adopted the following rules governing re-enrolment with the object of requiring students with a record of failure to show cause why they should be allowed to re-enrol and retain valuable class places.

First Year Rule

1. Students enrolled in the first year of any undergraduate course of study in the University shall be required to show cause why they should be allowed to continue the course if they do not pass the minimum number of subjects, units or credits prescribed for this purpose by the relevant faculty or board of studies.

The prescribed minimum for each undergraduate course may be found in Schedule A* below; the schedule may be varied from time to time by the Professorial Board.

Repeated Failure Rule

2. Students shall be required to show cause why they should be allowed to repeat a subject which they have failed more than once. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue that course.

General Rule

3. Students shall be required to show cause if, in the opinion of the faculty or board of studies, their academic record is such as to demonstrate their lack of fitness to pursue a subject or subjects and/or course or courses.

The Session-Unit System

4. (1) Students who infringe the provisions of Rules 1 or 2, at the end of Session 1 of any year will be allowed to repeat the subject(s) (if offered) and/or continue the course in Session 2 of that year, subject to the rules of progression in the course.

(2) Such students will be required to show cause at the end of the year, except that students who infringe Rule 2 at the end of Session 1, and repeat the subjects in question in Session 2, and pass them, will not be required to show cause on account of any such subjects.

Exemption from Rules by Faculties

5. (1) A faculty or board of studies examinations committee may, in special circumstances, exempt students from some or all of the provisions of Rules 1 and 2.

(2) Such students will not be required to show cause under such provisions and will be notified accordingly by the Registrar.

Showing Cause

6. (1) Students wishing to show cause must apply for special permission to re-enrol. Application should be made on the form available from the Registrar and must be lodged with the Registrar by the dates published annually by the Registrar. A late application may be accepted at the discretion of the University.

(2) Each application shall be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies which shall determine whether the cause shown is adequate to justify the granting of permission to re-enrol.

Appeal

7. (1) Students who are excluded by the Admissions and Re-enrolment Committee from a course and/or subject under the provisions of the Rules will have their applications to re-enrol reconsidered automatically by the Re-enrolment Committee of the Professorial Board.

(2) Students whose exclusion is upheld by the Re-enrolment Committee may appeal to an Appeal Committee constituted by Council for this purpose with the following membership:

A Pro-Vice-Chancellor, nominated by the Vice-Chancellor who shall be Chairman.

The Chairman of the Professorial Board, or if its chairman is unable to serve, a member of the Professorial Board, nominated by the Chairman of the Professorial Board, or when the Chairman of the Professorial Board is unable to make a nomination, nominated by the Vice-Chancellor.

One of the category of members of the Council elected by the graduates of the University, nominated by the Vice-Chancellor.

The decision of the Committee shall be final.

(3) The notification to students of a decision which has been upheld by the Re-enrolment Committee of the Professorial Board to exclude them from re-enrolling in a

* See reference to Schedule A on next page.
course and/or subject shall indicate that they may appeal against that decision to the Appeal Committee. The appeal must be lodged with the Registrar within fourteen days of the date of notification of exclusion; in special circumstances a late appeal may be accepted at the discretion of the Chairman of the Appeal Committee. In lodging such an appeal with the Registrar students should provide a complete statement of all grounds on which the appeal is based.

(4) The Appeal Committee shall determine appeals after consideration of each appellant’s academic record, application for special permission to re-enrol, and stated grounds of appeal. In particular circumstances, the Appeal Committee may require students to appear in person.

Exclusion

8. (1) Students who are required to show cause under the provisions of Rules 1, 2, or 3, and either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in the subjects and courses on account of which they were required to show cause. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

(2) Students required to show cause under the provisions of Rule 2, who either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in any subject they have failed twice. Where the subjects failed are prescribed as part of a course they shall also be excluded from that course. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

Re-admission after Exclusion

9. (1) Excluded students may apply for re-admission after the period of exclusion has expired.

(2) (a) Applications for re-admission to a course should be made to the Universities and Colleges Admissions Centre before the closing date for normal applications in the year prior to that in which re-admission is sought. Such applications will be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies.

(b) Applications for re-admission to a subject should be made to the Registrar before 30 November in the year prior to that in which re-admission is sought. Such applications will be considered by the relevant subject authority.

(3) Applications should include evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity and/or evidence of action taken (including enrolment in course/s) to improve capacity to resume studies.

(4) Applications for re-admission to a course or subject that are unsuccessful (see 9, (2), (b) respectively) will be reconsidered automatically by the Re-enrolment Committee of the Professorial Board. The decision of the Re-enrolment Committee will be final.

10. Students who fail a subject at the examinations in any year or session and re-enrol in the same course in the following year or session must include, in their programs of studies for that year or session the subject which they failed. This requirement will not be applicable if the subject is not offered the following year or session, is not a compulsory component of a particular course, or if there is some other cause which is acceptable to the Professorial Board for not immediately repeating the failed subject.

Restrictions and Definitions

11. (1) These rules do not apply to students enrolled in programs leading to a higher degree or graduate diploma.

(2) A subject is defined as a unit of instruction identified by a distinctive subject number.

Schedule A

The prescribed ‘minimum number of subjects units or credits’ for the purposes of determining liability under the ‘First Year Rule’ is under consideration by faculties and boards of studies at the time of printing. An up-to-date list may be obtained from the Registrar.

Admission to Degree or Diploma

Students whose current program will enable them to complete all requirements for the degree or diploma, including industrial training where necessary, should lodge with the Registrar the form Application for Admission to Degree/Diploma and return it to the Registrar by the second Monday in May for the October ceremonies, and the first Tuesday in October for all other ceremonies. The forms are available from the Student Enquiry Counter in the north wing of the Chancellery.

Students who have indicated on their enrolment form that they are potential graduands are forwarded an application form with their Enrolment Details form in September (or, in the case of students who expect to satisfy requirements at the end of Session 1, with the form issued in
April). Students who do not complete an application form will not graduate; students who do not return their application form by the due date will graduate at a later series of ceremonies.

The Registrar will acknowledge receipt of the application form within two weeks. If no acknowledgement is received within that period students should contact the Student Records Section immediately.

Students enrolled in courses 3400, 3910 and 3970 who have completed an application form to graduate at the pass level and who then decide to proceed to an honours year should advise the Registrar, in writing before 1 September for those completing requirements at the end of Session 1, or before 28 February for those completing requirements at the end of Session 2.

A list of graduands in Medicine who have applied for their degree is published in The Sydney Morning Herald in December.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in October is published in The Sydney Morning Herald on the second Wednesday in September.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in April/May the following year is published in The Sydney Morning Herald on the second Wednesday in March.

Students who are potential graduands and who wish to notify the Registrar of a change of address should submit an additional form Final Year Students' Graduation: Change of Address.

Student Records

Confirmation of Enrolment Program notices are sent to all students on 27 April and 14 September. It is not necessary to return these forms unless any of the information recorded is incorrect. Amended forms must be returned to the Student Records Section immediately. Amended forms returned to the Registrar will be acknowledged in writing within fourteen days.

Release of Information to Third Parties

The University treats examination results and information it receives from a student as confidential and will not reveal such information to third parties without the permission of the student except at the discretion of senior officers in circumstances considered of benefit to the student and when it is either impossible or impracticable to gain the student's prior permission. This happens rarely. This policy is considered so important that it often involves officers of the University in very difficult situations, for example, when they must refuse to reveal the address of a student to parents or other relatives.

In spite of the policy, there are sometimes accusations made that the University has revealed information, including addresses (especially to insurance companies).

All students should be aware that students' addresses are eagerly sought by various commercial agents and that sometimes tricks are used to obtain them. For example, from time to time people claiming to be from the University telephone students or their families and ask for information (usually another student's address) which is often given, unsuspectingly. There is evidence that this is a technique used by commercial agents.

It would be generally helpful if students (and their families and friends) are cautious in revealing information, making it a practice to ask the name, position, and telephone extension of any caller claiming to be from the University and, if suspicious, returning the call to the extension given.
Change of Address

The Student Records Section of the Registrar's Division should be notified as soon as possible of any change of address. Failure to do this could lead to important correspondence (including examination results) going astray. The University cannot accept responsibility if official communications fail to reach students who have not given notice of their change of address. Change of Address Advice Forms are available at Faculty and School offices and from the Student Enquiry Counter in the north wing of the Chancellery.

All communications from the University, including examination results, will be sent to the Session or Term address except when arrangements are made otherwise in the case of examination results (see Examinations: Availability of Results, earlier in this section). Change of Address Advice forms will be accepted up to Friday 27 November, except for final-year students wishing to change their Application for Admission for Degree/Diploma form. Changes to this form will be accepted up to a date four weeks before the student's graduation ceremony.

Ownership of Students' Work

The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, theses or other work executed by students as part of their courses, or submitted for any award or competition conducted by the University.

Notices

Official University notices are displayed on the noticeboards and students are expected to be acquainted with the notices which concern them. These boards are in the Biological Sciences Building, the Mathews Building, the Chancellery (lower ground floor), Central Lecture Block, Dalton Building (Chemistry), Electrical Engineering Building, Main Building (Physics and Mining) and in the Western Grounds Area.

Parking within the University Grounds

A limited amount of parking is available on campus. Copies of the University's parking rules may be obtained on application to Room 240, the Chancellery.

Academic Dress

Information about the University's academic dress requirements may be obtained from the Alumni Office, Room 148E, the Chancellery (phone extension 2998).

Further Information

Lost Property

All enquiries concerning lost property should be made to the Superintendent on extension 3580 or to the Lost Property Office at the Union.

The Calendar

Please consult the Calendar for a more detailed account of the information contained in this section.
Vice-Chancellor's Official Welcome to New Students

All students initially enrolling in the University are officially welcomed by the Vice-Chancellor and Principal at the following times:

Full-time Students
In the Faculties of Architecture, Arts, Biological Sciences, Commerce, Law:
Thursday 26 February 1981
11 am in the Clancy Auditorium

In the Faculties of Applied Science, Engineering, Medicine, Professional Studies, Science, and the Board of Studies in Science and Mathematics:
Friday 27 February 1981
11 am in the Clancy Auditorium

Part-time Students
Thursday 26 February 1981
6.30 pm in the Clancy Auditorium

Meeting for Parents of New Students
Friday 27 February 1981
7.30 pm in the Clancy Auditorium
This handbook has been designed to assist understanding of the academic activities of three inter-related groups within the university, namely the Board of Studies in Science and Mathematics, the Faculty of Biological Sciences and the Faculty of Science. The Board is responsible for the undergraduate studies of students majoring in disciplines associated with the two faculties and several schools from other faculties. The regulations governing the award of the degree of Bachelor of Science form a substantial part of the handbook.

Several specialist courses of study, also leading to the award of the degree of Bachelor of Science, are offered by the two faculties and the regulations covering these are given under the separate faculty sections. In addition the two faculties make available facilities to proceed to higher degrees and the conditions under which these awards are made are listed under the sections devoted to graduate study.

In the last part of the handbook there are brief statements of the syllabuses for units prescribed in the various regulations.
Faculty Information

Who to Contact

If you require advice about enrolment, degree requirements, progression within courses or any other general matters related to the Board, contact one of the following:

Mrs E. S. Rossi, Graduate Assistant
Associate Professor K. G. Rienits, Co-ordinator of Studies in Science and Mathematics
Room 211, Plaza Level, Mathews Building

For information regarding particular courses, advice may be obtained from staff members listed in the Introduction to each of the sections related to the Board, the Faculty of Biological Sciences and the Faculty of Science, later in this handbook.

Enrolment Procedures

- Faculty of Biological Sciences
- Faculty of Science
- Board of Studies in Science and Mathematics

All students re-enrolling in 1981 or enrolling in graduate courses should obtain a copy of the free booklet Enrolment Procedures 1981 available from Course Administration Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Sciences Library Facilities

Although any of the University Libraries may meet specific needs, staff and students of the Faculty of Biological Sciences are served mainly by the Biomedical and Undergraduate Libraries while those of the Faculty of Science are served mainly by the Physical Sciences and Undergraduate Libraries.

The Biomedical Library

This library is situated on Levels 2 and 3 of the Science Building annex. It aims to serve the specialized reference and

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboard of the Board of Studies in Science and Mathematics and the official noticeboards of the University.
research needs of staff, graduate students and undergraduate students in the Biological Sciences.

Trained staff are available at all times in the Biomedical Library to assist staff and students in making best use of the library.

Biomedical Librarian
George Franki

The Physical Sciences Library

This library serves the information needs of senior undergraduate students, graduate students, and members of the academic staff. It contains books, a large collection of journals, guides to the use of the literature such as abstracting and indexing journals in the subject areas of pure and applied science, technology, engineering and architecture. The library also houses a growing map collection and some microform material. All material housed in the library bears the prefix ‘P’ and is indexed in the library’s central catalogue on Level 2. There is also a catalogue in the Physical Sciences Library. The library seats approximately 300 and a number of room carrels and seminar rooms are available for use. Photocopying facilities are provided. Journals may not be borrowed from the collection. Library staff are ready to assist readers with their enquiries.

The Undergraduate Library

This library caters for the library needs of first and second year students and other groups where large numbers require mass teaching.

It provides a reader education program and reader assistance service aimed at teaching students the basic principles of finding information.

Services of particular interest to undergraduates and academic staff are:

- The Open Reserve Section, housing books and other material which are required reading.
- The Audio-Visual Section, containing cassette tapes, mainly lectures and other spoken word material. The Audio-Visual Section has wired study carrels and cassette players for student use.

Undergraduate Librarian
Pat Howard

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students’ Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students’ Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

The Psychology Society

The Psychology Society aims to provide activities both educational and social for students of psychology, and, more generally, to act as an intermediary body between students and staff. While psychology is one of the most popular subjects available, many students have only a vague conception of psychology and are unsure where their courses will lead them.

One of the aims of the Psychology Society is to provide information relevant to these matters. In a School so large it is difficult to develop a meaningful degree of personal contact between students of different years and students and staff. The Society attempts to provide opportunities for such contact, to foster staff-student relations and to act in the interest of psychology students as a whole. Accordingly, we hope to include such items as staff-student luncheons, informal discussions and theatre parties. On the educational side there are film showings and occasional talks and seminars (eg on careers, course requirements). An activities fee enables the committee to meet any of the finances needed to support its functions.

Statistical Society of Australia:
New South Wales Branch

The Branch offers student membership to undergraduates who are following a recognised course of study which includes Statistics. The subscription for a student member is $14 per annum with a 3 rebate if paid before 1 March.

The Branch holds about four general meetings each year at the end of which two talks, one theoretical and the other applied, are given on the one topic. The Branch conducts a Research Section, and membership of this group is open to members of the Branch free of charge. Each year the Branch also conducts a symposium for the study and discussion of particular statistical techniques or of statistical methods in a specialized field; symposia are open to members at reduced rates.

Members of the Branch receive The Australian Journal of Statistics, which is published three times a year by the Statistical Society of Australia, together with the Society’s Newsletter.

Applications and requests for further information should be sent to the Hon. Secretary, Dr Doug Shaw, CSIRO, DMS, PO Box 218, Lindfield, NSW 2070.
Board of Studies in Science and Mathematics
Board of Studies in Science and Mathematics

Introduction

The Science and Mathematics Course (3970) leads to the Bachelor of Science Degree on the completion of a three year program or a four year program chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The Board of Studies in Science and Mathematics offers a wide choice of programs each designed to meet specific aims and objectives. Most programs are identified with a particular School or discipline but some are multi-disciplinary.

All students in the Science and Mathematics Course must enrol in two units of first year Mathematics; either Mathematics I or Higher Mathematics I or General Mathematics. Care must be taken in making the choice as, in general, General Mathematics considerably limits the choice of units in following years.

Some Schools do not offer a full range of level III units in the evening. The Schools concerned are marked below with ‡.

Students seeking general advice should contact the Board of Studies in Science and Mathematics Office (Room 211, Mathews Building, map reference F23) and for advice in specific disciplines should contact the representative of the relevant School as listed below:

- First Year Biology Unit
- School of Anatomy
- School of Applied Geology
- School of Biochemistry
- School of Biotechnology
- School of Botany
- School of Chemistry
- School of Community Medicine
- School of Electrical Engineering and Computer Science
- School of Geography
- School of History and Philosophy of Science
- School of Mathematics
- Marine Science

Dr C. J. Quinn
Dr I. J. Tork (Year 2 and Year 3)
Professor F. W. D. Rost (Year 4)
Mr G. J. Baldwin
Professor B. V. Milborrow
Dr N. W. Dunn
Associate Professor J. H. Palmer
Mr W. J. Dunstan
Dr A. E. Stark
Dr G. McMahon
Mr N. Loneran
Dr D. R. Oldroyd
Associate Professor A. H. Low (Year 1)
Miss M. Potter
Dr P. Dixon
The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences* and the Faculty of Science* and some members of a number of specific Schools in other faculties contributing to the Science and Mathematics Course.

The Deans of the Faculty of Science (Professor V. T. Buchwald)† and of the Faculty of Biological Sciences (Professor E. O. P. Thompson) serve alternately as Dean responsible for the Board.

The Chairman is Professor A. J. Wicken.

The Co-ordinator of Studies in Science and Mathematics is Associate Professor K. G. Rienits. The Graduate Assistant is Mrs Emma S. Rossi.

The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences and the Faculty of Science, and some members of specific Schools in other faculties contributing to the Science and Mathematics Course: Applied Geology, Chemical Technology, Geography, Metallurgy (Applied Science); History and Philosophy of Science, Philosophy, Sociology, Political Science (Arts); Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

† See text of Introduction, on previous page.
* See Staff, listed later in this handbook.
† For 1980–81.
3970 Science and Mathematics Course

The Science and Mathematics Course, which leads to the Bachelor of Science degree, is administered by the Board of Studies in Science and Mathematics and offers a wide choice of programs, each designed to meet specific aims and objectives. Most programs are identified with a particular school or discipline but some are multi-disciplinary.

Aims of the Science and Mathematics Course

The main aims of the Science and Mathematics Course, diverse and not necessarily exclusive, may be summarized as providing opportunities to students to prepare themselves for careers in:

- research
- technology
- science and mathematics education
- areas of management or public policy involving the use of science or mathematics

Objectives of the Science and Mathematics Course

The important general objectives of most programs in the Science and Mathematics Course are:

1. To develop and sustain an interest in and knowledge of Science and Mathematics.

2. To develop a working knowledge of scientific methods of investigation and a favourable attitude towards them.

3. To encourage curiosity and creative imagination and an appreciation of the role of speculation in the selection and solution of problems, the construction of hypotheses, and the design of experiments.

4. To develop an appreciation of scientific criteria and a concern for objectivity and precision.

5. To develop confidence and skill in formulating problems and in treating both qualitative and quantitative data.

6. To develop the ability and disposition to think logically, to communicate clearly by written and oral means, and to read critically and with understanding.

7. To develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.

8. To promote understanding of the significance of science, technology, economics and social factors in modern society, and of the contributions they can make in improving man’s material conditions and in widening his imaginative horizons and his understanding of the universe.

9. To provide opportunities for the development of a student’s motivation and social maturity, and an awareness of his own capabilities in relation to a choice of career which will be fruitful to himself and to society.

There is a wide range of programs in single and multi-disciplinary areas leading to a three year degree or a four year degree.
The Structure of the Science and Mathematics Course

The Science and Mathematics Course consists of a number of individual programs, based on units ranked as Level I, Level II, Level II/III, Level III and Level IV with a unit size varying from 56-84 hours.

The terms Levels I, II, III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

The Bachelor of Science degree is awarded on completion of:

- a three year program

or

- a four year program

chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The time specified is a minimum time required for completion of the degree. It may be taken over a longer period of time.

- A student must select and be enrolled in one of the prescribed programs.

- With the approval of the Dean, a student may change from one selected program to another. A written application to make the change, together with details of any optional units selected in the new program, must be lodged at the office of the Board of Studies in Science and Mathematics, Room 211 (Mathews building, map reference F23).

- The programs listed below are made up of a sequence of units. Where a choice of units is indicated within a program care must be taken to satisfy the requirements, such as prerequisites and co-requisites.

- A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.

- A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.

- An excluded unit is one which cannot be counted towards the degree qualification together with the unit which excludes it. In exceptional circumstances, on the recommendation of the head of the appropriate school, the Board of Studies in Science and Mathematics may waive or vary a particular prerequisite, co-requisite or exclusion.

- A single major is a program specifying only 4 Level III units in a discipline.

- A double major is a program specifying more than 6 Level III units in a discipline.

- Upon sufficient cause being shown in a particular case or cases, the Board of Studies in Science and Mathematics may vary any of these rules.

The four year program

The four year program, leading to an Honours Class I, II/1, II/2, III or pass degree consists of:

1. at least 23 units at Level I, II, II/III, III as specified in an individual program, with the following requirements:

 (1) not less than eight nor more than ten units may be from Level I;

 (2) two of the Level I units must be 10.001 Mathematics I, 10.011 Higher Mathematics I or 10.021B and 10.021C;

 (3) not less than four units from Level III or as specified in individual programs;

2. General Studies electives as specified in an individual program, usually one in Year 2 and two in Year 3.

 - In order to graduate a student must pass all the units specified in the program of his/her choice.

The three year program

The three year program leading to the award of the pass degree consists of:

1. at least 23 units at Level I, II, II/III, III as specified in an individual program with the following requirements:

 (1) not less than eight nor more than ten units may be from Level I;

 (2) two of the Level I units must be 10.001 Mathematics I, 10.011 Higher Mathematics I or 10.021B and 10.021C;

 (3) not less than four units from Level III or as specified in individual programs;

2. an approved honours program offered by one or more schools;

 or

3. at least 10 units at Level IV as specified in an individual program;

4. General Studies electives as specified in an individual program, usually one in Year 2, two in Year 3 and one in Year 4.

 - In order to graduate a student must pass all the units specified in the program of his/her choice.

 Students are required:

 - to have completed Years 1, 2 and 3 of the specific program and to have satisfied prerequisite requirements as specified in Table 3.

 - to seek the guidance of the appropriate head of school at an early stage of study to ensure that the program being followed is best suited to lead to the Year 4 honours program.

 - to have completed relevant subjects normally with better than passing grades.

 - to have the approval of the appropriate head of school at the end of Year 3.

A person on whom the pass degree of Bachelor of Science of the University has been conferred may be admitted by the Board of Studies in Science and Mathematics, on the recommendation of the relevant Heads of Schools, to candidature for an honours degree conversion program with credit for all units completed, if during his studies for the pass degree, he has satisfied the prerequisites for proceeding to honours level laid down by the School or Schools concerned.

† 10.021A may be substituted for 10.021C if specified in an individual program.
Rules governing admission to the Science and Mathematics Course with advanced standing

Any person who makes application to enrol in the Science and Mathematics Course (course 3970) or in a double degree course which includes the Science degree course administered by the Board of Studies in Science and Mathematics may be admitted to the course of study leading to such degree with such standing on the basis of previous attainment as may be determined by the Board of Studies in Science and Mathematics provided that:

1. Where students transfer from another tertiary institution, such students shall not in general be granted standing in the course which is superior to that which they have enjoyed at the institution from which they transferred.

2. The standing granted by the Board of Studies in Science and Mathematics in the case of any application based upon any degree(s) or other award held by applicants, should not be such as will permit the applicants to qualify for the science degree, without completing the course of instruction and passing examinations in at least those subjects comprising the latter half of the Science and Mathematics course, so that where such a program of study would involve the applicants in repeating courses of instruction in which the Board of Studies in Science and Mathematics deems the applicants to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof.

3. The standing granted by the Board of Studies in Science and Mathematics in the case of applications based on partial completion of the requirement for any degree or other award of another institution shall not be such that it will permit the applicants to qualify for the award of the science and mathematics degree by satisfactory completion of the program of study deemed by the Board to be less than that required for students in full time attendance in the final year of the Science and Mathematics course (course 3970).

4. The standing granted by the Board of Studies in Science and Mathematics in the case of applications based upon the partial completion of the requirements for any degree or award of the University may be such as to give full credit in the Science and Mathematics course (course 3970) for work done in the course from which the students transfer.

Programs

Each program has a four-digit identifying number.

Most programs have been set out as Years 1, 2, 3 and 4 for the four year program and in these cases Years 1, 2 and 3 comprise a three year program. Some programs are designed as an integrated four year program leading to the award of the honours degree. A few programs are set out as Years 1, 2 and 3 and lead to the pass degree only.

To progress through a program a student must meet all the prerequisites and co-requisites as detailed in Tables 1, 2 and 3.

The range of programs has been designed to cover a wide variety of needs in the various areas of science and mathematics, namely:

- Anatomy
- Biochemistry
- Biology
- Biotechnology
- Botany
- Chemistry
- Chemical Physics
- Community Medicine
- Computer Science
- Genetics
- Geography
- Geology
- History and Philosophy of Science
- Marine Science
- Mathematics
- Metallurgy
- Microbiology
- Philosophy
- Physics
- Physiology
- Psychology
- Zoology

In addition to Course 3970 programs are also included for Courses 4770 (Science/Law), 3730 (Science/Civil Engineering), 3970/3640 (Science/Electrical Engineering), 4070 (Mathematics Education), 4080 (Science Education).
0101

Physics

Year 1
1.001 or 1.011
10.001 or 10.011
Choose 2 units from:
2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from:
1.041
5.010
6.611
10.081
17.031, 17.021
25.110, 25.120

Year 2
1.012*, 1.022*, 1.032
10.1113, 10.1114, 10.2111, 10.2112
1 General Studies elective
Choose 3 units from:
1.042, 1.052
10.111A, 10.331, 10.411A

Year 3
1.013*, 1.023*, 1.033*, 1.043, 1.053
2 General Studies electives
Choose at least 2 units from:
1.1333, 1.1433, 1.1533, 1.1633, 1.1733, 1.3033, 1.3133, 1.3233, 1.3333
10.212A, 10.412D

Year 4
1.104
1 General Studies elective

* Students seeking passes with distinction may be required to take additional material.

0102

Physics

Single Major†

Year 1
1.001 or 1.011
10.001 or 10.011
Choose 4 Level I units from Table 1 and/or Table 2 for program 0102

Year 2
1.012*, 1.022*, 1.032
10.2111 & 10.2112
1 General Studies elective
Choose 4 units from 1.042, 1.052, Table 1 and/or Table 2 for program 0102

Year 3
1.013*, 1.023*, 1.033*, 1.043
2 General Studies electives
Choose at least 3 units from Table 1 and/or Table 2 for program 0102

* See footnote to program 0101.

† Under exceptional circumstances students taking this program may be eligible for transfer into Year 4 of program 0101 or 0103 or 0105, the latter if the student reaches a satisfactory level in a number of mathematics units at Level II and III.

0103

Applied Physics

Year 1
1.001 or 1.011
10.001 or 10.011
Choose 2 units from:
2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from:
1.041
5.010
6.611
10.081
17.031, 17.021
25.110, 25.120

Year 2
1.012*, 1.022*, 1.032
10.1113, 10.1114, 10.2111, 10.2112
1 General Studies elective
Choose 3 units from:
1.042, 1.052
10.111A, 10.331, 10.411A

Year 3
1.013*, 1.023*, 1.033*, 1.043
2 General Studies electives
Choose at least 3 units from:
1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, 1.053

Year 4
1.304
1 General Studies elective

* See footnote to program 0101.

0105

Theoretical Physics

Year 1
1.001 or 1.011
10.001 or 10.011
Choose 2 units from: 2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from:
1.041
5.010
6.611
10.081
17.031, 17.021
25.110, 25.120

Year 2
1.012*, 1.022*, 1.032
10.111A, 10.1113 & 10.1114
or
10.1213 & 10.1214,
10.2111 & 10.2112
or
10.2211 & 10.2212
1 General Studies elective
Choose 2 units from:
1.042, 1.052
10.211E, 10.331, 10.411A or 10.421A, 10.411B or 10.421B
0106 Biophysics

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021

Year 2
1.012, 1.022, 1.032
2.002B
10.1113, 10.1114, 10.2111, 10.2112
73.111* or 73.121
1 General Studies elective

Year 3
1.023, 1.033, 1.1433, 1.1533, 1.343
10.111A, 10.212
2 General Studies electives
Choose at least 1 unit from:
17.012
42.101
43.101, 43.111, 43.121, 43.131
44.101
45.101, 45.201, 45.301
73.012A, 73.012B

Year 4
1.604
1 General Studies elective

* Entry to 73.111 requires the approval of the Head of School of Physiology and Pharmacology.

0162 Physics with Science Studies†

Year 1
1.001 or 1.011
10.001 or 10.011
Choose 4 Level I units from Table 1 and/or Table 2 for program 0162

Year 2
1.012*, 1.022*, 1.032
10.2111, 10.2112
1 General Studies elective**
62.022, 62.052, 62.062
Choose 1 unit from:
62.012, 62.022, 62.032
Choose 1 unit from:
15.001, 15.703, 15.753, 10.212A or 10.412D

Year 3
1.013*, 1.023*, 1.033*, 1.043
½ General Studies elective**
Choose 3 units from:
Choose 1 unit from:
26.361, 26.364, 26.817 may not be included in the program.

0201 Chemistry* Single major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
10.021B & 10.021C
Choose 2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
1 General Studies elective
Choose 3 units from Table 1

Year 3
2 General Studies electives
Choose 8 units from Table 1 including 4 Level III Chemistry units

Year 4
2.004
1 General Studies elective

* Students wishing to undertake a co-major in Chemistry and History and Philosophy of Science are advised that they may do so by enrolling in 0201 or 0202 and choosing appropriate History and Philosophy of Science units from Table 1. In such cases, 26.561, 26.564 and 26.817 may not be included in the choice of General Studies electives.
0202

Chemistry

*See footnote to program 0201.

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
Choose 2 Level I units from Table 1

Year 2
2.002A, 2.002B
1 General Studies elective
Choose at least 5 units from Table 1 including at least one of:
2.042C and 2.002D

Year 3
2 General Studies electives
Choose 8 Level III units from Table 1 including only 4 Chemistry units

Year 4
2.004
1 General Studies elective

*See footnote to program 0201.

0203

Chemistry

Double major

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (3910) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 3910, the transfer may still be made before the commencement of Year 3.

The Pure and Applied Chemistry Course is described in detail later in this handbook (Faculty of Science) and enables specialization in Chemistry.

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
Choose 2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
2 General Studies electives
Choose 2 units from Table 1

Year 3
2.003B, 2.003C, 2.003D, 2.013A
1 General Studies elective
Choose 4 other Chemistry Level III electives from Table 1

Year 4
2.004
1 General Studies elective

*Students electing 10.111A and 10.2111 and 10.2112 need not make an election under Year 2 clauses 1, and 2.

0204

Chemistry/Chemical Engineering Science

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose either
1. 5.030 and 1 Level I unit from Table 1, or
2. 2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
10.031
or
10.111A and 10.2111 and 10.2112*
48.023
1 General Studies elective
Choose either
1. 5.030 or
2. 1 Level II unit from Table 1

Year 3
48.037
2 General Studies electives
Choose 4 Level III Chemistry units from Table 1
Choose two units from Table 1

Year 4
2.004
1 General Studies elective

*Students electing 10.111A and 10.2111 and 10.2112 need not make an election under Year 2 clauses 1, and 2.

0241

Chemistry/Biochemistry

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021

Year 2
2.002A, 2.002B, 2.042C, 2.002D
41.101, 41.111
1 General Studies elective

Year 3
41.102A
2 General Studies electives
Choose either 41.102B or both 41.102C and 41.102D
Choose 4 Chemistry Level III units from Table 1

Year 4
1 General Studies elective
41.103 or
2.004
0242
Chemistry/Biotechnology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021

Year 2
2.002A, 2.002B
41.101
42.101
44.101, 44.121
1 General Studies elective
Choose 1 unit from:
2.042C, 2.002D

Year 3
42.102A, 42.102B
2 General Studies electives
Choose 6 units from Table 1 including 4 Chemistry Level III units; all should be Level III if proceeding to Year IV

Year 4
1 General Studies elective
2.004 or
42.103

0262
Chemistry with Science Studies

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
62.022, 62.052, 62.062
1 General Studies elective*
Choose 1 unit from Table 1

Year 3
4 Chemistry Level III units from Table 1
½ General Studies elective*
Choose 3 units from:
Choose 1 unit from:
15.001, 15.703, 15.753

Year 4
1 General Studies elective*
2.004 or
62.024
* 26.561, 26.564, 26.617 may not be included in program.

7302
Chemistry/Physiology

See 7302 Physiology/Chemistry

0401
Physical Metallurgy

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
2.002A
4.402, 4.502
1 General Studies elective
Choose 4 Level II units from Table 1 or 3 Level II units from Table 1 and 1 unit from Table 2 for program 0401

Year 3
4.403, 4.703, 4.503
2 General Studies electives
Choose 4 Level III units from Table 1 or 3 Level III units from Table 1 and 1 Level III unit from Table 2 for program 0401

Year 4
4.004
1 General Studies elective

0402
Chemical Metallurgy

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
2.002A
4.302, 4.602, 4.412
1 General Studies elective
Choose 4 Level II units from Table 1 or 3 Level II units from Table 1 and 1 Level II unit from Table 2 for program 0402

Year 3
4.303, 4.613*, 4.422
7.023*
2 General Studies electives
Choose 4 Level III units from Table 1 or 3 Level III units from Table 1 and 1 unit from Table 2 for program 0402

Year 4
4.004
1 General Studies elective
* Students not proceeding to Honours may substitute another Level II or Level III unit from Table 1 for 4.613 and 7.023.
0403
Metallurgy
Double major

Students wishing to take more than 4 Level III Metallurgy units are required to transfer to the four year Metallurgy BSc degree course (3120) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 3120 the transfer may still be made before the commencement of Year 3.

The Metallurgy BSc degree course is described in detail in the Faculty of Applied Science Handbook and enables specialization in Metallurgy.

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
 Choose either:
 - 25.110, 25.120
 - or
 - 5.010 and 5.030

Year 2
- 2.002A
- 4.302, 4.402, 4.502, 4.602, 4.802
- 10.031
- 25.541
 - 1 General Studies elective

Year 3
- 4.303, 4.403, 4.503, 4.613, 4.703
- 7.023
 - 2 General Studies electives
 Choose either:
 - 4.813 or
 - 6.851 and 6.852

Year 4
- 4.024, 4.054, 4.314, 4.324, 4.414, 4.424, 4.504
 - 1 General Studies elective

0603
Computer Systems Programming

Year 1
- 10.001 or 10.011
- 6.611
 Choose 5 units from:
 - 1. Table 1 &/or
 - 2. The BA course &/or
 - 3. Table 2 for program 0601

Year 2
- 6.621 or 6.620, 6.631, 6.641
 - 1 General Studies elective
 Choose 5 units including at least 1 unit of statistics from:
 - 1. Table 1 &/or
 - 2. The BA course &/or
 - 3. Table 2 for program 0601

Year 3
- 6.613, 6.632, 6.633, 6.642, 6.643
 - 2 General Studies electives
 Choose at least 2 units from:
 - 1. Table 1 &/or
 - 2. The BA course &/or
 - 3. Table 2 for program 0601

Year 4
- 6.606
 - 1 General Studies elective

0601
Computer Science

Year 1
- 10.001 or 10.011
- 6.611
 Choose 5 units from:
 - 1. Table 1 &/or
 - 2. The BA course &/or
 - 3. Table 2 for program 0601

Year 2
- 6.621 or 6.620, 6.631, 6.641
 - 1 General Studies elective
 Choose 5 units from:
 - 1. Table 1 &/or
 - 2. The BA course &/or
 - 3. Table 2**

Note:
- * Year 1 students must enrol in Program 6806. Enrolment in Year 2 of Programs 0601, 0603, 0604, 0605, 0610 and 0611 is based on academic performance in Year 1.
- ** The program may include up to 8 units that are not in Table 1. Subjects chosen from the BA degree course are restricted to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273. (6 BA degree credit points at Level I or 4 credit points at Upper Level are equivalent to 1 unit.)
- † Students intending to proceed to honours in Computer Science should choose 8 Level III units including 6.613, 6.632, 6.642 and 6.643.
Scientific Computing

Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 2
6.621 or 6.620, 6.631, 6.641
10.111A (or 10.121A), 10.111B (or 10.121B), 10.111C (or 10.121C), 10.111D (or 10.121D), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.2113 (or 10.2213), 10.2114 (or 10.2214), 10.331
1 General Studies elective

Year 3†
6.642, 6.646
10.212A (or 10.222A), 10.212L (or 10.222L)
2 General Studies electives
Choose at least 3 units (including 2 or more Level III Computer Science units) from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 4
6.606
1 General Studies elective
** † See footnotes to program 0601.

Commercial Computing

Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 2
6.621 or 6.620, 6.631, 6.641
10.2113 (or 10.2213), 10.2114 (or 10.2214)
1 General Studies elective

Year 3†
6.632, 6.633, 6.642, 6.646, 6.647
2 General Studies electives
Choose at least 2 units from:
1. Table 1 or
2. The BA course** or
3. Table 2 for program 0601**

Computer Science/Statistics

Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 2
6.621 or 6.620, 6.631, 6.641
10.111A (or 10.121A), 10.111B (or 10.121B), 10.111C (or 10.121C), 10.111D (or 10.121D), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B), 10.111A (or 10.121A), 10.111B (or 10.121B), 10.2112 (or 10.2212)
1 General Studies elective

Year 3†
6.632, 6.633, 6.642, 6.646, 6.647
2 General Studies electives
Choose at least 2 units from:
1. Table 1 or
2. The BA course** or
3. Table 2 for program 0601**

Computer Science/Mathematics

Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 2
6.621 or 6.620, 6.631, 6.641
10.111A (or 10.121A), 10.111B (or 10.121B), 10.111C (or 10.121C), 10.111D (or 10.121D), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B), 10.111A (or 10.121A), 10.111B (or 10.121B), 10.2112 (or 10.2212)
1 General Studies elective

Year 3†
6.632, 6.633, 6.642, 6.646, 6.647
2 General Studies electives
Choose at least 7 units including 4 (or 3) Level III Computer Science units and 3 (or 4) Level III Mathematics units

Year 4
6.606
1 General Studies elective
** † See footnotes to program 0601.

Computer Science/Statistics

Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 2
6.621 or 6.620, 6.631, 6.641
10.111A (or 10.121A), 10.111B (or 10.121B), 10.111C (or 10.121C), 10.111D (or 10.121D), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B), 10.111A (or 10.121A), 10.111B (or 10.121B), 10.2112 (or 10.2212)
1 General Studies elective

Year 3†
6.632, 6.633, 6.642, 6.646, 6.647
2 General Studies electives
Choose at least 7 units including 4 (or 3) Level III Computer Science units and 3 (or 4) Level III Statistics units

Year 4
6.606
1 General Studies elective
** † See footnotes to program 0601.
1001

Mathematics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)

1 General Studies elective
Choose 5 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 Level II/III Mathematics units from Table 1 (or choose 5 if only 3 Level II Mathematics units taken)

2 General Studies electives
Choose 3 (or 2) units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

* It is strongly recommended that two of these units be 10.081 and 6.611.
** Up to 8 units of this program may be replaced by subjects offered in the BA degree course (6 credit points at Level I or 4 credit points at Upper Level are equivalent to 1 unit.) The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.962, 15.072, 15.263 and 15.273.
† Not more than 8 units that are not in Table 1 may be taken without the approval of the Head of the School of Mathematics.
§ Not to include more than one Level II/III unit.

1002

Pure Mathematics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)

1 General Studies elective
Choose 5 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 2 units from:
10.1122, 10.1123, 10.1124, 10.1125, 10.1126, 10.1127, 10.1129, 10.112C, 10.1521

2 General Studies electives
If only 3 Level II Mathematics units taken in Year 2 choose 1 further Level II or Level III Mathematics unit

Choose 3 (or 2) units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Note: 3rd Year Higher Pure Mathematics Units may be substituted for equivalent pass units with the approval of the Head of School of Mathematics.
** ↔ See footnotes to program 1001.
† This unit may be taken in Year 2 or Year 3 of the program.

1004

Applied Mathematics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Note: Where higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.
Year 2
10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2113t (or 10.2213t), 10.2114t (or 10.2214t)

1 General Studies elective
Choose 4 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M)
One unit from the Theory of Statistics Level III units or from the Theoretical Mechanics Level III units

2 General Studies electives
Choose 3 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

** † See footnotes to program 1001.
† These ½ units are strongly recommended but not essential. If not taken, one additional Mathematics unit at Level II or Level III must be taken in either Year 2 or Year 3.

1005
Applied Mathematics Honours

Year 1
10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A, 10.1113, 10.1114, 10.2112, 10.2212, 10.2214
1 General Studies elective
Choose 4 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.2212A, 10.222L, 10.222M
Choose 1 unit from:
10.222L, 10.222C, 10.222F
Choose 2 further Higher Level III§ Mathematics units one of which must not be a Pure Mathematics unit and one of which is recommended to be 10.122B
2 General Studies electives
Choose 2 Level III§ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 4
10.223
1. General Studies elective

Note: Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

** †§ See footnotes to program 1001.

1006
Statistics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B)
1 General Studies elective
Choose 2½ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 units from:
10.312A (or 10.322A), 10.312B (or 10.322B), 10.312C (or 10.322C), 10.312D (or 10.322D), 10.312E (or 10.322E)

2 General Studies electives
Choose 3 Level III Mathematics and/or Computer Science units from Table 1

** † See footnotes to program 1001.

1007
Statistics Honours

Year 1
10.011 or 10.001
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.111A), 10.1113 (or 10.1113), 10.1114 (or 10.1114), 10.2112 (or 10.2212), 10.321A, 10.321B
1 General Studies elective
Choose 2½ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 units from:
10.322A, 10.322B, 10.322C, 10.322D, 10.322E

2 General Studies electives
Choose 3 Level III Mathematics and/or Computer Science units from Table 1

Year 4
10.323
1. General Studies elective

Note: Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

** † See footnotes to program 1001.
1008
Theoretical Mechanics

Year 1
10.001 or 10.011
1.001 or 1.011
Choose 4 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.411A (or 10.421A), 10.411B (or 10.421B)

1 General Studies elective
Choose 3 units from:
1. Table 1 &/
2. The BA course**† &/
3. Table 2† for program 1001

Year 3
10.412A (or 10.422A), 10.421B (or 10.422B), 10.412D (or 10.422D)

Choose 3 units from:
1. Table 1 &/
2. The BA course**† &/
3. Table 2† for program 1001

Year 4
10.423

1 General Studies elective

Note: Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

** † See footnotes to program 1001.

1009
Theoretical Mechanics Honours

Year 1
10.011, 1.001 (or 1.011)
Choose 4 units* from:
1. Table 1 &/
2. The BA course**† &/
3. Table 2† for program 1001

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212, 10.421A, 10.421B

1 General Studies elective
Choose 3 units from:
1. Table 1 &/
2. The BA course**† &/
3. Table 2† for program 1001

** † See footnotes to program 1001.

1010
Applied Mathematics and Theoretical Mechanics

Year 1
10.001 (or 10.011), 1.001 (or 1.011)
Choose 4 units* from:
1. Table 1 &/
2. The BA course**† &/
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.411A (or 10.421A), 10.411B (or 10.421B), 10.2113 (or 10.2213), 10.2114 (or 10.2214)

1 General Studies elective
Choose 2 units from:
1. Table 1 &/
2. The BA course**† &/
3. Table 2† for program 1001

Year 3
10.422A, 10.422B, 10.222C, 10.422D

Choose 2 units from:
10.412A, 10.222A (or 10.212A), 10.222M (or 10.212M), 10.2213 (or 10.2113), 10.2214 (or 10.2114), 10.122B, 10.122E (or 10.1125 and 10.1126)

2 General Studies electives
Choose 1 unit from:
1. Table 1 &/
2. The BA course**† &/
3. Table 2† for program 1001

Year 4
10.423

1 General Studies elective

** † See footnotes to program 1001.
1011
Mathematics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Year 3
Choose 4 Level III† Mathematics units from Table 1 (or Choose 5 if only 3 Level II Mathematics units taken)
Choose 5 (or 4) units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
* Except for mathematics units, not more than 2 Level I units may be taken in one subject.
** It is strongly recommended that two of these units be 10.081 and 6.611.
† Geography, History and Philosophy of Science, and Philosophy shall be from the BA degree course.
‡ At least 6 units of this program must come from subjects offered in the BA degree course (8 credit points at Level I or 4 credit points at Upper Level are equal to 1 unit). The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, Geography, German, History, History and Philosophy of Science, Philosophy, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to those in Economic History plus 15.062, 15.072, 15.263 and 15.273.
‡ Not to include more than one Level II/III unit.

1012
Pure Mathematics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.111†, 10.1112†, 10.1121, 10.1128
Choose 2 units from:
10.1122, 10.1123, 10.1124, 10.1125, 10.1126, 10.1127, 10.1129, 10.112C, 10.1521
If only 3 Level II Mathematics units were taken choose 1 further Level II or Level III Mathematics unit
Choose 5 (or 4) units from:
1. Table 1† &/or
2. The BA course§

Note: 1. The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. 3rd year Higher Pure Mathematics Units may be substituted for equivalent pass units with the approval of the Head of School of Mathematics.
* ** † ‡ See footnotes to program 1011.
§ This unit may be taken in Year 2 or Year 3 of the program.

1013
Pure Mathematics Honours and Liberal Studies§

Year 1
10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A, 10.1213, 10.1214, 10.2211, 10.2212, 10.121C
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.122A, 10.122B, 10.122C, 10.122E
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Year 4
10.123

Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may be accepted as equivalent.
* ** † ‡ See footnotes to program 1011.
1014
Applied Mathematics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1 † &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.2113† (or 10.2213†), 10.2114† (or 10.2214†)
Choose 4 units from:
1. Table 1 † &/or
2. The BA course§

Year 3
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M)
Choose 1 unit from:
the Theory of Statistics Level III units or from the Theoretical Mechanics Level III units
Choose 5 units from:
1. Table 1 † &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
* † &/or See footnotes to program 1011.
† This unit is strongly recommended but not essential. If not taken one additional Mathematics unit at Level II or Level III must be taken in either year 2 or year 3.

1015
Applied Mathematics Honours and Liberal Studies§

Year 1
10.011
Choose 6 units* ** from:
1. Table 1 † &/or
2. The BA course§

Year 2
10.121A, 10.1213, 10.1214, 10.2212, 10.2213, 10.2214
Choose 4 units from:
1. Table 1 † &/or
2. The BA course§

Year 3
10.222A, 10.222L, 10.222M
Choose 2 further Higher Level III† Mathematics units one of which must not be a Pure Mathematics unit and one of which is recommended to be 10.122B
Choose 4 units from:
1. Table 1 † &/or
2. The BA course§

1016
Statistics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1 † &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B)
Choose 2½ units from:
1. Table 1 † &/or
2. The BA course§

Year 3
Choose 4 units from:
10.321A (or 10.322A), 10.321B (or 10.322B), 10.321C (or 10.322C), 10.312D (or 10.322D), 10.312E (or 10.322E)
Choose 3 Level III Mathematics and/or Computer Science units from Table 1
Choose 2 units from:
1. Table 1 † &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
* † &/or See footnotes to program 1011.
† This unit is strongly recommended but not essential. If not taken one additional Mathematics unit at Level II or Level III must be taken in either year 2 or year 3.

1017
Statistics Honours and Liberal Studies§

Year 1
10.011 or 10.001
Choose 6 units* ** from:
1. Table 1 † &/or
2. The BA course§

Year 2
10.121A (or 10.111A), 10.1213 (or 10.1113), 10.1214 (or 10.1114), 10.2212 (or 10.2112), 10.321A, 10.321B
Choose 2½ units from:
1. Table 1 † &/or
2. The BA course§

Year 3
Choose 4 units from:
10.322A, 10.322B, 10.322C, 10.322D, 10.322E
Choose 3 Level III Mathematics and/or Computer Science units from Table 1
Choose 2 units from:
1. Table 1 † &/or
2. The BA course§
Year 4
10.323

Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

* ** † See footnotes to program 1011.

1018
Theoretical Mechanics and Liberal Studies§

Year 1
10.001 or 10.011
1.001 or 1.011
Choose 4 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.411A (or 10.421A), 10.411B (or 10.421B)
Choose 3 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.412A (or 10.422A), 10.412B (or 10.422B), 10.412D (or 10.422D)
Choose 1 unit from:
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M), (10.1125 and 10.1126) or 10.122E
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.

* ** † See footnotes to program 1011.

1019
Theoretical Mechanics Honours and Liberal Studies§

Year 1
10.011
1.001 or 1.011
Choose 4 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212, 10.421A, 10.421B
Choose 3 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.422A, 10.422B, 10.222C, 10.422D
Choose 2 units from:
10.412A, 10.212A (or 10.222A), 10.222M (or 10.212M), 10.2213 (or 10.2113), 10.2214 (or 10.2114), 10.122B, 10.122E (or 10.1125 and 10.1126)
Choose 3 units from:
1. Table 1† &/or
2. The BA course§

Year 4
10.423

Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

* ** † See footnotes to program 1011.

1020
Applied Mathematics
(Economic Optimization)

Year 1
10.001 or 10.011
15.001, 15.011
Choose 4 units from:
1. Table 1† &/or
2. **The BA course &/or
3. Table 2 for program 1020

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.2113 (or 10.2213), 10.2114 (or 10.2214) 15.002, 15.042
1 General Studies elective
Choose either 10.331 and 1 unit from:
1. Table 1† &/or
2. **The BA course &/or
3. Table 2 for program 1020
or
Choose both:
10.311A, 10.311B
or
Choose both:
10.321A, 10.321B

Year 3
10.212L (or 10.222L), 10.212M (or 10.222M) 15.003, 15.413, 15.423
1 General Studies elective
Choose 2 Level III* Mathematics units from Table 1 if 10.331 was chosen and otherwise choose 1 Level III* Mathematics unit from Table 1 excluding 10.312C and 10.322C

Note: Only 1 General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.

* The two half units 10.1125 and 10.1126 are recommended.

** Six credit points at Level I or 4 credit points at Upper Level equals 1 unit.
1021
Applied Mathematics Honours
(Economic Optimization)

Year 1
10.011
15.001, 15.011
Choose 4 units from:
1. Table 1 &/or
2. The BA course &/or
3. Table 2 for program 1021

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212, 10.2213, 10.2214, 10.331 or both 10.311A and 10.311B or both 10.321A and 10.321B
15.012, 15.052
1 General Studies elective

Year 3
10.222A, 10.222L, 10.222M, 10.122B
14.513, 14.533, 14.413, 14.423
1 General Studies elective

Year 4
10.233
14.524, 14.534
1 General Studies elective

Note: Only 2 General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 may be substituted for a General Studies elective but may not then count as a qualifying unit.

1022
Mathematics of Management

Year 1
10.011
14.501, 14.511
15.001, 15.011
Choose 2 units from:
1. Table 1 &/or
2. Table 2 for program 1022

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212, 10.2213, 10.2214, 10.331 * 14.532, 14.552
Choose either 15.062 and 15.072 or 15.042 and 15.002
1 General Studies elective

Year 3
10.222A, 10.222L, 10.222M, 10.122B
14.573, 14.593
1 General Studies elective
Choose 1 Level III unit from:
1. Table 1 &/or
2. Table 2 for program 1022

1023
Mathematics of Management Honours Program

Year 1
10.011
14.501, 14.511
15.001, 15.011
Choose 2 units from:
1. Table 1 &/or
2. Table 2 for program 1023

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212, 10.2213, 10.2214, 10.311B or 10.312A (or 10.322A)
15.042
1 General Studies elective

Year 3
14.583
Choose at least 4 Level III mathematics units from Table 1, of which at least 2 shall be selected from:
10.212A (or 10.222A), 10.412D (or 10.422D), 10.212L (or 10.222L), 10.212M (or 10.222M), 10.311B (or 10.321B), 10.312A (or 10.322A)
Choose at least one unit from:
1 General Studies elective
Choose any remaining units from:
1. Table 1 &/or
2. Table 2 for program 1022

Note: Only 2 General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.
Year 4
10.233
14.852
14.851 or one Accountancy Honours Option

Note: 1. Only 2 General Studies electives are required in this program. Each of 14.601, 15.601, 16.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

* May be taken in Year 3.

1069
Mathematics/Marine Science Honours

Year 1
10.011
1.001 or 1.011
Choose 4 units from:
1. 17.031, 17.021
2. 25.110, 25.120 or 27.801 & 27.811
3. 2.121, 2.111, 2.131, 2.141
4. 5.010, 5.030

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212, 10.421B, 10.421A
68.302
Choose 2 units from the groups 1., 2., 3. or 4. chosen in Year 1:
1. 17.012
43.111
45.201
2. 25.622
3. 2.002A, 2.002D
4. 48.024†
1 General Studies elective

Year 3
1.183
10.412A, 10.422A, 10.422D
(10.2213 & 10.2214) or 10.222C
Choose 3 units from:
(10.1125 & 10.1126) or 10.122E, 10.222A, 10.222L, 10.222M, 10.311A (or 10.321A)
1. 43.172
45.112
3. 1.913, 2.043A
4. 48.038† §
2 General Studies electives

Year 4
10.423
1 General Studies elective

Note: Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.
† Taken together, 48.024 and 48.036 count as 3 units.
§ Omitting ‘multicomponent systems’.
Year 1
10.001 or 10.011
or
10.021B and 10.021C
Choose 4 Level I units from Table 1 or Table 2 for program 1201

Year 2
12.152
Choose 2 units from:
12.052, 12.062, 12.072, 12.082
1 General Studies elective
Choose 5 units from Table 1

Year 3
2 General Studies electives
Choose at least 7 units from Table 1 including at least 4 Level III Psychology units*

Year 4
1 General Studies elective
12.014 or 12.044 or 70.013

Students may also take the four year full-time course in Psychology which leads to
the award of the degree of Bachelor of Science (J240).

The Psychology Course is described in detail later in this handbook (Faculty of Biological Sciences) and allows a specialization in Psychology.

* Students taking honours in Psychology must have completed 8 Level III units of Psychology including 12.153 from Group A and at least 1 unit from each of Groups B, C and D. Additionally, students intending to take the research alternative in Psychology IV are required to include 12.163 from Group A.

Year 3
70.012C, 70.306, 70.307
2 General Studies electives
Choose at least 4 Psychology Level III units†, or
Choose*** 4 Psychology Level III units and 70.011B or
70.012B or 70.304 or 70.305

Year 4
1 General Studies elective
12.014 or 12.044 or 70.013

† In Year 1, students must enrol in program 6801. Enrolment in Year 2 of program 1270 is based on academic performance in Year 1.

** The Cumberland College of Health Sciences recognizes the completion of this program as an appropriate prerequisite for admission to its Graduate Diploma in Occupational Therapy course.

*** Students taking Honours in Anatomy must have completed at least 4 Anatomy units at Level III. This requires one elective unit chosen from 70.011B, 70.012B, 70.304, or 70.305.

§ Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.

†† Students taking Honours in Psychology must have completed 8 Level III units of Psychology including 12.153 from Group A and at least 1 unit from each of Groups B, C and D. Additionally, students intending to take the research alternative in Psychology IV are required to include 12.163 from Group A.

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120

Year 2
25.211, 25.221, 25.212, 25.23
1 General Studies elective
Choose 4 units from Table 1

Year 3
2 General Studies electives

Year 4 (offered 1982)
25.400
Plus
either
25.404
or
25.405
1 General Studies elective
2502
Geology
Single major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120

Year 2
25.211, 25.221, 25.212, 25.223
1 General Studies elective
Choose 4 units from Table 1

Year 3
25.311, 25.312, 25.326, plus one of the following:
2 General Studies electives
Choose 4 units from Table 1

Year 4
25.406
1 General Studies elective

2702
Science Geography with Botany

Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
27.801, 27.802
Choose 2 units from:
2.111, 2.121, 2.131, 2.141

Year 2
1.001
27.811, 27.812, 27.2813, 27.2814
43.101, 43.111
1 General Studies elective
Choose 1 Level II unit from Table 1

Year 3
27.153, 27.143
43.142
2 General Studies electives
Choose 4 units from:
27.183, 27.133, 27.862
43.112, 43.162

Year 4
27.604
1 General Studies elective

2725
Science Geography/Geology

See 2725 Geology/Science Geography

2701
Science Geography

Year 1
10.001 or 10.011
or
10.021B & 10.021C
27.801, 27.802
Choose 4 Level I units from Table 1

Year 2
27.811, 27.812, 27.2813, 27.2814
1 General Studies elective
Choose 4 units from Table 1 including not more than 2 Level I units

Year 3
2 General Studies electives
Choose 8 units including at least 4 Level III units from Table 1 including at least 3 units from:
27.153, 27.143, 27.183, 27.133 (or 27.863), 27.872

Year 4
27.604
1 General Studies elective

2703
Science Geography with Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
27.801, 27.802

Year 2
1.001
25.211, 25.221, 25.212
27.811, 27.812, 27.2813, 27.2814
1 General Studies elective

Year 3
25.311, 25.312
27.183, 27.133
2 General Studies electives
Choose 3 units from:
Either
25.325, (or 25.314), 27.153, 27.143, 27.862

Year 4
27.604
1 General Studies elective
2725
Science Geography/Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
27.801, 27.802

Year 2
1.001
25.211, 25.221, 25.212, 25.222
27.811, 27.2813, 27.2814
1 General Studies elective

Year 3
27.183, 27.133, 27.812
Choose four subjects from:
2 General Studies electives
Choose 1 unit from:
27.153, 27.143, 27.862

Year 4
1 General Studies elective
27.604 or 25.404

2743
Science Geography/Botany

Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
27.801, 27.802
Choose 2 units from:
2.111, 2.121, 2.131, 2.141

Year 2
1.001
27.811, 27.812, 27.2813, 27.2814
43.101, 43.111
1 General Studies elective
Choose 1 Level II unit from Table 1

Year 3
27.153, 27.143
43.112 or 43.162, 43.142
2 General Studies electives
Choose 3 units from:
27.183, 27.133
43.102, 43.152

Year 4
1 General Studies elective
27.604 or 43.103

4101
Biochemistry

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
1 General Studies elective
Choose at least 3 units from Table 1

Year 3
41.102A
Choose at least 6 units from Table 1, including either 41.102B and/or both 41.102C and 41.102D; all should be at Level III if proceeding to Honours
2 General Studies electives

Year 4
41.103
1 General Studies elective

0241
Biochemistry/Chemistry

See 0241 Chemistry/Biochemistry

4142
Biochemistry/Biotechnology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
42.101
44.101, 44.121
1 General Studies elective

Year 3
41.102A
42.102A, 42.102B
2 General Studies electives
Choose 4 units from Table 1 including either 41.102B and/or both 41.102C and 41.102D; all should be Level III if proceeding to Year IV

Year 4
1 General Studies elective
41.103 or
42.103
4143
Biochemistry/Botany

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
43.121
1 General Studies elective
Choose 2 units from:
43.101, 43.111, 43.131

Year 3
41.102A, 41.102C, 41.102D
43.122, 43.182
2 General Studies electives
Choose 2 units from:
43.102, 43.112, 43.132, 43.142, 43.172

Year 4
1 General Studies elective
41.103 or 43.103

4144
Biochemistry/Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
44.101, 44.121
1 General Studies elective
Choose 1 unit from Table 1

Year 3
41.102A
44.102, 44.112
2 General Studies electives
Choose either 41.102B or both 41.102C and 41.102D

Year 4
1 General Studies elective
41.103 or Choose 10 units including either:
44.563 or 44.573 or 44.583
and from:
44.513, 44.523, 44.533, 44.543, 44.553

4145
Biochemistry/Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
45.101, 45.201, 45.301
1 General Studies elective
Choose one unit from:
2.002A, 2.002D, 2.042C
17.012
43.101

Year 3
41.102A, 41.102B
2 General Studies electives
Choose 4 Level III Zoology units from Table 1

Year 4
1 General Studies elective
41.103 or
45.103

4162
Biochemistry with Science Studies

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
26.052, 26.062
1 General Studies elective*
Choose 1 unit from:
26.012, 26.022, 26.032
Choose 1 unit from Table 1

Year 3
41.102A
41.102B or both 41.102C & 41.102D
½ General Studies elective*
Choose 3 units from:
Choose 1 unit from:
15.001, 15.703, 15.753

Year 4
1 General Studies elective*
41.103 or
26.024
* 26.561, 26.564, 26.817 may not be included in program.
4170
Biochemistry/Anatomy†

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
70.011A, 70.011C
1 General Studies elective
73.121 or 73.111** or choose 1 or 2 units from:
2.002A, 2.002D, 2.042C, 70.011B

Year 3
41.102A, 41.102B
70.012B, 70.304
2 General Studies electives
Choose 2 units from:
70.011B, 70.305, 70.306, 70.307, 70.012C
1 General Studies elective
41.103 or 70.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 4170 is based on academic performance in Year 1.
** Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.
† Owing to timetabling difficulties this program may take longer than minimum time to complete.

