The University of New South Wales

Sciences
Board of Studies in Science and Mathematics
Faculty of Biological Sciences
Faculty of Science

1982 Faculty Handbook
How to use this Handbook

The information in this book has been divided into **seven parts**.

General Information (the lilac coloured pages) lists what you need to know about the University as a whole, introduces some of the services available and notes the most important rules and procedures. You should read this part in its entirety.

For further information about the University and its activities, see the University Calendar.

Faculty Information.

Undergraduate Study outlines the courses available in each school in the faculty.

Graduate Study is about higher degrees.

Subject Descriptions lists each subject offered by the schools in the faculty. The schools are listed numerically.

Information includes:
- Subject number, title and description
- Prerequisite, co-requisite and excluded subjects, where applicable
- Additional information about the subject such as unit values, credit hours, teaching hours per week, sessions when taught

Financial Assistance to Students is a list of scholarships and prizes, available at undergraduate and graduate level in the faculty.

Staff list.

For detailed reference, see the list of **Contents.**
The University of New South Wales

Sciences
Board of Studies in Science and Mathematics
Faculty of Biological Sciences
Faculty of Science

1982 Faculty Handbook
The address of the University of New South Wales is:

PO Box 1, Kensington,
New South Wales, Australia 2033

Telephone: (02) 663 0351
Telegraph: UNITECH, SYDNEY
Telex AA26054

The University of New South Wales Library has catalogued this work as follows:

UNIVERSITY OF NEW SOUTH WALES

Sciences: faculty handbook
Kensington.

1976 +
Annual.

Handbook of the Board of Studies in Science and Mathematics, the Faculty of Biological Sciences, and the Faculty of Science.

University of New South Wales—Board of Studies in Science and Mathematics—Periodicals
University of New South Wales—Faculty of Biological Sciences—Periodicals
University of New South Wales—Faculty of Science—Periodicals
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 14 September 1981, but may be amended without notice by the University Council.

Contents

General Information 1

Some People Who Can Help You 1

Calendar of Dates

The Academic Year 2
1982 2
1983 4

Organization of the University 5

Arms of the University/Council/Professors Board/Faculties/Boards of Study/Schools/Executive Officers/Administration/Student Representation/Award of the University Medal/Subject Numbers/Textbook Lists/Co-operative Bookshop/General Studies

Student Services and Activities

Accommodation 7
Residential Colleges 7
Other Accommodation 7
Associations, Clubs and Societies 7
The Sports Association 7
School and Faculty Associations 8
Australian Armed Services 8
Chaplaincy Centre 8
Deputy Registrar (Student Services) 8
Sport and Recreation Section 8
Physical Education and Recreation Centre 8
Student Counselling and Research Unit 9
Careers and Employment Section 9
Student Health Unit 9
The Students’ Union 9
The University Library 10
The University Union 10

Financial Assistance to Students 11

Tertiary Education Assistance Scheme/Other Financial Assistance/Financial Assistance to Aboriginal Students/Fund for Physically Handicapped and Disabled Students
Enrolment Procedures and Fees Schedules 1982

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2. New Undergraduate Enrolments</td>
<td>13</td>
</tr>
<tr>
<td>3. Re-enrolment</td>
<td>13</td>
</tr>
<tr>
<td>4. Restrictions Upon Students Re-enrolling</td>
<td>13</td>
</tr>
<tr>
<td>5. New Research Students</td>
<td>13</td>
</tr>
<tr>
<td>6. Re-enrolling Research Students</td>
<td>13</td>
</tr>
<tr>
<td>7. Submission of Graduate Thesis or Project Report</td>
<td>13</td>
</tr>
<tr>
<td>8. Enrolments by Miscellaneous Students</td>
<td>13</td>
</tr>
<tr>
<td>9. Final Dates for Completion of Enrolment</td>
<td>13</td>
</tr>
<tr>
<td>10. University and University Union Membership Card</td>
<td>14</td>
</tr>
<tr>
<td>11. Payment of Fees</td>
<td>14</td>
</tr>
<tr>
<td>12. Assisted Students</td>
<td>14</td>
</tr>
<tr>
<td>13. Extension of Time</td>
<td>14</td>
</tr>
<tr>
<td>14. Failure to Pay Fees and Other Debts</td>
<td>14</td>
</tr>
<tr>
<td>15. Student Fees</td>
<td>14</td>
</tr>
<tr>
<td>16. Penalties</td>
<td>15</td>
</tr>
<tr>
<td>17. Exemptions - Fees</td>
<td>15</td>
</tr>
<tr>
<td>18. Variations in Enrolment (including Withdrawal)</td>
<td>18</td>
</tr>
<tr>
<td>19. Exemption — Membership</td>
<td>17</td>
</tr>
<tr>
<td>Private Overseas Students</td>
<td>17</td>
</tr>
<tr>
<td>Leave of Absence</td>
<td>17</td>
</tr>
<tr>
<td>Course Transfers</td>
<td>17</td>
</tr>
<tr>
<td>Admission with Advanced Standing</td>
<td>17</td>
</tr>
<tr>
<td>Resumption of Courses</td>
<td>18</td>
</tr>
<tr>
<td>Examinations</td>
<td>18</td>
</tr>
<tr>
<td>Restrictions upon Students Re-enrolling</td>
<td>20</td>
</tr>
<tr>
<td>Schedule A</td>
<td>22</td>
</tr>
<tr>
<td>Admission to Degree or Diploma</td>
<td>22</td>
</tr>
<tr>
<td>Attendance at Classes</td>
<td>23</td>
</tr>
<tr>
<td>Student Records</td>
<td>23</td>
</tr>
<tr>
<td>Release of Information to Third Parties</td>
<td>23</td>
</tr>
<tr>
<td>Change of Address</td>
<td>23</td>
</tr>
<tr>
<td>Ownership of Students' Work</td>
<td>24</td>
</tr>
<tr>
<td>Notices</td>
<td>24</td>
</tr>
<tr>
<td>Parking within the University Grounds</td>
<td>24</td>
</tr>
<tr>
<td>Academic Dress</td>
<td>24</td>
</tr>
<tr>
<td>Further Information</td>
<td>24</td>
</tr>
<tr>
<td>Vice-Chancellor's Official Welcome to New Students</td>
<td>24</td>
</tr>
</tbody>
</table>

Introduction to the Sciences Handbook

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Information</td>
<td>25</td>
</tr>
<tr>
<td>Who to Contact</td>
<td>27</td>
</tr>
<tr>
<td>Enrolment Procedures</td>
<td>27</td>
</tr>
<tr>
<td>Faculty of Biological Sciences</td>
<td>27</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>27</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>27</td>
</tr>
<tr>
<td>Sciences Library Facilities</td>
<td>27</td>
</tr>
<tr>
<td>Student Clubs and Societies</td>
<td>28</td>
</tr>
<tr>
<td>Statistical Society of Australia: New South Wales Branch</td>
<td>28</td>
</tr>
</tbody>
</table>

Board of Studies in Science and Mathematics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>3970 Science and Mathematics Course</td>
<td>31</td>
</tr>
<tr>
<td>Aims</td>
<td>31</td>
</tr>
<tr>
<td>Objectives</td>
<td>31</td>
</tr>
<tr>
<td>The Structure</td>
<td>32</td>
</tr>
<tr>
<td>The three year program</td>
<td>32</td>
</tr>
<tr>
<td>The four year program</td>
<td>32</td>
</tr>
<tr>
<td>Rules governing admission to the course with advanced standing</td>
<td>33</td>
</tr>
<tr>
<td>Programs</td>
<td>33</td>
</tr>
<tr>
<td>4770 Combined Science /Law Course</td>
<td>70</td>
</tr>
<tr>
<td>Programs</td>
<td>70</td>
</tr>
<tr>
<td>3730 Combined Science/Civil Engineering Course</td>
<td>74</td>
</tr>
<tr>
<td>Programs</td>
<td>74</td>
</tr>
<tr>
<td>3725 Combined Science/Electrical Engineering Course</td>
<td>78</td>
</tr>
<tr>
<td>Programs</td>
<td>78</td>
</tr>
</tbody>
</table>
4070 Mathematics/4080 Science Education Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4070 Mathematics Education Course</td>
<td>79</td>
</tr>
<tr>
<td>Objectives</td>
<td>79</td>
</tr>
<tr>
<td>Honours and Pass Degree Requirements</td>
<td>79</td>
</tr>
<tr>
<td>Components</td>
<td>80</td>
</tr>
<tr>
<td>Enrolment Requirements</td>
<td>81</td>
</tr>
<tr>
<td>Programs</td>
<td>81</td>
</tr>
<tr>
<td>4080 Science Education Course</td>
<td>82</td>
</tr>
<tr>
<td>Objectives</td>
<td>82</td>
</tr>
<tr>
<td>Honours and Pass Degree Requirements</td>
<td>82</td>
</tr>
<tr>
<td>Components</td>
<td>83</td>
</tr>
<tr>
<td>Enrolment Requirements</td>
<td>83</td>
</tr>
<tr>
<td>Programs</td>
<td>84</td>
</tr>
</tbody>
</table>

Table 1: Units offered by the Board of Studies In Science and Mathematics

<table>
<thead>
<tr>
<th>Table 1: Units offered by the Board of Studies In Science and Mathematics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>

Table 2: Course 3970 — Units available In specific programs

<table>
<thead>
<tr>
<th>Table 2: Course 3970 — Units available In specific programs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>111</td>
</tr>
</tbody>
</table>

Table 3: Level IV units offered by the Board of Studies In Science and Mathematics

<table>
<thead>
<tr>
<th>Table 3: Level IV units offered by the Board of Studies In Science and Mathematics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>116</td>
</tr>
</tbody>
</table>

Faculty of Biological Sciences

Introduction

| Introduction | 119 |

Course Outline 3430

3430 Psychology Degree Course (BSc) Full-time

3430 Psychology Degree Course (BSc) Full-time	120
Rules governing the Psychology Course	120
Rules governing admission to the Psychology Course with advanced standing	121
Recommended Psychology Course patterns	122
Compulsory Psychology Subjects for all Courses	122

Faculty of Science

Introduction

| Introduction | 125 |

Course Outlines

3910 Pure and Applied Chemistry Course

| 3910 Pure and Applied Chemistry Course | 126 |
| Electives offered by the School of Chemistry | 126 |

3910 Pure and Applied Chemistry (BSc)

3910 Pure and Applied Chemistry (BSc)	127
Full-time 127	127
Part-time 128	128

3950 Optometry Course (BOptom) Full-time

| 3950 Optometry Course (BOptom) Full-time | 129 |
| Conditions for the Award of the double degree of BSc BOptom in the Faculty of Science | 130 |

Sciences

Graduate Study

Faculty of Biological Sciences and Faculty of Science Enrolment Procedures

| Faculty of Biological Sciences and Faculty of Science Enrolment Procedures | 131 |

Biotechnology

<table>
<thead>
<tr>
<th>Biotechnology</th>
<th>132</th>
</tr>
</thead>
<tbody>
<tr>
<td>5320 Biochemical Engineering Graduate Diploma Course (GradDip)</td>
<td>132</td>
</tr>
<tr>
<td>5340 Biotechnology Graduate Diploma Course (GradDip)</td>
<td>132</td>
</tr>
<tr>
<td>8260 Master of Science (Biotechnology) (MSc(Biotech))</td>
<td>133</td>
</tr>
</tbody>
</table>

Psychology

<table>
<thead>
<tr>
<th>Psychology</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td>8250 Master of Psychology (MPsychol) Full-time</td>
<td>134</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>8770 Master of Chemistry (MChem)</td>
<td>134</td>
</tr>
<tr>
<td>5510 Food and Drug Analysis Graduate Diploma (DipFDA)</td>
<td>135</td>
</tr>
</tbody>
</table>

History and Philosophy of Science

<table>
<thead>
<tr>
<th>History and Philosophy of Science</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>8780 Master of Science and Society (MSc Soc)</td>
<td>136</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>136</th>
</tr>
</thead>
<tbody>
<tr>
<td>8740 Master of Mathematics (MMath)</td>
<td>136</td>
</tr>
<tr>
<td>8750 Master of Statistics (MStats)</td>
<td>136</td>
</tr>
</tbody>
</table>

Optometry

<table>
<thead>
<tr>
<th>Optometry</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>8760 Master of Optometry (MOptom)</td>
<td>137</td>
</tr>
</tbody>
</table>

Physics

<table>
<thead>
<tr>
<th>Physics</th>
<th>136</th>
</tr>
</thead>
<tbody>
<tr>
<td>8730 Master of Physics (MPhysics)</td>
<td>138</td>
</tr>
<tr>
<td>Subject Descriptions</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Identification of Subjects by Numbers</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Metallurgy</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Accountancy</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Economics: Economics</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Applied Geology</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>General Studies</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Organizational Behaviour</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Optometry</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
</tr>
<tr>
<td>Botany</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Undergraduate Study</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Microbiology</td>
<td>193</td>
</tr>
<tr>
<td>Zoology</td>
<td>195</td>
</tr>
<tr>
<td>Chemical Engineering and Industrial Chemistry</td>
<td>196</td>
</tr>
<tr>
<td>Philosophy</td>
<td>197</td>
</tr>
<tr>
<td>Sociology</td>
<td>200</td>
</tr>
<tr>
<td>Education</td>
<td>200</td>
</tr>
<tr>
<td>History and Philosophy of Science</td>
<td>202</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>206</td>
</tr>
<tr>
<td>Anatomy</td>
<td>206</td>
</tr>
<tr>
<td>Physiology and Pharmacology</td>
<td>207</td>
</tr>
<tr>
<td>Community Medicine</td>
<td>208</td>
</tr>
<tr>
<td>Financial Assistance to Students</td>
<td>209</td>
</tr>
<tr>
<td>Scholarships</td>
<td>209</td>
</tr>
<tr>
<td>Prizes</td>
<td>210</td>
</tr>
<tr>
<td>Staff</td>
<td>221</td>
</tr>
<tr>
<td>Faculty of Biological Sciences</td>
<td>225</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>231</td>
</tr>
<tr>
<td>Broken Hill Division</td>
<td>232</td>
</tr>
</tbody>
</table>
General Information

To obtain the maximum benefit from your studies you should make an effort to learn what facilities the University offers, to investigate the best methods of study and to discover as much as possible about the course for which you are enrolled.

This Handbook has been specially designed as a detailed source of reference for you in all matters related to your Faculty. This General Information Section is intended to help you put the Faculty into perspective with the University as a whole, to introduce you to some of the services available to students and to note some of the most important rules and procedures.

For fuller details about some aspects of the University and its activities you might need to consult the University Calendar.

Some people who can help you

If you are experiencing difficulties in adjusting to the requirements of the University you will probably need advice. The best people to talk to on matters relating to progress in studies are your tutors and lecturers. If your problem lies outside this area there are many other people with specialized knowledge and skills who may be able to help you.

The Deputy Registrar (Student Services), Mr Peter O'Brien, and his Administrative Assistant, Mrs Anne Beaumont, are located on the first floor of the Chancellery. They will help those students who need advice and who have problems but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with general enquiries they are especially concerned with the problems of physically handicapped and disabled students. Enquire at room 148E, phone 2482.

The Assistant Registrar (Admissions and Examinations), Mr Jack Hill, is located on the ground floor of the Chancellery. General enquiries should be directed to 3715. For information regarding examinations, including examination timetables and clash of examinations, contact the Senior Administrative Officer, Mr John Grigg, phone 2143.

Note: All phone numbers below are University extension numbers. If you are outside the University, dial 663 0351 and ask for the extension or dial 662 – and then the extension number. This prefix should only be used when you are certain of the extension that you require. Callers using 662 cannot be transferred to any other number.
The Assistant Registrar (Student Records and Scholarships - Undergraduate and Postgraduate), Mr Graham Mayne is located on the ground floor of the Chancellery. For particular enquiries regarding illness and other matters affecting performance in examinations and assessment, academic statements, graduation ceremonies, prizes, release of examination results and variations to enrolment programs, phone 3711.

The Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery and is available for personal interview. For an appointment phone 3453.

The Assistant Registrar (Careers and Employment), Mr Jack Foley, is located in the Chancellery. Enquiries should be directed to 3259.

The Off-campus Housing Officer, Mrs Judy Hay, is located in Room 148E in the Chancellery. For assistance in obtaining suitable lodgings phone 3260.

Student Loans enquiries should be directed to Mrs Judy Hay, Room 148E in the Chancellery, phone 3164.

The Student Health Unit is located in Hut E15b at the foot of Basser Steps. The Director is Dr Geoffrey Hansen. For medical aid phone 2679, 2678 or 2677.

The Student Counselling and Research Unit is located at the foot of Basser Steps. For assistance with educational or vocational problems ring 3681 or 3685 for an appointment.

The University Librarian is Mr Allan Horton. Library enquiries should be directed to 2048.

The Chaplaincy Centre is located in Hut E15a at the foot of Basser Steps. For spiritual counselling phone Anglican – 2684; Catholic – 2379; Greek Orthodox – 2683; Lutheran – 2683; Uniting Church – 2685.

The Students’ Union is located on the second floor of Stage III of the University Union, where the SU President, Secretary-Treasurer, Education Vice-President, Welfare-Research Officer, and Director of Overseas Students are available to discuss any problems you might have.

Cashier’s Hours The University Cashier’s office is open from 9.30 am to 1.00 pm and from 2.00 pm to 4.30 pm, Monday to Friday. It is open for additional periods at the beginning of Session 1. Consult noticeboards for details.

Calendar of Dates

The Academic Year

The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of five weeks between the two sessions and there are short recesses of one week within each of the sessions. Session 1 commences on the first Monday of March.

1982

Faculties other than Medicine

<table>
<thead>
<tr>
<th>Session 1 (14 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 March to 9 May</td>
<td>1 March to 9 May</td>
</tr>
<tr>
<td>May Recess: 10 May to 16 May</td>
<td>10 May to 16 May</td>
</tr>
<tr>
<td>17 May to 13 June</td>
<td>17 May to 13 June</td>
</tr>
<tr>
<td>Midyear Recess: 14 June to 18 July</td>
<td>14 June to 18 July</td>
</tr>
<tr>
<td>15 June to 30 June</td>
<td>15 June to 30 June</td>
</tr>
</tbody>
</table>

Examinations

Session 2 (14 weeks)

<table>
<thead>
<tr>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 July to 22 August</td>
</tr>
<tr>
<td>August Recess: 23 August to 29 August</td>
</tr>
<tr>
<td>30 August to 31 October</td>
</tr>
<tr>
<td>Study Recess: 1 November to 7 November</td>
</tr>
<tr>
<td>8 November to 26 November</td>
</tr>
</tbody>
</table>

Faculty of Medicine

First and Second Years

<table>
<thead>
<tr>
<th>Term 1 (10 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 January to 4 April</td>
<td>26 January to 4 April</td>
</tr>
</tbody>
</table>

Third and Fourth Years

<table>
<thead>
<tr>
<th>Term 2 (9 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 April to 9 May</td>
<td>13 April to 9 May</td>
</tr>
<tr>
<td>May Recess: 10 May to 16 May</td>
<td>10 May to 16 May</td>
</tr>
<tr>
<td>17 May to 20 June</td>
<td>17 May to 20 June</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 3 (8 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 June to 22 August</td>
<td>28 June to 22 August</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 4 (11 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 August to 14 November</td>
<td>30 August to 14 November</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Term 1 (8 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 January to 21 March</td>
<td>26 January to 21 March</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 2 (8 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 March to 23 May</td>
<td>29 March to 23 May</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 3 (8 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 May to 25 July</td>
<td>31 May to 25 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 4 (8 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 August to 26 September</td>
<td>2 August to 26 September</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 5 (8 weeks)</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 October to 28 November</td>
<td>5 October to 28 November</td>
</tr>
</tbody>
</table>

January

<table>
<thead>
<tr>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Year’s Day – Public Holiday</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day for applications for review of results of annual examinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day for acceptance of applications by Admissions Office for transfer to another undergraduate course within the University</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>February</td>
</tr>
<tr>
<td>Monday 1</td>
</tr>
<tr>
<td>Thursday 4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Monday 15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>March</td>
</tr>
<tr>
<td>Monday 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wednesday 10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Friday 12</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Monday 15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Friday 26</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>April</td>
</tr>
<tr>
<td>Friday 9 to Monday 12</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Friday 16</td>
</tr>
<tr>
<td>Sunday 25</td>
</tr>
<tr>
<td>Monday 26</td>
</tr>
<tr>
<td>Tuesday 27</td>
</tr>
<tr>
<td>May</td>
</tr>
<tr>
<td>Wednesday 5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Monday 10</td>
</tr>
<tr>
<td>Thursday 13</td>
</tr>
<tr>
<td>Sunday 16</td>
</tr>
<tr>
<td>Friday 21</td>
</tr>
<tr>
<td>June</td>
</tr>
<tr>
<td>Tuesday 1</td>
</tr>
<tr>
<td>Sunday 13</td>
</tr>
<tr>
<td>Monday 14</td>
</tr>
<tr>
<td>Tuesday 15</td>
</tr>
<tr>
<td>Wednesday 30</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>July</td>
</tr>
<tr>
<td>Monday 12</td>
</tr>
<tr>
<td>Tuesday 13</td>
</tr>
<tr>
<td>Tuesday 13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Friday 16</td>
</tr>
<tr>
<td>Sunday 18</td>
</tr>
<tr>
<td>Monday 19</td>
</tr>
<tr>
<td>Thursday 29</td>
</tr>
<tr>
<td>Friday 30</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>August</td>
</tr>
<tr>
<td>Monday 23</td>
</tr>
<tr>
<td>Sunday 29</td>
</tr>
<tr>
<td>Tuesday 31</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>Friday 3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wednesday 8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Monday 13</td>
</tr>
<tr>
<td>Wednesday 22</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>November</td>
</tr>
<tr>
<td>Wednesday 22</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thursday 30</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
October
Monday 4 Eight Hour Day – Public Holiday
Friday 8 Last day for students to advise of examination timetable clashes
Thursday 21 Publication of timetable for examinations
Sunday 31 Session 2 ends

November
Monday 1 Study Recess begins
Sunday 7 Study Recess ends
Monday 8 Examinations begin
Friday 26 Examinations end

December
Monday 13 Examination results mailed to students
Tuesday 14 Examination results displayed on University noticeboards
Monday 20 List of graduands in Medicine for February graduation ceremony published in The Sydney Morning Herald
Saturday 25 Christmas Day – Public Holiday
Sunday 26 Boxing Day – Public Holiday

Faculty of Medicine
First and Second Years
Third and Fourth Years
As for other faculties

Term 1 (10 weeks) 24 January to 3 April
Term 2 (9 weeks) 11 April to 15 May
May Recess: 16 May to 22 May
Term 3 (9 weeks) 23 May to 19 June
Term 4 (10 weeks) 27 June to 28 August
Term 5 (8 weeks) 5 September to 13 November

Fifth Year
Term 1 (8 weeks) 24 January to 20 March
Term 2 (8 weeks) 28 March to 22 May
Term 3 (8 weeks) 30 May to 24 July
Term 4 (8 weeks) 1 August to 25 September
Term 5 (8 weeks) 4 October to 27 November

January
Monday 3 Public Holiday
Tuesday 4 Last day for applications for review of results of annual examinations
Friday 7 Last day for acceptance of applications by Admissions Office for transfer to another undergraduate course within the University
Monday 31 Australia Day – Public Holiday

February
Tuesday 8 Enrolment period begins for new undergraduate students and undergraduate students repeating first year
Monday 21 Enrolment period begins for second and later year undergraduate students and students enrolled in formal graduate courses

March
Monday 7 Session 1 begins – all courses except Medicine III, IV and V

April
Friday 1 to Monday 4 Easter – Public Holiday
Monday 25 Anzac Day – Public Holiday

1983

Faculties other than Medicine
Session 1 (14 weeks)
Examinations 7 March to 15 May
May Recess: 16 May to 22 May
23 May to 19 June
Midyear Recess: 20 June to 24 July
21 June to 6 July
Session 2 (14 weeks)
Examinations 25 July to 28 August
August Recess: 29 August to 4 September
5 September to 6 November
Study Recess: 7 November to 13 November
14 November to 2 December
Organization of the University

The Chairman of the Council is the Chancellor, the Hon. Mr Justice Samuels.

Rapid development has been characteristic of the University of New South Wales since it was first incorporated by an Act of Parliament in 1949, under the name of the New South Wales University of Technology.

In 1981 the University had 18,844 students and over 3,700 staff who worked in more than eighty buildings. These figures include staff and students at Broken Hill (W.S. and L.B. Robinson University College), Duntroon (the Faculty of Military Studies) and Jervis Bay.

The Professorial Board

The Professorial Board is one of the two chief academic units within the University and includes all the professors from the various faculties. It deliberates on all questions such as matriculation requirements, the content of courses, the arrangement of syllabuses, the appointment of examiners and the conditions for graduate degrees. Its recommendations on these and similar matters are presented to Council for its consideration and adoption.

Arms of the University of New South Wales

The arms of the University are reproduced on the front cover of this handbook. The arms were granted by the College of Heralds in London, on 3 March 1952, and the heraldic description is as follows:

'Argent on a Cross Gules a Lion passant guardant between four Mullets of eight points Or a Chief Sable charged with an open Book proper thereon the word SCIENTIA in letters also Sable.

'The lion and the four stars of the Southern Cross on the Cross of St George have reference to the State of New South Wales which brought the University into being; the open book with SCIENTIA across its page reminds us of its original purpose. Beneath the shield is the motto 'Manu et Mente', which is the motto of the Sydney Technical College, from which the University has developed. The motto is not an integral part of the Grant of Arms and could be changed at will; but it was the opinion of the University Council that the relationship with the parent institution should in some way be recorded.'

The Faculties/Boards of Study

The Dean, who is also a professor, is the executive head of the Faculty or Board of Study. Members of each Faculty or Board meet regularly to consider matters pertaining to their own areas of study and research, the result of their deliberations being then submitted to the Professorial Board.

The term 'faculty' is used in two distinct senses in the University. Sometimes it is used to refer to the group of schools comprising the faculty, and at others to the deliberative body of academic members of the Schools within the Faculty.

The eleven faculties are Applied Science, Architecture, Arts, Biological Sciences, Commerce, Engineering, Law, Medicine, Military Studies, Professional Studies and Science. In addition, the Board of Studies of the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education fulfil a function similar to that of the faculties. The Board of Studies in Science and Mathematics, which was established to facilitate the joint academic administration of the Science and Mathematics degree course by the Faculties of Biological Sciences and Science, considers and reports to the Professorial Board on all matters relating to studies, lectures and examinations in the science and mathematics degree course.

The Council

The chief governing body of the University is the Council which has the responsibility of making all major decisions regarding its policy, conduct and welfare.

The Council consists of 44 members from the State Parliament, Industry and commerce, agriculture, the trade unions, professional bodies, the staff, the students and the graduates of the University.

The Council meets six times per year and its members also serve on special committees dealing with, for example, academic matters, finance, buildings and equipment, personnel matters, student affairs and public relations.

The Schools

Once courses of study have been approved they come under the control of the individual schools (eg the School of Chemistry, the School of Mathematics). The head of the school in which you are studying is the person in this academic structure with whom you will be most directly concerned.
Executive Officers

As chief executive officer of the University, the Vice-Chancellor and Principal, Professor Rupert Myers, is charged with managing and supervising the administrative, financial and other activities of the University.

He is assisted in this task by two Pro-Vice-Chancellors, Professor Ray Golding and Professor Rupert Vallentine, together with the Deans and the three heads of the administrative divisions.

Award of the University Medal

The University may award a bronze medal to undergraduate students who have achieved highly distinguished merit on completion of their final year.

Identification of Subjects by Numbers

For information concerning the identifying number of each subject taught in each Faculty as well as the full list of identifying numbers and subjects taught in the University, turn to the first page of the section Subject Descriptions. This list is also published in the Calendar.

Textbook Lists

Textbook lists are no longer published in the Faculty handbooks. Separate lists are issued early in the year and are available at key points on the campus.

Students should allow quite a substantial sum for textbooks. This can vary from $250 to $600 per year depending on the course taken. These figures are based on the cost of new books. The Students’ Union operates a secondhand bookshop. Information about special equipment costs, accommodation charges and cost of subsistence on excursions, field work, etc, and for hospital residence (medical students) are available from individual schools.

General Administration

The administration of general matters within the University comes mainly within the province of the Registrar, Mr Ian Way, the Bursar, Mr Tom Daly, and the Property Manager Mr Peter Koller.

The Registrar’s Division is concerned chiefly with academic matters such as the admission of students, and the administration of examinations as well as the various student services (health, employment, amenities, and counselling).

The Bursar’s Division is concerned with the financial details of the day-to-day administration and matters to do with staff appointments, promotions, etc.

The Property Division is responsible for the building program and the ‘household’ services of the University (including electricity, telephones, cleaning, traffic and parking control and maintenance of buildings and grounds).

Student Representation on Council and Faculties/Boards

Three members of the University Council may be students elected by students. All students who are not full-time members of staff are eligible to stand for a two-year term of office. The students who are elected to the Council are eligible for election to the Committees of Council.

Students proceeding to a degree or a graduate diploma may elect members for appointment by the Council to their Faculty/Board. Elections are for a one-year term of office.

Co-operative Bookshop

Membership is open to all students, on initial payment of a fee of $10, refundable when membership is terminated. Members receive an annual rebate on purchases of books.

Open Faculty/Board Meetings

If you wish you may attend a faculty/board meeting. You should seek advice at the office of the faculty whose meeting you wish to attend, as the faculties have their own rules for the conduct of open meetings.

General Studies Program

Almost all undergraduates in faculties other than Arts and Law are required to complete a General Studies program. The Department of General Studies within the Board of Studies in General Education publishes its own Handbook which is available free of charge. All enquiries about General Studies should be made to the General Studies Office, Room G56, Morven Brown Building, phone 3476.
Student Services and Activities

Accommodation

Residential Colleges

There are seven residential colleges on campus. Each college offers accommodation in a distinctive environment which varies from college to college, as do facilities and fees. A brief description of each college is given below, and further information may be obtained directly from the individual colleges. In addition to basic residence fees, most colleges make minor additional charges for such items as registration fees, caution money or power charges. Intending students should lodge applications before the end of October in the year prior to the one in which they seek admission. Most colleges require a personal interview as part of the application procedure.

The Kensington Colleges

The Kensington Colleges comprise Basser College, Goldstein College and Philip Baxter College. They house 450 men and women students, as well as tutorial and administrative staff members. Fees are payable on a session basis. Apply in writing to the Master, Mr K. W. Bromham, PO Box 24, Kensington, NSW 2033.

International House

International House accommodates 154 students from Australia and up to thirty other countries. Preference is given to more senior undergraduates and graduate students. Apply in writing to the Warden, Emeritus Professor J. S. Ratcliffe, International House, PO Box 1, Kensington, NSW 2033.

New College

New College is an Anglican college and it provides accommodation (with all meals) for 220 graduates and undergraduates, without regard to race, religion, or sex. The College has its own resident tutors, and sponsors a wide range of sporting and social activities. Apply to Dr Stuart Barton Babbage, Master, New College, Anzac Parade, Kensington 2033 (telephone 662 6066).

Shalom College

Shalom College is a Jewish residential college. It provides accommodation for 86 men and women students. Non-resident membership is available to students who wish to avail themselves of the Kosher dining room and tutorial facilities. Fees are payable on a session basis. Conferences are catered for, particularly with Kosher requirements. Rates are available on application. Apply in writing to the Master, Dr S. Engelberg, Shalom College, the University of New South Wales, PO Box 1, Kensington, NSW 2033.

Warrane College

Warrane is a men's college catering for 200 students of all ages, backgrounds and beliefs. A comprehensive tutorial program is offered along with a wide range of activities, professional orientation, and opportunities to meet members of the University staff informally. Non-resident membership is available to male students who wish to participate in College activities and make use of its facilities. The activities of a spiritual nature conducted at Warrane have been entrusted to the Catholic association Opus Dei. Apply in writing to the Master, Dr J. F. Martins, Warrane College, PO Box 123, Kensington, NSW 2033.

Creston Residence

Creston Residence offers accommodation to 25 undergraduate and graduate women students. Activities and tutorials are open to non-resident students. The spiritual activities offered at Creston are entrusted to the Women's Section of Opus Dei. Enquiries: 36 High Street, Randwick 2031. Telephone (02) 398 5693.

Other Accommodation

Off-campus Accommodation

Students requiring other than College accommodation may contact the Housing Officer in the Chancellery, Room 148E for assistance in obtaining suitable accommodation in the way of rooms with cooking facilities, flats, houses, share flats etc. Extensive listings of all varieties of housing are kept up-to-date throughout the year and during vacations. Accommodation in the immediate vicinity of the University is not usually easy to find at short notice, and is expensive.

No appointment is necessary but there may be some delay in February and March. The Housing staff are always happy to discuss any aspect of accommodation.

Special pamphlets on accommodation, lists of estate agents and hints on house-hunting are available on request.

Associations, Clubs and Societies

The Sports Association

The Sports Association is a student organization within the University which caters for a variety of sports for both men and women. In December 1952 the University Council approved the establishment of the Sports Association, which then consisted of five clubs. As the University has grown the Association has expanded, and it now includes thirty-eight clubs.

The Association office is situated in Hut E15C near the foot of Basser Steps, and can be contacted on extension
2673. The control of the Association is vested in the General Committee which includes delegates from all the clubs.

Membership is compulsory for all registered students, and the annual fee is $17. Membership is also open to all members of staff and graduates of the University on payment of an annual fee as prescribed in the By-Laws of the Association. All members are invited to take part in any of the activities arranged by the Association, and to make use of the University’s sporting and recreational facilities.

The Association is affiliated with the Australian Universities Sports Association (AUSA) which is the controlling body for sport in all Australian universities.

School and Faculty Associations

Many schools and faculties have special clubs with interests in particular subject fields. Enquire at the relevant Faculty or School Office for information.

Australian Armed Services

The University maintains links with the Royal Australian Navy, the Australian Army Reserve and the Royal Australian Air Force, and opportunities exist for student participation in their activities. See the General Information section of the Faculty Handbooks for details.

Chaplaincy Centre

The University Chapel

The University provides a small chapel for the use of all faiths. In its temporary housing it is located in Hut E15a near the Chemistry Building. The chapel is available for services of worship by arrangement with the full-time chaplains. At other times it is available for private meditation to all members of the University.

Chaplaincy Service

A Chaplaincy Service is available within the University of New South Wales for the benefit of students and staff.

The Service offers fellowship, personal counselling and guidance, together with leadership in biblical and doctrinal studies and in worship. The Chaplains maintain close liaison with student religious societies.

The chaplains are located in Hut E15a at the foot of Basser steps, which also contains the temporary chapel.

Deputy Registrar (Student Services)

The Deputy Registrar (Student Services), Mr Peter O’Brien, and his Administrative Assistant, Mrs Anne Beaumont, are located on the first floor of the Chancellery.

They will help those students who have problems and need advice but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with general enquiries they are especially concerned with the problems of physically handicapped and disabled students.

All enquiries should be made either at room 148E or by telephoning extension 2482 (general enquiries).

Sport and Recreation Section

The Sport and Recreation Section seeks ways to encourage students and staff to include exercise as an essential part of their daily lives. It does this through Sports Clubs on a competitive basis and by offering physical recreation on a more casual basis to the University community.

The Section serves the Sports Association and its 38 constituent clubs and is responsible for the continuing management of the Physical Education and Recreation Centre at which recreational programs are available for both students and staff.

It makes bookings for use of sporting facilities including tennis courts and playing fields. The section is located in Hut E15c at the foot of Basser Steps. The various services may be contacted by phone on the following extensions: Recreation Program 3271; Grounds Bookings 2235; Sports Association 2673.

Physical Education and Recreation Centre

The Sport and Recreation Section provides a recreational program for students and staff at the Physical Education and Recreation Centre. The Centre consists of eight squash courts, a main building, and a 50-metre indoor heated swimming pool. The main building has a large gymnasium and practice rooms for fencing, table tennis, judo, weight-lifting, karate and jazz ballet, also a physical fitness testing room. The recreational program includes intramurals, teaching/coaching, camping. The Centre is located on the lower campus adjacent to High Street. The Supervisor at PERC may be contacted on extension 3271.
Student Counselling and Research Unit

The Student Counselling and Research Unit provides counselling services to students, prospective students, parents and other concerned persons.

The unit is located in the huts near the foot of Basser Steps (access from College Road or Engineering Road).

Appointments are offered throughout the academic year and during recesses between 8 am to 5 pm on week days (up to 7 pm on some evenings). A ‘walk-in’ service for short interviews is available between 9 am and 5 pm. Appointments may be made by phoning extension 3685 or 3681 between 8.30 am and 5.30 pm.

Counsellors offer assistance in planning, decision-making, problem solving, social and emotional development, and dealing with grievances. Group programs on such topics as study, tutorial and examination skills, stress management, communicating, and self-confidence are offered each session. Brochures are available from the receptionist.

Careers and Employment Section

The Careers and Employment Section provides careers advice and assistance in finding employment.

Assistance with careers and permanent employment opportunities includes: the regular mailing of a Job Vacancy Bulletin to registered students and graduates, a Library, and a Campus Interview Program in which final year students have the opportunity to speak to employers regarding employment prospects.

Assistance is also provided in obtaining course-related employment during long vacations as required by undergraduates in Engineering and Applied Science.

The Section is located in Undercroft Room LG05 in the Chancellery.

For further information, telephone as follows: careers and employment assistance 3259 or 3630; long vacation industrial training 2086.

Student Health Unit

A student health clinic and first aid centre is situated within the University. The medical service although therapeutic is not intended to replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected the student may be referred to a private practitioner or to an appropriate hospital. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.

The service is available to all enrolled students by appointment, free of charge, between 9 am and 5 pm Mondays to Fridays. For staff members, immunizations are available, and first aid service in the case of injury or illness on the campus.

The centre is located in Hut E15b on the northern side of the campus in College Road at the foot of the Basser Steps.

Appointments may be made by calling at the centre or by telephoning extension 2679, 2678 or 2677 during the above hours.

The Family Planning Association of NSW conducts clinics at the Student Health Unit and at the adjacent Prince of Wales Hospital which are available for both staff and students. Appointments may be made for the Student Health Unit clinic by telephoning 588 2833 or for the Prince of Wales Hospital clinics by telephoning 399 0111.

The Students' Union

The Students' Union was formed in 1952 as an organization, duly recognized by the University Council, to represent the student body and to provide a central organization for the administration of student activities. In the words of its constitution 'The Students' Union is formed for the purpose of advancing the interests of University men and women, facilitating their general scientific and technical education, and fostering a University spirit among them'.

The Students' Union affords a recognized means of communication between the student body and the University administration, and represents its members in all matters affecting their interests. It aims to promote the cultural, educational and recreational life of the University and to encourage a permanent interest among graduates in the life and progress of student activities within the University. The Students' Union also makes representations to government and other bodies outside the University on behalf of its members.

Membership of the Students' Union is compulsory for all registered students of the University and the annual subscription is $17* for full-time students and $13* for part-time students. All Alumni of the University are eligible for Life Membership.

The Students' Union is governed by a Council consisting in the main of elected student representatives from the various faculties of the University. There are also representatives of the University Council, Life Members, the Staff Association and the Sports Association. The Council is elected annually.

*These fees are at 1981 levels; they are subject to increase in 1982.
A full-time President, elected each year by popular ballot, directs the entire administration of the Students' Union and its activities, assisted by a Secretary-Treasurer.

Other officers are the Education Vice-President who works towards the implementation of Students' Union education policy; the Welfare-Research Officer concerned with helping students with problems they may encounter in the University; the Electronic Media Officer; and the Director of Overseas Students who deals with specific problems these students may encounter while in Australia.

The activities in which the Students' Union is involved include:
1. A casual employment service.
2. Organization of orientation for new students.
3. Organization of Foundation Day.
4. The University's two child care centres.
5. Publication of the student paper Tharanka.
6. A free legal service run by a qualified lawyer employed by the Students' Union Council.
7. SU Record Shop which offers discount records and tapes.
8. The Nuthouse which deals in bulk and health foods.
9. Secondhand Bookshop for cheap texts.
10. CASOC (Clubs and Societies on Campus) which provides money from the SU for affiliated clubs and societies on campus.
11. The sale of electronic calculators and accessories at discount rates.

The SU office is located on the Second Floor, Stage III, the Union.

The University Library

The University libraries are mostly situated on the upper campus. The library buildings house the Undergraduate Library on Level 3, the Social Sciences and Humanities Library on Level 4, the Physical Sciences Library on Level 7 and the Law Library on Level 8. The Biomedical Library is in the western end of the Mathews Building and is closely associated with libraries in the teaching hospitals of the University.

For details consult Faculty Information in the relevant Faculty Handbook.

There are also library services at other centres:

The Water Reference Library situated at Manly Vale (telephone 948 0261) which is closely associated with the Physical Sciences Library.

The library at the Broken Hill Division in the W.S. and L.B. Robinson University College building (telephone 6022/3/4).

The library at the Royal Military College, Duntroon, ACT, serving the Faculty of Military Studies.

Each library provides reference and lending services to staff and students and each of the libraries on the Kensington campus is open throughout the year during day and evening periods. The exact hours of opening vary during the course of the academic year.

Staff and students normally use a machine-readable identification card to borrow from the University libraries.

The University Union

The University Union provides the facilities students, staff and graduates require in their daily University life and thus an opportunity for them to know and understand one another through associations outside the lecture room, the library and other places of work.

The Union is housed in three buildings near the entrance to the Kensington Campus from Anzac Parade. These are the Roundhouse, the Blockhouse and the Squarehouse. Membership of the Union is compulsory at $65* per year for all registered students and is open to all members of staff and graduates of the University.

The control of the Union is vested in the Board of Management whose Chief Executive Officer is the Warden.

The full range of facilities provided by the Union includes a cafeteria service and other dining facilities, a large shopping centre (including clothing shop and delicatessen); cloak room; travel service; banking, pharmaceutical, optometrical and hairdressing facilities; showers; a graduates' lounge; common, games, reading, meeting, music, practice, craft and dark rooms. The Union also has shops on Campus which cater for student needs, including art materials and calculators. Photocopying, sign printing, and stencil cutting services are also available. The Union also sponsors special concerts (including lunchtime concerts) and conducts courses in many facets of the arts including weaving, photography, creative dance and yoga. Full information concerning courses is contained in a booklet obtainable from the Union's program department.

The University Union should not be confused with the Students' Union or Students' Representative Council as it is known in some other universities. This latter body has a representative function and is the instrument whereby student attitudes and opinions are crystallized and presented to the University and the community.

*This fee is at 1981 level; it is subject to increase in 1982.
Financial Assistance to Students

Tertiary Education Assistance Scheme

Under this scheme, which is financed by the Commonwealth Government, assistance is available for full-time study in approved courses, to students who are not bonded and who are permanent residents of Australia, subject to a means test on a non-competitive basis. The allowances paid are unlikely to be sufficient, even at the maximum rate, for all the living expenses of a student. Family help and/or incomes from vacation or spare-time work would also be needed.

Students in the following types of university courses are eligible for assistance:

- Undergraduate and graduate bachelor degree courses
- Graduate diplomas
- Approved combined bachelor degree courses
- Master's qualifying courses (one year)

The rates of allowance and conditions for eligibility are set out in a booklet obtainable from the Commonwealth Department of Education.

Tertiary students receiving an allowance, and prospective tertiary students, will be sent application forms in January 1982. Forms will also be available from the Admissions Section or the Careers and Employment Section, or from the Director, Department of Education, 59 Goulburn Street, Sydney, NSW 2000 (telephone 218 8800). Continuing students should submit applications as soon as examination results are available. New students should do so as soon as they are enrolled. All students should apply by 31 March 1982, otherwise benefits will not be paid for the earlier months of the year.

It is most important that students advise the TEAS office if at any time they change or discontinue their study programs, as their eligibility for benefits might be affected.

Other Financial Assistance

In addition to the Tertiary Education Assistance Scheme financed by the Australian Government the following forms of assistance are available:

1. **Deferment of Payment of Fees** Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided the deferment is requested prior to the due date for fee payments.

2. **Short Term Cash Loans** Donations from various sources have made funds available for urgent cash loans not exceeding $100. These loans are normally repayable within one month.

3. Early in 1973 the Commonwealth Government made funds available to the University to provide loans to students in financial difficulty. The loans are to provide for living allowances and other approved expenses associated with attendance at university. Repayment usually commences after graduation or upon withdrawal from the course. Students are required to enter into a formal agreement with the University to repay the loan. The University is unable to provide from the fund amounts large enough for all or even a major part of the living expenses of a student.

From the same source students who are in extremely difficult financial circumstances may apply for assistance by way of a non-repayable grant. In order to qualify for a grant a student must generally show that the financial difficulty has arisen from exceptional misfortune. Grants are rarely made.

The University has also been the recipient of generous donations from the Arthur T. George Foundation, started by Sir Arthur George and his family, for the endowment of a student loan fund.

In all cases assistance is limited to students with reasonable academic records and whose financial circumstances warrant assistance.

Enquiries about all forms of financial assistance should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Financial Assistance to Aboriginal Students

Financial assistance is available to help Aboriginal students from the Commonwealth Government’s Aboriginal Study Grant Scheme. Furthermore, the University may assist Aboriginal students with loans to meet some essential living expenses.

The University has also received a generous bequest from the estate of the late Alice Brooks Gange for the education of Australian aborigines within the University. The University is engaged in consultations with groups and individuals for advice on the most effective ways of using the funds.

All enquiries relating to these matters should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Fund for Physically Handicapped and Disabled Students

The University has a small fund (started by a generous gift from a member of staff who wishes to remain anonymous) available for projects of benefit to handicapped and disabled students. Enquiries should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Rules and Procedures

The University, in common with other large organizations, has established rules and procedures which are designed for the benefit of all members of the University. In some
cases there are penalties (e.g., fines or exclusion from examinations) for non-compliance. Any student, who after reading the rules carefully, requires further information on their application should contact the office of the Admissions Section or the Registrar.

General Conduct

The University has not considered it necessary to formulate a detailed code of rules relating to the general conduct of students. Enrolment as a student of the University, however, involves an undertaking to observe the regulations, by-laws and rules of the University, and to pay due regard to any instructions given by any officer of the University.

Appeals

Section 5(c) of Chapter III of the By-laws provides that 'Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action by the Vice-Chancellor, whether on appeal or otherwise, to the Council'.

Admission and Enrolment

The office of the Admissions Section, located in the Chancellery on the upper campus, provides information for students on admission requirements, undergraduate and graduate courses and enrolment procedures. Faculty handbooks and the Calendar may be purchased here. The office of the Admissions Section is open from 9 am to 5 pm Monday to Friday. During enrolment the office is also open for some part of the evening.

The office provides information about special admission, admission with advanced standing and admission on overseas qualifications. The office also receives applications from students who wish to transfer from one course to another, resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled. It is essential that the closing dates for lodgement of applications are adhered to. For further details see the section on Undergraduate and Graduate Enrolment Procedures and Fees.