4173
Biochemistry/Physiology

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
73.111
1 General Studies elective
Choose 2 units from Table 1

Year 3
41.102A, 41.102B
73.012
2 General Studies electives

Year 4
1 General Studies elective
41.103 or 73.103

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 4173 is based on academic performance in Year 1.

4201
Biotechnology (General)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B and 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101
42.101
44.101, 44.121
1 General Studies elective
Choose 1 unit from Table 1

Year 3
42.102A, 42.102B
2 General Studies electives
Choose 6 units from Table 1, at least two of which are Level III; all should be Level III if proceeding to Year IV

Year 4
42.103
1 General Studies elective

0242
Biotechnology/Chemistry

See 0242 Chemistry/Biotechnology

4142
Biotechnology/Biochemistry

See 4142 Biochemistry/Biotechnology

4244
Biotechnology/Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B and 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1
4305
Botany — Applied Plant Physiology

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
41.101
43.101, 43.111, 43.121
44.101
45.101, 45.201
1 General Studies elective

Year 3
43.131, 43.102, 43.132, 43.142, 43.182
45.402, 45.412, 45.422
2 General Studies electives

Year 4
43.103
1 General Studies elective

4306
Botany with Zoology

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
41.101
43.101, 43.111, 43.121
45.201, 45.301
1 General Studies elective
Choose 1 unit from:
17.012
43.131
45.101

Year 3
2 General Studies electives
Choose at least 7 units from Table 1 including at least 4 Level III Botany units

Year 4
43.103
1 General Studies elective

4307
Plant Physiology

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
Choose 2 Level I units from Table 1

Years 2, 3 and 4 continued overleaf
Year 2
41.101
43.111, 43.121
Choose 4 units from Table 1
1 General Studies elective

Year 3
43.122, 43.142, 43.182
Choose at least 4 units from Table 1, at least one of which must be at Level III
2 General Studies electives

Year 4
43.103
1 General Studies elective

**4308
Botany — Ecology**

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
Choose 2 other Level I units from Table 1

Year 2
6.620
10.031
17.012
43.111
44.101
45.201, 45.301
10.331 or 10.301
1 General Studies elective

Year 3
10.032
43.142, 43.152, 43.172
45.112
Choose at least 2 units from Table 1
2 General Studies electives

Year 4
43.103
1 General Studies elective

**2743
Science Geography/Botany**

See 2743 Botany/Geography

**4143
Botany/Biochemistry**

See 4143 Biochemistry/Botany

**4344
Botany/Microbiology**

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
Choose 2 units of 1.001 or other Level I units in Table 1

Year 2
17.012
41.101
43.101, 43.111, 43.121
44.101, 44.121
1 General Studies elective

Year 3
43.131
43.132
43.172
44.102
and either 43.152, 44.112
or
43.182, 44.122, 44.132
2 General Studies electives

Year 4
1 General Studies elective
43.103 or Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553

**4401
Microbiology**

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101
44.101, 44.121
1 General Studies elective
Choose 2 units from Table 1

Year 3
41.102A
44.102, 44.112, 44.132
2 General Studies electives
Choose 1 unit from:
42.102
44.122

Year 4
1 General Studies elective
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553
4402
Microbiology (Immunology)
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1
Year 2
2.002B
41.101
44.101, 44.121
70.011A
1 General Studies elective
Choose 1 unit from Table 1
Year 3
41.102A
44.102, 44.112, 44.122
2 General Studies electives
Choose one unit from Table 1 or 70.304
Year 4
1 General Studies elective
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553

4404
Microbiology (General)
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1
Year 2
41.101
44.101, 44.121
1 General Studies elective
Choose 3 units from Table 1
Year 3
44.102, 44.112
45.201
2 General Studies electives
Choose 4 units from Table 1
Year 4
1 General Studies elective
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553

4403
Microbiology (Ecology)
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1
Year 2
17.012
41.101
44.101, 44.121
45.201
1 General Studies elective
Choose 1 unit from:
43.111, 43.131
Year 3
43.132, 43.142, 43.172
44.102, 44.112
45.112
2 General Studies electives
Year 4
1 General Studies elective
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553

4144
Microbiology/Biochemistry
See 4144 Biochemistry/Microbiology

4244
Microbiology/Biotechnology
See 4244 Biotechnology/Microbiology

4344
Microbiology/Botany
See 4344 Botany/Microbiology
4501
Zoology (General)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
45.101, 45.201, 45.301
1 General Studies elective
Choose 5 units from Table 1 including at least 2 Level II units of Biochemistry, Chemistry, Physics, Geography, Geology or Mathematics

Year 3
2 General Studies electives
Choose 7 units from Table 1 including at least 4 units from:
45.112, 45.121, 45.122, 45.132, 45.142, 45.152, 45.202, 45.302, 45.422
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
1 General Studies elective

4502
Entomology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
41.101
45.101, 45.402
45.201 or 45.301
1 General Studies elective
Choose 3 Level II units from: Zoology, Botany, Microbiology or Mathematics

Year 3
45.412, 45.422, 45.432
2 General Studies electives
Choose 4 Level III units from: Zoology, Botany, Microbiology, Mathematics or 79.201
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
1 General Studies elective

4508
Zoology (Population Biology)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
Choose 2 units from Table 1

Year 2
6.620
17.012
43.101
45.301, 45.402
45.101 or 10.331
1 General Studies elective
Choose 2 units from:
10.031
43.111
44.101
45.201

Year 3
45.121, 45.122, 45.152, 45.302
79.201
2 General Studies electives
Choose at least 2 units from:
6.646, 6.643
10.032
43.102, 43.172
45.112, 45.202
79.302
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
1 General Studies elective

4509
Zoology with Mathematics

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
10.111A, 10.1113 & 10.1114, 10.2111 & 10.2112
45.201, 45.301
1 General Studies elective
Choose 3 units from Table 1 including at least 1 Level II Statistics unit

Year 3
2 General Studies electives
Choose 4 Level III Zoology units
Choose at least 3 Level III Mathematics units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
1 General Studies elective

4543
Entomology and Plant Pathology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

Year 2
43.101, 43.131, 43.132
44.101
45.402
45.201 or 45.301
1 General Studies elective

Year 3
45.101, 45.412, 45.422, 45.432
2 General Studies electives
Choose at least 3 Level III Zoology or Botany units
Students wishing to enter the Honours program must complete
8 Level III units

Year 4
45.103 or 43.103
1 General Studies elective

4145
Zoology/Biochemistry

See 4145 Biochemistry/Zoology

4570
Zoology/Anatomy

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
45.101, 45.301
70.011A, 70.011C
1 General Studies elective
Choose 4 units from:
70.011B, 70.012C, 70.304, 70.305, 70.306, 70.307
Choose 4 Level III Zoology units from Table 1

Year 4
1 General Studies elective
45.103 or
70.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 4570 is based on academic performance in Year 1.
7345
Physiology/Zoology
See 7345 Zoology/Physiology

6200**
History and Philosophy of Science

Year 1
10.001 or 10.011
or
10.021B & 10.021C
Choose at least 6 Level I units from Table 1

Year 2
62.012, 62.022, 62.032
1 General Studies elective*
Choose at least 4 units from Table 1

Year 3
2 General Studies electives*
Choose 8 units from Table 1 including 4 units from:
- History and Philosophy of Science units
 - 52.353 & 52.393
 - 52.1531 and 52.323 (or 10.1127)

Year 4
62.014
½ General Studies elective*

* 26.561, 26.564, 26.568, 26.817 may not be included in this program.
* * Students taking Honours Physics are required, as part of their program, to undertake a project under the aegis of the School of History and Philosophy of Science. Students taking Honours History and Philosophy of Science are required, as part of their program, to undertake a project under the aegis of the School of Physics.

6225
History and Philosophy of Science/Geology

Year 1
1.001 (or 1.011) or 17.031 and 17.021
2.121 & 2.131, or 2.141
10.001 or 10.011
25.110, 25.120

Year 2
25.211, 25.221, 25.252
62.012, 62.032, 62.103
1 General Studies elective*
Choose 2 units from Table 1

Year 3
2 General Studies electives
25.311, 25.312, 25.325
Choose either 4 HPS units from Table 1
or
25.314 and 3 HPS units from Table 1

Year 4
62.014
½ General Studies elective*

* 26.561, 26.564, 26.568, 26.817 may not be included in this program.

6243
History and Philosophy of Science/Botany

Year 1
2.121 & 2.131, or 2.141
10.001 (or 10.011) or 10.021B and 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1
Year 2
43.101, 43.111
62.012, 62.032, 62.104
62.106
1 General Studies elective*
Choose 2 units from Table 1

Year 3
Choose 4 Botany Level III units from Table 1
Choose 4 HPS units from Table 1
2 General Studies electives*

Year 4
Either
62.014 and ½ General Studies elective*
or
43.103 and 1 General Studies elective*
* 25.561, 26.564, 25.568, 26.817 may not be included in this program.

0262
Science Studies with Chemistry
See 0262 Chemistry with Science Studies

4162
Science Studies with Biochemistry
See 4162 Biochemistry with Science Studies

6245
History and Philosophy of Science/Zoology
Year 1
2.121 & 2.131, or 2.141
10.001 (or 10.011) or 10.021B and 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
45.101, 45.201 (or 45.402), 45.301, 43.101
62.012, 62.032
62.106 or 62.109 or 62.104
1 General Studies elective*

Year 3
45.121, 45.302, 45.422
Choose 1 Level III Zoology unit from Table 1
Choose 4 HPS units from Table 1
2 General Studies electives*

Year 4
Either
62.014 and ½ General Studies elective*
or
43.103 and 1 General Studies elective*
* 26.561, 26.564, 25.568, 26.817 may not be included in this program.

0162
Science Studies with Physics
See 0162 Physics with Science Studies

6270
History and Philosophy of Science/Anatomy
Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
Choose 1 unit from Table 1

Year 2
62.012, 62.032, and either 62.104 or 62.106 or 62.109
70.011A, 70.011B, 70.011C
1 General Studies elective†
Choose 1 unit from Table 1

Year 3
70.021B
2 General Studies electives†
Choose 4 History and Philosophy of Science units from Table 1
Choose 3 units from:
70.012C, 70.304, 70.305, 70.306, 70.307

Year 4
Either
62.014
½ General Studies elective†
or
70.013
1 General Studies elective†
* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 6270 is based on academic performance in Year 1.
† 62.106 or 62.109 must be taken in Year 3 unless completed in Year 2.
† 26.561, 26.564, 26.568, 26.817 may not be included in this program.
1068
Mathematics/Marine Science
See 1068 Marine Science/Mathematics

1069
Mathematics/Marine Science Honours
See 1069 Marine Science Honours/Mathematics

6801
For Anatomy Programs
Year 1
10.001 or 10.011
or
10.021B and 10.021C
Choose 6 appropriate Level I units from Table 1

Enrolment in Year 2 of programs 1270, 4170, 4173, 4570, 6270, 7001, 7002, 7003, 7073, 7301, 7302, 7303, 7312, 7345 is based on academic performance in Year 1. Students should select the units specified in the program they wish to pursue in Year 2.

Students may obtain advice from the Office of the Board of Studies in Science and Mathematics in the Mathews Building.

6806
For Computer Science Programs
Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

** In Year 1 students must enrol in program 6806. Enrolment in Year 2 of programs 0601, 0603, 0604, 0605, 0610, 0611 is based on academic performance in Year 1. Students should select units specified in the program they wish to pursue in Year 2.

Students may obtain advice from the office of the Board of Studies in Science and Mathematics in the Mathews Building.

6831
Marine Science
(Physical Oceanography)
Year 1
1.001 or 1.011
10.001 or 10.011
Choose 4 units from two of the groups 1., 2. and 3.
1. 17.021, 17.031
2. 25.110, 25.120
or 27.801 and 27.811
3. 2.121 & 2.131, or 2.141

Year 2
68.302
10.2111 and 10.2112
1.012 or
10.411B, 10.1113 and 10.1114
1 General Studies elective
Choose at least 4 units from Table 1 including the units required from 2 of the groups 1., 2. and 3. chosen in Year 1: 1. At least 1 unit from 17.012
43.111
45.201
2. 25.622
3. 2.002A

Year 3
1.913
10.411A, 1.183
2 General Studies electives
Choose 4 units from Table 1 which may include units from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 43.172
45.112
2. None
3. 2.043A

6832
Marine Science
(Biological Oceanography)
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
Choose 2 units from group 1. or 2.
1. 1.001 or 1.011 or 1.021
2. 25.110, 25.120
or 27.801 and 27.811
Year 2
2.002A
43.111
44.101
45.201 or 41.101
68.302
1 General Studies elective
Choose at least 1 unit from:
10.031, 10.331, 10.301
*Choose 1 unit from subjects related to units of groups 1. and 2. chosen in Year 1:
1. 10.031 or 10.331 or 10.301
2. 25.622

Year 3
43.172
45.112
2 General Studies electives
Choose 4 units from Table 1 which may include units from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 1.183, 10.032
2. 43.172
45.112
3. 2.043A

Year 4
68.304
1 General Studies elective

A total of at least 23 units must be completed in Years 1–3 in this program.

6833 Marine Science (Earth Science Oceanography)

Year 1
10.001 or 10.011 or
10.021B & 10.021C
25.110, 25.120
Choose 4 units from 2 of the groups 1., 2. and 3.
1. 1.001 or 1.011 or 1.021
2. 17.021, 17.031
3. 2.121 & 2.131, or 2.141

Year 2
68.302
25.621, 25.622
27.801, 27.811
1 General Studies elective
Choose at least 4 units from Table 1 including the units required from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 10.031 or 10.331 or 10.301
2. At least 1 unit from:
17.012
43.111
45.201
3. 2.002A

Year 3
25.631, 25.632, 25.634, 25.635
2 General Studies electives
Choose 4 units from Table 1 which may include units from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 1.183, 10.032
2. 43.172
45.112
3. 2.043A

Year 4
68.304
1 General Studies elective

6834 Marine Science (Environmental Chemistry)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 4 units from 2 of the groups 1., 2. and 3.
1. 1.001 or 1.011
2. 17.021, 17.031
3. 25.110, 25.120
or 27.801 and 27.811

Year 2
68.302
2.002A, 2.002D
1 General Studies elective
Choose at least 4 units from Table 1 including the units required from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 10.031 or 10.331
2. At least 1 unit from:
17.012
43.111
45.201
3. 25.622

Year 3
2.043A, 2.003D
2 General Studies electives
Choose 6 units including at least 2 at Level III which may include units required from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 1.183, 10.032
2. 43.172
45.112
3. None

Year 4
68.304
1 General Studies elective
6840
Genetics
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
41.101
43.101
44.101
1 General Studies elective
Choose 1 unit from:
43.111, 43.131, 44.121
45.201, 45.301, 45.401
Choose 1 unit from:
9.811
10.331
45.101
Choose 2 units from one of the groups 1., 2. or 3.
1. 2.002B
41.111
2. 6.620
9.801
17.012
79.402
3. 43.111 or 43.131
45.201 or 45.402
45.301
62.012 or 62.032
79.402

Year 3
2 General Studies electives
Choose 4 units from:
9.802
43.102
44.102
45.121
79.201, 79.302
Choose 4 of the following:
6.646
41.102A
43.112
44.122
62.053
70.3041
79.202, 79.403

Year 4
68.404
1 General Studies elective

6851
Chemical Physics (Chemistry/Physics)
Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
1.012, 1.022, 1.032
2.002B or 2.002D or 2.042C
2.002A, 2.013A
10.111A or 10.121A,
10.2111 and 10.2112
or
10.2211 and 10.2212
1 General Studies elective

Year 3
1.023
2.023A, 2.063A
68.503
2 General Studies electives
Choose at least 3 Level III units, offered by Schools of Physics, Chemistry and Mathematics, from Table 1

Year 4
68.504
1 General Studies elective
* The minimum of 7 Level III units may not include 1.013 or 2.003A.

6852
Chemical Physics (Chemistry/Mathematics)
Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
1.012, 1.022
2.002B or 2.002D or 2.042C,
2.013A, 2.002A
10.111A or 10.121A,
10.1113 and 10.1114,
or 10.1213 and 10.1214,
or 10.2111 and 10.2112,
or 10.2211 and 10.2212
1 General Studies elective

Year 3
1.023
2.023A, 2.063A
68.503
2 General Studies electives
Choose at least 3 Level III units, offered by Schools of Physics, Chemistry and Mathematics, from Table 1

Year 4
68.504
1 General Studies elective
* The minimum of 7 Level III units may not include 1.013 or 2.003A.
6853
Chemical Physics (Physics/Mathematics)
Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1
Year 2
1.012, 1.022, 1.032
2.002A, 2.013A
10.111A or 10.121A, 10.113 and 10.114, 10.1213 and 10.1214, 10.2111 and 10.2112, or 10.2211 and 10.2212
1 General Studies elective
Year 3
2.023
68.503
2 General Studies electives
Choose at least 3 Level III units, offered by Schools of Physics, Chemistry and Mathematics from Table 1
Year 4
68.504
1 General Studies elective
* The minimum of 7 Level III units may not include 1.013 or 2.003A.

7002
Anatomy
Single Major
Year 1*
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.021
Choose 4 Level I units from Table 1
Year 2
70.011A, 70.011C
1 General Studies elective
Choose at least 5 units, from Table 1 and/or Table 2†
Year 3
2 General Studies electives
Choose 8 units, including at least 4 units from: 70.011B, 70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307 and the remainder from Table 1
Year 4
70.013
1 General Studies elective
* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7002 is based on academic performance in Year 1.
† Table 2 Anatomy units only.

7003**
Anatomy (Kinesiology)
Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.021
Choose 2 units from 1 of the groups 1. and 2.
1. 1.001, 1.021
2. 12.001
Year 2
70.011A, 70.011B, 70.011C
73.121 or 73.111†
1 General Studies elective
Choose 1 unit from Table 1
Choose 2 units from the appropriate group:
1. 1.001, 1.021
2. 12.001
Year 3
70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307
2 General Studies electives
Choose at least 3 units from Level II or Level III Table 1, or 70.304, 70.305
Year 4
70.013
1 General Studies elective
* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7003 is based on academic performance in Year 1.
** The Cumberland College of Health Sciences recognizes the completion of this program as an appropriate prerequisite for admission to its Graduate Diploma in Physiotherapy course.
† Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.
1270
Anatomy/Psychology
See 1270 Psychology/Anatomy

4170
Anatomy/Biochemistry
See 4170 Biochemistry/Anatomy

4570
Anatomy/Zoology
See 4570 Zoology/Anatomy

6270
Anatomy/History and Philosophy of Science
See 6270 History and Philosophy of Science/Anatomy

7073
Anatomy/Physiology
Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.021
Choose 2 Level I units from Table 1

7301
Physiology
Single Major
Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
41.101, 41.111
73.111
1 General Studies elective
Choose 70.011B, 70.012B, 70.304 or 1 unit from Table 1

Year 3
73.012
2 General Studies electives
Choose 4 units from:
70.011B, 70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307

Year 4
1 General Studies elective
70.013 or 73.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7073 is based on academic performance in Year 1.

7302
Physiology/Chemistry
Year 1*
2.121 & 2.131, or 2.141
1.001 or 1.011
10.001 or 10.011 or 10.021B & 10.021C
17.021, 17.031

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7301 is based on academic performance in Year 1.
7303 Pharmacology

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
73.111 or 73.121
1 General Studies elective
Choose 6 units from Table 1

Year 3
73.022
2 General Studies electives
Choose 5 or 6 units from Table 1, including either
41.102A and 41.102B or
2.003J and 2.033A or
73.012

Year 4
73.023
1 General Studies elective

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7303 is based on academic performance in Year 1.

7312 Physiology/Psychology

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
12.001

7345 Physiology/Zoology

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
Choose 2 Level I units from Table 1

Year 2
73.111
45.101, 45.201, 45.301
41.101, 41.111
1 General Studies elective

Year 3
73.012
45.142, 45.132
2 General Studies electives
Choose 2 units from:
45.202, 45.121, 45.122

Year 4
73.013 or
45.103
1 General Studies elective

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7345 is based on academic performance in Year 1.

4173 Physiology/Biochemistry

See 4173 Biochemistry/Physiology

7073 Physiology/Anatomy

See 7073 Anatomy/Physiology
Undergraduate Study
Board of Studies in Science and Mathematics

4770
Programs in the
Combined Science/Law Degree Course

For details of the Combined Science/Law Degree Course refer to the Faculty of Law Handbook.

Below are approved programs for Years 1, 2 and 3 only. Years 4 and 5 are detailed in the Faculty of Law Handbook.

Note that where the levels of elective units are not specified they must be chosen so that the maximum number of Level I units, viz 8, is not exceeded.

Chemistry

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 90.112, 90.711

Year 2
- 2.002A, 2.002B, 2.042C, 2.002D
- 90.141, 90.161

Choose 2 Level I or Level II units from Table 1

Year 3
- 90.213, 90.214, 90.301

Choose 4 Level III Chemistry units from Table 1

Choose 2 other units of appropriate levels from Table 1

Physics

Year 1
- 1.001 or 1.011
- 10.001 or 10.011
- 90.112, 90.711

Choose 2 Level I units from Table 1

Year 2
- 1.012, 1.022, 1.032
- 10.2111 & 10.2112
- 90.141, 90.161

Choose 2 Level I or Level II units from Table 1

Year 3
- 1.013, 1.023, 1.033, 1.043
- 90.213, 90.214, 90.301

Choose 2 units of appropriate levels from Table 1

Computer Science

Year 1
- 10.001 or 10.011
- 90.112, 90.711

Choose 4 Level I units from Table 1

Year 2
- 6.620, 6.631, 6.641
- 90.141, 90.161

Choose 1 Level II unit from Table 1

Choose 2 Level I or Level II units from Table 1
Year 3
90.213, 90.214, 90.301
Choose 4 Level III Computing Science units from Table 1
Choose 2 other units of appropriate levels from Table 1

Mathematics
Year 1
10.001 or 10.011
90.112, 90.711
Choose 4 Level I units from Table 1
Year 2
10.111A or 10.121A,
10.1113 & 10.1114
or
10.1213 & 10.1214,
10.2111 & 10.2112
or
10.2211 & 10.2212
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1
Year 3
90.213, 90.214, 90.301
Choose 4 Level III Mathematics units from Table 1
Choose 2 other units of appropriate levels from Table 1

Psychology
Year 1
10.001 or 10.011
or
10.021B & 10.021C
12.001
90.112, 90.711
Choose 2 Level I units from Table 1
Year 2
12.052, 12.062, 12.152
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1
Year 3
90.213, 90.214, 90.301
Choose 4 Level III Psychology units from Table 1
Choose 2 other units of appropriate levels from Table 1

Geology
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
90.112, 90.711
Year 2
2.002B
41.101
90.141, 90.161
Choose 1 Level II unit from Table 1 (preferably 41.111)
Choose 2 Level I or Level II units from Table 1
Year 3
41.102A
41.102B
or 41.102C & 41.102D
90.213, 90.214, 90.301
Choose 2 units of appropriate levels from Table 1

Biochemistry
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711
Year 2
2.002B
41.101
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1
Year 3
41.102A
41.102B
or 41.102C & 41.102D
90.213, 90.214, 90.301
Choose 2 units of appropriate levels from Table 1
Botany

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
 - or
- 10.021B & 10.021C
- 17.021, 17.031
- 90.112, 90.711

Year 2
- 43.101, 43.111
- 90.141, 90.161
Choose 2 Level II units from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
- 90.213, 90.214, 90.301
Choose 4 Level III Botany units from Table 1
Choose 2 other units of appropriate levels from Table 1

Microbiology

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
 - or
- 10.021B & 10.021C
- 17.021, 17.031
- 90.112, 90.711

Year 2
- 41.101
- 44.101
- 90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
- 44.102
- 44.112
- 90.213, 90.214, 90.301
Choose 2 units of appropriate levels from Table 1

Zoology

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
 - or
- 10.021B & 10.021C
- 17.021, 17.031
- 90.112, 90.711

Year 2
- 45.101, 45.201, 45.301
- 90.141, 90.161
Choose 41.101 or 2 Level II Chemistry units or 2 Level II Mathematics units
Choose 1 other Level I or Level II unit from Table 1

Year 3
- 90.213, 90.214, 90.301
Choose 4 Level III Zoology units from Table 1
Choose 2 other units of appropriate levels from Table 1

Biotechnology

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
 - or
- 10.021B & 10.021C
- 17.021, 17.031
- 90.112, 90.711

Ecology

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
 - or
- 10.021B & 10.021C
- 17.021, 17.031
- 90.112, 90.711
4770 Combined Science/Law Degree Course: Programs

Year 2
17.012
43.111
44.101
45.101, 45.201, 45.301
90.141, 90.161

Year 3
90.213, 90.214, 90.301
Choose 4 units from:
43.152, 43.172
45.112, 45.122, 45.302
(Note that 45.302 requires 45.122 as co-requisite)
Choose 2 other units of appropriate levels from Table 1

Anatomy

Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711
Choose 2 Level I units from Table 1

Year 2
70.011A, 70.011C
90.141, 90.611
Choose 2 Level II units from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.213, 90.214, 90.301
Choose 4 Level III Anatomy units from Table 2
Choose 2 other units of appropriate levels from Table 1

Marine Science

Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711
Choose one of the following:
1.001 or 1.011
2.121 & 2.131 or 2.141
25.110, 25.120
27.801 & 27.811

Year 2
43.111
44.101
45.201 or 41.101
68.302
90.141, 90.161
Choose: one or two of the following as appropriate:
2.002A
10.031,
10.331 or 10.301
17.012
25.622
44.121

Year 3
43.172
45.112
90.213, 90.214, 90.301
Choose one of the following groups:
1. 2.043A
1 other Level III and 2 other units of appropriate levels from Table 1
2. 10.032, 10.412A
2 other units of appropriate levels from Table 1
3. 2 other Level III units and 2 other units of appropriate levels from Table 1
3730
Programs in the
Combined Science/
Civil Engineering Degree
Course

For details of the Combined Science/Civil Engineering Degree Course refer to the Faculty of Engineering Handbook.

Physical Metallurgy and Chemistry

Year 1
1.981*
2.961**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.670
10.001***

Year 2
2.002A, 2.042C
4.402, 4.502
8.172, 8.181, 8.272
10.022
1 elective†

Year 3
4.403, 4.703
8.173, 8.174, 8.182, 8.351, 8.571
29.441, 29.491
2 electives†

Year 4
2.003A, 2.003C, 2.013C
4.503
8.273, 8.301, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
1 elective†

Year 5
2 electives†
Choose 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.274, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054

Note: All material not in italics typeface refers to the BE degree component of this combined course.
* Students are advised to attempt 1.981 Physics 1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt 1.001 Physics I or 1.011 Higher Physics I. On successful completion of one of these latter subjects together with 2.981 Chemistry 1CE students will be exempted from one technical elective.
** Students who have not satisfied the science prerequisite for 2.981 Chemistry 1CE (ie 2 or 4 unit Science including Physics or Chemistry at HSC Exam percentile range 31-100) are advised to apply to enrol in two acceptable alternative subjects, 2.111 Introductory Chemistry and 2.121 Chemistry IA.
*** Students who have achieved a certain standard may attempt 10.011 Higher Mathematics 1.
† Of the six electives, four must be in General Studies and two must be technical electives. The technical electives are listed in the footnote in the Faculty of Engineering Handbook at the end of Course 3620. The choice of the technical electives must be approved by the Head of the School of Civil Engineering.
Geography and Environmental Chemistry

Year 1
1.981°
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.670
10.001***

Year 2
2.002A, 2.002D, 2.042C
8.172, 8.181, 8.272
10.022
27.801, 27.802

Year 3
2.043A
8.173, 8.174, 8.182, 8.351, 8.571
27.811, 27.813
29.441, 29.491
2 electives†

Year 4
8.273, 8.301, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
27.103
2 electives†
Choose 2 from:
27.203, 27.413, 27.423, 27.862, 27.863

Year 5
2 electives†
Choose 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.274, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.

Physics with Mathematics

Year 1
1.001 or 1.011
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.670
10.001***

Year 2
1.012
1.022, 1.032
8.172, 8.181, 8.272
10.1113 or 10.1213,
10.1114 or 10.1214,
10.2111 or 10.2211,
10.2112 or 10.2212
2 electives†

Year 3
1.023, 1.043, 1.053, 1.3233
8.173, 8.174, 8.182, 8.351, 8.571
10.111A or 10.121A
29.441, 29.491
1 elective†

Year 4
1.033.
1.133
8.273, 8.301, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
1 elective†
Choose 2 Level II or Level III Mathematics units from Table 1 in the Combined Sciences Handbook

Year 5
2 electives†
Choose 1 or 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.274, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.

Mathematics

Year 1
1.981°
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.670
10.001***

Year 2
8.172, 8.181, 8.272
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214,
10.2111 or 10.2211,
10.2112 or 10.2212
1 elective†
Choose either 1. or 2.:
1. 10.311A or 10.321A,
10.311B or 10.321B
2. Choose 3 units from:
10.411B or 10.421B,
10.411A or 10.421A,
10.331
10.2113 (or 10.2213), 10.2114 (or 10.2214),
(10.1111 & 10.1112) or 10.121C

Year 3
8.173, 8.174, 8.182, 8.351, 8.571
29.441, 29.491
2 electives†
Choose 4 units of Mathematics from Table 1 in the Combined Sciences Handbook (at least one must be Level III)

Year 4
8.273, 8.301, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
1 elective†
Choose 3 Level III (not Level II/III) Mathematics units from Table 1 in the Combined Sciences Handbook
Sciences

Year 5
2 electives†
Choose 1 or 2 units from Tables 1 or 3 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.274, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.
* ** *** † See footnotes Physical Metallurgy and Chemistry above.

Geology with some Mathematics

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.670
10.001***

Year 2
8.172, 8.181, 8.272
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214,
10.2111 or 10.2211,
10.2112 or 10.2212
25.110, 25.120
3 electives†

Year 3
2.042C
8.173, 8.174, 8.182, 8.351, 8.571
25.211, 25.221, 25.212
29.441, 29.491
1 elective†

Year 4*
8.273, 8.301, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
Choose four subjects from the following:

Year 5
2 electives†
Choose 1 or 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.274, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.
* ** *** † See footnotes Physical Metallurgy and Chemistry above.
†† Students enrolling in Level III subjects in 1980 should refer to the 1979 Combined Sciences Handbook for subject descriptions.

Computing with some Mathematics

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.670
10.001***

Year 2
6.620, 6.631, 6.641
8.172, 8.181, 8.272
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214
2 electives†

Year 3
6.642, 6.643
8.173, 8.174, 8.182, 8.351, 8.571
10.2111 or 10.2211,
10.2112 or 10.2212
29.441, 29.491
1 elective†
Choose 1 Level II or Level III Mathematics unit from Table 1 in the Combined Sciences Handbook

Year 4
6.646, 6.647, 6.649
8.273, 8.301, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
1 elective†
Choose 1 Level II or Level III Mathematics unit from Table 1 in the Combined Sciences Handbook

Year 5
2 electives†
Choose 1 or 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.274, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.
* ** *** † See footnotes Physical Metallurgy and Chemistry above.
3970/3640 Combined Science/Electrical Engineering Degree Course

Undergraduate Study
Board of Studies in Science and Mathematics

Programs in the Combined Science/Electrical Engineering Degree Course

Year 1
1.961
2.121
5.030
6.010
10.001
Choose one unit of: 2.131, 5.010
1 General Studies elective

or

3642 Mathematics
2 General Studies electives†

or

1 General Studies elective and 1 Level II or Level III unit from Table 1
Choose at least 5 Mathematics units, at least 4 of which are Level III
Choose at least 2 Level II or Level III units from Table 1

or

3643 Physics
1 General Studies elective
1.013*, 1.023, 1.033
Choose 5 Level II or III units from Table 1, at least one of which must be at Level III and one must be 1.012 if 1.012 was omitted from Year 2

Year 2
1.972, 1.982
10.111A, 10.1113, 10.1114, 10.2111, 10.2112
1 General Studies elective or 6.641†

Year 3§
Either
3641 Computer Science
2 General Studies electives†
or
1 General Studies elective and 1 Level II or Level III unit from Table 1
6.613, 6.632, 6.633, 6.646
Choose at least 3 Mathematics units at Levels II or III
or
Choose 6.642, 6.643 and at least one Level II or III Mathematics unit

or

3642 Mathematics
2 General Studies electives†

or

1 General Studies elective and 1 Level II or Level III unit from Table 1
Choose at least 5 Mathematics units, at least 4 of which are Level III
Choose at least 2 Level II or Level III units from Table 1

or

3643 Physics
1 General Studies elective
1.013*, 1.023, 1.033
Choose 5 Level II or III units from Table 1, at least one of which must be at Level III and one must be 1.012 if 1.012 was omitted from Year 2

Year 4
From Electrical Engineering course, modified as required by Head of School

Year 5
From Electrical Engineering Course

† Take 2 General Studies electives in Year 3 only if 6.641 replaced the General Studies elective in Year 2.
§ Year 3 refers to Course 3970 units and Table 1 in this handbook.
* Students electing to take a major in Theoretical Physics may substitute 10.222F.
4070
Mathematics Education Degree Course

4080
Science Education Degree Course

4070
Mathematics Education Degree Course
Bachelor of Science Diploma in Education BSc DipEd

The Mathematics Education Course, leading to the award of the combined qualification BSc DipEd, is designed primarily to prepare students for entry into the teaching profession as teachers of mathematics in secondary schools.

An important feature of the course is that students take education subjects along with mathematics subjects in second, third and fourth years. The Mathematics component is based on programs offered in the Science and Mathematics course. Students may proceed to honours level in either mathematics or in education.

Honours and Pass Degree Requirements

The course is offered at both pass and honours levels.

1. The pass course requires successful completion of a four-year program.

2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following options:

 Pure Mathematics, Applied Mathematics, Mathematical Statistics, Theoretical Mechanics, or Education*

 The grades in this program shall be Honours Class I, II/1, II/2 and III.

* Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.
Components of the Course

The Mathematics Education Course consists of Mathematics, Education and General Studies components.

1. Mathematics Component
Two alternative programs are available. The programs consist of units ranked as Level I, Level II, Level II/III, Level III and Level IV. These units vary from 56 to 84 hours in duration. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

Students must select one of the two following programs:

5811 The Mathematics and Science Program
The pass course requires at least 23 units in addition to Education and General Studies subjects

or

5812 The Mathematics and Liberal Studies Program
The pass course requires at least 24 units in addition to Education subjects.

For both programs the selection of units is subject to the requirements listed below:

(1) Not less than 8 units, nor more than 10 units selected from Level I. Except with the approval of the Head of the School of Mathematics and the Director of Science Teacher Courses, not more than 2 Level I units may be taken in any one discipline other than Mathematics.

(2) The following subjects or their higher equivalents shall be included:
10.001, 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

(3) Courses amounting to at least 2 full units chosen from:
10.1111, 10.1112, 10.1121, 10.1128, 10.1129, 10.1123, 10.1127, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by a professor of Pure Mathematics.

(4) Not less than 2 units from the following:
10.2113, 10.2114, 20.212L, 10.212M, 10.311A, 10.311B, 10.312A, 10.312B, 10.312C, 10.312D, 10.312E, 10.411A, 10.411B, 10.412A, 10.1127, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by the Head of the School of Mathematics.

(5) Not less than 8 Level II or Level III Mathematics units from Table 1 (see below) and of these not less than four shall be Level III units of which only one may be Level II/III.

(6) For the award of honours the student must complete 10 units as specified in an individual program and must meet prerequisite requirements set out in Table 3 (see below).

(7) In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component
The Education component is one of the major sequences in the course. It consists of subjects grouped as follows:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Education</td>
<td>58.602, 58.603, 58.604</td>
</tr>
<tr>
<td>Mathematics Curriculum and Instruction</td>
<td>58.642, 58.643, 58.644</td>
</tr>
<tr>
<td>School Experience</td>
<td>58.612, 58.613, 58.614</td>
</tr>
<tr>
<td>Honours</td>
<td>58.695, 58.699</td>
</tr>
</tbody>
</table>

3. General Studies Component
(1) The Mathematics and Science Program for the pass course requires 63 hours of General Studies. In the honours course an additional General Studies elective is required. The 63 hours in the pass course is made up of three half electives or their equivalent. The three half electives are normally spread over the second, third and fourth years but this distribution may be varied to suit the program of individual students.

(2) In the Mathematics and Liberal Studies Program the Liberal Studies subjects provide the General Studies component.
Enrolment Requirements

1. A student in first year must be enrolled in a Mathematics program in either the Science and Mathematics Course (3970) or the Mathematics Education Course (4070). In the second, third and fourth years a student must be enrolled in one of the Mathematics programs for the Course 4070, the Education program and, in the case of Mathematics and Science program, General Studies.

2. A student may with the approval of the Director of Science Teachers' Courses, and in consultation with the Head of the School of Mathematics, change from one selected Mathematics program to another. A written application to make the change must be lodged, including details of optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. A student must take care to satisfy the requirements of sequences of units such as prerequisites and co-requisites. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-requisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. In exceptional circumstances, on the recommendation of the Head of the School of Mathematics, the particular prerequisite or co-requisite may be waived by the Director of Science Teachers’ Courses.

Programs

The course taken by each student has three component programs:

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.602</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.612</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.642</td>
<td>1½</td>
</tr>
<tr>
<td>3</td>
<td>58.603</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td>58.613</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.643</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>58.604</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>58.614</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.644</td>
<td>2</td>
</tr>
</tbody>
</table>

Honours in Education

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>58.693</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>58.694</td>
<td>1½</td>
</tr>
<tr>
<td>5</td>
<td>58.695</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.699</td>
<td></td>
</tr>
</tbody>
</table>

2. General Studies Program
(1) For students electing the Mathematics and Science Program:

Three half electives (or equivalent) taken during Years 2, 3 and/or 4 for the pass degree.

An additional elective in Year 5 is required in the honours program.

(2) For students electing the Mathematics and Liberal Studies Program:

No specific General Studies subjects are required.

3. Mathematics Program

5811 Mathematics and Science

Year 1
10.001 or 10.011
Choose 6 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 2
10.111 10.112 10.113 10.114 or
10.112 10.1121 or 10.221 10.222 or 10.2221
Choose 4 or 5 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose a further Level II or III Mathematics unit if needed to make up the required 8
Choose 1 or 2 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 5
10.123 or 10.223 or 10.323 or 10.423.

* Up to 5 units of this program may be replaced by subjects offered in the BA degree course (5 credit points at Level I, or 4 credit points at Upper Level are equivalent to 1 unit). The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, German, History, Philosophy, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.

† This program may not include more than 8 units from the BA degree course and the Schools of Mechanical and Industrial Engineering, Electrical Engineering (except Level II), Psychology, Geography, and Philosophy, without approval of the Director of Science Teachers’ Courses.
5812
Mathematics and Liberal Studies

Year 1
10.011 or 10.001
Choose 4–6 units from:
Table 1† &/or
the BA course*

Year 2
10.111A or 10.121A, 10.1113 or 10.1114 or
10.1214, 10.2111 or 10.2211, 10.2112 or 10.2212
Choose 4 or 5 units from:
Table 1† &/or
The BA course*

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1† &/or
The BA course*

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1† &/or
The BA course*

Year 5
10.123
or
10.223
or
10.323
or
10.423
† Units in History and Philosophy of Science shall be those from the BA degree

* At least 6 units of this program must come from subjects offered in the BA degree

course (6 credit points at Level I, or 4 credit points at Upper Level are equivalent to

1 unit). The BA degree subjects are limited to those offered by the following Schools:

Drama, Economics, English, French, Geography, German, History, History and Phil-

osophy of Science, Philosophy, Political Science, Russian, Sociology, Spanish and

Latin American Studies. Each Upper Level unit so offered by these Schools shall

count as 1½ units. Upper Level subjects from the School of Economics are restricted

to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.

Objectives of the Course

The objectives of the course are those of the Science and Mathematics Course (3970) together with others which are essential for a course which is designed to prepare science teachers.

In summary, the objectives of the Science and Mathematics course broadly aim to develop a working knowledge of scientific methods of investigation and to promote an understanding of the significance of science, technology, economics and sociological factors in modern society. The objectives seek to develop in the student the ability and disposition to think logically, to communicate clearly by written and oral means and to read critically. Students are encouraged to develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.

The education component of the course seeks to provide a knowledge of theories of education and the latest innovations in educational practice and theory, and the development of skills in teaching science.

Honours and Pass Degree Requirements

There are both pass and honours programs available in the course leading to the double qualification Bachelor of Science Diploma in Education (BSc DipEd).

1. The pass course requires successful completion of a four-year program.
2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following disciplines:
 Physics, Chemistry, Geology, Biochemistry, Biological Technology, Botany, Microbiology, Zoology, Education, Physiology.*
The grades in this program shall be Honours Class I, II/1, II/2 and III.

* Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.
Components of the Course

The Science Education Course consists of Science, Education and General Studies components.

1. Science Component

The Science component is based on the prescribed programs from the Science and Mathematics Course (3970) rearranged to spread over one additional year. These programs are composed of units ranked as Level I, Level II, Level II/III, Level III, and Level IV, such units varying from 56 to 84 hours. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites. For the pass course the science component requires at least 23 units with the following requirements:

1. There shall be ten units from Level I and these must come from the following subjects: 1.001 or 1.011, 2.121, 2.131, 10.001 or 10.011 or 10.021B and 10.021C, 17.011 or 17.031, 17.021, 25.011.

2. Not less than four units from Level III.

3. Not less than two units beyond Level I in science disciplines in any of the teaching areas physics, chemistry, biology and geology other than that of the student's major. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers' Courses or as specified in individual programs.

4. One unit shall be a History and Philosophy of Science subject. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers' Courses or as specified in individual programs.

5. For the honours program with honours in a science discipline there shall be at least six Level III units and students must meet prerequisite requirements set out in Table 3.

6. For the award of honours in a science discipline the student must complete at least ten Level IV units as specified in an individual program.

7. In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component

The Education Component is one of the major sequences in the course. It consists of subjects grouped as follows:

Theory of Education 58.602, 58.603, 58.604
Science Curriculum and Instruction 58.632, 58.633, 58.634
School Experience 58.612, 58.613, 58.614
Honours 58.693, 58.694

3. General Studies Component

The General Studies component involves 63 hours in the pass course. In the honours course an additional General Studies elective is required. The 63 hours in the pass course is made up of three half electives or their equivalent. The three half electives are normally spread over the second, third and fourth years but this distribution may be varied to suit the programs of individual students.

Enrolment Requirements

1. In all years of the course a student must be enrolled in one of the prescribed Science programs.

In years two, three and four a student must be also enrolled in the Education program and the General Studies program.

2. A student may, with approval of the Director of Science Teachers' Courses, change from one selected Science program to another. A written application to make the change must be lodged, including details of any optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. The allowed specific programs, listed in Programs below, are made up of sequences of units. Where a choice is indicated care must be taken to satisfy the requirements such as prerequisites and co-requisites.

4. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-prerequisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. An excluded subject is one which cannot be counted together with the subject which excludes it towards the degree of qualification. In exceptional circumstances, on the recommendation of the head of the appropriate school, the particular prerequisite or co-prerequisite may be waived by the Director of Science Teachers' Courses.

5. Students lacking the HSC prerequisites for 1.001 Physics I and/or 2.121 Chemistry I may satisfy prerequisites by completing the respective introductory subjects 1.021 Introductory Physics for Health and Life Scientists or 2.111 Introductory Chemistry. Students requiring 10.001 Mathematics I for Physics programs may satisfy prerequisites by completing 10.021B or 10.021A and 10.021B where appropriate. Under these circumstances these introductory subjects are not counted among the units required for the degree course.
Programs

The Course followed by a particular student has three component programs.

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.602</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.612</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.632</td>
<td>1½</td>
</tr>
<tr>
<td>3</td>
<td>58.603</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td>58.613</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.633</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>58.604</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>58.614</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.634</td>
<td>3½</td>
</tr>
</tbody>
</table>

Honours in Education

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>58.693</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>58.694</td>
<td>1½</td>
</tr>
<tr>
<td>5</td>
<td>58.695</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.699</td>
<td></td>
</tr>
</tbody>
</table>

2. General Studies Program
Three half electives (or equivalent) taken during second, third and/or fourth years for the pass degree.

An additional elective in year 5 is required in the honours course.

3. Science Program
Each Science program is based on a program in the Science and Mathematics Course. Each one has an identifying number. The Science Education programs have 58 as the first two digits of the identifying number.

5802 Physics
Single Major*†

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.001 or 1.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.022, 1.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2111, 10.2112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1113, 10.1114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.031, 17.021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.110, 25.120</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>62.042</td>
<td></td>
</tr>
<tr>
<td>Choose 2 units from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.013, 1.023, 1.033, 1.043, 1.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 1 unit from: 25.110 or Table 1†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>58.01</td>
<td></td>
</tr>
<tr>
<td>Choose 3 units from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.013, 1.023, 1.033, 1.043, 1.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 1 unit from: 10.412 or Table 1†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>62.042</td>
<td></td>
</tr>
<tr>
<td>Choose 2 units from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.013, 1.023, 1.033, 1.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 2 units from: 10.412 or Table 1†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Under exceptional circumstances students taking this program may be eligible for transfer into Year 5 of programs 5801, 5803, 5805, the latter in the case of the student reaches a satisfactory level in a number of Mathematics units at Level II and III.
† See this footnote to program 5801.
5803

Applied Physics†

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
or
25.110, 25.120

Year 2
1.012, 1.022, 1.032
10.211A, 10.211B
10.113, 10.114
17.031, 17.021
or
25.110, 25.120

Year 3
1.013, 1.023, 62.042
Choose 1 unit from:
1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, 1.053

Year 4
1.033, 1.043
Choose 2 units from:
1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, 1.053

Year 5
1.304

5805

Theoretical Physics†

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
or
25.110, 25.120

Year 2
10.111A, 10.211 & 10.2112, 10.1113, 10.1114
17.031, 17.021
or
25.110, 25.120
Choose 2 units from:
1.012, 1.022, 1.032

Year 3
62.042
Choose 1 unit from:
1.012, 1.022, 1.032
Choose 2 units from:
1.013, 1.023, 1.033, 1.043

Year 4
Choose 2 units from:
1.013, 1.023, 1.033, 1.043
Choose either
1.513 or 1.523
Choose 1 unit from:
1.513, 1.523, 10.412D, 10.1125 & 10.1126, 10.1128 & 10.1129

Year 5
1.504

† A student may substitute for any of the listed Mathematics units in these programs such higher units as are deemed equivalent by the Head of the School of Mathematics.

5821

Chemistry Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021
or
25.110, 25.120

Year 2
2.002A, 2.002B, 2.042C, 2.002D
17.031, 17.021
or
25.110, 25.120
Choose 1 unit from:
Table 1†

Year 3
62.042
Choose 2 Level III Chemistry units
Choose 1 unit from:
Table 1†

Year 4
Choose 2 Level III Chemistry units
Choose 2 units from Table 1†

Year 5
2.004
† See this footnote to program 5801.

5831

Geology

Double Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120

Year 2
17.031, 17.021
25.211, 25.221, 25.212, 25.223
62.042

Year 3
Choose four out of the following:
5832

Geology Single Major

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
- or
- 10.021B & 10.021C
- 25.110, 25.120

Year 2
- 17.031, 17.021
- 25.211, 25.221, 25.212, 25.223
- Choose 1 unit from Table 1†

Year 3
Choose two out of the following:
- 62.042
- Choose 1 unit from Table 1†

Year 4
Choose 2 units of Level III Geology
Choose 2 units from Table 1†

Year 5
25.406

† Units available for choice from Table 1 in this program are those from Schools other than: Mechanical and Industrial Engineering Electrical Engineering (except Level II), Mathematics, Psychology, Geography, Philosophy.

5842

Microbiology and Biochemistry

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 2.002B
- 25.110, 25.120
- 41.101, 41.111
- Choose 1 unit from Table 1†

Year 3
- 41.102A
- 62.042
- Choose 1 unit from Table 1†

Year 4
Choose *either*
- 41.102B or 41.102C & 41.102D
- Choose 2 units from Table 1†

Year 5
- 41.103

† See this footnote to program 5832.

5841

Biochemistry

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 41.102A
- 62.042
- Choose 1 unit from Table 1†

Year 3
- 41.102B, 41.102C, or 41.102D

Year 4
- 41.102, 44.112

Year 5
- 41.103 or
- Choose 10 units including *either*:
 - 44.563 or 44.573 or 44.583
 - and from 44.513, 44.523, 44.533, 44.543, 44.553

* Students are advised to include, where possible, the subject 41.111 in addition to those listed.
5851 Systematic Botany

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 43.101, 43.111
- 25.110, 25.120
Choose 2 Level II units of Biochemistry or Chemistry or Physics
Choose 1 unit from Table 1†

Year 3
- 82.042
Choose either 43.112 or 43.162
Choose 1 unit from:
- 43.102, 43.132, 43.152; 43.172
or other Level III Botany units
Choose 1 unit from Table 1†

Year 4
Choose 2 Level III Botany units
Choose 2 units from Table 1†

Year 5
- 43.103
† See this footnote to program 5852.

5853 Botany and Zoology

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 25.110, 25.120
- 41.101
- 43.131
- 45.101, 45.201

Year 3
- 43.132, choose 1 Level III Botany unit
Choose 2 units from:
- 45.202, 45.402, 45.412, 45.422

Year 4
Choose 2 Level III Botany units
Choose 2 units from:
- 45.202, 45.402, 45.412, 45.222

Year 5
- 43.103 or 45.103

5852 Mycology — Plant Pathology

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 25.110, 25.120
- 41.101
- 43.111, 43.131
- 44.101

Year 3
- 43.132, 43.172
- 62.042
Choose 1 unit from:
- 43.101, 43.121

Year 4
Choose 2 Level III Botany units
Choose 2 units from Table 1†

Year 5
- 43.103
† See this footnote to program 5852.

5861 Microbiology

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 2.002B
- 25.110, 25.120
- 41.101
- 44.101, 44.121

Year 3
- 41.102A
- 44.102

Year 4
- 44.112, 44.132
- 62.042

Year 5
Choose 10 units including either:
- 44.563 or 44.573 or 44.583 and from 44.513, 44.523, 44.533, 44.543, 44.553
5862 Microbiology (General)

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 25.110, 25.120
- 41.101
- 44.101, 44.121
- Choose 1 unit from Table 1†

Year 3
- 44.102, 44.112

Year 4
- 62.042
- Choose 3 units from Table 1†

Year 5
- Choose 10 units including either:
 - 44.563 or 44.573 or 44.583
 - and from 44.513, 44.523, 44.533, 44.543, 44.553

† See this footnote to program 5832.

5867 Zoology with Botany

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 17.012
- 25.110, 25.120
- 43.101, 43.111
- 45.201, 45.301

Year 3
- 45.101
- 62.042
- Choose 2 Level III Zoology units

Year 4
- Choose 2 Level III Zoology units
- Choose 2 Level III Botany units

Year 5
- 45.103

† See this footnote to program 5832.

5866 Zoology (General)

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 25.110, 25.120
- 41.101
- 44.121
- Choose 2 Level II units of Biochemistry or Chemistry or Mathematics

Year 3
- 43.101
- 62.042
- Choose 2 Level III Zoology units from Table 1†

Year 4
- Choose 2 Level III Zoology units from Table 1
- Choose 2 units from Table 1†

Year 5
- 45.103

† See this footnote to program 5832.

5871 Physiology Single Major

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.021

Year 2
- 25.110, 25.120
- 41.101, 41.111
- 73.111

Year 3
- 73.012

Year 4
- 62.042
- Choose 3 units from Table 1†

Year 5
- 73.013

† See this footnote to program 5832.
Units offered by the Board of Studies in Science and Mathematics

Table 1

Information Key
The following is the key to the information supplied about each subject in the table below: F (Full year ie both sessions); S1 (Session 1); S2 (Session 2); SS (single session, ie one only); I, II, III (Levels, I, II, III); Hpw (Hours per week); C (Credit).