Applications for admission to undergraduate courses from students who do not satisfy the requirements for admission (see section on Requirements for Admission) are referred by the Admissions Section to the Admissions Committee of the Professorial Board.

Students seeking to register as higher degree candidates should first consult the Head of the School in which they wish to register. An application is then lodged on a standard form and the Student Records—Postgraduate

Section, after obtaining a recommendation from the Head of School, refers the application to the appropriate Faculty or Board of Studies Higher Degree Committee.

Details of the procedure to be followed by students seeking entry to first year undergraduate degree courses at the University may be obtained from the Admissions Office or the Universities and Colleges Admissions Centre.

An Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery, and is available for personal interview with those who require additional information about the University.

First Year Entry

Those seeking entry to first year courses in one or more of twenty-one tertiary institutions in the state including the three universities in the Sydney Metropolitan area (Macquarie University, the University of New South Wales and the University of Sydney) are required to lodge a single application form with the Universities and Colleges Admissions Centre, Challis House, 10 Martin Place, Sydney 2000 (GPO Box 7049, Sydney 2001). On the application form provision is made for applicants to indicate preferences for courses available in any one of the three universities and eighteen other tertiary institutions. Students are notified individually of the result of their applications and provided with information regarding the procedures to be followed in order to accept the offer of a place at this University. Enrolment is completed at the Enrolment Bureau, University House, 221 Anzac Parade, Kensington.

Deferment of First Year Enrolment

Students proceeding directly from school to University who have received an offer of a place may request deferment of enrolment for one year and will usually receive permission providing they do not enrol at another tertiary institution in that year.

Enrolment Procedures and Fees Schedules 1982

1. Introduction

All students, except those enrolling in graduate research degree courses (see sections 5. and 6. below), must lodge an authorized enrolment form with the Cashier either on the day the enrolling officer signs the form or on the day any required General Studies electives are approved.

All students, except those enrolling in graduate research degree courses and those exempted as set out in section 17. below, should on that day also either pay the required fees or lodge an enrolment voucher or other appropriate authority.

Such vouchers and authorities are generally issued by the NSW Department of Education and the NSW Public
Service. They are not always issued in time and students who expect to receive an enrolment voucher or other appropriate authority but have not done so must pay the fees and arrange a refund later. Such vouchers and authorities are not the responsibility of the University and their late receipt is not to be assumed as automatically exempting a student from the requirements of enrolling and paying fees.

If a student is unable to pay the fees the enrolment form must still be lodged with the Cashier and the student will be issued with a "nil" receipt. The student is then indebted to the University and must pay the fees by the end of the second week of the session for which enrolment is being effected. Penalties apply if fees are paid after that time (see section 16. below) unless the student has obtained an extension of time in which to pay fees from the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery). Such an application must be made before the fee is due. Payment may be made through the mail, in which case it is important that the student registration number be given accurately. Cash should not be sent through the mail.

2. New Undergraduate Enrolments

Persons who are applying for entry in 1982 must lodge an application for selection with the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1981.

Those who are selected will be required to complete enrolment at a specified time before the start of Session 1. Compulsory fees should be paid on the day.

In special circumstances, however, and provided class places are still available, students may be allowed to complete enrolment after the prescribed time.

Application forms and details of the application procedures may be obtained from the office of the Admissions Section.

3. Re-enrolment

See also sections 4., 6. and 7. below.

Students who are continuing courses (or returning after approved leave of absence) should enrol through the appropriate school in accordance with the procedures set out in the current Enrolment Procedures booklet, available from the Admissions Section and from School offices. Those who have completed part of a course and have been absent without leave need to apply for entry through the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1981.

4. Restrictions Upon Re-enrolling

Students who in 1981 have infringed the rules governing re-enrolment should not attempt to re-enrol in 1982 but should follow the written instructions they will receive from the Registrar.

5. New Research Students

Students enrolling for the first time in graduate research degree courses will receive an enrolment form by post. They have two weeks from the date of offer of registration in which to lodge the enrolment form with the Cashier and pay the appropriate fees. Completion of enrolment after this time will incur a penalty (see section 16. below).

6. Re-enrolling Research Students

Students enrolled in purely research degree programs will be re-enrolled each year and sent an account for any fees due, unless they have lodged a thesis or their registration has been cancelled or suspended.

7. Submission of Graduate Thesis or Project Report

Graduate students who at the commencement of Session 1 have completed all the work for a degree or diploma except for the submission of the relevant thesis or project report are required to re-enrol by the end of the second week of Session 1. Completion of enrolment after then will incur a penalty (see section 16. below) but students enrolled in purely research degree programs will be re-enrolled automatically (see section 6. above).

Information about possible fees exemption is set out in section 17. (10) below.

8. Enrolments by Miscellaneous Students

Enrolments by miscellaneous students are governed by the following rules:

(1) Enrolment in a particular subject or subjects as a miscellaneous student – ie as a student not proceeding to a degree or diploma – may be permitted provided that in every case the Head of School offering the subject considers that the student will benefit from the enrolment and provided also that accommodation is available and that the enrolment does not prevent a place in that subject being available to a student proceeding to a degree or diploma.

(2) A student who is under exclusion from any subject in the University may not be permitted to be enrolled as a miscellaneous student in that subject.

(3) A student who is under exclusion from any course in the University may not be permitted to enrol in any subject which forms a compulsory component of the course from which the student is excluded.

(4) A student who is subsequently admitted to a course of the University for which any subjects completed as a miscellaneous student form a part may receive standing for those subjects.
9. Final Dates for Completion of Enrolment

No enrolments for courses extending over the whole year or for Session 1 only will be accepted from new students after the end of the second week of Session 1 (12 March 1982) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned; no later year enrolments for courses extending over the whole year or for Session 1 only will be accepted after the end of the fourth week of Session 1 (25 March 1982) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned. No enrolments for courses in Session 2 only will be accepted after the end of the second week of Session 2 (30 July 1982) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned.

10. University of New South Wales and University Union Membership Card

All students enrolled in degree or diploma courses or as miscellaneous students, except those exempt from fees under provisions of section 17, below, are issued with a University of New South Wales and University Union Membership Card. This card must be carried during attendance at the University and shown on official request.

The number appearing on the front of the card above the student’s name is the student registration number used in the University’s records. This number should be quoted in all correspondence.

The card must be presented when borrowing from the University libraries, when applying for travel concessions, and when notifying a change of address. It must also be presented when paying fees on re-enrolment each year when it will be made valid for the year and returned. Failure to present the card could result in inconvenience in completing re-enrolment.

Life members of the University Union and those exempt from payment of University Union fees, if enrolled in degree or diploma courses or miscellaneous students use the University’s fees receipt in place of the card when applying for travel concessions and when notifying a change of address. The University Library issues a library borrowing card on production of the fees receipt.

A student who loses a card must notify the University Union as soon as possible.

New students are issued with cards on enrolment if eligible.

11. Payment of Fees

There are no fees for tuition but other fees and charges are payable. These include those charges raised to finance the expenses incurred in operating activities such as the University Union, the Students’ Union, the Sports Association, and the Physical Education and Recreation Centre. Penalty payments are also incurred if a student fails to complete procedures as required. Charges may also be payable, sometimes in the form of a deposit, for the hiring of kits of equipment in certain subjects. Accommodation charges, costs of subsistence on excursions, field work, etc, and for hospital residence (medical students) are payable in appropriate circumstances.

12. Assisted Students

Scholarship holders and sponsored students who have not received an enrolment voucher or appropriate letter of authority from their sponsor at the time they are enrolling should complete their enrolment by paying their own fees.

A refund of fees will be made when the enrolment voucher or letter of authority is subsequently lodged with the Cashier.

Those unable to pay their own fees in these circumstances can apply to the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery) for an extension of time in which to pay. Such an application must be made before the fees are due.

13. Extension of Time

Any student who is unable to pay fees by the due date may apply to the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery) for an extension of time, which may be granted in extenuating circumstances. Such applications must be made before the due date.

14. Failure to Pay Fees and Other Debts

Any student who fails to pay prescribed fees or charges or is otherwise indebted to the University and who fails either to make a satisfactory settlement of his indebtedness upon receipt of due notice or to receive a special exemption ceases to be entitled to the use of University facilities. Such a student is not permitted to register for a further session, to attend classes or examinations, or to be granted any official credentials. In the case of a student enrolled for Session 1 only or for both Sessions 1 and 2 this disbarment applies if any portion of fees is outstanding after the end of the eighth week of Session 1 (23 April 1982). In the case of a student enrolled for Session 2 only this disbarment applies if any portion of fees is outstanding after the end of the sixth week of Session 2 (27 August 1982).

In special cases the Registrar may grant exemption from the disqualification referred to in the preceding paragraph upon receipt of a written statement setting out all relevant circumstances.

15. Fees

Tuition Fees

As a result of a decision of the Australian Government tuition fees have been re-introduced for some categories of students commencing second or higher degrees in 1982 and subsequent years. Details can be obtained from the office of the Admissions Section, telephone Mr J. Beauchamp on extension 3319.
University Union Entrance Fee
Payable on first enrolment $25

Students enrolling for only one session must pay the full University Union entrance fee.

Student Activities Fees 1982

Student Activities fees are adjusted annually by a system of indexation. All students (with the exceptions set out in section 17, below) are required to pay the following fees if enrolled for a program involving two sessions. Those enrolling for only one session pay half of the fees due.

University Union annual subscription $65*
Sports Association annual subscription $17
Students' Union Annual Subscription
Students enrolling in full-time courses $17*
Students enrolling in part-time courses or as miscellaneous students $13*
Miscellaneous Fund annual fee $25*

This fee is used to finance expenses generally of a capital nature relating to student activities and amenities. Funds are allocated for projects recommended by the Student Affairs Committee and approved by the University Council.

Special Examination Fees
Examinations conducted in special circumstances for each subject $11
Review of examination results for each subject $11

Fees and penalties quoted are current at the time of publication but may be amended by the University Council without notice.

Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies.

Students often seek exemption from the fees for reasons other than those set out below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.

(1) Life members of the University Union, the Sports Association, and Students' Union are exempt from the relevant fee or fees†.

(2) Students enrolled in courses classified as External are exempt from all Student Activities Fees and the University Union Entrance Fee.

(3) Students enrolled in courses at the W. S. and L. B. Robinson University College and in the Faculty of Military Studies are exempt from the fees in section 15, above but shall pay such other fees and charges as the Council may from time to time determine.

(4) University Union fees and subscriptions may be waived by the Deputy Registrar (Student Services) for students enrolled in graduate courses in which the formal academic requirements are undertaken at a part of the University away from the Kensington campus.

(5) Students who while enrolled at and attending another university (or other tertiary institution as approved by the Vice-Chancellor) in a degree or diploma course are given approval to enrol at the University of New South Wales but only as miscellaneous students for subjects to be credited towards the degrees or diplomas for which they are enrolled elsewhere are exempt from all Student Activities Fees and the University Union Entrance Fee**.

(6) Undergraduate students of a recognized university outside Australia who attend the University of New South

*These fees are at 1981 levels; they are subject to increase in 1982.
†Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies, not at the office of the Deputy Registrar (Student Services) or at the Cashier's office.
**Institutions approved are: New South Wales Institute of Technology, Sydney College of Chiropractic and Alexander Mackie College of Advanced Education.
Wales with the permission of the Dean of the appropriate faculty and of the Head of the appropriate school or department to take part as miscellaneous students in an academic program relevant to their regular studies and approved by the authorities of their own institution are exempt from all Student Activities Fees and the University Union Entrance Fee.

(7) Graduate students not in attendance at the University and who are enrolling in a project only other than for the first time, are exempt from all Student Activities Fees.

(8) Graduate students resubmitting a thesis or project only are exempt from all Student Activities Fees.

(9) All Student Activities Fees, for one or more sessions, may be waived by the Deputy Registrar (Student Services) for students who are given formal permission to pursue their studies at another institution for one or more sessions.

(10) Graduate students who have completed all the work for a qualification at the commencement of Session 1, except for the submission of the relevant thesis or project report, may be exempted from the payment of Student Activities Fees by the Deputy Registrar (Student Services) on production of an appropriate statement signed by the relevant Supervisor or Head of School.

(11) Students enrolled in a session or sessions devoted entirely to training or experience away from the campus and its associated laboratories, hospitals, centres, institutes, and field stations are exempt from all Student Activities Fees for that session or sessions.

(12) Students whose registration is cancelled or suspended by the University shall receive refunds of fees paid in accordance with the provisions of section 18. (5) below except that a refund of one half of the fees shall be made if such cancellation or suspension takes place between the end of the fourth week of Session 1 and the end of the fourth week of Session 2.

18. Variations in Enrolment (including Withdrawal)

(1) Students wishing to vary an enrolment program must make application on the form available from the appropriate Course Authority.

(2) Students withdrawing from courses (and see also information about withdrawal from subjects below) are required to notify the Registrar in writing. In some cases such students will be entitled to fee refunds (see below).

(3) Enrolment in additional subjects

Applications for enrolment in additional subjects must be submitted by:

26 March 1982 for Session 1 only and whole year subjects;
13 August 1982 for Session 2 only subjects.

(4) Withdrawal from subjects

Applications to withdraw from subjects may be submitted throughout the year but applications lodged after the following dates will result in students being regarded as having failed the subjects concerned, except in special circumstances:

(a) for one session subjects, the end of the seventh week of that session (16 April or 3 September)

(b) for whole year subjects, the end of the second week of Session 2 (30 July).

(5) Withdrawal from Course – Refunds

Whether or not a student’s withdrawal entails academic penalties (covered in item (4) above) there are rules governing possible fee refunds in the case of complete withdrawal from a course, as follows:

(a) If notice of withdrawal from a course is received by the Registrar before the first day of Session 1, a refund of all fees paid will be made

(b) If notice of withdrawal is received on or after the first day of Session 1:

(i) a partial refund of the University Union Entrance Fee will be made on the following bases: any person who has paid the entrance fee in any year and who withdraws from membership of the University Union after the commencement of Session 1 in the same year, or who does not renew his membership in the immediately succeeding year, may on written application to the Warden receive a refund of half the entrance fee paid.

(ii) if the notice of withdrawal is given before the end of the fourth week of Session 1 (26 March 1982) a full refund of other Student Activities Fees paid will be made; if notice is given before the end of the eighth week of Session 1 (23 April 1982) a refund of one half of the other Student Activities Fees paid will be made; thereafter no refund will be made except that provided for in (iii) below.

(iii) if a student’s enrolment in any year is for Session 2 only and the student gives notice of withdrawal prior to the end of the fourth week of Session 2 (13 August 1982) a full refund of Student Activities Fees paid (other than the University Union Entrance Fee for which see item (i) above) will be made; if notice is given before the end of the eighth week of Session 2 (10 September 1982) a refund of one half of the other Student Activities Fees paid will be made; thereafter no refund will be made.

(iv) The refunds mentioned in (ii) and (iii) above may be granted by the Deputy Registrar (Student Services) to a student unable to notify the Registrar in writing by the times required provided evidence is supplied that the student had ceased attendance by those times.

(6) Acknowledgements

The Registrar will acknowledge each application for a variation in enrolment (including withdrawals from subjects) as follows:
(a) variations lodged before the Friday of the seventh week of each session (16 April or 3 September) will be incorporated in the Confirmation of Enrolment Program notice forwarded to students on 26 April or 13 September as appropriate.

(b) variations lodged after those dates will be acknowledged by letter.

(c) withdrawals from a course are acknowledged individually whenever they are lodged.

(7) It is emphasized that failure to attend for any assessment procedure, or to lodge any material stipulated as part of an assessment procedure, in any subject in which a student is enrolled will be regarded as failure in that assessment procedure unless written approval to withdraw from the subject without failure has been obtained from the Registrar.

19. Exemption – Membership

The Registrar is empowered to grant exemption from membership of any or all of the University Union, the Students' Union and the Sports Association to students who have a genuine conscientious objection to such membership, subject to payment of the prescribed fees to the Miscellaneous Fund.

Private Overseas Students

Private overseas students should visit the Commonwealth Department of Education immediately on first arrival in Australia. The address is Sydney Plaza Building, 59 Goulburn Street, Sydney.

Private overseas students continuing their studies should confirm their enrolment with the Commonwealth Department of Education as early as possible each year in order to ensure that arrangements for the extension of their temporary entry permits can be made.

All private overseas students must advise the Department if they change their term residential address during the year. Telephone enquiries should be directed to (02) 218 8979, and country students may reverse the charge for the call.

Leave of Absence

Leave of absence from an undergraduate course of study may be granted to students other than those in the first year of a course. Leave of absence has generally been restricted to one year but in special circumstances two years have been granted.

To apply for such leave of absence, a letter should be submitted to the Registrar immediately following the release of annual examination results and must include the student's full name, registration number, the course and stage in which enrolled in the previous year and, most important, the reason why leave is being sought. The letter advising the result of the application will provide details about how to re-enrol.

Students who withdraw from the first year of their course are not granted leave of absence and must again apply for a place through the Universities and Colleges Admissions Centre.

Course Transfers

Students wishing to transfer from one course to another must complete and submit an application form, obtainable from the office of the Admissions Section, the Chancellery, by Friday 8 January 1982.

Students whose applications to transfer are successful, and who are transferring from one school to another are required to comply with the enrolment procedure laid down for new students with advanced standing. Students transferring from one course to another within the same school are required to attend the appropriate enrolment session for the course to which they have approval to transfer.

Students must present the approval to transfer to the enrolling officer, and those who have not received advice regarding their application to transfer before the date on which they are required to enrol should check with the office of the Admissions Section.

Students should also advise the enrolling officer in the school in which they were enrolled in 1981 of their intention to transfer.

Admission with Advanced Standing

Any person who makes application to register as a candidate for any degree or other award granted by the University may be admitted to the course of study leading to such degree or award with such standing on the basis of previous attainments as may be determined by the Professorial Board provided that:

1. the Board shall not grant such standing under these rules as is inconsistent with the rules governing progress to such degree or award as are operative at the time the application is determined;

2. where a student transfers from another university such student shall not in general be granted standing in this University which is superior to what he has in the University from which he transfers;
3. the standing granted by the Board in the case of any application based on any degree/s or other awards already held by the applicant, shall not be such as will permit the applicant to qualify for the degree or award for which he seeks to register without completing the courses of instruction and passing the examinations in at least those subjects comprising the latter half of the course, save that where such a program of studies would involve the applicant repeating courses of instruction in which the Board deems the applicant to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof;

4. the standing granted by the Board in the case of any application based on partial completion of the requirements for any degree or other award of another institution shall not be such as will permit the applicant to qualify for the degree or award for which he seeks to register by satisfactory completion of a program of study deemed by the Board to be less than that required of a student in full-time attendance in the final year of the course in which the applicant seeks to register;

5. the standing granted by the Board in the case of any application based on the partial completion of the requirements for any degree or other award of the University may be such as to give full credit in the course to which the applicant seeks to transfer for work done in the course from which the student transfers.

Where the identity between the requirements for any award of the University already held and that of any other award of the University is such that the requirements outstanding for the second award are less than half the requirements of that award, then a student who merely completes such outstanding requirements shall not thereby be entitled to receive the second award but shall be entitled to receive a statement over the hand of the Registrar in appropriate terms.

Resumption of Courses

Students who have had a leave of absence for twelve months and wish to resume their course should follow the instructions about re-enrolling given in the letter granting leave of absence. If these instructions are not fully understood or have been lost, students should contact the office of the Admissions Section before November in the year preceding the one in which they wish to resume their course.

If students have not obtained leave of absence from their course and have not been enrolled in the course over the past twelve months or more, they should apply for admission to the course through the Universities and Colleges Admissions Centre before 1 October in the year preceding that in which they wish to resume studies.

Examinations

Examinations are held in June/July and in November/December.

Provisional timetables indicating the dates and times of examinations are posted on the University noticeboards.

Students must advise the Examinations Section (the Chancellery) of any clash in examinations. Final timetables indicating the dates, times, locations, and authorized aids are available for students two weeks before the end of each session.

Misreading of the timetable is not an acceptable excuse for failure to attend an examination.

Assessment of Course Progress

In the assessment of a student's progress in a course, consideration may be given to work in laboratory and class exercises and to any term or other tests given throughout the year as well as to the results of written examinations.

Examination Results

Grading of Passes

Passes will be graded as follows:

- **High Distinction**: an outstanding performance
- **Distinction**: a superior performance
- **Credit**: a good performance
- **Pass**: an acceptable level of performance
- **Satisfactory**: satisfactory completion of a subject for which graded passes are not available

Pass Conceded

A pass conceded may be granted to a student whose overall performance warrants consideration in a subject where the mark obtained is slightly below the standard required for a pass.

A pass conceded in a subject will normally allow progression to another subject for which the former subject is a prerequisite. In a particular subject, however, a subject authority may specify that a pass conceded is insufficient to meet a particular subject prerequisite. Such information is recorded in the appropriate faculty handbooks.

Availability of Results

Final examination results will be posted to a student's term address, or vacation address if requested. Forms requesting that results be posted to a vacation address are included in the examination timetable and change of address forms are obtainable at the Student Enquiry Counter, the Chancellery. Both forms can be accepted up to Friday 25 June for Session 1 results and Friday 26
November for Session 2 and whole year results. Results are also posted on School noticeboards and in the University Library. Results on noticeboards are listed by Student Registration Number.

No examination results are given by telephone.

Review of Results
A student may make application to the Registrar for the review of a result. The application form, accompanied by an appropriate fee, must be submitted not later than fifteen working days after the date of issue of the Notification of Result of Assessment Form.

In reviewing a result, the subject authorities shall ensure that all components of the assessment have been assessed and a mark assigned.

A review of a result is not a detailed reassessment of a student’s standard of knowledge and understanding of, and skills in, the subject. It is rather a search for arithmetic error in arriving at the composite mark and for gross and obvious error in assignment of marks in components of the final composite mark.

When a change in grade is recommended, the application fee will be refunded by the Registrar.

Special Consideration
Students who believe that their performance in a subject, either during session or in an examination, has been adversely affected by sickness or any other reason should inform the Registrar and ask for special consideration in the determination of their standing.

Such requests should be made as soon as practicable after the occurrence. Applications made more than seven days after the final examination in a subject will only be considered in exceptional circumstances.

When submitting a request for special consideration students should provide all possible supporting evidence (eg medical certificates) together with their registration number and enrolment details.

Physical Disabilities
Students suffering from a physical disability which puts them at a disadvantage in written examinations should advise Student Records (Ground Floor, the Chancellery) immediately their disability is known. If necessary, special arrangements will be made to meet the student’s requirements.

Students who are permanently disabled and need the Examinations Section to make special arrangements for their examinations, should contact Student Records as soon as the final timetable becomes available.

Use of Electronic Calculators
Where the use of electronic calculators has been approved by a faculty or school, examiners may permit their use in examinations. Authorized electronic calculators are battery operated with the minimum operations of addition, subtraction, multiplication and division and are of a type in common use by university students. They are not provided by the University, although some schools may make them available in special circumstances.

Examinations Held Away from the Campus
Except in the case of students enrolled in external courses, examinations will not be permitted away from the campus unless the candidate is engaged on compulsory industrial training. Candidates must advise the Officer-in-charge, Examinations Section, immediately the details of the industrial training are known. Special forms for this purpose are available at the Student Enquiry Counter in the north wing of the Chancellery.

Arrival at Examinations
Examination Rooms will be open to students twenty-five minutes before the commencement of the examination. Candidates are requested to be in their places at least fifteen minutes before the commencement to hear announcements. The examination paper will be available for reading ten minutes before commencement.

Use of Linguistic Dictionaries
The answers in all examinations and in all work submitted must be in English unless otherwise directed. Students may apply for permission to use standard linguistic dictionaries in the presentation of written work for assessment. Such applications should be made in writing to the Examinations Section not later than 14 days prior to the need to use the linguistic dictionary.

Conduct of Examinations
Examinations are conducted in accordance with the following rules and procedure:

1. Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.
2. Candidates are required to be in their places in the examination room not less than fifteen minutes before the time for commencement.
3. No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.
4. Candidates shall not be admitted to an examination after thirty minutes from the time of commencement of the examination.
5. Candidates shall not be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.
6. Candidates shall not be re-admitted to the examination room after they have left it unless, during the full period of their absence, they have been under approved supervision.

7. Candidates shall not by any improper means obtain, or endeavour to obtain, assistance in their work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.

8. All answers must be in English unless otherwise stated. Foreign students who have the written approval of the Registrar may use standard linguistic dictionaries.

9. Smoking is not permitted during the course of examinations.

10. A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room and to such further penalty as may be determined in accordance with the By-Laws.

Acknowledgement of Sources
Students are expected to acknowledge the source of ideas and expressions used in submitted work. To provide adequate documentation is not only an indication of academic honesty but also a courtesy enabling the marker to consult sources with ease. Failure to do so may constitute plagiarism, which is subject to a charge of academic misconduct.

Further Assessment
In special circumstances further assessment including assessment or further assessment on medical or compassionate grounds may be granted.

Further assessment may be given by the subject authority at its discretion at any time prior to the meeting of the relevant faculty assessment committee (normally the fourth week of the Midyear Recess and the second week of December). Further assessment may also be awarded at the faculty assessment committee and students affected may need to be free to undertake that further assessment in the last week in the Mid-year Recess and in the period up to the end of the second week in January; students should consult their subject authority for details of further assessment immediately their results are known.

Restrictions upon Students Re-enrolling
The University Council has adopted the following rules governing re-enrolment with the object of requiring students with a record of failure to show cause why they should be allowed to re-enrol and retain valuable class places.

First Year Rule
1. Students enrolled in the first year of any undergraduate course of study in the University shall be required to show cause why they should be allowed to continue the course if they do not pass the minimum number of subjects, units or credits prescribed for this purpose by the relevant faculty or board of studies.

The prescribed minimum for each undergraduate course may be found in Schedule A* below; the schedule may be varied from time to time by the Professorial Board.

Repeated Failure Rule
2. Students shall be required to show cause why they should be allowed to repeat a subject which they have failed more than once. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue that course.

General Rule
3. (1) Students shall be required to show cause why they should be allowed to repeat a subject they have failed if the assessment committee of the faculty or board of studies so decides on the basis of previous failures in that subject or in a related subject. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue their course.

(2) Students shall be required to show cause why they should be allowed to continue their course if the assessment committee of the faculty or board of studies so decides on the basis of their academic record.

The Session-Unit System
4. (1) Students who infringe the provisions of Rules 1. or 2. at the end of Session 1 of any year will be allowed to repeat the subject(s) (if offered) and/or continue the course in Session 2 of that year, subject to the rules of progression in the course.

(2) Such students will be required to show cause at the end of the year, except that students who infringe Rule 2. at the end of Session 1, and repeat the subjects in question in Session 2, and pass them, will not be required to show cause on account of any such subjects.

Exemption from Rules by Faculties
5. (1) A faculty or board of studies examinations committee may, in special circumstances, exempt students from some or all of the provisions of Rules 1. and 2.

(2) Such students will not be required to show cause under such provisions and will be notified accordingly by the Registrar.

Showing Cause
6. (1) Students wishing to show cause must apply for special permission to re-enrol. Application should be made on the form available from the Registrar and must be

*See Schedule A immediately below.
lodged with the Registrar by the dates published annually by the Registrar. A late application may be accepted at the discretion of the University.

(2) Each application shall be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies which shall determine whether the cause shown is adequate to justify the granting of permission to re-enrol.

Appeal
7. (1) Students who are excluded by the Admissions and Re-enrolment Committee from a course and/or subject under the provisions of the Rules will have their applications to re-enrol reconsidered automatically by the Re-enrolment Committee of the Professorial Board.

(2) Students whose exclusion is upheld by the Re-enrolment Committee may appeal to an Appeal Committee constituted by Council for this purpose with the following membership:

A Pro-Vice-Chancellor, nominated by the Vice-Chancellor who shall be Chairman.

The Chairman of the Professorial Board, or if its chairman is unable to serve, a member of the Professorial Board, nominated by the Chairman of the Professorial Board, or when the Chairman of the Professorial Board is unable to make a nomination, nominated by the Vice-Chairman.

One of the category of members of the Council elected by the graduates of the University, nominated by the Vice-Chancellor.

The decision of the Committee shall be final.

(3) The notification to students of a decision which has been upheld by the Re-enrolment Committee of the Professorial Board to exclude them from re-enrolling in a course and/or subject shall indicate that they may appeal against that decision to the Appeal Committee. The appeal must be lodged with the Registrar within fourteen days of the date of notification of exclusion; in special circumstances a late appeal may be accepted at the discretion of the Chairman of the Appeal Committee. In lodging such an appeal with the Registrar students should provide a complete statement of all grounds on which the appeal is based.

(4) The Appeal Committee shall determine appeals after consideration of each appellant’s academic record, application for special permission to re-enrol, and stated grounds of appeal. In particular circumstances, the Appeal Committee may require students to appear in person.

Exclusion
8. (1) Students who are required to show cause under the provisions of Rules 1. or 3. and either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in the subjects and courses on account of which they were required to show cause. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

(2) Students required to show cause under the provisions of Rule 2. who either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in any subject they have failed twice. Where the subjects failed are prescribed as part of a course they shall also be excluded from that course. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

Re-admission after Exclusion
9. (1) Excluded students may apply for re-admission after the period of exclusion has expired.

(2) (a) Applications for re-admission to a course should be made to the Universities and Colleges Admissions Centre before the closing date for normal applications in the year prior to that in which re-admission is sought. Such applications will be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies.

(b) Applications for re-admission to a subject should be made to the Registrar before 30 November in the year prior to that in which re-admission is sought. Such applications will be considered by the relevant subject authority.

(3) Applications should include evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity and/or evidence of action taken (including enrolment in course/s) to improve capacity to resume studies.

(4) Applications for re-admission to a course or subject that are unsuccessful (see 9. (2) (a), (b) respectively) will be reconsidered automatically by the Re-enrolment Committee of the Professorial Board. The decision of the Re-enrolment Committee will be final.

10. Students who fail a subject at the examinations in any year or session and re-enrol in the same course in the following year or session must include in their programs of studies for that year or session the subject which they failed. This requirement will not be applicable if the subject is not offered the following year or session, is not a compulsory component of a particular course, or if there is some other cause which is acceptable to the Professorial Board for not immediately repeating the failed subject.

Restrictions and Definitions
11. (1) These rules do not apply to students enrolled in programs leading to a higher degree or graduate diploma.
(2) A subject is defined as a unit of instruction identified by a distinctive subject number.

Schedule A

(See First Year Rule 1. above)

Where the minimum requirement is half the program, this is defined as half the sum of the unit values of all the subjects in the program where the unit value for each subject in a course is defined as follows:

<table>
<thead>
<tr>
<th>Faculty/Board of Studies</th>
<th>Minimum Requirement</th>
<th>Course</th>
<th>Unit Values (UV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Science</td>
<td>Half the program</td>
<td>3000–3220 One-session subjects: UV 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4190–4220 Two-session subjects: UV 2</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>Half the program</td>
<td>3270, 3330 Elective subjects: UV 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3310–3320 All other subjects: appropriate UV corresponding to credit points*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3360–3380 All other subjects: UV equal to the allocated hours*</td>
<td></td>
</tr>
<tr>
<td>Arts</td>
<td>18 first level credit points</td>
<td>3400, 3410</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>2 subjects (or their Science unit or Arts credit-point equivalent)</td>
<td>3430</td>
<td></td>
</tr>
<tr>
<td>Commerce</td>
<td>Three subjects</td>
<td>3490–3595 FT in both sessions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two subjects</td>
<td>3490–3595 PT in either session</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Half the program</td>
<td>3600–3750 One-session subjects: UV 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two-session subjects: UV 2</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>Half the program</td>
<td>4710–4790 One-section subjects: UV 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two-session subjects: UV 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty/Board of Studies</th>
<th>Minimum Requirement</th>
<th>Course</th>
<th>Unit Values (UV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>Half the program</td>
<td>3910, 3950 All subjects: appropriate UV*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3970 All subjects: appropriate UV*</td>
<td></td>
</tr>
</tbody>
</table>

Admission to Degree or Diploma

Students whose current program will enable them to complete all requirements for the degree or diploma, including industrial training where necessary, should lodge with the Registrar the form Application for Admission to Degree/Diploma and return it to the Registrar by the second Monday in May for the October ceremonies, and the first Tuesday in October for all other ceremonies. The forms are available from the Student Enquiry Counter in the north wing of the Chancellery.

Students who have indicated on their enrolment form that they are potential graduands are forwarded an application form with their Enrolment Details form in September (or, in the case of students who expect to satisfy requirements at

*For details see the appropriate Faculty Handbooks.
the end of Session 1, with the form issued in April). Students who do not complete an application form will not graduate; students who do not return their application form by the due date will graduate at a later series of ceremonies.

Students enrolled in courses 3400, 3910 and 3970 who have completed an application form to graduate at the pass level and who then decide to proceed to an honours degree is published in The Sydney Morning Herald in December.

A list of graduands in Medicine who have applied for their degree is published in The Sydney Morning Herald in December.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in October is published in The Sydney Morning Herald on the second Wednesday in September.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in April/May the following year is published in The Sydney Morning Herald on the second Wednesday in March.

Students who are potential graduands and who wish to notify the Registrar of a change of address should submit an additional form Final Year Students' Graduation: Change of Address.

Attendance at Classes

Students are expected to be regular and punctual in attendance at all classes in the subjects in which they are enrolled. All applications for exemption from attendance at classes of any kind must be made in writing to the Registrar.

In the case of illness or of absence for some other unavoidable cause students may be excused by the Registrar for non-attendance at classes for a period of not more than one month or, on the recommendation of the Dean of the appropriate faculty, for a longer period.

Absence from Classes

Explanations of absences from classes, or requests for permission to be absent from forthcoming classes, should be addressed to the Registrar and, where applicable, should be accompanied by a medical certificate. If examinations or other forms of assessment have been missed, this should be stated in the application.

If students attend less than eighty per cent of their possible classes they may be refused final assessment.

Student Records

Confirmation of Enrolment Program notices are sent to all students on 26 April and 13 September. It is not necessary to return these forms unless any of the information recorded is incorrect. Amended forms must be returned to the Student Records and Scholarships Office within fourteen days. Amendments notified after the closing date will not be accepted unless exceptional circumstances exist and approval is obtained from the Registrar. Amended forms returned to the Registrar will be acknowledged in writing within fourteen days.

Release of Information to Third Parties

The University treats results of assessment and information it receives from a student as confidential and will not reveal such information to third parties without the permission of the student except at the discretion of senior officers in circumstances considered of benefit to the student and when it is either impossible or impracticable to gain the student's prior permission. This happens rarely. This policy is considered so important that it often involves officers of the University in very difficult situations, for example, when they must refuse to reveal the address of a student to parents or other relatives.

In spite of the policy, all students should be aware that students' addresses are eagerly sought by various commercial agents and that subterfuges of various kinds can be used to obtain them. From time to time, for example, people claiming to be from the University telephone students or their families and ask for information (usually another student's address) which is often given, unsuspectingingly. There is evidence that this is a technique used by some commercial agents.

It would be generally helpful if students (and their families and friends) are cautious in revealing information, making it a practice to ask the name, position, and telephone extension of any caller claiming to be from the University and, if suspicious, returning the call to the extension given.

Change of Address

The Student Records and Scholarships Office of the Registrar's Division should be notified as soon as possible of any change of address. Failure to do this could lead to important correspondence (including results of assessment) going astray. The University cannot accept responsibility if official communications fail to reach students who have not given notice of their change of address. Change of
Address Advice Forms are available at Faculty and School offices and from the Student Enquiry Counter in the north wing of the Chancellery.

All communications from the University will be sent to the Session or Term address except when arrangements are made otherwise in the case of results of assessment (see Examinations: Availability of Results, earlier in this section). Change of Address Advice forms will be accepted up to Friday 26 November, except for final-year students wishing to change then Application for Admission for Degree/Diploma form. Changes to this form will be accepted up to a date four weeks before the student’s graduation ceremony.

Ownership of Students’ Work

The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, theses or other work executed by students as part of their courses, or submitted for any award or competition conducted by the University.

Further Information

Lost Property

All enquiries concerning lost property should be made to the Superintendent on extension 3892 or to the Lost Property Office at the Union.

The Calendar

Please consult the Calendar for a more detailed account of the information contained in this section.

Vice-Chancellor’s Official Welcome to New Students

All students initially enrolling in the University are officially welcomed by the Vice-Chancellor and Principal at the following times:

Full-time Students
In the Faculties of Architecture, Arts, Biological Sciences, Commerce, Law:
Thursday 25 February 1982
11 am in the Clancy Auditorium

In the Faculties of Applied Science, Engineering, Medicine, Professional Studies, Science, and the Board of Studies in Science and Mathematics:
Friday 26 February 1982
11 am in the Clancy Auditorium

Part-time Students
All courses:
Thursday 25 February 1982
6.30 pm in the Clancy Auditorium

Meeting for Parents of New Students

Friday 26 February 1982
7.30 pm in the Clancy Auditorium

Academic Dress

Information about the University’s academic dress requirements may be obtained from the Alumni and Ceremonials Section, Room 148E, the Chancellery (phone extension 2998).
Introduction to the Sciences Handbook

This handbook has been designed to assist understanding of the academic activities of three interrelated groups within the university, namely the Board of Studies in Science and Mathematics, the Faculty of Biological Sciences and the Faculty of Science. The Board is responsible for the undergraduate studies of students majoring in disciplines associated with the two faculties and several schools from other faculties. The regulations governing the award of the degree of Bachelor of Science form a substantial part of the handbook.

Several specialist courses of study, also leading to the award of the degree of Bachelor of Science, are offered by the two faculties and the regulations covering these are given under the separate faculty sections. In addition the two faculties make available facilities to proceed to higher degrees and the conditions under which these awards are made are listed under the sections devoted to graduate study.

In the last part of the handbook there are brief statements of the syllabuses for units prescribed in the various regulations.
Faculty Information

Who to Contact

If you require advice about enrolment, degree requirements, progression within courses or any other general matters related to the Board, contact one of the following:

Ms Robyn Mulhoiland, Administrative Assistant
Associate Professor K. G. Rienits, Co-ordinator of Studies in Science and Mathematics
Room 211, Plaza Level, Mathews Building

For information regarding particular courses, advice may be obtained from staff members listed in the Introduction to each of the sections related to the Board, the Faculty of Biological Sciences and the Faculty of Science, later in this handbook.

Enrolment Procedures

- Faculty of Biological Sciences
- Faculty of Science
- Board of Studies in Science and Mathematics

All students re-enrolling in 1982 or enrolling in graduate courses should obtain a copy of the free booklet Enrolment Procedures 1982 available from Course Administration Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Sciences Library Facilities

Although any of the University Libraries may meet specific needs, staff and students of the Faculty of Biological Sciences are served mainly by the Biomedical and Undergraduate Libraries while those of the Faculty of Science are served mainly by the Physical Sciences and Undergraduate Libraries.

The Biomedical Library

This library is situated on Levels 2, 3 and 4 of the Mathews Building Annexe. It aims to serve the specialized reference

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboard of the Board of Studies in Science and Mathematics and the official noticeboards of the University.
and research needs of staff, graduate students and undergraduate students in the Biological Sciences.

Trained staff are available at all times in the Biomedical Library to assist staff and students in making best use of the library.

Biomedical Librarian George Franki

The Physical Sciences Library
This library, situated on Levels 6 and 7 of the Library tower, caters for the information needs of staff, graduate students and senior undergraduate students in the areas of pure and applied science, engineering and architecture. The library's collection of books, serials and microforms bears the prefix 'P' and details of each item are included in the central monograph and serials catalogues. In addition, there is a map collection on Level 6. Journals with the prefix 'PJ' may not be borrowed. Trained staff are available at all times to assist readers with their enquiries.

Physical Sciences Librarian Marian Bate

The Undergraduate Library
This library caters for the library needs of first and second year students and other groups where large numbers require mass teaching.

It provides a reader education program and reader assistance service aimed at teaching students the basic principles of finding information.

Services of particular interest to undergraduates and academic staff are:
- The Open Reserve Section, housing books and other material which are required reading.
- The Audio-Visual Section, containing cassette tapes, mainly lectures and other spoken word material. The Audio-Visual Section has wired study carrels and cassette players for student use.

Undergraduate Librarian Pat Howard

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

The Psychology Society
The Psychology Society aims to provide activities both educational and social for students of psychology, and, more generally, to act as an intermediary body between students and staff. While psychology is one of the most popular subjects available, many students have only a vague conception of psychology and are unsure where their courses will lead them.

One of the aims of the Psychology Society is to provide information relevant to these matters. In a large School it is difficult to develop contacts between students of different years and staff. The Society attempts to provide opportunities for such contact, to foster staff-student relations and to act in the interest of psychology students as a whole. Accordingly, we hope to provide staff-student luncheons, informal discussions and theatre parties. On the educational side there are film showings and occasional talks and seminars (eg on careers, course requirements). An activities fee enables the committee to meet any of the finances needed to support its functions.

Statistical Society of Australia: New South Wales Branch

The Branch offers student membership to undergraduates who are following a recognized course of study which includes Statistics. The subscription for a student member is $14 per annum with a $3 rebate if paid before 1 March.

The Branch holds about four general meetings each year at the end of which two talks, one theoretical and the other applied, are given on the one topic. The Branch conducts a Research Section, and membership of this group is open to members of the Branch free of charge. Each year the Branch also conducts a symposium for the study and discussion of particular statistical techniques or of statistical methods in a specialized field; symposia are open to members at reduced rates.

Members of the Branch receive The Australian Journal of Statistics, which is published three times a year by the Statistical Society of Australia, together with the Society’s Newsletter.

Applications and requests for further information should be sent to the Hon. Secretary, Dr Doug Shaw, CSIRO, DMS, PO Box 218, Lindfield, NSW 2070.
Board of Studies in Science and Mathematics

Introduction

The Science and Mathematics Course (3970) leads to the Bachelor of Science Degree on the completion of a three year program or a four year program chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The Board of Studies in Science and Mathematics offers a wide choice of programs each designed to meet specific aims and objectives. Most programs are identified with a particular School or discipline but some are multi-disciplinary.

All students in the Science and Mathematics Course must enrol in two units of first year Mathematics; either Mathematics I or Higher Mathematics I or General Mathematics. Care must be taken in making the choice as, in general, General Mathematics considerably limits the choice of units in following years.

Some Schools do not offer a full range of level III units in the evening. The Schools concerned are marked below with ‡.

Students seeking general advice should contact the Board of Studies in Science and Mathematics Office (Room 211, Mathews Building, map reference F23) and for advice in specific disciplines should contact the representative of the relevant School as listed below:

- First Year Biology Unit .. Dr C. J. Quinn
- ‡ School of Anatomy .. Dr I. J. Tork (Year 2 and Year 3)
 Professor F. W. D. Rost (Year 4)
- ‡ School of Applied Geology Mr G. J. Baldwin
- ‡ School of Biochemistry Professor B. V. Milborrow
- ‡ School of Biotechnology Dr N. W. Dunn
- ‡ School of Botany .. Associate Professor J. H. Palmer
- ‡ School of Chemistry .. Mr W. J. Dunstan
- ‡ School of Community Medicine Dr A. E. Stark
- ‡ School of Electrical Engineering and Computer Science .. Dr G. McMahon
- ‡ School of Geography ... Mr N. Lonergan
- ‡ School of History and Philosophy of Science .. Dr D. R. Oldroyd
 School of Mathematics .. Associate Professor A. H. Low (Year 1)
- ‡ Marine Science .. Miss M. Potter
 Dr P. Dixon
School of Mechanical and Industrial Engineering ... Mr K. Kjorrefjord
School of Metallurgy ... Mr R. A. Ball
† School of Microbiology ... Dr Y. M. Barnet
† School of Philosophy ... Professor C. L. Hamblin
School of Physics ... Dr P. R. Elliston
† School of Physiology and Pharmacology Dr B. S. Nail or Associate Professor M. J. Rowe
† School of Psychology ... Dr K. R. Llewellyn
Mr T. J. Clulow
† School of Zoology ... Dr Patricia Dixon

The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences* and the Faculty of Science* and some members of a number of specific Schools in other faculties contributing to the Science and Mathematics Course.

The Deans of the Faculty of Science (Professor V. T. Buchwald) and of the Faculty of Biological Sciences (Professor E. O. P. Thompson)† serve alternately as Dean responsible for the Board.

The Chairman is Professor A. J. Wicken.

The Co-ordinator of Studies in Science and Mathematics is Associate Professor K. G. Rienits. The Administrative Assistant is Ms Robyn Mulholland.

Associated and Servicing Schools

The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences and the Faculty of Science, and some members of specific Schools in other faculties contributing to the Science and Mathematics Course: Applied Geology, Chemical Technology, Geography, Metallurgy (Applied Science); History and Philosophy of Science, Philosophy, Sociology, Political Science (Arts); Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

† See text of introduction, on previous page.
* See Staff, listed later in this handbook.
† For 1982-83.
The Science and Mathematics Course, which leads to the Bachelor of Science degree, is administered by the Board of Studies in Science and Mathematics and offers a wide choice of programs, each designed to meet specific aims and objectives. Most programs are identified with a particular school or discipline but some are multi-disciplinary.

Aims of the Science and Mathematics Course

The main aims of the Science and Mathematics Course, diverse and not necessarily exclusive, may be summarized as providing opportunities to students to prepare themselves for careers in:

- research
- technology
- science and mathematics education
- areas of management or public policy involving the use of science or mathematics

Objectives of the Science and Mathematics Course

The important general objectives of most programs in the Science and Mathematics Course are:

1. To develop and sustain an interest in and knowledge of Science and Mathematics.

2. To develop a working knowledge of scientific methods of investigation and a favourable attitude towards them.

3. To encourage curiosity and creative imagination and an appreciation of the role of speculation in the selection and solution of problems, the construction of hypotheses, and the design of experiments.

4. To develop an appreciation of scientific criteria and a concern for objectivity and precision.

5. To develop confidence and skill in formulating problems and in treating both qualitative and quantitative data.

6. To develop the ability and disposition to think logically, to communicate clearly by written and oral means, and to read critically and with understanding.

7. To develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.

8. To promote understanding of the significance of science, technology, economics and social factors in modern society, and of the contributions they can make in improving man’s material conditions and in widening his imaginative horizons and his understanding of the universe.

9. To provide opportunities for the development of a student’s motivation and social maturity, and an awareness of his own capabilities in relation to a choice of career which will be fruitful to himself and to society.

There is a wide range of programs in single and multi-disciplinary areas leading to a three year degree or a four year degree.
The Structure of the Science and Mathematics Course

The Science and Mathematics Course consists of a number of individual programs, based on units ranked as Level I, Level II, Level II/III, Level III and Level IV with a unit size varying from 56–84 hours.

The terms Levels I, II, III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

The Bachelor of Science degree is awarded on completion of
• a three year program
or
• a four year program
chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The time specified is a minimum time required for completion of the degree. It may be taken over a longer period of time.
• A student must select and be enrolled in one of the prescribed programs.
• With the approval of the Dean, a student may change from one selected program to another. A written application to make the change, together with details of any optional units selected in the new program, must be lodged at the office of the Board of Studies in Science and Mathematics, Room 211 (Mathews building, map reference F23).
• The programs listed below are made up of a sequence of units. Where a choice of units is indicated within a program care must be taken to satisfy the requirements, such as prerequisites and co-requisites.
• A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.
• A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.
• An excluded unit is one which cannot be counted towards the degree qualification together with the unit which excludes it. In exceptional circumstances, on the recommendation of the head of the appropriate school, the Board of Studies in Science and Mathematics may waive or vary a particular prerequisite, co-requisite or exclusion.
• A single major is a program specifying only 4 Level III units in a discipline.
• A double major is a program specifying more than 6 Level III units in a discipline.
• Upon sufficient cause being shown in a particular case or cases, the Board of Studies in Science and Mathematics may vary any of these rules.

The three year program

The three year program leading to the award of the pass degree consists of:
1. at least 23 units at Level I, II, II/III, III as specified in an individual program with the following requirements:

 - (1) not less than eight nor more than ten units may be from Level I;
 - (2) two of the Level I units must be 10.001 Mathematics I, 10.011 Higher Mathematics I or 10.021B and 10.021C;
 - (3) not less than four units from Level III or as specified in individual programs;
2. General Studies electives as specified in an individual program, usually one in each of Years 1, 2 and 3.
- In order to graduate a student must pass all the units specified in the program of his/her choice.

The four year program

The four year program, leading to an Honours Class I, II/1, II/2, III or pass degree consists of:
1. at least 23 units at Level I, II, II/III, III as specified in an individual program, with the following requirements:
 - (1) not less than eight nor more than ten units may be from Level I;
 - (2) two of the Level I units must be 10.001 Mathematics I, 10.011 Higher Mathematics I or 10.021B and 10.021C;
 - (3) not less than eight units from Level III or as specified in an individual program;
2. 1. an approved honours program offered by one or more schools;
 or
2. at least 10 units at Level IV as specified in an individual program;
3. General Studies electives as specified in an individual program, usually one in each of Years 1, 2 and 3.
- In order to graduate a student must pass all the units specified in the program of his/her choice.

Students are required:
- to have completed Years 1, 2 and 3 of the specific program and to have satisfied prerequisite requirements as specified in Table 3.
- to seek the guidance of the appropriate head of school at an early stage of study to ensure that the program being followed is best suited to lead to the Year 4 honours program.
- to have completed relevant subjects normally with better than passing grades.
- to have the approval of the appropriate head of school at the end of Year 3.

A person on whom the pass degree of Bachelor of Science of the University has been conferred may be admitted by the Board of Studies in Science and Mathematics, on the recommendation of the relevant Heads of Schools, to candidature for an honours degree conversion program with credit for all units completed, if during his studies for the pass degree, he has satisfied the prerequisites for proceeding to honours level laid down by the School or Schools concerned.

† 10.021A may be substituted for 10.021C if specified in an individual program.
Rules governing admission to the Science and Mathematics Course with advanced standing

Any person who makes application to enrol in the Science and Mathematics Course (course 3970) or in a double degree course which includes the Science degree course administered by the Board of Studies in Science and Mathematics may be admitted to the course of study leading to such degree with such standing on the basis of previous attainment as may be determined by the Board of Studies in Science and Mathematics provided that:

(1) Where students transfer from another tertiary institution, such students shall not in general be granted standing in the course which is superior to that which they have enjoyed at the institution from which they transferred.

(2) The standing granted by the Board of Studies in Science and Mathematics in the case of any application based upon any degree(s) or other award held by applicants, should not be such as will permit the applicants to qualify for the science degree, without completing the course of instruction and passing examinations in at least those subjects comprising the latter half of the Science and Mathematics course, so that where such a program of study would involve the applicants in repeating courses of instruction in which the Board of Studies in Science and Mathematics deems the applicants to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof.

(3) The standing granted by the Board of Studies in Science and Mathematics in the case of applications based upon partial completion of the requirement for any degree or other award of another institution shall not be such that it will permit the applicants to qualify for the award of the science and mathematics degree by satisfactory completion of the program of study deemed by the Board to be less than that required for students in full time attendance in the final year of the Science and Mathematics course (course 3970).

(4) The standing granted by the Board of Studies in Science and Mathematics in the case of applications based upon the partial completion of the requirements for any degree or award of the University may be such as to give full credit in the Science and Mathematics course (course 3970) for work done in the course from which the students transfer.

The range of programs has been designed to cover a wide variety of needs in the various areas of science and mathematics, namely,

Anatomy see programs 7001, 7002, 7003, 1270, 4170, 4570, 6270, 7073
Biochemistry see programs 4101, 0241, 4142, 4143, 4144, 4145, 4162, 4170, 4173
Biology Biology is taught in Year 1 as a single discipline but in later years as specific subjects: biological technology, biochemistry, botany, entomology, genetics, immunology, microbiology and zoology.

Biotechnology see programs 4201, 0242, 4142, 4244
Botany see programs 4301, 4305, 4306, 4307, 4308, 2543, 2743, 4143, 4344, 4345, 4513, 6243
Chemistry see programs 0201, 0202, 0203, 0204, 0225, 0241, 0242, 0262, 7302
Chemical Physics Community Medicine

Computer Science see programs 6851, 6852, 6853
Genetics units available in some programs

Geography (the identifying number is 79)

Geology see programs 2701, 2702, 2703, 2725, 2743

History and Philosophy of Science see programs 6200, 6201, 6225, 6243, 6245, 6270, 0162, 0262, 4162

Marine Science see programs 6831, 6832, 6833, 6834

Mathematics see programs 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 2510, 0610, 0611

Microbiology see programs 4101, 0241, 4142, 4143, 4144, 4145, 4244, 4344

Philosophy units available in some programs

Physics (the identifying number is 52)

Psychology see programs 0101, 0102, 0103, 0105, 0106, 0125, 0161, 2510, 0162, 6201

Zoology see programs 7301, 7302, 7303, 7312, 7345, 7073, 4173

In addition to Course 3970 programs are also included for Courses 4770 (Science/Law), 3730 (Science/Civil Engineering), 3970/3640 (Science/Electrical Engineering), 4070 (Mathematics Education), 4080 (Science Education).

Programs

Each program has a four-digit identifying number.
Most programs have been set out as Years 1, 2, 3 and 4 for the four year program and in these cases Years 1, 2 and 3 comprise a three year program. Some programs are designed as an integrated four year program leading to the award of the honours degree. A few programs are set out as Years 1, 2 and 3 and lead to the pass degree only.

To progress through a program a student must meet all the prerequisites and co-requisites as detailed in Tables 1, 2 and 3.
0101
Physics
Year 1
1.001 or 1.011
10.001 or 10.011
1 General Studies elective††
Choose 2 units from:
2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from:
1.041
5.010
6.611
10.081
17.031, 17.021
25.110, 25.120
Year 2
1.012, 1.022, 1.032
10.1113, 10.1114, 10.2111, 10.2112
1 General Studies elective
Choose 3 units from:
1.042, 1.052
10.111A, 10.331, 10.411A
Year 3
1.013*, 1.023, 1.033, 1.043
1 General Studies elective
Choose at least 3 units from:
1.0533, 1.0543, 1.133, 1.1433, 1.1533, 1.1633, 1.1733,
1.3033, 1.3133, 1.3233, 1.3333, 1.5333, 10.212A, 10.412D,
including at least two of: 1.0533, 1.0543, 1.133
Year 4
1.104
* Students seeking passes with distinction may be required to take additional
material.
†† Enrolment in General Studies may be deferred until later years but three elec-
tives must be satisfactorily completed for degree requirements.

0102
Physics
Single Major†
Year 1
1.001 or 1.011
10.001 or 10.011
1 General Studies elective††
Choose 4 Level I units from Table 1 and/or Table 2 for
program 0102
Year 2
1.012, 1.022, 1.032
10.2111 & 10.2112
1 General Studies elective
Choose 4 units from 1.042, 1.052, Table 1 and/or Table 2 for
program 0102

0103
Applied Physics
Year 1
1.001 or 1.011
10.001 or 10.011
1 General Studies elective††
Choose 2 units from:
2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from:
1.041
5.010
6.611
10.081
17.031, 17.021
25.110, 25.120
Year 2
1.012, 1.022, 1.032
10.1113, 10.1114, 10.2111, 10.2112
1 General Studies elective
Choose 3 units from:
1.042, 1.052
10.111A, 10.331, 10.411A
Year 3
1.013*, 1.023, 1.033, 1.043
1 General Studies elective
Choose at least 3 units from:
1.0533, 1.0543, 1.133, 1.3033, 1.3133, 1.3233, 1.3333,
1.3533,
including at least one of:
1.0533, 1.0543
Year 4
1.304
* †† See footnote to program 0101.

0105
Theoretical Physics
Year 1
1.001 or 1.011
10.001 or 10.011
1 General Studies elective††
Choose 2 units from: 2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from:
1.041
5.010
6.611
10.081
17.031, 17.021
25.110, 25.120
0125
Physics/Geology

Year 1
1.001 or 1.011
2.121 & 2.131 or 2.141
10.001 or 10.011
25.110, 25.120
1 General Studies elective††

Year 2
1.012, 1.022, 1.032
10.2111, 10.2112, 10.1113 & 10.1114
1 General Studies elective
Choose 3 units from 25.211, 25.221, 25.212, 25.223

Year 3
1.013, 1.023, 1.033, 1.043
1 General Studies elective
Choose at least 2 units from:
1.013 or 1.523, 1.5333, 10.412D, 10.122B, 10.212A or
& 10.1126

Year 4
25.414 or 1.104 or 1.304
or
68.430 (a combined Geology and Physics program by arrangement with Heads of the two Schools)
†† See footnote to program 0101.

0161
Physics/Computer Science

Year 1
1.001 or 1.011
10.001 or 10.011
6.611
1 General Studies elective††

Year 2
1.012, 1.022, 1.032
2.002B
10.1113, 10.1114, 10.2111, 10.2112
73.111* or 73.121
1 General Studies elective

Year 3
1.023, 1.033, 1.1433, 1.1533, 1.3333, 1.0533
10.111A, 10.212
1 General Studies elective
Choose at least 1 unit from:
17.012
42.101
43.101, 43.111, 43.121, 43.131
44.101
45.101, 45.201, 45.301
73.012A, 73.012B

Year 4
1.604

* Entry to 73.111 requires the approval of the Head of School of Physiology and Pharmacology.
†† See footnote to program 0101.

* Unit 6.631 must be taken in either Year 2 or Year 3.
** Students intending to proceed to Year 4 are required to choose appropriate units in Years 1, 2 and 3. This choice is determined by the requirements of programs 0101, 0103 and 0105. Students must consult the School of Physics and receive approval for the choice of units.
†† See footnote to program 0101.
0162
Physics with Science Studies†

Year 1
1.001 or 1.011
10.001 or 10.011
Choose 4 Level I units from Table 1 and/or Table 2 for program 0162

1 General Studies elective**††

Year 2
1.012, 1.022, 1.032
10.2111, 10.2112
62.022, 62.052, 62.062
Choose 1 unit from:
62.012, 62.022, 62.032
Choose 1 unit from Table 1

Year 3
1.013*, 1.023, 1.033, 1.043
½ General Studies elective**
Choose 3 units from:
Choose 1 unit from:
15.001, 15.703, 15.753, 10.212A or 10.412D

Year 4
62.024

† Under exceptional circumstances students taking this program may be eligible for transfer into Year 4 of program 0101 or 0103 or 0105, the latter if the student reaches a satisfactory level in a number of mathematics units at Level II or Level III.

** 26.561, 26.564, 26.817 may not be included in the program.

†† * See footnote to program 0101.

0202
Chemistry*

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002A, 2.002B
1 General Studies elective
Choose 3 units from Table 1

Year 3
1 General Studies elective
Choose 8 Level III units from Table 1 including only 4 Chemistry units

Year 4
2.004

* See footnote to program 0201.
†† See footnote to program 0101.

0201
Chemistry*
Single major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
1 General Studies elective
Choose 3 units from Table 1

Year 3
1 General Studies elective
Choose 8 Level III units from Table 1 including only 4 Chemistry units

Year 4
2.004

* See footnote to program 0201.
†† See footnote to program 0101.

0203
Chemistry
Double major

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (3910) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 3910, the transfer may still be made before the commencement of Year 3.

The Pure and Applied Chemistry Course is described in detail later in this handbook (Faculty of Science) and enables specialization in Chemistry.
0204 Chemistry/Chemical Engineering Science

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
Choose 2 Level I units from Table 1
1 General Studies elective† †

Year 2
2.002A, 2.002B, 2.042C, 2.002D, 2.003H
1 General Studies elective
Choose 2 units from Table 1

Year 3
2.003B, 2.003C, 2.003D, 2.013A
1 General Studies elective
Choose 4 other Chemistry Level I electives from Table 1

Year 4
2.004
† † See footnote to program 0101.

0225 Chemistry/Geology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
1 General Studies elective† †

Year 2
2.002D, 2.042C
25.211, 25.212, 25.212
1 General Studies elective
Choose 2 units from: 2.002A, 2.002B, 2.003E, 2.003H & 25.223

Year 3
1 General Studies elective
Choose 4 units from: 2.003B, 2.003C, 2.003D, 2.003E, 2.003H, 2.013D, 2.043A

Year 4
2.004 or 25.414
† † See footnote to program 0101.

0241 Chemistry/Biochemistry

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective† †

Year 2
2.002A, 2.002B, 2.042C, 2.002D
41.101, 41.111
1 General Studies elective

Year 3
41.102A
1 General Studies elective
Choose either 41.102B or both 41.102C and 41.102D
Choose 4 Chemistry Level III units from Table 1

Year 4
41.103 or 2.004

* Students electing 10.111A and 10.2111 and 10.2112 need not make an election under Year 2 clauses 1. and 2.
† † See footnote to program 0101.
0242
Chemistry/Biotechnology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††

Year 2
2.002A, 2.002B
41.101
42.101
44.101, 44.121
1 General Studies elective
Choose 1 unit from:
2.042C, 2.002D

Year 3
42.102A, 42.102B
1 General Studies elective
Choose 6 units from Table 1 including 4 Chemistry Level III units; all should be Level III if proceeding to Year IV

Year 4
2.004 or
42.103
†† See footnote to program 0101.

0262
Chemistry with Science Studies

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
1 General Studies elective††
2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
62.022, 62.052, 62.062
Choose 1 unit from Table 1

Year 3
4 Chemistry Level III units from Table 1
½ General Studies elective* Choose 3 units from:
Choose 1 unit from:
15.001, 15.703, 15.753

7302
Chemistry/Physiology

See 7302 Physiology/Chemistry

0401
Physical Metallurgy

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002A
4.402, 4.512
1 General Studies elective
Choose 4 Level II units from Table 1 or 3 Level II units from Table 1 and 1 unit from Table 2 for program 0401

Year 3
4.403, 4.703, 4.522
1 General Studies elective
Choose 4 Level III units from Table 1 or 3 Level III units from Table 1 and 1 Level III unit from Table 2 for program 0401

Year 4
4.004
†† See footnote to program 0101.

0402
Chemical Metallurgy

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
1 General Studies elective††
Choose 2 Level I units from Table 1
0403
Metallurgy
Double major

Students wishing to take more than 4 Level III Metallurgy units are required to transfer to the four year Metallurgy BSc degree course (3120) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 3120 the transfer may still be made before the commencement of Year 3.

The Metallurgy BSc degree course is described in detail in the Faculty of Applied Science Handbook and enables specialization in Metallurgy.

0610
Computer Science/Mathematics

Year 1*
10.001 or 10.011
6.611
1 General Studies elective††
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 6806**

Year 2
6.621 or 6.620, 6.631, 6.641
1 General Studies elective
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 3†
Choose 4 Level III Computer Science units
1 General Studies elective
Choose 3 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 4
6.606
* In Year 1 students must enrol in Program 6806. Enrolment in Year 2 of Programs 0601, 0610 and 0611 is based on academic performance in Year 1.
†† See footnote to program 0101.
** The program may include up to 8 units that are not in Table 1. Subjects chosen from the BA degree course are restricted to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273. (6 BA degree credit points at Level I or 4 credit points at Upper Level are equivalent to 1 unit.)
† Students intending to proceed to honours in Computer Science should choose 8 Level III units including 6.613, 6.632, 6.642 and 6.643.
 Programs of Study

Programs 1001–1010 (Mathematics)

These are general Mathematics programs which are chosen by students wishing to major in Mathematics with most of the supporting subjects being Science subjects.

There are four specific programs in this group each available at pass or honours (3 or 4 years) level. These are in Pure Mathematics, Applied Mathematics, Statistical and Theoretical and Applied Mechanics. There is also a three year program leading to a combined major in Applied Mathematics and Theoretical and Applied Mechanics. Students are able to combine courses in Pure Mathematics, Applied Mathematics, Theoretical Mechanics, Theory of Statistics and Computer Science in accordance with their future interests. Such combination of courses are particularly suitable for students intending to become secondary school teachers.

Programs 1011–1019 (Mathematics and Liberal Studies)

The Mathematics and Liberal Studies programs are aimed at encouraging students to see Mathematics in a cultural and social setting. By combining mathematics units with suitable arts units, particularly those in Philosophy and History and Philosophy of Science, it is hoped that these programs will bring together the exactitude of mathematics with the freer creativity of the arts. It is expected that students would do History of Mathematics in their third year to provide an opportunity to bring together much of the 'mathematics' and 'liberal studies' of their earlier courses.
The liberal studies may be combined into a broad mathematics sequence or if students wish to specialize, then Pure Mathematics, Applied Mathematics, Theoretical Mechanics or Theory of Statistics sequences are available at pass or honours level.

Interdisciplinary Programs
Programs 1020 and 1021, Applied Mathematics (Economic Optimization) includes subjects offered by the School of Economics as well as mathematics subjects with a particular emphasis on optimization, optimal control, and related areas. This program is intended for students who are good at mathematics and interested in applications of mathematics to economic problems, particularly problems of economic planning and macro-economic modelling. The degree is a mathematics degree, but there is enough economics in it to provide a very good introduction for work in the area of mathematical economics and its applications. Program 1021 is an honours program of 1020.

Programs 1022 and 1023, Mathematics of Management include subjects given by the Schools of Accountancy and of Economics. There has been an increasing trend towards more use of mathematics, and the use of more advanced mathematics, in scientific management. These programs are intended to train mathematicians with an interest in the application of mathematics to management science. The mathematics content is very solid indeed, amounting to a full mathematics degree. A student completing these courses with a good record is eligible for entry to the Master of Commerce graduate degree program in the School of Accountancy, if appropriate subjects are selected, then this degree, (MCom), which may be awarded by part-time study, qualifies the graduate for provisional membership of the Australian Society of Accountants; full membership is then granted after appropriate experience.

1001 Mathematics

Year 1
10.001 or 10.011
1 General Studies elective††
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
1 General Studies elective
Choose 5 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 Level III§ Mathematics units from Table 1 (or choose 5 if only 3 Level II Mathematics units taken)
1 General Studies elective
Choose 3 (or 2) units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

†† See footnote to program 0101.
* It is strongly recommended that two of these units be 10.081 and 6.611.
** Up to 6 units of this program may be replaced by subjects offered in the BA degree course. (6 credit points at Level I or 4 credit points at Upper Level are equivalent to 1 unit.) The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.
† Not more than 8 units that are not in Table 1 may be taken without the approval of the Head of the School of Mathematics.
§ Not to include more than one Level II/III unit.

1002 Pure Mathematics

Year 1
10.001 or 10.011
1 General Studies elective††
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2.
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
1 General Studies elective
Choose 5 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.111†, 10.1112†, 10.1121, 10.1128
Choose 2 units from:
10.1122, 10.1123, 10.1124, 10.1125, 10.1126, 10.1127, 10.1129, 10.112C, 10.1521
1 General Studies elective
If only 3 Level II Mathematics units taken in Year 2 choose 1 further Level II or Level III Mathematics unit
Choose 3 (or 2) units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Note: 3rd Year Higher Mathematics Units may be substituted for equivalent pass units with the approval of the Head of School of Mathematics.
†† See footnote to program 0101.
** † See footnotes to program 1001.
† This unit may be taken in Year 2 or Year 3 of the program.
1003

Pure Mathematics Honours

Year 1

10.011

1. *General Studies elective*

Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2

10.121A, 10.121C, 10.1213, 10.2211, 10.2212

1. *General Studies elective*

Choose 4 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2 for program 1001

At least 2 of which must be Level III units

Year 3

10.122A, 10.122B, 10.122C, 10.122E

1. *General Studies elective*

Choose 3 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2 for program 1001

Note: Where higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

1005

Applied Mathematics Honours

Year 1

10.011

1. *General Studies elective††*

Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2

10.121A†, 10.1213, 10.1214, 10.2211, 10.2212, 10.2213†, 10.2215† †

1. *General Studies elective*

Choose 4 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3

10.222A, 10.222M

Choose 1 unit from:
10.222L, 10.222C, 10.222F

Choose 1 further Higher Level III§ Mathematics unit

1. *General Studies elective*

Choose 3 Level III§ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 4

10.223

Note: Where higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

†† See footnote to program 0101.

*** †† See footnotes to program 1001.

Note: Where higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

††† These units are strongly recommended but not essential to be taken. If not taken, one additional mathematics unit at Level II or Level III must be taken in either Year 2 or Year 3.

††† If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

§ Students should consult with a Professor of the Department before finalizing their Year 3 enrolment (see also * footnote for Table 3).
1006
Statistics

Year 1
10.001 or 10.011
1 General Studies elective††
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B)
1 General Studies elective
Choose 2½ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 units from:
10.312A (or 10.322A), 10.312B (or 10.322B), 10.312C (or 10.322C), 10.312D (or 10.322D), 10.312E (or 10.322E)
1 General Studies elective
Choose 3 Level III Mathematics and/or Computer Science units from Table 1

†† See footnote to program 0101.
** † See footnotes to program 1001.

1008
Theoretical Mechanics

Year 1
10.001 or 10.011
1.001 or 1.011
1 General Studies elective††
Choose 4 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.411A (or 10.421A), 10.411B (or 10.421B)
1 General Studies elective
Choose 3 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.412A (or 10.422A), 10.412D (or 10.422D)
1 General Studies elective
Choose 2 units from:
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M), (10.1125 and 10.112b) (or 10.122E), 10.412B (or 10.422B)
Choose 3 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

†† See footnote to program 0101.
** † See footnotes to program 1001.

1007
Statistics Honours

Year 1
10.011 or 10.001
1 General Studies elective††
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.111A), 10.1113 (or 10.1113), 10.1114 (or 10.1114), 10.2112 (or 10.2112), 10.311A (or 10.311A), 10.311B (or 10.311B)
1 General Studies elective
Choose 2½ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 units from:
10.322A, 10.322B, 10.322C, 10.322D, 10.322E
1 General Studies elective
Choose 3 Level III Mathematics and/or Computer Science units from Table 1

†† See footnote to program 0101.
** † See footnotes to program 1001.
1009
Theoretical Mechanics Honours

Year 1
10.011, 1.001 (or 1.011)
1 General Studies elective††
Choose 4 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.121A (or 10.111A), 10.121D, 10.2211, 10.2221, 10.421A, 10.421B
1 General Studies elective
Choose 3 units from:
1. Table 1 &/or
2. The BA course*† &/or
3. Table 2† for program 1001

Year 3
10.422A, 10.422B, 10.222C, 10.422D
1 General Studies elective
Choose 2 units from:
1. Table 1 &/or
2. The BA course*† &/or
3. Table 2† for program 1001

†† See footnote to program 0101.
** † See footnotes to program 1001.
††† If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1011
Mathematics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ‡ from:
1. Table ‡ &/or
2. The BA course!

Year 2
10.111A (or 10.121A), 10.111D, 10.2111, 10.2211, 10.2212
Choose 5 units from:
1. Table ‡ &/or
2. The BA course!

Year 3
Choose 4 Level III Mathematics units from Table 1 (or choose 5 if only 3 Level II Mathematics units taken)
Choose 5 (or 4) units from:
1. Table ‡ &/or
2. The BA course!

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
• Except for mathematics units, not more than 2 Level I units may be taken in one subject.
• ‡ Geography, History and Philosophy of Science, and Philosophy shall be from the BA degree course.
• § At least 6 units of this program must come from subjects offered in the BA degree course (6 credit points at Level I or 4 credit points at Upper Level are equal to 1 unit). The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, Geography, German, History, History and Philosophy of Science, Philosophy, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to those in Economic History plus 15.062, 15.072, 15.263 and 15.273.
• † Not to include more than one Level II/III unit.

1010
Applied Mathematics and Theoretical Mechanics

Year 1
10.001 (or 10.011), 1.001 (or 1.011)
1 General Studies elective††
Choose 4 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 2
10.111A (or 10.121A), 10.111D (or 10.121D), 10.2111, 10.2211, 10.421A, 10.421B
1 General Studies elective
Choose 2 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 Level III Mathematics units from Table 1 (or choose 5 if only 3 Level II Mathematics units taken)
Choose 5 (or 4) units from:
1. Table ‡ &/or
2. The BA course!

‡ Not to include more than one Level II/III unit.

1012
Pure Mathematics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ‡ from:
1. Table ‡ &/or
2. The BA course!
Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.1112†, 10.1121, 10.1128
Choose 2 units from:
10.1122, 10.1123, 10.1124, 10.1125, 10.1126, 10.1127, 10.1129, 10.112C, 10.1521
If only 3 Level II Mathematics units were taken choose 1 further Level II or Level III Mathematics unit
Choose 5 (or 4) units from:
1. Table 1† &/or
2. The BA course§

Year 4
10.1113†, 10.1114†, 10.1121 A, 10.1123, 10.1124, 10.2111, 10.2112, 10.2113, 10.2115†, 10.2115†, 10.2211, 10.2212, 10.2215†
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M)
Choose 1 unit from:
the Theory of Statistics Level III units or from the Theoretical Mechanics Level III units
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
† This unit may be taken in Year 2 or Year 3 of the program.

1013
Pure Mathematics Honours and Liberal Studies§

Year 1
10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A, 10.1213, 10.1214, 10.2211, 10.2212, 10.2213, 10.2215†
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.222A, 10.222L, 10.222M
Choose 2 further Higher Level III† Mathematics units one of which must not be a Pure Mathematics unit and one of which is recommended to be 10.122B
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 4
10.223
Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

1014
Applied Mathematics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.2113† (or 10.2213†), 10.2115†, 10.2215†, 10.2215†, 10.2215†
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M)
Choose 1 unit from:
the Theory of Statistics Level III units or from the Theoretical Mechanics Level III units
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
† This unit is strongly recommended but not essential. If not taken one additional Mathematics unit at Level II or Level III must be taken in either year 2 or year 3.
‡ If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1015
Applied Mathematics Honours and Liberal Studies§

Year 1
10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A, 10.1213, 10.1214, 10.2211, 10.2212, 10.2213, 10.2215†
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.222A, 10.222L, 10.222M
Choose 2 further Higher Level III† Mathematics units one of which must not be a Pure Mathematics unit and one of which is recommended to be 10.122B
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 4
10.223
Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

† † † See footnotes to program 1011.
‡ ‡ If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

45
1016

Statistics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.111B (or 10.121B), 10.111C (or 10.121C), 10.111D (or 10.121D), 10.211A (or 10.221A), 10.211B (or 10.221B)
Choose 2½ units from:
1. Table 1† &/or
2. The BA course§

Year 3
Choose 4 units from:
10.312A (or 10.322A), 10.312B (or 10.322B), 10.312C (or 10.322C), 10.312D (or 10.322D), 10.312E (or 10.322E)
Choose 3 Level III Mathematics and/or Computer Science units from Table 1
Choose 2 units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.

* * * † See footnotes to program 1011.

1017

Statistics Honours and Liberal Studies§

Year 1
10.011 or 10.001
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A (or 10.111A), 10.121B (or 10.111B), 10.121C (or 10.111C), 10.121D (or 10.111D), 10.211A (or 10.122A), 10.312A (or 10.322A)
Choose 2½ units from:
1. Table 1† &/or
2. The BA course§

Year 3
Choose 4 units from:
10.322A, 10.322B, 10.322C, 10.322D, 10.322E
Choose 3 Level III Mathematics and/or Computer Science units from Table 1
Choose 2 units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.

* * * † See footnotes to program 1011.

1018

Theoretical Mechanics and Liberal Studies§

Year 1
10.001 or 10.011
1.001 or 1.011
Choose 4 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.111B (or 10.121B), 10.111C (or 10.121C), 10.111D (or 10.121D), 10.211A (or 10.221A), 10.411A (or 10.421A), 10.411B (or 10.421B)
Choose 3 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.412A (or 10.422A), 10.412D (or 10.422D)
Choose 2 units from:
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M), 10.122E, 10.412B (or 10.422B) or both 10.1125 and 10.1126
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.

* * * † See footnotes to program 1011.

1019

Theoretical Mechanics Honours and Liberal Studies§

Year 1
10.011
1.011 or 1.001
Choose 4 units* ** from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.

* * * † See footnotes to program 1011.
Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.221, 10.2212, 10.421A, 10.421B
Choose 3 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.422A, 10.422B, 10.222C, 10.422D
Choose 2 units from:
10.412A, 10.212A (or 10.222A), 10.222M (or 10.212M), 10.2213 (or 10.2113), 10.2215†† (or 10.2115††), 10.122B, 10.122E (or 10.1125 and 10.1126)
Choose 3 units from:
1. Table 1† &/or
2. The BA course§

Year 4
10.423

Note:
1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

*• tt See footnotes to program 1011.
†† If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1020
Applied Mathematics
(Economic Optimization)

Year 1
10.001 or 10.01†
15.001, 15.011
1 General Studies elective††
Choose 4 units from:
1. Table 1 &/or
2. The BA course &/or
3. Table 2 for program 1020

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.2113 (or 10.2213), 10.2115†† (or 10.2215††)
15.002, 15.042
1 General Studies elective
Choose either 10.331 and 1 unit from:
1. Table 1 &/or
2. The BA course &/or
3. Table 2 for program 1020
or
Choose both:
10.311A, 10.311B
or
10.321A, 10.321B

Year 3
10.212L (or 10.222L), 10.212M (or 10.222M)
15.003, 15.413, 15.423
Choose 2 Level III* Mathematics units from Table 1 if 10.331 was chosen and otherwise choose 1 Level III* Mathematics unit from Table 1 excluding 10.312C and 10.322C

Note: Only 2 General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.
* The two half units 10.1125 and 10.1126 are recommended.
** Six credit points at Level I or 4 credit points at Upper Level equals 1 unit.
†† See footnote to program 0101.
†‡ If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1021
Applied Mathematics Honours
(Economic Optimization)

Year 1
10.011
15.001, 15.011
1 General Studies elective††
Choose 4 units from:
1. Table 1 &/or
2. The BA course &/or
3. Table 2 for program 1021

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.221, 10.2212, 10.2213, 10.2215††, 10.331 or both 10.311A and 10.311B or both 10.321A and 10.321B
15.012, 15.052
1 General Studies elective

Year 3
10.222A, 10.222L, 10.222M, 10.122B
15.013, 15.033, 15.413, 15.423

Year 4
10.233
15.024, 15.034

Note:
1. Only 2 General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.
* Six credit points at Level I or 4 credit points at Upper Level equals 1 unit.
†† See footnote to program 0101.
†‡ If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1021
Applied Mathematics Honours
(Economic Optimization)

Year 1
10.011
15.001, 15.011
1 General Studies elective††
Choose 4 units from:
1. Table 1 &/or
2. The BA course &/or
3. Table 2 for program 1021

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.221, 10.2212, 10.2213, 10.2215††, 10.331 or both 10.311A and 10.311B or both 10.321A and 10.321B
15.012, 15.052
1 General Studies elective

Year 3
10.222A, 10.222L, 10.222M, 10.122B
15.013, 15.033, 15.413, 15.423

Year 4
10.233
15.024, 15.034

Note:
1. Only 2 General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.
* Six credit points at Level I or 4 credit points at Upper Level equals 1 unit.
†† See footnote to program 0101.
†‡ If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1021
Applied Mathematics Honours
(Economic Optimization)

Year 1
10.011
15.001, 15.011
1 General Studies elective††
Choose 4 units from:
1. Table 1 &/or
2. The BA course &/or
3. Table 2 for program 1021

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.221, 10.2212, 10.2213, 10.2215††, 10.331 or both 10.311A and 10.311B or both 10.321A and 10.321B
15.012, 15.052
1 General Studies elective

Year 3
10.222A, 10.222L, 10.222M, 10.122B
15.013, 15.033, 15.413, 15.423

Year 4
10.233
15.024, 15.034

Note:
1. Only 2 General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.
* Six credit points at Level I or 4 credit points at Upper Level equals 1 unit.
†† See footnote to program 0101.
†‡ If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.
1022
Mathematics of Management

Year 1
10.001 or 10.011
14.501, 14.511
15.001, 15.011
1 General Studies elective††
Choose 2 units from:
1. Table 1 &/or
2. Table 2 for program 1022

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or
10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212),
10.2113 (or 10.2213), 10.2115†† (or 10.2215††), 10.311A
(or 10.321A)
14.522, 14.602
Choose at least one of:
14.542, 14.603, 14.613
15.042
1 General Studies elective

Year 3
14.583
Choose at least 4 Level III mathematics units from Table 1, of
which at least 2 shall be selected from:
10.212A (or 10.222A), 10.412D (or 10.422D), 10.212L (or
10.222L), 10.412M (or 10.222M), 10.311B (or 10.321B),
10.312A (or 10.322A)
Choose any remaining units from:
1. Table 1 &/or
2. Table 2 for program 1022

Note: Only 2 General Studies electives are required in this program. Each of
14.601, 15.601, 15.611 (Table 2) may be substituted for a General Studies elec-
tive but may not then count as a qualifying unit.
†† See footnote to program 0101.
††† If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and
10.2215 respectively.

1025
Mathematics/Geology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
25.110, 25.120
1 General Studies elective††
Choose 1 unit from:
10.211E, 10.411B & 10.331

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213),
10.1114 (or 10.1214), 10.2111 (or 10.2211),
10.2112 (or 10.2212)
25.211, 25.221, 25.212, 25.223
1 General Studies elective
Choose 1 unit from:
10.211E, 10.411B & 10.331

Year 3
Choose 4 level III mathematics units from Table 1
25.311, 25.313, 25.326
1 General Studies elective
Choose 1 unit from:

Year 4
25.414 or 10.123* or 10.223* or 10.423*
†† See footnote to program 0101.
* Provided students have taken appropriate Higher Mathematics units in earlier
years.

2510
Mathematics & Physics/Geology

See 2510 Geology with Physics & Mathematics

Mathematics/Marine Science

See 6831 Marine Science (Physical Oceanography) and
attached note relating to dual major with Mathematics
Mathematics/Marine Science Honours
See 6831 Marine Science (Physical Oceanography) and attached note relating to dual major with Mathematics

Psychology
In the Science and Mathematics course there are three programs which lead to a major in Psychology after 3 years or to honours after 4 years. These programs are 1201 Psychology, 1270 Psychology/Anatomy and 7312 Physiology/Psychology. There is also a four year full-time professional science degree course (Course 3430) which is described in detail later in this handbook (see Faculty of Biological Sciences).

Students who wish to obtain qualifications that will allow them to practise psychology need to complete one of the above four year honours programs. The present minimum qualifications for membership of the Australian Psychological Society (the professional body of Australian psychologists) require a degree (with a major in psychology) and a fourth year of study of psychology, followed either by further graduate study or by two years of supervised experience in some practical field of psychology. A professional qualification in psychology leads to careers in research, teaching and applied fields such as personnel selection and management, vocational guidance, advertising and clinical practice.

Students who are seeking to become occupational therapists should enrol in program 1270 Psychology/Anatomy (program 6801 in year 1). The Cumberland College of Health Sciences recognizes the completion of this program as an appropriate prerequisite for admission to its Graduate Diploma in Occupational Therapy course.

1201
Psychology
Year 1
10.001 or 10.011
or
10.021B and 10.021C
12.100
1 General Studies elective
Choose 4 Level I units from Table 1 or Table 2 for program 1201
Year 2
12.200
Choose 2 units from:
12.201, 12.202, 12.204, 12.205
1 General Studies elective
Choose 5 units from Table 1
Year 3
1 General Studies elective
Choose at least 7 units from Table 1 including at least 4 Level III Psychology units*

1270
Psychology/Anatomy**
Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B and 10.021C
12.100
17.031, 17.021
1 General Studies elective
Year 2
12.200, 12.201, 12.202
70.011A, 70.011C
73.121 or 73.111§
1 General Studies elective
Choose*** 70.011B or 70.012B or 70.304 or choose 1 unit from Table 1
Year 3
70.012C, 70.306, 70.307
1 General Studies elective
Choose at least 4 Psychology Level III units†, or
Choose*** 4 Psychology Level III units and 70.011B or 70.012B or 70.304 or 70.305
Year 4
12.403 or 12.404 or 70.013***

* In Year 1, students must enrol in program 6801. Enrolment in Year 2 of program 1270 is based on academic performance in Year 1.
** The Cumberland College of Health Sciences recognizes the completion of this program as an appropriate prerequisite for admission to its Graduate Diploma in Occupational Therapy course.
†† See footnote to program 0101.
*** Students taking Honours in Anatomy must have completed at least 4 Anatomy units at Level III. This requires one elective unit chosen from 70.011B, 70.012B, 70.304, or 70.305.
§ Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.
† Students taking honours in Psychology must have completed 8 Level III units of Psychology including all units from Group A. Additionally, students intending to take the research alternative in Psychology IV are required to include 12.301 from Group B.

1201 Psychology
10.001 or 10.011
or
10.021B and 10.021C
12.100
1 General Studies elective
Choose 4 Level I units from Table 1 or Table 2 for program 1201

1270 Psychology/Anatomy**
Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B and 10.021C
12.100
17.031, 17.021
1 General Studies elective
Year 2
12.200, 12.201, 12.202
70.011A, 70.011C
73.121 or 73.111§
1 General Studies elective
Choose*** 70.011B or 70.012B or 70.304 or choose 1 unit from Table 1
Year 3
70.012C, 70.306, 70.307
1 General Studies elective
Choose at least 4 Psychology Level III units†, or
Choose*** 4 Psychology Level III units and 70.011B or 70.012B or 70.304 or 70.305
Year 4
12.403 or 12.404 or 70.013***

* In Year 1, students must enrol in program 6801. Enrolment in Year 2 of program 1270 is based on academic performance in Year 1.
** The Cumberland College of Health Sciences recognizes the completion of this program as an appropriate prerequisite for admission to its Graduate Diploma in Occupational Therapy course.
†† See footnote to program 0101.
*** Students taking Honours in Anatomy must have completed at least 4 Anatomy units at Level III. This requires one elective unit chosen from 70.011B, 70.012B, 70.304, or 70.305.
§ Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.
† Students taking honours in Psychology must have completed 8 Level III units of Psychology including all units from Group A. Additionally, students intending to take the research alternative in Psychology IV are required to include 12.301 from Group B.
7312
Psychology/Physiology
See 7312 Physiology/Psychology

2501
Geology
Double major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
1 General Studies elective††

Year 2
25.211, 25.221, 25.212, 25.223
1 General Studies elective
Choose 3 units from Table 1

Year 3
1 General Studies elective

Year 4
25.411
Plus
either
25.412
or
25.413

†† See footnote to program 0101.

2510
Geology with Physics and Mathematics

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
25.110, 25.120
1 General Studies elective††

Year 2
1.012, 1.022, 1.032, 1.042
10.2111, 10.2112, 10.331
25.212, 25.223
1 General Studies elective

Year 3
1.033, 1.133, 1.3533
10.2113, 10.2114
25.312, 25.313, 25.325, 25.326, 25.6341
1 General Studies elective

Year 4
25.414

†† See footnote to program 0101.

2543
Geology with Botany & Zoology

Year 1
2.121 & 2.131
10.001 or 10.011
or
10.021B & 10.021C
17.021 & 17.031
25.110 & 25.120
1 General Studies elective††

Year 2
25.211, 25.221, 25.212, 25.223
1 General Studies elective
Choose 1 unit from:
17.012
43.112* (or 43.162*), 43.131
0125
Geology/Physics
See 0125 Physics/Geology

0225
Geology/Chemistry
See 0225 Chemistry/Geology

1025
Geology/Mathematics
See 1025 Mathematics/Geology

2725
Science Geography/Geology
See 2725 Geology/Science Geography

2701
Science Geography
Year 1
10.001 or 10.011
or
10.021B + 10.021C
27.111*
or
27.801* & 27.802*
1 General Studies elective††
Choose 4 Level I units from Table 1

Year 2
27.811*, 27.812*, 27.2813, 27.2814
1 General Studies elective
Choose 4 units from Table 1 including not more than 2 Level I units

Year 3
1 General Studies elective
Choose 8 units including at least 4 Level III units from Table 1 including at least 3 units from:
27.153, 27.143, 27.183, 27.133 (or 27.863), 27.872

Year 4
27.604
* Students who choose 27.111 instead of 27.801 and 27.802 in Year 1 should omit 27.801 and 27.811 from their program and complete 27.802 and 27.812 in Years 2 and 3 respectively.
†† See footnote to program 0101.

2702
Science Geography with Botany
Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
27.111
or
27.801* & 27.802*
1 General Studies elective††
Choose 2 units from:
2.111, 2.121, 2.131, 2.141

Year 2
1.001
27.811*, 27.812*, 27.2813, 27.2814
43.101, 43.111
1 General Studies elective
Choose 1 Level II unit from Table 1

Year 3
27.153, 27.143
43.142
1 General Studies elective
Choose 4 units from:
27.183, 27.133, 27.862
43.112, 43.162

Year 4
27.604
* Students who choose 27.111 instead of 27.801 and 27.802 in Year 1 should omit 27.801 and 27.811 from their program and complete 27.802 and 27.812 in Years 2 and 3 respectively.
†† See footnote to program 0101.
2703
Science Geography with Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B + 10.021C
25.110, 25.120
27.111
or
27.801* & 27.802*
1 General Studies elective††

Year 2
1.001
25.211, 25.221, 25.212
27.811*, 27.812*, 27.2813, 27.2814
1 General Studies elective

Year 3
25.311, 25.312
27.183, 27.133
1 General Studies elective
Choose 3 units from:
Either
25.325 (or 25.314), 27.153, 27.143, 27.862

Year 4
27.604
* Students who choose 27.801 instead of 27.801 and 27.802 in Year 1 should omit 27.801 and 27.811 from their program and complete 27.802 and 27.812 in Years 2 and 3 respectively.
†† See footnote to program 0101.

2743
Science Geography/Botany

Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
27.111
or
27.801* & 27.802*
1 General Studies elective††
Choose 2 units from:
2.111, 2.121, 2.131, 2.141

Year 2
1.001
27.811*, 27.812*, 27.2813, 27.2814
43.101, 43.111
1 General Studies elective
Choose 1 Level II unit from Table 1

Year 3
27.153, 27.143
43.112 or 43.162, 43.142
1 General Studies elective
Choose 3 units from:
27.183, 27.133
43.102, 43.152

Year 4
27.604 or 43.103
* Students who choose 27.111 instead of 27.801 and 27.802 in Year 1 should omit 27.801 and 27.811 from their program and complete 27.802 and 27.812 in Years 2 and 3 respectively.
†† See footnote to program 0101.

2725
Science Geography/Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
27.111
or
27.801* & 27.802*
1 General Studies elective††

Year 2
1.001
25.211, 25.221, 25.212, 25.223
27.811*, 27.2813, 27.2814
1 General Studies elective

Year 3
27.183, 27.133, 27.812*
25.311, 25.312, 25.326
Choose 1 unit from:
1 General Studies elective
Choose 1 unit from:
27.153, 27.143, 27.862

Year 4
27.604 or 25.414
* Students who choose 27.111 instead of 27.801 and 27.802 in Year 1 should omit 27.801 and 27.811 from their program and complete 27.802 and 27.812 in Year 2.
†† See footnote to program 0101.

4101
Biochemistry

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1
Year 2
2.002B
41.101, 41.111
1 General Studies elective
Choose at least 3 units from Table 1

Year 3
41.102A
Choose at least 6 units from Table 1, including either 41.102B and/or both 41.102C and 41.102D; all should be at Level III if proceeding to Honours
1 General Studies elective

Year 4
41.103
†† See footnote to program 0101.

0241
Biochemistry/Chemistry
See 0241 Chemistry/Biochemistry

4142
Biochemistry/Biotechnology
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
42.101
44.101, 44.121
1 General Studies elective

Year 3
41.102A
42.102A, 42.102B
1 General Studies elective
Choose 4 units from Table 1 including either 41.102B &/or both 41.102C and 41.102D; all should be Level III if proceeding to Year IV

Year 4
41.103 or
42.103
†† See footnote to program 0101.

4143
Biochemistry/Botany
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
43.121
1 General Studies elective
Choose 2 units from:
43.101, 43.111, 43.131

Year 3
41.102A, 41.102C, 41.102D
43.122, 43.182
1 General Studies elective
Choose 2 units from:
43.102, 43.112, 43.132, 43.142, 43.172

Year 4
41.103 or 43.103
†† See footnote to program 0101.

4144
Biochemistry/Microbiology
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
44.101, 44.121
1 General Studies elective
Choose 1 unit from Table 1

Year 3
41.102A
44.102, 44.112
1 General Studies elective
Choose either 41.102B or both 41.102C and 41.102D

Year 4
41.103 or Choose 10 units including either:
44.563 or 44.573 or 44.583
and from:
44.513, 44.523, 44.533, 44.543, 44.553
†† See footnote to program 0101.
4145
Zoology/Biochemistry

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
45.101, 45.201, 45.301
1 General Studies elective
Choose one unit from:
2.002A, 2.002D, 2.042C
17.012
43.101

Year 3
41.102A, 41.102B
1 General Studies elective
Choose 4 Level III Zoology units from Table 1

Year 4
41.103 or
45.103
†† See footnote to program 0101.

4162
Biochemistry with Science Studies

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
41.101, 41.111
2.002B
62.052, 62.062
Choose 1 unit from:
62.012, 62.022, 62.032
Choose 1 unit from Table 1

Year 3
41.102A
41.102B or both 41.102C + 41.102D
½ General Studies elective*
Choose 3 units from:
Choose 1 unit from:
15.001, 15.703, 15.753

Year 4
41.103 or
62.024
* 26.561, 26.584, 26.817 may not be included in program.
†† See footnote to program 0101.