School of Physics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 unit Mathematics (at HSC Exam percentile range 71-100) or 3 unit Mathematics (at HSC Exam percentile range 21-100) or 4 unit Mathematics (at HSC Exam percentile range 1-100) or (for 1.001 only) 10.021A and 10.021B and 2 unit Science (incl. Physics and/or Chem.) (at HSC Exam percentile range 31-100) and 4 unit Science (incl. Physics and/or Chem.) (at HSC Exam percentile range 31-100)</td>
<td>10.021C, or 10.021, or 10.001, or 10.011</td>
<td>10.001 or 10.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.021A and 10.021B, or 10.021 and 10.021C, or 10.021 or 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For students who enrol in and successfully complete the subjects 1.021 Introductory Physics I (2 units) and 1.001 Physics I (2 units) the total unit value of the combined subjects be counted as 3 units.
<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.041</td>
<td>Laboratory Computers in Physical Science</td>
<td>I</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>As for 10.001</td>
<td>10.001 and 1.021 or 1.001 or 1.011</td>
<td></td>
</tr>
<tr>
<td>1.012</td>
<td>Mechanics and Thermal Physics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>1.001 or 1.011</td>
<td>10.2111</td>
<td></td>
</tr>
<tr>
<td>1.022</td>
<td>Electromagnetism and Modern Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.001 or 1.011</td>
<td>10.2111</td>
<td>1.9322</td>
</tr>
<tr>
<td>1.032</td>
<td>Laboratory</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>1.001 or 1.011</td>
<td>10.2111</td>
<td>1.9222</td>
</tr>
<tr>
<td>1.042</td>
<td>Measurement and Measurement Control Systems</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.001 or 1.011, 10.001</td>
<td>1.3233, 1.9422, 1.9622</td>
<td></td>
</tr>
<tr>
<td>1.052</td>
<td>Methods in Mathematical Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.001 or 1.011, 10.001 or 10.2111</td>
<td>(or 10.2211), 10.2112 (or 10.2212)</td>
<td></td>
</tr>
<tr>
<td>1.9222</td>
<td>Electronics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001 or 1.011 or 1.021</td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>1.9322</td>
<td>Introduction to Solids</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.001 or 1.011 or 1.021</td>
<td>1.022, 4.402, 4.412</td>
<td></td>
</tr>
<tr>
<td>1.9422</td>
<td>Introduction to Physics of Measurement</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001 or 1.011</td>
<td>1.042</td>
<td></td>
</tr>
<tr>
<td>1.013</td>
<td>Quantum Mechanics and Nuclear Physics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.012, 1.022, 10.2111, 10.2112</td>
<td>2.023A, 10.222F</td>
<td></td>
</tr>
<tr>
<td>1.023</td>
<td>Statistical Mechanics and Solid State Physics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.012, 1.022, 10.2111, 10.2112</td>
<td>1.013 or 2.023A, 10.2112</td>
<td></td>
</tr>
<tr>
<td>1.033</td>
<td>Electromagnetism and Optical Physics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.012, 1.022, 10.2111, 10.2112</td>
<td>10.222C</td>
<td></td>
</tr>
<tr>
<td>1.043</td>
<td>Experimental Physics A</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>1.012, 1.022, 1.032</td>
<td>1.043</td>
<td></td>
</tr>
<tr>
<td>1.053</td>
<td>Experimental Physics B</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>1.012, 1.022, 1.032</td>
<td>1.043</td>
<td></td>
</tr>
<tr>
<td>1.133</td>
<td>Electronics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>1.032 or 1.9222</td>
<td>1.032 or 1.9222</td>
<td></td>
</tr>
<tr>
<td>1.1433</td>
<td>Biophysics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.012, 1.022</td>
<td>1.012, 1.022, 1.032</td>
<td></td>
</tr>
<tr>
<td>1.1533</td>
<td>Biophysical Techniques</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.012, 1.022, 1.032</td>
<td>1.012, 1.022, 1.032</td>
<td></td>
</tr>
<tr>
<td>1.1633</td>
<td>Astrophysics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.022</td>
<td>1.022</td>
<td></td>
</tr>
<tr>
<td>1.1733</td>
<td>Conceptual Framework of Physics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.012, 1.022</td>
<td>1.013, 1.023</td>
<td></td>
</tr>
<tr>
<td>1.3033</td>
<td>Mechanical Properties of Materials</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.023</td>
<td>4.043</td>
<td></td>
</tr>
<tr>
<td>1.3133</td>
<td>Electrical, Optical and Thermal Properties of Materials</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.023</td>
<td>1.023</td>
<td></td>
</tr>
<tr>
<td>1.3233</td>
<td>Measurement and Data Handling</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.032</td>
<td>1.053, 1.042</td>
<td></td>
</tr>
<tr>
<td>1.3333</td>
<td>Applications of Radiation</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.033, 1.053, 1.343</td>
<td>1.343</td>
<td></td>
</tr>
<tr>
<td>1.343</td>
<td>Applications of Radiation (Practice and Theory)</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.033</td>
<td>1.3333</td>
<td></td>
</tr>
<tr>
<td>1.3533</td>
<td>Marine Acoustics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>1.913</td>
<td>25.643</td>
</tr>
<tr>
<td>1.513</td>
<td>Plasma and Laser Physics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.012, 1.022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Physics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.523</td>
<td>Relativity and Electromagnetism</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>1.012, 1.022, 10.2111, 10.2112, 10.111A, 10.1113, 10.1114</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physics Level III Supplementary Units

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.183</td>
<td>Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>10.001 or 10.011 and 1.001 or 1.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.913</td>
<td>Marine Acoustics and Seismic Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td>25.643</td>
<td>1.3533</td>
</tr>
</tbody>
</table>

School of Chemistry

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121</td>
<td>Chemistry IA</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>2.111 or 2 unit Science (any strands) (at HSC Exam percentile range 31-100) or 4 unit Science (any strands) (at HSC Exam percentile range 31-100)</td>
<td></td>
<td>2.141</td>
</tr>
<tr>
<td>2.131</td>
<td>Chemistry IB</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>2.111 or 2.121</td>
<td></td>
<td>2.141</td>
</tr>
<tr>
<td>2.141</td>
<td>Chemistry IM‡</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>2.111 or 2 unit Science (Chemistry) (at HSC Exam percentile range 51-100) or 4 unit Science (multistrand) (at HSC Exam percentile range 51-100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>2.121 or 2.141, 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002B</td>
<td>Organic Chemistry</td>
<td>II</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td></td>
<td>2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002D</td>
<td>Analytical Chemistry</td>
<td>II</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131, or 2.141 or 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.042C</td>
<td>Inorganic Chemistry</td>
<td>II</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141 or 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131, or 2.141 or 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003H</td>
<td>Molecular Spectroscopy and Structure</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003J</td>
<td>Fundamentals of Biological Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141 or 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003K</td>
<td>Solid State Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141 or 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013A</td>
<td>Introductory Quantum Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>1.001 or 1.011, 2.121 & 2.131, or 2.141 or 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

86
School of Chemistry (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.003A</td>
<td>Physical Chemistry III</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003B</td>
<td>Organic Chemistry III</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003C</td>
<td>Inorganic Chemistry III</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.042C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003D</td>
<td>Instrumental Analysis III</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.002D, 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003L</td>
<td>Applied Organic Chemistry II</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003M</td>
<td>Organometallic Chemistry II</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013B</td>
<td>Synthetic Organic Chemistry III</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013C</td>
<td>Advanced Inorganic Chemistry III</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.042C</td>
<td>2.003C</td>
<td></td>
</tr>
<tr>
<td>2.013D</td>
<td>Advanced Analytical Chemistry II</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.002D</td>
<td>2.003D</td>
<td></td>
</tr>
<tr>
<td>2.013L</td>
<td>Chemistry and Enzymology of Foods II</td>
<td>III</td>
<td>1</td>
<td>*</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These subjects may be offered either Full year, one session, or both.

Students majoring in Chemistry may take 2.141 in lieu of 2.121 and 2.131.

Only one of these double units may be chosen.

School of Metallurgy

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.302</td>
<td>Chemical and Extraction II</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.402</td>
<td>Physical Metallurgy II</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.002A, 4.502</td>
<td>1.932, 4.412</td>
<td></td>
</tr>
</tbody>
</table>

2.002A*
School of Metallurgy (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.422</td>
<td>Metallurgical Phases — Structure and Equilibrium Part II</td>
<td>II</td>
<td>S2</td>
<td>6</td>
<td>4.412</td>
<td>4.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.502</td>
<td>Mechanical Properties of Solids</td>
<td>II</td>
<td>S1</td>
<td>4</td>
<td>4.402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.602</td>
<td>Metallurgical Engineering I</td>
<td>II</td>
<td>S2</td>
<td>5</td>
<td>4.302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.303</td>
<td>Chemical and Extraction Metallurgy II</td>
<td>III</td>
<td>F</td>
<td>5</td>
<td>4.302, 4.602 and 4.402</td>
<td>4.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.403</td>
<td>Physical Metallurgy II</td>
<td>III</td>
<td>F</td>
<td>9</td>
<td>4.402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.503</td>
<td>Mechanical Metallurgy</td>
<td>III</td>
<td>S2</td>
<td>3</td>
<td>4.502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.613</td>
<td>Metallurgical Engineering IIA</td>
<td>III</td>
<td>S1</td>
<td>3</td>
<td>4.602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.703</td>
<td>Materials Science</td>
<td>III</td>
<td>S2</td>
<td>3</td>
<td>4.403</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This unit must be taken in Session 1.

School of Mechanical and Industrial Engineering

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.010</td>
<td>Engineering A</td>
<td>I</td>
<td>SS</td>
<td>6</td>
<td>Either 2 unit Science (Physics) (at HSC Exam percentile range 31-100) or 4 unit Science (incl. Physics) (at HSC Exam percentile range 11-100) or 2 unit Industrial Arts (at HSC Exam percentile range 31-100) or 3 unit Industrial Arts (at HSC Exam percentile range 11-100) Students who wish to enrol in this subject can make up for the lack of the prerequisite by work taken in Physics in the first half of first year.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C</td>
<td>I</td>
<td>SS</td>
<td>6</td>
<td>Either 2 unit Science (Physics) (at HSC Exam percentile range 31-100) or 4 unit Science (incl. Physics) (at HSC Exam percentile range 11-100) or 2 unit Industrial Arts (at HSC Exam percentile range 31-100) or 3 unit Industrial Arts (at HSC Exam percentile range 11-100) Students who wish to enrol in this subject can make up for the lack of the prerequisite by work taken in Physics in the first half of first year.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B</td>
<td>I</td>
<td>S2</td>
<td>6</td>
<td>5.010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

88
School of Electrical Engineering and Computer Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.611</td>
<td>Computing I</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>HSC Maths as for 10.001</td>
<td>10.001 or 10.011</td>
<td>1.041*</td>
</tr>
<tr>
<td>6.620†</td>
<td>Introduction to Computer Science</td>
<td>II</td>
<td>1</td>
<td>SS</td>
<td>5</td>
<td>10.001</td>
<td>10.001 or 10.011</td>
<td>1.041*</td>
</tr>
<tr>
<td>6.621**</td>
<td>Computing II</td>
<td>II</td>
<td>1</td>
<td>SS</td>
<td>5</td>
<td>6.611</td>
<td>10.001 or 10.011</td>
<td>6.021D</td>
</tr>
<tr>
<td>6.631</td>
<td>Assembler Programming and Digital Logic</td>
<td>II</td>
<td>1</td>
<td>SS</td>
<td>5</td>
<td>6.621 or 6.620† or 6.021D</td>
<td>6.621 or 6.620† or 6.021D</td>
<td>6.021E</td>
</tr>
<tr>
<td>6.641</td>
<td>Programming I</td>
<td>II</td>
<td>1</td>
<td>SS</td>
<td>5</td>
<td>6.621 or 6.620† or 6.021D</td>
<td>6.621 or 6.620† or 6.021D</td>
<td>6.621</td>
</tr>
<tr>
<td>6.646</td>
<td>Computer Applications</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>6.620† or 6.621 or 6.021D</td>
<td>6.620† or 6.621 or 6.021D</td>
<td>6.622</td>
</tr>
</tbody>
</table>

* Excluded for students in programs 6806, 0601, 0603, 0604, 0605, 0610, 0611.
† Not available in full-time course after 1981.
** Not available until 1982.
†† Students who have completed 6 600 at a grade of credit or better, may be enabled to undertake this subject with permission.

School of Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2 unit Mathematics (at HSC Exam percentile range)</td>
<td>10.011</td>
<td>10.021A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71-100) or 3 unit Mathematics (at HSC Exam percentile range)</td>
<td></td>
<td>10.021B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21-100) or 4 unit Mathematics (at HSC Exam percentile range)</td>
<td></td>
<td>10.021C</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>3 unit Mathematics (at HSC Exam percentile range)</td>
<td>10.001</td>
<td>10.021A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71-100) or 4 unit Mathematics (at HSC Exam percentile range)</td>
<td></td>
<td>10.021B</td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
School of Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.021B</td>
<td>General Mathematics IB</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 unit Mathematics (at HSC Exam percentile range 51-100) or 3 unit Mathematics (at HSC Exam percentile range 11-100) or 4 unit Mathematics (at HSC Exam percentile range 1-100) or 10.021A**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.021C</td>
<td>General Mathematics IC</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>10.021B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.081</td>
<td>Mathematics IX</td>
<td>I</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>As for 10.001</td>
<td>10.001 or 10.011 and 6.611 or 1.041</td>
<td></td>
</tr>
<tr>
<td>10.031‡</td>
<td>Mathematics</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.001 or 10.021C(C)</td>
<td></td>
<td>§</td>
</tr>
<tr>
<td>10.032§</td>
<td>Mathematics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.031</td>
<td></td>
<td>§</td>
</tr>
</tbody>
</table>

†† For any listed unit an appropriate higher unit may be substituted.

* If a unit in this column is counted the corresponding unit in the first column may not be counted.

‡ Mathematics 10.031 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II Units in Pure Mathematics, Applied Mathematics are taken, 10.031 Mathematics will not be counted.

§ Mathematics 10.032 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics, Applied Mathematics or Theoretical Mechanics are taken, 10.032 Mathematics will not be counted except that 10.412A may be taken with 10.032.

** Entry to General Mathematics IA is allowed only with permission of the Head of the School of Mathematics, and that permission will be given only to students who do not qualify to enter unit 10.021B.

Pure Mathematics

Pure Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.111A</td>
<td>Linear Algebra</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.111</td>
<td>Group Theory</td>
<td>II/III</td>
<td>½</td>
<td>S1 or S2</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1112</td>
<td>Geometry</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1113</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1114</td>
<td>Complex Analysis</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites†</td>
<td>Co-requisites†</td>
<td>Excluded*</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>10.121A</td>
<td>Algebra</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td>10.111A</td>
<td>10.1111</td>
</tr>
<tr>
<td>10.121C</td>
<td>Number Theory and Geometry</td>
<td>II/III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td>10.121A, 10.1213, 10.1112</td>
<td>10.1214, 10.1112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.2211 or 10.2111, 10.2212 or 10.2112</td>
<td>10.1113</td>
</tr>
<tr>
<td>10.1213</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td>10.1113</td>
<td>10.1114</td>
</tr>
<tr>
<td>10.1214</td>
<td>Complex Analysis</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2½</td>
<td>10.1213</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level III†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.112C</td>
<td>Differential Geometry</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.111A, 10.1113</td>
<td></td>
<td>10.122C</td>
</tr>
<tr>
<td>10.1121</td>
<td>Number Theory</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td>10.121C</td>
<td></td>
</tr>
<tr>
<td>10.1122</td>
<td>Algebra</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.111A</td>
<td>(or 10.121A)</td>
<td>10.122A</td>
</tr>
<tr>
<td>10.1123</td>
<td>Logic and Computability</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td>10.122C</td>
<td></td>
</tr>
<tr>
<td>10.1124</td>
<td>Combinatorial Topology</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td>10.122E</td>
<td></td>
</tr>
<tr>
<td>10.1125</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.111A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1126</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.1113, 10.1114</td>
<td>10.2111, 10.2112</td>
<td></td>
</tr>
<tr>
<td>10.1127</td>
<td>History of Mathematics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.111A, 10.1113, 10.1114, 10.2111, 10.2112</td>
<td>10.1125</td>
<td></td>
</tr>
<tr>
<td>10.1128</td>
<td>Foundations of Calculus</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>***</td>
<td>10.122B</td>
<td>10.122B</td>
</tr>
<tr>
<td>10.1129</td>
<td>Real Analysis</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.2112, 10.1128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1521</td>
<td>Combinatorics and its Applications</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.122A</td>
<td>Algebra</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.121A</td>
<td>10.1122</td>
<td></td>
</tr>
<tr>
<td>10.122B</td>
<td>Integration and Functional Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.1213</td>
<td>10.1128</td>
<td></td>
</tr>
<tr>
<td>10.122C</td>
<td>Topology and Differential Geometry</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.121A, 10.1213</td>
<td>10.1124</td>
<td>10.1125</td>
</tr>
<tr>
<td>10.122E</td>
<td>Complex Analysis and Differential Equations</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.1213, 10.1214</td>
<td></td>
<td>10.1124</td>
</tr>
</tbody>
</table>

† For any listed unit an appropriate higher unit may be substituted.

* If a unit in this column is counted the corresponding unit in the first column may not be counted.

†† Admission to Higher Pure Mathematics II normally requires completion of 10.011 Higher Mathematics I; students who gain a superior pass in 10.001 Mathematics I may, subject to the approval of the Head of the School of Mathematics, be permitted to proceed to Higher Pure Mathematics II units.

2. Students majoring in Physics who wish to take Higher Pure Mathematics II should attempt 10.121A, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

3. Students aiming at Honours in Pure Mathematics must take 10.121A, 10.121C, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

** Students wishing to attempt Higher Level III units should consult with the School of Mathematics prior to enrolment. Pre- and co-requisites may be varied in special circumstances with the permission of the Head of the School of Mathematics.

*** Students will not normally be permitted to attempt a Level III Pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2111</td>
<td>Vector Calculus</td>
<td>II</td>
<td>½ S1 or 2½ S2</td>
<td>10.001</td>
<td></td>
<td></td>
<td></td>
<td>10.2211</td>
</tr>
<tr>
<td>10.2112</td>
<td>Mathematical Methods for Differential Equations</td>
<td>II</td>
<td>½ S1 or 2½ S2</td>
<td>10.001</td>
<td></td>
<td></td>
<td></td>
<td>4.813</td>
</tr>
<tr>
<td>10.2113</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>½ S1</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2114</td>
<td>Linear and Non-Linear Optimization Techniques</td>
<td>II</td>
<td>½ S2</td>
<td>2</td>
<td>10.2113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.211E</td>
<td>Numerical Methods</td>
<td>II</td>
<td>1 F</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Applied Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2211</td>
<td>Vector Analysis</td>
<td>II</td>
<td>½ S1</td>
<td>2½</td>
<td>10.011 or 10.001 DN*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2212</td>
<td>Mathematical Methods for Differential Equations</td>
<td>II</td>
<td>½ S2</td>
<td>2½</td>
<td>10.2211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2213</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>½ S1</td>
<td>2</td>
<td>10.011 or 10.001 DN*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2214</td>
<td>Linear and Non-Linear Optimization Techniques</td>
<td>II</td>
<td>½ S2</td>
<td>2</td>
<td>10.2213</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applied Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.212A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1 F</td>
<td>2</td>
<td>10.2112, 10.111A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.212L</td>
<td>Optimization Methods</td>
<td>III</td>
<td>1 F</td>
<td>2</td>
<td>10.1113***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.212M</td>
<td>Optimal Control Theory</td>
<td>III</td>
<td>1 F</td>
<td>2</td>
<td>10.1113 and 10.1114</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Applied Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.222A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1 F</td>
<td>2</td>
<td>10.2212 or 10.2112 DN**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.222C</td>
<td>Maxwell's Equations and Special Relativity</td>
<td>III</td>
<td>1 F</td>
<td>2</td>
<td>10.2211 or 10.2111 DN**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.222F</td>
<td>Quantum Mechanics</td>
<td>III</td>
<td>1 F</td>
<td>2</td>
<td>10.2211 or 10.2111 DN**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.222L</td>
<td>Optimization Methods</td>
<td>III</td>
<td>1 F</td>
<td>2</td>
<td>10.1213 or 10.1113 DN**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
School of Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites‡</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.222M</td>
<td>Optimal Control Theory</td>
<td>III</td>
<td>1</td>
<td>F 2</td>
<td>10.1213 or 10.1113 DN**, 10.1214 or 10.1114 DN**, 10.121A or 10.111A DN**, or 10.2213 or 10.2113 DN**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† For any listed unit an appropriate higher unit may be substituted.

* If a unit in this column is counted the corresponding unit in the first column may not be counted.

** With the permission of the Head of the Department a sufficiently good grading may be substituted.

*** At least one further unit chosen from the following: 10.111A, 10.1114, 10.2111, 10.2112, 10.2113.

**** At least 1½ further units chosen from the following: 10.121A or 10.111A DN, 10.1214 or 10.1114 DN, 10.2211 or 10.2111 DN, 10.2212 or 10.2112 DN. 10.2213 or 10.2113 DN, 10.2214 or 10.2114 DN.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites‡</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.311A†</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1½</td>
<td>S1†</td>
<td>7</td>
<td>10.001 or 10.021C CR</td>
<td>10.321A</td>
<td></td>
</tr>
<tr>
<td>10.311B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1½</td>
<td>S2</td>
<td>7</td>
<td>10.311A</td>
<td>10.321B</td>
<td></td>
</tr>
<tr>
<td>10.331</td>
<td>Statistics SS</td>
<td>II</td>
<td>1</td>
<td>F 2</td>
<td>2</td>
<td>10.001 or 10.021C CR</td>
<td>10.321A</td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | | | |
| | | | | | | | |

Higher Theory of Statistics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites‡</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.321A Probability and Random Variables</td>
<td>II</td>
<td>1½</td>
<td>S1</td>
<td>8</td>
<td>10.001</td>
<td>10.321A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.321B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1½</td>
<td>S2</td>
<td>8</td>
<td>10.321A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theory of Statistics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites‡</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.312A</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311A, 10.111A, 10.1113, 10.2112</td>
<td>10.322A</td>
<td></td>
</tr>
<tr>
<td>10.312B</td>
<td>Experimental Design (Applications) and Sampling</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311B or 10.331 (Nor C)</td>
<td>10.322B</td>
<td></td>
</tr>
<tr>
<td>10.312C</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311B, 10.111A, 10.1113, 10.2112</td>
<td>10.322C</td>
<td></td>
</tr>
<tr>
<td>10.312D</td>
<td>Probability Theory</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311B, 10.111A, 10.1113, 10.2112</td>
<td>10.322D</td>
<td></td>
</tr>
<tr>
<td>10.312E</td>
<td>Statistical Inference</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311B, 10.111A, 10.1113, 10.2112</td>
<td>10.322E</td>
<td></td>
</tr>
</tbody>
</table>

† For footnotes, see overleaf
Sciences

School of Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.322A</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.321A, 10.111A, 10.1113, 10.1114, 10.2112</td>
<td></td>
<td>10.312A</td>
</tr>
<tr>
<td>10.322B</td>
<td>Experimental Design (Applications) and Sampling</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113, 10.1114, 10.2112</td>
<td></td>
<td>10.312B</td>
</tr>
<tr>
<td>10.322C</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113, 10.1114, 10.2112</td>
<td>10.322B†</td>
<td>10.312C</td>
</tr>
<tr>
<td>10.322D</td>
<td>Probability Theory</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321A, 10.111A, 10.1113, 10.1114, 10.2112</td>
<td></td>
<td>10.312D</td>
</tr>
<tr>
<td>10.322E</td>
<td>Statistical inference</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113, 10.1114, 10.2112</td>
<td>†</td>
<td>10.312E</td>
</tr>
</tbody>
</table>

†† For any listed unit an appropriate higher unit may be substituted.

* If a unit in this column is counted, the corresponding unit in the first column may not be counted.

†† Plus any two Level III Pure Mathematics, Applied Mathematics, Theoretical Mechanics or Computer Science units. It is sufficient to take 10.312B (10.322B) in the same year.

** For a student taking four of the units 10.312A, 10.312B, 10.312C, 10.312D, 10.312E (or the corresponding higher units) a project is required as part of either 10.312C (10.322C) or 10.312E (10.322E).

† The evening course for 10.311A will, subject to sufficient enrolment, run at 3½ hours per week throughout the year.

Theoretical and Applied Mechanics

Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.411A</td>
<td>Hydrodynamics</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.001</td>
<td></td>
<td>10.412A</td>
</tr>
<tr>
<td>10.411B</td>
<td>Principles of Theoretical Mechanics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.001, 1.001 or 10.041 or 5.010</td>
<td></td>
<td>10.412B</td>
</tr>
</tbody>
</table>

Higher Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.421A</td>
<td>Hydrodynamics</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.011 or 10.001 DN**</td>
<td>10.421B, 10.1114</td>
<td>10.411A</td>
</tr>
<tr>
<td>10.421B</td>
<td>Principles of Theoretical Mechanics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.011 or 10.001 DN**</td>
<td>10.2211, 10.2212</td>
<td>10.411B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.001 or 10.041 or 5.010</td>
<td>10.1113</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Mechanics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.412A</td>
<td>Dynamical and Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.001, 10.2111 and 10.2112 or 10.031</td>
<td>†</td>
<td></td>
</tr>
<tr>
<td>10.412B</td>
<td>Continuum Mechanics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.211, 10.2111, 10.1113, 10.1114, 10.111A</td>
<td>10.4112 or 1.913</td>
<td>10.422B</td>
</tr>
<tr>
<td>10.412D</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2112, 10.1113, 10.1114, 10.111A</td>
<td></td>
<td>10.422D</td>
</tr>
</tbody>
</table>

†† For any listed unit an appropriate higher unit may be substituted.

* If a unit in this column is counted, the corresponding unit in the first column may not be counted.

†† Plus any two Level III Pure Mathematics, Applied Mathematics, Theoretical Mechanics or Computer Science units. It is sufficient to take 10.312B (10.322B) in the same year.

** For a student taking four of the units 10.312A, 10.312B, 10.312C, 10.312D, 10.312E (or the corresponding higher units) a project is required as part of either 10.312C (10.322C) or 10.312E (10.322E).

† The evening course for 10.311A will, subject to sufficient enrolment, run at 3½ hours per week throughout the year.
School of Mathematics (continued)

No.	Name	Level	Unit Value	When Offered	Hpw	Prerequisites	Co-requisites	Excluded
10.422A	Fluid Dynamics	III	1	S2	4	10.421A or 10.411A	Dist.*	10.422B
10.422B	Mechanics of Solids	III	1	S1	4	10.2111, 10.2112, 10.1113, 10.1114, 10.111A, 10.421B or 10.411B Dist.*	Dist.**	10.412B
10.422D	Mathematical Methods	III	1	F	2	10.2211 or 10.2111	Dist.**	10.412D

** With the permission of the Head of the Department a sufficiently good grading may be substituted.
† It is recommended that one of the following be taken concurrently: 10.411A or 11.012 or 1.913.
* If a unit in this column is counted the corresponding unit in the first column may not be counted.
†† For any listed unit an appropriate higher unit may be substituted.

School of Psychology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
</table>
| **Psychology Level I**

| 12.001 | Psychology I | I | 2 | F | 5 | | | |

**Psychology Level II See Notes

12.052	Basic PsychologicalProcesses II	II	1	S1	4	12.001		
12.062	Complex PsychologicalProcesses II	II	1	S2	4	12.001		
12.072	Human Relations II	II	1	S1	4	12.001		
12.082	Individual	II	1	S2	4	12.001		
12.152	Research Methods II	II	1	F	3	12.001		

**Psychology Level III: Group A See Notes

| 12.153 | Research Methods IIIA • | III | 1 | S1 | 4 | 12.152 | | |
| 12.163 | Research Methods IIIB | III | 1 | S2 | 4 | 12.152, 12.153| | |

**Psychology Level III: Group B See Notes

12.253*	Learning IIIA	III	1	S1	4	12.052, 12.152		
12.263	Learning IIIB	III	1	S2	4	12.052, 12.152, 12.253		
12.323	Motivation IIIA	III	1	S2	4	12.052, 12.152		
12.413	Physiological Psychology IIIA	III	1	S1	4	12.052, 12.152		

For footnotes, see overleaf
School of Psychology (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.423</td>
<td>Physiological Psychology IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.052, 12.152, 12.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.453</td>
<td>Human Information Processing IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.062, 12.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.463</td>
<td>Human Information Processing IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>Not</td>
<td>4</td>
<td>12.062, 12.152, 12.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.473</td>
<td>Perception IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.052, 12.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.483</td>
<td>Perception IIIB</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.052, 12.152, 12.473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.493</td>
<td>Psychophysics III</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.153</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Psychology Level III: Group C

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.173</td>
<td>Psychological Issues III</td>
<td></td>
<td>III</td>
<td>1</td>
<td>Not</td>
<td>4</td>
<td>12.052, 12.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.303</td>
<td>Personality IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.313</td>
<td>Personality IIIB</td>
<td></td>
<td>III</td>
<td>1</td>
<td>Not</td>
<td>4</td>
<td>2 Psychology Level II subjects, 12.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.383</td>
<td>Psychological Assessment (Psychometric Theory) IIIB</td>
<td></td>
<td>III</td>
<td>1</td>
<td>Not</td>
<td>4</td>
<td>12.152 and 1 other Psychology Level II subject, 12.373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.503</td>
<td>Social Psychology IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.062, 12.152</td>
<td>12.523</td>
<td></td>
</tr>
<tr>
<td>12.513</td>
<td>Social Psychology IIIB</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.062, 12.152</td>
<td>12.513</td>
<td></td>
</tr>
<tr>
<td>12.523</td>
<td>Environmental Psychology III</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.553</td>
<td>Developmental Psychology IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.062, 12.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.563</td>
<td>Developmental Psychology IIIIB</td>
<td></td>
<td>III</td>
<td>1</td>
<td>Not</td>
<td>4</td>
<td>12.062, 12.152, 12.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.603</td>
<td>Abnormal Psychology IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.052, 12.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.613</td>
<td>Abnormal Psychology IIIB</td>
<td></td>
<td>III</td>
<td>1</td>
<td>Not</td>
<td>4</td>
<td>12.052, 12.152, 12.603</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Psychology Level III: Group D

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.373</td>
<td>Psychological Assessment (Testing) IIIA</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.152 and 1 other Psychology Level II subject</td>
<td>12.042 (Psych BSc)</td>
<td></td>
</tr>
<tr>
<td>12.623</td>
<td>Guidance and Counselling III</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.653</td>
<td>Industrial Psychology III</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.663</td>
<td>Ergonomics III</td>
<td></td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.703</td>
<td>Psychological Techniques III</td>
<td></td>
<td>III</td>
<td>1</td>
<td>Not</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Psychology (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.713</td>
<td>Control and Modification of Behaviour III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.052, 12.152, 12.603</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 12.253 is a prerequisite for the Psychology Honours Level IV electives of Behavioural Change, Experimental Psychopathology, Explanations of Animal Behaviour, and Experimental-Clinical Psychology.

† This subject may be offered in Session 2 and an announcement is made by the school during Session 1.

Notes:
1. A student may not enrol in more than three Level II Psychology units.
2. A student may not enrol in more than three Level III Psychology units unless 12.152 Research Methods II has been passed.
3. A student may not enrol in more than five Level III Psychology units unless 12.153 Research Methods IIIA has been passed.
4. A major in Psychology is minimally satisfied by the completion of 12.001, two Psychology Level II units, including 12.152, and four Psychology Level III units.
5. Not all Level III units will necessarily be offered in each year.

Biological Sciences

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.031</td>
<td>Cell Biology</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>Science 2 or 4 units at HSC Exam percentile range 31-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.021*</td>
<td>Biology of Higher Organisms</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Students with percentile range 31-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.201 or 45.301 in lieu of 17.021 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.021 Biology of Higher Organisms for all units.

† Terminating pass acceptable.

School of Applied Geology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.110</td>
<td>Earth Materials and Processes**</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>2 unit Science (any strand) (at HSC Exam percentile range 31-100) or 4 unit Science (multistrand) (at HSC Exam percentile range 31-100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.120</td>
<td>Earth Environments and Dynamics****</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>25.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.211</td>
<td>Earth Materials I*</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.221</td>
<td>Earth Materials I††</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>25.211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.212</td>
<td>Earth Environments I‡</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.223</td>
<td>Earth Physics*</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.621</td>
<td>Marine Geology I**</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.601 or 25.110 and 25.120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†† For footnotes, see overleaf
School of Applied Geology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.622</td>
<td>Hydrological and Coastal Surveying†</td>
<td>II/III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>††</td>
</tr>
<tr>
<td>25.311</td>
<td>Earth Materials III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>25.221</td>
<td>25.326</td>
<td></td>
</tr>
<tr>
<td>25.321</td>
<td>Earth Materials IV†</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>25.311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.312</td>
<td>Earth Environments II</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>25.212</td>
<td>25.326</td>
<td></td>
</tr>
<tr>
<td>25.313</td>
<td>Exploration and Data Processing†</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>25.223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.314</td>
<td>Mineral and Energy Resources I****</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>25.221</td>
<td>25.311</td>
<td></td>
</tr>
<tr>
<td>25.324</td>
<td>Mineral and Energy Resources II†††</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>25.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.325</td>
<td>Engineering and Environmental Geology***</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.326</td>
<td>Geological Techniques†</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>25.212, 25.311</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Field work of up to 1 day.
** Field work of up to 2 days.
*** Field work of up to 3 days.
**** Field work of up to 4 days.
† Field work of up to 5 days.
‡ Field work of up to 6 days.
†† Field work of up to 8 days.
††† Field work of up to 10 days.

Field tutorials are an essential part of the subject, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

†† Not available for programs 2501, 2502, 2703, 2725, nor in Geology program of Course 4770, nor in Geology with some Mathematics program of Course 3730.

School of Geography

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.2813</td>
<td>Geographic Methods</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>27.801†, 27.802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2814</td>
<td>Geographic Field Methods**</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>27.801, 27.802, 27.2813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.801</td>
<td>Introduction to Physical Geography*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.802</td>
<td>Introduction to Human Geography*</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.811</td>
<td>Physical Geography*</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>27.801, 27.2813†,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.812</td>
<td>Human Geography*</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>27.802, 27.2813†,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.153</td>
<td>Climatology**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.001, 27.811 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.110 & 25.120 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.143</td>
<td>Biogeography**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>27.811 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.183</td>
<td>Geomorphology**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>25.110 & 25.120 or</td>
<td>27.860</td>
<td></td>
</tr>
<tr>
<td>27.133</td>
<td>Pedology**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>25.012 or 25.022</td>
<td>27.863</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any 2 units from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.111, 2.121, 2.131, 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 27.811 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.811 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any 2 units from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.111, 2.121, 2.131, 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 27.811 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.012 or 25.022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Geography (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.860</td>
<td>Landform Studies**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>27.811</td>
<td></td>
<td>27.183, 27.193, 27.2813 CR</td>
</tr>
<tr>
<td>27.862</td>
<td>Australian Environment and Natural Resources**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>27.811 or 27.812 or 25.110 and 25.120</td>
<td>27.872</td>
<td></td>
</tr>
<tr>
<td>27.863</td>
<td>Ecosystems and Man**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>27.811 or 27.812</td>
<td></td>
<td>27.873</td>
</tr>
<tr>
<td>27.824</td>
<td>Spatial Population Analysis**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.812</td>
<td></td>
<td>27.834</td>
</tr>
<tr>
<td>27.825</td>
<td>Urban Activity Systems**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.812</td>
<td></td>
<td>27.835</td>
</tr>
<tr>
<td>27.826</td>
<td>Urban and Regional Development**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.812</td>
<td></td>
<td>27.836</td>
</tr>
<tr>
<td>27.827</td>
<td>Environment and Behaviour**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.812</td>
<td></td>
<td>27.837</td>
</tr>
<tr>
<td>27.834</td>
<td>Spatial Population Analysis (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td>27.850</td>
</tr>
<tr>
<td>27.835</td>
<td>Urban Activity Systems (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td>27.850</td>
</tr>
<tr>
<td>27.836</td>
<td>Urban and Regional Development (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td>27.850</td>
</tr>
<tr>
<td>27.837</td>
<td>Environment and Behaviour (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td>27.850</td>
</tr>
<tr>
<td>27.870</td>
<td>Landform Studies (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>27.811 CR, 27.2813 CR</td>
<td></td>
<td>27.860</td>
</tr>
<tr>
<td>27.872</td>
<td>Australian Environment and Natural Resources (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>27.811 CR or 27.812 CR</td>
<td></td>
<td>27.862</td>
</tr>
<tr>
<td>27.873</td>
<td>Ecosystems and Man (Advanced)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>27.811 CR or 27.813 CR</td>
<td></td>
<td>27.863</td>
</tr>
<tr>
<td>27.880</td>
<td>Advanced Geographic Methods</td>
<td>III</td>
<td>1</td>
<td></td>
<td>F</td>
<td>3</td>
<td>27.2813 CR and 27.811 CR or 27.812 CR</td>
<td>27.882</td>
</tr>
<tr>
<td>27.412</td>
<td>Coastal Geomorphology‡*</td>
<td>II</td>
<td>1½</td>
<td>S2</td>
<td>5</td>
<td>27.811 or 25.110 and 25.120</td>
<td></td>
<td>27.880</td>
</tr>
</tbody>
</table>

* Field work of up to 2 days is a compulsory part of the subject.
† In special circumstances a student may apply to the Head of School for permission to take 27.801 as a co-requisite.
‡ This prerequisite unit may be waived for students not proceeding into a major Geography sequence.
** Field work of up to 5 days is a compulsory part of the subject.
‡ Only for students in the Marine Science program. Not offered in 1981.

School of Biochemistry‡

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites*</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.101</td>
<td>Biochemistry</td>
<td>II</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>17.021†, 2.121† & 2.131†,</td>
<td></td>
<td>2.003J</td>
</tr>
<tr>
<td>41.111</td>
<td>Biochemical Control</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
School of Biochemistry (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.102A</td>
<td>Biochemistry of Macromolecules</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td></td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102B</td>
<td>Physiological Biochemistry</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td></td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102C</td>
<td>Plant Biochemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102D</td>
<td>Biosynthesis of Plant Metabolites</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>41.101** or 41.111**, 41.102C</td>
<td>2.002B</td>
<td></td>
</tr>
</tbody>
</table>

* Level III Units available only during the daytime.
* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
** Students must obtain a clear pass (PG) in either 41.101 or 41.111.
** Students must obtain a clear pass (PG) in either 41.101 or 41.111.

School of Biotechnology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.101</td>
<td>Introduction to Biotechnology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131, or 2.141, 17.021, 10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102A</td>
<td>Biotechnology A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>41.101†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102B</td>
<td>Biotechnology B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>42.101†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
† Pass conceded (PC) not acceptable.

School of Botany†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>See under Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.101</td>
<td>Introductory Genetics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.021*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.111</td>
<td>Flowering Plants</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.121</td>
<td>Plant Physiology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.021, 2.001 or any 2 units of: 2.111, 2.121, 2.131, 2.141***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.131</td>
<td>Fungi and Man</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Botany (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.102</td>
<td>Microbial Genetics</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>43.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.112</td>
<td>Plant Taxonomy</td>
<td>III</td>
<td>S2§</td>
<td>6</td>
<td></td>
<td>43.111</td>
<td>43.101</td>
<td></td>
</tr>
<tr>
<td>43.122</td>
<td>Biochemical Approaches</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to Plant Physiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or 41.101A and 41.101B</td>
<td></td>
</tr>
<tr>
<td>43.132</td>
<td>Mycology-Plant Pathology</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>43.131***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.142</td>
<td>Environmental Botany</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.152</td>
<td>Plant Community</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>43.111 & 17.012 or 27.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ecology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.162</td>
<td>The Plant Kingdom</td>
<td>III</td>
<td>S1§</td>
<td>6</td>
<td></td>
<td>43.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.172</td>
<td>Phycology and Marine Botany</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>43.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.182</td>
<td>Cellular and Developmental</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>43.111 or 43.121**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Students with percentile range 31-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.101, 45.201 or 45.301 in lieu of 17.021 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.021 Biology of Higher Organisms for all units.

† Level III courses conducted by the School of Botany are available only during the daytime to part-time students enrolling for the first time in 1973 or later.

** This unit may be taken as a co-requisite in some circumstances.

*** A student may apply to the School for variation of the prerequisite.

§ These units will alternate each year. 43.162 The Plant Kingdom is offered in 1981. If both units 43.112 and 43.162 are to be included in a three-year pass degree program, one should be completed in Year 2.

School of Microbiology†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites*</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101</td>
<td>Introductory Microbiology</td>
<td>II</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.011 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.121</td>
<td>Microbial Growth</td>
<td>II</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>44.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.102</td>
<td>General Microbiology</td>
<td>III</td>
<td>S1</td>
<td>12</td>
<td></td>
<td>44.101, 44.121, 44.101 or 41.101A and 41.101B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.112</td>
<td>Applied Microbiology</td>
<td>III</td>
<td>S2</td>
<td>12</td>
<td></td>
<td>44.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.122</td>
<td>Immunology</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.011 and 17.021; or 17.031 and 17.021</td>
<td>41.101 or 41.101A and 41.101B</td>
<td></td>
</tr>
<tr>
<td>44.132</td>
<td>Virology</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>44.102</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† All units available only during the daytime.

* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
School of Zoology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.101</td>
<td>Biometry</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.201</td>
<td>Invertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.301</td>
<td>Vertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S1, S2</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.112</td>
<td>Marine Ecology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021 and 17.031, 45.201 or 25.621 or 2.002D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.121</td>
<td>Evolutionary Theory</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.122</td>
<td>Animal Behaviour</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.101 and (45.201 or 45.301)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.132</td>
<td>Ecological Physiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>45.201 or 45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.142</td>
<td>General and Reproductive Physiology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.201 or 45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.152</td>
<td>Population and Community Ecology</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021 and 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.202</td>
<td>Environmental and Social Biology of Invertebrates</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>45.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.302</td>
<td>Vertebrate Zoogeography and Evolution</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.402</td>
<td>Insects§</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.412</td>
<td>Insect Physiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>45.101‡ and (45.201 or 45.301)</td>
<td>45.402</td>
<td></td>
</tr>
<tr>
<td>45.422</td>
<td>Economic Zoology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.201 or 45.402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.432</td>
<td>Project</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.412</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A student will not be admitted to Level III Zoology units without special permission of the Head of School, unless Chemistry 2.001 or 2.121 and 2.131, or 2.141, has been completed.

Students who wish to complete a major in the School of Zoology must take Biometry 45.101 and at least two Level II units of Biochemistry, or Chemistry, or Physics, or Mathematics, or Geology except as detailed in an approved program.

† Level III courses conducted by the School of Zoology are available only during the daytime to part-time students enrolling for the first time in 1973 or later.

§ Students intending to enrol in this unit should register with the School of Zoology for the February field trip by 14 January.

‡ One of: 10.311A, 10.321A, 10.331 may be substituted for 45.101 with special permission of the Head of School.

School of Philosophy

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.103</td>
<td>Introductory Philosophy A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.104</td>
<td>Introductory Philosophy B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.1531</td>
<td>Predicate Logic A</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Any Level I unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.1532</td>
<td>Predicate Logic B</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.1531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.163</td>
<td>Descartes</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.173</td>
<td>British Empiricism</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>HpW</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>---------------------------------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>52.183</td>
<td>Greek Philosophy: Thales to Plato</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td>52.182</td>
<td></td>
</tr>
<tr>
<td>52.193</td>
<td>Scientific Method</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.203</td>
<td>Classical Political Philosophy</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.182</td>
</tr>
<tr>
<td>52.213</td>
<td>Sartre</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>52.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.233</td>
<td>Argument</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td>52.193</td>
<td></td>
</tr>
<tr>
<td>52.263</td>
<td>Philosophy of Psychology Aesthetics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.283</td>
<td>Philosophical Study of Woman</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.293</td>
<td>Plato’s Later Dialogues</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.483*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.303</td>
<td>Spinoza and Leibniz</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.323</td>
<td>Set Theory</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.153 or 52.1532 or 26.812 or 10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.333</td>
<td>Philosophy of Perception</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.163 or 52.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.343</td>
<td>Privacy and Other Minds</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>52.163 and either 52.173 or 52.243</td>
<td></td>
<td>52.153</td>
</tr>
<tr>
<td>52.353</td>
<td>History of Modern Logic</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II units</td>
<td>52.153</td>
<td>52.1532</td>
</tr>
<tr>
<td>52.373</td>
<td>Philosophical Foundations of Marx’s Thought</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.393</td>
<td>History of Traditional Logic</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.403</td>
<td>Model Theory</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.323 or 10.1123</td>
<td>Not offered in 1981</td>
<td></td>
</tr>
<tr>
<td>52.413</td>
<td>Reading Option A</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2</td>
<td>Satisfactory performance in Level II units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.423</td>
<td>Seminar A</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II units (Cr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.433</td>
<td>Seminar B</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II units (Cr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.443</td>
<td>Seminar C</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II units (Cr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.453</td>
<td>Reading Option B</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2</td>
<td>Satisfactory performance in Level II units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.463</td>
<td>Introduction to Transformational Grammar</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Any Level I unit</td>
<td>Not offered in 1981</td>
<td></td>
</tr>
<tr>
<td>52.473</td>
<td>Meaning and Truth</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.463 or 52.153</td>
<td>Not offered in 1981</td>
<td></td>
</tr>
<tr>
<td>52.483</td>
<td>Plato’s Theory of Forms</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.1531</td>
</tr>
<tr>
<td>52.513</td>
<td>Social and Political Philosophy</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.182 or 52.203</td>
</tr>
<tr>
<td>52.5231</td>
<td>Classical Greek Ethics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.5232</td>
<td>Theories in Moral Philosophy</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.543</td>
<td>The Philosophy of Love</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
School of Philosophy (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>HpW</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.553</td>
<td>Contemporary Moral Issues</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.563</td>
<td>Hume</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.152</td>
</tr>
<tr>
<td>52.573</td>
<td>Psychoanalysis — Freud and Lacan</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.583</td>
<td>Theories, Value and Education</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In exceptional circumstances a student may apply to the School for variation of the prerequisite or co-requisite.

** Level II status in Philosophy consists in 1. being in second or later year of university study, and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.

School of History and Philosophy of Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>HpW</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.012</td>
<td>The Origins of Modern Science</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>A pass in two of 1.001 or 1.011</td>
<td></td>
<td>26.564</td>
</tr>
<tr>
<td>62.022</td>
<td>Materials and Men</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.032</td>
<td>The Scientific Theory and Men</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.052</td>
<td>Scientific Knowledge and Political Power</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>12.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.062</td>
<td>The Social System of Science</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.033</td>
<td>The Development of Theories of Matter</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>25.110 and 25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.063</td>
<td>History and Philosophy of Cosmology</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>27.801 and 27.802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.093</td>
<td>Science and the Strategy of War and Peace</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.103</td>
<td>The Discovery of Time</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.104</td>
<td>The Darwinian Revolution</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.106</td>
<td>Mind, Mechanism and Life</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>62.043</td>
</tr>
<tr>
<td>62.107</td>
<td>The Freudian Revolution</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>26.568</td>
</tr>
<tr>
<td>62.109</td>
<td>History of Medical Theory and Practice</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of History and Philosophy of Science (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.013</td>
<td>History of the Philosophy and Methodology of Science*</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>62.012 or 62.022 or 62.032 or 62.052 or 62.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.083</td>
<td>Marxism and Science*</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.042</td>
<td>Science Education and the Dynamics of Scientific Development</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>58.632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.105</td>
<td>Research Methods in History and Philosophy of Science</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>2½</td>
<td>Completion of 3 HPS units with an average of Credit or better, or by permission of Head of School</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not offered in 1981.

School of Physiology and Pharmacology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.111</td>
<td>Physiology IA</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141, 10.001 or 10.011 or 10.021B or 10.021C, 17.021</td>
<td>41.101</td>
<td>73.121</td>
</tr>
<tr>
<td>73.121</td>
<td>Physiology IB</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.121, or 2.141 10.001 or 10.011 or 10.021B or 10.021C, 17.021</td>
<td>2.131*</td>
<td>73.111</td>
</tr>
<tr>
<td>73.012</td>
<td>Physiology II</td>
<td>III</td>
<td>4</td>
<td>F</td>
<td>12</td>
<td>73.111, 41.101, 41.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012A</td>
<td>Membrane Biology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>Normally as for 73.012, but may be studied only with permission of Head of School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012B</td>
<td>Neurophysiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012C</td>
<td>Organ Physiology</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.022</td>
<td>Pharmacology</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>73.111 or 73.121</td>
<td></td>
<td>73.012</td>
</tr>
</tbody>
</table>

* Not if 2.141 has been completed.

Note: The above represent the normal prerequisites for the courses in Physiology, but the Head of School may recommend that students with a good academic record be granted exemption from them.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
</tr>
</thead>
</table>
| 79.201 | Population Genetics Theory | III | 1 | S1 | 5 | 45.101 or 10.331
or 10.311A and 10.311B
or 10.321A and 10.321B |
| 79.202 | Quantitative Methods in Human Genetics | III | 1 | S2 | 5 | 9.801 or 43.101;
or 10.311A and 10.311B;
or 10.321A and 10.321B;
or 10.331 or 12.152 or 45.101 |
| 79.302 | Biochemical Genetics of Man | III | 1 | S2 | 6 | 43.101, 41.101 |
| 79.402 | Genetics of Behaviour I | II | 1 | S1 | 5 | 17.031 |
| 79.403 | Genetics of Behaviour II | III | 1 | S2 | 5 | 79.402 |
Course 3970
Units available in specific programs

Table 2: Course 3970 — Units available in specific programs

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.111</td>
<td>Introductory Chemistry*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>0101, 0103, 0105, 0106, 1069, 1201, 2702, 2743</td>
</tr>
<tr>
<td>2.013E</td>
<td>Advanced Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003E</td>
<td></td>
<td>Any appropriate program except 0201, 0202, 0203, 0204, 0241, 0242 and Course 3910</td>
</tr>
<tr>
<td>4.802</td>
<td>Metallurgical Physics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.001</td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>4.813</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>10.001</td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>6.010</td>
<td>Electrical Engineering I</td>
<td>I</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>10.011</td>
<td></td>
<td>0101, 0102, 0103, 0105, 0106, 0162, 0601, 6806</td>
</tr>
<tr>
<td>6.021A</td>
<td>Basic Circuit Theory</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td>6.010, 1.001, 10.001</td>
<td></td>
<td>0102, 0601</td>
</tr>
<tr>
<td>6.021C</td>
<td>Electronics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>4</td>
<td>6.021A, 1.982 or equiv.</td>
<td></td>
<td>0102, 0601</td>
</tr>
<tr>
<td>6.613</td>
<td>Computer Organization and Design</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>6.631 or 6.021E, 6.021D or 6.620 or 6.621</td>
<td></td>
<td>0601</td>
</tr>
</tbody>
</table>

For footnotes, see overleaf.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.632</td>
<td>Operating Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>6.631 or 6.621E, 6.641</td>
<td></td>
<td></td>
<td>0601</td>
</tr>
<tr>
<td>6.633</td>
<td>Data Bases and Networks</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>6.641</td>
<td></td>
<td>14.602, 14.603</td>
<td>0601</td>
</tr>
<tr>
<td>6.642</td>
<td>Programming II</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>6.641</td>
<td></td>
<td></td>
<td>0601</td>
</tr>
<tr>
<td>6.643</td>
<td>Compiling Techniques and Programming Languages</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>6.641</td>
<td></td>
<td>0601</td>
<td></td>
</tr>
<tr>
<td>6.647</td>
<td>Business Information Systems</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>6.641</td>
<td></td>
<td>14.602, 14.603</td>
<td>0601</td>
</tr>
<tr>
<td>6.649</td>
<td>Computing Practice**</td>
<td>III</td>
<td>1</td>
<td>††</td>
<td>5</td>
<td></td>
<td>6.641 or 6.633 or 6.643</td>
<td>6.647</td>
<td></td>
<td>0601</td>
</tr>
<tr>
<td>6.851</td>
<td>Electronics and Instrumentation</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>1.001 or 1.011</td>
<td></td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>6.852</td>
<td>Electrical Machinery and Supply</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>6.851</td>
<td></td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>7.023</td>
<td>Mineral Process Engineering</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>6.840</td>
<td></td>
<td></td>
<td>0402, 0403</td>
</tr>
<tr>
<td>9.801</td>
<td>Genetics I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2S1</td>
<td></td>
<td>5S2</td>
<td></td>
<td>6840</td>
<td></td>
</tr>
<tr>
<td>9.811</td>
<td>Biostatistics I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>45.101</td>
<td></td>
<td>6840</td>
<td></td>
</tr>
<tr>
<td>9.802</td>
<td>Genetics II</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td></td>
<td>9.801</td>
<td></td>
<td>6840</td>
<td></td>
</tr>
<tr>
<td>10.021A</td>
<td>General Mathematics IA</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>10.001</td>
<td></td>
<td>Course 3730</td>
<td></td>
</tr>
<tr>
<td>10.022</td>
<td>Engineering Mathematics II</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td></td>
<td>10.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.301</td>
<td>Statistics SA</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td></td>
<td>10.001 or 10.021</td>
<td></td>
<td>4308, 6832, 6833</td>
<td></td>
</tr>
<tr>
<td>14.501</td>
<td>Accounting and Financial Management IA</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td>14.501</td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 5811</td>
<td></td>
</tr>
<tr>
<td>14.511</td>
<td>Accounting and Financial Management IB</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td>14.511</td>
<td></td>
<td>0601, 1001, 1022, 5811</td>
<td></td>
</tr>
<tr>
<td>14.522</td>
<td>Accounting and Financial Management IIA</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td>14.511</td>
<td></td>
<td>0601, 1001, 1022, 5811</td>
<td></td>
</tr>
<tr>
<td>14.532</td>
<td>Accounting and Financial Management IIA (Honours)</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td>14.511</td>
<td></td>
<td>0601, 1001, 1022, 5811</td>
<td>1023</td>
</tr>
<tr>
<td>14.542</td>
<td>Accounting and Financial Management IIB</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td>14.511</td>
<td></td>
<td>0601, 1001, 1022, 5811</td>
<td>1023</td>
</tr>
<tr>
<td>14.552</td>
<td>Accounting and Financial Management IIB (Honours)</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td>14.511</td>
<td></td>
<td>0601, 1001, 1022, 5811</td>
<td>1023</td>
</tr>
<tr>
<td>14.563</td>
<td>Accounting and Financial Management IIIA</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td>14.542</td>
<td></td>
<td>1022</td>
<td></td>
</tr>
<tr>
<td>14.573</td>
<td>Accounting and Financial Management IIIA (Honours)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>14.542</td>
<td></td>
<td>1023</td>
<td></td>
</tr>
<tr>
<td>14.583</td>
<td>Accounting and Financial Management IIIIB</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td>14.522</td>
<td></td>
<td>1022</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Specific Programs</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>---</td>
<td>---------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>14.593</td>
<td>Accounting and Financial Management IIIIB (Honours)</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>14.522</td>
<td></td>
<td></td>
<td>1023</td>
<td></td>
</tr>
<tr>
<td>14.601</td>
<td>Law and Society I</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
<td></td>
</tr>
<tr>
<td>14.602</td>
<td>Information Systems IIA</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 5811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.603</td>
<td>Information Systems IIB</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.602 or 6.620</td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 5811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.604</td>
<td>Information Systems IIIA</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td>0601, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.605</td>
<td>Information Systems IIIIB</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.604</td>
<td></td>
<td>0601, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.608</td>
<td>Advanced File Design and Commercial Programming</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.604</td>
<td></td>
<td>0601, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.613</td>
<td>Business Finance II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td>0601, 1022, 1023, 5811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.614</td>
<td>Business Finance IIIA</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.613</td>
<td></td>
<td>0601, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.615</td>
<td>Business Finance IIIB</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.614</td>
<td></td>
<td>0601, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.851</td>
<td>Current Developments in Accounting Thought — Financial</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.852</td>
<td>Current Developments in Accounting Thought — Managerial</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.001</td>
<td>Microeconomics I</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td>0601, 1020, 1021, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.002</td>
<td>Microeconomics II</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>0601, 1001, 1020, 1023, 5811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.003</td>
<td>Macroeconomics III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.042</td>
<td></td>
<td>0601, 1020, 1021, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.011</td>
<td>Macroeconomics I</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.001</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.012</td>
<td>Microeconomics II (Honours)§</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.013</td>
<td>Macroeconomics III (Honours)§</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.052</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.024</td>
<td>Advanced Macroeconomics</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.473, 15.013 and 15.153</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.034</td>
<td>International Trade</td>
<td>IV</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td>15.024</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.042</td>
<td>Macroeconomics II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.052</td>
<td>Macroeconomics II (Honours)§</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.012</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>Specific When Offered Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.062</td>
<td>Economics II D</td>
<td>II</td>
<td>S1</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>15.063</td>
<td>Money Banking and the Financial System</td>
<td>III</td>
<td>S2</td>
<td>3</td>
<td>15.013 or 15.003 or 15.062</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.072</td>
<td>Economics II E</td>
<td>II</td>
<td>S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>15.073</td>
<td>Natural and Environmental Resources</td>
<td>III</td>
<td>S1</td>
<td>3</td>
<td>15.002 or 15.072 or 15.012</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.103</td>
<td>International Economics</td>
<td>II</td>
<td>S2</td>
<td>3</td>
<td>15.002 or 15.012</td>
<td></td>
<td></td>
<td>1020</td>
</tr>
<tr>
<td>15.113</td>
<td>International Economics (Honours)</td>
<td>II</td>
<td>S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td></td>
<td>1020</td>
</tr>
<tr>
<td>15.143</td>
<td>Microeconomics III</td>
<td>III</td>
<td>S1 or S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td></td>
<td>0601, 1001, 1020</td>
</tr>
<tr>
<td>15.153</td>
<td>Microeconomics III (Honours)§</td>
<td>III</td>
<td>S1 or S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.183</td>
<td>Economic Planning</td>
<td>III</td>
<td>S2</td>
<td>3</td>
<td>One of 15.002, 15.012, 15.072 and one of 15.042, 15.052, 15.062</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.413</td>
<td>Econometrics A</td>
<td>III</td>
<td>S1</td>
<td>4</td>
<td>15.462 or §§ 10.331 or (10.311 A and 10.311 B)</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.423</td>
<td>Econometrics B</td>
<td>III</td>
<td>S2</td>
<td>4</td>
<td>15.413 or §§ 10.312 C</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.433</td>
<td>Operations Research in Economics</td>
<td>III</td>
<td>S2</td>
<td>3</td>
<td>15.442, 10.311 B</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.434</td>
<td>Mathematical Economics A</td>
<td>III</td>
<td>S1</td>
<td>3</td>
<td>15.432</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.444</td>
<td>Mathematical Economics B</td>
<td>III</td>
<td>S2</td>
<td>3</td>
<td>15.442</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.453</td>
<td>Applied Business Statistics</td>
<td>III</td>
<td>S1</td>
<td>3</td>
<td>15.421 or equiv. 10.311 B</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.601</td>
<td>Economic History IA</td>
<td>I</td>
<td>S1</td>
<td>3</td>
<td>15.601</td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
</tr>
<tr>
<td>15.611</td>
<td>Economic History IB</td>
<td>I</td>
<td>S2</td>
<td>3</td>
<td>15.601</td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
</tr>
<tr>
<td>25.332</td>
<td>Geology for Geomorphologists and Pedologists‡</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td>25.211, 25.221, 25.212</td>
<td>25.1311, 27.413, 27.423</td>
<td></td>
<td>2703</td>
</tr>
<tr>
<td>25.541</td>
<td>Mineralogy†</td>
<td>II</td>
<td>½</td>
<td>F</td>
<td>2</td>
<td></td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>25.631</td>
<td>Marine Geology II</td>
<td>III</td>
<td>S1</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833</td>
</tr>
<tr>
<td>25.632</td>
<td>Estuarine Geology††</td>
<td>III</td>
<td>F2</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6832, 6833</td>
</tr>
<tr>
<td>25.634</td>
<td>Marine Mineral Deposits and Exploration</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833</td>
</tr>
<tr>
<td>25.635</td>
<td>Marine Resources</td>
<td>III</td>
<td>S1</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833</td>
</tr>
<tr>
<td>48.023</td>
<td>Chemical Engineering Science I</td>
<td>II</td>
<td>F</td>
<td>6S1 5S2</td>
<td>1.001, 10.001</td>
<td></td>
<td></td>
<td>0204</td>
</tr>
<tr>
<td>48.024</td>
<td>Chemical Engineering Principles I</td>
<td>II</td>
<td>F</td>
<td>2S1 3S2</td>
<td>1.001, 10.001</td>
<td></td>
<td></td>
<td>1001, 1068, 1069, 5811</td>
</tr>
<tr>
<td>48.037</td>
<td>Chemical Engineering Science II</td>
<td>III</td>
<td>F</td>
<td>6S1 7S2</td>
<td>2.002A, 48.023</td>
<td></td>
<td></td>
<td>0204</td>
</tr>
<tr>
<td>48.038</td>
<td>Chemical Engineering Principles II</td>
<td>III</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1001, 1068, 1069, 5811</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>68.302</td>
<td>Introductory Marine Science</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.503</td>
<td>Science of Interfaces</td>
<td>III</td>
<td>1</td>
<td>5</td>
<td>1.012, 1.022, 2.002A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.011A</td>
<td>Histology I</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.011B</td>
<td>Mammalian Embryology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.011C</td>
<td>Introductory Anatomy</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.012B</td>
<td>Visceral Anatomy</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A, 70.011C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.012C</td>
<td>Neuroanatomy I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>70.011A, 70.011C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.034</td>
<td>Histology II††††</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.035</td>
<td>Neuroanatomy II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>70.012C (cr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.036</td>
<td>Functional Anatomy I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>70.011A, 70.011C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.037</td>
<td>Functional Anatomy II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.012C, 70.306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.0341</td>
<td>Histological and Histochemical Techniques†††</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>17.031, 17.021, 41.101, 45.301, or 70.011A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students who have passed 2.121 may not subsequently enrol in 2.111. A student meeting the 2.121 prerequisite is not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Once a student enrols in 2.111 he must pass 2.111 before he can proceed to 2.121 or 2.131.

Can only be counted with at least 3 other Computer Science Level III units.

† Not offered in 1981.
‡ Excluded by 25.211.
†† Field work of up to 4 days is a compulsory part of the subject.
§ Consult with Head of Department.
 §§ With the permission of the Head of the Department of Econometrics.
† Anatomy units may be counted as Table 1 units in any program on obtaining special permission of the Head of the School of Anatomy.
‡‡ 70.011A and 70.034 only.
††† 70.034 and 70.0341 are mutually exclusive (see Subject Descriptions later in this handbook).
A student planning to complete a program involving any unit/units from this table must seek the approval of the Head of the School in which the unit is taught.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Prerequisites in Years 1, 2, 3 or 4</th>
<th>Number of Level III Units Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.104†</td>
<td>Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101, 0103 or 0105†</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801, 5803 or 5805</td>
<td>6</td>
</tr>
<tr>
<td>1.304</td>
<td>Applied Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101, 0103 or 0105†</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801, 5803 or 5805</td>
<td>6</td>
</tr>
<tr>
<td>1.504</td>
<td>Theoretical Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101 § or 0105</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801 or 5805</td>
<td>6</td>
</tr>
<tr>
<td>1.604</td>
<td>Biophysics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0106</td>
<td>6</td>
</tr>
<tr>
<td>2.004</td>
<td>Chemistry IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Chemistry units</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5821</td>
<td>7</td>
</tr>
<tr>
<td>4.004</td>
<td>Metallurgy IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0401 or 0402</td>
<td>7-8</td>
</tr>
<tr>
<td>6.606</td>
<td>Computer Science IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>6.613, 6.632, 6.642, 6.643</td>
<td>8</td>
</tr>
<tr>
<td>10.123</td>
<td>Pure Mathematics Honours</td>
<td>IV</td>
<td>6</td>
<td>F</td>
<td>Program 1003 or 1013</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5811 or 5812</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 1005 or 1015</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 1021 or 1023</td>
<td>*</td>
</tr>
<tr>
<td>10.223</td>
<td>Applied Mathematics Honours</td>
<td>IV</td>
<td></td>
<td>F</td>
<td>Program 1007 or 1017</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>10.233</td>
<td>Applied Mathematics Honours (Short Course)</td>
<td>IV</td>
<td>6</td>
<td>F</td>
<td>Program 1009, 1019 or 1069</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>10.323</td>
<td>Theory of Statistics Honours</td>
<td>IV</td>
<td></td>
<td>F</td>
<td>Program 1201, 1270 or 7312:</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>must contain 12.001, 12.052, 12.062, 12.152 and 8 Psychology Level III units, including 12.153 and 12.163 from Group A and at least 1 unit from each of Groups B, C and D, at an average level of Credit or better</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Prerequisites in Years 1, 2, 3 or 4</td>
<td>Number of Level III Units Required</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>12.044</td>
<td>Psychology IV (Course Work)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1201 or 1270: must contain 12.001, 12.052, 12.062; 12.152 and 8 Psychology Level III units, including 12.153 from Group A and at least 1 unit from each of Groups B, C and D, at an average level of Credit or better</td>
<td>8</td>
</tr>
<tr>
<td>14.851</td>
<td>Current Developments in Accounting Thought — Financial</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td>See program 1023</td>
<td></td>
</tr>
<tr>
<td>14.852</td>
<td>Current Developments in Accounting Thought — Managerial</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td>See program 1023</td>
<td></td>
</tr>
<tr>
<td>15.024</td>
<td>Advanced Macroeconomics</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>See program 1021</td>
<td></td>
</tr>
<tr>
<td>15.034</td>
<td>International Trade</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>See program 1021</td>
<td></td>
</tr>
<tr>
<td>25.404</td>
<td>Geology IV**</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 2501, 2502, 2725, or 5831 Program 5832 Program 2701, 2702, 2703, 2725 or 2743</td>
<td>8</td>
</tr>
<tr>
<td>27.604</td>
<td>Geography IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Biochemistry units Program 5841 or 5842 Program 4 Level III units in a discipline, or disciplines, related to Biotechnology</td>
<td>8</td>
</tr>
<tr>
<td>41.103</td>
<td>Biochemistry IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Botany units or a closely related discipline Program 5851, 5852 or 5853</td>
<td>8</td>
</tr>
<tr>
<td>42.103</td>
<td>Biotechnology IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Botany units or a closely related discipline Program 5851, 5852 or 5853</td>
<td>8</td>
</tr>
<tr>
<td>43.103</td>
<td>Botany</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Zoology units Program 5866 or 5867 Program 6200, 6201, 6225, 6245, 6270, 6433</td>
<td>8</td>
</tr>
<tr>
<td>44.513</td>
<td>General Microbiology</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>44.102, 44.112 Program 5861, 5862 or 5842 Program 1021 Program 1023</td>
<td>8</td>
</tr>
<tr>
<td>44.523</td>
<td>Applied Microbiology</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>44.533</td>
<td>Immunology</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>44.543</td>
<td>Virology</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>44.553</td>
<td>Electron Microscopy</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>44.563</td>
<td>Microbiology Project I</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>44.573</td>
<td>Microbiology Project II</td>
<td>IV</td>
<td>4</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>44.583</td>
<td>Microbiology Project III</td>
<td>IV</td>
<td>6</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>45.103</td>
<td>Zoology IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>62.014</td>
<td>History and Philosophy of Science Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>62.024</td>
<td>Science Studies Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>68.304</td>
<td>Marine Science IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>68.404</td>
<td>Genetics IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>68.504</td>
<td>Chemical Physics</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>70.031</td>
<td>Anatomy IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>73.013</td>
<td>Physiology IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>73.023</td>
<td>Pharmacology</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
<tr>
<td>79.013</td>
<td>Community Medicine</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1021 Program 1023</td>
<td></td>
</tr>
</tbody>
</table>

* Higher level units of Mathematics must be included at Levels I, II and III in order to comply with the prerequisites for admission to Level IV Mathematics. Since entry to Level IV is only with approval of the Head of School, students should discuss their Year 3 program with a Professor of the Department concerned. In special circumstance additional prerequisites may be required, or some of those listed may be waived.

† Students intending to enter 1.104 will find it advantageous to have included either 10.212A or 10.412D in Year 3.

‡ Students entering 1.104 or 1.304 from the 0105 program will normally have included 1.043 in Year 3.

§ Students entering 1.504 from the 0101 program should have demonstrated adequate mathematical ability in Year 3.

● Field work of up to 7 days duration is a compulsory part of the subject.

** For 1981 only. From 1982 onwards new subjects will be offered.
The Schools of the Faculty of Biological Sciences contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises the undergraduate course in Psychology (3430). The Schools of the Faculty also offer facilities for students to proceed to the award of a Graduate Diploma in Biochemical Engineering (5320); Graduate Diploma in Biotechnology (5340); to masters degrees in Biological Technology (8260) and in Psychology (8250); and to the award of masters degrees by research and the award of the degree of Doctor of Philosophy.

Students requiring advice about the undergraduate course should contact
School of Psychology .. Dr P. J. Cleary
Mr T. J. Clulow

Students requiring advice about graduate studies should check details later in this handbook and also enquire from the Head of the appropriate School.
Faculty of Biological Sciences

Course Outline 3430

3430
Psychology Degree Course
— Full-time Course
Bachelor of Science
BSc

The four year course in Psychology, which leads to the award of the degree of Bachelor of Science, is designed to meet the requirements of students who intend to become professional psychologists, as either practitioners or research workers. It provides extensive study of psychological theory and practice, supported by an appropriate selection of other subjects.

The course is available on a full-time basis only. Entry into the course is subject to a quota which is determined from time to time.

In the fourth year, students undertake a program of study which includes courses selected from the School’s advanced electives. Electives are offered in the major areas of general psychology and in a number of applied fields, eg clinical, community, and psychological measurement. In addition, each student must complete a research thesis or project.

Details of the qualifications required for admission to the Psychology Course leading to the award of BSc, the course requirements for Pass and Honours at graduation and rules governing admission with advanced standing are given below.

Rules governing the Psychology Course

1. Applicants for admission to the Course must be matriculated to this University; and also have either satisfied the entrance requirements for 10.001 Mathematics I or 10.021B General Mathematics IB and 10.021C General Mathematics IC or 17.031 Cell Biology and 17.021 Biology of Higher Organisms.

2. (1) In order to qualify for admission to the award of degree of BSc in Psychology under these regulations a candidate must attend classes and satisfy the examiners in the following subjects:

(a) Each of:
12.001 Psychology I
12.042 Psychology IIA
12.052 Basic Psychological Processes II
12.062 Complex Psychological Processes II
12.152 Research Methods II

A total value of 8 Level III units of Psychology including 12.153 Research Methods IIIA from Group A and at least one subject from each of Groups B, C and D (see Table 1). Additionally, students intending to take the research alternative in Psychology Level IV Honours are required to include 12.153 Research Methods IIIB from Group A (see Table 1).

(In special cases, the Head of the School of Psychology or his representative may approve of the substitution of any other appropriate course or equivalent units.)

and
12.004 Psychology IV.

(b) Five other subjects (or their equivalent in units) selected to meet the following requirements:

(i) that they shall include at least one of:
10.011 Higher Mathematics I, or
10.001 Mathematics I or
The course requirements have been so designed that they allow for:

1. A solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques;

(2) The proposed course must be approved by the Head of the School of Psychology or his representative prior to or during enrolment. The courses must be chosen in such a way as will fit in with the timetable.

3. Prerequisites and Co-requisites

Before enrolling in any course (or equivalent units of a subject) the student shall have attended the classes and shall have satisfied the examiners in all relevant prerequisite subjects.

The student should refer to the appropriate Faculty Handbook for a statement of subject prerequisites and/or co-requisites.

4. The award of the degree of BSc in Psychology at graduation shall be at either Pass level or with Honours after a minimum of four years of full-time study.

Rules governing admission to the Psychology Course with advanced standing

1. Graduates of the University of New South Wales may be admitted to the Psychology Course leading to the award of the degree of BSc with exemptions from no more than five subjects or their unit equivalents completed by them. No more than two Psychology subjects may be included in the subjects exempted.

2. Undergraduates of the University of New South Wales who transfer from another course to the Psychology Course may be admitted to the Psychology Course with exemption in no more than seven Psychology Course subjects or their unit equivalents.

3. Graduates or undergraduates of other universities may be admitted to the Psychology Course with advanced standing.

4. Students admitted under Rule 3 who have satisfied the examiners in subjects of the same title or subject matter as those permissible in the Psychology Course may, subject to the approval of the appropriate Heads of School, be granted exemption in no more than five subjects, of which no more than two may be Psychology subjects.

Recommended Psychology Course patterns

The course requirements have been so designed that they allow for:

1. A solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques;

or

10.021B General Mathematics IB and 10.021C General Mathematics IC or

10.021A General Mathematics IA* and 10.021B General Mathematics IB

or

17.031 Cell Biology and
17.021 Biology of Higher Organisms.

(They may include both above alternatives.)

(ii) that they shall include at least one of:

53.001 Introduction to Sociology or
15.001 Microeconomics I and 15.011 Macroeconomics I or
54.1001 Political Science I or
52.103 Introductory Philosophy A and 52.104 Introductory Philosophy B

or with the approval of the Head of the School of Psychology, one other Arts I subject.

(iii) that they shall include at least one subject (two Science and Mathematics Level II units or twelve Arts Upper Level credit points are equivalent to one Level II subject and three Science and Mathematics Level III units are equivalent to one Level III subject) which together with the subject meeting the requirements of (i) or (ii) immediately above constitutes a recognized sequence of two courses.

Examples of recognized sequences are:

- 10.001 Mathematics I, followed by two Mathematics Level II units (chosen from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112) or by both of 10.311A Probability and Random Variables and 10.311B Statistical Inference;
- 17.031 Cell Biology and 17.021 Biology of Higher Organisms followed by two Level II units chosen from the following units according to the regulations of the Board of Studies in Science and Mathematics:
 41.101 Biochemistry (equivalent to 2 units)
 41.111 Biochemical Control
 43.101 Genetics
 45.101 Biometry
 45.301 Vertebrate Zoology
 73.121 Physiology IB (equivalent to 2 units)
 79.402 Genetics of Behaviour I
 79.403 Genetics of Behaviour II
- 53.001 Introduction to Sociology followed by twelve credit points value of Sociology Upper Level subjects
 15.001 Microeconomics I and 15.011 Macroeconomics I followed by twelve credit points value of Economics Upper Level subjects
 54.1001 Political Science I followed by twelve credit points value of Political Science Upper Level subjects
 52.103 Introductory Philosophy A and 52.104 Introductory Philosophy B followed by twelve credit points value of Philosophy Upper Level subjects

* Entry to 10.021A General Mathematics IA is allowed only with permission of the Head of the School of Mathematics and such permission will be given only to students who do not qualify to enter units 10.021B General Mathematics IB or 10.021C General Mathematics IC.
2. Some supporting studies in mathematics and/or biology, of which a minimum of one course is compulsory;

3. Some supporting studies in the social sciences, of which a minimum of one course is compulsory; and

4. The special needs, interests and academic or vocational background of individual students when the balance of the five supporting subjects (or their equivalents in units) is selected, in consultation with the Head of School or his representative.

For these reasons, no course patterns are prescribed. The patterns to be completed by students who are admitted with advanced standing will take into account the subjects credited.

Students commencing university studies for the first time will arrange their patterns of supporting subjects in consultation with the Head of the School or his representative before completing enrolment.

In Year 1, such students take four subjects which include 12.001, either Biology I or a first-year Mathematics, one of Economics I, Sociology I, Philosophy I or Political Science I or one other Arts I subject, and a fourth subject. (It should be noted that the University has arranged these subjects so that there is no clash of timetables. If other subjects are taken, care must be taken to check that there is no timetable clash in the program that is chosen.)

In Year 2 students take 12.042, 12.052, 12.062, 12.152, a second-year follow on subject from one of the non-Psychology subjects completed in Year 1, and one other Level I, II or III non-Psychology subject. Eight Level III units of Psychology are taken in Year 3, while Year 4 consists of 12.004 only.

Some examples of patterns, based on supporting subject variants, are suggested below:

Main Supporting Subject

Pure Mathematics

2 Years

Year 1

10.001

Social Science Subject I

Any approved Level I Subject*

Year 2

2 Mathematics Level II unit value chosen from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112

An approved Level I or II Subject*

3 Years

Year 1

10.001

A Social Science Subject I*

Any approved Level I Subject*

Year 2

10.111A, 10.1113, 10.1114, 10.2111 and 10.2112

Year 3

3 Pure Mathematics Level III unit value

Statistics

2 Years

Year 1

10.001

A Social Science Subject I*

Any approved Level I Subject*

Year 2

10.311A, 10.311B

An approved Level I or II Subject*

Compulsory Psychology Subjects for all Courses

Year 1

12.001

Year 2

12.042, 12.052, 12.062 and 12.152

Year 3

8 Psychology Level III units including 12.153 from Group A and at least one subject from each of Groups B, C and D. Additionally, if intending to take the research alternative in Psychology IV 12.163 must also be taken from Group A.

Year 4

12.004

Biochemistry

2 Years

Year 1

17.031 and 17.021

2.121 & 2.131, or 2.141

10.001

or

10.021B and 10.021C

Year 2

41.101

A Social Science Subject I*
Zoology
2 Years

Year 1
17.031 and 17.021
2.121 & 2.131, or 2.141
10.001
or
10.021B and 10.021C

Year 2
45.301
43.101 or 45.101
A Social Science Subject I*

Genetics
2 Years

Year 1
17.031 and 17.021
2.121 & 2.131, or 2.141
10.001
or
10.021B and 10.021C

Year 2
43.101
79.402
A Social Science Subject I*

Physiology
2 Years

Year 1
17.031 and 17.021
2.121 & 2.131, or 2.141
10.001
or
10.021B and 10.021C

Year 2
73.121
A Social Science Subject I*

Social Science Subject
2 Years

Year 1
A Social Science Subject (A) I*
10.001
or
10.021B and 10.021C
or
17.031 and 17.021
Any approved Level I Subject*

Year 2
Social Science Subject (A) II*
An approved Level I or II Subject*

3 Years

Year 1
A Social Science Subject (A) I*
10.001
or
10.021B and 10.021C
or
17.031 and 17.021
Any approved Level I Subject*

Year 2
Social Science Subject (A) II*

Year 3
Social Science Subject (A) III*

* Or equivalent units:

Notes: 1. For details of Psychology units, and Level II and Level III Science and Mathematics units, including pre- and co-requisites, refer to the Science and Mathematics Course details set out earlier in this handbook.
2. For details of Social Science (Arts) units, including pre- and co-requisites, refer to the Faculty of Arts Handbook.
Faculty of Science
Faculty of Science

Introduction

The Schools of the Faculty of Science contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises undergraduate courses in Pure and Applied Chemistry (3910) and Optometry (3950) and the graduate diploma course Food and Drug Analysis (5510). The Schools of the Faculty also offer facilities for students to proceed to Masters Degrees in Chemistry (8770), Mathematics (8740), Optometry (8760), Physics (8730), Statistics (8750) and Master of Science and Society (8780), to the award of masters degrees by research and to the award of the degree of Doctor of Philosophy.

Students requiring information about the undergraduate courses should contact the representative of the appropriate School:
School of Chemistry .. Mr W. J. Dunstan
School of Optometry Professor J. Lederer

Students requiring information about the graduate studies which are available should seek advice from:
Graduate Diploma in Food and Drug Analysis Dr G. Crank

or

in the case of masters and doctors degrees from:
School of Chemistry .. Associate Professor B. J. Orr
School of Mathematics Associate Professor I. H. Sloan
School of Optometry Professor J. Lederer
School of Physics ... Associate Professor J. F. McConnell
Faculty of Science

Course Outlines

3910
Pure and Applied Chemistry Course

Specialization in Chemistry

While some students will wish to include a small number of chemistry units in courses leading to major studies in other disciplines, there will be others who wish to specialize in chemistry to varying degrees.

1. Major in Chemistry in the Science and Mathematics Course. For purposes of graduation Science and Mathematics course regulations require students to study a minimum of four Level III units in related disciplines, such a combination being regarded as major study in that discipline or group of disciplines.

When studies in chemistry are required to be regarded as being major studies at least seven units of chemistry must be included after completing level I Chemistry and these must include at least three of the four Level II units.

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (3910) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course (3910), the transfer may still be made before the commencement of Year 3.

2. Pure and Applied Chemistry Course. This course which allows intensive specialisation in chemistry according to a prescribed pattern, leads to the award of the Bachelor of Science degree, and is administered by the Faculty of Science. It may be taken at pass or honours standard. The pass course requires full-time attendance at the University for three years.

An additional year is required for the honours degree. The program may also be taken on a part-time basis over six years for the pass degree.

A total of 23 units is required for graduation at the pass level. First year is similar to the Science and Mathematics Course and covers 8 units. Of the remaining 15 units at least 12 must be chemistry units and must include the following:

2.002A, 2.002B, 2.003B, 2.003C, 2.003D, 2.003H, 2.013A, 2.042C and 3 other Chemistry units.

The remaining 3 units may be chosen from any of the Science and Mathematics course topics, but no more than 2 may be at Level I.

In all cases prerequisites, co-requisites and exclusions are similar to those prescribed for the units in the Science and Mathematics course.

Electives offered by the School of Chemistry

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>II/III</td>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>2.121 & 2.131, or</td>
<td>2.142 & 2.142</td>
<td>10.001 or 10.011 or 10.021B and 10.021C</td>
</tr>
</tbody>
</table>
Faculty of Science: Course Outlines: 3910

<table>
<thead>
<tr>
<th>Level No.</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>II/III</td>
<td>2.003H Molecular Spectroscopy and Structure</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/III</td>
<td>2.003J Fundamentals of Biological Chemistry</td>
<td>2.121 & 2.131, or 2.141</td>
<td>4.1.01</td>
<td></td>
</tr>
<tr>
<td>II/III</td>
<td>2.003K Solid State Chemistry</td>
<td>2.121 & 2.131, or 2.141 and 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/III</td>
<td>2.013A Introductory Quantum Chemistry</td>
<td>1.001 or 1.011 and 2.121 & 2.131, or 2.141 and 10.001 or 10.011 or 10.021A and 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003A Physical Chemistry</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003B Organic Chemistry</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003C Inorganic Chemistry</td>
<td>2.042C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003D Instrumental Analysis</td>
<td>2.002D and 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003L Applied Organic Chemistry</td>
<td>2.002B 2.033L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003M Organometallic Chemistry</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013B Synthetic Organic Chemistry</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013C Advanced Inorganic Chemistry</td>
<td>2.042C 2.003C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013D Advanced Analytical Chemistry</td>
<td>2.002D 2.003D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013E Advanced Nuclear and Radiation Chemistry</td>
<td>2.003E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013L Chemistry and Enzymology of Foods</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.023A Quantum Theory of Atoms and Molecules</td>
<td>2.002A and 10.2111 and 10.2112</td>
<td>2.043L 2.053L</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.023B Natural Product Chemistry</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.023L Biological and Agricultural Chemistry</td>
<td>2.002B 2.053L, 2.013L, 2.043L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3910

Pure and Applied Chemistry — Full-time Course

Bachelor of Science

BSc

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.011</td>
<td>Higher Physics I or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.121</td>
<td>Chemistry IA & 2.131 Chemistry IB or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.141</td>
<td>Chemistry IM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I or 10.021B General Mathematics IB & 10.021C General Mathematics IC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plus one of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.010</td>
<td>Engineering A and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.021</td>
<td>Biology of Higher Organisms and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.031</td>
<td>Cell Biology or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.110*</td>
<td>Earth Materials and Processes and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.120**</td>
<td>Earth Environment and Dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.801</td>
<td>Introduction to Physical Geography and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.802</td>
<td>Introduction to Human Geography</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Field work of up to 1½ days is a compulsory part of the subject.

** Field work of up to 3½ days is a compulsory part of the subject.
Sciences

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.002B Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.002D Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003H Molecular Spectroscopy and Structure</td>
<td>3</td>
</tr>
<tr>
<td>2.042C Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Science Electives* (2 units)</td>
<td>6</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 24

* To be chosen from units in the Science and Mathematics course in accordance with Science course requirements. The following are recommended.

Chemistry

Any non-compulsory units for which prerequisites are held.

Mathematics

<table>
<thead>
<tr>
<th>Unit</th>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.031</td>
<td>Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>10.331</td>
<td>Statistics SS</td>
<td>2</td>
</tr>
<tr>
<td>10.111A</td>
<td>Mathematics I</td>
<td>6</td>
</tr>
<tr>
<td>10.1113</td>
<td>Mathematics II</td>
<td>6</td>
</tr>
<tr>
<td>10.2111</td>
<td>Mathematics III</td>
<td>6</td>
</tr>
</tbody>
</table>

Physics

Choose 2 of

- 1.9222 Electronics
- 1.9322 Introduction to Solids
- 1.9422 Introduction to Physics of Measurement

Biological Sciences

<table>
<thead>
<tr>
<th>Unit</th>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.021</td>
<td>Biology of Higher Organisms and Cell Biology</td>
<td>6</td>
</tr>
<tr>
<td>41.101</td>
<td>Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>44.101</td>
<td>Introductory Microbiology</td>
<td>6</td>
</tr>
</tbody>
</table>

Geology

Choose 1 of

<table>
<thead>
<tr>
<th>Unit</th>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.110</td>
<td>Earth Materials and Processes and Cell Biology</td>
<td>6</td>
</tr>
<tr>
<td>25.120</td>
<td>Earth Environment and Dynamics</td>
<td>6</td>
</tr>
<tr>
<td>25.211</td>
<td>Earth Materials I</td>
<td>3</td>
</tr>
<tr>
<td>25.221</td>
<td>Earth Materials II</td>
<td>3</td>
</tr>
<tr>
<td>25.212</td>
<td>Earth Environment I</td>
<td>3</td>
</tr>
<tr>
<td>25.223</td>
<td>Earth Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.003B Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003C Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003D Instrumental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>2.013A Introductory Quantum Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Electives* (4 units)</td>
<td>12</td>
</tr>
<tr>
<td>One General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

Total: 25½

* Chosen from Level II/III or Level III units offered by the School of Chemistry in the Science and Mathematics course and in accordance with Science and Mathematics course regulations.

Year 4 Honours

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.004 Chemistry Honours</td>
<td>24</td>
</tr>
<tr>
<td>One General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

Total: 25½

Part-time Course

The part-time course in Pure and Applied Chemistry is equivalent to the full-time course and extends over six part-time years, leading to the award of the degree of Bachelor of Science. Honours may be awarded on the completion of an additional year of full-time study or, in special circumstances, an additional two years of part-time study.

The part-time course has been designed for students employed in the chemical industry but employment in this industry is not obligatory for entrance to the course.

3910 Pure and Applied Chemistry — Part-time Course

Bachelor of Science BSc

Stages 1 and 2

Two of the following subjects are taken in the first year and the other two in the second year (as directed).

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.011 Higher Physics I or 1.001 Physics I</td>
<td>6</td>
</tr>
<tr>
<td>2.121 Chemistry IA & 2.131 Chemistry IB or 2.141 Chemistry IM</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics I or 10.021B General Mathematics IB and 10.021C General Mathematics IC</td>
<td>6</td>
</tr>
</tbody>
</table>

Plus one of

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.010 Engineering A and 5.020 Engineering B or 5.030 Engineering C</td>
<td>6</td>
</tr>
<tr>
<td>17.021 Biology of Higher Organisms and 17.031 Cell Biology or 25.110* Earth Materials & Processes and 25.120** Earth Environment & Dynamics</td>
<td>6</td>
</tr>
<tr>
<td>27.801 Introduction to Physical Geography*** and 27.802 Introduction to Human Geography***</td>
<td>6</td>
</tr>
</tbody>
</table>

* Field work of up to 1½ days is a compulsory part of the subject.

** Field work of up to 3½ days is a compulsory part of the subject.

*** Field work (to be arranged by the School of Geography) is a compulsory component of each unit.
Stage 3

2.002A Physical Chemistry
2.042C Inorganic Chemistry
Science Electives* (two units)

2.002A
2.042C

Stage 4

2.002B Organic Chemistry
2.002D Analytical Chemistry
2.003H Molecular Spectroscopy and Structure
General Studies Electives

2.002B
2.002D
2.003H

Stage 5

2.003B Organic Chemistry
2.003C Inorganic Chemistry
2.003D Instrumental Analysis
2.013A Introductory Quantum Chemistry
General Studies Elective

2.003B
2.003C
2.003D
2.013A

Stage 6

Advanced Electives* (4 units)

2.013A

* See footnote under Year 2 full-time course.

Honours

The requirements for admission to the honours course and the program of study are the same as for Year IV of the full-time course. A student wishing to do honours on a part-time basis may complete the honours year over two part-time years. Students are, however, advised to make every effort to do the honours year full time.

3950
Optometry Course

The School of Optometry provides a four year full-time course in Optometry leading to the award of the degree of Bachelor of Optometry, at either the pass or honours level. The first year of the course involves a study in the fundamental sciences of physics, chemistry, mathematics and biology. Students who have completed the first year of a science course including physics, chemistry, mathematics and general and human biology or zoology at any Australian university are eligible for selection for admission to the second year of the course. Second, third and fourth years are devoted to professional training in optometry including clinical optometry in the final year.

3950
Optometry — Full-time Course
Bachelor of Optometry
BOptom

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.071 Physics (Optometry)</td>
<td>6</td>
</tr>
<tr>
<td>2.121 Chemistry IA &</td>
<td>6</td>
</tr>
<tr>
<td>2.131 Chemistry IB or</td>
<td></td>
</tr>
<tr>
<td>2.141 Chemistry IM</td>
<td></td>
</tr>
<tr>
<td>10.001 Mathematics I or</td>
<td></td>
</tr>
<tr>
<td>10.011 Higher Mathematics I or</td>
<td></td>
</tr>
<tr>
<td>10.021B General Mathematics IB and</td>
<td>6</td>
</tr>
<tr>
<td>10.021C General Mathematics IC</td>
<td></td>
</tr>
<tr>
<td>17.031 Cell Biology and</td>
<td></td>
</tr>
<tr>
<td>17.021 Biology of Higher Organisms</td>
<td>6</td>
</tr>
</tbody>
</table>

In special cases, students who do not meet the prerequisites for admission to 2.121 Chemistry IA may be enrolled in 2.111 Introductory Chemistry in Session 1, 2.121 Chemistry IA in Session 2 and be permitted to carry 2.131 Chemistry IB into Session 1 of Year 2.

Students who do not meet the prerequisites for admission to 10.021B Mathematics will be enrolled in 10.021A Mathematics but cannot proceed to Year 2 of the Optometry Course until all the requirements of 10.021B and 10.021C Mathematics have been satisfied.

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.811 Optometry I</td>
<td>8</td>
</tr>
<tr>
<td>31.821 Special Anatomy and</td>
<td></td>
</tr>
<tr>
<td>Physiology</td>
<td>6</td>
</tr>
<tr>
<td>73.011A Principles of Physiology</td>
<td>6</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.901 Psychology I</td>
<td>5</td>
</tr>
<tr>
<td>31.812 Optometry II</td>
<td>15</td>
</tr>
<tr>
<td>31.831 Diseases of the Eye</td>
<td>3</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td></td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Year</td>
<td>S1 S2</td>
</tr>
<tr>
<td>12.741 Psychology (Optometry)</td>
<td>2 2</td>
</tr>
<tr>
<td>31.813 Optometry III</td>
<td>6 6</td>
</tr>
<tr>
<td>31.841 Clinical Optometry</td>
<td>15 15</td>
</tr>
<tr>
<td>General Studies Elective</td>
<td>1½ 1½</td>
</tr>
</tbody>
</table>

Session 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.001 Indication for Medical Referral</td>
<td>0 1</td>
</tr>
</tbody>
</table>

24½ 25½
1. Undergraduates* of the University of New South Wales who have satisfied the examiners in at least the first two years of the Optometry degree course may be admitted to the Science degree course with advanced standing for the purpose of qualifying for the double degree of BSc BOptom. Such undergraduates' performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. In order to qualify for the award of the degree of BSc, students so admitted shall be required to complete the appropriate general studies subjects and no less than four units of either Level II or Level III and four other Level III units, in accordance with the Science and Mathematics Course regulations.

The units submitted for the award of the Bachelor's degree under these regulations must include at least four Level III units chosen from related disciplines in accordance with the Science Course regulations.

3. In order to qualify for the award of the degree of BOptom, students so admitted shall complete the requirements of the Optometry degree course.

* In Rule 1, the word 'undergraduates' includes graduands, i.e. a person may be admitted under these rules if he has met all requirements for a first degree which has not yet been conferred on him, and his admission under these rules shall be no bar to the subsequent award of the first degree.
Faculty of Biological Sciences and
Faculty of Science
Graduate Study

Faculty of Biological Sciences and
Faculty of Science Enrolment
Procedures

All students re-enrolling in 1981 or enrolling in graduate courses should obtain a copy of the free booklet Enrolment Procedures 1981 available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Faculty of Biological Sciences

Facilities are available in each of the Schools for research leading to the degrees of Master of Science and Doctor of Philosophy. The School of Biological Technology offers a graduate diploma course in Biochemical Engineering, a graduate diploma in Biotechnology and a Master’s course in Biotechnology by formal study, and the School of Psychology offers a Master of Psychology degree course.

Higher Degree Qualifying Program

Students without a BSc Honours degree wishing to register as higher degree candidates must usually complete a qualifying program, admission to which is subject to the approval of the Faculty Higher Degree Committee.

Applicants must normally have a degree or diploma in an appropriate field of study from an approved university or institution, and in the case of a diploma, appropriate professional experience.

Undergraduates of this University may be admitted to the full-time or part-time Honours undergraduate course. Other applicants may be admitted to a full-time, part-time or external qualifying program. The duration of the qualifying program is a minimum of one year for full-time and two years for part-time or external students.

Content of Qualifying Program

The qualifying program consists of the whole of the usual program for the final Honours year of the undergraduate course, the following being the prescribed Level IV subjects:

41.103 Biochemistry IV
42.103 Biological Technology Honours
43.103 Botany Honours
44.103 Microbiology Honours
12.014 Psychology IV (Research)
45.103 Zoology Honours

The qualifying program is graded in the usual way, and in appropriate cases the results are expressed as a grading equivalent to Honours.

Alternative Qualifying Program

Applicants who cannot attend the University regularly may be admitted as external qualifying students to a program equivalent to a standard Honours year. The following are the alternative qualifying subjects:

41.999G Biochemistry
42.999G Biological Technology
The results in alternative qualifying subjects are graded Pass or Fail only.

Fees
Candidates enrolled in the Alternative Qualifying Program are exempt from student service fees.

Biotechnology

5320 Biochemical Engineering Graduate Diploma Course
Graduate Diploma GradDip

The School of Biotechnology, conjointly with the School of Chemical Engineering and Chemical Technology, offers a course in biochemical engineering which leads to the award of a graduate diploma (GradDip). The course is open to graduates in the biological sciences, chemistry, chemical engineering or agriculture, and can be completed in one year of full-time or over a longer period by part-time study. It contains a component of graduate level 'bridging' subjects, designed to facilitate the introduction of graduates with a variety of backgrounds to the current practice of biochemical engineering.

The normal entrance requirement is an appropriate degree or equivalent qualification in biological sciences, chemistry, chemical engineering or agriculture. Intending students are referred to the conditions for the award of Graduate Diplomas set out later in this handbook.

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.211G Principles of Biology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>42.212G Principles of Biochemistry</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>44.111G Microbiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>48.282G Thermodynamics Transfer</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>48.284G Mass Heat and Momentum Transfer</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.213G Biochemical Methods</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>42.214G Biotechnology</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>48.283G Process Dynamics and Biochemical Engineering Design</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

17

5340 Biotechnology Graduate Diploma Course
Graduate Diploma GradDip

The graduate diploma course provides the opportunity for graduates with no previous tuition in biotechnology to undertake training in this discipline.

A degree in a science-based course is required for admission. If the degree course has not included a biology component, the candidate is required to undertake some basic biology training as a prerequisite or co-requisite.

Under normal circumstances, students whose previous training has included a substantial component of biotechnology will not be admitted to the course.

The course comprises study of undergraduate and graduate formal subjects, plus extensive laboratory training in biotechnology.

The diploma is awarded after one year's full-time study, consisting of an average of 19 hours per week, or two years part-time study, consisting of an average of 9 1/2 hours per week. The program includes the listed obligatory subjects plus sufficient of the listed elective subjects to meet the hours of study required. The electives include subjects necessary for students without previous tuition in biochemistry and/or microbiology, as well as alternatives for those with previous tuition in these disciplines. The choice of electives in each individual case is subject to approval by the Head of School.

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligatory Subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.215G Practical Biotechnology</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102A Biotechnology A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.101 Introduction to Biotechnology</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective Subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.104G Graduate Seminars</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>42.111G Reading List in Biotechnology (Microbiology)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>42.112G Reading List in Biotechnology (Biochemistry)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>42.305G Case Studies</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44.111 Microbiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.101 Introductory Microbiology</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>42.212G Principles of Biochemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102B Biotechnology B</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>44.121 Microbial Growth</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

34

37
Master of Science (Biotechnology)
The School also offers a formal graduate course at the masters' level (Master of Science (Biotechnology)). The course includes advanced treatments of the more important areas of biotechnology such as microbial process control and enzyme technology. The course is open to graduates with a four-year degree in biotechnology or a related discipline, or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Intending students are referred to Conditions for the Award of Graduate Degrees set out later in this handbook.

The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The minimum period of registration before the award of the degree is two sessions for full-time students and four sessions for part-time students.

To qualify for the degree students must satisfy the examiners in the prescribed examinations, which include the submission and assessment of a report on the specified project.

8260 Master of Science (Biotechnology) Graduate Course
Master of Science (Biotechnology) MSc(Biotech)

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.306G Project</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.303G Biochemical Process Control</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>42.304G Biodeterioration and Biodegradation</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.301G Microorganism Productivity</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>42.302G Enzyme Technology</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>42.305G Case Studies</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

Psychology

Head of School
Professor L. B. Brown
Administrative Officer
Mr T. J. Clulow

The School of Psychology offers graduate training at the masters level (Master of Psychology)

Master of Psychology

The course is designed to provide professional training at an advanced level for honours graduates.

The normal entrance requirements are:

1. a degree of Bachelor, with Honours Class I or Class II in Psychology;

and

2. completion of approved courses in learning, perception and cognition, physiological psychology, psychological statistics, psychometrics and abnormal psychology, or in such other fields as may be prescribed by the Head of the School.

A student who does not satisfy the above requirements may be permitted to undertake a qualifying course prescribed by the Head of School, satisfactory completion of which will be accepted as meeting entrance requirements.

Selection of students is based on academic qualifications and suitability for the course. It may be necessary to limit the number of enrolments in any year. An application to register for the degree of Master of Psychology shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students.

To qualify for the degree, students must satisfy the examiners in respect of their academic attainments, and their skill and competence in relevant aspects of practical professional work.

The course consists of lectures, seminars, demonstrations and practical work, supervised clinical and community work, and a research thesis.

The major aims of the course are: 1. to acquaint students with the issues, findings and problems of contemporary clinical and community psychology; and 2. to equip them with basic clinical skills and techniques. A total of 250 hours of supervised clinical practice must be completed in the first year, and a further 430 hours in the second year.

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

It should be noted that the course requirements involve a full two year program rather than four academic sessions with vacation breaks.

8250 Master of Psychology Graduate Course—Full-time
Master of Psychology MPsychol

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.231G Professional Practice:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Facility of Science

Facilities are available in each of the Schools for research leading to the award of the higher degrees of Master of Science and Doctor of Philosophy.

The following formal courses leading to graduate awards are also offered:

- **School of History and Philosophy of Science**: Master of Science and Society
- **School of Optometry**: Master of Optometry
- **School of Chemistry**: Master of Chemistry Graduate Diploma in Food and Drug Analysis
- **School of Mathematics**
 - Master of Mathematics
 - Master of Statistics
- **School of Physics**: Master of Physics

For admission to registration for all degrees of Master (except Master of Statistics), candidates must have completed one of the following:

1. An approved degree of Bachelor with Honours.
2. An approved three year course leading to the degree of Bachelor plus an approved qualifying program. Suitable professional and/or research experience may be accepted in lieu of the qualifying program.
3. An approved four year course leading to the degree of Bachelor.

Applicants for registration for the degree of Master of Statistics shall have been admitted to the degree of bachelor with major studies in the field of statistics in the University of New South Wales or other approved university.

The manner of presentation and examination of reports of projects undertaken as part of formal courses shall be determined by the Head of the School.

The conditions governing these awards are set out later in this handbook.

Chemistry

Head of School
Professor J. S. Shannon
Executive Assistant to Head of School
Mr W. J. Dunstan

8770
Master of Chemistry Graduate Course

Master of Chemistry

MChem

The Master of Chemistry Course should be of interest to chemistry graduates who are involved in the practice or teaching of analytical chemistry. The program consists of a number of lecture courses (examinable). In addition, each student undertakes a critical literature survey or research project. Laboratory instruction (experience) and visits to laboratories are also included in the course. The course is full-time. In future the course may also be extended to part-time students. Details of the program are:

1. **2.581G Advanced Analytical Chemistry Lecture Courses**

 Students are required to take all of the following nine core courses of lectures:

 * The School of Mathematics also offers the pass course leading to the award of the degree of MA (see the Faculty of Arts Handbook).
The lecture time for the whole course is a minimum of 140 hours.

2. Laboratory Instruction (Experience) and Visits to Laboratories
An additional minimum of 150 hours is spent by students in selected areas of laboratory practice, instruction and visits to laboratories.

3. Research Project or Critical Literature Survey
A short research project (with report) of approximately 4 months duration full-time (400 hours laboratory work) may be selected in relation to the combined interests of the student and his supervisor. If the student requires more varied experience, a series of shorter projects may be carried out in two or three areas of analytical chemistry. Alternatively, each student may undertake a survey of the literature in a field of interest to himself and present a critical review in the form of a report.

Assessment
Each lecture course is examined separately. Each report is assessed by two examiners. The students may also be required to undergo an oral examination.

5510 Food and Drug Analysis Graduate Diploma Course
Diploma In Food and Drug Analysis
DipFDA
According to demand the course may be available on a full-time basis over one year or on a part-time basis over two years.

The course in food and drug analysis is designed to provide systematic training at an advanced level for chemists who wish to extend their acquaintance with analytical techniques, and thus is suitable for those who may wish to practice as public analysts. The prime aim is to present discussions of the principles and design of analytical methods which are therefore presented on a comparative basis.

It is considered that the techniques involved in the handling of foods and drugs together with those discussed in the ancillary subjects of the course provide a firm basis of approach to many other fields.

Intending students are referred to the conditions for the award of graduate diplomas set out later in this handbook.
Candidates may select 4 further units from the following list:

- 62.701G Philosophy and Methodology of Science
- 62.709G The Scientific Community
- 62.710G Science, Philosophy and Social Values
- 62.711G Marxism and the Critique of Science
- 62.712G Science, War and the State
- 62.714G Knowledge, Power and Public Policy
- 62.715G Cause, Belief and Progress in the History of Science
- 15.715G Science, Society and Institutions
- 15.716G Science, Technology and Economic Development
- 26.568G Technology and Alternative Development
- 30.960G Technology and Organisations
- 53.309G Social and Technological Forecasting (2 units)

Selected candidates may undertake a third-year MScSoc honours degree program of advanced study which includes a dissertation based on supervised research into particular aspects of the relationships between science and technology and science and its institutions.

The conditions for the award of the degree are set out later in this handbook.

Mathematics

Head of School
Professor D. W. Robinson

The School of Mathematics offers graduate courses leading to the award of the degrees of Master of Mathematics (MMath) and Master of Statistics (MStats). (The School also offers the pass degree of MA. For further details see the Faculty of Arts Handbook.)

8740
Master of Mathematics Graduate Course
Master of Mathematics
MMath

The Master of Mathematics Course is intended for honours graduates in pure or applied mathematics, but others may be admitted after completing a qualifying course. The course may be completed in one year of full-time or two years of part-time study. The course may be taken as a preliminary step towards the award of a PhD in mathematics. It also provides advanced training for persons specializing in the teaching of mathematics in tertiary institutions. In addition an appropriate program may provide training for those employed or seeking employment in the area of industrial mathematics.

The program consists of seven lecture courses from 10.194G, the duration of each being two hours per week for one session. With the approval of the Head of the School of Mathematics a student may substitute for one or more of these lecture courses a reading course supervised by a member of staff. Again with this approval a student may substitute for at most two of these courses graduate courses offered either within or outside the School of Mathematics. Students are also required to participate in relevant departmental seminars. In addition, students are required to undertake a project supervised by a staff member, consisting of either a critical review of the literature in a specific field of mathematics, or a short research project. It is anticipated that students will spend three hours per week for two sessions on their project. Each candidate's proposed program of study requires the approval of the Head of the School of Mathematics.

The academic requirement for the degree is 24 credits.

Each candidate's program of study must be approved by the Head of the School.

Compulsory Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.381G</td>
<td>Experimental Design I</td>
<td>2</td>
</tr>
<tr>
<td>10.383G</td>
<td>Stochastic Processes</td>
<td>2</td>
</tr>
<tr>
<td>10.385G</td>
<td>Multivariate Analysis I</td>
<td>2</td>
</tr>
<tr>
<td>10.390G</td>
<td>Statistical Inference</td>
<td>2</td>
</tr>
<tr>
<td>10.392G</td>
<td>Project</td>
<td>2</td>
</tr>
</tbody>
</table>

Elective Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.382G</td>
<td>Experimental Design II</td>
<td>2</td>
</tr>
<tr>
<td>10.384G</td>
<td>Time Series</td>
<td>2</td>
</tr>
<tr>
<td>10.386G</td>
<td>Multivariate Analysis II</td>
<td>2</td>
</tr>
<tr>
<td>10.387G</td>
<td>Sample Survey Design</td>
<td>2</td>
</tr>
<tr>
<td>10.388G</td>
<td>Sequential Analysis</td>
<td>2</td>
</tr>
<tr>
<td>10.389G</td>
<td>Non-Parametric Methods</td>
<td>2</td>
</tr>
<tr>
<td>10.391G</td>
<td>Special Topic*A</td>
<td>2</td>
</tr>
<tr>
<td>10.393G</td>
<td>Special Topic* B</td>
<td>2</td>
</tr>
<tr>
<td>10.394G</td>
<td>Discrete Distributions</td>
<td>2</td>
</tr>
<tr>
<td>10.212M</td>
<td>Optimal Control Theory or</td>
<td>3</td>
</tr>
<tr>
<td>10.222M</td>
<td>Higher Optimal Control Theory</td>
<td></td>
</tr>
</tbody>
</table>

Up to 6 credits may be taken in graduate subjects offered by other Departments or Schools within the University, subject to the approval of the Head of School. Such subjects include:

For footnotes, see overleaf
Optimization

10.212L Optimization Methods or 3
10.222L Higher Optimization Methods 3
15.423 Econometrics B 2
18.771G Simulation in Operations Research 2
24.017G Transport and Traffic Flow Theory 4
24.003G Theory of Land Use/Transport Interaction 2
24.005G Urban Transport Planning Practice 2

* To be arranged: eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.

Optometry

Head of School
Professor J. Lederer

The School of Optometry offers a formal graduate course leading to the award of the degree of Master of Optometry (MOptom). This course comprises the study of three elective graduate subjects and of advanced Clinical Optometry, together with the preparation of a thesis on an assigned project. It may be completed in one year of full-time study, or (to meet the needs of practising optometrists) in two or three years of part-time study. The course provides advanced training in clinical and theoretical aspects of Optometry, with opportunities for specialization in fields such as contact lenses, occupational optometry, and orthoptics.

Conditions for admission and for the award of the degree of Master of Optometry are set out later in this handbook.

8760 Master of Optometry Graduate Course
Master of Optometry
MOptom

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.701G</td>
<td>Advanced Clinical Optometry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Three elective graduate subjects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chosen from the list below (each 4 hours)</td>
<td></td>
</tr>
<tr>
<td>31.799G</td>
<td>Project</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Elective Graduate Subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.702G</td>
<td>Advanced Physiological Optics</td>
<td>4</td>
</tr>
<tr>
<td>31.703G</td>
<td>Pleothoptics and Binocular Vision</td>
<td>4</td>
</tr>
<tr>
<td>31.704G</td>
<td>Advanced Contact Lens Studies</td>
<td>4</td>
</tr>
<tr>
<td>31.705G</td>
<td>Advanced Contact Lens Practice</td>
<td>4</td>
</tr>
<tr>
<td>31.706G</td>
<td>Occupational Optometry</td>
<td>4</td>
</tr>
<tr>
<td>31.707G</td>
<td>Clinical Photography</td>
<td>4</td>
</tr>
</tbody>
</table>

The six elective graduate subjects offered are quite independent, and any three of them are suitable for a student seeking advanced professional training of a general nature. If clinical specialization is aimed at, the student would be advised to elect the graduate subjects shown below:

Specialization

Graduate Subjects

Contact Lenses
1. Advanced Contact Lens Studies
2. Advanced Contact Lens Practice
3. Clinical Photography

Occupational Optometry
1. Occupational Optometry
2. Pleothoptics and Binocular Vision
3. Advanced Physiological Optics

Orthoptics
1. Pleothoptics and Binocular Vision
2. Clinical Photography

Physics

Head of School
Professor K. N. R. Taylor

Executive Assistant to Head of School
Dr P. R. Elliston

Administrative Officer
Mr P. Clark

8730 Master of Physics Graduate Course
Master of Physics
MPhys

The School of Physics offers a graduate course leading to the award of the Master of Physics degree (MPhys).

The Master of Physics degree course is intended for honours graduates in physics. Others may be admitted if they have submitted evidence of such academic and professional attainments as may be approved by the Faculty of Science on the recommendation of its Higher Degree Committee. Applicants with other qualifications may be admitted after completing a qualifying examination approved by the Faculty of Science.

The subject matter of the course provides an advanced training in a branch of physics, the topic of which is determined during the year preceding that in which it is offered.

Students undertaking the masters course by formal study must enrol in one of the following subjects:

1.801G Energy Alternatives
1.802G Astrophysics
1.803G Acoustics
1.804G Biophysics
1.805G Applied Physics

Enrolment in any one of the above subjects normally involves at least five units of lecture material, a literature survey, and small research project.
Graduate Study

Conditions for the Award of Higher Degrees

First Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Disciplines of the University: Faculty Table (Undergraduate Study) in the Calendar.

Higher Degrees

The following is the list of higher degrees and graduate diplomas of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Disciplines of the University: Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Medicine</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar and all handbooks</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA(Hons)</td>
<td>Arts</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEnv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Education</td>
<td>MED</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEdAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of General Studies</td>
<td>MGenStud</td>
<td>General Studies</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPed</td>
<td>Calendar†</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws by Research</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Psychology</td>
<td>MPSychol</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Public Administration</td>
<td>MPA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science**</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Science (Biotechnology)</td>
<td>MSc(Biotech)</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Science (Building)</td>
<td>MSc(Building)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
</tbody>
</table>
Doctor of Philosophy (PhD)

Qualifications

1. The degree of Doctor of Philosophy may be granted by the Council on the recommendation of the Professorial Board to a candidate who has made an original and significant contribution to knowledge and who has satisfied the following requirements:

2. A candidate for registration for the degree of Doctor of Philosophy shall:

 (1) hold an honours degree from the University of New South Wales; or

 (2) hold an honours degree of equivalent standing from another approved university; or

 (3) if the candidate holds a degree without honours from the University of New South Wales or other approved university, have achieved by subsequent work and study a standard recognised by the higher degree committee of the appropriate faculty or board of studies (hereinafter referred to as the committee) as equivalent to honours; or

 (4) in exceptional cases, submit such other evidence of general and professional qualifications as may be approved by the Professorial Board on the recommendation of the committee.

3. When the committee is not satisfied with the qualifications submitted by a candidate, the committee may require the candidate, before being permitted to register, to undergo such examination or carry out such work as the committee may prescribe.

Registration

4. A candidate for registration for a course of study leading to the degree of Doctor of Philosophy shall apply to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.
5. Subsequent to registration the candidate shall pursue a program of advanced study and research for at least six academic sessions, save that:

(1) a candidate fully engaged in advanced study and research for the degree, who before registration was engaged upon research to the satisfaction of the committee, may be exempted from not more than two academic sessions;

(2) in special circumstances the committee may grant permission for the candidate to spend not more than one calendar year of the program in advanced study and research at another institution provided that the work can be supervised in a manner satisfactory to the committee;

(3) in exceptional cases, the Professorial Board on the recommendation of the committee may grant permission for a candidate to be exempted from not more than two academic sessions.

6. A candidate who is fully engaged in research for the degree shall present for examination not later than ten academic sessions from the date of registration. A candidate not fully engaged in research shall present for examination not later than twelve academic sessions from the date of registration. In special cases an extension of these times may be granted by the committee.

7. The candidate shall be fully engaged in advanced study and research, save that:

(1) the committee may permit a candidate to undertake a limited amount of University teaching or outside work which in its judgment will not interfere with the continuous pursuit of the proposed course of advanced study and research;

(2) a member of the full-time staff of the University may be accepted as a part-time candidate for the degree, in which case the committee shall prescribe a minimum period for the duration of the program;

(3) in special circumstances, the committee may, with the concurrence of the Professorial Board, accept as a part-time candidate for the degree a person who is not a member of the full-time staff of the University and is engaged in an occupation which, in its opinion, leaves the candidate substantially free to pursue a program in a school of the University. In such a case the committee shall prescribe for the duration of the program a minimum period which, in its opinion, having regard to the proportion of the time which the candidate is able to devote to the program in the appropriate University school is equivalent to the six sessions ordinarily required.

8. Every candidate shall pursue a program under the direction of a supervisor appointed by the committee from the full-time members of the University staff. The work, other than field work, shall be carried out in a school of the University save that in special cases the committee may permit a candidate to conduct the work at other places where special facilities not possessed by the University may be available. Such permission will be granted only if the direction of the work remains wholly under the control of the supervisor.

9. Not later than two academic sessions after registration the candidate shall submit the topic of research for approval by the committee. After the topic has been approved it may not be changed except with the permission of the committee.

10. A candidate may be required by the committee to attend a formal course of appropriate study.

11. On completing the course of study every candidate must submit a thesis which complies with the following requirements:

(1) the greater proportion of the work described must have been completed subsequent to registration for the PhD degree;

(2) it must be an original and significant contribution to the knowledge of the subject;

* Or department where department is not within a school.
(3) it must be written in English except that a candidate in the Faculty of Arts may be required by the Faculty on the recommendation of the supervisor to write the thesis in an appropriate foreign language;

(4) It must reach a satisfactory standard of expression and presentation.

12. The thesis must present the candidate's own account of the research. In special cases work done conjointly with other persons may be accepted, provided the committee is satisfied on the candidate's part in the joint research.

13. Every candidate shall be required to submit with the thesis a short abstract of the thesis comprising not more than 600 words.

The abstract shall indicate:
(1) the problem investigated;
(2) the procedures followed;
(3) the general results obtained;
(4) the major conclusions reached;
but shall not contain any illustrative matter, such as tables, graphs or charts.

14. A candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award.

Entry for Examination

15. The candidate shall give in writing two months' notice of intention to submit the thesis.

16. Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may also submit any work previously published whether or not such work is related to the thesis.

17. It shall be understood that the University retains the four copies of the thesis submitted for examination, and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

18. There shall normally be three examiners of the thesis appointed by the Professorial Board on the recommendation of the committee, at least two of whom shall be external to the University.

19. At the conclusion of the examination each examiner shall submit to the committee a concise report on the merits of the thesis and shall recommend to the committee that:

(1) the candidate be awarded the degree without further examination; or

(2) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

(3) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the committee; or

(4) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(5) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

20. If the performance at the further examination recommended under Rule 19.(3) is not to the satisfaction of the committee the committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by them but not exceeding eighteen months.

* See Conditions for the Award of Degrees in the Calendar.
21. The committee shall, after consideration of the examiners’ reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be admitted to the degree.

22. A candidate shall be required to pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Chemistry by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Master of Chemistry (MChem)

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II honours in Chemistry.

Qualifications

(2) An applicant for registration with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

(3) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to write a critical review of the literature or present a report on a short research project (approximately 400 hours laboratory work) to be assessed by two examiners.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

Project

4. Three copies of the report referred to in paragraph 3. (3) above shall be retained by the University. The University shall be free to allow the report to be consulted or borrowed and, subject to the provisions of the Copyright Act, 1968 the University may issue the report in whole or in part, in photostat or microfilm or other copying medium.

Recommendation for Admission to Degree

5. Having considered the examiners’ reports and the candidate’s other work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

Recommendation for Admission to Degree

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Fees

1. The degree of Master of Mathematics by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Master of Mathematics (MMath)
Qualifications

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II honours in Mathematics.

(2) An applicant for registration, with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

Registration

(3) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to submit a report consisting of a critical review of the literature in an approved branch of Mathematics or a report on a short research project. In either case the report will be assessed by two examiners, and the candidate may be required to attend an oral examination. The report is to be presented in a form approved by the Head of the School of Mathematics.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

Recommendation for Admission to Degree

4. Having considered the examiners' reports and the candidate's other work in the prescribed course of study, the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Optometry (MOptom)

1. The degree of Master of Optometry by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Qualifications

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor in the discipline of Optometry in the University of New South Wales or other approved University.

(2) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.
Graduate Study: Conditions for the Award of Higher Degrees

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two full calendar months before the commencement of the course.

(2) An approved applicant shall register as a student in either full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed annual examinations. Under the supervision of a member of the academic staff a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the annual examinations.

4. Having considered the results of the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Physics by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II Honours in Physics.

(2) An applicant for registration, with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

(3) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to submit a report consisting of a critical review of the literature in an approved branch of Physics and a report on a short research project. In either case the report will be assessed by two examiners, and the candidate may be required to attend an oral examination. The report is to be presented in a form approved by the Head of the School of Physics.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

4. Having considered the examiners' reports and the candidate's other work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.
Fees 5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Psychology (MPsychol)

1. The degree of Master of Psychology by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

The degree shall be awarded in two grades, namely Pass and Honours. There shall be two classes of Honours, namely Class I and Class II.

Qualifications 2. (1) An applicant for registration shall hold an approved degree of Bachelor with Honours Class I or Class II in Psychology.

(2) An applicant for registration, with an approved degree at a standard below Honours Class II may be accepted following satisfactory completion of a qualifying course and examination approved by the Committee.

(3) In special cases a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

(4) Notwithstanding any other provisions of these conditions, the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

Registration 3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to:
(a) undertake the specified courses of advanced study;
(b) except in exceptional circumstances pass the prescribed examinations at the first attempt;
(c) submit a research thesis on a topic approved by the Committee and prepared under the guidance of a supervisor appointed by the Committee.

(4) The minimum period of registration before the award of the degree shall be of four sessions for full-time students, and six sessions for part-time students.

Research Thesis 4. (1) Every candidate shall submit three copies of the research thesis. All copies shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses or reports. A candidate may submit also for examination any work he has published whether or not such work is related to the research thesis.

(2) For each candidate's research thesis there shall be two examiners appointed by the Professorial Board on the recommendation of the Committee, one of whom shall ordinarily be an external examiner.