4170
Biochemistry/Anatomy†

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
70.011A, 70.011C
1 General Studies elective
73.12† or 73.111** or choose 1 or 2 units from:
2.002A, 2.002D, 2.042C, 70.011B

Year 3
41.102A, 41.102B
70.012B, 70.304
1 General Studies elective
Choose 2 units from:
70.011B, 70.305, 70.306, 70.307, 70.012C

Year 4
41.103 or 70.013
* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 4170 is based on academic performance in Year 1.
** Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.
† Owing to timetabling difficulties this program may take longer than minimum time to complete.
†† See footnote to program 0101.

4173
Biochemistry/Physiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
73.111
1 General Studies elective
Choose 2 units from Table 1

Year 3
41.102A, 41.102B
73.012
1 General Studies elective
Year 4
41.103 or 73.103
†† See footnote to program 0101.
Biotechnology

Students wishing to undertake training in biotechnology may do so by combining such training with a major in microbiology (Program 4244), biochemistry (Program 4142), chemistry (Program 0242) or another discipline (Program 4201).

All four programs can be extended to a fourth (honours) year which comprises further formal training, as well as research, in biotechnology. Alternatively, students with no previous training in biotechnology may undertake the honours year provided they have completed the necessary background training in biochemistry and microbiology. In such cases, Level III biotechnology units constitute the formal component of the honours year.

4201
Biotechnology (General)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B and 10.021C
17.021, 17.031
1 General Studies elective
Choose 2 Level I units from Table 1

Year 2
41.101
42.101
44.101, 44.121
1 General Studies elective
Choose 1 unit from Table 1

Year 3
42.102A, 42.102B
1 General Studies elective
Choose 2 units from Table 1; these should both be Level III if proceeding to Year IV

Year 4
42.103 or
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from:
44.513, 44.523, 44.533, 44.543, 44.553
†† See footnote to program 0101.

4244
Biotechnology/Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B and 10.021C
17.021, 17.031
1 General Studies elective
Choose 2 Level I units from Table 1

Year 2
41.101
42.101
44.101, 44.121
1 General Studies elective
Choose 1 unit from Table 1

Year 3
42.102A, 42.102B
44.102, 44.112
1 General Studies elective
Choose 2 units from Table 1; these should both be Level III if proceeding to Year IV

Year 4
44.563 or 44.573 or 44.583
and from:
44.513, 44.523, 44.533, 44.543, 44.553
†† See footnote to program 0101.

0242
Biotechnology/Chemistry

See 0242 Chemistry/Biotechnology

4142
Biotechnology/Biochemistry

See 4142 Biochemistry/Biotechnology
4305
Botany — Applied Plant Physiology

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
41.101
43.101, 43.111, 43.121
44.101
45.101, 45.201
1 General Studies elective

Year 3
43.131, 43.102, 43.132, 43.142, 43.182
45.402, 45.412, 45.422
1 General Studies elective

Year 4
43.103
†† See footnote to program 0101.

4307
Plant Physiology

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
41.101
43.111, 43.121
Choose 4 units from Table 1
1 General Studies elective

Year 3
43.122, 43.142, 43.182
Choose at least 4 units from Table 1, at least one of which
must be at Level III
1 General Studies elective

Year 4
43.103
†† See footnote to program 0101.

4306
Botany with Zoology

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
41.101
43.101, 43.111, 43.121
45.201, 45.301
1 General Studies elective
Choose 1 unit from:
17.012
43.131
45.101

Year 3
1 General Studies elective
Choose at least 7 units from Table 1 including at least 4 Level
III Botany units

Year 4
43.103
†† See footnote to program 0101.

4308
Botany — Ecology

Year 1
2.121 & 2.131, or 2.141
Choose 2 units of Level I Mathematics
17.031, 17.021
1 General Studies elective††
Choose 2 other Level I units from Table 1

Year 2
6.611
10.031
17.012
43.111
44.101
45.201, 45.301
10.331 or 10.301
1 General Studies elective

Year 3
10.032
43.142, 43.152, 43.172
45.112
Choose at least 2 units from Table 1
1 General Studies elective

Year 4
43.103
†† See footnote to program 0101.
2543
Botany & Zoology/Geology
See 2543 Geology with Botany & Zoology

2743
Science Geography/Botany
See 2743 Botany/Geography

4143
Botany/Biochemistry
See 4143 Biochemistry/Botany

4344
Botany/Microbiology

Year 1
2.121 & 2.131, or 2.141
2 units of Level I Mathematics
17.031, 17.021
1 General Studies elective††
Choose 2 units of 1.001 or other Level I units in Table 1

Year 2
17.012
41.101
43.101, 43.111, 43.121
44.101, 44.121
1 General Studies elective

Year 3
43.131
43.132
43.172
44.102
and either 43.152, 44.112
or
43.182, 44.122, 44.132
1 General Studies elective

Year 4
43.103 or Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553
†† See footnote to program 0101.

4401
Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101
44.101, 44.121
1 General Studies elective
Choose 2 units from Table 1

Year 3
41.102A
44.102, 44.112, 44.132
1 General Studies elective
Choose 1 unit from:
42.102
44.122

Year 4
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553
†† See footnote to program 0101.

4402
Microbiology (Immunology)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101
44.101, 44.121
70.011A
1 General Studies elective
Choose 1 unit from Table 1

Year 3
41.102A
44.102, 44.112, 44.122
1 General Studies elective
Choose one unit from Table 1 or 70.304

Year 4
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553
†† See footnote to program 0101.
4403
Microbiology (Ecology)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
17.012
41.101
44.101, 44.121
45.201
1 General Studies elective
Choose 1 unit from:
43.111, 43.131

Year 3
43.132, 43.142, 43.172
44.102, 44.112
45.112
1 General Studies elective

Year 4
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from: 44.513, 44.523, 44.533, 44.543, 44.553

†† See footnote to program 0101.

4144
Microbiology/Biochemistry
See 4144 Biochemistry/Microbiology

4244
Microbiology/Biotechnology
See 4244 Biotechnology/Microbiology

4344
Microbiology/Botany
See 4344 Botany/Microbiology

Zoology

The study of zoology as such does not begin until the second year of the Science and Mathematics course, but is built on a foundation of the two biological units: Cell Biology and Biology of Higher Organisms supported by chemistry and mathematics. The four Level II units are Invertebrate Zoology, Vertebrate Zoology, Insect Structure and Classification, and Biometry (ie statistical methods and their application to biology).

There is a number of Zoology Level III units covering a wide range of topics: Marine Ecology, Evolutionary Theory, Animal Behaviour, Ecological Physiology, General and Reproductive Biology, Advanced Invertebrate Zoology, Vertebrate Zoogeography, Population and Community Ecology, Insect Physiology and Insects and Man.

There are many programs leading to a major in zoology in the Science and Mathematics course. The individual programs are constructed either on a broad zoological base with some degree of specialization at Level III (eg 4502 Entomology, 4508 Zoology (Population Biology), 4514 Zoology (Fisheries and Wildlife Biology), or constructed to give a useful combination of Zoology with some other discipline (eg 4509 Zoology with Mathematics, 4145 Zoology with Biochemistry, 4570 Zoology with Anatomy.

Students who are unsure of their area of specialization are advised to enrol in 4501 Zoology (General) as this is the most flexible of the Zoology programs.

In these programs, at Level II, students usually take Vertebrate Zoology and Invertebrate Zoology and those students who wish to specialize in Entomology should include Insects amongst the units which they choose. Students are also required to study Biometry and two Level II units of either Biochemistry or Chemistry, or Mathematics or Physics or Geology or Geography. Students whose interests are mainly biological are encouraged to make their choice Biochemistry. Other units are then chosen to make up a total of at least seven for the year. The areas from which these units are chosen will depend mainly on the student's interests and on the specific program being undertaken. Examples of some of the units which Zoology students often include in their
programs are: General Ecology, Introductory Microbiology, Flowering Plants, Plant Physiology, Genetics, Control Mechanisms, Organic Chemistry, Analytical Chemistry, Physiology and Mathematics.

A major in zoology requires the study of at least four zoology units at Level III. Again the nature of these is determined by the program being followed. For instance, those who are interested in Physiology, would probably include Ecological Physiology, General and Reproductive Biology, Animal Behaviour and Environmental and Social Biology of Invertebrates among their units; those interested in Entomology would include Insect Physiology, Economic Zoology and Project (Entomology) and those interested in Ecology might include Marine Ecology, Population and Community Ecology, Evolutionary Theory and Vertebrate Zoogeography. Additional units may be chosen either from those offered by the School of Zoology or by other schools to make up the total of seven or eight units required by the regulations of the Science and Mathematics course. The above are only a few suggestions as to the choices that might be made.

For students who achieve above average results in their studies a fourth year (honours) is available. The honours year is made up of formal course work on Concepts in Biology and a research project.

4501 Zoology (General)

Year 1

2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2

45.101, 45.201, 45.301
1 General Studies elective
Choose 5 units from Table 1 including at least 2 Level II units of Biochemistry, Chemistry, Physics, Geography, Geology or Mathematics

Year 3

1 General Studies elective
Choose 7 units from Table 1 including at least 4 units from:
45.112, 45.121, 45.122, 45.132, 45.142, 45.152, 45.202, 45.302, 45.422
Students wishing to enter the Honours program must complete 8 Level III units

Year 4

45.103
†† See footnote to program 0101.

4508 Zoology (Population Biology)

Year 1

2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
1 General Studies elective††
Choose 2 units from Table 1

Year 2

45.101 or 10.331
45.301, 45.402
45.101 or 10.331
1 General Studies elective
Choose 2 units from:
10.031
43.111
44.101
45.201

Year 3

45.121, 45.122, 45.152, 45.302
79.302
1 General Studies elective
Choose at least 2 units from:
6.646, 6.643
10.032
43.102, 43.172
45.112, 45.202
79.302
Students wishing to enter the Honours program must complete 8 Level III units

Year 4

45.103
†† See footnote to program 0101.
4509
Zoology with Mathematics

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
1 General Studies elective†
Choose 2 Level I units from Table 1

Year 2
10.111 A, 10.1113 & 10.1114, 10.2111 & 10.2112
45.201, 45.301
1 General Studies elective
Choose 3 units from Table 1 including at least 1 Level II Statistics unit

Year 3
1 General Studies elective
Choose 4 Level III Zoology units
Choose at least 3 Level III Mathematics units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
†† See footnote to program 0101.

2543
Zoology & Botany/Geology

See 2543 Geology with Botany & Zoology

4543
Entomology and Plant Pathology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021 B & 10.021 C
17.031, 17.021
1 General Studies elective†
Choose 2 Level I units from Table 1

Year 2
41.101
43.101, 43.131, 43.132
44.101
45.402
45.201 or 45.301
1 General Studies elective

Year 3
45.101, 45.412, 45.422, 45.432
1 General Studies elective
Choose at least 3 Level III Zoology or Botany units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103 or 43.103
†† See footnote to program 0101.

4514
Zoology (Fisheries and Wildlife Biology)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.021, 17.031
1 General Studies elective†
Choose 2 Level I units from Table 1

Year 2
17.012
43.111
45.101, 45.201, 45.301
1 General Studies elective
Choose 3 units from Table 1, including at least 2 Level II units of Biochemistry, Chemistry, Physics, Mathematics, Geography or Geology

Year 3
Choose at least 4 units from:
45.112, 45.121, 45.152, 45.302, 45.422
1 General Studies elective
Choose at least 2 units from:
43.152, 43.172, 45.122, 45.132, 45.402 to make a total of at least 7 Level III units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
†† See footnote to program 0101.

4145
Zoology/Biochemistry

See 4145 Biochemistry/Zoology

4570
Zoology/Anatomy

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021 B & 10.021 C
17.021, 17.031
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
45.101, 45.301
70.011 A, 70.011 C
1 General Studies elective
Choose 3 units from Table 1 or Table 2 for program 4570, including 2 units from Biochemistry, Chemistry, Geology, Mathematics or Physics

Year 3
70.021 B
1 General Studies elective
Choose 4 units from:
70.011B, 70.012C, 70.304, 70.305, 70.306, 70.307
Choose 4 Level III Zoology units from Table 1
Year 4
45.103 or
70.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 4570 is based on academic performance in Year 1.
†† See footnote to program 0101.

7345
Physiology/Zoology
See 7345 Zoology/Physiology

6200**
History and Philosophy of Science

Year 1
1.001 or 10.011
or
10.021B & 10.021C
1 General Studies elective††
Choose at least 6 Level I units from Table 1

Year 2
62.012, 62.022, 62.032
1 General Studies elective*
Choose at least 4 units from Table 1

Year 3
1 General Studies elective*
Choose 8 units from Table 1 including 4 units from:
History and Philosophy of Science units
52.353 & 52.393
52.1531 and 52.323 (or 10.1127)

Year 4
62.014
* 26.561, 26.564, 26.568, 26.817 may not be included in this program.
** Students wishing to undertake a co-major in History and Philosophy of Science and Chemistry may do so by enrolling in program 6200 and choosing appropriate Chemistry units from Table 1.
†† See footnote to program 0101.

6225
History and Philosophy of Science/Geology

Year 1
1.001 (or 1.011) or 17.031 and 17.021
2.121 & 2.131, or 2.141
10.001 or 10.011
25.110, 25.120
1 General Studies elective

Year 2
25.211, 25.221, 25.212
62.012, 62.032, 62.103
1 General Studies elective††
Choose 2 units from Table 1

Year 3
1 General Studies elective
25.311, 25.312, 25.326
Choose either 4 HPS units from Table 1
or
25.314 and 3 HPS units from Table 1
25.314
or
25.325

Year 4
62.014
†† See footnote to program 0101.
* 26.561, 26.564, 26.568, 26.817 may not be included in this program.
6243
History and Philosophy of Science/Botany

Year 1
2.121 & 2.131, or 2.141
10.001 (or 10.011) or 10.021B and 10.021C
17.021, 17.031
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
43.101, 43.111
62.012, 62.032, 62.104 and one additional unit from Table 1
1 General Studies elective*
Choose 2 units from Table 1

Year 3
Choose 4 Botany Level III units from Table 1
Choose 4 HPS units from Table 1
1 General Studies elective*

Year 4
Either
62.014
or 43.103
* 26.561, 26.564, 26.568, 26.817 may not be included in this program.
†† See footnote to program 0101.

0162
Science Studies with Physics

See 0162 Physics with Science Studies

0262
Science Studies with Chemistry

See 0262 Chemistry with Science Studies

4162
Science Studies with Biochemistry

See 4162 Biochemistry with Science Studies

6245
History and Philosophy of Science/Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 (or 10.011) or 10.021B and 10.021C
17.021, 17.031
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
45.101, 45.201 (or 45.402), 45.301, 43.101
62.012, 62.032
62.106 or 62.109 or 62.104
1 General Studies elective*

Year 3
45.121, 45.302, 45.422
Choose 1 Level III Zoology unit from Table 1
Choose 4 HPS units from Table 1
1 General Studies elective*

Year 4
Either
62.014
or 43.103
* 26.561, 26.564, 26.568, 26.817 may not be included in this program.
†† See footnote to program 0101.

6270
History and Philosophy of Science/Anatomy

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
62.012, 62.032, and either 62.104 or 62.106** or 62.109**
70.011A, 70.011B, 70.011C
1 General Studies elective
Choose 1 unit from Table 1

Year 3
70.021B
1 General Studies elective
Choose 4 History and Philosophy of Science units from Table 1
Choose 3 units from:
70.012C, 70.304, 70.305, 70.306, 70.307
Year 4

Either
62.014
or
70.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 6270 is based on academic performance in Year 1.
†† See footnote to program 0101.
** 62,106 or 62,109 must be taken in Year 3 unless completed in Year 2.
† 26.561, 26.564, 26.568, 26.817 may not be included in this program.

Marine Science

The Marine Science programs are designed to provide opportunities for students to specialize in selected areas of marine science, yet ensure that they receive an adequate exposure to other pertinent disciplines within this broad field. These programs have been constructed from subjects currently available in the faculties of Science, Biological Sciences and Applied Science. Introductory Marine Science is a subject common to all these programs, and unique to them, having been designed for and offered only in Marine Science Programs.

All students in the Marine Science programs must select one major sequence from the following options: 6831 Physical Oceanography, 6832 Biological Oceanography, 6833 Earth Science Oceanography and 6834 Environmental Chemistry. In addition, all students must select two minor sequences from the Physical, Biological, Earth Science, and Chemical minor sequences offered. A minor sequence in the same area as that selected for the major sequence is excluded.

Physical Oceanography includes units of basic and advanced Mathematics and Physics, as well as units in 10.412A Dynamical and Physical Oceanography, 1.913 Marine Acoustics and Seismic Methods and 10.411A Hydrodynamics.

Biological Oceanography includes basic Mathematics, Chemistry and Biology as well as advanced courses in 43.111 Flowering Plants, 45.201 Invertebrate Zoology, 43.172 Phycology and Marine Botany, 45.112 Marine Ecology and 44.101 Introductory Microbiology. Further options include 17.012 General Ecology, 10.331 Statistics and 41.101 Biochemistry.

Environmental Chemistry includes basic chemistry and mathematics, and 2.002A Physical Chemistry, 2.002D Analytical Chemistry, 2.043A Environmental Chemistry and 2.003D Instrumental Analysis.

All programs offer some optional units to allow students a degree of freedom of choice of subjects. A fourth (honours) year in Marine Science is available in all programs.

Mathematics/Marine Science Honours

See 6831 Marine Science (Physical Oceanography) and attached note relating to dual major with Mathematics.

6801
For Anatomy Programs

Year 1
10.001 or 10.011
or
10.021B and 10.021C
1 General Studies elective††
Choose 6 appropriate Level I units from Table 1
Enrolment in Year 2 of programs 1270, 4170, 4173, 4570, 6270, 7001, 7002, 7003, 7073, 7301, 7302, 7303, 7312, 7345 is based on academic performance in Year 1. Students should select the units specified in the program they wish to pursue in Year 2.

Students may obtain advice from the Office of the Board of Studies in Science and Mathematics in the Mathews Building.

†† See footnote to program 0101.

6806
For Computer Science Programs

Year 1
10.001 or 10.011
6.611
1 General Studies elective††
Choose 5 units from:
1. Table 1 &/or
2. The BA course &/or
3. Table 2 for program 0601**

†† See footnote to program 0101.
** In Year 1 students must enrol in program 6806. Enrolment in Year 2 of programs 0601, 0610, 0611 is based on academic performance in Year 1. Students should select units specified in the program they wish to pursue in Year 2.

Students may obtain advice from the Office of the Board of Studies in Science and Mathematics in the Mathews Building.
6831

Marine Science
(Physical Oceanography)

Year 1
- **1.001 or 1.011**
- **10.001 or 10.011**
- **1.041 or 6.611**

1 General Studies elective\†
Choose 2 units from two of the groups 1., 2., 3.
1. **2.121 & 2.131, or 2.141**
2. **17.021, 17.031**
3. **25.110, 25.120**

Choose 10.001 or one extra unit from groups 1., 2. or 3.

Year 2
- **68.302**
- **10.2111 and 10.2112**
- **10.1113 & 10.1114**
- **1.012 or 10.41 IB**

1 General Studies elective
Choose at least 1 unit from:
- **17.012, 45.112 or 45.122 or 45.201**

Year 3
- **68.313**
- **1.3533**
- **10.411A or 10.421A**
- **25.6342**
- **10.412D* or 10.422D**
- **10.412A**

1 General Studies elective
Choose 2 units** from 1.022, 1.032, 1.042, 1.133
- **10.21A, 10.41B, 10.42A**, **10.331**
- **45.112 or 25.631 or 25.632 or 2.043A**
- **or 43.172 or 25.634**

Year 4
- **63.304**

*If 10.411A or 10.421A is taken in Year 2, 3 units must be chosen from this group.
*Prerequisite for Year 4 in this program.

Note: Students may fulfill requirements of a Marine Science/Mathematics program by completing 10 mathematics units in the above program.

†† See footnote to program 0101.

6832

Marine Science
(Biological Oceanography)

Year 1
- **2.121 & 2.131, or 2.141/**
- **10.001 or 10.011**
- **or 10.021B & 10.021C**
- **17.021, 17.031**

Year 2
- **68.302**
- **25.621, 25.622**
- **27.801, 27.811**

0 General Studies elective
Choose at least 1 unit from:
- **17.012, 41.101, 44.121, 45.101, 45.201, 45.301**

*Choose 1 unit from subjects related to units of groups 1. and 2. chosen in Year 1:
1. **10.031 or 10.331 or 10.301**
2. **25.622**

Year 3
- **68.304**

* A total of at least 23 units must be completed in Years 1–3 in this program.

†† See footnote to program 0101.

6833

Marine Science
(Earth Science Oceanography)

Year 1
- **10.001 or 10.011**
- **or 10.021B & 10.021C**
- **25.110, 25.120**

1 General Studies elective\††
Choose 4 units from 2 of the groups 1., 2. and 3.
1. **1.001 or 1.011 or 1.021**
2. **17.021, 17.031**
3. **2.121 & 2.131, or 2.141**

Year 2
- **68.302**
- **25.621, 25.622**
- **27.801, 27.811**

1 General Studies elective
Choose at least 4 units from Table 1 including the units required from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. **10.031 or 10.331 or 10.301**
2. **25.622**

Year 3
- **68.304**

* If 10.411 A or 10.421 A is taken in Year 2, 3 units must be chosen from this group.
* Prerequisite for Year 4 in this program.

Note: Students may fulfill requirements of a Marine Science/Mathematics program by completing 10 mathematics units in the above program.

†† See footnote to program 0101.
Year 3
1 General Studies elective
Choose 4 units from Table 1 which may include units from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 68.313, 10.032
2. 43.172
45.112
3. 2.043A

Year 4
68.304
†† See footnote to program 0101.

6840
Genetics
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.021. 17.031
1 General Studies elective††
Choose 2 Level I units from Table 1
Year 2
41.101
43.101
44.101
1 General Studies elective
Choose 1 unit from:
43.111, 43.131, 44.121
45.201, 45.301, 45.401
Choose 1 unit from:
9.811
10.331
45.101
Choose 2 units from one of the groups 1., 2. or 3.
1. 2.002B
41.111
2. 6.620
9.801
17.012
79.402
3. 43.111 or 43.131
45.201 or 45.402
45.301
62.012 or 62.032
79.402
Year 3
1 General Studies elective
Choose 4 units from:
9.802
43.102
44.102
45.121
79.201, 79.302
Choose 4 of the following:
6.646
41.102A
43.112
44.122
62.053
70.3041
79.202, 79.403
Year 4
68.404
†† See footnote to program 0101.

6834
Marine Science (Environmental Chemistry)
Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
1 General Studies elective††
Choose 4 units from 2 of the groups 1., 2. and 3.
1. 1.001 or 1.011
2. 17.021, 17.031
3. 25.110, 25.120
or 27.801 and 27.811
Year 2
68.302
2.002A, 2.002D
1 General Studies elective
Choose at least 4 units from Table 1 including the units required from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 10.031 or 10.331
2. At least 1 unit from:
17.012
43.111
45.201
3. 25.622
Year 3
2.043A, 2.003D
1 General Studies elective
Choose 6 units including at least 2 at Level III which may include units required from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 68.313, 10.032
2. 43.172
45.112
3. None

†† See footnote to program 0101.
6851
Chemical Physics (Chemistry/Physics)

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
1.012, 1.022, 1.032
2.002B or 2.002D or 2.042C
2.002A, 2.013A
10.111A or 10.121A,
10.2111 and 10.2112
or
10.2211 and 10.2212
1 General Studies elective

Year 3
1.023
2.023A, 2.063A
68.503
1 General Studies elective
Choose at least 3 Level III units, offered by Schools of Physics, Chemistry and Mathematics, from Table 1*

Year 4
68.504
††See footnote to program 0101.
* The minimum of 7 Level III units may not include 1.013 or 2.003A.

6853
Chemical Physics (Physics/Mathematics)

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
1.012, 1.022, 1.032
2.002A, 2.013A
10.111A or 10.121A,
10.1113 and 10.1114,
or 10.1213 and 10.1214,
10.2111 and 10.2112,
or 10.2211 and 10.2212
1 General Studies elective

Year 3
1.023
2.023A, 2.063A
68.503
1 General Studies elective
Choose at least 3 Level III units, offered by Schools of Physics, Chemistry and Mathematics from Table 1*

Year 4
68.504
††See footnote to program 0101.
* The minimum of 7 Level III units may not include 1.013 or 2.003A.

Anatomy

There are 8 Anatomy programs: double major in Anatomy (7001), single majors in Anatomy (7002, 7003), and double majors with Psychology (1270), Biochemistry (4170), Zoology (4570), History and Philosophy of Science (6270) and Physiology (7073).

Entry to Anatomy programs is limited to a quota of approximately 80. Students in Year 1 should enrol in Program 6801, and apply in October for entry to Anatomy the following year. Selection is based on academic merit. Allowance is made for the relative difficulty of first year units in Mathematics and Physics. Part-time students are advised to seek advice.

Students intending to proceed to a graduate course at the Cumberland College of Health Sciences should enrol in either 7003 (for Physiotherapy) or 1270 (for Occupational Therapy). Chiropractic students should enrol in 7002, choosing options as required by the Chiropractic College.
All Anatomy units are in Table 2, and in Course 3970 are unavailable outside Anatomy programs, except for students who:
- are enrolled in programs 4402 (Immunology) or 6840 (Genetics) who may take 70.011A and either 70.304 or 70.341; or
- obtain special permission.

Students studying paramedical subjects (eg Biochemistry, Psychology, Physiology) and who wish to take one or more Anatomy units as options should consult the Head of School.

7001
Anatomy
Double Major

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
70.011A, 70.011B, 70.011C
1 General Studies elective
Choose at least 4 units from Table 1

Year 3
70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307
1 General Studies elective
Choose at least 2 units from Table 1

Year 4
70.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7001 is based on academic performance in Year 1.
†† See footnote to program 0101.

7002
Anatomy
Single Major

Year 1*
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 4 Level I units from Table 1

Year 2
70.011A, 70.011C
1 General Studies elective
Choose at least 5 units, from Table 1 and/or Table 2†

Year 3
1 General Studies elective
Choose 8 units, including at least 4 units from:
70.011B, 70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307
and the remainder from Table 1

Year 4
70.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7002 is based on academic performance in Year 1.
†† See footnote to program 0101.
† Table 2 Anatomy units only.

7003**
Anatomy (Kinesiology)

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 units from 1 of the groups 1. and 2.
1. 1.001, 1.021
2. 12.100

Year 2
70.011A, 70.011B, 70.011C
73.121 or 73.111†
1 General Studies elective
Choose 1 unit from Table 1
Choose 2 units from the appropriate group:
1. 1.001, 1.021
2. 12.100

Year 3
70.012B, 70.012C, 70.306, 70.307
1 General Studies elective
Choose at least 3 units from Level II or Level III Table 1, or 70.304, 70.305

Year 4
70.013

** The Cumberland College of Health Sciences recognizes the completion of this program as an appropriate prerequisite for admission to its Graduate Diploma in Physiotherapy course.
* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7003 is based on academic performance in Year 1.
†† See footnote to program 0101.
† Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.

1270
Anatomy/Psychology

See 1270 Psychology/Anatomy

4170
Anatomy/Biochemistry

See 4170 Biochemistry/Anatomy

4570
Anatomy/Zoology

See 4570 Zoology/Anatomy
6270
Anatomy/History and Philosophy of Science
See 6270 History and Philosophy of Science/Anatomy

7073
Anatomy/Physiology

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.021
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
41.101
41.111
70.011A, 70.011C
73.111
1 General Studies elective
Choose 70.011B, 70.012B, 70.304 or 1 unit from Table 1

Year 3
73.012
1 General Studies elective
Choose 4 units from:
70.011B, 70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307

Year 4
70.013 or 73.013

* In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7073 is based on academic performance in Year 1.
†† See footnote to program 0101.

7301
Physiology
Single Major

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.021, 17.031
1 General Studies elective
Choose 2 Level I units from Table 1

Year 2
41.101, 41.111
73.111
1 General Studies elective
Choose 3 units from Table 1

Year 3
73.012
1 General Studies elective
Choose 3–4 units from Table 1

Year 4
73.023
†† See footnote to program 0101.

7302
Physiology/Chemistry

Year 1
2.121 & 2.131, or 2.141
1.001 or 1.011
10.001 or 10.011 or 10.021B & 10.021C
17.021, 17.031
1 General Studies elective††

Year 2
73.111
2.002A, 2.002B, 2.042C or 2.002D
1 General Studies elective
Choose either 41.101 & 41.111 or 2.003J & 10.2111 & 10.2112

Year 3
73.012
2.003A, 2.003B, 2.033A, 2.053A
1 General Studies elective

Year 4
73.013 or
2.004
†† See footnote to program 0101.

7303
Pharmacology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.021, 17.031
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
73.111 or 73.121
1 General Studies elective
Choose 6 units from Table 1

Year 3
73.022
1 General Studies elective
Choose 5 or 6 units from Table 1, including either 41.102A and 41.102B or 2.003J and 2.033A or 73.012

Year 4
73.023
†† See footnote to program 0101.
7312
Physiology/Psychology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
12.100
1 General Studies elective††

Year 2
73.111
12.200, 12.201, 12.202
41.101, 41.111
1 General Studies elective

Year 3
73.012
1 General Studies elective
Choose 4 Level III units of Psychology†

Year 4
73.013 or
12.403
†† See footnote to program 0101.
† Students intending to take the honours course 12.403 Psychology must have these four Level III units approved by the Head of the School of Psychology.

4173
Physiology/Biochemistry

See 4173 Biochemistry/Physiology

7073
Physiology/Anatomy

See 7073 Anatomy/Physiology

7345
Physiology/Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
1 General Studies elective††
Choose 2 Level I units from Table 1

Year 2
73.111
45.101, 45.201, 45.301
41.101, 41.111
1 General Studies elective

Year 3
73.012
45.142, 45.132
1 General Studies elective
Choose 2 units from:
45.202, 45.121, 45.122

Year 4
73.013 or
45.103
†† See footnote to program 0101.
4770
Programs in the Combined Science/Law Course

For details of the combined Science/Law Course refer to the Faculty of Law Handbook.

Below are approved programs for Years 1, 2 and 3 only. Years 4 and 5 are detailed in the Faculty of Law Handbook.

Note that where the levels of elective units are not specified they must be chosen so that the maximum number of Level I units, viz 8, is not exceeded.

Chemistry

| Year 1 | 1.001 or 1.011
| 2.121 & 2.131, or 2.141
| 10.001 or 10.011 or 10.021B & 10.021C
| 90.112, 90.711
| Year 2 | 2.002A, 2.002B, 2.042C, 2.002D
| 90.141, 90.161
| Choose 2 Level I or Level II units from Table 1
| Year 3 | 90.216, 90.301, 90.621
| Choose 4 Level III Chemistry units from Table 1
| Choose 2 other units of appropriate levels from Table 1

Physics

| Year 1 | 1.001 or 1.011
| 10.001 or 10.011
| 90.112, 90.711
| Choose 2 Level I units from Table 1
| Year 2 | 1.012, 1.022, 1.032
| 10.2111 & 10.2112
| 90.141, 90.161
| Choose 2 Level I or Level II units from Table 1
| Year 3 | 1.013, 1.023, 1.033, 1.043
| 90.216, 90.301, 90.621
| Choose 2 units of appropriate levels from Table 1

Computer Science

| Year 1 | 6.611
| 10.001 or 10.011
| 90.112, 90.711
| Choose 3 Level I units from Table 1
| Year 2 | 6.620 or 6.621, 6.631, 6.641
| 90.141, 90.161
| Choose 1 Level II unit from Table 1
| Choose 2 Level I or Level II units from Table 1
| Year 3 | 90.216, 90.301, 90.621
| Choose 4 Level III Computing Science units from Table 1
| Choose 2 other units of appropriate levels from Table 1
Mathematics

Year 1
10.001 or 10.011
90.112, 90.711
Choose 4 Level I units from Table 1

Year 2
10.111A or 10.121A,
10.1113 & 10.1114
or
10.1213 & 10.1214,
10.2111 & 10.2112
or
10.2211 & 10.2212
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Mathematics units from Table 1
Choose 2 other units of appropriate levels from Table 1

Psychology

Year 1
10.001 or 10.011
or
10.021B & 10.021C
12.001
90.112, 90.711
Choose 2 Level I units from Table 1

Year 2
12.052, 12.062, 12.152
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Psychology units from Table 1
Choose 2 other units of appropriate levels from Table 1

* Students who choose 27.111 instead of 27.801 & 27.802 in Year 1 should omit 27.801 & 27.811 from their program and complete 27.802 & 27.812 in Years 2 and 3 respectively.

Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
90.112, 90.711

Year 2
1.001 or 1.011
25.211, 25.221, 25.212, 25.233
90.141, 90.161

Year 3
2.002B
41.101
90.141, 90.161
Choose 1 Level II unit from Table 1 (preferably 41.111)
Choose 2 Level I or Level II units from Table 1

Year 3
41.102A
41.102B
or 41.102C & 41.102D
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1

Biochemistry

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711

Year 2
2.002B
41.101
90.141, 90.161
Choose 1 Level II unit from Table 1 (preferably 41.111)
Choose 2 Level I or Level II units from Table 1

Year 3
41.102A
41.102B
or 41.102C & 41.102D
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1
Botany

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711

Year 2
43.101, 43.111
90.141, 90.161
Choose 2 Level II units from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Botany units from Table 1
Choose 2 other units of appropriate levels from Table 1

Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711

Year 2
41.101
44.101
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
44.102, 44.112
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1

Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711

Year 2
45.101, 45.201, 45.301
90.141, 90.161
Choose 2 Level II Chemistry units or 2 Level II Mathematics units
Choose 1 other Level I or Level II unit from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Zoology units from Table 1
Choose 2 other units of appropriate levels from Table 1

Biotechnology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711

Year 2
41.101
42.101
90.141, 90.161
Choose group 1, or 2, or 3.
1. 44.101, 44.121
1 Level I or Level II unit from Table 1
2. 2.002B
41.111
1 Level I or Level II unit from Table 1
3. 2.002A, 2.002B
2.042C or 2.002D

Year 3
42.102A, 42.102B
90.216, 90.301, 90.621
Choose group 1, or 2, or 3, as appropriate
1. 44.102
Choose 2 other units of appropriate levels from Table 1
2. 41.102A
Choose 2 other units of appropriate levels from Table 1
3. Choose 2 Level III Chemistry units.
Choose 2 other units of appropriate levels from Table 1

Ecology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711
Year 2
17.012
43.111
44.101
45.101, 45.201, 45.301
90.141, 90.161

Year 3
90.216, 90.301, 90.621
Choose 4 units from:
43.152, 43.172
45.112, 45.122, 45.302
Choose 2 other units of appropriate levels from Table 1

Anatomy
Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711
Choose 2 Level I units from Table 1

Year 2
70.011A, 70.011C
90.141, 90.611
Choose 2 Level II units from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Anatomy units from Table 2
Choose 2 other units of appropriate levels from Table 1

Marine Science
Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.021, 17.031
90.112, 90.711
Choose one of the following:
1.001 or 1.011
2.121 & 2.131 or 2.141
25.110, 25.120
27.801 & 27.811

Year 2
43.111
44.101
45.201 or 41.101
68.302
90.141, 90.161
Choose: one or two of the following as appropriate:
2.002A
10.031,
10.331 or 10.301
17.012
25.622
44.121

Year 3
43.172
45.112
90.216, 90.301, 90.621
Choose one of the following groups:
1. 2.043A
1 other Level III and 2 other units of appropriate levels from Table 1
2. 10.032, 10.412A
2 other units of appropriate levels from Table 1
3. 2 other Level III units and 2 other units of appropriate levels from Table 1
Programs in the Combined Science/Civil Engineering Course

For details of the combined Science/Civil Engineering Course refer to the Faculty of Engineering Handbook.

Physical Metallurgy and Chemistry

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
2.002A, 2.042C
4.402, 4.502
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.022
1 elective†

Year 3
4.403 4.703
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.351, 8.400, 8.571
29.441, 29.491
1 elective†

In 1983 8.351 is deleted; 8.362 and 10.381 are introduced.

Year 4
2.003A, 2.003C, 2.013C
4.503
8.273, 8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672

Year 5
2 electives†
Choose 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.2741, 8.2742, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054

In 1983 8.401 is introduced.

Note: All material not in italics typeface refers to the BE degree component of this combined course.

* Students are advised to attempt 1.981 Physics 1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt 1.001 Physics I or 1.011 Higher Physics I. On successful completion of one of these latter subjects together with 2.981 Chemistry 1CE students will be exempted from one technical elective.

** Students who have not satisfied the science prerequisite for 2.981 Chemistry 1CE (a 2 or 4 unit Science including Physics or Chemistry at HSC Exam percentile range 31-100) are advised to apply to enrol in two acceptable alternative subjects, 2.111 Introductory Chemistry and 2.121 Chemistry 1A.

*** Students who have achieved a certain standard may attempt 10.011 Higher Mathematics 1.

† Of the six electives, four must be in General Studies and two must be technical electives. The technical electives are listed in the footnote in the Faculty of Engineering Handbook at the end of Course 3620. The choice of the technical electives must be approved by the Head of the School of Civil Engineering.
Geography and Environmental Chemistry

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
2.002A, 2.002D, 2.042C
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.022
27.801, 27.802

Year 3
2.043A
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.400, 8.351, 8.571
27.811, 27.813
29.441, 29.491
1 elective†
In 1983 8.351 is deleted; 8.362 and 10.381 are introduced.

Year 4
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
27.103
2 electives†
Choose 2 from:
27.203, 27.413, 27.423, 27.862, 27.863

Year 5
2 electives†
Choose 2 units from Table 1 in the Combined Sciences Handbook
at Level II or higher
8.001, 8.191, 8.2741, 8.2742, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054
In 1983 8.401 is introduced.

Note: All material not in italic typeface refers to the BE degree component of this combined course.
,,**,**:**See footnotes Physical Metallurgy and Chemistry above.

Physics with Mathematics

Year 1
1.001 or 1.011
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
1.012
1.022, 1.032
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.1113 or 10.1213,
10.1114 or 10.1214,
10.2111 or 10.2211,
10.2112 or 10.2212
2 electives†

Year 3
1.023, 1.043, 1.0533 or 1.0543, 1.3233
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.351, 8.400, 8.571
10.111A or 10.121A
29.441, 29.491
1 elective†
In 1983 8.351 is deleted; 8.362 and 10.381 are introduced.

Year 4
1.033,
1.1333
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
1 elective†
Choose 2 Level II or Level III Mathematics units from Table 1
in the Combined Sciences Handbook

Year 5
8.001, 8.191, 8.2741, 8.2742, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054
2 electives†
Choose 1 or 2 units from Table 1 in the Combined Sciences Handbook
at Level II or higher
In 1983 8.401 is introduced.

Note: All material not in italic typeface refers to the BE degree component of this combined course.
,,**,**,**:**See footnotes Physical Metallurgy and Chemistry above.
Mathematics

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214,
10.2111 or 10.2211,
10.2112 or 10.2212
1 elective†
Choose either 1. or 2.:
1. 10.311A or 10.321A,
10.311B or 10.321B
2. Choose 3 units from:
10.411B or 10.421B,
10.411A or 10.421A,
10.331
10.2113 (or 10.2213), 10.2115 (or 10.2215)
(10.1111 & 10.1112) or 10.121C

Year 3
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.351, 8.400,
8.571, 29.441, 29.491
1 elective†
Choose 4 units from Mathematics from Table 1 of the Combined Sciences Handbook (at least one must be Level III)
In 1983 8.351 is deleted: 8.362 and 10.381 are introduced.

Year 4
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671,
8.672
1 elective†
Choose 3 Level III (not Level II/III) Mathematics units from Table 1 in the Combined Sciences Handbook

Year 5
8.001, 8.191, 8.2741, 8.2742, 8.583, 8.673, 8.674, 8.051,
8.052, 8.053, 8.054
2 electives†
Choose 1 or 2 units from Tables 1 or 3 in the Combined Sciences Handbook at Level II or higher.
In 1983 8.401 is introduced.

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.

••••••: See footnotes Physical Metallurgy and Chemistry above.
†† If already taken, 10.2114 or 10.2214 are acceptable in place of 10.2115 or 10.2215 respectively.

Geology with some Mathematics

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214,
10.2111 or 10.2211,
10.2112 or 10.2212
25.110, 25.120
3 electives†

Year 3
2.042C
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.351, 8.400,
8.571
25.211, 25.221, 25.212
29.441, 29.491
In 1983 8.351 is deleted; 8.362 and 10.381 are introduced.

Year 4*
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671,
8.672
Choose four subjects from the following:

Year 5
2 electives†
Choose 1 or 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.2741, 8.2742, 8.583, 8.673, 8.674, 8.051,
8.052, 8.053, 8.054
In 1983 8.401 is introduced.

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.

*•••••: See footnotes Physical Metallurgy and Chemistry above.
†: Students enrolling in Level III subjects in 1980 should refer to the 1979 Combined Sciences Handbook for subject descriptions.
Computing with some Mathematics

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
6.621, 6.631, 6.641
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214
2 electives†

Year 3
6.642, 6.643
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.351, 8.400,
8.571
10.2111 or 10.2211,
10.2112 or 10.2212
29.441, 29.491
In 1983 8.351 is deleted; 8.362 and 10.381 are introduced.
Choose 1 Level II or Level III Mathematics unit from Table 1
in the Combined Sciences Handbook

Year 4
6.646, 6.647, 6.649
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671,
8.672
1 elective†
Choose 1 Level II or Level III Mathematics unit from Table 1
in the Combined Sciences Handbook

Year 5
2 electives†
Choose 1 or 2 units from Table 1 in the Combined Sciences
Handbook at Level II or higher
8.001, 8.191, 8.2741, 8.2742, 8.583, 8.673, 8.674, 8.051,
8.052, 8.053, 8.054
In 1983 8.401 is introduced.

Note: All material not in italic typeface refers to the BE degree component of this
combined degree course.

*,**,***,†: See footnotes Physical Metallurgy and Chemistry above.
3725
Programs in the Combined Science/Electrical Engineering Course*

Year 1
- 1.961
- 2.121
- 5.030
- 6.010
- 6.611
- 10.001
 - 1 General Studies elective

-or-

3642 Mathematics
- 1 General Studies elective

-or-

Choose at least 5 Mathematics units, 4 of which are Level III units.
Choose at least 3 Level II or Level III units from Table 1.

-or-

3643 Physics
- 1 General Studies elective
- 1.013†, 1.023, 1.033

Choose 5 Level II or III units from Table 1, at least one of which must be at Level III and one must be 1.012 if 1.012 was omitted from Year 2.

Year 2†
- 1.972, 1.982
- 10.111A, 10.1113, 10.1114, 10.2111, 10.2112
 - 1 General Studies elective

Year 4
From Electrical Engineering course, modified as required by Head of School

Year 5
From Electrical Engineering Course

* Students contemplating this course should consult the Engineering Handbook for details and should seek advice from the Head of the School of Electrical Engineering and Computer Science before completing their Year 2 enrolment.
† Students intending to major in Computing Science or Physics should include 6.641 or 1.012 respectively in their Year 2 enrolment.
‡ Year 3 refers to Course 3970 units and Table 1 in this handbook.
§ Students electing to take a major in Theoretical Physics may substitute 10.222F.
4070
Mathematics Education Course

4080
Science Education Course

4070
Mathematics Education Course
Bachelor of Science Diploma in Education BSc DipEd

The Mathematics Education Course is a concurrent course leading to the award of the qualifications BSc DipEd and is designed primarily to prepare students for entry into the teaching profession as teachers of mathematics in secondary schools.

An important feature of the course is that students take education subjects along with mathematics subjects in second, third and fourth years. The Mathematics component is based on programs offered in the Science and Mathematics course. Students may proceed to honours level in either mathematics or in education.

Objectives of the Course

The objectives of the Mathematics components broadly aim:
- to develop a comprehensive knowledge and interest in mathematical techniques and problem solving,
- to develop an ability to reason mathematically and to present mathematical reasoning clearly and persuasively, and
- to ensure the student's understanding of the applications of mathematics.

Objectives related to the education component seek:
- to develop skills in teaching mathematics,
- to provide an understanding of the major disciplines which contribute to educational theory,
- to develop a knowledge of the latest innovations in educational practice and theory and to clarify the methodologies and curriculum materials relevant to secondary mathematics teaching.

Students enrolling in this course must seek advice from the Director of Science Teachers' Courses, Room 41, Building G2, Western Campus or at the enrolment centre.

Honours and Pass Degree Requirements

The course is offered at both pass and honours levels.

1. The pass course requires successful completion of a four-year program.

2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following options:

 Pure Mathematics, Applied Mathematics, Mathematical Statistics, Theoretical Mechanics, or Education*

The grades in this program shall be Honours Class I, II/1, II/2 and III.

* Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.
Components of the Course

The Mathematics Education Course consists of Mathematics, Education and General Studies components.

1. Mathematics Component

Two alternative programs are available. The programs consist of units ranked as Level I, Level II, Level II/III, Level III and Level IV. These units vary from 56 to 84 hours in duration. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

Students must select one of the two following programs:

5811 The Mathematics and Science Program

The pass course requires at least 23 units in addition to Education and General Studies subjects

or

5812 The Mathematics and Liberal Studies Program

The pass course requires at least 24 units in addition to Education subjects.

For both programs the selection of units is subject to the requirements listed below:

(1) Not less than 8 units, nor more than 10 units selected from Level I. Except with the approval of the Head of the School of Mathematics and the Director of Science Teacher Courses, not more than 2 Level I units may be taken in any one discipline other than Mathematics.

(2) The following subjects or their higher equivalents shall be included:

10.001, 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

(3) Courses amounting to at least 2 full units chosen from:

10.1111, 10.1112, 10.1121, 10.1123, 10.1127, 10.1128, 10.1129, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by a professor of Pure Mathematics.

(4) Not less than 2 units from the following:

10.2113, 10.2114, 10.212L, 10.212M, 10.331, 10.311A, 10.311B, 10.312A, 10.312B, 10.312C, 10.312D, 10.312E, 10.411A, 10.411B, 10.412A, 10.1127, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by the Head of the School of Mathematics.

(5) Not less than 8 Level II or Level III Mathematics units from Table 1 (see below) and of these not less than four shall be Level III units of which only one may be Level II/III.

(6) For the award of honours the student must complete 10 units as specified in an individual program and must meet prerequisite requirements set out in Table 3 (see below).

(7) In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component

The Education component is one of the major sequences in the course. It consists of subjects grouped as follows:

Theory of Education 58.602, 58.603, 58.604
Mathematics Curriculum and Instruction 58.642, 58.643, 58.644
School Experience 58.612, 58.613, 58.614
Honours 58.693, 58.694, 58.695, 58.699

3. General Studies Component

(1) The Mathematics and Science Program for the pass course requires 63 hours of General Studies. In the honours course an additional General Studies elective is required. The 63 hours in the pass course is made up of three half electives or their equivalent. The three half electives are normally spread over the second, third and fourth years but this distribution may be varied to suit the program of individual students.