(3) It shall be understood that the University retains the copies of the research thesis submitted for examination and is free to allow the research thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the research thesis in whole or in part, in photostat or microfilm or other copying medium.
5. Having considered the results of the candidate's work in the prescribed course of study and the skill and competence attained in relevant aspects of practical professional work the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Science may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate Faculty or Board of Studies (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor in the University of New South Wales, or other approved University in an appropriate School or Department.

(2) In exceptional cases a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Professorial Board on the recommendation of the appropriate Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

3. (1) An application to register as a candidate for the degree of Master of Science shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the session in which the candidate desires to register.

(2) In every case before permitting an applicant to register as a candidate the Committee shall be satisfied that adequate supervision and facilities are available.

(3) An approved applicant shall register in one of the following categories:
(a) student in full-time attendance at the University
(b) student in part-time attendance at the University
(c) student working externally to the University.

(4) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design, to take such examinations and to perform such other work as may be prescribed by the Committee. This work shall be carried out under the direction of a supervisor appointed by the Committee or under such conditions as the Committee may determine.

(5) At least once a year and at any other time that the Committee sees fit the candidate’s supervisor shall present to the Head of School in which the candidate is registered a report on the progress of the candidate. The Committee shall review the report and as a result of its review may cancel registration or take such other action as it considers appropriate.

(6) Unless otherwise recommended by the Committee, no candidate shall be awarded the degree until the lapse of four complete sessions from the date of registration, save that the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may be reduced by up to two sessions with the approval of the Committee. A candidate who is fully engaged in research for the degree shall present himself for examination not later than six academic sessions from the date of registration. A candidate not fully engaged in research shall present himself for examination not later than twelve academic sessions from the date of his registration. In special cases an extension of these times may be granted by the Committee.
4. (1) A candidate for the degree shall be required to submit three copies of the thesis referred to in paragraph 3. (4) which shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may submit also for examination any work he has published whether or not such work is related to the thesis.

(2) For each candidate there shall be at least two examiners, appointed by the Professorial Board on the recommendation of the Committee, one of whom, if possible, shall be external to the University.

(3) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part in photostat or microfilm or other copying medium.

5. Having considered the examiners' reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Science (MSc) without supervision

1. Where it is not possible for candidates to register under the normal conditions for the degree of Master of Science, Master of Engineering or Master of Surveying by reason of their location at centres which are distant from University Schools or where effective supervision is not practicable registration may be granted in these categories under the following conditions:

2. An applicant for registration shall have been admitted to a degree of Bachelor in the University of New South Wales.

3. (1) An application to register as an external candidate for the degree of Master of Science, Master of Engineering or Master of Surveying without supervision shall be lodged with the Registrar for recommendation by the Head of School and consideration by the Higher Degree Committee of the appropriate Faculty (hereinafter referred to as the Committee) not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should in his own interest at an early stage, seek the advice of the appropriate School with regard to the adequacy of the subject matter for the degree. A synopsis of the work should be enclosed.

(2) A candidate shall not be considered for the award of the degree until the lapse of six sessions in the case of honours graduates and eight sessions in the case of pass graduates from the date of graduation.

4. (1) (a) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design. The thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. A candidate may submit also for examination any work he has published, whether or not such work is related to the thesis.

(b) Every candidate shall submit with the thesis a statutory declaration that the material contained therein is his own work, except where otherwise stated in the thesis.

(2) For each candidate there shall be at least two examiners appointed by the Professorial Board on the recommendation of the Committee, one of whom shall be an internal examiner.

(3) If the thesis reaches the required standard, the candidate shall be required to attend for an oral examination at a time and place nominated by the Committee. The examiners may also arrange at their discretion for the examination of the candidate by written and/or practical examinations on the subject of the thesis and/or subjects related thereto.
4. It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5. Having considered the examiners' reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved applicant shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Science (Biotechnology) may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Honours Class I or Class II in Biological Technology or other relevant discipline.

(2) An applicant for registration with an approved degree at a standard below Honours Class II may be accepted following satisfactory completion of a qualifying course of not less than one year and examination approved by the Committee.

(3) In special cases, a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

(4) Notwithstanding any other provisions of these conditions, the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting such examinations as the Committee may determine.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the specified course of advanced study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the examinations.

(4) The minimum period of registration before the award of the degree shall be two sessions for full-time students and four sessions for part-time students.

4. Having considered the results of the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.
Master of Science and Society (MScSoc)

Qualifications

1. The degree of Master of Science and Society may be awarded at honours or pass level by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration for the degree shall have been admitted to a degree of Bachelor in the University of New South Wales or other approved university or tertiary education institution of acceptable standing, at a level approved by the Committee. Normally an honours degree or equivalent in science, applied science/technology, a social science or other relevant discipline, or a pass degree together with suitable professional experience would be deemed an appropriate qualification.

(2) In exceptional cases an applicant may be registered as a candidate for the degree if he submits evidence of such academic and professional attainment as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as it may determine.

Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the course.

(2) An approved applicant shall register as a student in part-time attendance at the University.

(3) (a) A Candidate for the Pass degree shall undertake the approved course comprising of at least eight units which normally will be taken over four sessions.

(3) (b) A candidate for the Honours degree will undertake an additional two session program of advanced study including a dissertation based on research approved by the Committee on the recommendation of the School of History and Philosophy of Science.

(4) No candidate shall be considered for the award of the degree until the lapse of four sessions in the case of a pass candidate or six sessions in the case of an honours candidate.

Recommendation for Admission to Degree

(5) The progress of a candidate shall be reviewed annually by the Committee and as a result of such review the Committee may terminate the candidature or take such other action as it considers appropriate.

4. Having considered the candidate's results in the prescribed course of study the Committee shall recommend whether the candidate may be admitted to the degree.

Fees

5. An approved candidate shall pay such fees as may be determined from time to time by Council.

Master of Statistics (MStats)

Qualifications

1. The degree of Master of Statistics may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor with major studies in the field of Statistics, in the University of New South Wales or other approved University.

(2) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.
Graduate Study: Conditions for the Award of Higher Degrees

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two full calendar months before the commencement of the session in which the candidate desires to register.

(2) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed annual examinations. Under the supervision of a member of the academic staff a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the annual examinations.

(3) No candidate shall be considered for the award of the degree until a lapse of four complete sessions from the date of registration, save that in the case of a candidate who obtained the degree of Bachelor with Honours in Statistics this period may, with the approval of the Committee be reduced by up to two sessions by exemption from appropriate specified courses of study.

4. Having considered the results of the candidate’s work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

5. An approved applicant shall pay such fees as may be determined from time to time by the Council.

Registration

Recommendation for Admission to Degree

Fees

Graduate Diplomas

1. An application for admission to a graduate diploma course shall be made on the prescribed form which should be lodged with the Registrar at least two full calendar months before the commencement of the course.

2. An applicant for admission to a graduate diploma course shall be:

 (1) a graduate of the University of New South Wales or other approved university,

 (2) a person with other qualifications as may be approved by Faculty.

3. Notwithstanding clause 2, above, Faculty may require an applicant to take such other prerequisite or concurrent studies and/or examinations as it may prescribe.

4. Every candidate for a graduate diploma shall be required to undertake the appropriate course of study, to pass any prescribed examinations, and if so laid down in the course, to complete a project or assignment specified by the Head of the School. The format of the report on such project or assignment shall accord with the instructions laid down by the Head of School.

5. An approved applicant shall be required to pay the fee for the course in which he desires to register. Fees shall be paid in advance.
Subject Descriptions

Identification of Subjects by Numbers

A subject is defined by the Professorial Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

Each approved subject of the University is identifiable both by number and by name as this is a check against nomination of subject other than the one intended.

Subject numbers are allocated by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the number before the decimal point.

2. Each subject number is unique and is not used for more than one subject title.

3. Subject numbers which have not been used for some time are not used for new subject titles.

4. Graduate subjects are indicated by a suffix 'G' to a number with three digits after the decimal point. In other subjects three or four digits are used after the decimal point.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Servicing Subjects are those taught by a School or Department outside of its own faculty, and are listed at the end Undergraduate Study or Graduate Study of the relevant subject. Their subject descriptions are published in the handbook of the faculty in which the subject is taught.

The identifying numerical prefixes for each subject authority are set out below.

For General Studies subjects see the Board of Studies in General Education Handbook, which is available free of charge.

Information Key
The following is the key to the information supplied about each subject listed below: S1 (Session 1); S2 (Session 2); F (Session 1 plus Session 2, ie full year); S1 or S2 (Session 1 or Session 2, ie choice of either session); SS (single session, ie which session taught not known at time of publication); L (Lecture, followed by hours per week); T (Laboratory/Tutorial, followed by hours per week); DN (Distinction); CR (Credit); PC (Pass Conceded).

HSC Exam Prerequisites
Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate School on what matriculation status is required for admission to a subject.
<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 School of Physics</td>
<td>Science</td>
<td>150</td>
</tr>
<tr>
<td>2 School of Chemistry</td>
<td>Science</td>
<td>155</td>
</tr>
<tr>
<td>4 School of Metallurgy</td>
<td>Applied Science</td>
<td>159</td>
</tr>
<tr>
<td>5 School of Mechanical and Industrial Engineering</td>
<td>Engineering</td>
<td>161</td>
</tr>
<tr>
<td>6 School of Electrical Engineering and Computer Science</td>
<td>Engineering</td>
<td>162</td>
</tr>
<tr>
<td>7 School of Mining Engineering</td>
<td>Applied Science</td>
<td>164</td>
</tr>
<tr>
<td>8 School of Civil Engineering</td>
<td>Engineering</td>
<td>172</td>
</tr>
<tr>
<td>9 School of Wool and Pastoral Sciences</td>
<td>Applied Science</td>
<td>176</td>
</tr>
<tr>
<td>10 School of Mathematics</td>
<td>Science</td>
<td>176</td>
</tr>
<tr>
<td>11 School of Architecture</td>
<td>Architecture</td>
<td>176</td>
</tr>
<tr>
<td>12 School of Psychology</td>
<td>Biological Sciences</td>
<td>176</td>
</tr>
<tr>
<td>13 School of Textile Technology</td>
<td>Applied Science</td>
<td>176</td>
</tr>
<tr>
<td>14 School of Accountancy</td>
<td>Commerce</td>
<td>176</td>
</tr>
<tr>
<td>15 School of Economics</td>
<td>Commerce</td>
<td>176</td>
</tr>
<tr>
<td>16 School of Health Administration</td>
<td>Professional Studies</td>
<td>176</td>
</tr>
<tr>
<td>17 Biological Sciences</td>
<td>Biological Sciences</td>
<td>176</td>
</tr>
<tr>
<td>18 School of Mechanical and Industrial Engineering</td>
<td>Engineering</td>
<td>176</td>
</tr>
<tr>
<td>21 Department of Industrial Arts</td>
<td>Architecture</td>
<td>176</td>
</tr>
<tr>
<td>23 School of Nuclear Engineering</td>
<td>Engineering</td>
<td>177</td>
</tr>
<tr>
<td>25 School of Applied Geology</td>
<td>Applied Science</td>
<td>181</td>
</tr>
<tr>
<td>26 Department of General Studies</td>
<td>Board of Studies in General Education</td>
<td>181</td>
</tr>
<tr>
<td>27 School of Geography</td>
<td>Applied Science</td>
<td>181</td>
</tr>
<tr>
<td>28 School of Marketing</td>
<td>Commerce</td>
<td>184</td>
</tr>
<tr>
<td>29 School of Surveying</td>
<td>Engineering</td>
<td>184</td>
</tr>
<tr>
<td>30 Department of Organizational Behaviour</td>
<td>Commerce</td>
<td>184</td>
</tr>
<tr>
<td>31 School of Optometry</td>
<td>Science</td>
<td>184</td>
</tr>
<tr>
<td>32 Centre for Biomedical Engineering</td>
<td>Architecture</td>
<td>184</td>
</tr>
<tr>
<td>35 School of Building</td>
<td>Architecture</td>
<td>184</td>
</tr>
<tr>
<td>36 School of Town Planning</td>
<td>Architecture</td>
<td>184</td>
</tr>
<tr>
<td>37 School of Landscape Architecture</td>
<td>Applied Science</td>
<td>184</td>
</tr>
<tr>
<td>38 School of Food Technology</td>
<td>Architecture</td>
<td>184</td>
</tr>
<tr>
<td>39 Graduate School of the Built Environment</td>
<td>Biological Sciences</td>
<td>185</td>
</tr>
<tr>
<td>40 Professoral Board</td>
<td>Biological Sciences</td>
<td>185</td>
</tr>
<tr>
<td>41 School of Biochemistry</td>
<td>Biological Sciences</td>
<td>185</td>
</tr>
<tr>
<td>42 School of Biotechnology</td>
<td>Biological Sciences</td>
<td>186</td>
</tr>
<tr>
<td>43 School of Botany</td>
<td>Biological Sciences</td>
<td>188</td>
</tr>
<tr>
<td>44 School of Microbiology</td>
<td>Biological Sciences</td>
<td>190</td>
</tr>
<tr>
<td>45 School of Zoology</td>
<td>Biological Sciences</td>
<td>191</td>
</tr>
<tr>
<td>48 School of Chemical Engineering and Industrial Chemistry</td>
<td>Applied Science</td>
<td>192</td>
</tr>
<tr>
<td>50 School of English</td>
<td>Arts</td>
<td>193</td>
</tr>
<tr>
<td>51 School of History</td>
<td>Arts</td>
<td>197</td>
</tr>
<tr>
<td>52 School of Philosophy</td>
<td>Arts</td>
<td>197</td>
</tr>
<tr>
<td>53 School of Sociology</td>
<td>Arts</td>
<td>197</td>
</tr>
<tr>
<td>54 School of Political Science</td>
<td>Arts</td>
<td>197</td>
</tr>
<tr>
<td>55 School of Librarianship</td>
<td>Professional Studies</td>
<td>197</td>
</tr>
<tr>
<td>56 School of French</td>
<td>Arts</td>
<td>197</td>
</tr>
<tr>
<td>57 School of Drama</td>
<td>Arts</td>
<td>197</td>
</tr>
<tr>
<td>58 School of Education</td>
<td>Professional Studies</td>
<td>197</td>
</tr>
<tr>
<td>59 School of Russian</td>
<td>Arts</td>
<td>199</td>
</tr>
<tr>
<td>62 School of History and Philosophy of Science</td>
<td>Arts</td>
<td>199</td>
</tr>
<tr>
<td>63 School of Social Work</td>
<td>Professional Studies</td>
<td>199</td>
</tr>
<tr>
<td>64 School of German Studies</td>
<td>Arts</td>
<td>199</td>
</tr>
<tr>
<td>65 School of Spanish and Latin American Studies</td>
<td>Arts</td>
<td>199</td>
</tr>
<tr>
<td>66 Subjects Available from Other Universities</td>
<td>Board of Studies in Science and Mathematics</td>
<td>202</td>
</tr>
<tr>
<td>68 Board of Studies in Science and Mathematics</td>
<td>Board of Studies in Science and Mathematics</td>
<td>202</td>
</tr>
<tr>
<td>70 School of Anatomy</td>
<td>Medicine</td>
<td>202</td>
</tr>
<tr>
<td>71 School of Medicine</td>
<td>Medicine</td>
<td>202</td>
</tr>
<tr>
<td>72 School of Pathology</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>73 School of Physiology and Pharmacology</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>74 School of Surgery</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>75 School of Obstetrics and Gynaecology</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>76 School of Paediatrics</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>77 School of Psychiatry</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>79 School of Community Medicine</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>80 Faculty of Medicine</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>81 Medical Science</td>
<td>Medicine</td>
<td>203</td>
</tr>
<tr>
<td>85 Australian Graduate School of Management</td>
<td>AGSM</td>
<td>203</td>
</tr>
<tr>
<td>89 Faculty of Law</td>
<td>Law</td>
<td>203</td>
</tr>
<tr>
<td>97 Division of Postgraduate Extension Studies</td>
<td>Law</td>
<td>203</td>
</tr>
</tbody>
</table>
Sciences

Physics

Undergraduate Study

Physics Level I Units

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Prerequisite</th>
<th>F L3T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td></td>
<td>F L3T3</td>
</tr>
</tbody>
</table>

1.021 Introductory Physics I

(For Health and Life Scientists)

Prerequisites: None. Co-requisites: 10.021A & 10.021B, or 10.021C, or 10.021 or 10.001 or 10.011.

- Principally for students majoring in the life and health science disciplines. Topics, at an introductory level.
- The methods of physics, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electromagnetic induction, alternating current, atomic nature of matter, X-rays, the nucleus and radioactivity, electronics, and either geometrical optics, optical instruments, wave optics, microscopes and their uses.

1.031 Physics I (Optometry)

Prerequisites: None. Co-requisites: As for 1.021.

- The description of motion, dynamics, statics, conservation of momentum and energy, rotation, elasticity and vibration, wave motion, fluids, temperature and expansion, heat and heat transfer, the theory of heat, electric charge, electric field, electric energy, electric circuits, electromagnetism, applied electricity, alternating current, analog electronics, digital electronics, modern physics.

1.041 Laboratory Computers in Physical Sciences

Prerequisites: As for 1.001. Co-requisite: 10.001, and 1.021 or 1.001 or 1.011.

Physics Level II Units

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Prerequisites</th>
<th>F L3T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.012</td>
<td>Mechanics and Thermal Physics</td>
<td>1.001 or 1.011, 10.001</td>
<td>S1 L3T2</td>
</tr>
</tbody>
</table>

- Properties of solids and liquids, elasticity, hydrostatics, hydrodynamics, damped and forced vibrations, resonance, coupled systems, normal modes. Fourier analysis, waves, group velocity, reflection and transmission at a boundary.

Kinetic theory, Maxwell velocity distribution, transport coefficients, first and second laws of thermodynamics, thermodynamic functions, simple applications, microscopic approach to thermodynamics, Boltzmann probability.

A molecular approach to energy transfer, kinetic theory, gas laws and calorimetry. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization. Interaction of radiation with matter, photoelectric effect, Compton effect, spectroscopy. Resolution of the wave — particle paradox by means of wave mechanics and the uncertainty principle.

1.011 Higher Physics I

Prerequisite: As for 1.001. Co-requisite: 10.001 or 10.011.

- For students of all Faculties except Medicine who have a good secondary school record and who wish to do a more challenging course. Entry to this course requires permission from the Head of the School of Physics.

- Vector algebra, kinematics, uniform circular motion, coriolis acceleration, dynamics of particles, motion in a resistive medium, work and energy, gravitation, rotational motion of rigid bodies about fixed axis, rotational motion about a fixed point, Lagrange and Hamilton equations, harmonic motions, waves in elastic media. Sound waves, physical optics, polarization and double refraction.

- Electric charge, electric intensity, electric flux. Gauss’ law, electric potential, capacity, dielectric materials, electric current and resistance, DC circuits, magnetic field, field due to a current, electromagnetic induction, inductance, magnetic materials, transients, AC circuits, electronics, dode, rectifier circuit, simple power supplies, electronic amplifier systems, single loop feedback systems, signal processing circuits using operational amplifiers.

1.001 Physics I

Prerequisite:

- HSC Exam Percentile Range
- 2 unit Mathematics 71-100
- or
- 3 unit Mathematics 21-100
- or
- 4 unit Mathematics 1-100 or (for 1.001 only) 10.021B

and

- 2 unit Science (incl. Physics and/or Chem.) 31-100
- or
- 4 unit Science (incl. Physics and/or Chem.) 31-100

Co-requisite: 10.021C or 10.021 or 10.001 or 10.011.

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, mass, momentum, energy, potential, fields. Application of the conservation principles to solution of problems involving charge, energy and momentum. Electrical circuit theory, application of Kirchhoff's Laws to AC and DC circuits. Uniform circular motion, Kepler's Laws and rotational mechanics.

- The description of motion, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electromagnetic induction, alternating current, atomic nature of matter, X-rays, the nucleus and radioactivity, electronics, and either geometrical optics, optical instruments, wave optics, microscopes and their uses.
1.022 Electromagnetism and Modern Physics
Prerequisites: 1.001 or 1.011, 10.001. Co-requisite: 10.2111. Excluded: 1.9322.
Electrostatics in vacuum and in dielectrics, Gauss' law, current density, magnetostatics in vacuum and in magnetic materials, electromagnetic induction, displacement current, Maxwell's equations, simple solutions, applications.
Special theory of relativity. Lorentz transformation, simultaneity relativistic mass, momentum and energy, formalism of wave mechanics, Schrödinger's equation, simple solutions, hydrogen atom, spectra, electron spin, selection rules, exclusion principle, Zeeman effect, molecules.

1.032 Laboratory
Prerequisites: 1.001 or 1.011, 10.001. Excluded: 1.9222.
Alternating current circuits, complex impedance, resonance, mutual inductance, introductory electronics, diode characteristics and circuits, power supplies, transistor characteristics, single stage and coupled amplifiers, experiments using AC circuits. Experimental investigations in a choice of areas including radioactivity, spectroscopy, properties of materials, Hall effect, nuclear magnetic resonance, photography, vacuum systems.

1.042 Measurement and Measurement Control Systems
Prerequisites: 1.001 (or equivalent), 10.001. Excluded: 1.3233, 1.9422, 1.9622.
Basics of instrumental measurement; errors of observation and their treatment; statistical design of experiments and analysis of data; transducers; measurement and measurement control systems; systems operating in the digital mode; encoding, actuation, display, system input/output considerations; some special purpose systems: signal averaging systems, real time spectrum analysis systems, etc.

1.052 Methods In Mathematical Physics
Prerequisites: 1.001 (or 1.011); 10.001 (or 10.011). Corequisites: 10.2111 (or 10.2211), 10.2112 (or 10.2212). Excluded: Nil.

Terminating Physics Level II Units

1.9222 Electronics
Prerequisites: 1.001 or 1.011 or 1.021, 10.001 or 10.011 or 10.021B & 10.021C. Excluded: 1.032.
The application of electronics to other disciplines. Includes: principles of circuit theory and analogue computing; amplifiers, their specification and application; transducers; electronic instrumentation; industrial data acquisition.

1.9322 Introduction to Solids
Prerequisites: 1.001 or 1.011 or 1.021. Excluded: 1.022, 4.402, 4.412.
Introductory quantum mechanics and atomic physics: crystal structure; point and line defects; introductory band theory; conductors, semiconductors, insulators; energy level diagrams.

1.9422 Introduction to Physics of Measurement
Prerequisites: 1.001 or 1.011. Excluded: 1.042.
Resolution; accuracy and sensitivity of instruments; errors of observation; experimental design; transducers; thermometry; electrical noise; servo systems; mechanical design of apparatus; optical instruments; optical fibres; photometry; colorimetry; analogue to digital conversion and digital instruments; measurement of very large and very small quantities.

Physics Level III Units

1.013 Quantum Mechanics and Nuclear Physics
Prerequisites: 1.012, 1.022, 10.2111 & 10.2112. Excluded: 2.023A, 10.222F.
Concepts and formulation, expectation values and measurement, steps, wells, and barriers, tunnelling, harmonic oscillator, perturbation theory, hydrogen atom, angular momentum operators, spin and spin orbit coupling, vector model, fine structure, identical particles, helium atom, spectroscopy, electron states in molecules and solids.
Detecting instruments for nuclear particles, counting statistics, Rutherford scattering, radioactivity, radiative processes, reactions, optical model, parity, introduction to particie physics, mesons, baryons, quarks.
Additional material is studied for the award of Distinction/High Distinction.

1.023 Statistical Mechanics and Solid State Physics
Prerequisites: 1.012, 1.022, 10.2111 & 10.2112. Co-requisite: 1.013 or 2.023A.
Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations.
Additional material is studied for the award of Distinction/High Distinction.
Sciences

1.033 Electromagnetism and Optical Physics
Prerequisites: 1.012, 1.022, 10.2111 & 10.2112. Excluded: 10.222C.

Wave equation, reflection and transmission at dielectric, metallic and plasma interfaces. Fresnel equations, skin depth, waveguides and cavities, radiation fields, dipole and long antenna.

Fourier theory, diffraction from rectangular and circular apertures, interference and interferometry, coherence, image formation, resolution, holography, Fourier transform spectroscopy.

Additional material is studied for the award of Distinction/High Distinction.

1.043 Experimental Physics A
Prerequisites: 1.012, 1.022, 1.032.

Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics (including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems).

1.053 Experimental Physics B
Co-requisite: 1.043.

Advanced experimental techniques and open ended projects in the areas covered in 1.043 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and super-conductivity.

1.133 Electronics
Prerequisite: 1.9222 or 1.032.

1.1433 Biophysics
Prerequisites: 1.012, 1.022.

Thermodynamics in Biology, Electrochemical potentials, Donnan equilibrium, irreversible processes, diffusion and applications to biological systems.

Membrane potentials, Nernst potential, Goldman and Nernst-Planck equation, generalized approach.

Active transport. Membrane structure. The nerve impulse, activation and inactivation, Hodgkin and Huxley equations.

1.1533 Biophysical Techniques
Prerequisites: 1.012, 1.022, 1.032.

The theory and application of physical techniques of relevance to the study of biological systems.

Techniques considered may include optical and electron microscopy X-ray and neutron diffraction, magnetic resonance, lasers, light scattering, calorimetry, fluorescence, electrochemical techniques and electrophysiological methods and dielectric measurements.

1.1633 Astrophysics
Prerequisite: 1.022.

1.1733 Conceptual Framework of Physics
Prerequisites: 1.012, 1.022. Co-requisites: 1.013, 1.023.

Physics and metaphysics, the place of speculation in theory formation.

Space and time, coordinate systems, nature of time. Fundamental physical phenomena, electrical, gravitational, inertial, nuclear phenomena, entropy and probability.

Field theory, formulation, action at a distance, propagation, energy. Relativity, postulates, simultaneity, limiting speeds, mass energy. Relationship between micro and macrocosmos, statistics, entropy and information, arrow of time.

Matter and anti-matter and energy, conservation laws, inertial mass, field energy.

Quantum processes, granularity, measurements and uncertainty principle, determinism versus indeterminism, nuclear phenomena.

1.183 Physical Oceanography
Prerequisites: 10.001 or 10.011; 1.001 or 1.011.

The physical properties of the oceans, and their measurement. Oceanographic instrumentation. The design of small and large scale ocean experiments. Laboratory and field work.

1.3033 Mechanical Properties of Materials

Properties of materials in relation to their structure: atomic and molecular structure of solids; elasticity, inelasticity, long-range (rubber) elasticity, viscoelasticity; plasticity; brittle fracture; viscosity and surface tension of liquids; adhesion; friction and lubrication.
Subject Descriptions

1.3133 Electrical, Optical and Thermal Properties of Materials S2 L\(\frac{1}{2}\)T\(\frac{3}{2}\)

Co-requisite: 1.023.

1.3233 Measurement and Data Handling S1 L2T0

1.3333 Applications of Radiation S2 L2T0

1.343 Applications of Radiation (Practice and Theory) S2 L2T3

The present and potential uses of electro-magnetic radiation over the whole spectrum.

1.3533 Marine Acoustics S1 L1\(\frac{1}{2}\)T\(\frac{3}{2}\)

Excluded: 1.913, 25.643.

Wave theory: general wave equation for fluids, viscoelastic media and solids. Travelling and standing wave solutions. Wave Guides: fluid and solid wave guides, ray and mode theories. Sound Transmission in the ocean: Applications of reflection and refraction theory, scattering and diffraction effects. Experiments relating to the above: Including fluid waveguide, solid waveguide, measurement of absorption and reflection coefficients.

Component given by School of Physics (S1):

Component given by School of Applied Geology (S2): Ocean:

Components:

- Seismic and Geophysical Interpretation: Seismic and acoustic sources, recording systems. Signal processing. Geological and Physical Interpretation. Practical work relating to the above: Instrumentation, recording and interpretation of field data.

Physics Level IV Units

All Physics honours courses consist of five lecture units and honours project work. Students intending to enrol in any of these honours courses must consult with the appropriate Head of Department in order to select the appropriate combination of units.

1.104 Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.104 only. This normally comprises three units consisting of lecture material in quantum mechanics, statistical mechanics, solid state, atomic and nuclear physics as well as two projects. In addition the student selects two topics from: astronomy, advanced topics in solid state, lasers and Fourier optics; biophysics.

1.304 Applied Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.304 only. Students take at least two units of lecture material in quantum mechanics, statistical mechanics, solid state and nuclear physics.
Sciences as well as two projects. In addition the student selects at least two topics from: mechanical properties of materials; physical principles of instrumentation; applied acoustics.

It is possible to take the fifth lecture unit from any of the Physics IV courses.

1.504 Theoretical Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.504 only. Students take at least two units of lecture material in quantum mechanics, statistical mechanics, solid state, atomic and nuclear physics as well as one full year or two half year projects. In addition the student selects at least two topics from: waves in continuous media; quantum theory of solids; plasma theory; quantum electrodynamics.

It is possible to take the fifth lecture unit from any of the Physics IV courses.

Servicing Subjects

1.931 Physics I (Building)
1.941 Physics I (Medicine)
1.951 Physics I (Mechanical Engineering)
1.961 Physics I (Electrical Engineering)
1.971 Physics I (Surveying)
1.981 Physics I (Civil Engineering)
1.991 Physics I (Architecture)
1.982 Physics of Measurement (Surveying)
1.972 Electromagnetism (Electrical Engineering)
1.982 Solid State (Electrical Engineering)
1.992 Thermal Physics and Classical Mechanics (Electrical Engineering)

Graduate Study

Not all graduate subjects are necessarily offered in any one year.

1.118G Methods of Theoretical Physics

For PhD, MSc and MPhysics students.

Part 2. Symmetry and group theory.

Part 3. Many particle systems.

Part 4. Tensor calculus and variational techniques.

1.128G Methods of Experimental Physics

For PhD, MSc and MPhysics students.

1.801G Energy Alternatives

For MPhysics students.

A study of energy alternatives: solar thermal and solar electric energy; energy from fossil fuels; conversions, hydrogen, nuclear fusion and fission, wind, ocean and geothermal sources of energy; political and sociological aspects of energy alternatives.

1.805G Applied Physics

A study of advanced physical instruments, data handling and control, measurement technology and materials science with special reference to physics in industry.

1.927G Acoustic Theory

For MSc(Acoustics) students.

Sources of acoustic radiation: simple, dipole, quadrupole, plane, impulsive source, random source, aerodynamic sources. Free field propagation in fluids, interference and diffraction, absorption, shock waves. Boundary effects; reflection and transmission at fluid/fluid and fluid/solid interfaces, fluid waveguides, solid waveguides. Reception and analysis; transducers, Fourier analysis, statistical methods, impulse measurement.

1.937G Acoustic Measuring Systems

For MSc(Acoustics) students.

Microphones, amplifiers, loudspeakers, filters, recorders, pick-ups, noise generators. Acoustic measuring instruments.

1.947G Advanced Physical Acoustics (Elective)

For MSc(Acoustics) students.

Vibrating systems; coupled oscillators, beams, membranes, plates, resonators, acoustic filters; analog, analogue computer simulation of vibrating systems; transfer of energy from one system to another. Reflection and transmission at walls, rigid walls, flexible walls, multiple walls, impulsive excitation. Sound absorbers, porous absorbers, perforated panel absorbers, sonic and ultrasonic measurement techniques, relation to properties of materials.

1.957G Acoustic Laboratory and Analysis

For MSc(Acoustics) students.

Practical experiments related to the subject matter of 1.927G Acoustic Theory.

Theory and practice of digital methods of analysis in the time and frequency domains.
Chemistry

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (391) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 391, the transfer may still be made before the commencement of Year 3.

The Pure and Applied Chemistry Course which enables specialization in Chemistry is described in detail earlier in this handbook.

Undergraduate Study

2.111 Introductory Chemistry†
Prerequisite: None.

Classification of matter and the language of chemistry. The gas laws and the Ideal Gas Equation, gas mixtures and partial pressure. The structure of atoms, cations and anions, chemical bonding, properties of ionic and covalent compounds. The Periodic classification of elements, oxides, hydrides, halides and selected elements. Acids, bases, salts, neutralisation. Stoichiometry, the mole concept. Electron transfer reactions. Qualitative treatment of reversibility and chemical equilibrium, the pH scale. Introduction to the diversity of carbon compounds.

2.121 Chemistry IA†
Prerequisites:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Science (any strands) or 4 unit Science (multistrand)</td>
<td>31-100</td>
</tr>
<tr>
<td>or 2.111.</td>
<td></td>
</tr>
</tbody>
</table>

Stoichiometry and solution stoichiometry. Structure of matter, solids, liquids, gases. Thermochemistry. Equilibria and equilibrium constants, entropy changes, free energy changes, the relationship between equilibrium and standard free energy changes. Ideal solutions, colligative properties. Equilibrium in electrolyte solutions, acid-base equilibria, solubility equilibria and redox equilibria. The rate of a chemical change and chemical kinetics.

2.131 Chemistry IB
Prerequisite: 2.111 or 2.121.

2.141 Chemistry IM†
Prerequisites: HSC percentile range 51-100 in 2-unit Chemistry, or 4-unit Science (multistrand); or 2.111.

The syllabus is an integrated one of 2.121 and 2.131 (see above). Students majoring in Chemistry may take 2.141 in lieu of 2.121 and 2.131.

2.002A Physical Chemistry
Prerequisite: 2.131 or 2.141.

Thermodynamics: first, second and third laws of thermodynamics; statistical mechanical treatment of thermodynamic properties; applications of thermodynamics: chemical equilibria, phase equilibria, solutions of nonelectrolytes and electrolytes, electrochemical cells.

Kinetics: order and molecularity; effect of temperature on reaction rates; elementary reaction rate theory.

Surface chemistry and colloids: adsorption, properties of dispersions; macromolecules and association colloids.

2.002B Organic Chemistry
Prerequisite: 2.131 or 2.141.

Chemistry of the more important functional groups: aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, alcohols, phenols, aldehydes, ketones, ethers, carboxylic acids and their derivatives, nitro compounds, amines and sulphonylic acids.

2.002D Analytical Chemistry
Prerequisites: 2.121 & 2.131, or 2.141, 10.001 or 10.011 or 10.021B & 10.021C.

† Students who have passed 2.121 or 2.131 may not enrol in 2.111 or 2.141. Students meeting the 2.121 or 2.141 prerequisite are not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Students who enrol in 2.111 must pass 2.111 before they can proceed to 2.121 or 2.131 or 2.141.

2.042C Inorganic Chemistry

Prerequisites: 2.121 & 2.131, or 2.141.

2.03E Nuclear and Radiation Chemistry

Prerequisites: 2.121 & 2.131, or 2.141. and 10.001 or 10.011 or 10.021B & 10.021C.

2.03H Molecular Spectroscopy and Structure

Prerequisite: 2.121 & 2.131, or 2.141.

Absorption and emission of radiation. Atomic spectra. Molecular spectroscopy: vibrational, including infrared and Raman; UV-visible; instrument and sample handling. Magnetic resonance. Mass spectrometry with particular reference to structure determination. Laboratory and tutorial work to illustrate the above, including inspection of major instruments.

2.03J Fundamentals of Biological Chemistry

Prerequisites: 2.121 & 2.131, or 2.141. Excluded: 2.013L, 41.101.

Aspects of the chemical and physical properties of materials important in biological systems. Methods of separation, of purification and estimation, and correlations of structure with reactivity.

Methods of separation and identification, such as gel permeation, discussed as appropriate to each topic.

Significance of isomerism in biological systems, optical and geometrical structure of macromolecules. Protein structure. Relevant properties, acid/base properties, pK values, zwitterion, isoelectric points. Simple peptide synthesis.

Treatment of carbohydrates, establishment of structures, reactivity. Chemistry of monosaccharides, disaccharides and polysaccharides. Methods of analysis, chemical and physicochemical.

Trace elements in biological systems. Chemistry of common heterocyclic systems with emphasis on molecules of biological importance.

2.003K Solid State Chemistry

Prerequisites: 2.121 & 2.131, or 2.141, and 10.001 or 10.011.

The determination of crystal structures by single crystal diffraction: X-ray and neutron diffraction methods. Practical and automated aspects of the solution of crystal structures: applications to inorganic, molecular and macromolecular crystals. Patterns of solid state structure: the structures of crystals with unusual and valuable chemical and physical properties. Solid state reactions, surface properties and catalysis. Applications of EPR, NMR and mass spectrometry.

2.013A Introduction to Quantum Chemistry

Prerequisites: 1.001 or 1.011, 2.121 & 2.131, or 2.141, and 10.001 or 10.011 or 10.021B & 10.021C.

2.003A Physical Chemistry

Prerequisite: 2.002A.

Thermodynamics, including non-ideal systems; advanced electrochemistry; statistical thermodynamics; applications to gases, liquids and chemical equilibria; states of matter.

2.003B Organic Chemistry

Prerequisite: 2.002B.

Alicyclic Chemistry. Stereochemistry of acyclic systems; classical and non-classical strain in cyclic systems; stereochemistry and conformation of monocyclic and polycyclic compounds; synthesis, reactions and rearrangement of monocyclic compounds including stereochemical selectivity; transannular reactions in medium rings. Synthesis and reactions of fused and bridged polycyclic systems.

Heterocyclic Chemistry. Synthesis and reactions of the following heteroaromatic systems: pyridine, quinoline, isoquinoline. Flavones and isoflavones; pyrimidine, pyrrole, furan, thiophen, indole, imidazole.

2.003C Inorganic Chemistry

Prerequisite: 2.042C.

Coordination chemistry: valence bond and crystal field theory and their application to magnetic and spectral properties of complexes. Factors affecting the stability of complexes; unusual oxidation states of transition metals. Chemistry of the groups IIIA (the lanthanides and actinides), IVA, VA, VIA and VIIA. More advanced chemistry of groups IIIB, IVB, VB, VIIB and VIIIB and the noble gases.
2.003D Instrumental Analysis
Prerequisites: 2.002A and 2.002D.

2.003L Applied Organic Chemistry
Prerequisite: 2.002B. Excluded: 2.033L.
Discussion at advanced level of the chemistry of selected commercially important groups of organic materials. Mechanisms of reaction and physical properties, together with methods of examination, in overall unit approach, correlating structure with behaviour. Emphasis on breakdown to model systems.

Theory of physical techniques, refractometry, polarimetry etc. from basis of additivity. Fatty acids with emphasis on unsaturation, thermal and oxidative polymerizations, alkylation, analysis of mixtures. Waxes and sterols, selected natural and synthetic macromolecules; polymerization processes, including treatment of initiators, chain transfer agents, retarders. Vulcanization and sulphur-olefin reactions. Photochemical processes; electro-organic chemistry. Fine chemicals, soaps and detergents. Aspects of metal catalysis in industry.

2.003M Organometallic Chemistry
Prerequisite: 2.002B.
Synthesis, structure and reactions of metal alkyls and aryls; metal carbonyls, isonitriles and acetylides; compounds of metals with unsaturated hydrocarbons; organic chemistry of boron, silicon, phosphorus and arsenic; application of organometallic compounds in organic synthesis and homogeneous catalysis.

2.004 Chemistry Honours
An honours program consisting of selected series of lectures on advanced topics in Chemistry and a research project.

Students intending to seek admission to this course should consult the School for selection of units in the earlier years and apply to the Head of the School for consideration for admission at the end of Year III (or completion of requirements for the pass degree).

2.013C Advanced Inorganic Chemistry
Prerequisite: 2.042C. Co-requisite: 2.003C.
Reaction mechanisms involving metal complexes. Spectroscopic methods for investigating metal complexes, including infrared, electronic, and Mossbauer spectroscopy. Inorganic crystal chemistry: structures and properties of simple compounds. Cluster compounds, metal-metal bonding, extended electronic interactions =Complexes, carbonyls, nitrosyls, ethylene complexes, and sandwich-type compounds; methods of preparation, reactions, evidence for structures and type of bonding involved.

2.013D Advanced Analytical Chemistry
Prerequisite: 2.002D. Co-requisite: 2.003D.

2.013E Advanced Nuclear and Radiation Chemistry*
Prerequisite: 2.003E.
Advanced nuclear instrumentation and special counting methods; isotope effects and isotope separation methods; nuclear reactors, accelerators and isotope production; isotope labelling techniques; radiation sources and their uses; hot atom and recoil reactions; actinide chemistry and nuclear reactor fuel processing; environmental radioactivity; biochemical applications including radioimmunoassay and the preparation of short lived radiopharmaceuticals; isotopic methods applied to chemical measurements; industrial tracer applications.

Laboratory classes involve experiments associated with the above topics.

2.013L Chemistry and Enzymology of Foods
Prerequisite: 2.002B. Excluded: 2.003L, 2.043L, 2.023L, 2.053L.
The chemistry of food constituents at an advanced level and the relationship between the chemistry and enzymology associated with the origin and handling of foodstuffs. Treatment of the stability of constituents, changes in colour and texture occurring during processing and storage. Methods of assessment, chemical and physical.

General classification of constituents, role of free and combined water. Fixed oils and fats, rancidity of enzymic and autoxidative origin, antioxidants — natural and synthetic — theories on mechanisms of action, carbohydrates, reactivity, role in brewing processes, carbohydrate polymers, starch structure, enzymic susceptibility and mode of action, estimations, enzymic degradation and enzymic browning, reactions and stability of natural pigments, vitamins, preservatives.

* Only available to non-Chemistry majors. It may not be included in course programs 0201, 0202, 0203, 0204, 0241, 0242 and Course 3910.
2.023A Quantum Theory of Atoms and Molecules
Prerequisites: 2.002A, 10.2111 & 10.2112.

Wave mechanics — linear operators; Schrödinger wave equation, applications, method of solution; variation principle, linear combinations, perturbation theory. Many-electron problems — central field method; electron spin; Fermi-Dirac statistics; angular momentum operators; Coulomb repulsion two-electron operator; spin-orbit coupling; Russell-Saunders and jj coupling; Zeeman effect; vector coupling and Wigner coefficients; allowed transitions. Group theory — symmetry operations; matrix representation, irreducible representation; characters of a group; non-rigid molecules; antisymmetry operators.

2.023B Natural Product Chemistry
Prerequisite: 2.003B.
The isolation, structure determination, synthesis and biosynthesis, and the reactions of selected classes of organic compounds of biological significance. The chemistry of plant and animal products — terrestrial and marine. Examples from carbohydrates, terpenoids and steroids, alkaloids and other naturally-occurring heterocyclic systems. Interdisciplinary aspects of the topic.

2.023L Biological and Agricultural Chemistry
Prerequisite: 2.002B. Excluded: 2.053L, 2.013L. 2.043L.

2.033A Physical Chemistry of Macromolecules
Prerequisites: 1.012 or 2.002A and 2.002B or 2.003J.
Macromolecules in solution; determination of molecular size; gel permeation chromatography, diffusion, sedimentation, viscometry, osmometry and light scattering. Spectroscopic properties: circular dichroism and optical rotary dispersion; conformation of macromolecules in solution; helix-random coil transitions. Macromolecules in the solid state; X-ray diffraction; basic structural features.

2.043A Environmental Chemistry
Prerequisites: 2.002A, 2.002D.

plus

either:
Simple digital and analogue computer models of ecological systems based on chemical data and physico-chemical properties.
or
Distribution of elements and nutrient cycles in water; organic carbon cycles, oxygen balance (redox processes in aquatic systems). Chemical models of these processes (including an introduction to simple computing). Practical project (mostly field work) dealing with nutrient cycles.

2.043L Chemistry and Enzymology of Foods:
Prerequisite: 2.002B. Excluded: 2.013L, 2.023L, 2.053L.
As for 2.013L but in greater detail and depth.

2.053A Chemical Kinetics and Reaction Mechanisms
Prerequisite: 2.002A.

2.053L Biological and Agricultural Chemistry:
Prerequisite: 2.002B. Excluded: 2.023L, 2.013L, 2.043L.
As for 2.023L but in more detail and depth.

2.063A Advanced Molecular Spectroscopy
Prerequisite: 2.013A.
Theory: Born-Oppenheimer approximation; theory of transition probabilities; group theory; normal mode analysis.
Spectra: rotational, vibrational and electronic structure in molecular spectra, including microwave, infrared, Raman, UV-visible and photoelectron spectra. Kinetic spectroscopy. Lasers.

Servicing Subjects
2.011 Chemistry for Medical Students
2.951 Chemistry IME
2.981 Chemistry ICE
9.411 Agricultural Chemistry I

* Students are given the choice of these two topics.
‡ Only one of these double units may be chosen.
Graduate Study

2.154G, Advanced Analytical Chemistry
2.155G, and Chemical Instrumentation
2.156G Units A, B and C

2.231G Food and Drugs I and II —
and (Including Pharmacognosy and
2.242G Microscopy of Crude Drugs) F L1T3

Regarded as a unit, and may be spread over two years.

Treatment of the food section develops from considerations of proximate analysis — gross determination of classes of food components — to detailed examinations within the groups for more important compounds. Conversely the course in drug work progresses from the examination of simple materials, including identification of unknowns by macro and micro procedures to the examination of compound materials.

A background section on food handling is included, while some attention is given to chemotherapy etc. in the drug course.

Subject-matter covers treatment of the main classes of foodstuffs, such as:

Foods: Origin, general introduction to analytical methods, relation to likely adulterations and impurities, groups of constituents: carbohydrates, sugars, by physical and chemical methods; jams and preserves, pectin, agar, alginites, oils and fats; protein foods, meat, gelatin, fish products; dairy products, milk, cream, cheese, etc.; fermented liquids, beer, wine, spirits, minor constituents. Principles of food processing, dehydration, quick freezing, canning, cereal products; beverages and flavouring essences; nutritional aspects, vitamins in detail; preservatives and food additives; radiation chemistry of food products. Drugs: Elements of pharmacology chemotherapy and modes of action, galenicals, identification tests for alkaloids, etc. Analytical chemistry of analesgesics, sedatives, hypnotics, steroid hormones, antihistamines, etc. Antibiotics, penicillin, streptomycin, aureomycin, sulphonamides. Activity of enzyme preparations; antiseptics and disinfectants; soaps and detergents.

Pharmacognosy and Microscopy of Crude Drugs
A graded course of 20 hours, progressive from relatively simple structures to the examination of adulterated mixtures.

2.251G Toxicology, Occupational and Public Health F L1T2

Important classes of toxic materials found in the environment; treatment of pesticide residues, industrial chemicals of various types, toxic gases, mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals etc. Effects of these substances on living organisms, particularly man. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling and analysis, trace metal determination and experiments on the animal metabolism of toxic substances.

2.271G Chemistry and Analysis of Foods F L1T3

Illustrates the bases and application of analytical techniques as applied to foods. Emphasis is placed on the design of methods, on the preparation of material for instrumental analysis and on the interpretation of data.

Includes: proteins and flesh foods, carbohydrates and saccharine foods, fats and oils, dairy and fermentation products, vitamins, food additives — preservatives and colouring matters, pesticide residues, metal contaminants — food microscopy.

2.281G Instrumental Techniques in Food and Drug Analysis F L1T3

Principles involved in modern instrumental techniques; detailed application and interpretation of results. UV, IR, NMR, and ESR, emission and atomic absorption spectroscopy, polarography, X-ray methods, fluorescent spectroscopy and gas chromatography. Services 2.231G, 2.242G and 2.251G but is also suitable as a single subject for those wishing to familiarize themselves with modern techniques.

2.371G Treatment of Analytical Data F L1

Errors of measurement, the treatment, interpretation and comparison of sets of measurements, associated data and problems involving analysis of variance.

Topics are discussed under the headings: Description of sets of measurements, graphical representations, calculation of measures of location and spread, probability and random errors, binomial, normal and Poisson distributions; comparisons of sets of measurements, tests of significance; associated data, linear regression analysis, analysis of variance; biological assays, bacteriological counts, sampling problems.

2.581G Advanced Analytical Chemistry

Metallurgy

Undergraduate Study

4.302 Chemical and Extraction Metallurgy I F L1T2

Co-requisite: 2.002A.

This unit is taken in Session 1.
Metallurgical Phases — Structure and Equilibrium Part I
4.412 S1 L3T3

Metallurgical Phases — Structure and Equilibrium Part 2
4.422 S2 L2T4

Mechanical Properties of Solids
4.502 S1 L2T2
Co-requisite: 4.402

Metallurgical Engineering I
4.602 S2 L3T2
Co-requisite: 4.302.

Mass and energy accounting in metallurgical processes. An introduction to the principles and applications of transport processes in systems with specific reference to industrial processes in primary and secondary metallurgy.

Chemical and Extraction Metallurgy II
4.303 F L3T2

Physical Metallurgy II
4.403 F L4T5
Prerequisite: 4.402. Excluded: 1.313.

Mechanical Metallurgy
4.503 S2 L1T2
Prerequisite: 4.502.

Metallurgical Engineering IIA
4.613 S1 L2T1
Prerequisite: 4.602.

An extension of the principles and applications of transport processes to metallurgical systems. The principles of metallurgical heating and cooling including fuels, refractories and furnace design and operation. Solidification in moulds, continuous casting. Economics: As for Chemical Engineering IIC, 3.122 Unit 4 (see Faculty of Applied Science Handbook).

Materials Science
4.703 S2 L2T1
Co-requisite: 4.403.

The application of the principles of physical metallurgy to the development of modern materials, stressing the structure property relationships that determine the design of materials. Topics include: materials used for structural purposes, high temperature applications, corrosive environments, nuclear engineering, fuel cells, magnetic applications.

Chemical and Extraction Metallurgy IIIA
4.314 S1 L3T1
Prerequisite: 4.303.

Chemical and Extraction Metallurgy IIIB
4.324 S2 L3½T1
Prerequisite: 4.303.

A selection of advanced topics in chemical and extractive metallurgy.
4.404 Physical Metallurgy III S1 L3T4½ S2 L3T1½

Prerequisite: 4.403.

Applications of dislocation theory to work hardening and annealing processes. Phase transformations in alloys. Mathematical crystallography, reciprocal lattice, diffraction. Electron and X-ray crystallography. Selection of advanced topics in physical metallurgy including radiation damage, martensitic transformations, neutron diffraction, internal friction, sintering, creep, superplasticity, fracture.

4.504 Mechanical and Industrial Metallurgy S1 L3T0 S2 L3T6

Prerequisites: 4.403, 4.503.

The application of metallurgical principles to industrial processing with particular reference to casting, welding, shaping, properties and selection of materials. Metal finishing. Metallurgical aspects in engineering design. Fracture mechanics, design against fatigue, brittle and ductile fracture.

4.024 Metallurgy Project* S1 L3T4½ S2 L3T1½

An experimental investigation of some aspects of metallurgy.

4.054 Metallurgy Seminar F L2T0

A course of lectures on the preparation and presentation of technical papers. Each student is required to prepare and present a paper on a nominated subject.

Mechanical and Industrial Engineering

Undergraduate Study

5.010 Engineering A SS L4T2

Prerequisite:

<table>
<thead>
<tr>
<th>MSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Either</td>
<td></td>
</tr>
<tr>
<td>2 unit Science (Physics)</td>
<td>31-100</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>4 unit Science (incl. Physics)</td>
<td>11-100</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>2 unit Industrial Arts</td>
<td>31-100</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>3 unit Industrial Arts</td>
<td>11-100</td>
</tr>
</tbody>
</table>

Students who wish to enrol in this subject can make up for the lack of the prerequisite by work taken in Physics in the first half of first year.

5.020 Engineering B S2 L4T2

Prerequisite: 5.010.

5.030 Engineering C SS L/T6

And one of the following options (determined by the course of study):

1. (Mechanical, Industrial and Aeronautical Engineering and Naval Architecture students must take this option) Design for Manufacture I: Approximately 30 hours of workshop training, including casting, fitting, machining, welding. Principles of design for manufacture.

2. Production Technology: Description and appraisal of the processes classified as: forming from liquid or solid, material removal, material joining. Machines. Analysis of the primary functions of the machine tools and an appraisal of their limitations. Principles of operation of common machine tools and illustrations of their use.

3. (Chemical Engineering students must take this option) Introduction to Chemical Engineering: Routes to and end uses of industrial chemicals. Likely new industrial chemicals. A survey of several Australian chemical industries from the point of view of their historical and economic importance. Examination of the unit operations involved in the industry and the raw materials, equipment and services used. Environmental aspects of the chemical industry.

4. (Metallurgy students must take this option) Introduction to Metallurgical Engineering: History and significance of the exploitation of metals. Ores, mineral economics, mineral processing, and metal extraction and processing methods illustrated by reference to the Australian mineral and metal industries. Properties, uses and applications of metallic materials. The role of the metallurgist in industry and in processing and materials research, and in relation to conservation and the environment.

* Project includes three weeks laboratory work during the Midyear Recess.
5. (Mining Engineering students must take this option) Introduction to Mining Engineering: Mineral deposits; metallic, non-metallic and fuels. Elements of prospecting and exploration. Basic mining techniques. Mining phases, development, exploitation, beneficiation and withdrawal. Mining and the environment. Mining services. Relevance of basic science and engineering subjects to mining design and operations.

6. (Available only to Electrical and Surveying students, who must take this option) Introduction to Computing: Introduction to computer program design with emphasis on the design of correct, reliable programs. The subject is organized on a tutorial basis and a number of simple fundamental programming tasks are illustrated. Programs are written in a high level language which provides facilities for the specification of algorithms and data structure.

8. (Ceramic Engineering students must take this option) Introduction to Ceramic Engineering: The nature of ceramics. Classification of materials. The materials science approach. History of ceramics. The ceramic engineer and society. The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials. Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, pot forming and other forming procedures.

Electrical Engineering and Computer Science

Computer Science

Undergraduate Study

6.606 Computing Science Honours

6.611 Computing I

Prerequisite: As for 10.001. Corequisites: 10.001 or 10.011. Excluded: 6.600, 6.620, 6.021D (1.041 excluded for students enrolled in Program 6606 and Computer Science Programs).

Introduction to programming: design and correctness of algorithms and data structures; programming in a high level algorithmic language which provides simple, high level program control and data structuring facilities. Problem solving: basic ideas of problem solving; introduction to abstract structures used for computing solutions to problems. Elementary logic, history of computing, computing machinery.

6.631 Assembler Programming and Digital Logic

Prerequisites: 6.620 or 6.621 or 6.600 (CR) or 6.021D. Excluded: 6.021E.

Assembler programming; programming in a low level machine oriented language in order to illustrate the mapping of higher level language constructs onto a typical machine and the interaction between operating systems and devices.

Digital logic design; register transfer description of a tutorial computer. Switching algebra, minimization, combinational logic design, integrated circuits, registers, counters, and other medium scale integration (m.s.i.) devices, clocked sequential circuits, computer arithmetic.
Operating Systems

Prerequisites: 6.631 or 6.021E, 6.641.

Introduction to operating systems via an intensive case study of a particular system, namely the UNIX Time-sharing system which runs on the PDP11 computer. Includes system initialization, memory management, process management, handling of interrupts, basic input/output and file systems. A comparison of UNIX with other operating systems. General principles for operating system design.

Data Bases and Networks

Programming I

Prerequisites: 6.620 or 6.600 (CR) or 6.021 E. 6.641.

Design and correctness of algorithms and data structures. Data structures: abstraction, representation, manipulation and axiomatisation; basic data structures, sets, unions (variant records); dynamic data structures: lists, queues, stacks, trees, balanced trees. Recursion: backtracking algorithms. Files: sequential access, random access, merging, sorting, updating. String manipulation, pattern matching and associative algorithms.

Programming II

Prerequisites: 6.641.

Development and analysis of algorithms and data structures.

Compiling Techniques and Programming Languages

Prerequisite: 6.641.

1. Language description: phase structure grammars, Chomsky classifications, context-free grammars, finite state grammars, Backus Naur Form, syntax graphs, LL(k), LR(k), SLR(k), LALR(k), simple-precedence and weak-precedence grammars.

2. Lexical analysis: translation of an input (source) string into a (machine independent) quasi-terminal symbol string. Finite state recognizers.

3. Syntax analysis: top-down compilation for LL(1) grammars using syntax graph driven analysers or recursive descent. Bottom-up compilation for simple and weak-precedence and LR(k) grammars.

5. Compiler generators: automatic generation of compilers for LALR(1) grammars.

6. Code optimization by systematic program transformation.

7. Run-time organization: activation record stacks, heap management.

Computer Applications

Prerequisites: 6.620 or 6.621 or 6.600 (CR) or 6.021D. Excluded: 6.622.

The use of computers for solving problems with a substantial mathematical and operational research content; includes use of some standard software packages. Topics selected from: discrete event simulation, the SIMULA programming language; pseudo random number generation; simple queueing theory; applications of mathematical programming; statistical calculations; critical path methods; computer graphics, artificial intelligence.

Business Information Systems

Introduction to accounting systems — general ledger, debtors and creditors; auditing and internal system controls; models of business information systems; integrated business systems. System specification, system analysis, system design and implementation; testing and debugging. Managing a project team, project control. The COBOL programming language. File organization and design; sequential, indexed sequential, random, inverted, B-tree file organizations; file updating. The course includes an invited lecture strand presented by guests from commerce and industry. A major project, written in COBOL, is undertaken as a team exercise.

Computing Practice*

Not offered in 1981.

For students majoring in Computer Science who seek a programming career in government or commercial industry. Topics, related to current computing practice, include: Comparative study of computer hardware in current popular use; Comparative study of the ‘popular’ programming languages, eg COBOL, RPG, BASIC, FORTRAN, PL/1, APL. Job control languages. Data Preparation procedures. Key-board entry. Verification. Word processing; report preparation; documentation. Social implications of computing. Professional responsibilities and ethics. Project management; software engineering; psychology of computer programming.

* Can only be counted with at least 3 other Level III Computer Science.
Mathematics

Undergraduate Study**

Many units in the School of Mathematics are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered grades higher than Credit are only awarded in the ordinary level in exceptional circumstances.

Students should note that all of the Mathematics honours programs require them to take most of their Mathematics units at higher level. However, students should not think that the higher level units are intended only for those in honours programs. Any student with the ability to undertake higher units benefits from so doing.

10.001 Mathematics I

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics</td>
<td>71-100</td>
</tr>
<tr>
<td>3 unit Mathematics</td>
<td>21-100</td>
</tr>
<tr>
<td>4 unit Mathematics</td>
<td>1-100</td>
</tr>
</tbody>
</table>

Excluded: 10.011, 10.021A, 10.021B, 10.021C.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.011 Higher Mathematics I

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 unit Mathematics</td>
<td>71-100</td>
</tr>
<tr>
<td>4 unit Mathematics</td>
<td>11-100</td>
</tr>
</tbody>
</table>

Excluded: 10.001, 10.021A, 10.021B, 10.021C.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.021A General Mathematics IA

Prerequisite:

Number systems (including absolute value, inequalities, surds, etc.); co-ordinate geometry; polynomials, quadratics; concept of the function; trigonometric functions, logarithmic and indicial functions and their laws of operation; introduction to differentiation and integration with simple applications.

10.021B General Mathematics IB

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics</td>
<td>51-100</td>
</tr>
</tbody>
</table>

or

3 unit Mathematics 11-100
or
4 unit Mathematics 1-100
or
10.021A

Excluded: 10.011, 10.001.

Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the Binomial Theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra.

10.021C General Mathematics IC

Prerequisite: 10.021B. Excluded: 10.001, 10.011, 10.021A.

Techniques for integration, improper integrals, Taylor's Theorem; first order differential equations and applications; introduction to multivariate calculus; conics; finite sets; probability; vectors, matrices and linear equations.

10.031 Mathematics (one Level II unit)*

Prerequisite: 10.001 or 10.021C (CR).

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods.

10.032 Mathematics (one Level III unit)*

Prerequisite: 10.031.

Vector Calculus: special functions; convolution theorem and applications; complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.

10.081 Mathematics IX

Co-requisites: 10.001 or 10.011. 6.611 or 1.041.

Elementary logic, finite structures, errors in computing, simple algorithms. Problem solving as a multi-stage process: comprising Markov processes and matrices, population dynamics, electrical currents and their differential equations (interpretation of analytic and numerical solutions), data structures and semi-numerical algorithms.

** When a unit is listed as a prerequisite or co-requisite, the appropriate higher unit may be substituted.

† Entry to General Mathematics IA is allowed only with the permission of the Head of the School of Mathematics, and that permission will be given only to students who do not qualify to enter General Mathematics IB.

‡ These units are also available to Faculty of Science students as a sequence of two units constituting a terminating service course in mathematics. As such they are mutually exclusive to any other Level II or Level III units in Pure and/or Applied Mathematics and/or Theoretical Mechanics.
Pure Mathematics

10.111 A Pure Mathematics II — Linear Algebra F L1½T1
Prerequisite: 10.001. Excluded: 10.121A.

10.1111 Pure Mathematics II — Group Theory S1 L1½T½
Prerequisite: 10.001. Co-requisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112. Excluded: 10.121A.

Mathematical systems, groups, determination of small groups, homomorphisms and normal subgroups.

10.1112 Pure Mathematics II — Geometry S2 L1½T½
Prerequisite: 10.001. Co-requisite: 10.1111. Excluded: 10.121C.

Elementary concepts of Euclidean, affine and projective geometries.

10.1113 Pure Mathematics II — Multivariable Calculus S1 or S2 L1½T1
Prerequisite: 10.001. Excluded: 10.1213.

Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

10.1114 Pure Mathematics II — Complex Analysis S1 or S2 L1½T1
Prerequisite: 10.001. Excluded: 10.1214.

10.121A Higher Pure Mathematics II — Algebra F L2T½
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.111A, 10.1111.

10.1213 Higher Pure Mathematics II — Multivariable Calculus S1 L2T½
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.1113.

As for 10.1113 but in greater depth.

10.1214 Higher Pure Mathematics II — Complex Analysis S2 L2T½
Prerequisite: 10.1213. Excluded: 10.1114.

As for 10.1114 but in greater depth.

10.112C Pure Mathematics III — Differential Geometry F L1½T½

10.1121 Pure Mathematics III — Number Theory SS L1½T½
Prerequisites: 10.011 or 10.001 (DN). Excluded: 10.121C.

Euclidean algorithm, congruences, sums of squares, diophantine equations.

10.1122 Pure Mathematics III — Algebra S2 L1½T½

Rings, polynomials, fields.

10.1123 Pure Mathematics III — Logic and Computability SS L1½T½

The propositional calculus — its completeness and consistency; Turing machines; unsolvable problems; computability and Church’s thesis; Godel’s incompleteness theorems.

10.1124 Pure Mathematics III — Combinatorial Topology SS L1½T½

Elementary combinatorial topology of surfaces.

10.1125 Pure Mathematics III — Ordinary Differential Equations S1 L1½T½
Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.

Systems of ordinary differential equations; variations of constants formula; stability; Poincaré space; Lyapunov’s direct method.

Students are not normally permitted to attempt a Level III pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.
10.1126 Pure Mathematics III — Partial Differential Equations S2 L1½T½

Prerequisites: 10.1113, 10.1114. Co-requisite: 10.1125.

System of partial differential equations; characteristic surfaces; classifications; Cauchy problem; Dirichlet and Neumann problems; the maximum principle; Poisson's formula; conformal mapping.

10.1127 Pure Mathematics III — History of Mathematics S2 L1T1

Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

Topics from the History of Mathematics, with emphasis on the development of those ideas and techniques used in undergraduate courses. Students are expected to read widely and to present written material based on their readings.

10.1128 Pure Mathematics III — Foundations of Calculus S1 L1½T½

Prerequisites: *** Excluded: 10.122B.

10.1129 Pure Mathematics III — Real Analysis S2 L1½T½

Prerequisites: 10.2112, 10.1128. Excluded: 10.122B.

10.1521 Pure Mathematics III — Combinatorics and Its Applications SS L1½T½

Prerequisites: ***

Generating functions, their properties and applications to partitions and recurrence relations. Branching processes, trees and the analysis of their paths, the analysis of algorithms and the Galton-Watson process. Coding theory and other design problems, Latin squares, block designs and error-correcting codes.

10.122A Higher Pure Mathematics III — Algebra F L2T½

Prerequisite: 10.121A. Excluded: 10.1122.

Field theory and theory of rings and modules.

10.122B Higher Pure Mathematics III — Integration and Functional Analysis F L2T½

Lebesque integration; Fourier series; normed vector spaces; Hilbert spaces; measure theory.

10.122C Higher Pure Mathematics III — Topology and Differential Geometry F L2T½

Prerequisite: 10.121A, 10.1213. Excluded: 10.1124, 10.112C.

The axiom of choice, metric and topological spaces, compactness. Compact surfaces, triangulations, geodesics, Gauss-Bonnet theorem.

10.122E Higher Pure Mathematics III — Complex Analysis and Differential Equations F L2T½

Prerequisites: 10.1213, 10.1214. Excluded: 10.1125.

Analytic continuation; entire and meromorphic functions; elliptic functions; normal families and further advanced topics in complex analysis. Existence and uniqueness theorems for ordinary differential equations; linear systems, qualitative theory of autonomous systems; equations on manifolds.

10.123 Pure Mathematics IV

An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses on topics chosen from fields of current interest in Pure Mathematics. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

--

Applied Mathematics

10.2111 Applied Mathematics II — Vector Calculus S1 or S2 L1½T1

Prerequisite: 10.001. Excluded: 10.2211.

Vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss' and Stokes' theorems. Curvilinear coordinates.

10.2112 Applied Mathematics II — Mathematical Methods for Differential Equations S1 or S2 L1½T1

Prerequisites: 10.001. Excluded: 10.2212.

Series solution of ordinary differential equations; numerical methods. Partial differential equations; separation of variables. Fourier series, Bessel functions.

10.2113 Applied Mathematics II — Introduction to Linear Programming S1 L1½T½

Prerequisite: 10.001. Excluded: 10.2213.

Linear programming: the standard problem, basic solutions, fundamental theorem, simplex tableau, initial solution, unbounded and multiple solutions, degeneracy, duality. (Time permitting: the dual simplex method, post optimal analysis.)

See footnote on previous page
Subject Descriptions

10.2114 Applied Mathematics II — Linear and Non-Linear Optimization Techniques
Prerequisite: 10.2113. Excluded: 10.2214.
Linear programming: the dual simplex method, post optimal analysis, integer linear programming. Applications of linear programming, including diet, allocation and transport problems.
Brief introduction to non-linear programming. Simple, numerical methods.

10.2214 Higher Applied Mathematics II — Linear and Non-Linear Optimization Techniques
Prerequisite: 10.2213. Excluded: 10.2114.
Linear programming: reduction of linear inequalities, integer linear programming. Applications of linear programming including diet, allocation and transport problems.
Linear programming in economic analysis, including the theory of the firm and general equilibrium theory.
Brief introduction to non-linear programming. Simple numerical methods.

10.211E Applied Mathematics II — Numerical Methods
Prerequisite: 10.001.

10.2211 Higher Applied Mathematics II — Vector Analysis
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2111.
As for 10.2111 but in greater depth.

10.2212 Higher Applied Mathematics II — Mathematical Methods for Differential Equations
Prerequisite: 10.2211. Excluded: 10.2112.
As for 10.2112 but in greater depth.

10.2213 Higher Applied Mathematics II — Introduction to Linear Programming
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2113.
Linear programming: the standard problem, basic solutions, fundamental theorem, simplex tableau, initial solution, unbounded and multiple solutions, degeneracy, revised simplex method, duality, dual simplex method, post optimal analysis.

10.2211 Higher Applied Mathematics II — Numerical Methods
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2111.

10.212A Applied Mathematics III — Numerical Analysis
Prerequisites: 10.2112, 10.111A. Excluded: 10.222A.
Unconstrained multivariable search procedures; including steepest descent, D-F-P method, Hooke and Jeeves method. Constrained optimization; including convexity, Lagrange multipliers, Kuhn-Tucker conditions, duality, simple constrained search methods, penalty functions. Special methods; including geometric programming, separable programming, branch and bound. Applications of these methods to resource allocation, production problems, capital investment and economic models.

10.2212 Higher Applied Mathematics II — Introduction to Linear Programming
Prerequisites: 10.1113 & 10.1114, 10.111A or 10.2113. Excluded: 10.222M.
Optimal control of systems described by difference equations, including steepest descent, D-F-P method, Hooke and Jeeves method. Constrained optimization; including convexity, Lagrange multipliers, Kuhn-Tucker conditions, duality, simple constrained search methods, penalty functions. Special methods; including geometric programming, separable programming, branch and bound. Applications of these methods to resource allocation, production problems, capital investment and advertising, and to models of the economy.

10.222A Higher Applied Mathematics III — Numerical Analysis
Prerequisites: 10.2212 or 10.2112 (DN), 10.121A or 10.111A (DN). Excluded: 10.212A.
As for 10.212A but in greater depth.

At least 1 further unit chosen from the following: 10.111A, 10.1114, 10.2111, 10.2112, 10.2113.

10.222L Higher Applied Mathematics III — Optimization Methods F L1½T½
Prerequisites: 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN), 10.1212 or 10.1112 (DN). Excluded: 1.013.

10.222F Higher Applied Mathematics III — Quantum Mechanics F L1½T½
Prerequisites: 10.1211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN). 10.001. Excluded: 10.221L.

As for 10.212L but in greater depth.

10.222M Higher Applied Mathematics III — Optimal Control Theory F L1½T½
Prerequisites: 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN), 10.1212 or 10.1112 (DN). Excluded: 10.221M.

As for 10.212M but in greater depth.

10.223 Applied Mathematics IV
An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced optimization and control theory, functional analysis and applications, mathematics of economic models and of economic prediction, stability theory of differential and differential-difference equations, stochastic processes, statistical mechanics, quantum physics, astro-physics. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

10.311A* Theory of Statistics II — Probability and Random Variables S1 L4T3
Prerequisite: 10.001 or 10.021C (CR). Excluded: 10.311A. 10.301, 10.331, 45.101.

10.311B Theory of Statistics II — Basic Inference S2 L4T3
Prerequisite: 10.311A. Excluded: 10.321B, 10.301, 10.331, 45.101.

10.311A at greater depth and covering a slightly wider field.

10.312A Theory of Statistics III — Probability and Stochastic Processes S1 L2T2
Prerequisites: 10.311A, 10.111A, 10.1113, 10.2112. Excluded: 10.322A.

10.312B Higher Theory of Statistics II — Basic Inference S2 L5T3
Prerequisite: 10.321A. Excluded: 10.311B, 10.301, 10.331, 45.101.

10.311B at greater depth and covering a slightly wider field.

10.312A Theory of Statistics III — Probability and Stochastic Processes S1 L2T2
Prerequisites: 10.311A, 10.111A, 10.1113, 10.2112. Excluded: 10.322A.

*** At least 1½ further units chosen from the following: 10.121A or 10.111A (DN), 10.1214 or 10.1114 (DN), 10.2212 or 10.2112 (DN), 10.2213 or 10.2113 (DN), 10.2214 or 10.2114 (DN).

* The evening course for 10.311A, subject to sufficient enrolment, runs at 3½ hours per week throughout the year.
10.312B Theory of Statistics III — Experimental Design (Applications) and Sampling
Prerequisite: 10.311B or 10.331 (normally CR). Excluded: 10.322B.

10.312C Theory of Statistics III — Experimental Design (Theory)

Prerequisites: 10.311A, 10.111A, 10.1113, 10.2112. Excluded: 10.322D.

10.312E Theory of Statistics III — Statistical Inference
Prerequisites: 10.311B, 10.111A, 10.1113, 10.2112. Co-requisites: Any two Level III Pure Mathematics or Applied Mathematics or Theoretical Mechanics units. Excluded: 10.322E.

Prerequisites: 10.321A, 10.111A, 10.1113, 10.1114, 10.2112. Excluded: 10.312A.

As for 10.312A but in greater depth.

10.322B Higher Theory of Statistics III — Experimental Design (Applications) and Sampling
Prerequisites: 10.321B, 10.111A, 10.1113, 10.1114, 10.2112. Excluded: 10.312B.

As for 10.312B but in greater depth.

As for 10.312C but in greater depth.

Prerequisites: 10.321A, 10.111A, 10.1113, 10.1114, 10.2112. Excluded: 10.312D.

As for 10.312D but in greater depth.

10.322E Higher Theory of Statistics III — Statistical Inference

As for 10.312E but in greater depth.

10.323 Theory of Statistics IV

10.301 Statistics SA

Probability, random variables, independence, binomial, Poisson and normal distributions, transformations to normality, estimation of mean and variance, confidence intervals, tests of hypotheses, contingency tables, two sample tests of location, simple and multiple linear regression, analysis of variance for simple models.

10.331 Statistics SS

An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions: binomial, Poisson and normal; an introduction to multivariate distributions. Standard sampling distributions, including those of X^2, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models, involving multiple comparisons and estimation of variance components.
Theoretical and Applied Mechanics

10.411A Theoretical Mechanics II — Hydrodynamics
S2 L3T1
Prerequisite: 10.001. Co-requisites: 10.411B or 1.012, 10.1114. Excluded: 10.421A.

Conservation laws and Bernoulli’s equation for one-dimensional flow. Equations of continuity and Euler’s equation. Kelvin’s Theorem. Incompressible, irrotational flow in two and three dimensions, including applications of complex variables, methods of images, harmonic functions, and axially symmetric flow. Introduction to compressible and viscous fluids.

10.411B Theoretical Mechanics II — Principles of Theoretical Mechanics
S1 L3T1
Prerequisites: 10.001, 1.001 or 10.041 or 5.010. Co-requisites: 10.2111, 10.2112, 10.1113. Excluded: 10.421B.

Revision of vectors, kinematics of particles and rigid bodies. Dynamics of particles including simple harmonic and projectile motion. Systems of particles: conservation principles, collisions, rocket motion, the catenary. Work and energy. Rotating frames; moments of inertia.

Elementary problems derived from continuum mechanics including conservation laws, one-dimensional fluid flow, extension and bending of beams.

10.421A Higher Theoretical Mechanics II — Hydrodynamics
S2 L3T1
Prerequisites: 10.011 or 10.001 (DN). Co-requisites: 10.421B, 10.1114. Excluded: 10.411A.

As for 10.411A but in greater depth.

10.421B Higher Theoretical Mechanics II — Principles of Theoretical Mechanics
S1 L3T1
Prerequisites: 10.011 or 10.001 (DN), 1.001 or 5.010 or 10.041. Co-requisites: 10.2211, 10.2212, 10.1113. Excluded: 10.411B.

As for 10.411B but in greater depth.

10.412A Theoretical Mechanics III — Dynamical and Physical Oceanography
F L1½T½
Prerequisites: 10.2111 & 10.2112 or 10.031, 1.001. It is recommended that one of the following be taken concurrently: 10.411A or 1.012 or 1.913.

1. The physical properties of the oceans and their measurement, including: salinity, temperature, density, dynamic heights. Currents, waves and tides. 2. Theoretical models of current and waves.

Up to seven days field/laboratory work per year.

10.412B Theoretical Mechanics III — Continuum Mechanics
F L1½T½
Prerequisites: 10.2111, 10.2112, 10.111A, 10.1113, 10.1114. Co-requisites: 10.411A or 1.012 or 1.913. Excluded: 10.422B.

10.412D Theoretical Mechanics III — Mathematical Methods
F L1½T½
Prerequisites: 10.2112, 10.111A, 10.1113, 10.1114. Excluded: 10.422D.

Sturm-Liouville equation, eigenvalues, expansion in orthonormal functions. Fourier, Fourier-Bessel and Legendre series as special cases. Fourier and Laplace transforms, with application to ordinary and partial differential equations. Diffusion equation and transmission-line equation. Wave equation.

10.422A Higher Theoretical Mechanics III — Fluid Dynamics
S2 L3T1
Prerequisite: 10.421A or 10.411A (DN). Co-requisite: 10.422B.

Compressible flow, viscous flow, boundary layers, hydrodynamic stability, simple wave motions in fluids.

S1 L3T1
Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112, 10.421B or 10.411B (DN) or 1.012. Excluded: 10.412B.

As for 10.412B but in greater depth.

10.422D Higher Theoretical Mechanics III — Mathematical Methods
F L1½T½
Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN). Excluded: 10.412D.

10.423 Theoretical Mechanics IV

An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses on topics chosen from fluid mechanics, solid mechanics, planetary science and special mathematical and numerical techniques applied to partial differential equations. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools on topics such as optimal control theory, optimization theory, thermodynamics, numerical analysis or statistics.
Servicing Subjects

- **10.021** General Mathematics IA
- **10.022** Engineering Mathematics II
- **10.033** Electrical Engineering Mathematics III
- **10.341** Statistics SU
- **10.341A** Statistics SU (Part A Sandwich Course)
- **10.341B** Statistics SU (Part B Sandwich Course)
- **10.351** Statistics SM
- **10.361** Statistics SE
- **35.670** Mathematics for Builders (Calculus, Algebra & Geometry)

Graduate Study

10.194G Advanced Mathematics Lecture Courses

Each year a selection of courses is offered in the following areas:

- Algebraic geometry, algebraic topology, categorical and homological algebra; commutative algebra; group theory; Lie groups and algebras; representation theory; group theory and its physical applications; advanced quantum mechanics; differential geometry; differential equations; optimal control theory; functional analysis; applied functional analysis; operator theory; harmonic analysis; advanced numerical analysis; theory of functions; finite mathematics; number theory; logic; theoretical astrophysics; history of mathematics; recent advances in mathematics; mathematical economics; optimization and control.

10.372G Statistical and Experimental Design

The concepts of random variables, means, variances, the common tests and confidence intervals based on the normal distribution, some simple analyses of variance.

Comparative Experiments: Requirements of a good experiment, assumptions underlying the conventional models of standard designs and their analyses. Purpose of randomisation, how the physical circumstances of an experiment are related to its formal model on which its analysis is based, the internal estimate of error obtained from the variation left after accounting for all sources of systematic variation, these points illustrated by considering in some detail the fully randomized design, the randomized block design, the 2^3 factorial fully randomized design, and the fully randomized design with one concomitant variable.

Survey Sampling: the distinction between a survey sample and an experiment planned to compare a set of treatments, and how it affects the inferences that may be made; simple random sampling, stratified random sampling.

10.381G Experimental Design I

Modified designs for fixed effects models. Incomplete and balanced incomplete block designs. Confounding and fractional replication. Randomization theory. Multiple comparisons.

10.382G Experimental Design II

Extensive treatment of random and mixed models. Combinatorial structure of designs, cross-over and lattice designs, response surfaces.

10.383G Stochastic Processes

10.384G Time Series

10.385G Multivariate Analysis I

Likelihood ratio tests for means, variances and structure. Discriminant, principal component, canonical and factor analysis.

10.386G Multivariate Analysis II

The general linear hypothesis and analysis of dispersion. Tests based on roots, distribution theory.

10.387G Sample Survey Design

Simple, stratified and systematic random sampling. Estimation of proportions, ratios, and sample sizes. Multi-stage sampling.

10.388G Sequential Analysis

The sequential probability ratio test — OC and ASN functions. General theory of sequential tests. Sequential estimation.

10.389G Non-Parametric Methods

10.390G Statistical Inference

Decision theory. General theory of estimation and hypothesis testing.

10.391G Special Topic A

To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.

10.392G Project

10.393G Special Topic B

To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, and other topics.
10.394G Discrete Distributions
Discrete and lattice distributions — their general properties mostly via generating functions. The structures of contagious (clustered) distributions, with a study of specific examples such as the negative binomial, Neyman and Poisson-Pascal families, together with estimation and fitting procedures.

10.401G Seiches and Tides

Psychology Level II Units

12.042 Psychology II A F L2T2
Prerequisite: 12.001. Co-requisites: 12.052, 12.062, 12.152.

Available to Course 3430 students only.

Session 1:
As for 12.373 Psychological Assessment (Testing) II A.

Session 2:
Supervised visits to institutions and other places in which psychologists work. Linked lectures look systematically at issues raised by these visits.

12.052 Basic Psychological Processes II S1 L2T2
Prerequisite: 12.001.

The basic phenomena of behaviour and experience in a biological context.

12.062 Complex Psychological Processes II S2 L2T2
Prerequisite: 12.001.

Information processing and cognitive functioning, and social bases of behaviour and personality.

12.072 Human Relations II S1 L2T2
Prerequisite: 12.001.

The personality development of the individual from birth through to death, focussing on the influences on such development from family of origin, school, peer group, work, marriage and other social groups. The theoretical contributions to an understanding of development from Freud, Piaget and Erikson.

12.082 Individual Differences II S2 L2T2
Prerequisite: 12.001.

Measurement and significance of individual differences in intellectual, motivational and personality functioning. Statistics, to cover the fundamentals of hypothesis testing.

12.152 Research Methods II F L2T1
Prerequisite: 12.001.

General introduction to the design and analysis of experiments; hypothesis testing, estimation, power analysis; general treatment of simple univariate procedures; correlation and regression.
Psychoogy Level III Units: Group A

12.153 Research Methods IIIA S1 L2T2

Prerequisite: 12.152.

Analysis of variance for single factor and multifactor designs. Fixed, random and mixed models. Test procedures for planned and post-hoc contrasts defined on parameters of fixed and mixed models. General principles of experimental design.

12.163 Research Methods IIIB S2 L2T2

Prerequisites: 12.152, 12.153.

For students who intend to undertake a research thesis in Psychology IV, and is concerned with data analysis using the SPSS and PSY systems of computer programs, and with the statistical bases of these programs.

12.423 Physiological Psychology IIIB S2 L2T2

Prerequisites: 12.052, 12.152, 12.413.

12.453 Human Information Processing IIIA S1 L2T2

Prerequisites: 12.062, 12.152.

The stages involved in the reception of stimulus information from the environment, its analysis, storage, and transmission into responses. Particular emphasis will be given to the processing of language.

12.463 Human Information Processing IIIB

Prerequisites: 12.062, 12.152, 12.453.

Not offered in 1981.

12.473 Perception IIIA S1 L2T2

Prerequisites: 12.052, 12.152.

A common assumption is that we see things appropriately because we know how big things really are. This view is examined in an historical context, and its assumptions are examined in the light of data from studies of infant perception, of conflict between vision and other senses, of certain illusions, and of the perception of size and distance generally.

12.483 Perception IIIB S2 L2T2

Prerequisites: 12.052, 12.152, 12.473.

Man in a spatial environment. A study of the organization and stability of the visual world with particular reference to object movement, eye movement and locomotion.

12.493 Psychophysics III S2 L2T2

Prerequisite: 12.153.

A review of classical and contemporary psychophysical theories, namely theories which attempt to explain the relationship between physical and judged values of stimuli; an introduction to the methodology of psychophysical measurement; an examination of the relevance of psychophysical theories and methods to areas outside of sensory psychology where they have been traditionally developed.

Psychology Level III Units: Group B

12.253 Learning IIIA S1 L2T2

Prerequisites: 12.052, 12.152.

The establishment and elimination of extended sequences of behaviour in complex environments. Implications of the theories and research for applied work.

12.263 Learning IIIB S2 L2T2

Prerequisites: 12.052, 12.152, 12.253.

Associative learning: the conditions under which associations are formed; the nature of the associations formed; and the mechanisms by which associations are formed.

12.323 Motivation IIIA S2 L2T2

Prerequisites: 12.052, 12.152.

An examination of contemporary research regarding 'drives', 'incentives' and 'emotions' as determinants of animal and human actions. Ranges from basic survival activities to human personality. Theoretical perspectives include physiological, neo-behavioural and social.

12.413 Physiological Psychology IIIA S1 L2T2

Prerequisites: 12.052, 12.152.

Psychology Level III Units: Group C

12.173 Psychological Issues III S1 L2T2

Prerequisites: 12.052, 12.062.

Not offered in 1981.
12.303 Personality IIIA
Prerequisites: 2 Psychology Level II subjects.
Personality dynamics and structure. The practical work involves an exploration of student-chosen topics within designated areas of personality.

12.313 Personality IIIB
Prerequisites: 2 Psychology Level II subjects, 12.303.
Not offered in 1981.

12.383 Psychological Assessment (Psychometric Theory) IIIB
Prerequisites: 12.152 and 1 other Psychology Level II subject, 12.373.
Not offered in 1981.

12.503 Social Psychology IIIA
Prerequisites: 12.062, 12.152.
Interpersonal perception, verbal and non-verbal communication and human social interaction processes.

12.513 Social Psychology IIIB
Prerequisites: 12.062, 12.152. Excluded: 12.523.
Research and theory in three fields of applied social psychology: organizational psychology; the social psychology of cultures in contact, including majority group-minority group relations and conflict resolution; and, the social psychology of living in cities. Practical strand presupposes some knowledge of basic research methods and elementary statistical procedures (eg x², t-test, analysis of variance).

12.523 Environmental Psychology III
Prerequisites: 2 Psychology Level II subjects. Excluded: 12.513.
The effects of population, technology and urbanization on social change with special reference to individual functioning and the quality of life. The measurement of social change is treated in practical exercises.

12.553 Developmental Psychology IIIA
Prerequisites: 12.062, 12.152.
An introduction to the study of cognitive development set loosely within the framework of Piagetian theory. Topics include: the development of perception with special reference to the nativism/empiricism issue; the development of operational thought with emphasis on its origins in sensori-motor intelligence; the development of language and its relationship to the development of thought; and the development of reading.

Psychology Level III Units: Group D

12.563 Developmental Psychology IIIB
Prerequisites: 12.062, 12.152, 12.553.
Not offered in 1981.

12.603 Abnormal Psychology IIIA
Prerequisites: 12.052, 12.152.
Conflict, anxiety and avoidance behaviour. Anti-social behaviour, psychosomatic disorders, brain pathology, mental deficiency, schizophrenia, depression, sexual anomalies; methods of diagnosis and treatment.

12.613 Abnormal Psychology IIIB
Prerequisites: 12.052, 12.152.
This subject may be offered in Session 2 (L2T2) and an announcement is made by the School during Session 1.
The settings in which clinical psychologists practice, the work they do, and the problems and research issues they must cope with.

12.653 Industrial Psychology III
Prerequisites: 2 Psychology Level II subjects.
A critical investigation of the role of psychologists in industry, especially since World War II. Relationships between theories of human motivation and motivations of human theorists.

12.663 Ergonomics III
Prerequisite: 12.152.
Aspects of human performance relevant to work design. The principles involved in designing the environment in general, and work in particular, to suit man’s capabilities.
12.703 Psychological Techniques III
Prerequisites: 2 Psychology Level II subjects.
Not offered in 1981.

12.713 Control and Modification of Behaviour III
Prerequisite: 12.052, 12.152, 12.603.

Psychology Level IV Units

12.004 Psychology IV
Prerequisites: All other Course requirements.
Psychology IV in the BSc in Psychology course. A program of selected study from the school’s Advanced Electives, chosen in consultation with the Head of School or his representative, plus a research thesis or project. Combinations of electives are available for students intending to specialize in areas of professional practice (e.g., clinical, community, psychological measurement) or in research.

12.014 Psychology IV (Research)
Prerequisites: 12.001, 12.052, 12.062, 12.152 and 8 Psychology Level III units, including 12.153 from Group A and at least 1 unit from each of Groups B, C and D, at an average level of Credit or better.
Psychology IV in the Science and Mathematics Course. Research and thesis, course work and readings to be determined in consultation with the Head of School.

12.044 Psychology IV (Course Work)
Prerequisites: 12.001, 12.052, 12.062, 12.152 and 8 Psychology Level III units, including 12.153 from Group A and at least 1 unit from each of Groups B, C and D, at an average level of Credit or better.
Psychology IV in the Science and Mathematics Course. Course work, practicum, project and readings to be determined in consultation with the Head of School.

Graduate Study

12.228G Research Project
For students who commenced the degree course before Session 1, 1980.
An individual research project in the general area of clinical or community psychology, with supporting seminars covering the selection and formulation of a problem, the choice of a design, the planning of the general methodology and the analysis of data.

12.230G Psychological Problems of Children
An essentially practical course focusing on childhood disorders, such as mental retardation, infantile autism, physical and sensory handicaps, specific learning difficulties, and hyperactivity. Methods of assessment to be studied include standardized tests of child development, behavioural check lists and interviews, and observation of present behaviour.

Behavioural change procedures that may be effective in the treatment and management of the behavioural problems in question.

12.231G Professional Practice
Supervised work with clients in the School’s clinic, and in approved institutions.

12.235G Community Psychology
The history, theory, concepts and practices of what has come to be called community psychology. Systematic, problem-solving approaches to the resolution of human misery; the social and institutional conditions which promote human well-being. Substantive topics include: models and perspectives in community psychology; values and community intervention; evaluation and research in community psychology; social systems’ theory and ecology; coping and social competence; consultation theories; various social issues, e.g., alcoholism and drug dependence, mental health care.
12.237G Biological Aspects of Behavioural Disturbance

A series of lectures and seminars on biological aspects of the aetiology and treatment of behavioural disturbance. Topics: behavioural genetics; organic brain syndromes; schizophrenia; depression; psychophysiology of stress; metabolic and endocrinological aspects of behavioural disturbance; nutrition and behavioural disturbance; psychopharmacology and pharmacotherapy; somatic treatments.

12.239G Research and Evaluation Methods in Clinical and Community Psychology

Problems of experimental design in the clinical field; measurement and scaling; analysis of change, including sequential analysis, and the application of the experimental methods to the individual cases. Design and evaluation of community programs.

12.240G Graduate and Clinical Seminars

A series of seminars on topics of particular relevance to the practice of clinical psychology, eg the organization and regulation of psychology as a profession; ethical standards in relation to clients, members of other professions, and the public; legal aspects of psychological practice. Additional topics dealing with contemporary issues in clinical psychology are chosen in consultation with students undertaking the seminars.

12.241G Graduate Colloquium

Participation in the staff-graduate student colloquium.

12.242G Research Thesis

For students who commenced the degree course after Session 1, 1980.

A research thesis involving an investigation into some aspect of clinical or community psychology.

12.243G Experimental Clinical Psychology

1. The theoretical basis of clinical practice in individual, group, institutional, and community settings; 2. The application of the principles of experimental psychology to the analysis of both adaptive and maladaptive patterns of behaviour; 3. The study of a wide range of techniques of behavioural intervention; 4. The development, implementation, and evaluation of programs of behavioural change designed to promote healthy behaviour and to modify dysfunctional behaviour.

12.244C Psychological and Behavioural Assessment

The application of the principles of experimental psychology to problems of behavioural assessment in a wide variety of situations, eg lifestyle change; the management of behavioural disorders; institutional behavioural programs. Assessment procedures studied include: psychological tests, behavioural analysis and case history taking, psychophysiological and other objective measures.
17.021 Biology of Higher Organisms* S2 L2T4
Prerequisite: 17.031.

The diversity of living things and the way in which they have adapted to varying environments. Stress on flowering plants and vertebrate animals, and the complex organ systems they possess. The structure and function of these organs, as well as their coordination and control, examined in practical experiments, as the basis of lecture and tutorial programs.

17.012 General Ecology S2 L2T4
Prerequisites: 17.031 & 17.021.

Evolution and environmental selection in the Australian continent; geological, palaeoclimatological, biogeographical and historical background. Functional organization of ecosystems: energy budgets, hydrological and biogeochemical cycles. Integrated structure and function of ecosystems, including cropping and management of natural resources. Aspects of microbial ecology. Students are required to attend a field camp as an integral part of the course.

Applied Geology

Field tutorials are an essential part of these subjects, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

Undergraduate Study

25.110 Earth Materials and Processes S1 L2T4
Prerequisites: 25.110, 25.120.

HSC Exam
Percentile Range
2 unit Science (any strand) or
31-100
4 unit Science (any strands)
31-100

Field Work of up to two days is a compulsory part of the subject.

25.120 Earth Environments and Dynamics S2 L2T4
Prerequisite: 25.110.

Field Work of four days is a compulsory part of the subject.

25.211 Earth Materials I S1 L2T4
Prerequisite: 25.120.

Practical: Macroscopic and microscopic examination of rock forming and ore minerals and igneous rocks in the field and the laboratory.

Field Work of one day is a compulsory part of the subject.

25.221 Earth Materials II S2 L3T3
Prerequisite: 25.211.

Sedimentary Petrology: The influence of transportation, deposition and diagenesis on the composition, texture and structure of detrital sedimentary rocks. The chemically formed sedimentary rocks including the phosphates, zeolites, evaporites, ferruginous and siliceous deposits.

Field Work of up to eight days is a compulsory part of the subject.

25.212 Earth Environments I S1 L3T3
Prerequisite: 25.120.

Sedimentology: Flow regimes and bedding forms, sedimentary structures. Flume experiments. Modern and ancient sedimentary environ-
ments of deposition: alluvial, deltaic, coastal, shelf and deep sea. The facies concept.

Field Work of up to five days is a compulsory part of the subject.

25.223 Earth Physics S2 L2T4

Global Geophysics: Principles of gravity, geomagnetism, palaeomagnetism, geothermy and seismology and their relation to shape, internal constitution, dynamic processes and major tectonic features of the earth.

Exploration Geophysics: Physical properties of rocks and soils. An introduction to electrical, electromagnetic, seismic, gravity, magnetic and radiometric methods of geophysical exploration. Application of these methods in the search for mineral deposits, petroleum, coal and groundwater and in civil and mining engineering projects.

Field Work of one day is a compulsory part of the subject.

25.311 Earth Materials III S1 L2T4

Prerequisite: 25.221. Co-requisite: 25.326.

25.321 Earth Materials IV S2 L3T3

Prerequisite: 25.311. Co-requisite: 25.326.

Clay Mineralogy: The structure and properties of the clay mineral groups including the kandites, illites, smectites, chlorites, mixed layered and fibrous clay minerals. Techniques for the identification of the clay minerals. Clay-water systems and ion exchange. Chemical weathering and the origin of the clay minerals.

Field Work of up to six days is a compulsory part of the subject.

25.312 Earth Environments II S1 L3T3

Prerequisite: 25.212. Co-requisite: 25.326

Stratigraphy: Biological and physical methods of correlation. Definition of international stratigraphic boundaries, stratotypes and reference points. The development of the Precambrian craton of Australia. The geological evolution of eastern Australia, particularly the Late Palaeozoic and Mesozoic history of the Tasman Mobile Belt. Infragratonic basins of western and southern Australia and the effects of the dispersal of Gondwanaland. Geological evolution of the northern margin of the Australian plate, particularly the Mesozoic to Recent of Papua-New Guinea. Stratigraphic and structural evolution of aulacogenes.

25.313 Exploration and Data Processing S1 L4T2

Prerequisite: 25.223.

Exploration Geophysics: The practice and theory of geophysics as a basic tool of geological exploration with applications in areas of energy, mineral and ground-water resources and engineering projects.

Mathematical Geology: An introductory course to develop proficiency in the acquisition, display and analysis of geological data utilizing digital computer processing. Elementary descriptive and inferential statistics and sampling. Fortran programming language (including hands-on computing experience). Analytical methods of mathematical geology including time series analysis, Markov Chain analysis, map analysis and multivariate identification and classification techniques. A practical approach is adopted throughout whereby the student makes extensive use of a library of programs implemented on the University's CDC mainframe Cyber 72/171 installation for processing and interpretation of real data.

Field Work of up to five days is a compulsory part of the subject.
25.314 Mineral and Energy Resources I S1 L3T3
Prerequisite: 25.221. Co-requisite: 25.311.

Metallic Resources: Classification and origin of ore deposits, geochemical processes, research methods. Orthomagmatic, hydrothermal, porphyry, volcanic-sedimentary, Mississippi Valley type, chromium, iron, manganese ores, residual and mechanical ores. Introduction to mineral exploration. Laboratory study of hand specimens, thin sections and polished sections of various ore types; study of selected mining areas representing various genetic types of ore.

Economic Mineralogy: Nature of reflected light. Orthoscopic and conoscopic, rotation, dispersion phenomena. Microhardness and reflectivity, etch tests, XRD and microprobe techniques. Ore textures and their interpretation. Phase relations and paragenesis of ore minerals. Practical work in optical properties of ore materials, hardness and reflectivity measurements; study of selected ores and ore minerals under the microscope including textural studies.

Field Work of up to four days is a compulsory part of the subject.

25.324 Mineral and Energy Resources II S2 L3T3
Prerequisite: 25.312.

Field Work of up to ten days is a compulsory part of the subject.

25.325 Engineering and Environmental Geology S2 L4T2

Field Work of up to three days is a compulsory part of the subject.

25.326 Geological Techniques S2 L3T3
Prerequisites: 25.212, 25.311.

Field Mapping: Geological mapping in a complicated geological terrain for up to eight days. Geological report writing and cartography.

Field Work not exceeding ten days is a compulsory part of the subject.

25.332 Geology for Geomorphologists and Pedologists S2 L2T3
Prerequisites: 25.211, 25.221, 25.212.

Clay Mineralogy: The structure and properties of the clay groups, including the kandites, illites, smectites, chlorites, mixed layered and fibrous clay minerals. Techniques for the identification of the clay minerals. Clay-water systems and ion exchange. Chemical weathering and the origin of the clay minerals.

25.621 Marine Geology I F L1T2
Prerequisites: 25.601 or both 25.110 & 25.120.

The form and nature of ocean basins; the origin, transport, distribution and deposition of suspended matter in ocean water. Principal groups of oceanic index fossils. Igneous and sedimentary rock types of the ocean floor and their significance. Tectonics of ocean basins.

Field Work of two days is a compulsory part of the subject.

25.622 Hydrological and Coastal Surveying F L1T2
Prerequisites: None.

General principles of surveying, with particular reference to coastlines and off-shore techniques. Optical and electronic methods of distance measuring and position fixing. Methodology for short-term and long-term measurement of tides and flow currents. Bathymetric surveys in shallow and deep water conditions. Coastline morphologies and their relationship to the behaviour of water masses. Analysis of sedimentary systems in deltaic, estuarine and near-shore environments. Data coll-
lecting, processing and storage. Shallow-water investigations for bedrock morphologies.

Field Work of five days is a compulsory part of the subject.

25.631 Marine Geology II F L1T2
Prerequisite: 25.621.

Field Work not exceeding two days is a compulsory part of the subject.

25.632 Estuarine Geology S2 L2T4
Prerequisite: None.

Field Work of four days is a compulsory part of the subject.

25.634 Marine Mineral Deposits and Exploration S1 L3T3
Prerequisite: 25.621. Co-requisite: 25.631.

Geophysics of ocean basins and off-shore areas and the techniques of their study. Seismic refraction, reflection and computational methods. Instrumentation of seismic and acoustic sources, recording systems and signal processing. Geophysical and physical interpretation of results. Practical work on instrumentation, recording and interpretation of field data.

25.635 Marine Resources F L1T2
Prerequisite: 25.621. Co-requisite: 25.631.

Resources important to human civilization of a biological, fluid and mineral nature. Mining of ocean resources. Geological aspects of waste disposal and engineering works in the ocean. Tidal energy. Off-shore drilling.

25.411 Resource Geology S1
Offered in 1982.

Geophysics: The planning of geophysical surveys within the context of overall exploration and engineering development programs. Geological interpretation of geophysical data and discussion of selected case studies.

Mineral Exploration: Use of geology in mineral exploration and area selection; principles of exploration geochemistry; radiometric and remote sensing methods, exploration drilling; ore reserve estimation; exploration ground tenure in New South Wales.

World Evolution: Seminars on the world's geology from varied aspects.

25.412 Mineral and Energy Resources F
Co-requisite: 25.411.

Offered in 1982.

Students taking this option are expected to show preference for either mineral or energy resources. Projects, lectures, tutorials and seminars are designed accordingly.

Mineral Resources: A major part is a student field-laboratory research project in some aspect of mineral resources, as a general geological project, or a specialized mineral exploration project, eg, geochemical, geophysical, mineralogical. In Session 1 additional lectures/seminars follow on from 25.400 Resource Geology, giving more detailed appreciation of various aspects of mineral resources and include exploration management, mine evaluation, exploration geochemistry, exploration geophysics and mathematical geology. The content and extent of tuition in these subjects varies from year to year according to student requirements.

Energy Resources: A major part is a field mapping project in a sedimentary terrain. Depending on students' requisites, specialized field/laboratory studies are arranged in sedimentology, macro- and micropalaeontology, palynology, mathematical geology, geophysics and well-log analysis. Where possible, projects are directly related to problems of coal and petroleum occurrence. In Session 1 attendance is expected at lectures/seminars described in Mineral Resources above and of common interest to understanding evaluation and exploitation of energy resources.

25.413 Engineering and Environmental Resources F
Co-requisite: 25.411.

Offered in 1982.

A major part is a field/laboratory research project in some aspect of engineering or environmental geology. In Session 1 additional lectures are on: foundation geology, construction materials, rock weathering and fabric analysis applications to engineering problems, site investigations, practical construction geology, soil slope stability analyses and stabilization, geomechanical principles, engineering geophysical techniques, engineering geological case histories and advanced geological surveying applied to engineering works.
25.414 Geology IV Honours

Single major.

Further details of the honours course may be obtained from the Head of the School of Geology.

General Studies

Graduate Study

For students enrolled in the MScSoc degree course

26.568G Technology for Alternative Development S2L2

The need for alternative theories and models of development. Trends in economic development theory and development in practice. Current choice of science and technology in developing countries. The results of contemporary strategies of development and their relation to the policies of industrialized nations. The professed goals of development plans. Preferred models of development and the technology appropriate to them. The social, political and economic implications of choosing alternative goals and technologies in developing countries.

Geography

Undergraduate Study

27.801 Introduction to Physical Geography S1 L2T2½

The mechanism of the physical environment, with particular exemplification within the Sydney region. Geological controls of landform development; fluvial, slope and coastal processes and landforms; cyclic and equilibrium approaches to landform studies. The global radiation budget and atmospheric circulation; weather and climate in the Sydney region. The hydrologic cycle. Processes and factors of soil formation and the soil profile. Controls of vegetation in the Sydney region. The ecosystem.

Laboratory classes include: study and use of geologic and topographic maps and air photographs; use of climatic data and the weather map; soil description. Two field tutorials, equivalent to 16 tutorial hours, are a compulsory part of the course. Students must provide basic drawing equipment and tracing paper, and will be asked to contribute towards the cost of the field tutorials.

27.802 Introduction to Human Geography S2 L2T2½

The relationships between man and the environment, their spatial consequences and the resulting regional structures that have emerged on the earth's surface. Basic concepts and methods for studying the spatial organization of human activities, particularly as they relate to patterns of location and distribution, to the flows, movements and linkages between places and activities, and to the processes operating that give rise to variations from place to place, particularly between urban and rural areas. Australian and South-East Asian examples are used where relevant.

Laboratory classes: presentation and description of geographical data, analysis of spatial patterns, together with appropriate statistical exercises. Includes a compulsory field excursion equivalent to eight tutorial hours.

27.811 Physical Geography S2 L2T2½

Prerequisites: 27.801, 27.2813.

Laboratory classes: climatic analysis and mapping, and analysis of natural landscapes, including airphoto interpretation, together with appropriate statistical exercises.

27.812 Human Geography S2 L2T2½

Prerequisites: 27.802, 27.2814.

The urbanization process in underdeveloped and industrialized societies. Theories, concepts and principles relating to the location, size and spacing of settlements; the economic and social structure of urban areas; city-region relationships. Geographical perspectives on contemporary urban problems are offered, particularly those associated with the concentration of people and activities between regions and within cities; emphasis on spatial variations in housing, employment and service provision.

Laboratory classes: case studies, methods of analysis and practical applications in the local region including a compulsory field excursion equivalent to sixteen tutorial hours.

27.2813 Geographic Methods S1 L1T2

Prerequisites: 27.801, 27.802.

Statistical procedures used in both human and physical geography. Includes: measures of dispersion; samples and estimates; hypothesis testing; association; correlation and regression; tests for distribution in space; data collection and analysis.

Field Work of up to 5 days is a compulsory part of the course.

27.2814 Geographical Field Methods S2 T2

Prerequisites: 27.801, 27.802, 27.2813.

Field methods as used in both human and physical geography. The subject involves a five-day field tutorial and associated laboratory work.

† In special circumstances a student may apply to the Head of School for permission to take 27.2813 as a co-requisite.
27.153 Climatology S2 L2T3

Prerequisites: 1.001. 27.811 or 25.110 & 25.120 or 17.031 & 17.021.

27.143 Biogeography S1 L2T3

Prerequisites: 27.811 or 17.031 & 17.021.

Field work forms an integral part of the course.

27.824 Spatial Population Analysis S2 L2T2

Prerequisite: 27.812.

Population growth and structure in an urban and regional context, stressing the components and processes of population change: fertility, mortality and migration set within the framework of demographic transition theory. Theories of migration and mobility and of optimal populations. Demographic and social indicators for urban and regional analysis and their implications for disparities in living conditions, residential differentiation and regional growth. The adjustment of immigrant and migrant populations to the urban environment.

27.825 Urban Activity Systems S1 L2T2

Prerequisite: 27.812.

Interaction in time and space within cities and between regions, stressing relationships between transportation, mobility and the environment structure of groups and individuals, as well as problems of accessibility to a wide range of activities, including services and employment. Patterns of flow, transaction and linkage between economic activities. Topics include: the journey-to-work, shopping and travel behaviour, contact networks, and the optimal location of facilities.

27.826 Urban and Regional Development S1 L2T2

Prerequisite: 27.812.

Processes of change in the distribution of settlement and economic activity at the regional and metropolitan scales, with special attention to urban and regional development in Australia. Topics include: regional balance and polarization, industrial concentration and linkages; dispersal and relocation of manufacturing and services; growth centres and regional multipliers; changes in the inner city and the urban fringe; problems of resource allocation and equity, and regional policies and strategies for urban and regional development; approaches to urban and regional analysis and definition of regional indicators.

27.827 Environment and Behaviour S2 L2T2

Prerequisite: 27.812.

For subject description, see School of Geography.

27.860 Landform Studies S2 L2T2½

Prerequisite: 27.811.

The study of landforms, with particular reference to Australian examples. Geomorphic regions. Erosion surfaces and processes and associated weathering features. The evolutionary and dynamic approaches to landforms, with particular reference to fluvial landforms. Coastal processes and forms. Desert landforms. Landforms as evidence of climatic change.

27.862 Australian Environment and Natural Resources* S2 L2T2½

Prerequisite: 27.811 or 27.812.

Regional patterns of natural land and water resources of Australia. Climatic, geomorphic, soil and biotic factors affecting past, present and
potential modes of land use and stability of primary production. Conditions of the physical environment which favour or impede productive utilization and further development of land, marine, freshwater and energy resources under a changing technology. Problems of avoiding degradation of land quality and natural ecosystems. Case studies from distinctive environmental settings in Australia.

Laboratory/workshop sessions include the study of maps and air photographs of typical environments: local environmental problems are investigated in the field.

27.863 Ecosystems and Man* S1 L2T2½
Prerequisite: 27.811 or 27.812.

Soils as an expression of endogenic and external factors and of physical and biological controls, and as a bridge between the physical environment and man's use of the land. Materials and properties of soils. Soils in the ecosystem; interrelationships between soil and climatic, biotic and geomorphic features of the environment. Constraints imposed by soil properties on land use, in both rural and urban settings. Man's effect on the soil, and its consequences, eg, soil pollution, disturbance of soil-moisture and nutrient cycles, soil depletion and erosion.

These themes will be co-ordinated in the study of regional examples in Australia and South-East Asia. There are laboratory workshops, field excursions and group projects.

27.834 Spatial Population Analysis (Advanced) S2 L3T3
Prerequisites: Graded passes in 27.812, 27.2813.

Additional and more advanced work relating to the content of 27.824.

27.835 Urban Activity Systems (Advanced) S1 L3T3
Prerequisites: Graded passes in 27.812, 27.2813.

Additional and more advanced work relating to the content of 27.825.

27.836 Urban and Regional Development (Advanced) S1 L3T3
Prerequisites: Graded passes in 27.812, 27.2813.

Additional and more advanced work relating to the content of 27.826.

27.837 Environment and Behaviour (Advanced) S2 L3T3
Prerequisites: Graded passes in 27.2813, 27.812.

27.870 Landform Studies (Advanced) S1 L3T3
Prerequisites: Graded passes in 27.811, 27.2813.

As for 27.860 Landform Studies, with additional and more advanced work, including selected studies of geomorphic processes and of man's influence on those processes.

27.872 Australian Environment and Natural Resources (Advanced)* S2 L3T3
Prerequisites: Graded Passes in 27.811 or 27.812.

As for 27.862 Australian Environment and Land Resources plus further study based on additional seminars and reading. Additional topics include 1. environmental bases for reserving land and water resources for forestry, water supply, wildlife protection, and recreation; 2. conflicting demands in regional resource development.

27.873 Ecosystems and Man (Advanced) S1 L3T3
Prerequisites: Graded Passes in 27.811 or 27.812.

As for 27.863, with additional and more advanced work.

27.880 Advanced Geographic Methods F L1T2
Prerequisites: Graded Passes in 27.811 or 27.812 and 27.2813.

Additional quantitative research techniques normally taken by Honours students in their third year. Research organization; computing including Fortran; collection and organization of data; statistical description; hypothesis testing and sampling; simple and multiple association analysis; nonparametric methods.

27.412 Coastal Geomorphology‡ S2 L2T3
Prerequisite: 27.811 or 25.011.

Advanced work in selected areas of coastal geomorphology. The characteristics of waves in deep and shallow water. Beach morphology and sediments. Coastal barrier systems. Lagoons and estuaries. Rock platforms. Quaternary sea-level changes. A field project is undertaken as part of this course. Laboratory time is devoted to sedimentary analysis and statistical exercises using data collected from maps, air photos and in the field.

27.604 Geography IV (Honours) F
Prerequisite: 27.880.

Honours students in their final year are required to prepare a thesis of not more than 20,000 words and to attend a series of seminars on their thesis and supporting topics. The thesis topic must be approved by the Head of the School during the second half of the year preceding entry into the final year, while the thesis must be submitted before the examination period in November of the final year. It is expected that research work for the thesis is undertaken during the summer vacation preceding the final year. In addition, students are required to undertake advanced studies in a branch of geography appropriate to the area of research chosen for the thesis.

Organizational Behaviour

Graduate Study

For students enrolled in the MScSoc degree course

30.960G Technology and Organizations S2 L3

The relationship between technological change, employment and organizations. Students specialize in particular areas of interest within

* Subject to availability of staff.
‡ Only students enrolled in the Marine Science program.
this focus, eg the origins, nature, rate, industrial distribution and prevailing ideologies of technological innovation, adaptation and diffusion may be examined, and consideration given to their relationship to 1. major organizational variables such as organizational size and structure; centralization and decentralization of control and power; employment, underemployment and unemployment, and the design of work, 2. the interests of key groups such as technical specialists (eg engineers), management, general employees, industrial tribunals, unions, and disadvantaged groups such as immigrants, women, youth and aged, and 3. factors affecting the quality of working life such as alternative patterns of work, industrial accidents and occupational health, work satisfaction, formal and informal learning and recurrent education.

Optometry

Undergraduate Study

31.811 Optometry I F L4T4
Prerequisites: 1.011 or 1.001 or 1.021 or 1.031, 10.001 or 10.021B & 10.021C or 10.011. Co-requisite: 31.821.

Geometrical and Physical Optics — Extension of Physics I content on the nature of light, reflection, refraction, thin lenses, optical instruments, dispersion and colour.

Lens systems and thick lenses, Interference, Diffraction, Polarisation, Photometry.

31.812 Optometry II F L8T7

31.813 Optometry III F L6T0
Prerequisite: 31.812, 31.831.

31.821 Special Anatomy and Physiology F L3T3
Prerequisites: 17.031, 17.021. Co-requisite: 73.011 A.

31.831 Diseases of the Eye F L2T1

 Graduate Study

31.701G Advanced Clinical Optometry F T4

Clinical work on selected patients, with special emphasis on advanced techniques and new developments. All areas of optometric examination procedures are covered, including: external and internal examination of the eyes; visual functions; tonometry; objective optometry; evaluation of binocular functions; aniseikonia, sub-normal vision; geniatric and pediatric optometry; the clinical application of electrophysiological techniques. The assessment of new instruments, methods and treatment.

31.702G Advanced Physiological Optics F L2T2

31.703G Pleoptics and Binocular Vision F L2T2

An integrated subject, in which binocular vision and pleoptics are studied from theoretical and clinical viewpoints. Clinical experience is provided by selected patients. Includes: The nature and control of eye movements, and their role in maintaining the perception of a stable visual world. Binocular and monocular subjective visual directions. The neurophysiological substrate of binocular vision and its phenomena. Stereopsis and its measurement. Accommodation, convergence, and oculo-motor imbalance. Laboratory and clinical methods of measuring eye position and visual directions. The aetiologies, measurement, and treatment of strabismus, anomalous correspondence, eccentric fixation and amblyopia.

31.704G Advanced Contact Lens Studies F L1T3

Contact lens materials: polymer chemistry, physical and chemical properties of soft and hard lens materials.

Contact lens design: the relationship of theoretical contact lens design and corneal topography. Clinical evaluation of current and new soft and hard lenses.

Contact lens patient: Systems and techniques for evaluating contact lens patients; new techniques for patient instruction and management. Evaluation of patient responses to lenses.

31.705G Advanced Contact Lens Practice F L1T3

The examination, evaluation and aftercare of contact lens patients.

31.706G Occupational Optometry F L2T2

31.707G Clinical Photography F L2T2

Introduction to clinical photography, cameras and lens systems, colour films, black-and-white films and filters, apparatus and accessories. Patient preparation and positioning, backgrounds and foregrounds, lighting, the 'safe-set' method. Copying, slide making, macrophotography, microphotography. 'Invisible light' photography (ultra-violet and infra-red), photofluorography, speedlight techniques, fundus photography. Dark-room techniques, portable dark-rooms. Quantitative photographic data analysis.

31.799G Project

Biochemistry

Undergraduate Study

41.101 Biochemistry S1 L4T8

Prerequisites: 17.021, and 2.121 & 2.131, or 2.141. Excluded: 2.003J.

The chemical properties of amino acids, peptides and proteins, carbohydrates, nucleic acids and lipids and the biological roles of these com-
pounds. The nature and function of enzymes. The intermediary metabolism of carbohydrates, lipids and nitrogenous compounds. The molecular mechanism of gene expression and protein synthesis. Practical work to amplify the lecture course.

41.111 Biochemical Control S2 L2T4
Prerequisite: 41.101.

The relationship between structure and function of enzymes, selected protein systems and hormones. Metabolic networks and control mechanisms. Practical work to amplify the lecture course.

41.102A Biochemistry of Macromolecules S1 L3T9
Prerequisites: 41.101* or 41.111*, 2.002B.

Polysaccharides and glycoproteins including bacterial cell walls. Chemistry and biology of polynucleotides. Methods of amino acid and nucleic acid sequence analysis. Protein structure and synthesis. Active centres of some proteins. Sub-unit organization of proteins. Enzyme kinetics. Practical work to illustrate the lecture course and to provide experience in modern biochemical techniques.

41.102B Physiological Biochemistry S2 L3T9
Prerequisites: 41.101* or 41.111*, 2.002B.

41.102C Plant Biochemistry S2 L2T4
Prerequisites: 41.101* or 41.111*, 2.002B.

The biochemistry of the major pathways characteristic of plants will be studied; topics include the energetics and carbon path of photosynthesis, glycolate cycle, growth hormones and regulatory phenomena, nitrogen fixation and assimilation.

Experimental work to illustrate and amplify the course utilizes radioactive isotopes and a number of newer techniques.

41.102D Biosynthesis of Plant Metabolites S2 L2T4
Prerequisites: 41.101* or 41.111*, 2.002B. Co-requisite: 41.102C.

This unit complements 41.102C and is taken with it.

Topics: cell wall formation and the synthesis and mobilization of reserve materials; biosynthesis of amino acids, its regulation, and their conversion into non-protein materials, eg alkaloids and cyanogenic glycosides; aromatic ring formation and the isoprene pathway as a source of rubber, steroids, carotenes and essential oils. Flower pigments and phytoalexins.

A combined practical with unit 41.102C illustrates and amplifies the course and includes a wide range of the latest techniques.

41.103 Biochemistry Honours

Advanced training in selected areas of biochemistry including a supervised research program of 500 hours minimum duration that places emphasis on the use of specialized techniques relevant to the research area. A written thesis on the research is required.