(2) In the Mathematics and Liberal Studies Program the Liberal Studies subjects provide the General Studies component.
Enrolment Requirements

1. A student in first year must be enrolled in a Mathematics program in either the Science and Mathematics Course (3970) or the Mathematics Education Course (4070). In the second, third and fourth years a student must be enrolled in one of the Mathematics programs for the Course 4070, the Education program and, in the case of Mathematics and Science program, General Studies.

2. A student may with the approval of the Director of Science Teachers' Courses, and in consultation with the Head of the School of Mathematics, change from one selected Mathematics program to another. A written application to make the change must be lodged, including details of optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. A student must take care to satisfy the requirements of sequences of units such as prerequisites and co-requisites. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-requisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. In exceptional circumstances, on the recommendation of the Head of the School of Mathematics, the particular prerequisite or co-requisite may be waived by the Director of Science Teachers' Courses.

Programs

The course taken by each student has three component programs:

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.602</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.612</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.642</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td>58.603</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>58.613</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.643</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>58.604</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>58.614</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.644</td>
<td>2</td>
</tr>
</tbody>
</table>

Honours in Education

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>58.693</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>58.694</td>
<td>1 1/2</td>
</tr>
<tr>
<td>5</td>
<td>58.695</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.699</td>
<td></td>
</tr>
</tbody>
</table>

2. General Studies Program
(1) For students electing the Mathematics and Science Program:

Three half electives (or equivalent) taken during Years 2, 3 and/or 4 for the pass degree.

An additional elective in Year 5 is required in the honours program.

(2) For students electing the Mathematics and Liberal Studies Program:

No specific General Studies subjects are required.

3. Mathematics Program

5811
Mathematics and Science

Year 1
10.001 or 10.011
Choose 6 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 2
10.111A or 10.121A, 10.1113 or 10.1213, 10.1114 or 10.1214, 10.2111 or 10.2211, 10.2112 or 10.2212
Choose 4 or 5 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose a further Level II or III Mathematics unit if needed to make up the required 8 units
Choose 1 or 2 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 5
10.123 or 10.223 or 10.323 or 10.423.

* Up to 5 units of this program may be replaced by subjects offered in the BA degree course (6 credit points at Level I, or 4 credit points at Upper Level are equivalent to 1 unit). The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, German, History, Philosophy, Political Science, Russian, Sociology, Spanish and Latin American Studies.

Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.

† This program may not include more than 8 units from the BA degree course and the Schools of Mechanical and Industrial Engineering, Electrical Engineering (except Level II), Psychology, Geography, and Philosophy, without approval of the Director of Science Teachers' Courses.
5812
Mathematics and Liberal Studies

Year 1
10.011 or 10.001
Choose 4-6 units from:
TABLE † &/or
The BA course*

Year 2
10.111A or 10.121A, 10.1113 or 10.1213, 10.1114 or 10.1214, 10.2111 or 10.2211, 10.2112 or 10.2212
Choose 4 or 5 units from:
Table 1 † &/or
The BA course*

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1 † &/or
The BA course*

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1 † &/or
The BA course*

Year 5
10.123
or
10.223
or
10.323
or
10.423

† Units in History and Philosophy of Science shall be those from the BA degree course.

* At least 6 units of this program must come from subjects offered in the BA degree course (6 credit points at Level I, or 4 credit points at Upper Level are equivalent to 1 unit). The BA degree subjects are limited to those offered by the following Schools: Drama, Economics, English, French, Geography, German, History, History and Philosophy of Science, Philosophy, Political Science, Russian, Sociology, Spanish and Latin American Studies. Each Upper Level unit so offered by these Schools shall count as 1 1/2 units. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.

4080
Science Education Degree Course
Bachelor of Science Diploma in Education
BSc DipEd

The Science Education Course is a concurrent course leading to the award of the qualifications BSc DipEd and is designed primarily to prepare students for entry into the teaching profession as teachers of science in secondary schools.

An important feature of the course is that students take education subjects along with science subjects in second, third and fourth years. The science component is based on programs offered in the Science and Mathematics Course. Students may proceed to honours in a science or in education. One of the science units is a history and philosophy of science subject. This is included to give students an understanding of the nature of science and of its relationship to society, which is especially important to prospective teachers of science.

Students enrolling in this course must seek advice from the Director of Science Teachers' Courses, Room 41, Building G2, Western Campus or at the enrolment centre.

Objectives of the Course

The objectives of the course are those of the Science and Mathematics Course (3970) together with others which are essential for a course which is designed to prepare science teachers.

In summary, the objectives of the Science and Mathematics course broadly aim to develop a working knowledge of scientific methods of investigation and to promote an understanding of the significance of science, technology, economics and sociological factors in modern society. The objectives seek to develop in the student the ability and disposition to think logically, to communicate clearly by written and oral means and to read critically. Students are encouraged to develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.

The education component of the course seeks to provide a knowledge of theories of education and the latest innovations in educational practice and theory, and the development of skills in teaching science.

Honours and Pass Degree Requirements

There are both pass and honours programs available in the course leading to the award of the qualifications Bachelor of Science and Diploma in Education (BSc DipEd).

1. The pass course requires successful completion of a four-year program.

2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following disciplines:

 Physics, Chemistry, Geology, Biochemistry, Biological Technology, Botany, Microbiology, Zoology, Education, Physiology.

 * Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.

*
Components of the Course

The Science Education Course consists of Science, Education and General Studies components.

1. Science Component

The Science component is based on the prescribed programs from the Science and Mathematics Course (3970) rearranged to spread over one additional year. These programs are composed of units ranked as Level I, Level II, Level II/III, Level III, and Level IV, such units varying from 56 to 84 hours. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites. For the pass course the science component requires at least 23 units with the following requirements:

(1) There shall be ten units from Level I and these must come from the following subjects: 1.001 or 1.011, 2.121, 2.131, 10.001 or 10.011 or 10.021B and 10.021C, 17.031, 17.021, 25.110, 25.120.

(2) Not less than four units from Level III. For purposes of this clause Level II/III units are counted as Level III units.

(3) Not less than two units beyond Level I in science disciplines in any of the teaching areas physics, chemistry (including biochemistry), biology and geology other than that of the student's major. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers' Courses or as specified in individual programs.

(4) One unit shall be a History and Philosophy of Science subject. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers' Courses or as specified in individual programs.

(5) For the honours program with honours in a science discipline there shall be at least six Level III units and students must meet prerequisite requirements set out in Table 3.

(6) For the award of honours in a science discipline the student must complete at least ten Level IV units as specified in an individual program.

(7) In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component

The Education Component is one of the major sequences in the course. It consists of subjects grouped as follows:

- Theory of Education: 58.602, 58.603, 58.604
- Science Curriculum and Instruction: 58.632, 58.633, 58.634
- School Experience: 58.612, 58.613, 58.614
- Honours: 58.693, 58.694, 58.695, 58.699

3. General Studies Component

The General Studies component involves 63 hours in the pass course. In the honours course an additional General Studies elective is required. The 63 hours in the pass course is made up of three half electives or their equivalent. The three half electives are normally spread over the second, third and fourth years but this distribution may be varied to suit the programs of individual students.

Enrolment Requirements

1. In all years of the course a student must be enrolled in one of the prescribed Science programs.

In years two, three and four a student must be also enrolled in the Education program and the General Studies program.

2. A student may, with approval of the Director of Science Teachers' Courses, change from one selected Science program to another. A written application to make the change must be lodged, including details of any optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. The allowed specific programs, listed in Programs below, are made up of sequences of units. Where a choice is indicated care must be taken to satisfy the requirements such as prerequisites and co-requisites.

4. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-requisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. An excluded subject is one which cannot be counted together with the subject which excludes it towards the degree of qualification. In exceptional circumstances, on the recommendation of the head of the appropriate school, the particular prerequisite or co-requisite may be waived by the Director of Science Teachers' Courses.

5. Students lacking the HSC prerequisites for 1.001 Physics I and/or 2.121 Chemistry IA may satisfy prerequisites by completing the respective introductory subjects 1.021 Introductory Physics for Health and Life Scientists or 2.111 Introductory Chemistry. Students requiring 10.001 Mathematics I for Physics programs may satisfy prerequisites by completing 10.021B or 10.021A and 10.021B where appropriate. Under these circumstances these introductory subjects are not counted among the units required for the degree course.
Programs

The Course followed by a particular student has three component programs.

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.602</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.612</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.632</td>
<td>1½</td>
</tr>
<tr>
<td>3</td>
<td>58.603</td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td>58.613</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.633</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>58.604</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>58.614</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.634</td>
<td>3½</td>
</tr>
</tbody>
</table>

Honours in Education

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>58.693</td>
</tr>
<tr>
<td>4</td>
<td>58.694</td>
</tr>
<tr>
<td>5</td>
<td>58.695</td>
</tr>
<tr>
<td></td>
<td>58.699</td>
</tr>
</tbody>
</table>

2. General Studies Program
Three half electives (or equivalent) taken during second, third and/or fourth years for the pass degree.

An additional elective in year 5 is required in the honours course.

3. Science Program
Each Science program is based on a program in the Science and Mathematics Course. Each one has an identifying number. The Science Education programs have 58 as the first two digits of the identifying number.

5801
Physics†

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 or 1.011</td>
<td>2.121 & 2.131, or 2.141</td>
<td>10.001 or 10.011</td>
</tr>
<tr>
<td>2.121 & 2.131, or 2.141</td>
<td>17.031, 17.021</td>
<td>or</td>
</tr>
<tr>
<td>17.031, 17.021</td>
<td>or</td>
<td>25.110, 25.120</td>
</tr>
</tbody>
</table>

5802
Physics
Single Major*†

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 or 1.011</td>
<td>2.121 & 2.131, or 2.141</td>
<td>10.001 or 10.011</td>
</tr>
<tr>
<td>2.121 & 2.131, or 2.141</td>
<td>17.031, 17.021</td>
<td>or</td>
</tr>
<tr>
<td>17.031, 17.021</td>
<td>or</td>
<td>25.110, 25.120</td>
</tr>
</tbody>
</table>

Choose 1 unit from Table 1†:

Year 2

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.012, 1.022, 1.032</td>
<td>10.2111, 10.2112</td>
<td>10.1113, 10.1114</td>
</tr>
<tr>
<td>17.031, 17.021</td>
<td>or</td>
<td>25.110, 25.120</td>
</tr>
</tbody>
</table>

Year 3

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>62.042</td>
<td>Choose 2 units from:</td>
<td>1.013, 1.023, 1.033, 1.043, (1.0533 & 10.543)</td>
</tr>
<tr>
<td></td>
<td>Choose 1 unit from:</td>
<td>10.111A or Table 1†</td>
</tr>
</tbody>
</table>

Year 4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose 3 units from:</td>
<td>1.013, 1.023, 1.033, 1.043, (1.0533 & 10.543)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choose 1 unit from:</td>
<td>10.412D or Table 1†</td>
</tr>
</tbody>
</table>

Year 5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Under exceptional circumstances students taking this program may be eligible for transfer into Year 5 of programs 5801, 5803, 5805, the latter if the student reaches a satisfactory level in a number of Mathematics units at Levels II and III.

† See this footnote to program 5801.

† Units available for choice from Table 1 in this program are those from Schools other than: Mechanical and Industrial Engineering (except Level 2), Mathematics, Psychology, Geography, Philosophy.
5803
Applied Physics†

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
or
25.110, 25.120

Year 2
1.012, 1.022, 1.032
10.2111, 10.2112
10.1113, 10.1114
17.031, 17.021
or
25.110, 25.120

Year 3
1.013, 1.023

62.042
Choose 1 unit from:
1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, (1.0533 & 1.0543)

Year 4
1.033, 1.043
Choose 2 units from:
1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, (1.0533 & 1.0543)

Year 5
1.304

5805
Theoretical Physics†

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.021
or
25.110, 25.120

Year 2
10.111A, 10.2111 & 10.2112, 10.1113, 10.1114
17.031, 17.021
or
25.110, 25.120
Choose 2 units from:
1.012, 1.022, 1.032

Year 3
62.042
Choose 1 unit from:
1.012, 1.022, 1.032
Choose 2 units from:
1.013, 1.023, 1.033, 1.043

Year 4
Choose 2 units from:
1.013, 1.023, 1.033, 1.043
Choose either
1.513 or 1.523
Choose 1 unit from:
1.513, 1.523, 10.412D, 10.1125 & 10.1126, 10.1128 & 10.1129

Year 5
1.504
† A student may substitute for any of the listed Mathematics units in these programs such higher units as are deemed equivalent by the Head of the School of Mathematics.

5821
Chemistry Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021
or
25.110, 25.120

Year 2
2.002A, 2.002B, 2.042C, 2.002D
17.031, 17.021
or
25.110, 25.120
Choose 1 unit from:
Table 1†

Year 3
62.042
Choose 2 Level III Chemistry units
Choose 1 unit from:
Table 1†

Year 4
Choose 2 Level III Chemistry units
Choose 2 units from Table 1†

Year 5
2.004
† See this footnote to program 5801.

5831
Geology Double Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
Year 2
17.031, 17.021
25.211, 25.221, 25.212, 25.223
62.042

Year 3
Choose four out of the following:

Year 4
Take the remaining 4 units of Level III Geology not taken in Year 3

Year 5
25.400
25.404 or 25.405

5832
Geology
Single Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120

Year 2
17.031, 17.021
25.211, 25.221, 25.212, 25.223
Choose 1 unit from Table 1†

Year 3
Choose two out of the following:
62.042
Choose 1 unit from Table 1†

Year 4
Choose 2 units of Level III Geology
Choose 2 units from Table 1†

Year 5
25.406

† Units available for choice from Table 1 in this program are those from Schools other than: Mechanical and Industrial Engineering, Electrical Engineering (except Level II), Mathematics, Psychology, Geography, Philosophy.

5842
Microbiology and Biochemistry

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

Year 2*
2.002B
25.110, 25.120
41.101
44.101, 44.121

Year 3
41.102A, 41.102B, or 41.102C & 41.102D

Year 4
44.102, 44.112

Year 5
41.103 or
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from 44.513, 44.523, 44.533, 44.543, 44.553

* Students are advised to include, where possible, the subject 41.111 in addition to those listed.

5841
Biochemistry

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

5851
Systematic Botany

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021
Year 2
43.101, 43.111
25.110, 25.120
Choose 2 Level II units of Biochemistry or Chemistry or Physics
Choose 1 unit from Table 1†

Year 3
62.042
Choose either 43.112 or 43.162
Choose 1 unit from:
43.102, 43.132, 43.152, 43.172
or other Level III Botany units
Choose 1 unit from Table 1†

Year 4
Choose 2 Level III Botany units
Choose 2 units from Table 1†

Year 5
43.103
† See this footnote to program 5832.

5852
Mycology — Plant Pathology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

Year 2
25.110, 25.120
41.101
43.111, 43.131
44.101

Year 3
43.132, 43.172
62.042
Choose 1 unit from:
43.101, 43.121

Year 4
Choose 2 Level III Botany units
Choose 2 units from Table 1†

Year 5
43.103
† See this footnote to program 5832.

5853
Botany and Zoology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

Year 2
25.110, 25.120
41.101
43.131
45.101, 45.201

Year 3
43.132, choose 1 Level III Botany unit
Choose 2 units from:
45.202, 45.402, 45.412, 45.422

Year 4
Choose 2 Level III Botany units
Choose 2 units from:
45.202, 45.402, 45.412, 45.422

Year 5
43.103 or 45.103

5861
Microbiology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

Year 2
2.002B
25.110, 25.120
41.101
44.101, 44.121

Year 3
41.102A
44.102

Year 4
44.112, 44.132
62.042

Year 5
Choose 10 units including either:
44.563 or 44.573 or 44.583 and from 44.513, 44.523,
44.533, 44.543, 44.553

5862
Microbiology (General)

Year 1
1.001 or 1.011
2.121 & 2.131 or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

Year 2
25.110, 25.120
41.101
44.101, 44.121
Choose 1 unit from Table 1†
Year 3
44.102, 44.112

Year 4
62.042
Choose 3 units from Table 1†

Year 5
Choose 10 units including either:
44.563 or 44.573 or 44.583
and from 44.513, 44.523, 44.533, 44.543, 44.553
† See this footnote to program 5832.

5866
Zoology (General)

Year 1
1.001 or 1.011
2.121 & 2.131 or 2.141
10.001 or 10.011 or 10.021 B & 10.021 C
17.031, 17.021

Year 2
25.110, 25.120
45.101, 45.201, 45.301
Choose 2 Level II units of Biochemistry, Chemistry, Physics, Geology or Mathematics

Year 3
43.101
62.042
Choose 2 Level III Zoology units from Table 1†

Year 4
Choose 2 Level III Zoology units from Table 1
Choose 2 units from Table 1†

Year 5
45.103
† See this footnote to program 5832.

5871
Physiology
Single Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

Year 2
25.110, 25.120
41.101, 41.111
73.111

Year 3
73.012

Year 4
62.042
Choose 3 units from Table 1†

Year 5
73.013
† See this footnote to program 5832.

5867
Zoology with Botany

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.021

Year 2
17.012
25.110, 25.120
43.101, 43.111
45.201, 45.301
Units offered by the Board of Studies in Science and Mathematics

Table 1

Information Key
The following is the key to the information supplied about each subject in the table below: F (Full year ie both sessions); S1 (Session 1); S2 (Session 2); SS (single session, ie one only); I, II, III (Levels, I, II, III); Hpw (Hours per week); C (Credit).

School of Physics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physics Level I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>2 unit Mathematics (at HSC Exam percentile range 71-100) or 10.021C, or 10.001, or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.011</td>
<td>Higher Physics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>3 unit Mathematics (at HSC Exam percentile range 21-100) or 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(For Health and Life Scientists)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 unit Mathematics (at HSC exam percentile range 1-100) or (for 1.001 only) 10.021B and 2 unit Science (incl. Physics and/or Chem.) (at HSC Exam percentile range 31-100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.021</td>
<td>Introductory Physics I*</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>4 unit Science (incl. Physics and/or Chem.) (at HSC Exam percentile range 31-100)</td>
<td>10.021A and 10.021B, or 10.021B and 10.021C, or 10.001 or 10.011</td>
<td></td>
</tr>
</tbody>
</table>

* For students who enrol in and successfully complete the subjects 1.021 Introductory Physics (2 units) and 1.001 Physics I (2 units) the total unit value of the combined subjects be counted as 3 units.
School of Physics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.041</td>
<td>Laboratory Computers in Physical Science</td>
<td>I</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>As for 10.001</td>
<td>10.001 and 1.021 or 1.001 or 1.011</td>
<td>Programs 0601, 0610, 0611</td>
<td></td>
</tr>
</tbody>
</table>

Physics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.012</td>
<td>Mechanics and Thermal Physics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>1.001 or 1.011</td>
<td>10.2111</td>
<td>10.411B, 10.421B</td>
</tr>
<tr>
<td>1.022</td>
<td>Electromagnetism and Modern Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.001 or 1.011</td>
<td>10.2111</td>
<td>1.9322</td>
</tr>
<tr>
<td>1.032</td>
<td>Laboratory</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>1.001 or 1.011</td>
<td>10.001</td>
<td>1.9222</td>
</tr>
<tr>
<td>1.042</td>
<td>Measurement and Measurement Control Systems</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.001 or 1.011, 10.001</td>
<td>10.2111 (or 10.2211), 10.2112 (or 10.2212)</td>
<td>1.9422, 1.9622</td>
</tr>
<tr>
<td>1.052</td>
<td>Methods in Mathematical Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.001 or 1.011, 10.001 or 10.011</td>
<td>10.2111 (or 10.2211), 10.2111 (or 10.2212)</td>
<td></td>
</tr>
<tr>
<td>1.9222</td>
<td>Electronics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001 or 1.011 or 1.021</td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>1.9322</td>
<td>Introduction to Solids</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.001 or 1.011 or 1.021</td>
<td>1.022, 4.402, 4.412</td>
<td></td>
</tr>
<tr>
<td>1.9422</td>
<td>Introduction to Physics of Measurement</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001 or 1.011</td>
<td>1.042</td>
<td></td>
</tr>
</tbody>
</table>

Physics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.013</td>
<td>Quantum Mechanics and Nuclear Physics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.012, 1.022, 10.2111, 10.2112</td>
<td>2.023A, 10.222F</td>
<td></td>
</tr>
<tr>
<td>1.023</td>
<td>Statistical Mechanics and Solid State Physics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.012, 1.022, 10.2111, 10.2112</td>
<td>1.013 or 2.023A</td>
<td></td>
</tr>
<tr>
<td>1.033</td>
<td>Electromagnetism and Optical Physics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.012, 1.022, 10.2111, 10.2112</td>
<td>10.222C</td>
<td></td>
</tr>
<tr>
<td>1.043</td>
<td>Experimental Physics A</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>1.012, 1.022, 1.032</td>
<td>1.043, 1.053</td>
<td></td>
</tr>
<tr>
<td>1.0533</td>
<td>Experimental Physics B1</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td>1.032 or 1.9222</td>
<td>1.043, 1.053</td>
<td></td>
</tr>
<tr>
<td>1.0534</td>
<td>Experimental Physics B2</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>4</td>
<td>1.032 or 1.9222</td>
<td>1.043, 1.053</td>
<td></td>
</tr>
<tr>
<td>1.133</td>
<td>Electronics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>1.032 or 1.9222</td>
<td>1.043, 1.053</td>
<td></td>
</tr>
<tr>
<td>1.1433</td>
<td>Biophysics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.012, 1.022</td>
<td>1.043, 1.053</td>
<td></td>
</tr>
<tr>
<td>1.1533</td>
<td>Biophysical Techniques</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.012, 1.022, 1.032</td>
<td>1.043, 1.053</td>
<td></td>
</tr>
<tr>
<td>1.1633</td>
<td>Astrophysics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.022</td>
<td>1.043, 1.053</td>
<td></td>
</tr>
<tr>
<td>1.1733</td>
<td>Conceptual Framework of Physics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.012, 1.022, 1.032</td>
<td>1.013, 1.023</td>
<td></td>
</tr>
<tr>
<td>1.3033</td>
<td>Mechanical Properties of Materials</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.023</td>
<td>4.043</td>
<td></td>
</tr>
<tr>
<td>1.3133</td>
<td>Electrical, Optical and Thermal Properties of Materials</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.023</td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>1.3233</td>
<td>Measurement and Non-destructive Testing</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.032</td>
<td>1.343</td>
<td></td>
</tr>
<tr>
<td>1.3333</td>
<td>Applications of Radiation</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.033</td>
<td>1.343</td>
<td></td>
</tr>
<tr>
<td>1.3533</td>
<td>Marine Acoustics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>25.643</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.513</td>
<td>Plasma and Laser Physics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.012, 1.022</td>
<td>1.043, 1.053</td>
<td>1.043, 1.053</td>
</tr>
</tbody>
</table>
School of Physics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.523</td>
<td>Relativity and Electromagnetism</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.012, 1.022, 10.2111, 10.2112, 10.111A, 10.1113, 10.1114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5333</td>
<td>Radiation and Matter</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.012 (or 1.992), 1.022 (or 1.972), 10.2111, 10.2112</td>
<td>1.013 (or 10.222F or 2.023A), 1.033 (or 10.222C)</td>
<td></td>
</tr>
</tbody>
</table>

School of Chemistry

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121</td>
<td>Chemistry IA</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.111 or 2.121</td>
<td></td>
<td>2.141</td>
</tr>
<tr>
<td>2.131</td>
<td>Chemistry IB</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.111 or 2.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.141</td>
<td>Chemistry IM†</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.111 or 2.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.111 or 2.141, 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002B</td>
<td>Organic Chemistry</td>
<td>II</td>
<td>1</td>
<td>F or S1 or S2</td>
<td>6</td>
<td>2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002D</td>
<td>Analytical Chemistry</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141 or 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2.042C</td>
<td>Inorganic Chemistry</td>
<td>II</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>II/III</td>
<td>1 S1 or S2</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131, or 2.141</td>
<td>10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
</tr>
<tr>
<td>2.003H</td>
<td>Molecular Spectroscopy and Structure</td>
<td>II/III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003J</td>
<td>Fundamentals of Biological and Agricultural Chemistry</td>
<td>II/III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141</td>
<td>1.001 or 1.011</td>
<td>2.013L, 41.101</td>
</tr>
<tr>
<td>2.003K</td>
<td>Solid State Chemistry</td>
<td>II/III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.121 & 2.131 or 2.141</td>
<td>and 10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td>2.003L</td>
<td>Applied Organic Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002A</td>
<td>2.033L</td>
<td></td>
</tr>
<tr>
<td>2.003M</td>
<td>Organometallic Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013A</td>
<td>Introductory Quantum Chemistry</td>
<td>II/III</td>
<td>1 S1</td>
<td>6</td>
<td></td>
<td>2.003A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002B</td>
<td>Organic Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002C</td>
<td>Inorganic Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002D</td>
<td>Instrumental Analysis</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002D, 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013B</td>
<td>Synthetic Organic Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013C</td>
<td>Advanced Inorganic Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.042C</td>
<td>2.003C</td>
<td></td>
</tr>
<tr>
<td>2.013D</td>
<td>Advanced Analytical Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002D</td>
<td>2.003D</td>
<td></td>
</tr>
<tr>
<td>2.013L</td>
<td>Chemistry and Enzymology of Foods</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.023A</td>
<td>Quantum Theory of Atoms and Molecules</td>
<td>III</td>
<td>1 S2</td>
<td>6</td>
<td></td>
<td>2.002A, 10.2111 & 10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.023B</td>
<td>Natural Product Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.023C</td>
<td>Biological and Agricultural Chemistry</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.023C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.033A</td>
<td>Physical Chemistry of Macromolecules</td>
<td>III</td>
<td>1 S2</td>
<td>6</td>
<td></td>
<td>2.003J or 2.002B, 1.012 or 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.043A</td>
<td>Environmental Chemistry</td>
<td>III</td>
<td>1 S2</td>
<td>6</td>
<td></td>
<td>2.002A, 2.002D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.043L</td>
<td>Chemistry and Enzymology of Foods‡</td>
<td>III</td>
<td>2 F</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.053A</td>
<td>Chemical Kinetics and Reaction Mechanisms</td>
<td>III</td>
<td>1 SS</td>
<td>6</td>
<td></td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.053L</td>
<td>Biological and Agricultural Chemistry‡</td>
<td>III</td>
<td>2 F</td>
<td>6</td>
<td></td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.063A</td>
<td>Advanced Molecular Spectroscopy</td>
<td>III</td>
<td>1 S2</td>
<td>6</td>
<td></td>
<td>2.013A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‡ Students majoring in Chemistry may take 2.141 in lieu of 2.121 and 2.131.
† Only one of these double units may be chosen.
School of Metallurgy

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.302</td>
<td>Chemical and Extraction Metallurgy I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>2.002A*</td>
<td></td>
</tr>
<tr>
<td>4.402</td>
<td>Physical Metallurgy I</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>2.002A*, 4.502</td>
<td>1.932, 4.412, 4.422</td>
</tr>
<tr>
<td>4.412</td>
<td>Metallurgical Phases — Structure and</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>2.002A, 4.302</td>
<td>1.932, 4.402</td>
</tr>
<tr>
<td></td>
<td>Equilibrium, Part I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.422</td>
<td>Metallurgical Phases — Structure and</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>4.412</td>
<td>4.303, 4.402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equilibrium Part II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.502</td>
<td>Mechanical Metallurgy</td>
<td>III</td>
<td>1½</td>
<td>F</td>
<td></td>
<td></td>
<td>4.403</td>
<td></td>
</tr>
<tr>
<td>4.512</td>
<td>Mechanical Properties of Solids</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>4.402</td>
<td></td>
</tr>
<tr>
<td>4.522</td>
<td>Mechanical Metallurgy</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>4.512</td>
<td></td>
</tr>
<tr>
<td>4.602</td>
<td>Metallurgical Engineering I</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>4.302</td>
<td></td>
</tr>
<tr>
<td>4.303</td>
<td>Chemical and Extraction Metallurgy II</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td>4.302, 4.602 and 4.402 or 4.412</td>
<td>4.422</td>
<td></td>
</tr>
<tr>
<td>4.403</td>
<td>Physical Metallurgy II</td>
<td>III</td>
<td>3</td>
<td>F</td>
<td>9</td>
<td>4.402</td>
<td>1.313</td>
<td></td>
</tr>
<tr>
<td>4.613</td>
<td>Metallurgical Engineering IIA</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>4.602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.703</td>
<td>Materials Science</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>4.403</td>
<td></td>
</tr>
</tbody>
</table>

* This unit must be taken in Session 1.

School of Mechanical and Industrial Engineering

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.010</td>
<td>Engineering A</td>
<td>I</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C</td>
<td>I</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Either

- 2 unit Science (Physics) (at HSC Exam percentile range 31-100) or
- 4 unit Science (incl. Physics) (at HSC Exam percentile range 11-100) or
- 2 unit Industrial Arts (at HSC Exam percentile range 31-100) or
- 3 unit Industrial Arts (at HSC Exam percentile range 11-100)

* Students who wish to enrol in this subject can make up for the lack of the prerequisite by work taken in Physics in the first half of first year.

5.020 Engineering B | I | S2 | 6

93
School of Electrical Engineering and Computer Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.611</td>
<td>Computing I</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>HSC Maths as for 10.001</td>
<td>10.001 or 10.011</td>
<td>1.041*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.621</td>
<td>Computing II</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>6.611**</td>
<td>10.001 or 10.011</td>
<td>6.600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.631</td>
<td>Assembler Programming</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td>6.621** or 6.620**</td>
<td>6.021D**</td>
<td>6.021D</td>
</tr>
<tr>
<td></td>
<td>and Digital Logic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.641</td>
<td>Programming I</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td>6.620** or 6.021D**</td>
<td>One of 10.311A, 10.321A, 10.301, 10.331 or 45.101†</td>
<td>6.622</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or equivalent</td>
<td></td>
</tr>
<tr>
<td>6.646</td>
<td>Computer Applications</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>6.620** or 6.021D**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Excluded for students in programs 6806, 0601, 0610, 0611.
** Pass conceded is not adequate for prerequisite purposes; a clear pass must be obtained.
† This may be taken as a co-requisite in 1982.
‡ Students who have completed 6.600 at a grade of credit or better, may be enabled to undertake this subject with permission.

School of Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2 unit Mathematics (at HSC Exam percentile range 71-100) or 3 unit Mathematics (at HSC Exam percentile range 21-100) or 4 unit Mathematics (at HSC Exam percentile range 1-100) or 10.021B</td>
<td>10.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.021A</td>
<td>10.021B</td>
<td>10.021C</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>3 unit Mathematics (at HSC Exam percentile range 71-100) or 4 unit Mathematics (at HSC Exam percentile range 1-100) or 10.021B</td>
<td>10.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.021A</td>
<td>10.021B</td>
<td>10.021C</td>
</tr>
</tbody>
</table>
School of Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.021B</td>
<td>General Mathematics IB</td>
<td>I</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>2 unit Mathematics (at HSC Exam percentile range 51-100) or 3 unit Mathematics (at HSC Exam percentile range 11-100) or 4 unit Mathematics (at HSC Exam percentile range 1-100) or 10.021A**</td>
<td>10.001</td>
<td></td>
</tr>
<tr>
<td>10.021C</td>
<td>General Mathematics IC</td>
<td>I</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>10.021B</td>
<td>10.001</td>
<td></td>
</tr>
<tr>
<td>10.081</td>
<td>Mathematics IX</td>
<td>I</td>
<td>F</td>
<td>3</td>
<td></td>
<td>As for 10.001 or 10.011 and 6.611 or 1.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.031†</td>
<td>Mathematics</td>
<td>II</td>
<td>F</td>
<td>2</td>
<td></td>
<td>10.001 or 10.021C (CR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.032§</td>
<td>Mathematics</td>
<td>III</td>
<td>F</td>
<td>2</td>
<td></td>
<td>10.031</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†† For any listed unit an appropriate higher unit may be substituted.
* If a unit in this column is counted the corresponding unit in the first column may not be counted.
‡ Mathematics 10.031 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II Units in Pure Mathematics, Applied Mathematics are taken, 10.031 Mathematics will not be counted.
§ Mathematics 10.032 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics, Applied Mathematics or Theoretical Mechanics are taken, 10.032 Mathematics will not be counted except that 10.412A may be taken with 10.032.
** Entry to General Mathematics IA is allowed only with permission of the Head of the School of Mathematics, and that permission will be given only to students who do not qualify to enter unit 10.021B.

Pure Mathematics

Pure Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.111A</td>
<td>Linear Algebra</td>
<td>II</td>
<td>F</td>
<td>2½</td>
<td></td>
<td>10.001</td>
<td>10.121A</td>
<td></td>
</tr>
<tr>
<td>10.1111</td>
<td>Group Theory</td>
<td>II/III</td>
<td>S1 or S2</td>
<td>2</td>
<td></td>
<td>10.001</td>
<td>10.011, 10.2111, 10.2112</td>
<td></td>
</tr>
<tr>
<td>10.1112</td>
<td>Geometry</td>
<td>II/III</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>10.001</td>
<td>10.1111 (or 10.121A)</td>
<td></td>
</tr>
<tr>
<td>10.1113</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>S1 or S2</td>
<td>2½</td>
<td></td>
<td>10.001</td>
<td>10.1213</td>
<td></td>
</tr>
<tr>
<td>10.1114</td>
<td>Complex Analysis</td>
<td>II</td>
<td>S1 or S2</td>
<td>2½</td>
<td></td>
<td>10.001</td>
<td>10.1214</td>
<td></td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level II†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.121A</td>
<td>Algebra</td>
<td>II</td>
<td>F</td>
<td>2½</td>
<td></td>
<td>10.011 or 10.001 DN</td>
<td>10.1111</td>
<td></td>
</tr>
<tr>
<td>10.121C</td>
<td>Number Theory and Geometry</td>
<td>II/III</td>
<td>F</td>
<td>2½</td>
<td></td>
<td>10.011 or 10.001 DN</td>
<td>10.1112, 10.111, 10.1214, 10.12112</td>
<td></td>
</tr>
<tr>
<td>10.1213</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>S1</td>
<td>2½</td>
<td></td>
<td>10.011 or 10.001 DN</td>
<td>10.1113</td>
<td></td>
</tr>
<tr>
<td>10.1214</td>
<td>Complex Analysis</td>
<td>II</td>
<td>S2</td>
<td>2½</td>
<td></td>
<td>10.1213</td>
<td>10.1114</td>
<td></td>
</tr>
</tbody>
</table>

† For footnotes, see overleaf.
School of Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pure Mathematics Level III***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1121</td>
<td>Number Theory</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td></td>
<td>***</td>
<td></td>
<td>10.121C</td>
</tr>
<tr>
<td>10.1122</td>
<td>Algebra</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>10.111A</td>
<td>10.1111</td>
<td>10.122A</td>
</tr>
<tr>
<td></td>
<td>Logic and Computability</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td></td>
<td>***</td>
<td></td>
<td>10.122C</td>
</tr>
<tr>
<td></td>
<td>Combinatorial Topology</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td></td>
<td>***</td>
<td></td>
<td>10.122E</td>
</tr>
<tr>
<td>10.1125</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>10.111A</td>
<td>***</td>
<td>10.122B</td>
</tr>
<tr>
<td>10.1126</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>10.1113, 10.1114</td>
<td></td>
<td>10.1125</td>
</tr>
<tr>
<td>10.1127</td>
<td>History of Mathematics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>10.111A, 10.1114, 10.2111, 10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1128</td>
<td>Foundations of Calculus</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>***</td>
<td></td>
<td>10.122B</td>
</tr>
<tr>
<td>10.1129</td>
<td>Real Analysis</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>10.2112, 10.1128</td>
<td></td>
<td>10.122B</td>
</tr>
<tr>
<td>10.1521</td>
<td>Combinatorics and its Applications</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td></td>
<td>***</td>
<td></td>
<td>10.112C</td>
</tr>
<tr>
<td>10.1522</td>
<td>Differential Geometry</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td></td>
<td>10.1113</td>
<td>***</td>
<td>10.122C</td>
</tr>
<tr>
<td></td>
<td>Higher Pure Mathematics Level III**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.122A</td>
<td>Algebra</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td></td>
<td>10.121A</td>
<td></td>
<td>10.1122</td>
</tr>
<tr>
<td>10.122B</td>
<td>Integration and Functional Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td></td>
<td>10.1213</td>
<td></td>
<td>10.1128</td>
</tr>
<tr>
<td>10.122C</td>
<td>Topology and Differential Geometry</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td></td>
<td>10.121A, 10.1213</td>
<td></td>
<td>10.1124</td>
</tr>
<tr>
<td>10.122E</td>
<td>Complex Analysis and Differential Equations</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td></td>
<td>10.1213, 10.1214</td>
<td></td>
<td>10.1125</td>
</tr>
</tbody>
</table>

†† For any listed unit an appropriate higher unit may be substituted.

* If a unit in this column is counted the corresponding unit in the first column may not be counted.

† 1. Admission to Higher Pure Mathematics II normally requires completion of 10.011 Higher Mathematics I; students who gain a superior pass in 10.001 Mathematics I may, subject to the approval of the Head of the School of Mathematics, be permitted to proceed to Higher Pure Mathematics II units.

2. Students majoring in Physics who wish to take Higher Pure Mathematics II should attempt 10.121A, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

3. Students aiming at Honours in Pure Mathematics must take 10.121A, 10.121C, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

** Students wishing to attempt higher Level III units should consult with the School of Mathematics prior to enrolment. Pre- and co-requisites may be varied in special circumstances with the permission of the Head of the School of Mathematics.

*** Students will not normally be permitted to attempt a Level III Pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.

Applied Mathematics

Applied Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2111</td>
<td>Vector Calculus</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td></td>
<td>10.001</td>
<td></td>
<td>10.2211</td>
</tr>
<tr>
<td>10.2112</td>
<td>Mathematical Methods for Differential Equations</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td></td>
<td>10.001</td>
<td></td>
<td>10.2212</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisite(s)††</td>
<td>Co-requisite(s)††</td>
<td>Excluded*</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>10.2113</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.001</td>
<td>10.2213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2115</td>
<td>Discrete-Time Systems</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.001</td>
<td>10.2215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.211E</td>
<td>Numerical Methods</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Applied Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite(s)††</th>
<th>Co-requisite(s)††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2211</td>
<td>Vector Analysis</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2½</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2111</td>
<td></td>
</tr>
<tr>
<td>10.2212</td>
<td>Mathematical Methods</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2½</td>
<td>10.2211</td>
<td></td>
<td></td>
<td>10.2112</td>
</tr>
<tr>
<td>10.2213</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2113</td>
<td></td>
</tr>
<tr>
<td>10.2215</td>
<td>Discrete-Time Systems</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2115</td>
<td></td>
</tr>
</tbody>
</table>

Applied Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite(s)††</th>
<th>Co-requisite(s)††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.212A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2112, 10.111A</td>
<td></td>
<td>10.222A</td>
<td></td>
</tr>
<tr>
<td>10.212L</td>
<td>Optimization Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.1113***</td>
<td></td>
<td>10.222L</td>
<td></td>
</tr>
<tr>
<td>10.212M</td>
<td>Optimal Control Theory</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.1113 and 10.1114, 10.111A or 10.2113</td>
<td></td>
<td>10.222M</td>
<td></td>
</tr>
</tbody>
</table>

Higher Applied Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite(s)††</th>
<th>Co-requisite(s)††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.222A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2212 or 10.2112 DN**, 10.121A or 10.111A DN**,</td>
<td></td>
<td>10.212A</td>
<td></td>
</tr>
<tr>
<td>10.222M</td>
<td>Optimal Control Theory</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.1213 or 10.1113 DN**, 10.1214 or 10.1114 DN**, 10.121A or 10.111A DN**, or 10.2213 or 10.2113 DN, **</td>
<td></td>
<td>10.212M</td>
<td></td>
</tr>
</tbody>
</table>

†† For any listed unit an appropriate higher unit may be substituted.
* If a unit in this column is counted the corresponding unit in the first column may not be counted.
** With the permission of the Head of the Department a sufficiently good grading may be substituted.
*** At least one further unit chosen from the following: 10.111A, 10.1114, 10.2111, 10.2112, 10.2113.
**** At least 1½ further units chosen from the following: 10.121A or 10.111A DN, 10.1214 or 10.1114 DN, 10.2211 or 10.2111 DN, 10.2212 or 10.2112 DN, 10.2213 or 10.2113 DN, 10.2215 or 10.2113 DN.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>HpW</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory of Statistics Level II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.311A‡</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1½</td>
<td>S1‡</td>
<td>7</td>
<td>10.001 or 10.021C CR</td>
<td>10.321A, 10.331, 10.301, 45.101</td>
<td></td>
</tr>
<tr>
<td>10.311B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1½</td>
<td>S2</td>
<td>7</td>
<td>10.311A</td>
<td>10.321A, 10.331, 10.301, 45.101</td>
<td></td>
</tr>
<tr>
<td>10.331</td>
<td>Statistics SS</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.001 or 10.021C CR</td>
<td>10.321A, 10.331, 10.301, 45.101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher Theory of Statistics Level II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.321A</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1½</td>
<td>S1</td>
<td>8</td>
<td>10.001</td>
<td>10.311A, 10.331, 10.301, 45.101</td>
<td></td>
</tr>
<tr>
<td>10.321B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1½</td>
<td>S2</td>
<td>8</td>
<td>10.321A</td>
<td>10.311A, 10.331, 10.301, 45.101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory of Statistics Level III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.312A</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311A, 10.111A, 10.113, 10.2112</td>
<td>10.322A, 10.322B</td>
<td></td>
</tr>
<tr>
<td>10.312B</td>
<td>Experimental Design (Applications) and Sampling</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311B or 10.331</td>
<td>10.322A, 10.322B</td>
<td></td>
</tr>
<tr>
<td>10.312C</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311B, 10.111A, 10.113, 10.2112</td>
<td>10.322C, 10.322D</td>
<td></td>
</tr>
<tr>
<td>10.312D</td>
<td>Probability Theory</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311A, 10.111A, 10.113, 10.2112</td>
<td>10.322C, 10.322D</td>
<td></td>
</tr>
<tr>
<td>10.312E</td>
<td>Statistical Inference</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311B, 10.111A, 10.113, 10.2112</td>
<td>† 10.322E</td>
<td></td>
</tr>
<tr>
<td>10.3321</td>
<td>Regression Analysis and Experimental Design</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.331 or 10.311B</td>
<td>10.312B, 10.322B</td>
<td></td>
</tr>
<tr>
<td>10.3322</td>
<td>Applied Stochastic Processes</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.331 or 10.311A</td>
<td>10.312A, 10.322A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher Theory of Statistics Level III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.322A</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.321A, 10.111A, 10.113, 10.114, 10.2112</td>
<td>10.312A</td>
<td></td>
</tr>
<tr>
<td>10.322B</td>
<td>Experimental Design (Applications) and Sampling</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.113, 10.114, 10.2112</td>
<td>10.312B</td>
<td></td>
</tr>
</tbody>
</table>
School of Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.322C</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.111A, 10.2112</td>
<td>10.322B†</td>
<td>10.312C</td>
<td></td>
</tr>
<tr>
<td>10.322E</td>
<td>Statistical Inference</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.111A, 10.2112</td>
<td>†</td>
<td>10.312E</td>
<td></td>
</tr>
</tbody>
</table>

†† For any listed unit an appropriate higher unit may be substituted.

* If a unit in this column is counted, the corresponding unit in the first column may not be counted.

† Plus any two Level III Pure Mathematics, Applied Mathematics, Theoretical Mechanics or Computer Science units. It is sufficient to take 10.312B (10.322B) in the same year.

** For a student taking four of the units 10.312A, 10.312B, 10.312C, 10.312D, 10.312E (or the corresponding higher units) a project is required as part of either 10.312C (10.322C) or 10.312E (10.322E).

‡ The evening course for 10.311A will, subject to a sufficient enrolment, run at 3½ hours per week throughout the year.

Theoretical and Applied Mechanics

Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.411A</td>
<td>Hydrodynamics</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.001</td>
<td>10.411B or 1.012, 10.421A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.411B</td>
<td>Principles of Theoretical Mechanics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.001, 10.001, 10.041 or 5.010</td>
<td>10.421B, 10.1114, 10.2111, 10.2112</td>
<td>10.411B</td>
<td></td>
</tr>
</tbody>
</table>

Higher Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.421A</td>
<td>Hydrodynamics</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.011 or 10.001 DN**</td>
<td>10.421B, 10.1114</td>
<td>10.411A</td>
<td></td>
</tr>
<tr>
<td>10.421B</td>
<td>Principles of Theoretical Mechanics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.011 or 10.001 DN**</td>
<td>10.421B, 10.1114, 10.2211, 10.2212</td>
<td>10.411B</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Mechanics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.412A</td>
<td>Dynamical and Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.001, 10.2111 and 10.2112 or 10.031</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.412B</td>
<td>Continuum Mechanics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2111, 10.2112, 10.1113, 10.1114, 10.111A</td>
<td>10.411A or 1.012 or 1.913</td>
<td>10.422B</td>
<td></td>
</tr>
<tr>
<td>10.412D</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2112, 10.1113, 10.1114, 10.111A</td>
<td>10.411A, 10.422B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Theoretical Mechanics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.422A</td>
<td>Fluid Dynamics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.421A or 10.411A DN**</td>
<td>10.422B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.422B</td>
<td>Mechanics of Solids</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.2111, 10.2112, 10.1113, 10.1114, 10.111A, 10.421B or 10.411B DN** or 1.012</td>
<td>10.412B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
School of Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
</table>

** With the permission of the Head of the Department a sufficiently good grading may be substituted.
†† It is recommended that one of the following be taken concurrently: 10.411A or 1.012 or 1.3533 and 25.6342.
* If a unit in this column is counted the corresponding unit in the first column may not be counted.
†† For any listed unit an appropriate higher unit may be substituted.

School of Psychology

Psychology Level I

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.100</td>
<td>Psychology I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td>12.001</td>
</tr>
</tbody>
</table>

Psychology Level IISee Notes

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.200</td>
<td>Research Methods II</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>12.001 or 12.100</td>
</tr>
<tr>
<td>12.201</td>
<td>Basic Psychological Processes II</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.001 or 12.100</td>
</tr>
<tr>
<td>12.202</td>
<td>Complex Psychological Processes II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.001 or 12.100</td>
</tr>
<tr>
<td>12.204</td>
<td>Human Relations II</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.001 or 12.100</td>
</tr>
<tr>
<td>12.205</td>
<td>Individual Differences II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.001 or 12.100</td>
</tr>
</tbody>
</table>

Psychology Level III: Group ASee Notes

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.300</td>
<td>Research Methods III/A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.152 or 12.200</td>
</tr>
<tr>
<td>12.304</td>
<td>Personality and Individual Differences III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 12.203</td>
</tr>
<tr>
<td>12.305</td>
<td>Learning and Behaviour III</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>12.052 and 12.152, 12.200 and 12.201</td>
</tr>
</tbody>
</table>

Psychology Level III: Group BSee Notes

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.301</td>
<td>Research Methods III/B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.152 and 12.153 or 12.200 and 12.300</td>
</tr>
<tr>
<td>12.310</td>
<td>Physiological Psychology III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.052 and 12.152, 12.200 and 12.201</td>
</tr>
<tr>
<td>12.311</td>
<td>Perception III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.052 and 12.152, 12.200 and 12.201</td>
</tr>
<tr>
<td>12.312</td>
<td>Cognition III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.062 and 12.152, 12.200 and 12.202</td>
</tr>
</tbody>
</table>

100
School of Psychology (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.314</td>
<td>Motivation and Emotion III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>S2</td>
<td>4</td>
<td>12.052 and 12.152, or 12.200 and 12.201</td>
<td></td>
<td>12.323</td>
</tr>
<tr>
<td>12.322</td>
<td>Abnormal Psychology III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>S1</td>
<td>4</td>
<td>12.052 and 12.152, or 12.200 and 12.201</td>
<td></td>
<td>12.603</td>
</tr>
<tr>
<td>12.330</td>
<td>Psychological Assessment III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>S1</td>
<td>4</td>
<td>12.152 or 12.200, and 1 other Psychology Level II subject</td>
<td></td>
<td>12.042, 12.203 and 12.373</td>
</tr>
<tr>
<td>12.331</td>
<td>Guidance and Counselling III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>S1</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
<td>12.623</td>
</tr>
<tr>
<td>12.332</td>
<td>Behavioural Change III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>S2</td>
<td>4</td>
<td>12.052 and 12.152, or 12.200 and 12.201</td>
<td></td>
<td>12.713</td>
</tr>
<tr>
<td>12.333</td>
<td>Ergonomics III</td>
<td>III</td>
<td>Not offered</td>
<td>S2</td>
<td>S2</td>
<td>4</td>
<td>12.152 or 12.200</td>
<td></td>
<td>12.663</td>
</tr>
<tr>
<td>12.334</td>
<td>Behaviour in Organizations III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>S1</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
<td>12.653</td>
</tr>
<tr>
<td>12.340A</td>
<td>Special Topic III</td>
<td>III</td>
<td>1</td>
<td>Not offered</td>
<td>S1</td>
<td>4</td>
<td>12.153 and 12.303, or 12.300 and 12.305, or 12.304</td>
<td></td>
<td>12.253</td>
</tr>
</tbody>
</table>

Notes:
1. A student may not enrol in more than three Level II Psychology units.
2. A student may not enrol in more than three Level III Psychology units unless 12.200 or 12.152 Research Methods II has been passed.
3. A student may not enrol in more than five Level III Psychology units unless 12.300 or 12.153 Research Methods IIIA has been passed.
4. A major in Psychology is 12.100 (or 12.001), two Psychology Level II units, including 12.200 (or 12.152) and four Psychology Level III units.

Biological Sciences

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.031</td>
<td>Cell Biology</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>S1</td>
<td>6</td>
<td>Science 2 or 4 units at HSC Exam percentile range 31-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.021*</td>
<td>Biology of Higher Organisms</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>S2</td>
<td>6</td>
<td>17.031†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Students with percentile range 31-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.201 or 45.301 in lieu of 17.021 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.021 Biology of Higher Organisms for all units.

† Terminating pass acceptable.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.110</td>
<td>Earth Materials and Processes**</td>
<td>I</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>2 unit Science (any strand)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(at HSC Exam percentile range 31-100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 unit Science (multistrand)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(at HSC Exam percentile range 31-100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.120</td>
<td>Earth Environments and Dynamics****</td>
<td>I</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td>25.110</td>
<td></td>
</tr>
<tr>
<td>25.211</td>
<td>Earth Materials I*</td>
<td>II</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>25.120</td>
<td></td>
</tr>
<tr>
<td>25.221</td>
<td>Earth Materials II†</td>
<td>II</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td>25.120</td>
<td></td>
</tr>
<tr>
<td>25.212</td>
<td>Earth Environments I‡</td>
<td>II</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>25.120</td>
<td></td>
</tr>
<tr>
<td>25.223</td>
<td>Earth Physics*</td>
<td>II</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.621</td>
<td>Marine Geology I**</td>
<td>II</td>
<td>F</td>
<td>3</td>
<td></td>
<td>25.601 or 25.110 and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.622</td>
<td>Hydrological and Coastal Surveying</td>
<td>I</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.311</td>
<td>Earth Materials III</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>25.221</td>
<td>25.326</td>
</tr>
<tr>
<td>25.321</td>
<td>Earth Materials IV†</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td>25.311</td>
<td></td>
</tr>
<tr>
<td>25.312</td>
<td>Earth Environments II</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>25.326</td>
<td></td>
</tr>
<tr>
<td>25.313</td>
<td>Exploration and Data Processing‡</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>25.223</td>
<td></td>
</tr>
<tr>
<td>25.314</td>
<td>Mineral and Energy Resources I****</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>25.321</td>
<td>25.311</td>
</tr>
<tr>
<td>25.324</td>
<td>Mineral and Energy Resources II*</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td>25.312</td>
<td></td>
</tr>
<tr>
<td>25.325</td>
<td>Engineering and Environmental Geology***</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.326</td>
<td>Geological Techniques†††</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td>25.212, 25.311</td>
<td></td>
</tr>
<tr>
<td>25.6342</td>
<td>Exploration and Seismic Methods</td>
<td>III</td>
<td>½ S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>25.634</td>
</tr>
</tbody>
</table>

* Field work of up to 1 day.
** Field work of up to 2 days.
*** Field work of up to 3 days.
**** Field work of up to 4 days.
† Field work of up to 5 days.
‡ Field work of up to 6 days.
§ Field work of up to 8 days.
¶ Field work of up to 10 days.

Field tutorials are an essential part of the subject, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

†† Not available for programs 2501, 2502, 2703, 2725, nor in Geology program of Course 4770, nor in Geology with some Mathematics program of Course 3730.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.111</td>
<td>Applied Physical Geography I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>27.801, 27.811</td>
</tr>
<tr>
<td>27.801</td>
<td>Introduction to Physical Geography*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td>27.111</td>
</tr>
<tr>
<td>27.802</td>
<td>Introduction to Human Geography*</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.811</td>
<td>Physical Geography*</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td>27.801, 27.2813†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.812</td>
<td>Human Geography*</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td>27.802, 27.2813†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2813</td>
<td>Geographic Methods</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>27.111 (or 27.801† & 27.802)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2814</td>
<td>Geographic Field Methods**</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>27.111 (or 27.801 & 27.802)</td>
<td>27.2813</td>
<td></td>
</tr>
<tr>
<td>27.153</td>
<td>Climatology**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>1.001, 27.811 (or 25.110 & 25.120) (or 17.031 & 17.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.143</td>
<td>Biogeography**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>27.811 or 27.111 (or 17.031 & 17.021)</td>
<td></td>
<td>27.183, 27.870</td>
</tr>
<tr>
<td>27.183</td>
<td>Geomorphology**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>25.110 & 25.120 or 27.811 (or 27.111)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.133</td>
<td>Pedology**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>27.111 or any 2 units from: 2.111, 2.121, 2.131, 2.141, 27.811 (or 25.012 or 25.022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.860</td>
<td>Landform Studies**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td>27.811 or 27.111</td>
<td></td>
<td>27.183, 27.872</td>
</tr>
<tr>
<td>27.862</td>
<td>Australian Environment and Natural Resources**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td>27.111 or 27.811 or 27.812 (or 25.110 and 25.120)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.863</td>
<td>Ecosystems and Man**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td>27.111 or 25.110 and 25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.824</td>
<td>Spatial Population Analysis**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>27.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.825</td>
<td>Urban Activity Systems**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>27.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.826</td>
<td>Urban and Regional Development**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>27.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.827</td>
<td>Environment and Behaviour**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>27.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.834</td>
<td>Spatial Population Analysis (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.835</td>
<td>Urban Activity Systems (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.836</td>
<td>Urban and Regional Development (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.837</td>
<td>Environment and Behaviour (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>27.812 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.870</td>
<td>Landform Studies (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>27.111 CR or 27.811 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.872</td>
<td>Australian Environment and Natural Resources (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>27.111 CR or 27.811 CR or 27.812 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.873</td>
<td>Ecosystems and Man (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>27.111 CR or 27.811 CR or 27.812 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.880</td>
<td>Advanced Geographic Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>27.2813 CR and 27.811 CR or 27.2812 CR or 27.111 CR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
School of Geography (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.412</td>
<td>Coastal Geomorphology**</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>5</td>
<td>27.111 or 27.811 or 25.110 and 25.120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Field work of up to 2 days is a compulsory part of the subject.
† In special circumstances a student may apply to the Head of School for permission to take 27.801 as a co-requisite.
‡ This prerequisite unit may be waived for students not proceeding into a major Geography sequence.
** Field work of up to 5 days is a compulsory part of the subject.

School of Biochemistry‡

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites*</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.101</td>
<td>Biochemistry</td>
<td>II</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>17.021†, 2.121† & 2.131†, or 2.141†</td>
<td></td>
<td>2.003J</td>
</tr>
<tr>
<td>41.111</td>
<td>Biochemical Control</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102A</td>
<td>Biochemistry of Macromolecules</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102B</td>
<td>Physiological Biochemistry</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102C</td>
<td>Plant Biochemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102D</td>
<td>Biosynthesis of Plant Metabolites</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101** or 41.111**, 41.102C 2.002B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Level III units available only during the daytime.
* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
† Terminating pass not acceptable.
** Students must obtain a clear pass (PS) in either 41.101 or 41.111.

School of Biotechnology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites*</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.101</td>
<td>Introduction to Biotechnology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141, 17.021, 10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102A</td>
<td>Biotechnology A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>41.101†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102B</td>
<td>Biotechnology B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>42.101† or 44.101†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
† Pass conceded (PC) not acceptable.
School of Botany†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>HpW</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>See under Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.101</td>
<td>Introductory Genetics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.111</td>
<td>Flowering Plants</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.121</td>
<td>Plant Physiology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.021, Any 2 units of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.111, 2.121, 2.131, 2.141***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.131</td>
<td>Fungi and Man</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.102</td>
<td>Microbial Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>43.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.112</td>
<td>Plant Taxonomy</td>
<td>III</td>
<td>1</td>
<td>S2§</td>
<td>6</td>
<td>43.111</td>
<td>43.101</td>
<td></td>
</tr>
<tr>
<td>43.122</td>
<td>Biochemical Approaches</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to Plant Physiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.132</td>
<td>Mycology-Plant Pathology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.131***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.142</td>
<td>Environmental Botany</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.152</td>
<td>Plant Community</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.111 & 17.012 or 27.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ecology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.162</td>
<td>The Plant Kingdom</td>
<td>III</td>
<td>1</td>
<td>S1§</td>
<td>6</td>
<td>43.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.172</td>
<td>Phycology and Marine Botany</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.182</td>
<td>Cellular and Developmental Botany</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.111 or 43.121**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Students with percentile range 31-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.101, 45.201 or 45.301 in lieu of 17.021 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.021 Biology of Higher Organisms for all units.

† Level III courses conducted by the School of Botany are available only during the daytime to part-time students enrolling for the first time in 1973 or later.

** This unit may be taken as a co-requisite in some circumstances.

*** A student may apply to the School for variation of the prerequisite.

§ These units will alternate each year. 43.162 The Plant Kingdom is offered in 1983. If both units 43.112 and 43.162 are to be included in a three-year pass degree program, one should be completed in Year 2.

School of Microbiology†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>HpW</th>
<th>Prerequisites*</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101</td>
<td>Introductory Microbiology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.121</td>
<td>Microbial Growth</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>44.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.101 or 2.003J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.102</td>
<td>General Microbiology</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>44.101, 44.121†, 41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.112</td>
<td>Applied Microbiology</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td>44.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.122</td>
<td>Immunology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.021; 41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.132</td>
<td>Virology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>44.102</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† All units available only during the daytime.

* In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.

‡ Pass conceded not acceptable.
School of Zoology†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.101</td>
<td>Biometry</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.201</td>
<td>Invertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.301</td>
<td>Vertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S1, S2</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.112</td>
<td>Marine Ecology§</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021 and 17.031, 45.201 or 25.621 or 2.002D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.121</td>
<td>Evolutionary Theory</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.122</td>
<td>Animal Behaviour</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.101‡ and (45.201 or 45.301)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.132</td>
<td>Ecological Physiology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.201 or 45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.142</td>
<td>General and Reproductive Physiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>45.201 or 45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.152</td>
<td>Population and Community Ecology</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021 and 10.001, or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.202</td>
<td>Environmental and Social Biology of Invertebrates</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>45.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.302</td>
<td>Vertebrate Zoogeography and Evolution</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.402</td>
<td>Insects§</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.412</td>
<td>Insect Physiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>45.101‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.422</td>
<td>Economic Zoology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.201 or 45.402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.432</td>
<td>Project</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>45.412</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A student will not be admitted to Level III Zoology units without special permission of the Head of School, unless Chemistry 2.001 or 2.121 and 2.131, or 2.141, has been completed.

Students who wish to complete a major in the School of Zoology must take Biometry 45.101 and at least two Level II units of Biochemistry, or Chemistry, or Physics, or Mathematics, or Geology except as detailed in an approved program.

† Level III courses conducted by the School of Zoology are available only during the daytime to part-time students enrolling for the first time in 1973 or later.

§ Students intending to enrol in this unit should register with the School of Zoology for the February field trip by 14 January.

‡ One of: 10.311A; 10.321A; 10.331 may be substituted for 45.101 with special permission of the Head of School.

School of Philosophy

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.103</td>
<td>Introductory Philosophy A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.104</td>
<td>Introductory Philosophy B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.105</td>
<td>Philosophy of Law</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.1531</td>
<td>Predicate Logic A</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>An Level I unit</td>
<td>52.153</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.162</td>
<td></td>
</tr>
<tr>
<td>52.1532</td>
<td>Predicate Logic B</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.1531</td>
<td>52.153</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.162</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>52.163</td>
<td>Descartes</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.173</td>
<td>British Empiricism</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.183</td>
<td>Greek Philosophy: Thales to Plato</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.193</td>
<td>Scientific Method</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.203</td>
<td>Classical Political Philosophy</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.213</td>
<td>Sartre</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.233</td>
<td>Argument</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.263</td>
<td>Philosophy of Psychology Aesthetics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.283</td>
<td>Philosophical Study of Woman</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.293</td>
<td>Plato's Later Dialogues</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>52.483*</td>
<td></td>
</tr>
<tr>
<td>52.303</td>
<td>Spinoza and Leibniz</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>52.163</td>
<td></td>
</tr>
<tr>
<td>52.323</td>
<td>Set Theory</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>52.153 or 52.1532 or 26.812 or 10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
</tr>
<tr>
<td>52.333</td>
<td>Philosophy of Perception</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>52.323 or 10.1123</td>
<td></td>
</tr>
<tr>
<td>52.343</td>
<td>Privacy and Other Minds</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>52.163 and either 52.173 or 52.243</td>
<td></td>
</tr>
<tr>
<td>52.373</td>
<td>Philosophical Foundations of Marx's Thought</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.403</td>
<td>Model Theory</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Satisfactory performance in Level II units</td>
<td></td>
</tr>
<tr>
<td>52.413</td>
<td>Reading Option A</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2</td>
<td></td>
<td>Satisfactory performance in Level II units</td>
<td></td>
</tr>
<tr>
<td>52.423</td>
<td>Seminar A</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II units (Cr)</td>
<td></td>
</tr>
<tr>
<td>52.433</td>
<td>Seminar B</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II units (Cr)</td>
<td></td>
</tr>
<tr>
<td>52.443</td>
<td>Seminar C</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II units (Cr)</td>
<td></td>
</tr>
<tr>
<td>52.453</td>
<td>Reading Option B</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2</td>
<td></td>
<td>Satisfactory performance in Level II units</td>
<td></td>
</tr>
<tr>
<td>52.463</td>
<td>Introduction to Transformational Grammar</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Any Level I unit</td>
<td></td>
</tr>
<tr>
<td>52.473</td>
<td>Meaning and Truth</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>52.463 or 52.153 or 52.1531</td>
<td></td>
</tr>
<tr>
<td>52.483</td>
<td>Plato's Theory of Forms</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.513</td>
<td>Social and Political Philosophy</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.5231</td>
<td>Classical Greek Ethics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.5232</td>
<td>Theories in Moral Philosophy</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
<tr>
<td>52.543</td>
<td>The Philosophy of Love</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf.
School of Philosophy (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.563</td>
<td>Hume</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.152</td>
</tr>
<tr>
<td>52.573</td>
<td>Psychoanalysis — Freud and Lacan</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.353</td>
</tr>
<tr>
<td>52.583</td>
<td>Theories, Value and Education</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.393</td>
</tr>
<tr>
<td>52.593</td>
<td>History of Logic</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>52.1531</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In exceptional circumstances a student may apply to the School for variation of the prerequisite or co-requisite.

** Level II status in Philosophy consists in 1. being in second or later year of university study, and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.

School of History and Philosophy of Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.012</td>
<td>The Origins of Modern Science</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>A pass in two of 1.001 or 1.011</td>
<td></td>
<td>26.564</td>
</tr>
<tr>
<td>62.022</td>
<td>Materials, Machines and Men</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.032</td>
<td>The Scientific Theory</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>10.001 or 10.011 or 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.033</td>
<td>The Development of Theories of Matter*</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>12.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.052</td>
<td>Scientific Knowledge</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>17.031 and 17.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.062</td>
<td>The Social System of Science</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>25.110 and 25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.072</td>
<td>Historical Origins of the American Scientific Estate</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>27.801 and 27.802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.082</td>
<td>Science, Technology and Developing Countries</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.093</td>
<td>Science and the Strategy of War and Peace*</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.103</td>
<td>The Discovery of Time</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.104</td>
<td>The Darwinian Revolution</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.106</td>
<td>Mind, Mechanism and Life</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.107</td>
<td>The Freudian Revolution</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.109</td>
<td>The History of Medical Theory and Practice</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.013</td>
<td>History of the Philosophy and Methodology of Science</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>62.012 or 62.022 or 62.032 or 62.052 or 62.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.083</td>
<td>Marxism and Science</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not offered in 1982
School of History and Philosophy of Science (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.042</td>
<td>Science Education and the Dynamics of Scientific Development</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>58.632</td>
<td></td>
</tr>
<tr>
<td>62.105</td>
<td>Research Methods in History and Philosophy of Science</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>Completion of 3 HPS units with an average of Credit or better, or by permission of Head of School</td>
<td></td>
</tr>
</tbody>
</table>
School of Community Medicine

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.201</td>
<td>Population Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>45.101 or 10.331 or 10.311A and 10.311B or 10.321A and 10.321B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.202</td>
<td>Quantitative Methods in Human Genetics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>See * below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.302</td>
<td>Biochemical Genetics of Man</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.101, 41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.402</td>
<td>Genetics of Behaviour I</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>17.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.403</td>
<td>Genetics of Behaviour II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>79.402</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A unit of genetics and a unit of statistical methods, or theory, as approved by the Head of School.
Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Value</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.111</td>
<td>Introductory Chemistry*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>0101, 0103, 0105, 1068, 1069, 1201, 2702, 2743</td>
</tr>
<tr>
<td>2.013E</td>
<td>Advanced Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003E</td>
<td></td>
<td></td>
<td></td>
<td>Any appropriate program except 0201, 0202, 0203, 0204, 0241, 0242 and Course 3910</td>
</tr>
<tr>
<td>4.802</td>
<td>Metallurgical Physics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>1.001</td>
<td>1.001 or 1.011</td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>4.813</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>10.001</td>
<td>10.001 or 10.011</td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>6.010</td>
<td>Electrical Engineering</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>Electrical & magnetism section of 1.001 or 1.011</td>
<td></td>
<td>0101, 0102, 0103, 0105, 0106, 0162, 0601, 6806</td>
<td></td>
</tr>
<tr>
<td>6.021A</td>
<td>Basic Circuit Theory</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>6.010, 1.001, 10.001</td>
<td></td>
<td>0102, 0601</td>
<td></td>
</tr>
<tr>
<td>6.021C</td>
<td>Electronics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>6.021A, 1.982 or equiv.</td>
<td></td>
<td>0102, 0601</td>
<td></td>
</tr>
<tr>
<td>6.613</td>
<td>Computer Organization and Design**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>6.631*** or 6.021E***, 6.021D*** or 6.620*** or 6.621***</td>
<td>6.0318</td>
<td>0601, 0610, 0611</td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.632</td>
<td>Operating Systems**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>6.631*** or 6.021E***, 6.641***</td>
<td></td>
<td></td>
<td>0601, 0610, 0611</td>
</tr>
<tr>
<td>6.633</td>
<td>Data Bases and Networks**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>6.641***</td>
<td></td>
<td></td>
<td>0601, 0610, 0611</td>
</tr>
<tr>
<td>6.642</td>
<td>Programming II**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>6.641***</td>
<td></td>
<td></td>
<td>0601, 0610, 0611</td>
</tr>
<tr>
<td>6.643</td>
<td>Compiling Techniques and Programming Languages**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>6.641***</td>
<td></td>
<td></td>
<td>0601, 0610, 0611</td>
</tr>
<tr>
<td>6.649</td>
<td>Computing Practice**†††††††††††††††††††††††</td>
<td>III</td>
<td>1</td>
<td>††</td>
<td>5</td>
<td></td>
<td>6.641***</td>
<td></td>
<td>6.633 or 6.643 or 6.647</td>
<td>0601, 0610, 0611</td>
</tr>
<tr>
<td>6.851</td>
<td>Electronics and Instrumentation</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>1.001 or 1.011</td>
<td></td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>7.023</td>
<td>Mineral Process Engineering</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0402, 0403</td>
</tr>
<tr>
<td>9.801</td>
<td>Genetics I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6840</td>
</tr>
<tr>
<td>9.811</td>
<td>Biostatistics I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6840</td>
</tr>
<tr>
<td>9.802</td>
<td>Genetics II</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6840</td>
</tr>
<tr>
<td>10.021A</td>
<td>General Mathematics IA</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Course 3730</td>
</tr>
<tr>
<td>10.022</td>
<td>Engineering Mathematics II</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4308, 6832, 6833</td>
</tr>
<tr>
<td>10.301</td>
<td>Statistics SA</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 5811</td>
</tr>
<tr>
<td>14.501</td>
<td>Accounting and Financial Management IA</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 5811</td>
</tr>
<tr>
<td>14.511</td>
<td>Accounting and Financial Management IIB</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>14.522</td>
<td>Accounting and Financial Management IIA</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1022</td>
</tr>
<tr>
<td>14.542</td>
<td>Accounting and Financial Management IIB</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>14.563</td>
<td>Accounting and Financial Management IIIA</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1022</td>
</tr>
<tr>
<td>14.573</td>
<td>Accounting and Financial Management IIIA (Honours)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>14.583</td>
<td>Accounting and Financial Management IIIB</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1022</td>
</tr>
<tr>
<td>14.593</td>
<td>Accounting and Financial Management IIIB (Honours)</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>14.601</td>
<td>Law and Society I</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
</tr>
</tbody>
</table>

112
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.602</td>
<td>Information Systems II A</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 5811</td>
</tr>
<tr>
<td>14.603</td>
<td>Information Systems II B</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.602</td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 5811</td>
</tr>
<tr>
<td>14.604</td>
<td>Information Systems III A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td>0601, 1022, 1023</td>
</tr>
<tr>
<td>14.605</td>
<td>Information Systems III B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.604</td>
<td></td>
<td>0601</td>
</tr>
<tr>
<td>14.608</td>
<td>Advanced File Design and Commercial</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.604</td>
<td></td>
<td>0601, 1022, 1023</td>
</tr>
<tr>
<td>14.613</td>
<td>Business Finance II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td>0601, 1001, 1022, 1023, 5811</td>
</tr>
<tr>
<td>14.614</td>
<td>Business Finance III A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.613</td>
<td></td>
<td>0601, 1022, 1023</td>
</tr>
<tr>
<td>14.615</td>
<td>Business Finance III B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.614</td>
<td></td>
<td>0601, 1022, 1023</td>
</tr>
<tr>
<td>14.851</td>
<td>Current Developments in Accounting Thought—Financial</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>14.852</td>
<td>Current Developments in Accounting Thought—Managerial</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>15.001</td>
<td>Microeconomics I</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>2 unit A English or 2 unit English or 3 unit English</td>
<td>31-100</td>
<td>0601, 1020, 1021, 1022, 1023, 6806</td>
</tr>
<tr>
<td>15.002</td>
<td>Microeconomics II</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011 plus 2 unit Mathematics or 3 unit Mathematics or 4 unit Mathematics</td>
<td>51-100</td>
<td>0601, 1001, 1020, 1021, 1023, 5811</td>
</tr>
<tr>
<td>15.003</td>
<td>Macroeconomics III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.042</td>
<td></td>
<td>0601, 1020</td>
</tr>
<tr>
<td>15.011</td>
<td>Macroeconomics I</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.001</td>
<td></td>
<td>0601, 1020</td>
</tr>
<tr>
<td>15.012</td>
<td>Microeconomics II (Honours)†</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.013</td>
<td>Macroeconomics III (Honours)†</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.052</td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.024</td>
<td>Advanced Macroeconomics</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.473, 15.013 and 15.153</td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.034</td>
<td>International Trade</td>
<td>IV</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td>15.024</td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.042</td>
<td>Macroeconomics II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.052</td>
<td>Macroeconomics II (Honours)†</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.012</td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.062</td>
<td>Economics IID</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>15.063</td>
<td>Money Banking and the Financial System</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.013 or 15.003 or 15.062 at CR level or better</td>
<td>1020, 1021</td>
<td>1020, 1021</td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.072</td>
<td>Economics II E</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>15.073</td>
<td>Natural and Environmental Resources Economics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>15.002 or 15.072 or 15.012</td>
<td></td>
<td>1020, 1021</td>
<td></td>
</tr>
<tr>
<td>15.103</td>
<td>International Economics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.002 or 15.012</td>
<td></td>
<td>1020</td>
<td></td>
</tr>
<tr>
<td>15.113</td>
<td>International Economics (Honours)†</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td>1020</td>
<td></td>
</tr>
<tr>
<td>15.143</td>
<td>Microeconomics III</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td>0601, 1001</td>
<td></td>
</tr>
<tr>
<td>15.153</td>
<td>Microeconomics III (Honours)†</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td>1021</td>
<td></td>
</tr>
<tr>
<td>15.183</td>
<td>Economic Planning</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>One of 15.002, 15.012, 15.072 and one of 15.042, 15.052, 15.062</td>
<td></td>
<td>1020, 1021</td>
<td></td>
</tr>
<tr>
<td>15.413</td>
<td>Econometrics A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.462 or 10.311B</td>
<td></td>
<td>1020, 1021</td>
<td></td>
</tr>
<tr>
<td>15.423</td>
<td>Econometrics B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.413 or 10.312C</td>
<td></td>
<td>1020, 1021</td>
<td></td>
</tr>
<tr>
<td>15.440</td>
<td>Operations Research in Economics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.442, or 10.311B</td>
<td></td>
<td>1020, 1021</td>
<td></td>
</tr>
<tr>
<td>15.434</td>
<td>Mathematical Economics A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>15.432</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.444</td>
<td>Mathematical Economics B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.442</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.453</td>
<td>Applied Business Statistics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>15.421 or equiv. 10.311B</td>
<td></td>
<td>1020, 1021</td>
<td></td>
</tr>
<tr>
<td>15.601</td>
<td>Economic History IA</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>3½</td>
<td>15.601</td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
</tr>
<tr>
<td>15.611</td>
<td>Economic History IB</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3½</td>
<td>15.601</td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
</tr>
<tr>
<td>25.332</td>
<td>Geology for Geomorphologists and Pedologists§</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>6</td>
<td>25.211, 25.221, 25.212, 25.1311, 27.413, 27.423</td>
<td></td>
<td>2703</td>
<td></td>
</tr>
<tr>
<td>25.541</td>
<td>Mineralogy††</td>
<td>II</td>
<td>½</td>
<td>F</td>
<td>2</td>
<td>1.001, 10.001</td>
<td></td>
<td>0401, 0402, 0403, 6833</td>
<td></td>
</tr>
<tr>
<td>25.631</td>
<td>Marine Geology II</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833</td>
</tr>
<tr>
<td>25.632</td>
<td>Estuarine Geology‡</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6832, 6833</td>
</tr>
<tr>
<td>25.6341</td>
<td>Marine Mineral</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833</td>
</tr>
<tr>
<td>25.635</td>
<td>Marine Resources</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833</td>
</tr>
<tr>
<td>48.023</td>
<td>Chemical Engineering Science I</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6S1, 5S2</td>
<td>1.001, 10.001</td>
<td></td>
<td>0204</td>
<td></td>
</tr>
<tr>
<td>48.024</td>
<td>Chemical Engineering Principles I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3S1, 2S2</td>
<td>1.001, 10.001</td>
<td></td>
<td>1001, 5811</td>
<td></td>
</tr>
<tr>
<td>48.037</td>
<td>Chemical Engineering Science II</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>7S1, 6S2</td>
<td>2.002A, 48.023</td>
<td></td>
<td>0204</td>
<td></td>
</tr>
<tr>
<td>48.038</td>
<td>Chemical Engineering Principles II</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4S1, 2S2</td>
<td>1.012, 1.022, 2.002A</td>
<td></td>
<td>1001, 5811</td>
<td></td>
</tr>
<tr>
<td>68.302</td>
<td>Introductory Marine Science I</td>
<td>I</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>1.012, 1.022, 2.002A</td>
<td></td>
<td>6831, 6832, 6833, 6851, 6852, 6853</td>
<td></td>
</tr>
<tr>
<td>68.503</td>
<td>Science of Interfaces</td>
<td>III</td>
<td>1</td>
<td>5</td>
<td></td>
<td>2.002A</td>
<td></td>
<td></td>
<td>6853</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Specific Programs</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>-----------------------------------</td>
<td>---------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>70.011A</td>
<td>Histology I</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021, 17.031***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.011B</td>
<td>Mammalian Embryology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A, 17.031***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.011C</td>
<td>Introductory Anatomy</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.021, 17.031***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.012B</td>
<td>Visceral Anatomy</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A***, 70.011C***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.012C</td>
<td>Neuroanatomy I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>70.011A***, 70.011C***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.304</td>
<td>Histology II§†</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.305</td>
<td>Neuroanatomy II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>70.012C (CR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.306</td>
<td>Functional Anatomy I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>70.011A***, 70.011C***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.307</td>
<td>Functional Anatomy II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.012C***, 70.306***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.3041</td>
<td>Histological and Histochemical Techniques§</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>17.031, 17.021, 41.101, 45.301</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Students who have passed 2.121 may not subsequently enrol in 2.111. A student meeting the 2.121 prerequisite is not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Once a student enrols in 2.111 he must pass 2.111 before he can proceed to 2.121 or 2.131.
** In exceptional circumstances the Head of School may give permission for students outside the specified programs to undertake one of these subjects.
*** Pass Conceded (PC) in a prerequisite subject is not accepted. Students who have obtained only a Pass Conceded result in a prerequisite subject should consult the Head of School.
**** From 1983.
***** Can only be counted with at least 3 other Level III Computer Science units.
† Not offered in 1982.
‡‡ Consult with Head of Department.
‡‡‡ With the permission of the Head of the Department of Econometrics.
† Excluded by 25.211.
‡‡ Field work of up to 4 days is a compulsory part of the subject.
‡‡‡‡ 70.011A and 70.304 only
§§ Anatomy units may be counted as Table I units in any program on obtaining special permission of the Head of the School of Anatomy.
Course 3970
Level IV units offered by the Board of Studies in Science and Mathematics

Table 3

A student planning to complete a program involving any unit/units from this table must seek the approval of the Head of the School in which the unit is taught.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Prerequisites in Years 1, 2, 3 or 4</th>
<th>Number of Level III Units Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.104</td>
<td>Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101, 0103, 0105 or 0125</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801, 5803 or 5805</td>
<td>6</td>
</tr>
<tr>
<td>1.304</td>
<td>Applied Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101, 0103, 0105 or 0125</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801, 5803 or 5805</td>
<td>6</td>
</tr>
<tr>
<td>1.504</td>
<td>Theoretical Physics (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101 or 0105</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801 or 5805</td>
<td>6</td>
</tr>
<tr>
<td>1.604</td>
<td>Biophysics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0106</td>
<td>6</td>
</tr>
<tr>
<td>2.004</td>
<td>Chemistry IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Chemistry units</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5821</td>
<td>7</td>
</tr>
<tr>
<td>4.004</td>
<td>Metallurgy IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0401 or 0402</td>
<td>7-8</td>
</tr>
<tr>
<td>6.606</td>
<td>Computer Science IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>6.613, 6.632, 6.642, 6.643</td>
<td>8</td>
</tr>
<tr>
<td>10.123</td>
<td>Pure Mathematics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1003, 1013 or 1025</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>*</td>
</tr>
<tr>
<td>10.223</td>
<td>Applied Mathematics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1005, 1015 or 1025</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>*</td>
</tr>
<tr>
<td>10.233</td>
<td>Applied Mathematics Honours (Short Course)</td>
<td>IV</td>
<td>6</td>
<td>F</td>
<td>Program 1021 or 1023</td>
<td>7</td>
</tr>
<tr>
<td>10.323</td>
<td>Theory of Statistics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1007 or 1017</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>*</td>
</tr>
<tr>
<td>10.423</td>
<td>Theoretical Mechanics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1009, 1019 or 10.423</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>*</td>
</tr>
<tr>
<td>12.403</td>
<td>Psychology IV (Research)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1201, 1270 or 7312</td>
<td>8</td>
</tr>
<tr>
<td>12.404</td>
<td>Psychology IV (Course Work)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1201 or 1270</td>
<td>8</td>
</tr>
<tr>
<td>14.851</td>
<td>Current Developments in Accounting Thought — Financial</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td>See program 1023</td>
<td></td>
</tr>
<tr>
<td>14.852</td>
<td>Current Developments in Accounting Thought — Managerial</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td>See program 1023</td>
<td></td>
</tr>
<tr>
<td>15.024</td>
<td>Advanced Macroeconomics</td>
<td>IV</td>
<td>2</td>
<td>F</td>
<td>See program 1021</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Prerequisites in Years 1, 2, 3 or 4</td>
<td>Number of Level III Units Required</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>15.034</td>
<td>International Trade</td>
<td>IV</td>
<td>2 F</td>
<td></td>
<td>See program 1021</td>
<td>8</td>
</tr>
<tr>
<td>25.411</td>
<td>Resource Geology</td>
<td>IV</td>
<td>2 S1</td>
<td></td>
<td>Program 2501</td>
<td>8</td>
</tr>
<tr>
<td>25.412</td>
<td>Mineral and Energy Resources</td>
<td>IV</td>
<td>8 F</td>
<td></td>
<td>Program 2501</td>
<td>8</td>
</tr>
<tr>
<td>25.413</td>
<td>Engineering and Environmental Resources</td>
<td>IV</td>
<td>8 F</td>
<td></td>
<td>Program 2501</td>
<td>8</td>
</tr>
<tr>
<td>25.414</td>
<td>Geology IV Honours</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Programs, 2501, 2502, 2510, 0125, 0225, 1025, 2543</td>
<td>8</td>
</tr>
<tr>
<td>27.604</td>
<td>Geography IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 2701, 2702, 2703, 2725 or 2743</td>
<td>8</td>
</tr>
<tr>
<td>41.103</td>
<td>Biochemistry IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III Biochemistry units Program 5841 or 5842</td>
<td>7</td>
</tr>
<tr>
<td>42.103</td>
<td>Biotechnology IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III units in a discipline, or disciplines, related to Biotechnology</td>
<td>8</td>
</tr>
<tr>
<td>43.103</td>
<td>Botany</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III Botany units or a closely related discipline Program 5851, 5852 or 5853</td>
<td>7</td>
</tr>
<tr>
<td>44.513</td>
<td>General Microbiology</td>
<td>IV</td>
<td>2 F</td>
<td></td>
<td>44.102, 44.112 Program 5661, 5862 or 5842</td>
<td>7</td>
</tr>
<tr>
<td>44.523</td>
<td>Applied Microbiology</td>
<td>IV</td>
<td>2 F</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>44.533</td>
<td>Immunology</td>
<td>IV</td>
<td>2 F</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>44.543</td>
<td>Virology</td>
<td>IV</td>
<td>2 F</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>44.553</td>
<td>Electron Microscopy</td>
<td>IV</td>
<td>2 F</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>44.563</td>
<td>Microbiology Project I</td>
<td>IV</td>
<td>2 F</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>44.573</td>
<td>Microbiology Project II</td>
<td>IV</td>
<td>4 F</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>44.583</td>
<td>Microbiology Project III</td>
<td>IV</td>
<td>6 F</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>45.103</td>
<td>Zoology IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III Zoology units Program 5866 or 5867</td>
<td>8</td>
</tr>
<tr>
<td>62.014</td>
<td>History and Philosophy of Science Honours</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 6200, 6201, 6225, 6245, 6270, 6433</td>
<td>8</td>
</tr>
<tr>
<td>62.024</td>
<td>Science Studies Honours</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0162, 0262 or 4162 Program 6832, 6833 or 6834</td>
<td>8</td>
</tr>
<tr>
<td>68.304</td>
<td>Marine Science IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 6840</td>
<td>7</td>
</tr>
<tr>
<td>68.404</td>
<td>Genetics IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0125</td>
<td>8</td>
</tr>
<tr>
<td>68.430</td>
<td>Combined Geology Physics Honours</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 6851, 6852 or 6853 Program 5851</td>
<td>8</td>
</tr>
<tr>
<td>68.504</td>
<td>Chemical Physics</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III Anatomy units Program 5871</td>
<td>7</td>
</tr>
<tr>
<td>70.031</td>
<td>Anatomy IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III Physiology units Program 5871</td>
<td>7</td>
</tr>
<tr>
<td>73.013</td>
<td>Physiology IV</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 7303</td>
<td>7</td>
</tr>
<tr>
<td>73.023</td>
<td>Pharmacology</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>At least 3 of the following: Program 7303</td>
<td>7</td>
</tr>
<tr>
<td>79.014</td>
<td>Human Genetics</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>At least 3 of the following: Program 7303</td>
<td>8</td>
</tr>
</tbody>
</table>

* Higher level units of Mathematics must be included at Levels I, II and III in order to comply with the prerequisites for admission to Level IV Mathematics. Since entry to Level IV is only with approval of the Head of School, students should discuss their Year 3 program with a Professor of the Department concerned. In special circumstances additional prerequisites may be required, or some of those listed may be waived.

§ Students entering 1.504 from the 0101 program should have demonstrated adequate mathematical ability in Year 3.

↓ Field work of up to 7 days duration is a compulsory part of the subject.
Faculty of Biological Sciences

Introduction

The Schools of the Faculty of Biological Sciences contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises the undergraduate course in Psychology (3430). The Schools of the Faculty also offer facilities for students to proceed to the award of a Graduate Diploma in Biochemical Engineering (5320); Graduate Diploma in Biotechnology (5340); to masters degrees in Biological Technology (8260) and in Psychology (8250); and to the award of masters degrees by research and the award of the degree of Doctor of Philosophy.

Students requiring advice about the undergraduate course should contact
School of Psychology ..Dr K. R. Llewellyn
 Mr T. J. Clulow

Students requiring advice about graduate studies should check details later in this handbook and also enquire from the Head of the appropriate School.
The four year course in Psychology, which leads to the award of the degree of Bachelor of Science, is designed to meet the requirements of students who intend to become professional psychologists, as either practitioners or research workers. It provides extensive study of psychological theory and practice, supported by an appropriate selection of other subjects.

The course is available on a full-time basis only. Entry into the course is subject to a quota which is determined from time to time.

In the fourth year, students undertake a program of study which includes courses in the major areas of general psychology and in a number of applied fields. In addition, each student must complete either a research thesis or a supervised practical training.

Details of the qualifications required for admission to the Psychology Course leading to the award of BSc, the course requirements for Pass and Honours at graduation and rules governing admission with advanced standing are given below.

Rules governing the Psychology Course

1. Applicants for admission to the Course must be matriculated to this University; and also have satisfied either the entrance requirements for 10.001 Mathematics I or 10.021B General Mathematics IB and 10.021C General Mathematics IC or for 17.031 Cell Biology and 17.021 Biology of Higher Organisms.

2. (1) In order to qualify for admission to the award of degree of BSc in Psychology under these regulations a candidate must attend classes and satisfy the examiners in the following subjects:

 (a) Each of:
 - 12.100 Psychology I
 - 12.200 Research Methods II
 - 12.201 Basic Psychological Processes II
 - 12.202 Complex Psychological Processes II
 - 12.203 Psychology IIA

 A total of 8 Level III units of Psychology including all units from Group A (see Table 1). Additionally, students intending to take the research alternative in Psychology Level IV Honours are required to include 12.301 Research Methods IIB from Group B (see Table 1).

 (In special cases, the Head of the School of Psychology or his representative may approve of the substitution of some other appropriate course or equivalent units.)

 and either
 - 12.400 Psychology IV (research)
 - 12.401 Psychology IV (course work)

 leading to the award of the degree of Bachelor of Science in Psychology.

 (b) Five other subjects (or their equivalent in units) selected to meet the following requirements:

 (i) that they shall include at least one of:
Examples of recognized sequences are:

- 10.001 Mathematics I, followed by two Mathematics Level II units (chosen from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112) or by both of 10.311A Probability and Random Variables and 10.311B Statistical Inference;
- 17.031 Cell Biology and 17.021 Biology of Higher Organisms followed by two Level II units chosen from the following units according to the regulations of the Board of Studies in Science and Mathematics:
 41.101 Biochemistry (equivalent to 2 units)
 41.111 Biochemical Control
 43.101 Introductory Genetics
 45.101 Biometry
 45.301 Vertebrate Zoology
 73.121 Physiology IB (equivalent to 2 units)
 79.402 Genetics of Behaviour I
 79.403 Genetics of Behaviour II
- 53.001 Introduction to Sociology followed by twelve credit points value of Sociology Upper Level subjects
 15.001 Microeconomics I and 15.011 Macroeconomics I followed by twelve credit points value of Economics Upper Level subjects
 54.1001 Political Science I followed by twelve credit points value of Political Science Upper Level subjects
 52.103 Introductory Philosophy A and 52.104 Introductory Philosophy B followed by twelve credit points value of Philosophy Upper Level subjects

Rules governing admission to the Psychology Course with advanced standing

1. Graduates of the University of New South Wales may be admitted to the Psychology Course leading to the award of the degree of BSc with exemption from no more than five subjects or their unit equivalents that they have completed. No more than two Psychology subjects may be included in these exemptions.

2. Undergraduates of the University of New South Wales who transfer from another course to the Psychology Course may be admitted to the Psychology Course with exemption in no more than seven Psychology Course subjects or their unit equivalents.

3. Graduates or undergraduates of other universities may be admitted to the Psychology Course with advanced standing.

4. Students admitted under Rule 3 who have satisfied the examiners in subjects of the same title or subject matter as those permissible in the Psychology Course may, subject to the approval of the appropriate Heads of School, be granted exemption in no more than five subjects, of which no more than two may be Psychology subjects.

* Entry to 10.021A General Mathematics IA is allowed only with permission of the Head of the School of Mathematics and such permission will be given only to students who do not qualify to enter units 10.021B General Mathematics IB or 10.021C General Mathematics IC.
Recommended Psychology Course patterns

The course requirements have been so designed that they allow for:

1. a solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques;

2. supporting studies in mathematics and/or biology (a minimum of one such course is compulsory);

3. supporting studies in the social sciences (a minimum of one such course is compulsory); and

4. the special needs, interests and academic or vocational background of individual students.

For these reasons, no course patterns are prescribed. The patterns to be completed by students who are admitted with advanced standing will take into account the subjects credited.

Students commencing university studies for the first time will arrange their pattern of supporting subjects in consultation with the Head of the School or his representative before completing enrolment.

In Year 1, students must take four subjects which include 12.100, either Biology I or a first-year Mathematics, one of Economics I, Sociology I, Philosophy I or Political Science I or one other Arts I subject, and a fourth subject. (It should be noted that the University has arranged these subjects so that there is no clash of timetables. If other subjects are taken, care must be taken to check that there is no timetable clash in the program that is chosen.)

In Year 2 students take 12.200, 12.201, 12.202, 12.203, a second-year follow on subject from one of the non-Psychology subjects completed in Year 1, and one other Level I, II or III non-Psychology subject. Eight Level III units of Psychology are taken in Year 3, while Year 4 consists of either 12.400 or 12.401 only.

Some examples of patterns, based on different supporting subjects are suggested below:

Compulsory Psychology Subjects

Year 1
12.100

Year 2
12.200, 12.201, 12.202, 12.203

With Pure Mathematics or Statistics as the main supporting subject

Year 1
10.001 Mathematics I
A Level I Social Science subject, and
One other Level I subject

Year 2
Either two units of Level II Pure and Applied Mathematics, or 10.311A and 10.311B Theory of Statistics Level II, and
One other Level I or II subject

With Biochemistry or Physiology as the main supporting subject

Year 1
2.121 Chemistry IA and 2.131 Chemistry IB
Either 10.001 Mathematics I, or 10.021B General Mathematics IB and 10.021C General Mathematics IC, and
17.031 Cell Biology and 17.021 Biology of Higher Organisms

Year 2
A Level I Social Science subject, and
Either 41.101 Biochemistry, or 73.121 Physiology I

With Zoology or Genetics as the main supporting subject

Year 1
10.001 Mathematics I, or 10.021B General Mathematics IB and 10.021 General Mathematics IC
17.031 Cell Biology and 17.021 Biology of Higher Organisms, and
A Level I Social Science subject

Year 2
Either 45.101 Biometry, 45.201 Invertebrate Zoology, 45.301 Vertebrate Zoology and one other unit for Zoology, or 43.101 Introductory Genetics, 79.402 Genetics of Behaviour I 79.403 Genetics of Behaviour II and one other unit for Genetics
With Social Sciences as the main supporting subject

Year 1
10.001 Mathematics I, or 10.021B General Mathematics IB and 10.021C General Mathematics IC, or
17.031 Cell Biology and 17.021 Biology of Higher Organisms
A Level I Social Science subject, and
One other Level I subject

Year 2
An Upper Level Social Science subject, and
One other Level I or II subject

Notes:
1. For detail of Psychology units, and Science and Mathematics units, including pre- and co-requisites, refer to Table 1 of the Science and Mathematics Course details set out earlier in this handbook.
2. For details of Social Science (Arts) subjects, including pre- and co-requisites, refer to the Faculty of Arts Handbook.
Faculty of Science

Introduction

The Schools of the Faculty of Science contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises undergraduate courses in Pure and Applied Chemistry (3910) and Optometry (3950) and the graduate diploma course Food and Drug Analysis (5510). The Schools of the Faculty also offer facilities for students to proceed to Masters Degrees in Chemistry (8770), Mathematics (8740), Optometry (8760), Physics (8730), Statistics (8750) and Master of Science and Society (8780), to the award of masters degrees by research and to the award of the degree of Doctor of Philosophy.