Servicing Subjects

80.111 Human Structure and Function I
80.112 Human Structure and Function II

In conjunction with School of Anatomy and School of Physiology and Pharmacology.

Biotechnology

Undergraduate Study

42.101 Introduction to Biotechnology S2 L2T4
Prerequisites: 2.121 & 2.131, or 2.141, 17.021, 10.011 or 10.001 or 10.021B & 10.021C.

An introduction to biotechnology as a multidisciplinary subject, dealing with the application of biochemical systems or their products in industry. Industrial uses include production of single products such as amino acids, vitamins, antibiotics etc, single cell protein, alternate fuels from renewable resources and fermented foods and beverages. Biological waste treatment, aspects of pollution control, biodeterioration and biodegradation and principles of enzyme technology. Concepts relevant to productivity in these systems, including thermodynamic feasibility, techniques of environmental and genetic manipulation, choice of the appropriate biological catalyst(s) for a particular process, regulation of gene activity, principles of equipment design and biochemical engineering for construction of production plants. The laboratory component emphasizes the manipulation of different classes of microorganisms and the use of biochemical products involved in a variety of biotechnological areas.

42.102A Biotechnology A S1 L2T4
Prerequisites: 41.101 and 42.101 or 44.101 (PC not acceptable).

The basic principles involved in the operation of microbial processes on an industrial scale. Includes: the selection, maintenance and improvement of microorganisms; the influence of physical and chemical factors on the microbial environment; the control of environmental factors; the effects of operational patterns on batch and continuous flow cultivation; aeration and agitation; scale-up of microbial processes; air and media

* Students must obtain a clear pass (PS) in either 41.101 or 41.111.
sterilization; the harvesting, purification and standardization of products. The principles involved in microbial processes for chemical, pharmaceutical and food production, microbial waste treatment and environmental control. The laboratory component includes manipulation of microorganisms, laboratory-scale fermenter operation, microbial enzyme isolation, visits to industrial fermentation plants and industrial seminars.

42.102B Biotechnology B
Prerequisite: 42.101 (PC not acceptable).

Application of principles of biotechnology to the analysis and design of microbial processes of industrial relevance (antibiotics, microbial enzymes, single cell protein from carbohydrates and hydrocarbons, fermented foods and beverages, amino acids and vitamins, microbial polysaccharides, activated sludge and photosynthetic processes for waste treatment, microbial leaching of low-grade minerals). Emphasis on quantitative approach: mass and heat balance calculations, kinetic and thermodynamic analysis, detailed equipment design and specification, process design and layout, process simulation, plant location, application of optimization techniques. The economics of microbial processes are considered and comparison made with alternative modes of production or treatment. The economics of agro-industry in Australia using microbial processes. Marketing of fermentation products, clinical trials required, legal constraints, patent rights. Technical and economic feasibility studies, and a design project.

42.103 Biological Technology (Honours)
Advanced formal training in selected areas of biotechnology and participation in one of the school’s research projects.

42.114 Fermentation Processes
(Component topic of 22.114 Processes.) Factors governing the use of micro-organisms in industrial processes, including the selection, maintenance and improvement of micro-organisms, the control of environmental factors, batch and continuous flow operational patterns, product recovery, process optimization and waste disposal. Demonstrations of the operation and control of fermenter systems and of microbial process simulation.

Graduate Study

42.104G Graduate Seminars

42.111G Reading List in Biotechnology (Microbiology)

42.112G Reading List in Biotechnology (Biochemistry)

42.212G Principles of Biochemistry
A condensed treatment of biochemistry comprising the following aspects: the elemental and molecular composition of living organisms; the chemistry and roles of the biological elements and molecules; the thermodynamics and enzymatic catalysis of metabolism; catabolic, anabolic, amphipathic and anaerobic processes, with emphasis on the hydrolysis and synthesis of polymers, glycolysis and gluconeogenesis of glucose, β-oxidation and synthesis of fatty acids, deamination and decarboxylation of amino acids, the tricarboxylic acid cycle, electron transport and oxidative phosphorylation; metabolic regulation and integration.

42.213G Biochemical Methods
A laboratory program in practical biochemistry. The basic instrumentation and methodology of the biochemist will be introduced by practical exercises and demonstrations. A comprehensive treatment of the relevance and applicability of biochemical techniques is covered in tutorials.

42.214G Biotechnology
The selection, maintenance and genetics of industrial organisms; metabolic control of microbial synthesis; fermentation kinetics and models of growth; batch and continuous culture; problems of scale-up and fermentor design; control of the microbial environment, computer/fermentor interactions. Industrial examples will be selected from: antibiotic and enzyme production, alcoholic beverages, single cell protein (SCP), microbial waste disposal and bacterial leaching.

Tutorial/practical sessions include: problem solving, instrumentation, continuous culture techniques, and mathematical modelling and simulation of industrial processes.

42.215G Practical Biotechnology
Illustration, demonstration and operation of laboratory-scale and pilot-scale equipment. Visits to appropriate industries. Experimental project or critical review.

42.301G Microorganism Productivity
Mechanisms of metabolic control—induction, repression and forms of activation and inhibition; microbial genetics—mutation, selection, genetic transfer and manipulation; environmental parameters—oxygen tension, pH, temperature, energy source etc. as are relevant to productivity in industrially important microorganisms.

Detailed studies—choice of substrate, screening and isolation of microorganisms, systematic application of techniques of genetic and physiological manipulation required to optimize product formation (products include for example, amino acids, nucleotides, enzymes and other macromolecules, antibiotics and other physiologically active compounds), potential strain improvement of microorganisms involved in other industrial processes (for example, mineral leaching, single cell protein production, detoxification and waste disposal).

Laboratory component will include current techniques of microorganism isolation and maintenance, genetic manipulation and physiological manipulation.

42.302G Enzyme Technology
Enzymes in vivo; properties; roles; sources; optimization of enzyme concentration, for example by nutritional control, environmental control and by genetic manipulation. Isolation of enzymes: methods of extraction and purification; stabilizing safeguards; assay procedures; kinetics
of isolated enzymes. Immobilization of enzymes: entrapment in insoluble matrices; adsorption on high molecular weight inert carriers; ionic binding to ion-exchange materials; covalent enzyme-enzyme linkage via a low molecular weight bifunctional reagent; covalent linkage to a high molecular weight support; changes in kinetic parameters and stability after immobilization; advantages and disadvantages of immobilization. Enzyme Reactor Engineering: design of batch and continuous systems, including open and closed plug flow and stirred reactors; comparison of kinetics in various designs; scale-up. Enzyme application: analysis; fabric, food and biochemical industries; medical treatment; systems, including open and closed plug flow and stirred reactors; comparison of kinetics in various designs; scale-up. Enzyme application: use of computers: aids to understanding the effects of operating variables for process optimization and control. Detailed examples: microbial processes such as production of antibiotics, organic acids, amino acids and enzymes; enzymic processes.

Methods of isolation, immobilization and application of enzymes for analytical, industrial and medical purposes will be illustrated by laboratory exercises and short projects. Practical comparison of various reactor designs will also be made.

42.303G Biochemical Process Control
Biochemical reactors: range of basic designs; range of biocatalysts, from microbial conglomerates to free enzymes; heat and mass transfer; design; scale-up; sterility; kinetics; economic considerations. Techniques for efficient operation and control of batch, single-stage continuous and multi-stage continuous processes.

Use of computers: aids to understanding the effects of operating variables for process optimization and control. Detailed examples: microbial processes such as production of antibiotics, organic acids, amino acids and enzymes; enzymic processes.

Practical illustration of: sample processes such as yeast and antibiotic production; mathematical simulation by analog computation; computer control of biochemical processes.

42.304G Biodeterioration and Biodegradation
Basic mechanisms of biodeterioration and biodegradation; direct and indirect attack mechanisms; co-metabolism and mixed population phenomena; factors controlling rates of degradation and recalcitrance of materials to biological attack, biological accelerators.

Detailed treatment of: biological corrosion of metals and alloys; biodeterioration of fuels, petrochemical products, synthetic materials, timber and cellulosic products, building materials etc.; degradation of rocks and minerals; biological leaching of ores and mineral processing residues.

The laboratory component includes assessment of biodegradability of common industrial materials (detergents, surface coatings, fuels, biocides etc.); evaluation of protective methods; determination of biogeochemical leachability of minerals and mineral processing residues.

42.305G Case Studies
Critical evaluation of industrial processes and research and development procedures. Includes: study of isolated and selected areas of biotechnology, detailed study and evaluation of all aspects of an industrial process from the isolation of the appropriate organism or other biological starting material to the production and use of the final products, critical evaluation of techniques arising from current research and development programs.

42.306G Project
An experimental or technical investigation or design project in the general field of biotechnology with supporting seminars.

42.401G Chemical Transformations
In the Environment

The environment may be regarded as an array of dynamic chemical and physical systems which can be influenced by a wide variety of factors. Select topics illustrate some important aspects of environment systems: 1. microbial transformations of mineral and geochemical systems including the recovery of useful materials, control of metal pollution, recycling of inorganic wastes; 2. the chemistry of river and underground water systems; 3. the influence of new materials on the environment, including the effects of fungicides and other biocides.

42.999G Alternative Higher Degree
Qualifying Program

Training similar in content and standard to 42.103 Biological Technology (Honours), but designed specifically for students who cannot regularly attend the University.

Botany

Undergraduate Study

43.101 Introductory Genetics
S2 L2T4

Prerequisites: 17.031 & 17.021.

Various aspects of molecular, organisational and population genetics, including: mechanisms of recombination and mapping in higher organisms; recombination and mapping in microorganisms; mutagens, structural and gene mutations, molecular structure of the gene, biochemical genetics, control of gene expression, genetic interaction, gene pools and gene frequencies, genetics and disease, genetic engineering.

43.111 Flowering Plants
S1 L2T4

Prerequisites: 17.031 & 17.021.

Plant cell structure, structure and functions of the major organs in Angiosperms (flowers, roots, stems and leaves), secondary thickening and arborescence, transport systems in plants, seeds and germination. Variation in structure and function in relation to environment. Introduction to taxonomy and identification of major Australian plant families. A weekend field excursion is part of the subject.

* Students with percentile range 31-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.101, 45.201 or 45.301 in lieu of 17.021 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.021 Biology of Higher Organisms for all units. Students should consult lecturers before purchasing textbooks.
43.121 Plant Physiology S2 L2T4
Prerequisites: 17.031 & 17.021, 2.001 or any two (2) units of: 2.111; 2.121; 2.131. Students may apply to the School for variations of the pre-requisites.

The physiology of the whole plant including a consideration of photosynthesis, the role of phytochrome in plant morphogenesis and flowering, inorganic nutrition, transport, translocation, physiology of growth and development, seed physiology and plant growth substances and their application in agriculture.

43.131 Fungi and Man S1 L2T4
Prerequisites: 17.031 & 17.021.

An introduction to the biology and taxonomy of fungi followed by a study of their economic importance to man. Includes: fungi as pathogens of plants and animals; use of fungi as food and in the production of useful chemical products; medical uses of fungi, including drugs and hallucinogens; degradation of organic matter, particularly in soils and of timber; interaction of fungi with other organisms; chemical control of fungi.

43.102 Microbial Genetics S1 L2T4
Prerequisite: 43.101.

A detailed study of the mutational basis of microbial variation. Mutagens; mechanisms of mutagenesis; induction, enrichment, isolation and characterization of mutants; mechanisms of repair of mutational damage. Systems of gene transfer and recombination in fungi, bacteria and viral viruses; the use of these systems in constructing genetic maps, and as tools for probing aspects of microbial physiology and biochemistry. Genetic control of gene expression; the operon concept and its application to specific regulatory systems. Genetic code, collinearity between a gene and its product, genes within genes, suppression of mutations. Restriction and modification of DNA; genetic engineering — its implications and prospects. Genetics of nitrogen fixation.

43.112 Plant Taxonomy†‡ S2 L2T4
Prerequisite: 43.111. Co-requisite: 43.101.

The assessment, analysis and presentation of data for classifying plants both at the specific and supra-specific level; the emphasis is on vascular plants. Field work is part of the course.

43.122 Biochemical Approaches to Plant Physiology S1 L2T4
Prerequisites: 41.101 or 41.101A and 41.101B.

The physiology and biochemistry of plant lipids with special reference to developing tissues; development and ripening of fruit. Project work is an important part of the subject and some attendance is required outside the hours set down in the time-table. Reading and interpreting original scientific papers are an important part of these projects which relate to current work in the fields covered.

43.132 Mycology and Plant Pathology‡ S2 L2T4
Prerequisite: 43.131.

A detailed study of the fungi, including both saprophytic and plant pathogenic species. Includes: hyphal structure and ultrastructure; morphology and taxonomy of members of major taxonomic groups; spore liberation, dispersal, deposition, germination, infection and the establishment of host-pathogen relationship; morphogenesis of vegetative and fruiting structures; cytology, genetics; ecological considerations of fungi in specialized habitats, survival mechanisms and methods of control of plant pathogens.

43.142 Environmental Botany‡ S1 L2T4
Prerequisites: 17.031 & 17.021.

The soil and atmospheric environments in which plants live and a study of the interaction of plants with their environment. Emphasis is placed on the role of environmental sciences in food production. Students are required to attend one week-day field excursion as part of the practical course.

43.152 Plant Community Ecology‡ S2 L2T4
Prerequisites: 43.111 and 17.012 or 27.111.

Recognition and delimitation of plant communities. Ecology of selected Australian vegetation types. Use of numerical methods and application of community concept to palaeoecology. Field work will be an integral part of this course.

43.162 The Plant Kingdom‡ S1 L2T4
Prerequisite: 43.111.

The major taxa of the Plant Kingdom with emphasis on the green plants. The evolution of basic vegetative structures, reproductive structures and genetic systems are studied. Field work will be part of the course.

43.172 Phycology and Marine Botany‡ S2 L2T4
Prerequisite: 43.111.

The biology of freshwater, marine and soil algae with particular emphasis on the marine flora of S.E. Australia. Field work is part of the course.

43.182 Cellular and Developmental Botany‡ S2 L2T4
Prerequisite: 43.111 or 43.121. This latter unit may be taken as a co-requisite in some circumstances.

The physiology, organization and interrelations of higher plant cells. Emphasis is placed on the interactions between plant cells and cellular events which control such processes as the regulation of growth and division, the perception of gravity by plants, secretion, seed germination and senescence.

† This unit alternates each year with 43.162 The Plant Kingdom. 43.162 is given in 1979. If both units are to be included in three-year pass degree program, one should be completed in second year.
‡ These units may be taken in either second or third year of the Science course provided that prerequisites have been completed.
§ This unit alternates each year with 43.112 Taxonomy.
Sciences

Servicing Subjects

43.202 Plant Structure and Function

Microbiology

Undergraduate Study

Level II Units

44.101 Introductory Microbiology S1 L2T4
Prerequisites: 17.011 & 17.021 or 17.031 & 17.021.

The general nature, occurrence and importance of microorganisms. A systematic review of the major groups of microorganisms: the eucaryotic protista (micro-algae, protozoa and fungi); prokaryotic protista (blue-green algae, “higher” bacteria, typical unicellular bacteria and small bacteria-like forms); plant, animal and bacterial viruses. The relationship between microorganisms and their environment; ecological considerations. Interactions between microorganisms and higher organisms.

44.121 Microbial Growth S2 L2T4
Prerequisites: 44.101 & 41.101 or 2.003J.

Level III Units

44.102 General Microbiology S1 L4T8
Prerequisites: 44.101, 44.121, 41.101 or 41.101A and 41.101B.

Systems for the isolation, identification and taxonomic description of microorganisms; fine structure, cyto-chemistry, genetics of bacteria and viruses; metabolic requirements of microorganisms; microorganisms and their environment; growth, inhibition and death; energy-yielding and biosynthesizing systems; geotypic and phenotypic control systems.

44.112 Applied Microbiology S2 L4T8
Prerequisite: 44.102.

Endeavours to relate the basic facts about microorganisms to a variety of practical conditions. The occurrence, importance, activity and control of microorganisms in soil, air, water and in their relationship with higher organisms (other than man); their industrial applications including manufacture, preservation and spoilage of food and dairy products. The nature of bacterial and fungal diseases of man, their cultural and serological diagnosis, epidemiology, treatment and prevention will be discussed in some detail.

44.122 Immunology S2 L2T4
Prerequisites: 17.011 & 17.021 or 17.031 & 17.021, 41.101 or 41.101A and 41.101B.

Basic immunology and immunological techniques. The interdisciplinary nature of the subject makes this unit suitable for students taking any major sequence in biological science and also for higher degree students who require a background training in immunology. The course includes phylogeny and ontogeny of the immune response; antigen and antibody structure; antigen-antibody reaction; immunoochemistry; immunogenetics, clinical immunology; transplantation.

44.132 Virology S2 L2T4
Prerequisite: 44.102.

The structure, replication and behaviour of animal, plant and bacterial viruses; applications of virological techniques; virus diseases of animals and plants, their epidemiology and control.

Level IV (Honours) Units

44.513 General Microbiology

Microbial taxonomy, structure and function, physiology, ecology and genetics.

44.523 Applied Microbiology

Selected aspects of industrial microbiology including fermentation processes, food production and food spoilage, soil microbiology; pathogenesis of microorganisms and host resistance; diagnostic medical microbiology; chemotherapy, disinfection and sterilization.

44.533 Immunology

Phylogeny and ontogeny of the immune response, non-specific and specific immune mechanisms; hypersensitivity reactions; immunoochemistry; diagnostic serology, immunoprophylaxis and therapy.

44.543 Virology

A detailed study of virus-host interactions based on examples of bacterial and animal viruses; virus genetics; epidemiology of virus diseases; diagnostic virology.

44.553 Electron Microscopy

The principles and practice of electron microscope techniques.
44.563 Microbiology Project I
A supervised laboratory project of 150 hours duration designed to provide experience in a wide range of microbiological and immunological techniques and to introduce students to the general principles of research methodology, particularly at an applied level.

44.573 Microbiology Project II
A supervised laboratory project of 300 hours duration. While considerable emphasis will be given to acquiring technical competence in many microbiological or immunological techniques, the projects in this unit will provide greater scope for training in research methodology.

44.583 Microbiology Project III
A supervised laboratory project of 500 hours minimum duration. These projects provide training in research in fundamental aspects of microbiology or immunology, with special emphasis on the development and use of specialized techniques relevant to the particular field of study.

45.201 Invertebrate Zoology S2 L2T4
Prerequisites: 17.031 and 17.021.

A comparative study of the major invertebrate phyla with emphasis on morphology, systematics and phylogeny. Practical work to illustrate the lecture course. Obligatory field camp.

45.301 Vertebrate Zoology S1 S2 L2T4
Prerequisites: 17.031 & 17.021.

A comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement the lecture course. Field excursions as arranged.

Servicing Subjects

44.143 Microbiology AS

80.311 Paraclinical Science
In conjunction with School of Pathology and School of Physiology and Pharmacology.

Zoology†

Undergraduate Study

45.101 Biometry S1 L2T4

Statistical methods and their application to biological data, including introduction to probability; the binomial, poisson, negative binomial, normal distributions; student’s t, X² and variance ratio tests of significance based on the above distributions; the analysis of variance of orthogonal and some non-orthogonal designs; linear regression and correlation. Non-linear and multiple regression. Introductory factorial analysis, Introduction to experimental design. Non-parametric statistics, including tests based on X², the Kruskal-Wallis test, Fisher’s exact probability test and rank correlation methods. Introduction to programming in BASIC.

† Students are not admitted to Level III Zoology units, without special permission of the Head of School, unless Chemistry 2 001 or 2.121 and 2.131, or 2.141, has been completed.

45.112 Marine Ecology S1 L2T4
Prerequisites: 17.031 & 17.021, 45.201 or 25.022 or 2.002D.

A study of the ecology of marine organisms with particular reference to the physical, chemical and biological environment in which they occur. Both field and laboratory practical work are included.

Students intending to enrol in this unit should register with the School of Zoology, for the February field trip by 14 January.

45.121 Evolutionary Theory S1 L3T3
Prerequisites: 17.031 & 17.021.

Current evolutionary theory, emphasizing the population level. Ecological genetics, evolutionary aspects of ecological niche theory, speciation, coevolution, and general evolutionary genetics. Some background in genetics is desirable.

45.122 Animal Behaviour S2 L1T4
Prerequisites: 45 101 and (45.201 or 45.301).

An introduction to Ethology, the biological study of behaviour. Physiological, ecological, developmental and evolutionary aspects of behaviour are examined as important elements in the analysis of behaviour, particularly social behaviour. Both field and laboratory work are included.

45.132 Ecological Physiology S1 L2T4
Prerequisites: 45.201 or 45.301.

A study of physiological adaptation to habitat in animals. The problems imposed by the basic physiological characteristics of major animal groups under different environmental conditions are examined, especially osmotic and ionic regulation, oxygen availability, metabolism and temperature regulation/acclimation. Particular attention is given to Australian fauna and conditions.
45.142 General and Reproductive Physiology
Prerequisite: 45.201 or 45.301.

Basic physiology of nerves, muscles, sensory perception, blood circulation, respiration, gastrointestinal tract, kidneys and hormones. Physiology of reproduction. The control of organ systems and body functions.

45.152 Population and Community Ecology
Prerequisites: 17.021 & 10.001 or 10.011.

Examination of the dynamics of one, two or more interacting populations. Systems analysis and simulation in ecology. Theoretical and mathematical analysis of the dynamics and stability of ecosystems. Topics in the optimal management of renewable resources. Unifying concepts in ecology.

Previous experience of ecologically oriented courses would be advantageous.

45.202 Environmental and Social Biology of Invertebrates
Prerequisite: 45.201.

A comparative study of environmental and sensory physiology of invertebrates, with special emphasis on orientation behaviour, reproductive behaviour, social organization, pheromones, bioluminescence and rhythms. Experimental work is included.

45.302 Vertebrate Zoogeography and Evolution
Prerequisite: 45.301.

A geographic approach to the current distribution, abundance and types of vertebrate species in the Australian region. Particular emphasis is placed on the basic principles of speciation, the history of the Australian continent, vertebrate adaptations and changes in the distribution and abundance of the Australian vertebrate fauna under the influence of man.

45.402 Insects
Prerequisites: 17.031 & 17.021.

A comparative study of the internal anatomy and external morphology of insects. Classification and bionomics of major groups and families. A collection of insects is to be made. Practical work to include dissections, a study of mouthparts, wing venations, segmentation. Field excursions as arranged.

Students intending to enrol in this unit should register with the School of Zoology, for the February field trip, by 14 January.

45.412 Insect Physiology
Prerequisite: 45.101. Co-requisite: 45.402.

The functions of the various organ systems and of the whole insect. Various aspects of reproduction, growth and metabolism. Experimental work to illustrate the lecture course.

45.422 Economic Zoology
Prerequisite: 45.201 or 45.402.

A study of the biology, ecology and control of vertebrate and invertebrate animals which harm man and his possessions. Human and domestic animal parasitology; pests or plants; diseases caused or spread by animals; chemical, biological and physical control, and side effects.

Chemical Engineering and Industrial Chemistry

Undergraduate Study

48.023 Chemical Engineering Science I
Prerequisites: 1.001, 10.001.

Flow of Fluids

Dimensions and Dimensional Analysis
Units and measures. Conversions of units and equations. Dimensions and Dimensional Analysis. Basic principles of modelling.

Heat Transfer I
Introduction to steady state heat transfer including conduction, convection, radiation, boiling and condensation with an emphasis on problem solving. Resistance concept in heat transfer with series and parallel combinations.

Pumps and Pumping
Types of piping and fittings. Blow cases. Air lift pumps. Reciprocating pumps, centrifugal pumps and gear pumps. Blowers and compressors.

Material Balances
A revision and extension of material balance calculations with more complex examples, including those arising from stagewise operation of extraction equipment. Graphical solution of multi-stage calculations.
Computations I
A review of the fundamentals of FORTRAN, with extension to formatting, dimensioned variables and sub-routines. Application to the solution of selected problems involving heat and mass balances, fluid flow and pumping.

Prerequisites: 1.001, 10.001.

The following topics, from 48.023: Flow of Fluids, Heat Transfer I, Pumps and Pumping.

48.024 Chemical Engineering Principles I
S1 L1T1 S2 L1½T1½
Prerequisites: 1.001, 10.001.

48.037 Chemical Engineering Science II
S1 L3T3 S2 L5T2
Prerequisites: 2.002A, 48.023.

Mass Transfer (Theory)
Molecular diffusion in gases, liquids and solids and the measurement and calculation of diffusion coefficients. Diffusion at an interface — one component unidirectional diffusion and equimole counterdiffusion under steady state conditions. Mass transfer coefficients. Estimation and application of chemical and phase equilibria. Stage calculations applied to liquid/liquid, vapour/liquid and other mass transfer operations. The two film theory and the transfer unit concept in gas/liquid, vapour/liquid, and other operations.

Heat Transfer II (Theory)
An extension of the work covered in Heat Transfer I, with an emphasis on the fundamentals of convection and condensation, unsteady state conduction, introduction to heat exchanger design.

Surface Separation Processes
Principles of membrane processes, reverse osmosis ultrafiltration dialysis and electrolysis. Design calculations for batch and continuous operation of reverse osmosis and ultrafiltration equipment. Principles of sorption processes such as adsorption on exchange and molecular sieves. Design of fixed bed sorption equipment. Principles and design of the surface separation processes such as foam and bubble fractionation.

Fluid-particle Systems
Interaction between particles and fluids; drag, terminal velocity, sedimentation. Flow through porous media; pressure gradient, filtration, fluidization, dispersion; multiphase flow, irrigated packed columns.

Thermodynamics II
The thermodynamic properties of pure fluids and homogeneous mixtures; an introduction to phase equilibrium; chemical reaction equilibrium.

Reaction Engineering I
A course comprising 28 hours of lectures together with weekly assignments covering the design and analysis of ideal reactor systems, involving single and multiple reactor types, in which simple or complex, single or multiple reactions are effected.

Thermodynamics III
Applications of thermodynamics, including power cycles, refrigeration and liquefaction. Thermodynamic analysis of processes.

Reaction Engineering II
A course of lectures comprising 14 hours together with assignments covering the concept of process rate and rate of change of process variables. Differential balances and examples in mass and heat transfer, and reactive systems.

Computations II

Analog computation: An introduction to the theory and programming of analogue computers, with application to the solution of differential equations and the simulation of dynamic systems.

48.038 Chemical Engineering Principles II
S1 L2T1 S2 L2T1
Prerequisite: 48.024.

The following topics, from 48.037: Mass Transfer (Theory), Heat Transfer II (Theory), Fluid-particle Systems, Surface Separation Processes.

Philosophy

First Enrolment in Philosophy
New Students normally enrol in 52.103 Introductory Philosophy A (Session 1). 52.104 Introductory Philosophy B (Session 2). Each of these has 1-unit value.

Students who do not take Philosophy in Session 1 may, however, still qualify for admission to Upper Level work by passing 52.104 Introductory Philosophy B in Session 2.

Students in their second or later year of study may proceed immediately to Upper Level work after passing 52.103 Introductory Philosophy A alone.

Level II
Students may not proceed to Level II work in Philosophy in their first year of study. Students in later years may proceed to Level II work after passing one Level I unit in either session.

At Level II a wide range of half-units is offered, some dealing with particular philosophical topics and others capable of being taken in sequence to give more sustained treatments of larger areas. Students may select freely among these, subject to stipulations regarding prerequisites.

In certain circumstances the prerequisites specified for units or half-units may be waived; for example, in the case of students who have
already studied similar material, or who wish to take isolated units or half-units relevant to another discipline. Students who feel they have a case for a concession of this kind should consult the School.

A maximum of three units (six half-units) at Level II may be taken as part of the Science course, exclusive of General Studies. Additional units may, with permission, be substituted for a part of the General Studies requirement, in accordance with the provisions laid down in the General Studies Handbook.

Selection of Units
Although students at Level II have a wide choice of units, they are recommended to plan a sequence of mutually relevant ones, taking into account the prerequisites of those they may wish to take later. Tabulated information and School recommendations are available at the School, and students needing assistance personally should consult the School.

Undergraduate Study

52.103 Introductory Philosophy A S1 L3T1
The material bears on the general topic of Persons. Topics: Plato's arguments for the immortality of the soul; Freud's theory of mental processes; Sartre's account of human existence; and the problem of personal identity.

52.104 Introductory Philosophy B S2 L3T1
Topics include: the rise of modern scepticism and problems about the source of our knowledge; the nature of moral problems; deduction in modern formal logic and related problems of the ambiguity of natural languages.

52.1531 Predicate Logic A S1 L2T0
Prerequisite: Any Level I unit. Not available to students who have already taken 52.153 or 52.162.

A system of natural deduction is presented for the first-order predicate calculus. Emphasis is upon construction of formal derivations, methods of showing the invalidity of formal arguments, and the evaluation of informal arguments by symbolization.

52.1532 Predicate Logic B S2 L2T0
Prerequisite: 52.1531. Not available to students who have already taken 52.153 or 52.162.

A continuation of Predicate Logic A, including the theories of identity and of definite descriptions.

52.163 Descartes S1 L2T0
Prerequisite: Level II status in Philosophy.**

The main issues raised in the philosophy of Descartes and their importance for the development of modern philosophy. Emphasis is on the cogito ergo sum argument, the Cartesian method and the search for rational certainty, his theory of ideas, the body-mind problem and his account of freedom.

51.173 British Empiricism S2 L2T0
Prerequisite: Level II status in Philosophy.**
The empiricist tradition with special concentration on Locke and Berkeley.

52.183 Greek Philosophy: Thales to Plato S1 L0T2
Prerequisite: Level II status in Philosophy.**
The leading ideas of the Greek philosophers from Thales to Plato, with special reference to Pre-Socrates.

52.193 Scientific Method S1 L2T0
Prerequisite: Level II status in Philosophy.**
The nature of empirical knowledge as exemplified in the physical and social sciences and in history, with emphasis on the concept of explanation, the nature of induction and scientific laws, counterfactual statements, and the paradoxes of confirmation.

52.203 Classical Political Philosophy S1 L2T0
Prerequisite: Level II status in Philosophy.** Excluded: 52.182.
The basis of political society, its various functions and its relation to the individuals in it, investigated primarily through the works of Hobbes, Locke, Rousseau and Mill. Topics include the theory of a social contract, the establishment of political rights and obligations, and the relation of moral and political concerns within a political society.

52.213 Sartre S1 L2T0
Prerequisite: 52.163.
Sartre's account of freedom, relations between persons and his social theory.

52.233 Argument S2 L2T0
Prerequisite: Level II status in Philosophy.**
A theoretical study of practical argumentation in the courtroom, politics and everyday life as compared with argument in logic, mathematics and theoretical science. Confirmation and probability, authority, testimony, precedent, rules of debate, criteria of validity, problem of mechanization of practical arguments: logical rationalism and scepticism.

52.263 Philosophy of Psychology S2 L2T0
Prerequisite: 52.193.
Some aspects of fundamental theory of psychology, with special emphasis on classical and contemporary behaviourism and behaviourist oriented psychology, and on the general conceptions of "behaviour" and "purpose".

** Level II status in Philosophy consists in: 1. being in second or later year of university studies; and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.
<table>
<thead>
<tr>
<th>Subject Description</th>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.273 Aesthetics</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: Level II status in Philosophy. **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The central concepts, types of judgment and theories occurring in the fields of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aesthetics, art criticism and literary criticism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.283 Philosophical Study of Woman</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: Level II status in Philosophy. **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crucial structures involved in woman’s situation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.293 Plato’s Later Dialogues</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: 52.483 (or, by permission, a course covering similar material).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centred round some of Plato’s later dialogues, the Theaetetus and Sophist in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>particular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.303 Spinoza and Leibniz</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: 52.163.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The main issues raised in the philosophy of the two great seventeenth century</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rationalists, with emphasis on the development of their metaphysical systems in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>response to unresolved problems in the philosophy of Descartes and to contemporary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scientific thinking. Their ethical views.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.323 Set Theory</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: 52.153 or 52.1532 or 26.812 or 10.001 or 10.011 or 10.021B & 10.021C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An axiomatic development of Zermelo-Fraenkel set theory, including a construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the natural numbers, equinumerosity, ordinal and cardinal numbers, the axiom of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>choice and some of its consequences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.333 Philosophy of Perception</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: 52.163 or 52.173.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What it is that we are directly aware of when we perceive something. Emphasis on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>twentieth-century sense-data theories and their critics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.343 Privacy and Other Minds</td>
<td>S1</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisites: 52.163 and either 52.173 or 52.243.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The questions: (a) whether there is anything that a person can know which it is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logically impossible for anybody else to know; (b) whether it is logically possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>that anybody should speak a language that cannot be understood by anybody else; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) how we come to understand another person’s mind.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.353 History of Modern Logic</td>
<td>S1</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: 52.153 or 52.1532.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A historical treatment of selected topics in logic since Boole, with particular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reference to Frege, Russell, Carnap and Quine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.373 Philosophical Foundations of Marx’s Thought</td>
<td>S1</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: Level II status in Philosophy. **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A discussion of the basics of Marx’s historical materialism and dialectical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>materialism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.393 History of Traditional Logic</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: 52.153 or 52.1532.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A historical treatment of selected topics in logic before 1850, including the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>traditional theory of deduction; the rhetorical tradition; topics and fallacies;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the medieval theory of terms; traditional treatment of modality; logic in India and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.403 Model Theory</td>
<td>S2</td>
<td>L2T0</td>
</tr>
<tr>
<td>Prerequisite: 52.323 or 10.1123.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered in 1981.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An introduction to the metamathematics of the predicate calculus from the point of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>view of model theory. Topics include: the deduction theorem, consistency,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>completeness, theories with equality, prenex normal forms, categoricity and second</td>
<td></td>
<td></td>
</tr>
<tr>
<td>order theories.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.413 Reading Option A</td>
<td>S1 or S2</td>
<td></td>
</tr>
<tr>
<td>Admission by permission, to suitable students with good passes in at least two</td>
<td></td>
<td></td>
</tr>
<tr>
<td>half-units at Level II.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A course of individually supervised reading and assignments on an approved topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not otherwise offered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.423 Seminar A</td>
<td>S2</td>
<td>L0T2</td>
</tr>
<tr>
<td>Admission by permission, based on a student’s performance in Level II units. Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vary from year to year and are influenced by student requests. Topics may include:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contemporary Ethics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Atomism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wittgenstein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theories of the Emotions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.433 Seminar B</td>
<td>S1 or S2</td>
<td></td>
</tr>
<tr>
<td>As for 52.423 Seminar A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.443 Seminar C</td>
<td>S2</td>
<td>L0T2</td>
</tr>
<tr>
<td>As for 52.423 Seminar A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.453 Reading Option B</td>
<td>S1 or S2</td>
<td></td>
</tr>
<tr>
<td>As for 52.413 Reading Option A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An examination of three moral theories central in the history and development of moral philosophy. Hume, Kant, and Mill offer differing kinds of moral theories, differing approaches to arriving at a moral theory, and specific theories which are markedly different from each other. Examination of each moral theory in itself and in comparison with the other two theories.
Subject Descriptions

Sociology

Graduate Study
For students enrolled in the MScSoc degree course

53.309G Social and Technological Forecasting F L2
The nature of various contemporary approaches to the forecasting of social and technological change, and the use of forecasting in particular sectors of economic, social and technological activity. Examines a number of commonly held views about the future and their connection with theories about relations between science, technology and society.

Education

Undergraduate Study

58.602 Theory of Education I F L1
Educational Psychology: Includes learning, cognition, individual differences and cognitive development. Detailed classroom applications. Where possible, phenomena described is demonstrated experimentally. Sociology of Education: Stress on the problem of inequality of educational opportunity: different conceptions of inequality of opportunity; documentation of the extent to which different social groups experience inequality, with special reference to low socio-economic groups, migrants and women; the possible causes of difference in the achievement rates of different social groups; compensatory education and to implications for social policy.

58.603 Theory of Education II F L1½
Prerequisite: 58.602.

Educational Psychology: Extension of the introductory studies of learning, cognition, individual differences and cognitive development with a concentration upon child development. Classroom applications are emphasized. Where possible, phenomena described is experimentally demonstrated. Sociology of Education: Stresses the sociological factors which influence educational practice and on the social consequences of educational practices, highlighting sociological phenomena which is useful to be aware of in the process of educating and of the connections between education and society which increase insight into the nature and purpose of education. Topics: the socialization function of education, along with related concepts such as social control, social order, anomie and deviance, perspectives offered by contemporary critics on the role of education in society; some major societal trends and the implications for education; sociological aspects of teaching, including the sociology of knowledge, the sociology of the school and the teaching profession.

58.604 Theory of Education III S1L2 S2T4
Prerequisite: 58.603.

Consists of two components, Philosophy of Education and Selected Studies in Education.

Philosophy of Education

Session 1: exploration of philosophical questions concerning teaching and learning, with particular reference to the various subjects taught in schools. Issues are raised concerning the relationships between school subjects, a connection between knowledge and the development of mind, the value of school subjects in relation to other activities which could compose education and the social and ethical context of education. These issues are followed up in much more detail in Selected Studies in Session 2.

Focus on logical and epistemological questions which are internal to the various teaching subjects. Students are assigned to one of the following Philosophy of Education groups:

- Philosophical Issues in Mathematics and Education
- Philosophical Issues in History and Education
- Philosophical Issues in Science and Education
- Philosophical Issues in Social Science and Education
- Philosophical Issues in Industrial Arts Education

Selected Studies in Education

In the final session, each student selects two education theory options from among a number available. While some deal with the separate disciplines of psychology, sociology and philosophy, others may draw material from more than one. In any particular year, the options offered depend on staff available and, to some extent, on student demand.

Topics to be studied may include the following:

- Computer Assisted Instruction
- The Talented Child
- Learning Disabilities
- Social Trends and Problems
- Sociology of the School and Classroom
- Methodology for Criticism
- Ethical Theory and Moral Education
- Science and Religion in Education

58.612 Teaching Practice I 10 days
A gradual introduction to teaching in the school situation.

58.613 Teaching Practice II 10 days
Prerequisites: 58.612, 58.622 or 58.632 or 58.642 or 58.652 or 58.662.
Co-requisites: 58.623 or 58.633 or 58.643 or 58.653 or 58.663.

Extensive opportunities for students to develop teaching competence. Each student is placed in a high school for two weeks and works in close association with a teacher.
Co-requisites: 58.623 or 58.634 or 58.644 or 58.654 or 58.644.

Prerequisites: 58.613, 58.623 or 58.633 or 58.643 or 58.653.

Provision of further opportunities for students to develop teaching competence. Each student is placed in a high school for 20 days and works in close association with a teacher. At least 10 of these days must be in a block to provide experience of continuous teaching.

58.632 Science Curriculum and Instruction I S1L2 S2L1
Prerequisites: 1.001 or 1.011; 2.121, 2.131. Co-requisite: 58.602.

Introduction to the application of educational studies to the teaching of the Science curriculum in high schools. Lesson planning and classroom management. Stress on the subject which is taught in Teaching Practice I. Students join other trainee-teachers in a segment known as 'Applied Studies in Teaching Practice'. Here, problems of communication are discussed and the nature, use and role of language in learning situations examined. The development of communication and teaching skills is furthered by peer-group microteaching.

58.633 Science Curriculum and Instruction II FL1 T4

Learning in science and the role of teacher demonstrations/pupil practical work. Preparation and use of audio-visual aids, lesson planning and classroom management. Assistance in the development of teaching skills is provided in peer group microteaching situations. The teaching of selected topics in biology, chemistry, geology and physics is commenced and this is developed in the fourth year. A segment known as 'Applied Studies in Teaching Practice' is common to all third year curriculum and instruction subjects; study of a number of topics dealing with specific classroom problems, measurement and evaluation.

58.634 Science Curriculum and Instruction III FL4
Prerequisites: 58.603, 58.613, 58.633.

Examination of New South Wales secondary school science syllabuses. Investigation of curriculum material suitable for use in teaching secondary school science. Development of teaching resources. The professional development of the science teacher. The teaching of biology, chemistry, geology and physics.

58.642 Mathematics Curriculum and Instruction I S1L2 S2L1
Prerequisite: 10.001 or 10.011. Co-requisite: 58.602.

Introduction to the application of educational studies to the teaching of the Mathematics curriculum in high schools. Lesson planning and classroom management. Stress on the subject which will be taught in Teaching Practice I. Students join other trainee-teachers in a segment known as 'Applied Studies in Teaching Practice'. Here, problems of communication are discussed and the nature, use and role of language in learning situations examined. The development of communication and teaching skills is furthered by peer-group microteaching.

58.643 Mathematics Curriculum and Instruction II F L3

A continuation of the application of educational studies to the teaching of the mathematics curriculum in high schools. Lesson preparation and presentation, classroom management and organization. An introduction to special mathematics courses being used in high schools, eg elective and slow learner courses. Stress on preparation for Teaching Practice II. A segment known as 'Applied Studies in Teaching Practice' is common to all third year curriculum and instruction subjects: study of a number of topics dealing with specific classroom problems, measurement and evaluation.

58.644 Mathematics Curriculum and Instruction III FL2
Prerequisites: 58.603, 58.613, 58.643.

Continuation of the application of educational studies to the teaching of mathematics curriculum in secondary schools. The teaching of the senior high school syllabuses. Curriculum development projects and their application. The learning problems of school students are critically analysed and practical remedies investigated. Designed to complement 58.614 and these taken together are designed to provide potential teachers with a wide set of experiences which will help them fit successfully into the NSW teaching environment.

58.693 Advanced Education I FL1

Educational Psychology: Introduction to selected aspects of on-going research activities in educational psychology. The area is selected following discussions with staff members.

Sociology of Education: More detailed and extensive examination of central topics studied in the pass strand. Consideration of selected issues to do with social theory, the nature of the sociological enterprise and sociological methods. A research project.

58.694 Advanced Education II S1L2 S2L1

Research in Education: Aims to provide the student with sufficient knowledge of research methodology to enable intelligent reading and assessment educational research reports. Includes descriptive and inferential research and cover sampling, measurement, design, statistical analysis, statistical probability and interpretation of results. Emphasis is on interpretation of results rather than on numerical skill in analysing data. Further issues concerning interpretation include the nature of explanation, philosophy of probability theory, cause and effect, generalisation, selection and identification of research areas, ethical issues in research procedures.

Philosophy of Education segment

Some connected issues in social and political philosophy, and their implications for educational theory and practice. Includes: freedom, compulsion and the aims of education; neutrality of education systems, schools, teachers and courses; and justice and equality.

58.695 Advanced Education III FL4

In their full-time honours year, all students enrol in four twenty-eight-hour units of study appropriate to their research, as approved by the Head of School.

58.699 Thesis
History and Philosophy of Science

Undergraduate Study*

Level II/III

62.012 The Origins of Modern Science S1 L2T1
Prerequisites: A pass in four Level I units from Table I excluding Philosophy and Engineering units.

An introductory subject dealing with the Scientific Revolution of the seventeenth century, the philosophical issues being discussed in their historical context. It surveys the major achievements of science during the period, particularly the Copernican Revolution, the construction of dynamics from Galileo to Newton, and Harvey's physiology. The cultural and intellectual background of these achievements and their effects on European thought will be discussed.

62.022 Materials Machines and Men: The Social History of Technology in the Eighteenth and Nineteenth Centuries S2 L2T1
Prerequisites: As for 62.012. Excluded: 26.564.

The rise of technology in its social and cultural context before, during and since the Industrial Revolution. This Revolution, which has been described as the most significant event in human history since the Agricultural Revolution of the New Stone Age, is examined in some detail and concentrates on technology and its effects on human beings; considers the professionalization of engineering, the spread of industrialization in Britain, Europe and the USA, and the Second Industrial Revolution. Emphasis on social and economic effects of the interactions of technology and society.

62.032 The Scientific Theory S2 L2T1
Prerequisites: As for 62.012.

The scientific theory — its origins, nature and nurture. With particular reference to selected historical examples chosen from both the physical and biological sciences, a number of philosophically interesting problems relating to scientific theories are subjected to analysis. Includes: the principles of theory construction; perception and observation; the structure of scientific revolutions; scientific apologetics; the structure of theories, scientific explanation; the status of laws and theoretical terms; the 'existence' of theoretical entities; relationships between theory and observation; the functions of models; the principles of theory establishment and rejection.

62.042 Scientific Education and the Dynamics of Scientific Development S1 L2T1
Prerequisite: 58.632.

The role of science education within the economy of scientific activity and development. Topics: Education in relation to the scientific community as a whole; theories of scientific development and change, with special reference to the critique of Thomas Kuhn's The Structure of Scientific Revolutions; science education in relation to the life-cycles of scientific paradigms; the structures and functions of the different classes of scientific publications, with special reference to textbooks; the uses and 'misuses' of the history of science in the teaching of science; the relationships of syllabuses and teaching techniques to research methodology and the dynamics of scientific development; science education considered as a factor in the determination of scientific 'style' and philosophies of science; the effects of moral, political and other values on science and science education. The topics are discussed with special reference to suitable examples selected from the histories of science and of science education.

62.052 Scientific Knowledge and Political Power S1 L2T1
Prerequisites: As for 62.012.

An introduction to the political dimensions of twentieth century science. Covers: growth of expenditure on science in the twentieth century; attempts to define the social function of science in the inter-war years; the radical scientists' movement of the 1930s — the freedom versus planning debate; science and politics in the Second World War; government patronage and political expectations in the post-war period; science and economic growth; the science-technology relationship; the rejection of laissez faire in the 1960s; approaches to science policy; critiques of the role of science in contemporary society; scientists as experts; the question of social responsibility in science.

62.062 The Social System of Science S2 L2T1
Prerequisites: As for 62.012.

An introduction to the social dimension of the practice of science. The production and application of scientific knowledge is examined as an activity in constant interaction with its socio-economic, political and cultural environments. Aims to highlight the principal features of this interaction in relation to each of the following aspects of scientific activity: the processes of research and discovery; the dissemination of research findings and their acceptance or rejection; the development or abandonment of accepted theories; and the technological applications of scientific knowledge.

62.033 Development of Theories of Matter S1 L1T2
Prerequisite: As for 62.012.

The development of man's ideas about the nature of matter. 'the oldest conceptual tool in the Western speculative tradition'. A broad coverage of this many-sided topic is offered, from antiquity to the mid-twentieth century, though the emphasis is placed largely on ideas in the nineteenth and twentieth centuries. The main areas of study are: Greek matter theory; the 'organic' theories of the Renaissance; the 'mechanical philosophy'; Newton, Leibniz and Boscovich, eighteenth century chemistry; Dalton's atomic theory and the 'atomic debates'; the establishment of the atomic weight scale; nineteenth century theories of bonding and structure; Faraday, Maxwell and Hertz and the origins of field theory; radioactivity; Thomson and Rutherford; the Bohr theory of the atom; the wave/particle model, the uncertainty principle, and associated controversies; anti-matter; electronic theories of valency.

A set of notes is distributed each week and the subject is conducted entirely by seminars.

* Students undertaking subjects in History and Philosophy of Science are required to supplement the class contact hours by study in the Library.
62.063 History and Philosophy of Cosmology
Prerequisite: As for 62.012.

The main formative influences that have shaped the science of cosmology. The work of investigators such as Kant, Laplace and Herschel on the Milky Way, which followed from the work of Galileo and Newton on motion and gravitation. The implications of the investigations of Olbers, Einstein and Hubble for an expanding universe. The conceptual and observational framework of the present situation in cosmology; central physical-philosophical problems raised by various cosmological scenarios of the universe concerning space and time, matter and radiation; the paradigms of the evolutionary and steady-state theories of the universe and the proliferation of alternative models; the tensions between the theorists and the optical and radio-astronomical communities.

62.093 Science and the Strategy of War and Peace
Prerequisite: As for 62.012.

Aims to give historical perspective to the impact of science and technology on the art of war and to contemporary problems of nuclear disarmament and the arms race. Emphasis on the intellectual challenges, social consequences and moral dilemmas posed by twentieth century developments in propaganda, the mechanization of warfare, communications, surveillance and physical, chemical, nuclear and biological weaponry; the early history of the atomic scientists and the nuclear age; Einstein and Russell and the anti-war movements; the role of the military industrial complex; the dynamics of the arms race and its limitation; the technological elaboration of armaments in the 1960s; the opportunity cost of military expenditure and limits to growth.

62.103 The Discovery of Time
Prerequisite: As for 62.012.

The evolution of ideas concerning time and history, including the age and history of the earth, devoting particular attention to the period from the seventeenth century to the present. Consideration is given to such questions as philosophical and scientific problems about the nature of time, historiographical ideas, the authority of the scriptures, social theories, the concept of Nature, the rise of the Romantic Movement, and the growth of historical consciousness, the intention being to provide an understanding of the intellectual setting within which ideas about time, history and geological theories developed.

62.104 The Darwinian Revolution
Prerequisite: As for 62.012.

The scientific, philosophical and social antecedents and consequences of Darwin's theory of evolution. The prevailing ideas in biology before Darwin, in the context of the general climate of ideas in the eighteenth and early nineteenth centuries. Darwin's life and work. The work of Mendel and the establishment of the 'synthetic' theory of evolution. Major portion of subject is devoted to an examination of the impact of evolutionary ideas in such diverse fields of thought as religion, literature, music, political theory, epistemology, ethics, and the social and behavioural sciences. The subject is conducted entirely by seminars.

62.106 Mind, Mechanism and Life
Prerequisite: As for 62.012. Excluded: 62.043.

The development of scientific ideas concerning the nature of life, mind and behaviour. Includes both a brief treatment of early ideas and reference to issues in contemporary biological and behavioural sciences; the main focus is on the period from the Proto-Scientific Revolution of the sixteenth century to the advent of the general purpose computer. Topics include: the Galenic heritage; Vesalius and the School of Padua; the biological thought of William Harvey; machines and the mechanical philosophy; Cartesianism and the mechanization of biology; classical theories of the relationship between mind and body; neurophysiology from the eighteenth to the early twentieth century; the mechanist-vitalist disputes; the theory of spontaneous generation and its overthrow; Wundt, Fechner and the rise of experimental psychology; Pavlov and the conditioned reflex; behaviourism and its critics: mind, brain, life and the computer.
A set of notes is distributed each week and the subject is conducted by seminars.

62.083 Marxism and Science S2 L2T1
Prerequisite: As for 62.013.

62.105 Research Methods in History and Philosophy of Science S1 L2T½
Prerequisite: Completion of three HPS units with an average grade of Credit or better, or by permission of the Head of School.

A series of methodological studies designed to prepare students and to carry out honours level research in HPS. The historiography of science, and its relations to philosophical and social studies of science, analyzed through discussion of texts representing predominant approaches to HPS during the last 30-40 years. Bibliographical, editorial, and other research exercises.

Level IV Honours Programs

62.014 History and Philosophy of Science Honours
Candidates are required to present a thesis and to complete, as determined by the Head of the School, EITHER four one session Honours Seminar units OR at least two one session Honours Seminar units together with additional approved work, provided that the total coursework component is at least equivalent to four Honours Seminar units.

62.024 Science Studies Honours
Candidates are required to present a thesis and to complete a two session Honours Seminar unit together with additional coursework, of equivalent weight, to be determined by the Head of the School of History and Philosophy of Science.

Graduate Study

For students enrolled in the MScSoc degree course

62.701G Philosophy and Methodology of Science S1 L2
An introduction to some current and fundamental problems in the philosophy of science and society; the nature of scientific debates and forms of argument; the function of ‘scientific’ images in the exploration and conquest of man and nature; scientific understanding and explanations in terms of models, analogies and laws of nature; problems of creativity and logic in the construction, establishment, acceptance and rejection of theories; the dynamics of scientific development and change; the concept of scientific revolutions.

62.709G The Scientific Community S2 L2
The sociological analysis of the pure science community, which establishes the characteristics of this subgroup of society by examining its internal and external social relations. The internal relations refer to cognitive and behavioural factors within the community itself that promote or retard the advancement of science. The external relations refer to the political, ideological, economic and bureaucratic forces in society that shape and control the scientific community and the knowledge it produces.

62.710G Science, Philosophy, and Social Values S2 L2
Exposition and appraisal of some of the classical ethical theories. Examination of the claims of science to be able to provide a basis for moral judgements. Attempted establishment of an ethical framework which may serve as a basis for decision making when problems of an ethical nature arise in science. Selected case studies, in which decisions as to the most appropriate form of action are evaluated in the light of the ethical framework previously established. The social responsibility in science movement and its problems.

62.711G Marxism and the Critique of Science S1 L2
1. Introduction to the basic concepts of historical and dialectical materialism; 2. The Marxist theory of the interdependence of scientific knowledge and social development; 3. The Marxist critique of the economic, political and ideological functions of society under capitalism; 4. The 'Stalinist' approach to science in the Soviet Union, 1930s to 1950s; 5. The 'Maoist' approach to science in China, 1966-1977; 6. The convergence of the capitalist 'Science Policy' approach with the Soviet and Chinese 'State Planning' approach in the 1970s; 7. The Western Marxist critique of bureaucratic technocracy.

67.712G Science, War and the State S1 L2
An introduction to the developing interrelations and mutual dependencies of the scientific community and its institutions, scientific research and development and innovation, and the military and industrial communities in the twentieth century. Case studies used to examine national attempts to integrate civilian and defence resources, priorities and policies, the unification of research and development activities, and the power and influence of the 'military-industrial' complex.

62.713G Interdisciplinary Seminar and Project F L2
Chosen in consultation with the Program Co-ordinator. Topics aim to exploit students' special interests.

62.714G Knowledge, Power and Public Policy S2 L2
The growth of government interest in science during the 20th century; issues, institutions and policies. The nature and consequences of government support for research. The debate over the 'planning' of science. The arguments in favour of 'science policy'.

Science policy placed against the general background of the growth of government intervention in economic and social life during the last 100 years. The impacts of two world wars and the 'cold war'. Differences between countries in scientific organization and science policy.
62.715G Cause, Belief and Progress in the History of Science

An historical perspective on general ideas relating to scientific knowledge in the modern period, including: the Idea of Progress from Bacon to Social Darwinism; the relations between religion, theology and science; historiographical interpretations of revolutionary episodes in the history of science; the historical roots of contemporary issues in the philosophy of science.

62.716G Science and Society in the Twentieth Century

An introduction to the key issues raised by the interaction between science and society in the twentieth century. The unit consists of six topic modules drawn from the following list, each presented over a period of four weeks.

1. The Social and Economic Relations of Technology: An introduction to fundamental concepts concerning: the imperatives of technology; the techno-structure; the political dimensions of technological change; technological determinism; the technological fix; the ideology of industrialization; alternative technology. 2. Theories of Social Change: A comparative analysis of leading theories of social change, including Marxism and theories of industrial and post-industrial society, with emphasis on the role of science and technology. 3. Technology and Social Change: A case study of the social impact of (a) energy technologies on Australia and/or the developing world; or (b) the microelectronic revolution on commerce and industry. 4. Historical Dimensions of Scientific Change: A case study of a major conceptual advance in twentieth-century science (eg, the development of relativistic physics or of genetics and molecular biology) as an introduction to problems of (a) scientific change and ‘progress’, (b) scientific community relations, and (c) science, ideology and responsibility. 5. The Philosophy of Science: Contemporary issues in the philosophical analysis of science, with emphasis on (a) the dynamics of conceptual change, (b) theories of ‘progress’, (c) models of scientific reasoning and ‘method’, and (d) external relations of scientific theory and practice. 6. Science as a Social Enterprise: Scientific institutions; patterns of communication; norms and values; social determinants of conformity and innovation; the internal and external politics of science. 7. Social Responsibility in Science: A history of the ‘Social Responsibility Movement’, ethical and political dimensions of the problem of responsibility in science.

Undergraduate Study

68.302 Introductory Marine Science

Ocean basins, sediments, properties of seawater, ocean circulation, coasts and coastal processes. Marine biology and ecology, primary and secondary productivity.

68.503 Science of Interfaces

Prerequisites: 2.002A, 1.012, 1.022.

Elementary theory of terminated lattice and surface states; the solid-gas interface; general theory of absorption; corrosion; catalysis; liquid gas interface; ocean/atmosphere interactions; lung/air interactions; solid-liquid interactions and electrochemistry.

Anatomy

Undergraduate Study

70.011A Histology I

Prerequisite: 17.021.

70.011B Mammalian Embryology

Prerequisite: 70.011A.

70.011C Introductory Anatomy

Prerequisite: 17.021.

Introduction to gross anatomy, based on a study of prospected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy. Normal variations including those related to sex and age (childhood, adolescence, maturity, senescence).

70.012B Visceral Anatomy

Prerequisites: 70.011A, 70.011C.

The topographical anatomy of the great visceral systems — gastrointestinal, respiratory, cardiovascular, and genitourinary — and of the head and neck. Living and radiological anatomy.
70.012C Neuroanatomy I
Prerequisites: 70.011A, 70.011C.

70.013 Anatomy IV
Prerequisite: Completion of the first three years of any Science program with a major in Anatomy (see Table 3).

An honours program consisting of the preparation of an undergraduate thesis together with advanced tutorial courses and participation in School seminars.

70.304 Histology II
Prerequisite: 70.011A. Excluded: 70.3041. (If 70.304 is taken after 70.3041, total counts only 1 unit.)

70.3041 Histological and Histochemical Techniques
Prerequisites: 17.021, 17.031, and any one of 41.101, 45.301, 70.011A. Excluded: 70.304.

70.305 Neuroanatomy II
Prerequisite: Credit or better in 70.021C.

Topics: sensory and motor areas of the neocortex, hippocampus, cerebellum, and sense organs. Recent work on the development of the central nervous system. Recent advances in neurohistochemistry and neuroendocrinology. Students are required to undertake a substantial amount of private study.

70.306 Functional Anatomy I
Prerequisites: 70.011A, 70.011C.

Introduction to fundamental issues in the morphology and dynamics of human movement systems: Includes: physical properties of bone, muscle and connective tissue; biomechanics, movement analysis and neuromuscular control. These basic principles are applied to a detailed study of musculoskeletal components of head and neck and upper limb. Emphasis on modern analytical techniques and findings. Tutorials include detailed limb and joint dissections plus intensive study of surface and radiological anatomy.