Students requiring information about the undergraduate courses should contact the representative of the appropriate School:

School of Chemistry ... Mr W. J. Dunstan
School of Optometry ... Dr M. Lang

Students requiring information about the graduate studies which are available should seek advice from:

Graduate Diploma in Food and Drug Analysis Associate Professor G. Crank

or

in the case of masters and doctors degrees from:

School of Chemistry ... Associate Professor B. J. Orr
School of Mathematics .. Associate Professor I. H. Sloan
School of Optometry ... Associate Professor G. Amigo
School of Physics ... Associate Professor J. Oitmaa
Faculty of Science

Course Outlines

3910
Pure and Applied Chemistry Course

Specialization in Chemistry

While some students will wish to include a small number of chemistry units in courses leading to major studies in other disciplines, there will be others who wish to specialize in chemistry to varying degrees.

1. Major in Chemistry in the Science and Mathematics Course. For purposes of graduation Science and Mathematics course regulations require students to study a minimum of four Level III units in related disciplines, such a combination being regarded as major study in that discipline or group of disciplines.

When studies in chemistry are required to be regarded as being major studies at least seven units of chemistry must be included after completing level I Chemistry and these must include at least three of the four Level II units.

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (3910) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course (3910), the transfer may still be made before the commencement of Year 3.

2. Pure and Applied Chemistry Course. This course which allows intensive specialisation in chemistry according to a prescribed pattern, leads to the award of the Bachelor of Science degree, and is administered by the Faculty of Science. It may be taken at pass or honours standard. The pass course requires full-time attendance at the University for three years.

An additional year is required for the honours degree. The program may also be taken on a part-time basis over six years for the pass degree.

A total of 23 units is required for graduation at the pass level. First year is similar to the Science and Mathematics Course and covers 8 units. Of the remaining 15 units at least 12 must be chemistry units and must include the following:

2.002A, 2.002B, 2.002D, 2.003B, 2.003C, 2.003D, 2.003H, 2.013A, 2.042C and 3 other Chemistry units.

The remaining 3 units may be chosen from any of the Science and Mathematics course topics, but no more than 2 may be at Level I.

In all cases prerequisites, co-requisites and exclusions are similar to those prescribed for the units in the Science and Mathematics course.

Electives offered by the School of Chemistry

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>II/III</td>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>2.121 & 2.131, or 2.141</td>
<td>10.001 or 10.011 or 10.021C</td>
<td>10.021E</td>
</tr>
</tbody>
</table>
Level No. Title Prerequisites Co-requisites Excluded

II/III 2.003H Molecular Spectroscopy and Structure 2.121 & 2.131, or 2.141

II/III 2.003J Fundamentals of Biological and Agricultural Chemistry 2.121 & 2.131, or 2.141

II/III 2.003K Solid State Chemistry 2.121 & 2.131, or 2.141 and 10.001 or 10.011

II/III 2.013A Introductory Quantum Chemistry 1.001 or 1.011 and 2.121 & 2.131, or 2.141 and 10.001 or 10.011 or 10.021B and 10.021C

III 2.003A Physical Chemistry 2.002A

III 2.003B Organic Chemistry 2.002B

III 2.003C Inorganic Chemistry 2.042C

III 2.003D Instrumental Analysis 2.002D and 2.002A

III 2.003L Applied Organic Chemistry 2.002B 2.033L

III 2.003M Organometallic Chemistry 2.002B

III 2.013B Synthetic Organic Chemistry 2.003B

III 2.013C Advanced Inorganic Chemistry 2.042C 2.003C

III 2.013D Advanced Analytical Chemistry 2.002D 2.003D

III 2.013E Advanced Nuclear and Radiation Chemistry Not available in Course 3910

III 2.013L Chemistry and Enzymology of Foods 2.002B 2.003J, 2.043L, 2.023L, 2.053L

III 2.023A Quantum Theory 2.002A and of Atoms and Molecules 10.2111 and 10.2112

III 2.023B Natural Product Chemistry 2.003B

Level No. Title Prerequisites Co-requisites Excluded

III 2.023L Biological and Agricultural Chemistry 2.002B 2.053L, 2.013L, 2.043L

III 2.033A Physical Chemistry of Macromolecules 2.003J or 41.101

III 2.043A Environmental Chemistry 2.002A, 2.002D

III 2.043L Chemistry and Enzymology of Foods† (double unit) 2.013L, 2.023L, 2.043L

III 2.053A Chemical Kinetics and Reaction Mechanisms 2.002A

III 2.053L Biological and Agricultural Chemistry† (double unit) 2.002B 2.013L, 2.023L, 2.043L

III 2.063A Advanced Molecular Spectroscopy 2.013A

† Only one of these double units may be chosen.

3910
Pure and Applied Chemistry — Full-time Course
Bachelor of Science
BSc

Year 1

1.011 Higher Physics I or
1.001 Physics I
2.121 Chemistry IA &
2.131 Chemistry IB or
2.141 Chemistry IM
10.011 Higher Mathematics I or
10.001 Mathematics I or
10.021B General Mathematics IB &
10.021C General Mathematics IC
Plus one of
5.010 Engineering A and
5.020 Engineering B or
5.030 Engineering C or
17.021 Biology of Higher Organisms and
17.031 Cell Biology
or
25.110* Earth Materials and Processes
25.120** Earth Environment and Dynamics
27.801 Introduction to Physical Geography and
27.802 Introduction to Human Geography

* Field work of up to 1½ days is a compulsory part of the subject.
** Field work of up to 3½ days is a compulsory part of the subject.
Year 2
2.002A Physical Chemistry 3
2.002B Organic Chemistry 3
2.002D Analytical Chemistry 3
2.003H Molecular Spectroscopy and Structure 3
2.042C Inorganic Chemistry 3
Science Electives* (2 units) 6
Two General Studies Electives 3

= 24

* To be chosen from units in the Science and Mathematics course in accordance with Science course requirements. The following are recommended.

Chemistry
Any non-compulsory units for which prerequisites are held.

Mathematics
10.031 Mathematics 2
10.331 Statistics SS 2
10.111A
10.1114 Mathematics II 6
10.2111 and 10.2112

Physics
Choose 2 of
1.9222 Electronics 3
1.9322 Introduction to Solids
1.9422 Introduction to Physics of Measurement

Biological Sciences
17.021 Biology of Higher Organisms and 6
17.031 Cell Biology
41.101 Biochemistry 12
44.101 Introductory Microbiology 6

Geology
25.110 Earth Materials and Processes and 6
25.120 Earth Environment and Dynamics
25.211 Earth Materials I 3
25.221 Earth Materials II 3
25.212 Earth Environment I 3
25.223 Earth Physics 3

Part-time Course
The part-time course in Pure and Applied Chemistry is equivalent to the full-time course and extends over six part-time years, leading to the award of the degree of Bachelor of Science. Honours may be awarded on the completion of an additional year of full-time study or, in special circumstances, an additional two years of part-time study.

The part-time course has been designed for students employed in the chemical industry but employment in this industry is not obligatory for entrance to the course.

3910 Pure and Applied Chemistry — Part-time Course Bachelor of Science BSc

Stages 1 and 2
Two of the following subjects are taken in the first year and the other two in the second year (as directed).

Year 3
2.003B Organic Chemistry 3
2.003C Inorganic Chemistry 3
2.003D Instrumental Analysis 3
2.013A Introductory Quantum Chemistry 3
Advanced Electives* (4 units) 12
One General Studies Elective 1½

= 25½

* Chosen from Level II/III or Level III units offered by the School of Chemistry in the Science and Mathematics course and in accordance with Science and Mathematics course regulations.

Year 4 Honours
2.004 Chemistry Honours 24
Stage 3
2.002A Physical Chemistry 3
2.042C Inorganic Chemistry 3
Science Electives* (two units) 6

 Stage 4
2.002B Organic Chemistry 3
2.002D Analytical Chemistry 3
2.003H Molecular Spectroscopy and Structure 3
General Studies Electives 3

 Stage 5
2.003B Organic Chemistry 3
2.003C Inorganic Chemistry 3
2.003D Instrumental Analysis 3
2.013A Introductory Quantum Chemistry 3
General Studies Elective 1½

 Stage 6
Advanced Electives* (4 units) 12

* See footnote * under Year 2 full-time course.

Honours
The requirements for admission to thehonours course and the program of study are the same as for Year IV of the full-time course. A student wishing to do honours on a part-time basis may complete the honours year over two part-time years. Students are, however, advised to make every effort to do the honours year full time.

3950 Optometry — Full-time Course
Bachelor of Optometry
BOptom

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.031</td>
<td>Physics I (Optometry)</td>
<td>6</td>
</tr>
<tr>
<td>2.121</td>
<td>Chemistry IA & IB or</td>
<td>6</td>
</tr>
<tr>
<td>2.131</td>
<td>Chemistry IM</td>
<td></td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics I or</td>
<td></td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I or</td>
<td></td>
</tr>
<tr>
<td>10.021B</td>
<td>General Mathematics IB and</td>
<td>6</td>
</tr>
<tr>
<td>10.021C</td>
<td>General Mathematics IC</td>
<td></td>
</tr>
<tr>
<td>17.031</td>
<td>Cell Biology and</td>
<td></td>
</tr>
<tr>
<td>17.021</td>
<td>Biology of Higher Organisms</td>
<td></td>
</tr>
</tbody>
</table>

12

In special cases, students who do not meet the prerequisites for admission to 2.121 Chemistry IA may be enrolled in 2.111 Introductory Chemistry in Session 1, 2.121 Chemistry IA in Session 2 and be permitted to carry 2.131 Chemistry IB into Session 1 of Year 2.

Students who do not meet the prerequisites for admission to 10.021B Mathematics will be enrolled in 10.021A Mathematics but cannot proceed to Year 2 of the Optometry Course until all the requirements of 10.021B and 10.021C Mathematics have been satisfied.

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.811</td>
<td>Optometry I</td>
<td>8</td>
</tr>
<tr>
<td>31.821</td>
<td>Special Anatomy and Physiology</td>
<td>6</td>
</tr>
<tr>
<td>73.011A</td>
<td>Principles of Physiology</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

21½

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.100</td>
<td>Psychology I</td>
<td>5</td>
</tr>
<tr>
<td>31.812</td>
<td>Optometry II</td>
<td>15</td>
</tr>
<tr>
<td>31.831</td>
<td>Diseases of the Eye</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Two General Studies Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

26

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Year</td>
<td></td>
</tr>
<tr>
<td>12.741</td>
<td>Psychology (Optometry)</td>
<td>2</td>
</tr>
<tr>
<td>31.813</td>
<td>Optometry III</td>
<td>6</td>
</tr>
<tr>
<td>31.841</td>
<td>Clinical Optometry</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

24½

<table>
<thead>
<tr>
<th>Session 2</th>
<th>Course Title</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.001</td>
<td>Indication for Medical Referral</td>
<td>1</td>
</tr>
</tbody>
</table>

25½

129
Conditions for the combined course leading to the award of the degrees of BSc BOptom in the Faculty of Science

1. Undergraduates* of the University of New South Wales who have satisfied the examiners in at least the first two years of the Optometry degree course may be admitted to the Science degree course with advanced standing for the purpose of qualifying for the award of the two degrees of BSc BOptom. Such undergraduates' performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. In order to qualify for the award of the degree of BSc, students so admitted shall be required to complete the appropriate general studies subjects and no less than four units of either Level II or Level III and four other Level III units, in accordance with the Science and Mathematics Course regulations.

The units submitted for the award of the Bachelor's degree under these regulations must include at least four Level III units chosen from related disciplines in accordance with the Science Course regulations.

3. In order to qualify for the award of the degree of BOptom, students so admitted shall complete the requirements of the Optometry degree course.

* In Rule 1, the word 'undergraduates' includes graduands, ie a person may be admitted under these rules if he has met all requirements for a first degree which has not yet been conferred on him, and his admission under these rules shall be no bar to the subsequent award of the first degree.
Faculty of Biological Sciences and Faculty of Science

Graduate Study

Faculty of Biological Sciences and Faculty of Science Enrolment Procedures

All students re-enrolling in 1982 or enrolling in graduate courses should obtain a copy of the free booklet *Enrolment Procedures 1982* available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Faculty of Biological Sciences

Facilities are available in each of the Schools for research leading to the degrees of Master of Science and Doctor of Philosophy. The School of Biotechnology offers a graduate diploma course in Biochemical Engineering, a graduate diploma in Biotechnology and a Master’s course in Biotechnology by formal study, and the School of Psychology offers a Master of Psychology degree course.

Higher Degree Qualifying Program

Students without a BSc Honours degree wishing to register as higher degree candidates must usually complete a qualifying program, admission to which is subject to the approval of the Faculty Higher Degree Committee.

Applicants must normally have a degree or diploma in an appropriate field of study from an approved university or institution, and in the case of a diploma, appropriate professional experience.

Undergraduates of this University may be admitted to the full-time or part-time Honours undergraduate course. Other applicants may be admitted to a full-time, part-time or external qualifying program. The duration of the qualifying program is a minimum of one year for full-time and two years for part-time or external students.

Content of Qualifying Program

The qualifying program consists of the whole of the usual program for the final Honours year of the undergraduate course, the following being the prescribed Level IV subjects:

41.103 Biochemistry IV
42.103 Biotechnology Honours
43.103 Botany Honours
44.103 Microbiology Honours
12.014 Psychology IV (Research)
45.103 Zoology Honours

The qualifying program is graded in the usual way, and in appropriate cases the results are expressed as a grading equivalent to Honours.

Alternative Qualifying Program

Applicants who cannot attend the University regularly for the above programs may be admitted as external qualifying students to a program similar to a standard Honours year. The following are the alternative qualifying subjects:

41.999G Biochemistry
42.999G Biotechnology
The results in alternative qualifying subjects are graded Pass or Fail only.

Fees
Candidates enrolled in the Alternative Qualifying Program are exempt from student service fees.

Biotechnology

5320
Biochemical Engineering Graduate Diploma Course
Graduate Diploma
GradDip

The School of Biotechnology, conjointly with the School of Chemical Engineering and Chemical Technology, offers a course in biochemical engineering which leads to the award of a graduate diploma (GradDip). The course is open to graduates in the biological sciences, chemistry, chemical engineering or agriculture, and can be completed in one year of full-time or over a longer period by part-time study. It contains a component of graduate level ‘bridging’ subjects, designed to facilitate the introduction of graduates with a variety of backgrounds to the current practice of biochemical engineering.

The normal entrance requirement is an appropriate degree or equivalent qualification in biological sciences, chemistry, chemical engineering or agriculture. Intending students are referred to the conditions for the award of Graduate Diplomas set out later in this handbook.

Session 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.211G Principles of Biology</td>
<td>3 S1 0 S2</td>
</tr>
<tr>
<td>42.212G Principles of Biochemistry</td>
<td>3 S1 0 S2</td>
</tr>
<tr>
<td>44.111G Microbiology</td>
<td>3 S1 3 S2</td>
</tr>
<tr>
<td>48.282G Thermodynamics</td>
<td>4 S1 0 S2</td>
</tr>
<tr>
<td>48.284G Mass Heat and Momentum Transfer</td>
<td>4 S1 0 S2</td>
</tr>
</tbody>
</table>

Session 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.213G Biochemical Methods</td>
<td>0 S1 3 S2</td>
</tr>
<tr>
<td>42.214G Biotechnology</td>
<td>0 S1 3 S2</td>
</tr>
<tr>
<td>48.283G Process Dynamics and Biochemical Engineering Design</td>
<td>0 S1 8 S2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obligatory Subjects

Full Year

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.215G</td>
<td>Practical Biotechnology</td>
<td>7 S1 7 S2</td>
</tr>
<tr>
<td>42.101</td>
<td>Introduction to Biotechnology</td>
<td>6</td>
</tr>
</tbody>
</table>

Session 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.102A</td>
<td>Biotechnology A</td>
<td>6</td>
</tr>
</tbody>
</table>

Session 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.101</td>
<td>Introduction to Biotechnology</td>
<td>6</td>
</tr>
</tbody>
</table>

Elective Subjects

Full Year

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.104G</td>
<td>Graduate Seminars</td>
<td>2 S1 2 S2</td>
</tr>
<tr>
<td>42.111G</td>
<td>Reading List in Biotechnology (Microbiology)</td>
<td>3 S1 3 S2</td>
</tr>
<tr>
<td>42.112G</td>
<td>Reading List in Biotechnology (Biochemistry)</td>
<td>3 S1 3 S2</td>
</tr>
<tr>
<td>42.305G</td>
<td>Case Studies</td>
<td>1 S1 1 S2</td>
</tr>
<tr>
<td>44.111</td>
<td>Microbiology</td>
<td>3 S1 3 S2</td>
</tr>
</tbody>
</table>

Session 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101</td>
<td>Introductory Microbiology</td>
<td>6</td>
</tr>
<tr>
<td>42.212G</td>
<td>Principles of Biochemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

Session 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.102B</td>
<td>Biotechnology B</td>
<td>6</td>
</tr>
<tr>
<td>44.121</td>
<td>Microbial Growth</td>
<td>6</td>
</tr>
</tbody>
</table>
Master of Science (Biotechnology)
The School also offers a formal graduate course at the masters' level (Master of Science (Biotechnology)). The course includes advanced treatments of the more important areas of biotechnology such as microbial process control and enzyme technology. The course is open to graduates with a four-year degree in biotechnology or a related discipline, or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Intending students are referred to Conditions for the Award of Graduate Degrees set out later in this handbook.

The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The minimum period of registration before the award of the degree is two sessions for full-time students and four sessions for part-time students.

To qualify for the degree students must satisfy the examiners in the prescribed examinations, which include the submission and assessment of a report on the specified project.

8260 Master of Science (Biotechnology) Graduate Course
Master of Science (Biotechnology) MSc(Biotech)

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.306G Project</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.303G Biochemical Process Control</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>42.304G Biodeterioration and Biodegradation</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.301G Microorganism Productivity</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>42.302G Enzyme Technology</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>42.305G Case Studies</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

Psychology

Head of School
Professor S. H. Lovibond
Administrative Officer
Mr T. J. Clulow

The School of Psychology offers a graduate program of course work and research leading to the award of the degree of Master of Psychology.

Master of Psychology

This course is designed to provide professional training at an advanced level for honours graduates in psychology.

The normal entrance requirements are:

1. a degree of Bachelor, with Honours Class I or Class II in Psychology;
 and
2. completion of approved courses in learning, perception and cognition, physiological psychology, psychological statistics, psychometrics and abnormal psychology, or in such other fields as may be prescribed by the Head of the School.

A student who does not satisfy the above requirements may be permitted to undertake a qualifying course prescribed by the Head of School, satisfactory completion of which will be accepted as meeting entrance requirements.

Selection of students is based on academic qualifications and suitability for the course. It may be necessary to limit the number of new enrolments in any year. An application to register for the degree of Master of Psychology must be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students.

To qualify for the degree, students must satisfy the examiners in respect of their academic attainments, and their skill and competence in relevant aspects of practical professional work.

The course consists of lectures, seminars, demonstrations and practical work, supervised clinical and community work, and a research thesis.

The major aims of the course are: 1. to acquaint students with the issues, findings and problems of contemporary clinical and community psychology; and 2. to equip them with basic clinical skills and techniques. A total of 250 hours of supervised clinical practice must be completed in the first year, and a further 430 hours in the second year.

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

It should be noted that the course extends over two calendar years and not just four academic sessions with vacation breaks.
8250
Master of Psychology Graduate Course—
Full-time
Master of Psychology
MPsychol

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
</table>

Full Year		
12.231G Professional Practice: 250 hours		
12.235G Community Psychology	5	5
12.237G Biological Aspects of Behavioural Disturbance	2	2
12.239G Research and Evaluation Methods in Clinical and Community Psychology	2	2
12.240G Graduate and Clinical Seminars	2	2
12.241G Graduate Colloquium	1	1
12.242G Research Thesis*		
12.243G Experimental Clinical Psychology	5	5
12.244G Psychological and Behavioural Assessment	1	1
12.245G Behavioural Health Management	2	2

Year 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
</table>

| **Full Year** | |
|----------------|----|----|
| 12.230G Psychological Problems of Children | |
| 12.231G Professional Practice:
 - 180 hours in Session 1
 - 250 hours in Session 2 | |
| 12.235G Community Psychology | 3 | |
| 12.241G Graduate Colloquium | 1 | 1 |
| 12.242G Research Thesis* | |
| 12.243G Experimental Clinical Psychology | 3 | |

*Contributes approximately 40 per cent to the overall grading for the degree.

Note:
Part-time students normally are expected to take half the full-time program in any one session.

Faculty of Science

Facilities are available in each of the Schools for research leading to the award of the higher degrees of Master of Science and Doctor of Philosophy.

The following formal courses leading to graduate awards are also offered:

- School of History and Philosophy of Science
 Master of Science and Society
- School of Optometry
 Master of Optometry

School of Chemistry

Master of Chemistry Graduate Course
Master of Chemistry
MChem

Two programs are available, emphasising different areas of chemistry. Each program consists of a number of lecture courses (each separately examinable), laboratory instruction

The School of Mathematics also offers the pass course leading to the award of the degree of MA (see the Faculty of Arts Handbook).
and visits to laboratories. In addition each student undertakes a short research project, with a research report assessed by two examiners. The student may also be required to undergo an oral examination. These programs are full-time, but in future may be extended to part-time students.

Details of the two programs are:

2.581G Advanced Analytical Chemistry
This program should be of interest to chemistry graduates who are involved in the practice or teaching of analytical chemistry.

1. 2.581G Advanced Analytical Chemistry Lecture Courses
Students are required to take all of the following nine core courses of lectures:
(1) Analytical atomic spectroscopy;
(2) Advanced electrochemical analysis;
(3) Chromatography;
(4) Analytical chemistry of pollutants;
(5) Emission, IR, Mass and XRF spectroscopy;
(6) Calculations and statistics in analytical chemistry;
(7) Chemical analysis of organic and biological materials;
(8) Operations and applications of minicomputers in chemistry;
(9) Chemical microscopy.

The lecture time for the whole course is a minimum of 140 hours.

2. Laboratory Instruction and Visits to Laboratories
An additional minimum of 150 hours is spent by students in selected areas of laboratory practice, instruction and visits to laboratories.

3. Research Project
A short research project (with report) of approximately 4 months' duration full-time (400 hours laboratory work) is selected in relation to the combined interests of the student and the supervisor.

2.582G Food and Drug Chemistry
This program involves an advanced study of the chemistry, stability, mode of action (where applicable) and analysis of food constituents, food additives and selected drugs. Entry to this program is excluded in the case of applicants who have completed the Graduate Diploma in Food and Drug Analysis (course 5510).

1. Food and Drug Chemistry Lecture/Laboratory Courses
(1) Food and Drugs I
(2) Treatment of Analytical Data
(3) Instrumental Techniques in Food and Drug Analysis
(4) Food and Drugs II
(5) Toxicology, Occupational and Public Health
The lecture time for the whole course is 132 hours. An additional 308 hours is spent by students in formal laboratory work. Students who have not previously taken an approved course in microbiology are required to complete unit 44.101 introductory Microbiology (64 hours) in addition to the above program.

2. Research project
A short research project (with report) of approximately 4 months' duration full-time (400 hours' laboratory work) is selected in relation to the combined interests of the student and the supervisor.

5510 Food and Drug Analysis Graduate Diploma Course
Diploma in Food and Drug Analysis DipFDA

According to demand the course may be available on a full-time basis over one year or on a part-time basis over two years.

The course in food and drug analysis is designed to provide systematic training at an advanced level for chemists who wish to extend their acquaintance with analytical techniques, and thus is suitable for those who may wish to practice as public analysts. The prime aim is to present discussions of the principles and design of analytical methods which are therefore presented on a comparative basis.

It is considered that the techniques involved in the handling of foods and drugs together with those discussed in the ancillary subjects of the course provide a firm basis of approach to many other fields.

Intending students are referred to the conditions for the award of graduate diplomas set out later in this handbook.

Year 1
Part-time

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.231G</td>
<td>Food and Drugs I</td>
<td>4</td>
</tr>
<tr>
<td>2.371G</td>
<td>Treatment of Analytical Data</td>
<td>1†</td>
</tr>
<tr>
<td>2.281G</td>
<td>Instrumental Techniques in Food and Drug Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.242G</td>
<td>Food and Drugs II</td>
</tr>
<tr>
<td></td>
<td>Pharmacognosy and Microscopy of Crude Drugs</td>
</tr>
<tr>
<td>2.251G</td>
<td>Toxicology, Occupational and Public Health</td>
</tr>
<tr>
<td>44.111</td>
<td>Microbiology</td>
</tr>
</tbody>
</table>

† For 20 weeks.

History and Philosophy of Science

Head of School
Professor J. Ronayne

The School of History and Philosophy of Science offers a graduate program of coursework and research leading to the
award of the degree of Master of Science and Society. The course is designed for graduates in the natural sciences, the applied sciences, technology and the social sciences or other relevant disciplines, who have a special interest in or concern with problems in the contemporary relationships between science and society, government and politics. The conditions for the award of the degree are set out later in this handbook.

8780
Master of Science and Society Graduate Course
Master of Science and Society
MScSoc

The MScSoc pass program comprises 8 units of the course which should normally be completed over 4 sessions of part-time (evening) study. A unit of the course requires 28 hours of seminar class-work and additional private study.

The following core units are common to the programs of all candidates:
62.716G Science and Society in the Twentieth Century*
62.713G Project*

Candidates may select 4 further units from the following list:
62.701G Philosophy and Methodology of Science
62.709G The Scientific Community
62.710G Science, Philosophy and Social Values
62.711G Marxism and the Critique of Science
62.714G Knowledge, Power and Public Policy
62.715G Cause, Belief and Progress in the History of Science
62.718G Science in National Cultures: Comparative Historical Perspectives
15.716G Science, Technology and Economic Development
26.568G Technology and Alternative Development
30.960G Technology and Organisations
53.309G Social and Technological Forecasting (2 units)

Selected candidates may undertake a third-year MScSoc honours degree program of advanced study which includes a dissertation based on supervised research into particular aspects of the relationships between science and technology and science and its institutions.

* 2 units.

Mathematics

Head of School
Professor G. Brown

The School of Mathematics offers graduate courses leading to the award of the degrees of Master of Mathematics (MMath) and Master of Statistics (MStats). (The School also offers the pass degree of MA. For further details see the Faculty of Arts Handbook.)

8740
Master of Mathematics Graduate Course
Master of Mathematics
MMath

The Master of Mathematics Course is intended for honours graduates in pure or applied mathematics, but others may be admitted after completing a qualifying course. The course may be completed in one year of full-time or two years of part-time study. The course may be taken as a preliminary step towards the award of a PhD in mathematics. It also provides advanced training for persons specializing in the teaching of mathematics in tertiary institutions. In addition an appropriate program may provide training for those employed or seeking employment in the area of industrial mathematics.

The program consists of seven lecture courses from 10.194G, the duration of each being two hours per week for one session. With the approval of the Head of the School of Mathematics a student may substitute for one or more of these lecture courses a reading course supervised by a member of staff. Again with this approval a student may substitute for at most two of these courses graduate courses offered either within or outside the School of Mathematics. Students are also required to participate in relevant departmental seminars. In addition, students are required to undertake a project supervised by a staff member, consisting of either a critical review of the literature in a specific field of mathematics, or a short research project. It is anticipated that students will spend three hours per week for two sessions on their project. Each candidate’s proposed program of study requires the approval of the Head of the School of Mathematics.

The conditions for the award of the degree are set out later in this handbook.

8750
Master of Statistics Graduate Course
Master of Statistics
MStats

The Master of Statistics Course covers a wide range of statistical theory and practice and provides advanced training for practising statisticians. The course may be completed in two years of full-time or four years of part-time study, and it is available to graduates with a pass degree in statistics or an honours degree in a related field (commonly mathematics) with supporting study in statistics. Honours graduates in statistics may be exempted from a maximum of half the course. The conditions for the award of the degree are set out later in this handbook.

The academic requirement for the degree is 24 credits.

Each candidate’s program of study must be approved by the Head of the School.
Compulsory Subjects

10.381G Experimental Design I 2
10.383G Stochastic Processes 2
10.385G Multivariate Analysis I 2
10.390G Statistical Inference 2
10.392G Project 2

Elective Subjects

10.382G Experimental Design II 2
10.384G Time Series 2
10.386G Multivariate Analysis II 2
10.387G Sample Survey Design 2
10.388G Sequential Analysis 2
10.389G Non-Parametric Methods 2
10.391G Special Topic*A 2
10.393G Special Topic* B 2
10.394G Discrete Distributions 2
10.212M Optimal Control Theory or
10.222M Higher Optimal Control Theory 3

Up to 6 credits may be taken in graduate subjects offered by other Departments or Schools within the University, subject to the approval of the Head of School. Such subjects include:

8.403G Theory of Land Use/Transport Interaction 2
8.405G Urban Transport Planning Practice 2
8.417G Transport and Traffic Flow Theory 4
10.212L Optimization Methods or
10.222L Higher Optimization Methods 3
15.423 Econometrics B 2
18.771G Simulation in Operations Research 2

*To be arranged: eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.

8760
Master of Optometry Graduate Course
Master of Optometry
MOptom

31.701G Advanced Clinical Optometry
Three elective graduate subjects chosen from the list below (each 4 hours)
31.799G Project 8

Elective Graduate Subjects

31.702G Advanced Physiological Optics 4
31.703G Pleethoptics and Binocular Vision 4
31.704G Advanced Contact Lens Studies 4
31.705G Advanced Contact Lens Practice 4
31.706G Occupational Optometry 4
31.707G Clinical Photography 4

The six elective graduate subjects offered are quite independent, and any three of them are suitable for a student seeking advanced professional training of a general nature. If clinical specialization is aimed at, the student would be advised to elect the graduate subjects shown below:

Specialization Graduate Subjects
Contact Lenses
1. Advanced Contact Lens Studies
2. Advanced Contact Lens Practice
3. Clinical Photography

Occupational Optometry
1. Occupational Optometry
* Pleethoptics and Binocular Vision
* Advanced Physiological Optics

Orthoptics
1. Pleethoptics and Binocular Vision
2. Clinical Photography

Optometry

Head of School
Vacant

The School of Optometry offers a formal graduate course leading to the award of the degree of Master of Optometry (MOptom). This course comprises the study of three elective graduate subjects and of advanced Clinical Optometry, together with the preparation of a thesis on an assigned project. It may be completed in one year of full-time study, or (to meet the needs of practising optometrists) in two or three years of part-time study. The course provides advanced training in clinical and theoretical aspects of Optometry, with opportunities for specialization in fields such as contact lenses, occupational optometry, and orthoptics.

Conditions for admission and for the award of the degree of Master of Optometry are set out later in this handbook.

Physics

Head of School
Professor K. N. R. Taylor

Executive Assistant to Head of School
Dr P. R. Elliston

Administrative Officer
Mrs P. Shaw
The School of Physics offers a graduate course leading to the award of the Master of Physics degree (MPhysics).

The Master of Physics degree course is intended for honours graduates in physics. Others may be admitted if they have submitted evidence of such academic and professional attainments as may be approved by the Faculty of Science on the recommendation of its Higher Degree Committee. Applicants with other qualifications may be admitted after completing a qualifying examination approved by the Faculty of Science.

The subject matter of the course provides an advanced training in a branch of physics, the topic of which is determined during the year preceding that in which it is offered.

Students undertaking the masters course by formal study must enrol in one of the following subjects:

- 1.801G Energy Alternatives
- 1.802G Astrophysics
- 1.803G Acoustics
- 1.804G Biophysics
- 1.805G Applied Physics

Enrolment in any one of the above subjects normally involves at least five units of lecture material, a literature survey, and a small research project.
Graduate Study

Conditions for the Award of Higher Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Disciplines of the University: Faculty Table (Undergraduate Study) in the Calendar.

The following is the list of higher degrees and graduate diplomas of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Disciplines of the University: Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Medicine</td>
</tr>
</tbody>
</table>

First Degrees

Higher Degrees
<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar and all handbooks</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MA(MArchivAdmin)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA(Hons)</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEnv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Business Administration</td>
</tr>
<tr>
<td>Master of Education</td>
<td>ME</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEdAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering without Supervision</td>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of General Studies</td>
<td>MGenStud</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Calendar†</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws by Research</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Psychology</td>
<td>MPSychol</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Public Administration</td>
<td>MPA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science**</td>
</tr>
<tr>
<td>Master of Science without Supervision</td>
<td></td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Science (Biotechnology)</td>
<td>MSc(Biotech)</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Science (Building)</td>
<td>MSc(Building)</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Sciences‡</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td></td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td></td>
<td>Professional Studies</td>
</tr>
</tbody>
</table>
1. The degree of Doctor of Philosophy may be granted by the Council on the recommendation of the Professorial Board to a candidate who has made an original and significant contribution to knowledge and who has satisfied the following requirements:

2. A candidate for registration for the degree of Doctor of Philosophy shall:

 (1) hold an honours degree from the University of New South Wales; or

 (2) hold an honours degree of equivalent standing from another approved university; or

 (3) if the candidate holds a degree without honours from the University of New South Wales or other approved university, have achieved by subsequent work and study a standard recognised by the higher degree committee of the appropriate faculty or board of studies (hereinafter referred to as the Committee) as equivalent to honours; or

 (4) in exceptional cases, submit such other evidence of general and professional qualifications as may be approved by the Professorial Board on the recommendation of the Committee.

3. When the Committee is not satisfied with the qualifications submitted by a candidate, the Committee may require the candidate, before being permitted to register, to undergo such examination or carry out such work as the Committee may prescribe.

4. A candidate for registration for a course of study leading to the degree of Doctor of Philosophy shall apply to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.
5. Subsequent to registration the candidate shall pursue a program of advanced study and research for at least six academic sessions, save that:

(1) a candidate fully engaged in advanced study and research for the degree, who before registration was engaged upon research to the satisfaction of the Committee, may be exempted from not more than two academic sessions;

(2) in special circumstances the Committee may grant permission for the candidate to spend not more than one calendar year of the program in advanced study and research at another institution provided that the work can be supervised in a manner satisfactory to the Committee;

(3) in exceptional cases, the Professorial Board on the recommendation of the Committee may grant permission for a candidate to be exempted from not more than two academic sessions.

6. A candidate who is fully engaged in research for the degree shall present for examination not later than ten academic sessions from the date of registration. A candidate not fully engaged in research shall present for examination not later than twelve academic sessions from the date of registration. In special cases an extension of these times may be granted by the Committee.

7. The candidate shall be fully engaged in advanced study and research, save that:

(1) the Committee may permit a candidate to undertake a limited amount of University teaching or outside work which in its judgment will not interfere with the continuous pursuit of the proposed course of advanced study and research;

(2) a member of the full-time staff of the University may be accepted as a part-time candidate for the degree, in which case the Committee shall prescribe a minimum period for the duration of the program;

(3) in special circumstances, the Committee may, with the concurrence of the Professorial Board, accept as a part-time candidate for the degree a person who is not a member of the full-time staff of the University and is engaged in an occupation which, in its opinion, leaves the candidate substantially free to pursue a program in a school* of the University. In such a case the Committee shall prescribe for the duration of the program a minimum period which, in its opinion, having regard to the proportion of the time which the candidate is able to devote to the program in the appropriate University school* is equivalent to the six sessions ordinarily required.

8. Every candidate shall pursue a program under the direction of a supervisor appointed by the Committee from the full-time members of the University staff. The work, other than field work, shall be carried out in a school* of the University save that in special cases the Committee may permit a candidate to conduct the work at other places where special facilities not possessed by the University may be available. Such permission will be granted only if the direction of the work remains wholly under the control of the supervisor.

9. Not later than two academic sessions after registration the candidate shall submit the topic of research for approval by the Committee. After the topic has been approved it may not be changed except with the permission of the Committee.

10. A candidate may be required by the Committee to attend a formal course of appropriate study.

11. On completing the course of study every candidate must submit a thesis which complies with the following requirements:

(1) the greater proportion of the work described must have been completed subsequent to registration for the PhD degree;

(2) it must be an original and significant contribution to the knowledge of the subject;

* Or department where department is not within a school.
It must be written in English except that a candidate in the Faculty of Arts may be required by the Faculty on the recommendation of the supervisor to write the thesis in an appropriate foreign language;

It must reach a satisfactory standard of expression and presentation.

12. The thesis must present the candidate's own account of the research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied on the candidate's part in the joint research.

13. Every candidate shall be required to submit with the thesis a short abstract of the thesis comprising not more than 600 words.

The abstract shall indicate:
(1) the problem investigated;
(2) the procedures followed;
(3) the general results obtained;
(4) the major conclusions reached;
but shall not contain any illustrative matter, such as tables, graphs or charts.

14. A candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award.

15. The candidate shall give in writing two months' notice of intention to submit the thesis.

Entry for Examination

16. Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may also submit any work previously published whether or not such work is related to the thesis.

17. It shall be understood that the University retains the four copies of the thesis submitted for examination, and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

18. There shall normally be three examiners of the thesis appointed by the Professorial Board on the recommendation of the Committee, at least two of whom shall be external to the University.

19. At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(1) The candidate be awarded the degree without further examination; or
(2) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or
(3) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
(4) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(5) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

20. If the performance at the further examination recommended under Rule 19.(3) is not to the satisfaction of the Committee the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by them but not exceeding eighteen months.

* See Conditions for the Award of Degrees in the Calendar.
21. The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be admitted to the degree.

22. A candidate shall be required to pay such fees as may be determined from time to time by the Council.

Master of Chemistry (MChem)

1. The degree of Master of Chemistry by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Qualifications

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II honours in Chemistry.

(2) An applicant for registration with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

(3) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to present a report on a short research project (approximately 400 hours laboratory work) to be assessed by two examiners.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

Project

4. Three copies of the report referred to in paragraph 3. (3) above shall be retained by the University. The University shall be free to allow the report to be consulted or borrowed and, subject to the provisions of the Copyright Act, 1968 the University may issue the report in whole or in part, in photostat or microfilm or other copying medium.

Recommendation for Admission to Degree

5. Having considered the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree. Satisfactory completion of the project shall be regarded as part of the final examination.

Fees

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Mathematics (MMath)

1. The degree of Master of Mathematics by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

144
2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II honours in Mathematics.

(2) An applicant for registration, with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

(3) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to submit a report consisting of a critical review of the literature in an approved branch of Mathematics or a report on a short research project. In either case the report will be assessed by two examiners, and the candidate may be required to attend an oral examination. The report is to be presented in a form approved by the Head of the School of Mathematics.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

4. Having considered the examiners' reports and the candidate's other work in the prescribed course of study, the Committee shall recommend whether or not the candidate should be admitted to the degree.

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Optometry by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor in the discipline of Optometry in the University of New South Wales or other approved University.

(2) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.
Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two full calendar months before the commencement of the course.

(2) An approved applicant shall register as a student in either full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed annual examinations. Under the supervision of a member of the academic staff a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the annual examinations.

Recommendation for Admission to Degree

4. Having considered the results of the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Physics (MPhysics)

1. The degree of Master of Physics by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Qualifications

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II Honours in Physics.

(2) An applicant for registration, with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

(3) In special circumstances a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to submit a report consisting of a critical review of the literature in an approved branch of Physics and a report on a short research project. In either case the report will be assessed by two examiners, and the candidate may be required to attend an oral examination. The report is to be presented in a form approved by the Head of the School of Physics.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

Recommendation for Admission to Degree

4. Having considered the examiners' reports and the candidate's other work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.
1. The degree of Master of Psychology by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

The degree shall be awarded in two grades, namely Pass and Honours. There shall be two classes of Honours, namely Class I and Class II.

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Honours Class I or Class II in Psychology.

(2) An applicant for registration, with an approved degree at a standard below Honours Class II may be accepted following satisfactory completion of a qualifying course and examination approved by the Committee.

(3) In special cases a person may be permitted to register as a candidate for the degree if he submits evidence of such academic and professional attainments as may be approved by the Committee.

(4) Notwithstanding any other provisions of these conditions, the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to:
 (a) undertake the specified courses of advanced study;
 (b) except in exceptional circumstances pass the prescribed examinations at the first attempt;
 (c) submit a research thesis on an approved topic, prepared under the supervision of a member of the academic staff.

(4) The minimum period of registration before the award of the degree shall be of four sessions for full-time students, and six sessions for part-time students.

4. (1) Every candidate shall submit three copies of the research thesis. All copies shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses or reports. A candidate may submit also for examination any work the candidate has published whether or not such work is related to the research thesis.

(2) It shall be understood that the University retains the copies of the research thesis submitted for examination and is free to allow the research thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the research thesis in whole or in part, in photostat or microfilm or other copying medium.

5. Having considered the results of the candidate's work in the prescribed course of study and the skill and competence attained in relevant aspects of practical professional work the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.
1. The degree of Master of Science may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate Faculty or Board of Studies (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor in the University of New South Wales, or other approved University in an appropriate School or Department.

(2) In exceptional cases a person may be permitted to register as a candidate for the degree if the person submits evidence of such academic and professional attainments as may be approved by the Professorial Board on the recommendation of the appropriate Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

3. (1) An application to register as a candidate for the degree of Master of Science shall be made on the prescribed form which shall be lodged with the Registrar at least one full calendar month before the commencement of the session in which the candidate desires to register.

(2) In every case before permitting an applicant to register as a candidate the Committee shall be satisfied that adequate supervision and facilities are available.

(3) An approved applicant shall register in one of the following categories:
(a) student in full-time attendance at the University
(b) student in part-time attendance at the University
(c) student working externally to the University.

(4) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design, to take such examinations and to perform such other work as may be prescribed by the Committee. This work shall be carried out under the direction of a supervisor appointed by the Committee or under such conditions as the Committee may determine.

(5) At least once a year and at any other time that the Committee sees fit the candidate's supervisor shall present to the Head of School or Department in which the candidate is registered a report on the progress of the candidate. The Committee shall review the report and may if it decides as a result of its review that the progress of a candidate is unsatisfactory, cancel registration or take such other action as it considers appropriate.

(6) Unless otherwise recommended by the Committee, no candidate shall be awarded the degree until the lapse of four complete sessions from the date of registration, save that the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may be reduced by up to two sessions with the approval of the Committee. A candidate who is fully engaged in research for the degree shall present for examination not later than six academic sessions from the date of registration. A candidate not fully engaged in research shall present for examination not later than twelve academic sessions from the date of registration. In special cases an extension of these times may be granted by the Committee.

4. (1) A candidate shall give two months' notice in writing to the Registrar of intention to submit a thesis.

(2) A candidate for the degree shall be required to submit three copies of the thesis referred to in paragraph 3. (4) which shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may submit also for examination any work the candidate has published whether or not such work is related to the theses.
(3) For each candidate there shall be at least two examiners, appointed by the Professorial Board on the recommendation of the Committee, one of whom, if possible, shall be external to the University.

(4) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part in photostat or microfilm or other copying medium.

5. Having considered the examiners’ reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

1. Where it is not possible for candidates to register under the normal conditions for the degree of Master of Science, Master of Engineering or Master of Surveying by reason of their location at centres which are distant from University Schools or where effective supervision is not practicable registration may be granted in these categories under the following conditions:

2. An applicant for registration shall have been admitted to a degree of Bachelor in the University of New South Wales.

3. (1) An application to register as an external candidate for the degree of Master of Science, Master of Engineering or Master of Surveying without supervision shall be lodged with the Registrar for recommendation by the Head of School and consideration by the Higher Degree Committee of the appropriate Faculty (hereinafter referred to as the Committee) not less than six months before the intended date of submission of the thesis. At any early stage it is in the graduate’s interest, should there be intention to apply in this way, to seek the advice of the appropriate School with regard to the adequacy of the subject matter for the degree. A synopsis of the work should be enclosed.

(2) A candidate shall not be considered for the award of the degree until the lapse of six sessions in the case of honours graduates and eight sessions in the case of pass graduates from the date of graduation.

4. (1) (a) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design. The thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. A candidate may submit also for examination any work the candidate has published, whether or not such work is related to the thesis.

(b) Every candidate shall submit with the thesis a statutory declaration that the material contained therein is the candidate’s own work, except where otherwise stated in the thesis.

(2) For each candidate there shall be at least two examiners appointed by the Professorial Board on the recommendation of the Committee, one of whom shall be an internal examiner.

(3) If the thesis reaches the required standard, the candidate shall be required to attend for an oral examination at a time and place nominated by the Committee. The examiners may also arrange at their discretion for the examination of the candidate by written and/or practical examinations on the subject of the thesis and/or subjects related thereto.

(4) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968 the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.
Master of Science (Biotechnology) (MSc(Biotech))

Qualifications
1. The degree of Master of Science (Biotechnology) may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Honours Class I or Class II in Biological Technology or other relevant discipline.

(2) An applicant for registration with an approved degree at a standard below Honours Class II may be accepted following satisfactory completion of a qualifying course of not less than one year and examination approved by the Committee.

(3) In special cases, a person may be permitted to register as a candidate for the degree if the person submits evidence of such academic and professional attainments as may be approved by the Committee.

(4) Notwithstanding any other provisions of these conditions, the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting such examinations as the Committee may determine.

Registration
3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the specified course of advanced study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the examinations.

(4) The minimum period of registration before the award of the degree shall be two sessions for full-time students and four sessions for part-time students.

Recommendation for Admission to Degree
4. Having considered the results of the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees
5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Science and Society (MScSoc)

1. The degree of Master of Science and Society may be awarded at honours or pass level by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.
2. (1) An applicant for registration for the degree shall have been admitted to a degree of Bachelor in the University of New South Wales or other approved university or tertiary education institution of acceptable standing, at a level approved by the Committee. Normally an honours degree or equivalent in science, applied science/technology, a social science or other relevant discipline, or a pass degree together with suitable professional experience would be deemed an appropriate qualification.

(2) In exceptional cases an applicant may be registered as a candidate for the degree if he submits evidence of such academic and professional attainment as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as it may determine.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the course.

(2) An approved applicant shall register as a student in part-time attendance at the University.

(3) (a) A Candidate for the Pass degree shall undertake the approved course comprising of at least eight units which normally will be taken over four sessions.

(b) A candidate for the Honours degree will undertake an additional two session program of advanced study including a dissertation based on research approved by the Committee on the recommendation of the School of History and Philosophy of Science.

(4) No candidate shall be considered for the award of the degree until the lapse of four sessions in the case of a pass candidate or six sessions in the case of an honours candidate.

(5) The progress of a candidate shall be reviewed annually by the Committee and as a result of such review the Committee may terminate the candidature or take such other action as it considers appropriate.

4. Having considered the candidate's results in the prescribed course of study the Committee shall recommend whether the candidate may be admitted to the degree.