70.307 Functional Anatomy II
Prerequisites: 70.012C, 70.306.

A continuation of 70.306. Includes: a detailed study of the musculoskeletal components of trunk and lower limb, functional morphology of locomotion, including comparative and evolutionary aspects of bipedal locomotion, development of musculoskeletal system and locomotion.

73.111 Physiology IA
Prerequisites: 17.021; 2.121 & 2.131, or 2.141; 10.001 or 10.011 or 10.021 B & C. Excluded: 73.121, 73.011A. Co-requisite: 41.101.

Introduction to fundamental physiological principles, dealing first, with basic cellular function in terms of chemical and physical principles, and second, with the operation of the various specialized systems in the body, for example, the cardiovascular system, whose function it is to transport materials to and form the tissues of the body; the respiratory system which must maintain the exchange of oxygen and carbon dioxide between the atmosphere and the blood; the gastrointestinal system which enables food materials to be modified by digestion and absorbed into the circulation; the kidney which is involved in the regulation of body fluid and electrolyte balance and with the excretion of the waste products of metabolism; the endocrine system which releases chemical messengers, called hormones, that are carried in the blood stream to regulate a great variety of body functions, eg metabolism and reproductive activity; the nervous system which by means of very rapidly propagated electrical impulses is responsible for all our movements, sensations, memories, emotions and consciousness itself. A substantial series of practical class experiments on these different areas of physiology is included in the course. This subject is taken by students enrolled in any of the Physiology programs.

73.121 Physiology IB
Prerequisites: As for Physiology IA except that 2.131 may be accepted as a co-requisite. Excluded: 73.111.

Covers the same general areas of physiology as Physiology IA but in less detail and with less intensive practical courses. Physiology IB may be taken by students not intending to study physiology in Level III. Principles of Physiology is taken only by students in the BOptom degree course.
A major subject offered in third year, providing a more advanced course of study in Physiology. Students spend considerable time performing laboratory experiments which illustrate various physiological principles and introduce them to the techniques used in physiological investigation. The course is orientated towards the areas of physiology constituting the major research interests of the School. It is divided into several sections which may be available in special circumstances as separate 1 and 2 unit Level III courses, including Membrane Biology, Neurophysiology and Organ Physiology, details of which are given below.

73.012A Membrane Biology S1 L2T4
For entry consult Head of School of Physiology.

The properties of cell membranes including permeation of ions, solutes and water across membranes, generation of electrical signals in nerve and muscle cells produced by ion movements, and transmission of information between cells. Stress on modern research techniques and on a critical examination of appropriate classical papers.

73.012B Neurophysiology S1 L2T4
For entry consult Head of School of Physiology.

A detailed study in two broad areas, neural mechanisms in sensation and the control of posture and movement. Includes the regulation of visceral and other autonomic effector structures and the neural substrates and correlates of certain higher functions such as speech, memory and consciousness. Directed towards the experimental analysis of nervous system function, to introduce the techniques and approaches used in neurophysiological research. Sensation: an integrated lecture and experimental course is given on somatic, visual and auditory sensory mechanisms. Laboratory work: students conduct psychophysical experiments to evaluate subjective sensory capabilities. The neural mechanisms underlying these subjective abilities are examined in animals in electrophysiological experiments which involve recording the impulse patterns from individual neurones within the sensory systems. Students are required to analyze the mechanisms employed by the nervous system to code information about specific parameters of sensory stimuli.

Lectures and experiments on motor function are directed towards an understanding of the various reflex and voluntary mechanisms controlling posture and movement. The section dealing with nervous control of visceral function is concerned mainly with the regulation of cardio-respiratory activity.

73.012C Organ Physiology 72 L4T8
Prerequisites: for 73.012A, B, CD: normally as for 73.012. For entry consult Head of School of Physiology.

An advanced study dealing with major physiological systems of the body. The cardiovascular and respiratory systems, the endocrine systems, and the kidneys are usually studied in depth, and important aspects of gastro-intestinal and fetal physiology are also treated. Concentrates on the functions of the individual organs within these systems, on the operation of the systems as wholes, and on the mechanisms (including neural mechanisms) controlling the systems. Emphasis on the approaches and techniques involved in physiological research. Students are therefore required to carry out an extensive series of experiments which usually employ mammalian (including human) preparations.

73.022 Pharmacology F L2T4
Prerequisites: 73.111 or 73.121. Co-requisites: 73.102 or 41.102A & 41.102B or 2.033J and 2.033A.

Includes a study of the absorption, distribution and metabolism of drugs as well as a study of the pharmacology of the autonomic nervous system, the cardiovascular system, the central nervous system, the kidney, the endocrine system and also a study of pharmacokinetics. A practical class program complements the lecture program by demonstrating a variety of basic pharmacological techniques.

Honours and Graduate Study

Depending on their undergraduate records students may be accepted by the Head of the School to undertake a fourth year of study towards an honours degree in Physiology. This would usually be done by students planning a career in physiology. During the honours year the student carries out a research project under the supervision of a staff member and submits a thesis based on the research project. The student can usually nominate the general research area in which he wishes to work from those being studied in the School. Within this research area the student is given a specific project by the supervisor.

Higher degree study for an MSc or PhD degree may also be undertaken by selected students.

Community Medicine

Undergraduate Study

79.201 Population Genetics Theory S1 L2T3
Prerequisites: 45.101 or 10.311A and 10.311B, or 10.321A and 10.321B, or 10.331.

Models of genetic systems and growth of populations, with essential mathematical and statistical theory; illustrated by examples from human genetics. Limitations of models.

Models of population growth in discrete and continuous time with nonoverlapping and overlapping generations. An extension of the Hardy-Weinberg principle to finite populations and several loci. The concept of inbreeding, calculation of coefficients of consanguinity, effects of inbreeding, effective population number. Fisher's Fundamental Theorem of Natural Selection. Advanced treatment of factors maintaining gene frequency equilibria in populations, including balance between mutation and selection, heterozygotic advantage, and genetic loads. Effects of finite population number, including random gene frequency drift.

204
79.202 Quantitative Methods in Human Genetics S2 L2T3
Prerequisites: 9.801 or 43.101; 9.811 or 10.311A and 10.311B, or 10.321A and 10.321B or 10.331 or 12.152 or 45.101.

Application of the principles of genetics and the theory of statistics to the study of human populations.

Estimates of population parameters, uses of measures of relatedness, discrimination between models of inheritance, design and analysis of surveys of families and twin pairs, genetic models of qualitative and quantitative variation, use of probability models in genetic counselling and determining effects of medical intervention.

79.302 Biochemical Genetics of Man S2 L2T4
Prerequisite: 41.101.

Inherited variation of blood group antigens, serum proteins and red-cell enzymes, their possible selective roles, and their application to the study of differences between and within populations. Application of statistical techniques to analyzing population data.

79.402 Genetics of Behaviour I S1 L2T3
Prerequisite: 17.031.

Behavioural traits in invertebrates and mammals, including man, in which genetic factors can be identified.

Principal subject areas: Models for behaviour genetics in invertebrates and mammals, with discussion of and practice in research methodologies; mathematical treatment of data; genetic factors in human intelligence; genetics of mental retardation and psychological illness in man, with appropriate clinical contact and discussion.

79.403 Genetics of Behaviour II S2 L2T3
Prerequisite: 79.402.

An advanced subject in the area of behaviour genetics in man and animals, including more complex aspects of statistical analysis of data, and options for in depth studies and practical experience in specific aspects of human and animal behaviour genetics.
Financial Assistance to Students

The scholarships and prizes listed below are available to students whose courses appear in this handbook. Each faculty handbook contains in its Financial Assistance to Students section the scholarships and prizes available within that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

As well as the assistance mentioned earlier in this handbook (see General Information: Financial Assistance to Students), there are a number of scholarships available to students. What follows is an outline only. Full information may be obtained from the Student Records, Higher Degrees and Scholarships Section, located on the Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursary Endowment Board*</td>
<td>$150 pa</td>
<td>Minimum period of approved degree/combined degree course</td>
<td>Merit in HSC and total family income not exceeding $4000</td>
</tr>
</tbody>
</table>

* Apply to The Secretary, Bursary Endowment Board, Box 460, PO, North Sydney 2060 immediately after sitting for HSC.
Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need</td>
</tr>
<tr>
<td></td>
<td>payable in fortnightly instalments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girls Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress and continued demonstration of need</td>
<td>Available only to female students under 35 years of age enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need</td>
</tr>
</tbody>
</table>

Science

Chemistry

John Ragnar Anderson Memorial Bequest

<table>
<thead>
<tr>
<th>Olvetti Australia Pty Ltd</th>
<th>Up to $600 pa</th>
<th>2 years subject to satisfactory progress</th>
<th>Eligibility for admission to the third year of an honours program in the School of Mathematics in Pure/Applied Mathematics, Theoretical Mechanics or Statistics and leading to the award of the degree of Bachelor of Arts, Bachelor of Science or Bachelor of Science Diploma in Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Szekeres Award</td>
<td>$200 pa</td>
<td>1 year</td>
<td>Open to students entering the final year of the honours degree course in Pure Mathematics</td>
</tr>
</tbody>
</table>

Graduate Scholarships

Application forms and further information are available from the Student Records, Higher Degrees and Scholarships Section, located in the Chancellery. This Unit provides information on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

Where possible, the scholarships are listed in order of schools within the Faculty of Biological Sciences and the Faculty of Science.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of New South Wales Research Awards</td>
<td></td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates (or equivalent). Applications to Registrar by 31 October (30 November in special circumstances)</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Research Awards</td>
<td>Living allowance of $4000 pa. Other allowances may also be paid.</td>
<td>As above</td>
<td>Applicants must be honours graduates (or equivalent) who will graduate with honours in current academic year, and who are permanent residents of Australia</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Course Awards</td>
<td>1-2 years; minimum duration of course</td>
<td></td>
<td>Preference is given to applicants with employment experience. Applicants must be graduates or scholars who will graduate in current academic year and who are permanent residents of Australia, and who have not previously held a Commonwealth Postgraduate Award. Applications to Registrar by 30 September (in special circumstances applications will be accepted 30 November).</td>
</tr>
<tr>
<td>Australian American Educational Foundation Travel Grant*</td>
<td></td>
<td></td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td>Amount varies, depending on award</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women</td>
</tr>
<tr>
<td>The British Council Academic Links and Interchange Scheme**</td>
<td>Cost of travel to UK</td>
<td></td>
<td>Applicants must be either senior or junior academic staff. Preference will be given to activities likely to lead to further collaboration through joint research, publication, and/or teaching programs. Applications may be made at any time and should be submitted to the Registrar.</td>
</tr>
<tr>
<td>The Caltex Woman Graduate of the Year</td>
<td>$5,000 pa for further studies in USA, UK, Northern Europe or in special cases Australia. There are no special allowances for travel or accommodation for married graduates.</td>
<td>2 years</td>
<td>Applicants must be female graduates who will have completed a University degree or diploma this year and who are Australian citizens or have resided in Australia for at least seven years. Selection is based on scholastic and literary achievements, demonstrable qualities of character and accomplishments in cultural and/or sporting/recreational activities.</td>
</tr>
</tbody>
</table>

* Application forms are available from: The Secretary, Department of Education, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.

** Application forms available from: The British Council, PO Box 88, Edgecliff, NSW 2077.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</td>
<td>Usually 2 years, sometimes 3</td>
<td>Applicants must be graduates who are Commonwealth citizens or British Protected Persons, and who are not older than 35 years of age. Applications close with Registrar by 1 October.</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa</td>
<td></td>
<td>See above under Undergraduate Scholarships, General</td>
</tr>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$5000</td>
<td></td>
<td>Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia.</td>
</tr>
<tr>
<td>Gowrie Graduate Research</td>
<td>Maximum $2000 pa in Australia, and $2750 if tenable overseas</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during 1939-45 War</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York*</td>
<td>Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA</td>
<td>Between 12 to 21 months</td>
<td>Candidates must be either: 1. Members of the Australian or a State Public Service or semi-government Authority. 2. Staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close July.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships at Harvard University</td>
<td>Stipend of $4000 pa plus tuition fees</td>
<td>1, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian University</td>
</tr>
<tr>
<td>Nuffield Foundation Commonwealth Travelling Fellowships*</td>
<td>Living and travel allowances</td>
<td>1 year</td>
<td>Australian citizens usually between 25 and 35 who are graduates preferably with higher degrees and who have at least a year's teaching or research experience at a university. Applications close by February.</td>
</tr>
</tbody>
</table>

† Application forms must be obtained from the Australian representative of the Fund, Mr L. T. Hinde, Reserve Bank of Australia, Box 3947, GPO, Sydney, N.S.W. 2001. These must be submitted to the Registrar by 24 July.
* Applications to the Secretary, The Nuffield Foundation Australian Advisory Committee, PO Box 783, Canberra City 2061.
General (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Rhodes Scholarship**</td>
<td>Approximately £4000 stg pa</td>
<td>2 years, may be extended for a third year</td>
<td>Unmarried male and female Australian citizens between the ages of 19 and 25 who have been domiciled in Australia at least 5 years and have completed at least 2 years of an approved university course. Applications close in early September each year.</td>
</tr>
<tr>
<td>Rothmans Fellowships Award‡</td>
<td>$14 000 pa</td>
<td>1 year, renewable up to 3 years</td>
<td>The field of study is unrestricted. Applications close early September each year.</td>
</tr>
</tbody>
</table>

Biological Sciences

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Elizabeth II Postdoctoral Fellowships in the Physical and Biological Sciences§</td>
<td>Stipend of $18 475 pa increased to $19 847 pa at age 28 years. $500 pa for dependent wife, $200 pa for each dependent child, plus other allowances.</td>
<td>2 years</td>
<td>Applicants must be Australian citizens or citizens of the UK who have gained a PhD degree or equivalent qualification in one of the physical or biological sciences. Usually applicants should be under 30 years of age. Applications close at the end of the first weeks in March and September.</td>
</tr>
</tbody>
</table>

Science

- **American Optical Corporation Scholarship**
- **Contavue Laboratories Contact Lens Graduate Research Scholarship** $1000 pa 1 year renewable
- **Hydron Laboratories Contact Lens Research Scholarship**
- **Contact Lens Society of Australia**
- **The John Ragnar Anderson Memorial Scholarships in Chemistry** As determined by the Committee

** Applications to Mr H. McCredie, Secretary of the NSW Committee, University of Sydney, NSW 2006
† Applications to The Secretary, Rothmans University Endowment Fund, University of Sydney, NSW 2006.
§ Applications obtainable from the Secretary, Queen Elizabeth Fellowships Committee, Department of Science and the Environment, PO Box 449, Woden, ACT 2606; the Minister (Scientific), Canberra House, 10-16 Mailes Street, London WC2R 3EH, UK; or the Australian Embassy, 1601 Massachusetts Avenue, Washington DC 20036, USA.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Rutherford Scholarship</td>
<td>Travel, fees, etc. A stipend which, if held in the UK, is worth £2250 stg pa</td>
<td>3 years</td>
<td>To enable graduates under 26 years of age to undertake experimental research in a branch of natural science. It is tenable at a British Commonwealth University other than the country in which the applicant graduated</td>
</tr>
<tr>
<td>Science Research Scholarship of the Royal Commission for the Exhibition of 1851</td>
<td>£2500 stg pa</td>
<td>2 years. Renewal for further year possible</td>
<td>To enable graduates, usually not more than 26 years of age, to undertake research in some branch of pure or applied science at an overseas university. Applicants must be British Commonwealth citizens or citizens of the Republic of Ireland, Pakistan, or South Africa, who have done at least 3 years of a university science course.</td>
</tr>
<tr>
<td>Shell Scholarship in Science for Engineering</td>
<td>Approximately £4000 stg pa plus travelling expenses</td>
<td>2 years, sometimes 3</td>
<td>Applicants must be Australian citizens under 25 years of age, with at least 5 years' domicile in Australia and who are completing the requirements for an honours degree in Science or Engineering. The successful candidate will undertake 2 years' graduate study towards the award of a higher degree at a British university.</td>
</tr>
</tbody>
</table>
Prizes

Undergraduate University Prizes

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sydney Technical College Union Award</td>
<td>50.00 and medal</td>
<td>Leadership in the development of student affairs, and academic proficiency throughout the course</td>
</tr>
<tr>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit — students in their final or graduating year</td>
</tr>
<tr>
<td>School of Accountancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Society of Accountants</td>
<td>75.00</td>
<td>14.501 Accounting and Financial Management IA</td>
</tr>
<tr>
<td>Corporate Affairs Commission</td>
<td>50.00</td>
<td>14.542 Accounting and Financial Management IIB</td>
</tr>
<tr>
<td>Chamber of Manufacturers of New South Wales</td>
<td>15.00</td>
<td>14.703 Advanced Auditing</td>
</tr>
<tr>
<td>E. S. Woltenden Memorial</td>
<td>50.00</td>
<td>14.563 Accounting and Financial Management IIIA</td>
</tr>
<tr>
<td>Datec Pty Ltd</td>
<td>200.00</td>
<td>14.605 Information Systems IIIIB</td>
</tr>
<tr>
<td>Wilson Bros (Printers) Pty Ltd</td>
<td>30.00</td>
<td>14.583 Accounting and Financial Management IIIB</td>
</tr>
<tr>
<td>Arthur Young & Co</td>
<td>50.00</td>
<td>14.613 Business Finance II</td>
</tr>
<tr>
<td>Law Book Co Ltd</td>
<td>50.00</td>
<td>14.511 Accounting and Financial Management IB</td>
</tr>
<tr>
<td>School of Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Winifred Dickes Rost</td>
<td>50.00</td>
<td>Outstanding merit in Anatomy in Final Year of the Science and Mathematics Course</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value ($)</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauri Brothers & Thomson (Aust) Pty Ltd</td>
<td>150.00</td>
<td>Best result in the Level II biological technology subject</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best result in one of the Level III biological technology subjects</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best result in the biological technology honours program</td>
</tr>
</tbody>
</table>

School of Chemical Engineering and Industrial Chemistry		
Australian Paper Manufacturers Ltd	21.00	Subject selected by Head of School
Stauffer Australia Limited	50.00	

School of Chemistry		
Advanced Analytical Chemistry	100.00	2.013D Advanced Analytical Chemistry
Australian Consolidated Industries Ltd	60.00	
Borden Chemical Co (Aust) Pty Ltd	50.00	Subject selected by Head of School
Chamber of Manufactures of New South Wales	15.00	
CSR Chemicals Ltd	200.00	Chemistry Honours
Inglis Hudson Bequest	Advised annually	2.002B Organic Chemistry I
Jeffery Bequest	40.00	2.043L Chemistry and Enzymology of Foods
Merck, Sharp & Dohme (Aust) Pty Ltd	52.50	Chemistry — Level II subjects in the Science and Mathematics Course
	52.50	Chemistry — Level III subjects in the Science and Mathematics Course
The Nestlé Co (Aust) Ltd	150.00	
Tooth & Co Ltd	50.00	Subject selected by Head of School
UNSW Chemical Society George Wright	50.00	
UNSW Chemical Society Parke-Pope	50.00	

| **School of Economics** | | |
| Brinds Ltd | 100.00 | 15.013 Microeconomics III (Honours) |
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Electrical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>J. Douglas Maclurcan</td>
<td>40.00</td>
<td>Control Systems</td>
</tr>
<tr>
<td></td>
<td>book order</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Mathematics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ICI Theory of Statistics IV</td>
<td>100.00</td>
<td>Theory of Statistics IV</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>30.00</td>
<td>Excellence in 10.011 Higher Mathematics I</td>
</tr>
<tr>
<td></td>
<td>30.00</td>
<td>Excellence in basic second year Higher Mathematics subjects (10.121A, 10.1213, 10.1214, 10.2211, 10.2212)</td>
</tr>
<tr>
<td></td>
<td>30.00</td>
<td>Excellence in 5 or more Level II Mathematics subjects (Arts: 20 credit points or more)</td>
</tr>
<tr>
<td>Head of School's</td>
<td>50.00</td>
<td>Excellence in 5 or more Level II Mathematics subjects (Arts: 20 credit points or more)</td>
</tr>
<tr>
<td>The Pure Mathematics</td>
<td>40.00</td>
<td>Excellence in Level III Pure Mathematics subjects</td>
</tr>
<tr>
<td>The Applied Mathematics</td>
<td>40.00</td>
<td>Excellence in Level III Applied Mathematics subjects</td>
</tr>
<tr>
<td>The Theoretical Mechanics</td>
<td>40.00</td>
<td>Excellence in Level III Theoretical Mechanics subjects</td>
</tr>
<tr>
<td>Statistical Society of Australia (New South Wales Branch)</td>
<td>50.00</td>
<td>General proficiency — Theory of Statistics subjects</td>
</tr>
<tr>
<td>The Broken Hill Proprietary Theory of Statistics II</td>
<td>50.00</td>
<td>Higher Theory of Statistics II</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value ($)</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Metallurgy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcan Australia Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Austral Crane</td>
<td>150.00</td>
<td></td>
</tr>
<tr>
<td>Australian Institute of Metals</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>Australian Welding Institute</td>
<td>30.00</td>
<td>book order</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>The Broken Hill Proprietary Co Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>The Eagle & Globe Steel Co Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>The Electrolytic Refining and Smelting Co of Australia Ltd</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>Zinc Corp Ltd</td>
<td>60.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Optometry</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Optometrical Association</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>International Optics</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>Bausch & Lomb Soflens</td>
<td>Diagnostic set of contact lenses</td>
<td>31.841 Clinical Optometry</td>
</tr>
<tr>
<td>Contavue</td>
<td>Trial fitting set of contact lenses</td>
<td>Best essay or project on contact lenses</td>
</tr>
<tr>
<td>L. G. Darcey Memorial</td>
<td>30.00</td>
<td>31.811 Optometry I</td>
</tr>
<tr>
<td>Filmer Sceats Memorial</td>
<td>30.00</td>
<td>31.812 Optometry II</td>
</tr>
<tr>
<td>Hoya Australia Pty Ltd</td>
<td>250.00</td>
<td>Highest academic records in the Optometry degree course</td>
</tr>
<tr>
<td>Hydron (Australia) Pty Ltd</td>
<td>25.00</td>
<td>31.813 Optometry III</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>Optometry Year IV</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.841 Clinical Optometry</td>
</tr>
<tr>
<td>Martin Wells Pty Ltd</td>
<td>150.00</td>
<td>31.821 Special Anatomy and Physiology</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>31.831 Diseases of the Eye</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Final Year Essay</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Optometry (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Nissel & Co Aust Pty Ltd</td>
<td>Trial fitting set of contact lenses</td>
<td>31.813 Optometry III and 31.841 Clinical Optometry — Contact Lenses sections</td>
</tr>
<tr>
<td>Optical Products Pty Ltd</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Opticians and Optometrists' Association of NSW</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>The Optometric Vision Research Foundation</td>
<td>100.00</td>
<td>Research project</td>
</tr>
<tr>
<td>Optyl (Australia) Pty Ltd</td>
<td>100.00</td>
<td>31.812 Optometry II</td>
</tr>
</tbody>
</table>

School of Physics

<table>
<thead>
<tr>
<th>Donor Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Physics</td>
<td>50.00</td>
<td>Highest aggregate marks in three of the Units 1.013, 1.023, 1.033 and 1.043</td>
</tr>
<tr>
<td>Head of School’s in Physics</td>
<td>30.00</td>
<td>Most creditable Year 4 honours thesis</td>
</tr>
<tr>
<td>Physics Staff for Applied Physics</td>
<td>30.00</td>
<td>Highest aggregate marks two units of the following subjects: 1.133, 1.3033, 1.3133, 13.233, 1.333, 1.343 and 1.3533</td>
</tr>
<tr>
<td>Physics Staff for Physics I</td>
<td>50.00</td>
<td>Highest mark in 1.011</td>
</tr>
<tr>
<td>Physics Staff for Physics II</td>
<td>50.00</td>
<td>Highest mark in 1.012, 1.022 and 1.032</td>
</tr>
<tr>
<td>Physics Staff for Physics IV Honours</td>
<td>50.00</td>
<td>Highest mark in 1.104, 1.304 or 1.504</td>
</tr>
<tr>
<td>Physics Staff for Theoretical Physics</td>
<td>30.00</td>
<td>Highest marks in 1.513 and 1.523</td>
</tr>
</tbody>
</table>

School of Psychology

<table>
<thead>
<tr>
<th>Donor Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Psychological Society</td>
<td>100.00</td>
<td>A Year 4 Psychology subject selected by Head of School</td>
</tr>
<tr>
<td>Psychology Staff</td>
<td>10.00</td>
<td>Best Psychology Year II</td>
</tr>
</tbody>
</table>

W. S. and L. B. Robinson University College

<table>
<thead>
<tr>
<th>Donor Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining Managers Association</td>
<td>70.00</td>
<td>Best overall performance in a complete course</td>
</tr>
<tr>
<td>Broken Hill</td>
<td></td>
<td>Three prizes: one for each — best pass in any complete stage of the degree courses in, respectively, Mechanical Engineering, Mining Engineering, Science</td>
</tr>
<tr>
<td>Mining Managers Association</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>Mining Managers Association</td>
<td>30.00</td>
<td>Seven prizes to be awarded in individual subjects selected by the Director</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Mining Corporation Limited</td>
<td>150.00</td>
<td>Four prizes to be awarded for best performance in 7.314R Mineral Process Technology, 7.313R Mineral Processing, 7.214R Mine Economics and Planning, 7.224R Operational Management</td>
</tr>
<tr>
<td>Broken Hill Women's Auxiliary of the Australasian Institute of Mining and Metallurgy</td>
<td>30.00</td>
<td>Performance by a student who achieves second place in a complete stage of a degree course</td>
</tr>
</tbody>
</table>

Graduate University Prizes

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauri Brothers & Thomson (Aust) Pty Limited</td>
<td>150.00</td>
<td>Best overall performance in the Master of Science (Biotechnology) degree course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, Kiine and French</td>
<td>50.00</td>
<td>Best performance in the Graduate Diploma in Food and Drug Analysis course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Optometry</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydron Contact Lens</td>
<td>A trial fitting set of contact lens</td>
<td>31.705G Advanced Contact Lens Theory and Practice</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.701G Advanced Clinical Optometry</td>
</tr>
</tbody>
</table>
Faculty of Biological Sciences

Staff

Comprises First Year Biology Teaching Unit, Schools of Biochemistry, Biotechnology, Botany, Microbiology, Psychology and Zoology.

Dean
Professor E. O. P. Thompson

Chairman
Professor L. B. Brown

Senior Administrative Officer
Patrick James MacGinley, BA N.S.W.

Professional Officers
Rose Ann Varga, BSc N.S.W.
John Campbell Woodard, BE N.S.W.

First Year Biology Teaching Unit

Director
Dr C. J. Quinn

Professional Officer
Anthony Ross Smith-White, BSc Syd., MSc N.S.W.

School of Biochemistry

Professor of Biochemistry and Head of School
Barry Vaughan Milborrow, BSc PhD DSc Lond., FLS, FIBiol

Professor of Biochemistry
Edward Owen Paul Thompson, MSc DipEd Syd., PhD ScD Camb., FRACI

Professor of Medical Biochemistry
William James O’Sullivan, BSc W. Aust., PhD A.N.U.

*For Board of Studies in Science and Mathematics see later in this section.
Staff: Biological Sciences

Associate Professors
John Bruce Adams, MSc Syd., PhD DSc N.S.W., ARACI
Keith Guenther Rienits, MSc Syd., PhD Birn.
Philip John Schofield, BSc PhD N.S.W.

Senior Lecturers
Aldo Sebastian Bagnara, BSc PhD Melb.
Kevin David Barrow, MSc PhD Adel.
Antony George Mackinlay, MSc PhD Syd.
Thomas Stanley Stewart, BSc Syd., PhD N.S.W.
Roy Tirrell, BSc Syd., PhD N.S.W.
George Zalitis, BSc PhD W. Aust.

Lecturers
Michael Richard Edwards, MA PhD Camb.
Ian James McFarlane, BSc PhD Syd.,
Kenneth Edward Moon, BSc PhD N.S.W.

Senior Tutor
Jill Lorraine Gibbons, BSc Syd.

Tutors
Robert Leslie Cutler, BSc James Cook
Carol Drury, BSc Syd.
Joan Loke, MSc Syd., DipEd Kuring-gai C.A.E.
Jane Lyttleton, BSc Massey, MPhil Lond.
David Webster, BSc N.S.W.
Heather Mary Weir, BSc Rhodes, MSc N.S.W.

Professional Officers
Antonio Luiz d'Assumpcao, BSc Syd.
Wendy Glenn, MSc N.S.W.
Walter Samuel Golder, BPharm MSc PhD DipMedTech Syd.,
ASTC, MPS
George Grossman, BSc N.S.W.
Wayne George Kelly, MSc N.S.W.
Choy Soong Daniel Lee, MSc N.S.W.
Andrew George Netting, BSc PhD N.S.W.

School of Botany

Professor of Botany and Head of School
Derek John Anderson, BSc Nott., PhD Wales

Associate Professors
John Henry Palmer, BSc PhD Sheff., FlBiol
Haydn John Willetts, MSc Brist., PhD N.S.W.

Senior Lecturers
Anne Elizabeth Ashlord, BA Camb., PhD Leeds
Michael John Kempster Macey, BSc Lond., MSc PhD N.S.W.
Christopher John Quinn, BSc Tas., PhD Auck.
Robert Stanley Vickery, BScAgr PhD Syd.
John Teast Waterhouse, BSc Syd., MSc N.S.W., MSc R'dg.,
FLS
Alec Edward Wood, BScAgr Syd., PhD N.S.W.

Lecturers
Paul Adam, BA PhD Camb.
Stephen Francis Delaney, BSc Sheff., PhD Liv.
Robert John King, BSc DipEd PhD Melb.

Senior Tutor
Helen Patricia Ramsay, MSc PhD Syd.

Tutors
Jelena Olivera Emmerick, BSc N.S.W.
Penelope Anne Farrant, BSc(Arch) Syd., BSc N.S.W.

Professional Officers
Milos Kratchvil, IngAgr Prague
Peter Stricker, BSc Syd.

Honorary Associates
Mary Maclean Hindmarsh, BSc PhD Syd.
Lawrence Alexander Sidney Johnson, BSc DSc Syd.

School of Biotechnology

Professor of Biotechnology
Vacant

Associate Professor
Pamela Athalie Deidre Rickard, BSc Syd., MSc N.S.W.,
PhD Lond.

Senior Lecturers
Noel William Dunn, MSc Melb., PhD Monash
Peter Philip Gray, BSc Syd., PhD N.S.W., MIEAust
Peter Lindsay Rogers, BE Adel., DPhil Oxf.

Lecturer
David Edward Tribe, BSc PhD Melb.

Professional Officers
Thomas Babij, BSc Syd., MSc PhD N.S.W., ARACI
Lucky Blecich, BSc N.S.W.
Robert Barrie Doble, BSc N.S.W.
Ching Lien Wong, MSc PhD N.S.W.

Professional Officers
Miles Kratochvil, IngAgr Prague
Peter Strieker, BSc Syd.

Honorary Associates
Mary Maclean Hindmarsh, BSc PhD Syd.
Lawrence Alexander Sidney Johnson, BSc DSc Syd.
School of Microbiology

Professor of Medical Microbiology and Head of School
Geoffrey Norton Cooper, MSc PhD Melb., MASM

Professor of Microbiology
Kevin Charles Marshall, BScAgr Syd., MS PhD C'nell., MASM

Professor
Anthony John Wicken, BSc PhD Cape T., MA Camb., FNZIC, MASM

Senior Lecturer
Brian James Wallace, BSc PhD Melb.

Lecturers
Yvonne Marie Barnet, BScAgr Syd., PhD N.S.W.
Iain Couperwhite, BSc PhD Strath.

Senior Tutor
Barbara Lillian Blaimey, BSc Melb., MSc Syd.
Nerissa Glenda Hartwig, BSc Adel.
Basil Patrick McBrien, MSc N.S.W., ASTC

Tutor
John Dominic Rossi, BSc N.S.W.

Professional Officers
Beverley Humphrey, BSc Syd.
Mary Essie Johnsen, BSc Qld.
Christine Elizabeth McNab, BScAgr Syd., MAppSc N.S.W.
Marshall Henry Maxwell Wilson, MSc N.S.W.

Medical Microbiology

Associate Professor
Adrian Lee, BSc PhD Melb., MASM

Senior Lecturers
Royle Anthony Hawkes, BScAgr Syd., PhD A.N.U., MASM
Graham Douglas Fischer Jackson, BSc PhD Adel.

Senior Tutor
Elizabeth Hazel Hegarty, MSc Qld., PhD N.S.W.

Honorary Associate (School)
Phyllis Margaret Rountree, DSc Melb., DipBact Lond.

School of Psychology

Professor of Psychology and Head of School
Laurence Binet Brown, MA DipEd N.Z., PhD Lond.

Professor of Psychology
Sydney Harold Lovibond, BA Melb., MA PhD DipSocSc Adel., FASSA

Professor of Psychology
Vacant

Associate Professor
Donald McNicol, BA Adel., PhD Camb.

Administrative Officer
Trevor John Clulow, BA N.S.W., MA Syd.

Senior Lecturers
Stephen Bochner, BA Syd., MA Hawaii, PhD N.S.W.
Alexander Edward Carey, BSc Lond.
James Christopher Clarke, MA N.Z., PhD N.Y. State
Patrick John Cleary, BSc Qld., PhD N.S.W.
Evan Edwin Davies, MA Syd., PhD N.S.W.
Keith Raymond Llewellyn, BA PhD Syd.
George Paxinos, AB Calif., MA PhD McG.

Lecturers
Austin Sorby Adams, BA Adel., MA PhD Mich.
Kevin Douglas Bird, BSc PhD N.S.W.
Peter Charles Birrell, BA Syd., PhD N.S.W.
Sydney Engelberg, BA Rand., MS Hebrew Univ. of Jerusalem, MA PhD N.Y. State
Joseph Paul Forgas, BA Macq., DPhil Oxf.
William Taylor Hardy, BA Claremont, MA PhD Calif.
William Hopes, BA Syd.
Edward James Kehoe, BA Lawrence, MA PhD Iowa
Charles Porter Kenna, BA BSc Syd.
John Eaton Taplin, BSc PhD Adel.
Reginald Frederick Westbrook, MA Glas., DPhil Sus.

Tutors
John Crawford, MSc Syd.
Michael Atholstone Hill, BSc N.S.W.
Sachiko Kinoshita, BSc N.S.W.
Peter Frank Lovibond, BSc N.S.W.
Stephen William MacMahon, BSc MA Cant.
Jennifer Orjelick, BA N.S.W.
Glenn Peter Richard, BSc Glas.
Staff: Biological Sciences

Professional Officer
Angus John Fowler, BSc N.S.W.

Administrative Assistant
Susan Lorraine Stewart

Honorary Associate
Thomas Angus McKinnon, MA PhD Syd.

Honorary Associates
Ronald Strahan, MSc W.Aust., FSIH
Kenneth Radway Allen, MA ScD Camb.

Honorary Visiting Fellows
Judith Everleigh Marlow, BSc Lond.
Charles Pregenzer, BS N.Y. State, MA Hofstra U. Hempstead, N.Y., PhD N.S.W.
Grahame John Wardon Webb, BSc PhD N.E.

School of Zoology

Professor of Zoology and Head of School
Terence John Dawson, BRurSc PhD N.E.

Associate Professor
Erik Shipp, BSc Syd., PhD N.S.W.

Senior Lecturers
Michael Lane Augee, BSc Willamette, PhD Monash
Alan Michel Beal, DipAH Qld Agr. Coll., BSc PhD Qld.
Rossiter Henry Crozier, MSc Melb., PhD C'nell.
Charles Keith Goddard, BSc Edin., PhD St And.
Peter Greenaway, BSc PhD N'cle. (U.K.)
Robert John Macintyre, MSc Cant., PhD McGill.
Aola Mary Richards, MSc PhD N.Z., FRES
Arthur Woods, MA Oxf., FRES, MI Biol

Lecturers
Michael Archer, BA Prin., PhD W. Aust.
David Benjamin Croft, BSc Flin., PhD Camb.
Alexander Mazanov, BSc A.N.U., PhD N.E.

Senior Tutors
Patricia Irene Dixon, BSc PhD N.S.W., DipEd Syd.
Barry James Fox, BSc N.S.W., DipEd N'cle. (N.S.W.), MSc W. Ont.

Tutors
Jennifer Merciana Anderson, MSc Agr Syd., PhD N.S.W.
John Hamlyn Harris, BVSc Syd.
Alan Dennis Needham, BSc N.S.W.
Stephen Andrews Sparkes, BSc N.S.W.

Professional Officers
Francis Dominic Fanning, BSc N.S.W.
Lionel Winston Filewood, BSc Syd.
Faculty of Science

Staff

Comprises Schools of Chemistry, Mathematics, Optometry and Physics.

Dean
Professor V. T. Buchwald

Chairman
Professor K. N. R. Taylor

Lecturer
Jason Harry Falla Middleton, BSc PhD Monash

Graduate Assistant
Emma Shackleton Rossi, BA Syd.

School of Chemistry

Professor of Chemistry and Head of School
James Stanley Shannon, DIC PhD Lond., DSc Adel., FRACI

Professor of Organic Chemistry
Vacant

Professor† and Head of Department of Organic Chemistry
George William Kenneth Cavill, MSc Syd., PhD DSc Liv., FAA, FRACI

Professor of Theoretical and Physical Chemistry
Raymund Marshall Golding, MSc Auck., PhD Camb., FNZIC, FInstP, FRACI

Professor of Analytical Chemistry and Head of Department of Analytical Chemistry
Lloyd Earle Smythe, MSc Syd., PhD Tas., FRACI

Professor** and Head of Department of Inorganic Chemistry
Stanley Edward Livingstone, PhD DSc N.S.W., FSTC, FRACI

*For Board of Studies in Science and Mathematics, see later in this section.
†In the field of organic chemistry.
**In the field of inorganic chemistry.
Executive Assistant to Head of School
W. J. Dunstan

Administrative Assistant
Dominic Vincent Portelli

Honorary Associates
Lister George Clark, ASTC, ARACI, FAIFST
Edward Ritchie Cole, MSc Syd., PhD N.S.W., FRACI
Lister Waverley Ormsby Martin, BSc Syd., ARACI
Neville Charles Stephenson, MSc Syd., PhD DSc N.S.W., FRACI

Professional Officers
Joseph John Brophy, BSc PhD N.S.W., DipEd Monash, ARACI
Leonard Alexander Cherkson, BE PhD Kiev
Donald Chadwick Craig, BSc Syd., MSc N.S.W.
Vladimir Diphazde, BSc N.S.W.
Richard James Finlayson, BSc N.S.W., ARACI
Peter Anthony James, BSc N.S.W., ASTC, ARACI
Derek Nelson, BSc DipEd Belfast
Victor Arthur James Pickles, BSc N.S.W., ASTC, ARACI
James Francis Rockwell, BSc N.S.W., ASTC
Graeme Thomas See, BSc N.S.W., ASTC
Heinz Schneider, BE N.S.W.
Helen Shumsky, BSc Odessa I.T.
John Sussman, BSc Sydney.
Richard Szczepanski, BSc N.S.W.
Oen Bin Tio, BE N.S.W.
Michael Keys Withers, MSc N.S.W.

Department of Nuclear and Radiation Chemistry

Associate Professor and Head of Department
Douglas John Carswell, MSc PhD DipEd Syd., CChem, FRACI, FRSC

Senior Lecturers
Norman Thomas Barker, MSc PhD N.S.W.
Mervyn Allan Long, MSc PhD Auck., ANZIC

Tutor
Ruth Ann Brooks, BSc PhD N.S.W.

Department of Analytical Chemistry

Associate Professor
Douglas Peter Graddon, MSc PhD Manc., DSc N.S.W., FRIC

Senior Lecturers
Peter William Alexander, MSc PhD Syd., ARACI
Ian Kelvin Gregor, BSc N.E., MSc PhD N.S.W.
Jaroslav Petr Matousek, IngChem T.U. Prague, PhD N.S.W., ARACI

Lecturers
Sergio Dilli, BSc PhD N.S.W., ASTC, ARACI
Paul Raymond Haddad, BSc PhD N.S.W., ARACI

Tutor
Edward Joseph Czobik, BSc DipFDA N.S.W.

Department of Organic Chemistry

Associate Professors
Peter Steele Clezy, BSc PhD Tas., ARACI
George Crank, MSc Qu., PhD Monash, CChem, MRSC
Ronald Arthur Eade, MSc Syd., PhD Liv., FRACI
Michael John Gallagher, MSc Qld., PhD Camb., ARACI
John Johnson Henry Simes, MSc DipEd Syd., PhD Liv., FRACI
Sciences

Senior Lecturers
Roger Bishop, BSc St. And., PhD Camb.
Norman William Herbert Cheetham, BSc PhD Old.
John Lawrence Courtney, BSc PhD N.S.W., ASTC, ARACI
William John Dunstan, MSc Syd., ARACI
Peter Thomas Southwell-Keely, BSc Syd., PhD N.S.W.
John David Stevens, BSc Tas., PhD N.E., ARACI

Lecturer
George Vernon Baddeley, BSc Manc., DPhil Oxf.

Senior Tutors
Satya Narayana Murthy Durvasula, MSc And., PhD Syd., ARIC
Inno Salasoo, BSc PhD N.S.W., ASTC, ARACI

First Year Chemistry

Director of First Year Classes in Chemistry
Trevor Norman Lockyer, MSc PhD N.S.W.

Lecturer
Clive Reginald Taylor, BSc Syd.

Senior Tutors
Peter See Kien Chia, MSc PhD N.S.W.
Naseem Hasan Peerzada, MSc Punjab, PhD LaT.

Tutors
Hai Hoang Minh, BSc N.S.W.
Joan Pauline Ross, BSc Syd.

Department of Physical Chemistry

Senior Lecturer and Head of Department
Tristan John Victor Findlay, BSc PhD St. And., FRACI

Associate Professors
John Lyndon Garnett, MSc N.S.W., PhD Chic., ASTC, FRACI
Brian John Orr, MSc Syd., PhD Brist, FRACI

Senior Lecturers
David Scott Alderdice, MSc Syd., PhD Lond.
Brian Raymond Craven, MSc PhD N.S.W., ASTC
Gregory Stewart Buchanan, MSc Syd., ARACI
William David Johnson, BSc Syd., MSc N.E., PhD N.S.W.
Prosper David Lark, BEc Syd., MSc PhD N.S.W., ASTC, FRACI
Ali David Rae, MSc PhD Auck., ANZIC

Lecturers
Martin Peter Bogaard, BSc PhD Syd.
Ruby Foon, MSc PhD Melb.

Tutor
Judith Ellen Batts, BSc Qld., PhD Macq.

School of Mathematics

Professor of Pure Mathematics and Head of School
Derek William Robinson, MA DPhil Oxf., FAA

Professor of Applied Mathematics
Viliam Teodor Buchwald, BSc Manc., MSc PhD Lond., FIMA

Professor of Applied Mathematics
John Markus Blatt, BA Cinc., PhD C'neill. and Prin., FAA, FACS

Professor of Pure Mathematics
Gavin Brown, MA St. And., PhD N'cle.(U.K.)

Professor of Statistics
Abraham Michael Hasofer, BEE Faruk, BEc PhD Tas., MEAust

Associate Professor and Director of First Year Studies
Angus Henry Low, MSc DipEd Syd., PhD N.S.W.
Department of Applied Mathematics

Associate Professors
Ian Hugh Sloan, BSc Melb., MSc Adel., PhD Lond.
William Eric Smith, MSc Syd., BSc Oxf., PhD N.S.W., MinstP

Senior Lecturers
Michael Newton Barber, BSc N.S.W., PhD C'nell.
Brian James Burn, MSc Otago, PhD Camb.
Elvin James Moore, MSc W.Aust., PhD Harv.
Kazuto Okamoto, BS Tokyo, PhD Louisiana State
Alexander Hugh Opie, BSc DipEd Melb., PhD Monash
Kok-Lay Teo, BSc Sing., MASc PhD Ott., MIEEE, AMIEE

Senior Tutor
Veronica Paul, BSc Wales, DipEd N.E.

Department of Pure Mathematics

Senior Lecturers
Peter Windeyer Donovan, BA Syd., DPhil Oxf.
Jack David Gray, BA Syd., PhD N.S.W.
David Christopher Hunt, BSc Syd., MSc PhD Warw.
John Harold Loxton, MSc Melb., PhD Camb.
Ezzat Sami Noussair, BA BSc Cairo, PhD Br.Col.
John Frederick Price, MSc Melb., PhD A.N.U.
John St Alban Sandiford, MSc Syd.

Lecturers
Charles Dixon Cox, BSc DipEd Qld.
Shaun Anthony Requa Disney, BA BSc Adel., DPhil Oxf.
Mary Ruth Freischlich, BA Wilw., MA N.S.W.
Rodney Kelvin James, BSc PhD Syd.
Iain Raeburn, BSc Edin., PhD Utah
Jeffrey William Sanders, BSc Monash, PhD A.N.U.
Colin Eric Sutherland, BSc Cant., PhD Calif.
David Graham Tacon, BSc N’cle.(N.S.W.), PhD A.N.U.

Senior Tutors
Michael David Hirschhorn, BSc Syd., MSc Edin., PhD N.S.W.
Agnes Vilma Nikov, DiplMath DipEd Bud.

Emeritus Professor
George Szekeres, DiplChemEng Bud., Hon.DSc N.S.W., FAA

Honorary Associate
Gregory Maxwell Kelly, BSc Syd., BA PhD Camb., FAA

Department of Statistics

Associate Professor of Mathematical Statistics
James Bartram Douglas, MA BSc DipEd Melb.

Associate Professor
Clyde Arnold McGilchrist, BSc BEd Qld., MSc PhD N.S.W.

Senior Lecturers
Peter John Cooke, MSc N.E., MS PhD Stan.
John Anthony Eccleston, BSc Syd., MSc Manc., PhD C'nell.
Anthony Gilbert Lewis Elliott, BSc W.Aust.
Manohar Khanderao Vagholkar, MSc Birm., DIC PhD Lond.

Lecturers
Ronald Bruce Davis, BSc Syd., MSc N.S.W., DipEd N.E.
John Douglas MacFarlane, BSc Qld., MStats N.S.W.

Senior Tutor
Lynette Anne Freeman, BSc MStats N.S.W.

Professional Officer
Rhonda Gock, BSc N.S.W.

Honorary Associate
Alan John Miller, MSc PhD Manc., FSS
Department of Theoretical and Applied Mechanics

Senior Lecturers
Michael Leslie Banner, BE MEngSc Syd., PhD Johns H.
John Desmond Fenton, BE MEngSc Melb., PhD Camb.
William Dennis McKee, BSc Adel., MSc Flin., PhD Camb.

Lecturers
Noel Geoffrey Barton, BSc PhD W.Aust.
Peter James Blennerhassett, BE W.Aust., PhD Lond.
Douglas Edward Mackenzie, BSc Tas., FIMA, MACE
David Allan Mustard, BSc Syd., MSc N.S.W.
Richard Wyndham O'Brien, BE N.S.W., PhD Camb.

Senior Tutor
Albert Tator Daoud, BSc R'dg., PhD N.S.W., FInstP

Honorary Associates
Bruce Valton Hamon, BSc BE Syd., MAIP
Captain Daniel James McKeegan, BSc Syd., MSc PhD N.S.W., RAN

School of Optometry

Professor of Optometry and Head of School
Josef Lederer, BSc Syd., MSc N.S.W., ASTC, FIO

Associate Professor
George Amigo, BSc(OptSc) PhD N.S.W., ASTC, FIO, FAAO

Senior Lecturers
John Andrew Alexander, MSc PhD N.S.W., ASTC, FIO, FAAO
Brien Anthony Holden, BAppSc Melb., PhD C.U.N.Y., LOSc VCO(Melb), FAAO
Maxwell McNeil Lang, BSc PhD N.S.W., ASTC, FIO, FAAO, MAIP

Lecturers
Philip James Anderton, BOptom BSc N.S.W., MScOptom Melb.
Stephen John Dain, BSc PhD C.U.N.Y., FBOA
Graham Leslie Dick, MSc N.S.W., ASTC, FIO
Elijah Udovitch, MOptom N.S.W.

Professional Officer
Angela Kathleen McCarthy, ASTC, FIO

Tutors
Shoba Ayyar, BOptom N.S.W.
Bruce Michael Cook, BOptom N.S.W.

Instructor
Ian William Robinson

School of Physics

Professor of Experimental Physics and Head of School
Kenneth Norman Robert Taylor, BSc PhD Birm., FInstP, FAIP

Professor of Physics
Vacant

Professor of Experimental Physics and Head of Department of Applied Physics
Hiroshi Julian Goldsmid, BSc PhD DSc Lond., FInstP, FAIP

Professor of Theoretical Physics and Head of Department of Theoretical Physics
Heinrich Hora, DiplPhys Halle, DrRerNat Jena, FInstP, FAIP

Professor of Applied Physics
Vacant

Associate Professors
Hans Gerard Leonard Coster, MSc PhD Syd., MinstP, MAIP
Dan Haneman, DSc Syd., PhD R'dg., FAIP
John Charles Kelly, BSc Syd., PhD R'dg., DSc N.S.W., FInstP, MAIP, MAmPS
Lindsay George Parry, BSc DipEd Syd., MSc PhD N.S.W., MinstP, MAIP
Executive Assistant to Head of School
Dr P. R. Elliston

Director of First Year Studies
Dr G. J. Russell

Administrative Officer
Peter Clark, BSc Lond., CEng, FIM, FiCorrTech, ARSM

Honorary Associates
John Stuart Dryden, MSc Melb., DIC PhD Lond., FAIP
John Lloyd Symonds, BSc Adel., PhD Birm., FInstP, FAIP
Guy Kendall White, MSc Syd., DPhil Oxf., FAAA, FInstP, FAIP

Honorary Visiting Fellow
Victor Kastalsky, BSc PhD N.S.W., ASTC, MInstP, MAIP

Department of Applied Physics

Associate Professors
Brian Ronald Lawn, BSc PhD W.Aust., GradInstP
David Henry Morton, MA Oxf., FInstP, FAIP

Senior Lecturers
John Ian Dunlop, BSc PhD N.S.W., MAIP, MAASATI
John Robert Hanscomb, BSc Qld., MSc PhD N.S.W., MAIP, GradInstP
Leslie Bevan Harris, BSc Lond., BA DipEd Durh., PhD N.S.W., MInstP, MAIP
Victor Raymond Howes, BSc PhD Lond.

Lecturer
Kenneth Mann, BSc Qld., MSc N.S.W.

Tutor
Christopher David Miller, BE Syd., BSc N.S.W.

Department of Theoretical Physics

Associate Professor
Jaan Oitmaa, BSc PhD N.S.W., FAIP

Senior Lecturer
David Neilson Lowy, BSc Melb., MS PhD N.Y. State

Lecturer
John Richard Shepanski, MSc Syd., MAIP

Tutors
Paul McNamara, BSc N.S.W.
Marlene Noella Read, BSc PhD N.S.W.
Gabriel Vierra, BSc N.S.W.
Board of Studies in Science and Mathematics

Staff

The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences and the Faculty of Science, and some members of specific schools in other faculties contributing to the Science and Mathematics Course: Applied Geology, Chemical Engineering and Industrial Chemistry, Geography, Metallurgy (Applied Science); History and Philosophy of Science, Philosophy, Sociology, Political Science (Arts); Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

Dean*
Professor V. T. Buchwald

Chairman
Professor A. J. Wicken

Coordinator of Studies in Science and Mathematics
Associate Professor K. G. Rienits

Graduate Assistant
Mrs E. S. Rossi

*For 1980-81. The Deans of the Faculty of Science and of the Faculty of Biological Sciences serve alternately as Deans responsible for the Board.
Broken Hill Division

Staff

Director
Professor J. E. Andersen

Librarian
Peter Geoffrey Longrigg, BA P.N.G., DipLib Canberra C.A.E., ALAA

Department of Mining and Mineral Sciences

Professional Officer
Kenneth James Murray, BSc Syd., MSc N.S.W., AMAusIMM

Mechanical Engineering

Lecturers
Llewellyn Ramsay Jones, BSc N.Z., DipAm MEng Sheff., PhD Wales, MIEAust, MIMechE
Ian Lachlan Maclaine-cross, BE Melb., PhD Monash, MIEAust, MAIRAH, MSES
Chakravarti Varadachar Madhusudana, BE Mys., ME I.I.Sc., PhD Monash, MIEAust

W.S. and L.B. Robinson University College

Head of Department of Science
Professor John Everard Andersen, BE Melb., PhD N.S.W., FIIEAust, MAusIMM, ARACI

Head of Department of Mining and Mineral Sciences
Professor Leon John Thomas, BSc PhD Birm., CEng, FIIEAust, MAusIMM, MIMinE

Mining Engineering

Senior Lecturer
Venkata Satyanarayana Vutukuri, BSc(Eng) Ban., MS Wis., MMGI, AIME, AMAusIMM
Sciences

Mineral Science

Senior Lecturer
Barenya Kumar Banerji, MSc Patna, PhD Leeds, MAusIMM

Geology

Senior Lecturer
Gerrit Neef, BSc Lond., PhD Well., FGS

Department of Science

Chemistry

Lecturer
Derek Richard Smith, BSc PhD Wales

Senior Tutor
Robert Edward Byrne, MSc N.S.W., ARACI, AMAusIMM

Mathematics

Senior Lecturer
Zdenek Kviz, DipPhys Brno, CSc RerNatDr Charles, PhD Prague

Lecturers
David Charles Guiney, BSc PhD Adel.
Dennis William Trenerry, BSc PhD Adel.

Physics

Senior Lecturer
Robert John Stening, MSc Syd., PhD Qld., DipTertEd N.E. FRMetS, MAIP

Lecturer
Kenneth Reid Vost, BSc Glas., MSc N.S.W., AMAusIMM

Fowlers Gap Research Station

Officer-in-charge
Charles Richard Carter, BSc PhD Syd.
The University of New South Wales

Kensington Campus 1981

Theatres

Biomedical Theatres E27
Central Lecture Block E19
Classroom Block (Western Grounds) H3
Electrical Engineering Theatre F17
Keith Burrows Theatre J14
Main Building Theatre K14
Mathews Theatres D23
Parade Theatre E3
Science Theatre F13
Sir John Clancy Auditorium C24

Buildings

Affiliated Residential Colleges
New (Anglican) L6
Shalom (Jewish) N9
Warrane (Roman Catholic) M7
Applied Science F10
Architecture H14
Arts (Morven Brown) C20
Banks F22
Barker Street Gatehouse N11
Basser College C18
Biological Sciences D26
Central Store 813
Biomedical Theatres E27

Main Building K15
Maintenance Workshop B13
Mathews F23
Mechanical and Industrial Engineering J17
Medicine (Administration) B27
Menzies Library E21
Metallurgy E8
Morven Brown (Arts) C20
New College (Anglican) L6
Newton J12
Parade Theatre E3
Philip Baxter College D14
Robert Heffron (Chemistry) E12
Sam Cracknell Pavilion H8
Shalom College (Jewish) N9
Sir Robert Webster (Textile Technology) G14
Swimming Pool B4
Unisearch House L5
University Regiment J2
University Union (Roundhouse) — Stage I E6
University Union (Blockhouse) — Stage II G6
University Union (Squarehouse) — Stage III E4
Wallace Wurth School of Medicine C27
Warrane College (Roman Catholic) M7
Wood and Pastoral Sciences B8

General

Accountancy F20
Admissions Office C22
Anatomy C27
Applied Geology F10
Applied Science (Faculty Office) F10
Appointments Office C22
Architecture (including Faculty Office) H14
Arts (Faculty Office) C20
Australian Graduate School of Management G27
Biochemistry D26
Biological Sciences (Faculty Office) D26

Biomedical Library F23
Biotechnology D26
Bookshop G17
Botany D26
Building H14
Cashier’s Office C22
Centre for Medical Education Research and Development C27
Chaplains E15a
Chemical Engineering and Industrial Chemistry F10
Chemistry E12
Child Care Centre N8
Civil Engineering H20
Committee in Postgraduate Medical Education B27
Community Medicine D26
Computing Services Unit E21
Drama D9
Economics F20
Education G2
Electrical Engineering and Computer Science G17
Engineering (Faculty Office) K17
English C20
Examinations and Student Records C22
Fees Office C22
Food Technology F10
French C20
General Studies C20
Geography K17
German Studies C20
Graduate School of the Built Environment H14
Health Administration C22
History C20
History and Philosophy of Science C20
Industrial Arts C9
Industrial Engineering J17
Institute of Languages G14
Institute of Rural Technology B8b
Kindergarten (House at Pooh Corner/Child Care Centre) N8
Landscape Architecture H14
Law (Faculty Office) E21
Law Library E21
Librarianship F23

Library E21
Lost Property F20
Marketing F20
Mathematics F23
Mechanical Engineering J17
Medicine (Faculty Office) B27
Metallurgy E8
Microbiology D26
Mining Engineering K15
Music B11b
National Institute of Dramatic Art C15
Nuclear Engineering G17
Optometry J12
Organizational Behaviour F20
Pathology C27
Patrol and Cleaning Services F20
Philosophy C20
Physics K15
Physical Education and Recreation Centre (PERC) B5
Physiology and Pharmacology C27
Political Science C20
Postgraduate Extension Studies (Closed Circuit Television) F20
Postgraduate Extension Studies (Radio Station and Administration) F23
Psychology F23
Public Affairs Unit C22
Regional Teacher Training Centre C27
Russian C20
Science and Mathematics Course Office F23
Social Work G2
Sociology C20
Spanish and Latin American Studies C20
Student Amenities and Recreation E15c
Student Counselling and Research E15c
Student Employment C22
Student Health E15b
Students’ Union E4
Surveying K17
Teachers’ College Liaison Office F15b
Tertiary Education Research Centre E15d
Textile Technology G14
Town Planning K15
University Union (Blockhouse) G6
Wool and Pastoral Sciences B8a
Zoology D26