5. An approved candidate shall pay such fees as may be determined from time to time by Council.
Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two full calendar months before the commencement of the session in which the candidate desires to register.

(2) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed annual examinations. Under the supervision of a member of the academic staff a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the annual examinations.

(3) No candidate shall be considered for the award of the degree until a lapse of four complete sessions from the date of registration, save that in the case of a candidate who obtained the degree of Bachelor with Honours in Statistics this period may, with the approval of the Committee be reduced by up to two sessions by exemption from appropriate specified courses of study.

Recommendation for Admission to Degree

4. Having considered the results of the candidate’s work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

5. An approved applicant shall pay such fees as may be determined from time to time by the Council.

Graduate Diploma

Graduate Diploma (GradDip)

1. An application for admission to a graduate diploma course shall be made on the prescribed form which should be lodged with the Registrar at least two full calendar months before the commencement of the course.

2. An applicant for admission to a graduate diploma course shall be:

(1) a graduate of the University of New South Wales or other approved university,

(2) a person with other qualifications as may be approved by Faculty.

3. Notwithstanding clause 2. above, Faculty may require an applicant to take such other prerequisite or concurrent studies and/or examinations as it may prescribe.

4. Every candidate for a graduate diploma shall be required to undertake the appropriate course of study, to pass any prescribed examinations, and if so laid down in the course, to complete a project or assignment specified by the Head of the School. The format of the report on such project or assignment shall accord with the instructions laid down by the Head of School.

5. An approved applicant shall be required to pay the fee for the course in which he desires to register. Fees shall be paid in advance.
Subject Descriptions

Identification of Subjects by Numbers

A subject is defined by the Professorial Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

Each approved subject of the University is identifiable both by number and by name as this is a check against nomination of subject other than the one intended.

Subject numbers are allocated by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the number before the decimal point.

2. Each subject number is unique and is not used for more than one subject title.

3. Subject numbers which have not been used for some time are not used for new subject titles.

4. Graduate subjects are indicated by a suffix ‘G’ to a number with three digits after the decimal point. In other subjects three or four digits are used after the decimal point.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Servicing Subjects are those taught by a School or Department outside of its own faculty, and are listed at the end Undergraduate Study or Graduate Study of the relevant subject. Their subject descriptions are published in the handbook of the faculty in which the subject is taught.

The identifying numerical prefixes for each subject authority are set out below.

For General Studies subjects see the Board of Studies in General Education Handbook, which is available free of charge.

Information Key
The following is the key to the information supplied about each subject listed below: S1 (Session 1); S2 (Session 2); F (Session 1 plus Session 2, ie full year); S1 or S2 (Session 1 or Session 2, ie choice of either session); SS (single session, ie which session taught not known at time of publication); L (Lecture, followed by hours per week); T (Laboratory/ Tutorial, followed by hours per week); DN (Distinction); CR (Credit); PC (Pass Conceded).

HSC Exam Prerequisites
Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate School on what matriculation status is required for admission to a subject.
<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 School of Physics</td>
<td>Science</td>
<td>155</td>
</tr>
<tr>
<td>2 School of Chemistry</td>
<td>Science</td>
<td>159</td>
</tr>
<tr>
<td>4 School of Metallurgy*</td>
<td>Applied Science</td>
<td>164</td>
</tr>
<tr>
<td>5 School of Mechanical and Industrial Engineering*</td>
<td>Engineering</td>
<td>165</td>
</tr>
<tr>
<td>6 School of Electrical Engineering and Computer Science*</td>
<td>Engineering</td>
<td>166</td>
</tr>
<tr>
<td>7 School of Mining Engineering</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>8 School of Civil Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>9 School of Wool and Pastoral Sciences</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>10 School of Mathematics</td>
<td>Science</td>
<td>168</td>
</tr>
<tr>
<td>11 School of Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>12 School of Psychology</td>
<td>Biological Sciences</td>
<td>176</td>
</tr>
<tr>
<td>13 School of Textile Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>14 School of Accountancy*</td>
<td>Commerce</td>
<td>179</td>
</tr>
<tr>
<td>15 School of Economics*</td>
<td>Commerce</td>
<td>180</td>
</tr>
<tr>
<td>16 School of Health Administration</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>17 Biological Sciences</td>
<td>Biological Sciences</td>
<td>180</td>
</tr>
<tr>
<td>18 School of Mechanical and Industrial Engineering (Industrial Engineering)</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>21 Department of Industrial Arts</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>23 School of Nuclear Engineering</td>
<td>Applied Science</td>
<td>181</td>
</tr>
<tr>
<td>25 School of Applied Geology*</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>26 Department of General Studies*</td>
<td>Board of Studies in General Education</td>
<td>184</td>
</tr>
<tr>
<td>27 School of Geography*</td>
<td>Applied Science</td>
<td>185</td>
</tr>
<tr>
<td>28 School of Marketing</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>29 School of Surveying</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>30 Department of Organizational Behaviour</td>
<td>Commerce</td>
<td>187</td>
</tr>
<tr>
<td>31 School of Optometry</td>
<td>Science</td>
<td>188</td>
</tr>
<tr>
<td>32 Centre for Biomedical Engineering</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>35 School of Building</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>36 School of Town Planning</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>37 School of Landscape Architecture</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>38 School of Food Technology</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>39 Graduate School of the Built Environment</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>40 Professorial Board</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>41 School of Biochemistry</td>
<td>Biological Sciences</td>
<td>189</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 School of Biotechnology</td>
<td>Biological Sciences</td>
<td>190</td>
</tr>
<tr>
<td>43 School of Botany</td>
<td>Biological Sciences</td>
<td>192</td>
</tr>
<tr>
<td>44 School of Microbiology</td>
<td>Biological Sciences</td>
<td>193</td>
</tr>
<tr>
<td>45 School of Zoology</td>
<td>Biological Sciences</td>
<td>195</td>
</tr>
<tr>
<td>46 Faculty of Applied Science</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>48 School of Chemical Engineering and Industrial Chemistry*</td>
<td>Applied Science</td>
<td>196</td>
</tr>
<tr>
<td>50 School of English</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>51 School of History</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>52 School of Philosophy*</td>
<td>Arts</td>
<td>197</td>
</tr>
<tr>
<td>53 School of Sociology*</td>
<td>Arts</td>
<td>200</td>
</tr>
<tr>
<td>54 School of Political Science</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>55 School of Librarianship</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>56 School of French</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>57 School of Drama</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>58 School of Education</td>
<td>Professional Studies</td>
<td>200</td>
</tr>
<tr>
<td>59 School of Russian</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>60 Faculty of Arts (Bachelor of Social Science)</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>62 School of History and Philosophy of Science*</td>
<td>Arts</td>
<td>202</td>
</tr>
<tr>
<td>63 School of Social Work</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>64 School of German Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>65 School of Spanish and Latin American Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>66 Subjects Available from Other Universities</td>
<td>Board of Studies in Science and Mathematics</td>
<td>206</td>
</tr>
<tr>
<td>68 Board of Studies in Science and Mathematics</td>
<td>Board of Studies in Science and Mathematics</td>
<td></td>
</tr>
<tr>
<td>70 School of Anatomy*</td>
<td>Medicine</td>
<td>206</td>
</tr>
<tr>
<td>71 School of Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>72 School of Pathology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>73 School of Physiology and Pharmacology*</td>
<td>Medicine</td>
<td>207</td>
</tr>
<tr>
<td>74 School of Surgery</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>75 School of Obstetrics and Gynaecology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>76 School of Paediatrics</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>77 School of Psychiatry</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>79 School of Community Medicine*</td>
<td>Medicine</td>
<td>208</td>
</tr>
<tr>
<td>80 Faculty of Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>81 Medicine/Science/Biological Sciences</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>85 Australian Graduate School of Management</td>
<td>AGSM</td>
<td></td>
</tr>
<tr>
<td>90 Faculty of Law</td>
<td>Law</td>
<td></td>
</tr>
<tr>
<td>97 Division of Postgraduate Extension Studies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"School, Department etc Faculty Page
* Subjects also offered for courses in this handbook."
Physics

Undergraduate Study

Physics Level I Units

1.001 Physics I

Prerequisite: HSC Exam Percentile Range
Required
2 unit Mathematics
or
3 unit Mathematics
or
4 unit Mathematics
and
2 unit Science (incl.
Physics and/or
Chem.)

Co-requisite: 10.021C or 10.001 or 10.011.

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertial mass, energy, momentum, charge, potential, fields. Application of the conservation principles to the solution of problems involving charge, energy and momentum. Uniform circular motion, Kepler's Laws and rotational mechanics. Properties of matter: solids, liquids, gases. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization.

1.011 Higher Physics I

Prerequisite: As for 1.001. Co-requisite: 10.001 or 10.011.

For students of all Faculties except Medicine who have a good secondary school record and who wish to do a more challenging course. Entry to this course requires permission from the Head of the School of Physics.

Vector algebra, kinematics, uniform circular motion, coriolis acceleration, dynamics of particles, motion in a resistive medium, work and energy, gravitation, rotational motion of rigid bodies about a fixed axis, rotational motion about a fixed point, Lagrange and Hamilton equations, harmonic motions, waves in elastic media. Sound waves, physical optics, polarization and double refraction.

Electric charge, electric intensity, electric flux, Gauss' law, electric potential, capacity, dielectric materials, electric current and resistance, DC circuits, magnetic field, field due to a current, electromagnetic induction, inductance, magnetic materials, transients, AC circuits, electronics, diode, rectifier circuit, simple power supplies, electronic amplifier systems, single loop feedback systems, signal processing circuits using operational amplifiers.

1.021 Introductory Physics I
(For Health and Life Scientists)

Principally for students majoring in the life and health science disciplines. Topics, at an introductory level.

The methods of physics, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electromagnetic induction, alternating current, atomic nature of matter, X-rays, the nucleus and radioactivity, electronics, geometrical optics, optical instruments, wave optics, microscopes and their uses.

1.031 Physics I (Optometry)

Prerequisites: None. Co-requisites: As for 1.021.

The description of motion, dynamics, statics, conservation of momentum and energy, rotation, elasticity and vibration, wave motion, fluids, temperature and expansion, heat and heat transfer, the theory of heat, electric charge, electric field, electric energy, electric circuits, electromagnetism, applied electricity, alternating current, analog electronics, digital electronics, modern physics.

1.041 Laboratory Computers in Physical Sciences

Prerequisites: As for 1.001. Co-requisite: 10.001, and 1.021 or 1.001 or 1.011. Excluded: Programs 0601, 0610 & 0611.

Fundamentals of binary logic, binary arithmetic, arithmetic operations as logical algorithms. Electronic logic devices, principles of computer operation, microprocessors and microcomputer architecture. Machine language and BASIC programming in microcomputers. Fundamentals of real world interfacing techniques, flow of data and control across the interface. Mathematical modelling of the real world in BASIC, iteration and simulation techniques, laboratory experiments collecting real world data via an interface and analysing it in the microcomputer. The developing role of the laboratory computer in scientific research.

Physics Level II Units

1.012 Mechanics and Thermal Physics

Prerequisites: 1.001 or 1.011, 10.001. Co-requisite: 10.2111. Excluded: 10.411B, 10.421B.

Properties of solids and liquids, elasticity, hydrostatics, hydrodynamics, damped and forced vibrations, resonance, coupled systems, normal modes. Fourier analysis, waves, group velocity, reflection and transmission at a boundary.

Kinetic theory, Maxwell velocity distribution, transport coefficients, first and second laws of thermodynamics, thermodynamic functions, simple applications, microscopic approach to thermodynamics, Boltzmann probability.
Electrostatics in vacuum and in dielectrics, Gauss’ law, current density, magnetostatics in vacuum and in magnetic materials, electromagnetic induction, displacement current, Maxwell’s equations, simple solutions, applications.

Special theory of relativity, Lorentz transformation, simultaneity relativistic mass, momentum and energy, formalism of wave mechanics, Schrodinger’s equation, simple solutions, hydrogen atom, spectra, electron spin, selection rules, exclusion principle, Zeeman effect, molecules.

Alternating current circuits, complex impedance, resonance, mutual inductance, introductory electronics, diode characteristics and circuits, power supplies, transistor characteristics, single stage and coupled amplifiers, experiments using AC circuits. Experimental investigations in a choice of areas including radioactivity, spectroscopy, properties of materials, Hall effect, nuclear magnetic resonance, photography, vacuum systems.

Basics of instrumental measurement; errors of observation and their treatment; statistical design of experiments and analysis of data; transducers; measurement and measurement control systems; systems operating in the digital mode; encoding, actuation, display, system input/output considerations; some special purpose systems: signal averaging systems, real time spectrum analysis systems, etc.

Resolution; accuracy and sensitivity of instruments; errors of observation; experimental design; transducers; thermometry; electrical noise; servo systems; mechanical design of apparatus; optical instruments; optical fibres; photometry; colorimetry; analogue to digital conversion and digital instruments; measurement of very large and very small quantities.

Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations.

The application of electronics to other disciplines. Includes: principles of circuit theory and analogue computing; amplifiers, their specific-
Wave equation, reflection and transmission at dielectric, metallic and plasma interfaces, Fresnel equations, skin depth, waveguides and cavities, radiation fields, dipole and long antenna.

Fourier theory, diffraction from rectangular and circular apertures, interference and interferometry, coherence, image formation, resolution, holography, Fourier transform spectroscopy.

Additional material is studied for the award of Distinction/High Distinction.

1.043 Experimental Physics A

Prerequisites: 1.012, 1.022, 1.032.

Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics (including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems).

1.0533 Experimental Physics B1

Co-requisite: 1.043. Excluded: 1.053.

Selected experiments and projects. Advanced experimental techniques and open ended projects in the areas covered in 1.043 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and superconductivity.

1.0543 Experimental Physics B2

Co-requisite: 1.043. Excluded: 1.053.

As for 1.0533 Experimental Physics B1.

1.133 Electronics

Prerequisite: 1.9222 or 1.032.

1.1433 Biophysics

Prerequisites: 1.012, 1.022.

1.1533 Biophysical Techniques

Prerequisites: 1.012, 1.022, 1.032.

The theory and application of physical techniques of relevance to the study of biological systems. Techniques considered may include optical and electron microscopy X-ray and neutron diffraction, magnetic resonance, lasers, light scattering, calorimetry, fluorescence, electrochemical techniques and electrophysiological methods and dielectric measurements.

1.1633 Astrophysics

Prerequisite: 1.022.

1.1733 Conceptual Framework of Physics

Prerequisites: 1.012, 1.022. Co-requisites: 1.013, 1.023.

Physics and metaphysics, the place of speculation in theory formation. Space and time, coordinate systems, nature of time. Fundamental physical phenomena, electrical, gravitational, inertial, nuclear phenomena, entropy and probability. Field theory, formulation, action at a distance, propagation, energy. Relativity, postulates, simultaneity, limiting speeds, mass energy. Relationship between micro and macrocosmos, statistics, entropy and information, arrow of time. Matter and anti-matter and energy, conservation laws, inertial mass, field energy. Quantum processes, granularity, measurements and uncertainty principle, determinism versus indeterminism, nuclear phenomena.

1.3033 Mechanical Properties of Materials

Properties of materials in relation to their structure: atomic and molecular structure of solids; elasticity, inelasticity, long-range (rubber) elasticity, viscoelasticity; plasticity; brittle fracture; viscosity and surface tension of liquids; adhesion; friction and lubrication.

1.3133 Electrical, Optical and Thermal Properties of Materials

Co-requisite: 1.023.

1.3233 Measurement and Non-destructive Testing

Prerequisite: 1.032.

Design and analysis of experiments. Dynamics of measurement systems, 1st and 2nd order response, introduction to servomechanisms. Metrology, standards legislation. Techniques of mechanical, thermal, and optical techniques.
optical, photometric, fluidic and acoustic measurement. Introduction to nondestructive testing: radiography, surface crack and flaw detection, acoustic emission, magnetic and eddy current methods, acoustic spectroscopy.

1.3333 Applications of Radiation S2 L2T0

Co-requisites: 1.033.

1.3533 Marine Acoustics S1 L1½T½

Excluded: 1.913, 25.643.

Wave theory: general wave equation for fluids, viscoelastic media and solids. Travelling and standing wave solutions. Wave Guides: fluid and solid wave guides, ray and mode theories. Sound Transmission in the ocean and application of reflection and refraction theory, scattering and diffraction effects.

1.513 Plasma and Laser Physics S2 L3T1

Prerequisites: 1.012, 1.022.

Experimental and theoretical problems in plasma physics. Plasma waves, magnetohydrodynamics, magnetic confinement of plasmas for nuclear fusion, laboratory, extraterrestrial and chemical plasmas. Theory of lasers; lasers of various types and properties. Interaction of high intensity lasers with plasmas; experiments and theory of plasma properties and nonlinear effects, absorption, self-focusing. Laser compressed nuclear reaction plasmas, relativistic effects, pair production.

1.523 Relativity and Electromagnetism S1 L3T1

Prerequisites: 1.012, 1.022, 10.2111 & 10.2112, 10.111A, 10.1113 & 10.1114.

1.5333 Radiation and Matter S2 L1½T½

Prerequisites: 1.012 or 1.992, 1.022 or 1.972, 10.2111, 10.2112. Co-requisites: 1.013 or 10.222F or 2.023A, 1.033 or 10.222C.

Physics Level IV Units

All Physics honours courses consist of five lecture units and honours project work. Students intending to enrol in any of these honours courses must consult with the appropriate Head of Department in order to select the appropriate combination of units.

1.104 Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.104 only. This normally comprises three units consisting of lecture material in quantum mechanics, statistical mechanics, solid state, atomic and nuclear physics as well as two projects. In addition the student selects two topics from: astronomy; advanced topics in solid state; lasers and Fourier optics; biophysics.

1.304 Applied Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.304 only. Students take at least two units of lecture material in quantum mechanics, statistical mechanics, solid state and nuclear physics as well as two projects. In addition the student selects at least two topics from: mechanical properties of materials; physical principles of instrumentation; applied acoustics.

It is possible to take the fifth lecture unit from any of the Physics IV courses.

1.504 Theoretical Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.504 only. Students take at least two units of lecture material in quantum mechanics, statistical mechanics, solid state, atomic and nuclear physics as well as one full year or two half year projects. In addition the student selects two topics from: waves in continuous media; quantum theory of solids; plasma theory; quantum electrodynamics.

It is possible to take the fifth lecture unit from any of the Physics IV courses.

Servicing Subjects

1.931 Physics 1 (Building)
1.941 Physics I (Medicine)
1.951 Physics I (Mechanical Engineering)
1.961 Physics I (Electrical Engineering)
1.971 Physics I (Surveying)
1.981 Physics I (Civil Engineering)
1.962 Physics of Measurement (Surveying)
1.972 Electromagnetism (Electrical Engineering)
1.982 Solid State (Electrical Engineering)
Graduate Study

Not all graduate subjects are necessarily offered in any one year.

1.118G Methods of Theoretical Physics
For PhD and MSc students.
1. Response functions and Green's functions. 2. Symmetry and group theory. 3. Many particle systems. 4. Tensor calculus and variational techniques.

1.128G Methods of Experimental Physics
For PhD and MSc students.

1.801G Energy Alternatives
For MPhysics students.
A study of energy alternatives: solar thermal and solar electric energy; energy from fossil fuels; conversions, hydrogen, nuclear fusion and fission, wind, ocean and geothermal sources of energy; political and sociological aspects of energy alternatives.

1.805G Applied Physics
For MPhysics students.
A study of advanced physical instruments, data handling and control, measurement technology and materials science with special reference to physics in industry.

1.927G Acoustic Theory
S1 L1½T½
For MSc(Acoustics) students.
Sources of acoustic radiation; simple, dipole, quadrupole, plane, impulsive source, random source, aerodynamic sources. Free field propagation in fluids, interference and diffraction, absorption, shock waves. Boundary effects; reflection and transmission at fluid/fluid and fluid/ solid interfaces, fluid waveguides, solid waveguides. Reception and analysis; transducers, Fourier analysis, statistical methods, impulse measurement.

1.937G Acoustic Measuring Systems
S1 L1T0
For MSc(Acoustics) students.
Microphones, amplifiers, loudspeakers, filters, recorders, pick-ups, noise generators. Acoustic measuring instruments.

1.947G Advanced Physical Acoustics (Elective)
S1 L3T1
For MSc(Acoustics) students.
Vibrating systems; coupled oscillators, beams, membranes, plates, resonators, acoustic filters; analogs, analogue computer simulation of vibrating systems; transfer of energy from one system to another. Reflection and transmission at walls, rigid walls, flexible walls, multiple walls, impulsive excitation. Sound absorbers; porous absorbers, perforated panel absorbers, sonic and ultrasonic measurement techniques, relation to properties of materials.

1.957G Acoustic Laboratory and Signal Analysis
S2 L1T2
For MSc(Acoustics) students.

1.977G Electro-Acoustics
S2 L1T0
For MSc(Acoustics) students.
Sound reinforcement systems; ambiphony; assisted resonance. Special requirements for translation; language laboratories.

Chemistry

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (391) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 391, the transfer may still be made before the commencement of Year 3.

The Pure and Applied Chemistry Course which enables specialization in Chemistry is described in detail earlier in this handbook.

Undergraduate Study

2.111 Introductory Chemistry†
S1 L2T4
Prerequisite: None.
Classification of matter and the language of chemistry. The gas laws and the Ideal Gas Equation, gas mixtures and partial pressure. The structure of atoms, cations and anions, chemical bonding, properties of ionic and covalent compounds. The Periodic classification of elements, oxides, hydrides, halides and selected elements. Acids, bases, salts, neutralisation. Stoichiometry, the mole concept. Electron transfer reactions. Qualitative treatment of reversibility and chemical equilibrium, the pH scale. Introduction to the diversity of carbon compounds.

2.121 Chemistry IA†
S1 or S2 L2T4
Prerequisites:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics or 3 unit Mathematics or 4 unit Mathematics and 2 unit Science (Physics or Chem.) or 4 unit Science (multistrand) or 2 unit Science (other than Physics or Chem.)</td>
<td>71-100</td>
</tr>
<tr>
<td></td>
<td>21-100</td>
</tr>
<tr>
<td></td>
<td>1-100</td>
</tr>
<tr>
<td></td>
<td>31-100</td>
</tr>
<tr>
<td></td>
<td>31-100</td>
</tr>
<tr>
<td></td>
<td>51-100</td>
</tr>
</tbody>
</table>

159
Stoichiometry and solution stoichiometry. Structure of matter, solids, liquids, gases. Thermochemistry. Equilibria and equilibrium constants, entropy changes, free energy changes, the relationship between equilibrium and standard free energy changes. Ideal solutions, colligative properties. Equilibrium in electrolyte solutions, acid-base equilibria, solubility equilibria and redox equilibria. The rate of a chemical change and chemical kinetics.

2.131 Chemistry IB
Prerequisite: 2.111 or 2.121.

2.141 Chemistry IM†
Prerequisites: 2.111 or 2.121.

The syllabus is an integrated one of 2.121 and 2.131 (see above). Students majoring in Chemistry may take 2.141 in lieu of 2.121 and 2.131.

2.002A Physical Chemistry
Prerequisites: 2.121 or 2.141 and 10.001 or 10.001 or 10.021B & 10.021C.

Thermodynamics: first, second and third laws of thermodynamics; statistical mechanical treatment of thermodynamic properties; applications of thermodynamics: chemical equilibria, phase equilibria, solutions of nonelectrolytes and electrolytes, electrochemical cells.

Kinetics: order and molecularity; effect of temperature on reaction rates; elementary reaction rate theory.

Surface chemistry and colloids: adsorption, properties of dispersions, macromolecules and association colloids.

2.002B Organic Chemistry
Prerequisite: 2.131 or 2.141.

Chemistry of the more important functional groups; aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, alcohols, phenols, aldehydes, ketones, ethers, carboxylic acids and their derivatives, nitro compounds, amines and sulphonlic acids.

2.002D Analytical Chemistry
Prerequisites: 2.121 & 2.131, or 2.141, 10.001 or 10.011 or 10.021B & 10.021C.

2.042C Inorganic Chemistry
Prerequisites: 2.121 & 2.131, or 2.141.

Chemistry of the non-metals including B, C, Si, N, P, S, Se, Te, halogens, and noble gases. Chemistry of the metals of groups IA, IIA, and Al. Typical ionic, giant-molecule and close-packed structures. Transition metal chemistry, including variable oxidation states, paramagnetism, Werner's theory, isomerism of six- and four-coordinate complexes, chelation, stabilization of valency states. Physical methods of molecular structure determination. Chemistry of Fe, Co, Ni, Cu, Ag, Au.

2.003E Nuclear and Radiation Chemistry
Prerequisites: 2.121 & 2.131, or 2.141, 10.001 or 10.011 or 10.021B & 10.021C.

2.003H Molecular Spectroscopy and Structure
Prerequisites: 2.121 & 2.131, or 2.141.

Absorption and emission of radiation. Atomic spectra. Molecular spectroscopy: vibrational, including infrared and Raman; UV-visible; instrumentation and sample handling. Magnetic resonance. Mass spectrometry with particular reference to structure determination. Laboratory and tutorial work to illustrate the above, including inspection of major instruments.

2.003J Fundamentals of Biological and Agricultural Chemistry
Prerequisites: 2.121 & 2.131, or 2.141. Excluded: 2.013L, 41.101.

Aspects of the chemical and physical properties of materials important in biological systems. Methods of separation, of purification and estimation, and correlations of structure with reactivity.

† Students who have passed 2.121 or 2.131 may not enroll in 2.111 or 2.141. Students meeting the 2.121 or 2.141 prerequisite are not permitted to enroll in 2.111 without the permission of the Head of the School of Chemistry. Students who enrol in 2.111 must pass 2.111 before they can proceed to 2.121 or 2.131 or 2.141.

Trace elements in biological systems. Chemistry of common heterocyclic systems with emphasis on molecules of biological importance.

2.003K Solid State Chemistry L2T4
Prerequisites: 2.121 & 2.131, or 2.141, and 10.001 or 10.011.

The determination of crystal structures by single crystal diffraction: X-ray and neutron diffraction methods. Practical and automated aspects of the solution of crystal structures: applications to inorganic, molecular and macromolecular crystals. Patterns of solid state structure: the structures of crystals with unusual and valuable chemical and physical properties. Solid state reactions, surface properties and catalysis. Applications of EPR, NMR and mass spectrometry.

2.013A Introductory Quantum Chemistry S1 L2T4
Prerequisites: 1.001 or 1.011, 2.121 & 2.131, or 2.141, and 10.001 or 10.011 or 10.021B & 10.021C.

2.003A Physical Chemistry SS L3T3
Prerequisite: 2.002A.

Thermodynamics, including non-ideal systems; advanced electrochemistry; statistical thermodynamics; applications to gases, liquids and chemical equilibria; states of matter.

2.003B Organic Chemistry S1 or S2 L2T4
Prerequisite: 2.002B.

Alicyclic Chemistry. Stereochemistry of acyclic systems; classical and non-classical strain in cyclic systems; stereochemistry and conformation of monocyclic and polycyclic compounds; synthesis, reactions and rearrangement of monocyclic compounds including stereochemical selectivity; transannular reactions in medium rings. Synthesis and reactions of fused and bridged polycyclic systems.

Heterocyclic Chemistry. Synthesis and reactions of the following heteroaromatic systems: pyridine, quinoline, isoquinoline. Flavones and isoflavones; pyrimidine; pyrrole, furan, thiophen. Indole, imidazole.

2.003C Inorganic Chemistry S1 or S2 L2T4
Prerequisite: 2.042C.

Coordination chemistry: valence bond and crystal field theory and their application to magnetic and spectral properties of complexes. Factors affecting the stability of complexes; unusual oxidation states of transition metals. Chemistry of the groups IIIA (the lanthanides and actinides), IVA, VA, VIA and VIIA. More advanced chemistry of groups IIIB, IVB, VB, VIB and VIIIB and the noble gases.

2.003D Instrumental Analysis L2T4
Prerequisites: 2.002A and 2.002D.

2.003L Applied Organic Chemistry L1T2
Prerequisite: 2.002B. Excluded: 2.033L.

Discussion at advanced level of the chemistry of selected commercially important groups of organic materials. Mechanisms of reaction and physical properties, together with methods of examination, in overall unit approach, correlating structure with behaviour. Emphasis on breakdown to model systems.

Theory of physical techniques, refractometry, polarimetry etc. from basis of additivity. Fatty acids with emphasis on unsaturation, thermal and oxidative polymerizations, alkyl resins, analysis of mixtures. Waxes and sterols; selected natural and synthetic macromolecules; polymerization processes, including treatment of initiators, chain transfer agents, retarders. Vulcanization and sulphur-cure reactions. Photochemical processes; electro-organic chemistry. Fine chemicals, soaps and detergents. Aspects of metal catalysis in industry.

2.003M Organometallic Chemistry L2T4
Prerequisite: 2.002B.

Synthesis, structure and reactions of metal alkyls and aryls; metal carbonyls, isonitriles and acetylides; compounds of metals with unsaturated hydrocarbons; organic chemistry of boron, silicon, phosphorus and arsenic; application of organometallic compounds in organic synthesis and homogeneous catalysis.

2.004 Chemistry Honours
An honours program consisting of selected series of lectures on advanced topics in Chemistry and a research project.

Students intending to seek admission to this course should consult the School for consideration for admission at the end of Year III (or completion of requirements for the pass degree).

2.013B Synthetic Organic Chemistry L2T4
Prerequisite: 2.003B.

2.013C Advanced Inorganic Chemistry
Prerequisite: 2.042C. Co-requisite: 2.003C.

Reaction mechanisms involving metal complexes. Spectroscopic methods for investigating metal complexes, including infrared, electronic, and Mossbauer spectroscopy. Inorganic crystal chemistry: structures and properties of simple compounds. Cluster compounds, metal-metal bonding, extended electronic interactions. π-Complexes, carbonyls, nitrosyls, ethylene complexes, and sandwich-type compounds; methods of preparation, reactions, evidence for structures and type of bonding involved.

2.013D Advanced Analytical Chemistry
Prerequisite: 2.002D. Co-requisite: 2.003D.

2.013E Advanced Nuclear and Radiation Chemistry*
Prerequisite: 2.003E.

Advanced nuclear instrumentation and special counting methods; isotope effects and isotope separation methods; nuclear reactors, accelerators and isotope production; isotope labelling techniques; radiation sources and their uses; hot atom and recoil reactions; actinide chemistry and nuclear reactor fuel processing; environmental radioactivity; biochemical applications including radioimmunoassay techniques and the preparation of short lived radiopharmaceuticals; isotopic methods applied to chemical measurements; industrial tracer applications.

Laboratory classes involve experiments associated with the above topics.

2.013L Chemistry and Enzymology of Foods
Prerequisite: 2.002B. Excluded: 2.003J, 2.043L, 2.023L, 2.053L.

The chemistry of food constituents at an advanced level and the relationship between the chemistry and enzymology associated with the origin and handling of foodstuffs. Treatment of the stability of constituents, changes in colour and texture occurring during processing and storage. Methods of assessment, chemical and physical.

General classification of constituents, role of free and combined water. Fixed oils and fats, rancidity of enzymatic and oxidative origin, antioxidants — natural and synthetic — theories on mechanisms of action, carbohydrates, reactivity, role in cooking processes, carbohydrate polymers, starch structure, enzymic susceptibility and mode of action, estimations, enzymic degradation and enzymic browning, reactions and stability of natural pigments, vitamins, preservatives.

2.023A Quantum Theory of Atoms and Molecules
Prerequisites: 2.002A, 10.2111 & 10.2112.

Wave mechanics — linear operators; Schrödinger wave equation, applications, method of solution; variation principle, linear combinations, perturbation theory. Many-electron problems — central field method; electron spin; Fermi-Dirac statistics; angular momentum operators; Coulomb repulsion two-electron operator; spin-orbit coupling; Russell-Saunders and jj coupling; Zeeman effect; vector coupling and Wigner coefficients; allowed transitions. Group theory — symmetry operations; matrix representation; irreducible representation; characters of a group; non-rigid molecules; antisymmetry operators.

2.023B Natural Product Chemistry
Prerequisite: 2.003B.

The isolation, structure determination, synthesis and biosynthesis, and the reactions of selected classes of organic compounds of biological significance. The chemistry of plant and animal products — terrestrial and marine. Examples from carbohydrates, terpenoids and steroids, alkaloids and other naturally-occurring heterocyclic systems. Interdisciplinary aspects of the topic.

2.023L Biological and Agricultural Chemistry
Prerequisite: 2.002B. Excluded: 2.053L, 2.013L, 2.043L.

2.033A Physical Chemistry of Macromolecules
Prerequisites: 1.012 or 2.002A and 2.002B or 2.003J.

Macromolecules in solution; determination of molecular size; gel permeation chromatography, diffusion, sedimentation, viscometry, osmometry and light scattering. Spectroscopic properties: circular dichroism and optical rotary dispersion; conformation of macromolecules in solution; helix-random coil transitions. Macromolecules in the solid state; X-ray diffraction; basic structural features.

2.043A Environmental Chemistry
Prerequisites: 2.002A, 2.002D.

and either

Simple digital and analogue computer models of ecological systems based on chemical data and physico-chemical properties.

or

Distribution of elements and nutrient cycles in water; organic carbon cycles, oxygen balance (redox processes in aquatic systems). Chemical models of these processes (including an introduction to simple computing). Practical project (mostly field work) dealing with nutrient cycles.

* Only available to non-Chemistry majors. It may not be included in course programs 0201, 0202, 0203, 0204, 0241, 0242 and Course 3910.
2.043L Chemistry and Enzymology of Foodstuffs† F L2T4
Prerequisite: 2.002B. Excluded: 2.013L, 2.023L, 2.053L.
As for 2.013L but in greater detail and depth.

2.053A Chemical Kinetics and Reaction Mechanisms SS L3T3
Prerequisite: 2.002A.

2.053L Biological and Agricultural Chemistry† F L2T4
Prerequisite: 2.002B. Excluded: 2.023L, 2.013L, 2.043L.
As for 2.023L but in more detail and depth.

2.063A Advanced Molecular Spectroscopy S2 L2T4
Prerequisite: 2.013A.
Theory: Born-Oppenheimer approximation; theory of transition probabilities; group theory; normal mode analysis.
Spectra: rotational, vibrational and electronic structure in molecular spectra, including microwave, infrared, Raman, UV-visible and photo-electron spectra. Kinetic spectroscopy. Lasers.

Servicing Subjects

2.030 Organic Chemistry
2.951 ChemistryIME
2.981 ChemistryICE
81.002 Chemistry and Biochemistry for Medical Students*

Graduate Study

2.231G Food and Drugs I and II —
and (Including Pharmacognosy and
2.242G Microscopy of Crude Drugs) F L1T3
Regarded as a unit, and may be spread over two years.

Treatment of the food section develops from considerations of proximate analysis — gross determination of classes of food components — to detailed examinations within the groups for more important compounds. Conversely the course in drug work progresses from the examination of simple materials, including identification of unknowns by macro and micro procedures to the examination of compounded materials. A background section on food handling is included, while some attention is given to chemotherapy etc in the drug course.

Subject-matter covers treatment of the main classes of foodstuffs, such as: Foods: Origin, general introduction to analytical methods, relation to likely adulterations and impurities, groups of constituents; carbohydrates, sugars, by physical and chemical methods, jams and preserves, pectin, agar, alginates, oils and fats; protein foods, meat, gelatin, fish products; dairy products, milk, cream, cheese, etc.; fermented liquids, beer, wine, spirits, minor constituents. Principles of food processing, dehydration, quick freezing, canning; cereal products; beverages and flavouring essences; nutritional aspects, vitamins in detail; preservatives and food additives; radiation chemistry of food products. Drugs: Elements of pharmacology chemotherapy and modes of action, galenicals, identification tests for alkaloids, etc. Analytical chemistry of analgesics, sedatives, hypnotics, steroid hormones, antibiotics, etc. Antibiotics, penicillin, streptomycin, aureomycin, sulphonamides. Activity of enzyme preparations; antiseptics and disinfectants; soaps and detergents.

Pharmacognosy and Microscopy of Crude Drugs
A graded subject of 20 hours, progressive from relatively simple structures to the examination of adulterated mixtures. Examples from the series: hairs and textile fibres of natural origin, woods, stems, leaves, and barks. Seeds, fruits, rhizomes and roots. Flowers, dried juices and gums. Reactions of cell wall and cell contents. Steps in characterization of unknown powders, adulterants of food and drug powders.

2.251G Toxicology, Occupational and Public Health F L1T2
Important classes of toxic materials found in the environment; treatment of pesticide residues, industrial chemicals of various types, toxic gases, mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals etc. Effects of these substances on living organisms, particularly man. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling and analysis, trace metal determination and experiments on the animal metabolism of toxic substances.

2.271G Chemistry and Analysis of Foods F L1T3
Illustrates the bases and application of analytical techniques as applied to foods. Emphasis is placed on the design of methods, on the preparation of material for instrumental analysis and on the interpretation of data. Includes: proteins and flesh foods, carbohydrates and saccharine foods, fats and oils, dairy and fermentation products, vitamins, food additives — preservatives and colouring matters, pesticide residues, metal contaminants — food microscopy.

2.281G Instrumental Techniques in Food and Drug Analysis F L1T3
Principles involved in modern instrumental techniques; detailed application and interpretation of results. UV, IR, NMR and ESR, emission and atomic adsorption spectroscopy, polarography, X-ray methods, fluorescence spectroscopy and gas chromatography. Services 2.231G, 2.242G and 2.251G but is also suitable as a single subject for those wishing to familiarize themselves with modern techniques.

2.371G Treatment of Analytical Data F L1
Errors of measurement, the treatment, interpretation and comparison of sets of measurements, associated data and problems involving analysis of variance. Topics: Description of sets of measurements,
2.581G Advanced Analytical Chemistry

Laboratory: Practice, instruction and visits.

Research Project.

2.582G Food and Drug Chemistry

Lectures/Laboratory: 1. Food and drugs I. 2. Treatment of analytical data. 3. Instrumental techniques in food and drug analysis. 4. Food and drugs II. 5. Toxicology, occupational and public health. Research Project.

Metallurgy

Undergraduate Study

4.302 Chemical and Extraction Metallurgy I

Co-requisite: 2.002A*.

Metal extraction from ores in terms of unit operations and overall systems, illustrated by the extraction of iron, copper, aluminium and other metals. Elementary process analysis. Laboratory analysis and solution of problems.

4.402 Physical Metallurgy I

4.412 Metallurgical Phases — Structure and Equilibrium Part I

The crystal structure of metallic phases. Crystal defects. Physical properties of solids. Phase equilibrium in alloy systems. The genesis of microstructure. Metallography.

4.422 Metallurgical Phases — Structure and Equilibrium Part 2

4.502 Mechanical Metallurgy

A combination of 4.512 and 4.522.

4.512 Mechanical Properties of Solids

Co-requisite: 4.402.

4.602 Metallurgical Engineering I

Mass and energy accounting in metallurgical processes. An introduction to the principles and applications of transport processes in systems with specific reference to industrial processes in primary and secondary metallurgy.

4.303 Chemical and Extraction Metallurgy II

4.403 Physical Metallurgy II

Prerequisite: 4.402. Excluded: 1.313.

4.522 Mechanical Metallurgy

Prerequisite: 4.512.

† This material is similar to that in units 2.231G, 2.371G, 2.281G, 2.242G and 2.251G respectively, but is examined at a higher level.

* This unit is taken in Session 1.
4.613 Metallurgical Engineering IIA
Prerequisite: 4.602.

An extension of the principles and applications of transport processes to metallurgical systems. The principles of metallurgical heating and cooling including fuels, refractories and furnace design and operation. Solidification in moulds, continuous casting. Economics: As for Chemical Engineering IIb, 48.032 Unit 4 (see Faculty of Applied Science Handbook).

4.703 Materials Science
Co-requisite: 4.403.

The application of the principles of physical metallurgy to the development of modern materials, stressing the structure property relationships that determine the design of materials. Topics include: materials used for structural purposes, high temperature applications, corrosive environments, nuclear engineering, fuel cells, magnetic applications.

4.314 Chemical and Extraction Metallurgy IIIA
Prerequisite: 4.303.

4.324 Chemical and Extraction Metallurgy IIIB
Prerequisite: 4.303.

A selection of advanced topics in chemical and extractive metallurgy.

4.404 Physical Metallurgy III
Prerequisite: 4.403.

Applications of dislocation theory to work hardening and annealing processes. Phase transformations in alloys. Mathematical crystallography, reciprocal lattice, diffraction. Electron and X-ray metallography. Selection of advanced topics in physical metallurgy including radiation damage, martensitic transformations, neutron diffraction, internal friction, sintering, creep, superplasticity, fracture.

4.504 Mechanical and Industrial Metallurgy
Prerequisites: 4.403, 4.503.

The application of metallurgical principles to industrial processing with particular reference to casting, welding, shaping, properties and selection of materials. Metal finishing. Metallurgical aspects in engineering design. Fracture mechanics, design against fatigue, brittle and ductile fracture.

4.024 Metallurgy Project*
An experimental investigation of some aspects of metallurgy.

4.054 Metallurgy Seminar
FL2T0

A course of lectures on the preparation and presentation of technical papers. Each student is required to prepare and present a paper on a nominated subject.

Mechanical and Industrial Engineering

Undergraduate Study

5.010 Engineering A
S1 or S2 L4T2

Prerequisite:

HSC Exam
Percentile Range
Required

Either

2 unit Science (Physics)
31-100

or

4 unit Science (incl. Physics)
11-100

or

2 unit Industrial Arts
31-100

or

3 unit Industrial Arts
11-100

Students who wish to enrol in this subject can make up for the lack of the prerequisite by work taken in Physics in the first half of first year.

Introduction to Engineering Design: Engineering method, problem identification, creative thinking, mathematical modelling, computer aided design, materials and processes, communication of ideas, the place of engineering in society.

Introduction to Materials Science: The structure and properties of the main types of engineering materials, with emphasis on the way in which properties may be controlled by controlling structure.

5.020 Engineering B
S2 L4T2

Prerequisite: 5.010.

Engineering Dynamics: Kinetics of the plane motion of a particle; equations of motion, dynamic equilibrium, work and energy. Kinetics of systems of particles; impulse and momentum. Rotation of rigid bodies about a fixed axis. Belt, rope and chain drives, gear trains.

* Project includes three weeks laboratory work during the Midyear Recess.
And one of options: 1, 2, 3, 4, 6 or 7.

1. Production Technology: Description and appraisal of the processes classified as: forming from liquid or solid, material removal, material joining. Machines. Analysis of the primary functions of the machine tools and an appraisal of their limitations. Principles of operation of common machine tools and illustrations of their use.

2. (Chemical Engineering and Industrial Chemistry students must take this option) Introduction to Chemical Industry: The chemical industry in Australia. The role of professional societies. Special topics on the engineering and chemical aspects of the industry ie pollution control, energy sources, food and biochemicals and polymers, mineral processing, safety etc. A visit to a factory in the Sydney area and the preparation of a short report after an introduction to information retrieval by university librarians.

3. (Metallurgy students must take this option) Introduction to Metallurgical Engineering: History and significance of the exploitation of metals. Ores, mineral economics, mineral processing, and metal extraction and processing methods illustrated by reference to the Australian mineral and metal industries. Properties, uses and applications of metallic materials. The role of the metallurgist in industry and in processing and materials research, and in relation to conservation and the environment.

4. (Mining Engineering students must take this option) Introduction to Mining Engineering: Mineral deposits; metallic, non-metallic and fuels. Elements of prospecting and exploration. Basic mining techniques. Mining phases; development, exploitation, beneficiation and withdrawal. Mining and the environment. Mining services. Relevance of basic science and engineering subjects to mining design and operations.

5. (Available only to Surveying students, who must take this option) Introduction to Computing: Introduction to computer program design with emphasis on the design of correct, reliable programs. The subject is organized on a tutorial basis and a number of simple fundamental programming tasks are illustrated. Programs are written in a high level language which provides facilities for the specification of algorithms and data structure.

6. (Ceramic Engineering students must take this option) Introduction to Ceramic Engineering: The nature of ceramics. Classification of materials. The materials science approach. History of ceramics. The ceramic engineer and society. The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials. Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, pot forming and other forming procedures.

integrated circuits, registers, counters, and other medium scale integration (m.s.i.) devices, clocked sequential circuits, computer arithmetic.

6.632 Operating Systems
Prerequisites: 6.631* or 6.021E*. 6.641*.

Introduction to operating systems via an intensive case study of a particular system, namely the UNIX Time-sharing system which runs on the PDP11 computer. Includes system initialization, memory management, process management, handling of interrupts, basic input/output and file systems. A comparison of UNIX with other operating systems. General principles for operating system design.

6.633 Data Bases and Networks

Data Base Management Systems: data models, relational and network structures; data description languages; data manipulation languages; multi-schema structures. Data integrity and security; recovery; privacy. Computer Networks: economic and technological considerations; digital data transmission; error detection and recovery; network configurations; circuit switching, packet switching; communication protocols; current international standards; data compression; encryption and decryption.

6.641 Programming I
Prerequisites: 6.620* or 6.600 (CR) or 6.021D* or 6.621*.

Design and correctness of algorithms and data structures. Data structures: abstraction, representation, manipulation and axiomatisation; basic data structures, sets, unions (variant records); dynamic data structures: lists, queues, stacks, trees, balanced trees. Recursion: backtracking algorithms. Files: sequential access, random access, merging, sorting, updating. String manipulation, pattern matching and associative algorithms.

6.642 Programming II
Prerequisite: 6.641*.

6.643 Compiling Techniques and Programming Languages
Prerequisite: 6.641*.

1. Language description: phase structure grammars, Chomsky classifications, context-free grammars, finite state grammars, Backus Naur Form, syntax graphs, LL(k), LR(k), SLR(k), LALR(k), simple precedence and weak precedence grammars.
2. Lexical analysis: translation of an input (source) string into a (machine independent) quasi-terminal symbol string. Finite state recognizers.

3. Syntax analysis: top-down compilation for LL(1) grammars using syntax graph driven analysers or recursive descent. Bottom-up compilation for simple and weak-precedence and LR(k) grammars.
4. Semantic analysis: program translation and code generation; attributed grammars.
5. Compiler generators: automatic generation of compilers for LALR(1) grammars.
6. Code optimization by systematic program transformation.
7. Run-time organization: activation record stacks, heap management.

6.646 Computer Applications
Prerequisites: 6.620* or 6.621* or 6.600 (CR) or 6.021D*. 1 unit chosen from 10.311A, 10.321A, 10.301, 10.331 or 45.101 or equivalent. (In 1982 this may be taken as a co-requisite.) Excluded: 6.622.

The use of computers for solving problems with a substantial mathematical and operational research content; includes use of some standard software packages. Topics selected from: discrete event simulation, the SIMULA programming language; pseudo random number generation; simple queuing theory; applications of mathematical programming; statistical calculations; critical path methods; computer graphics, artificial intelligence.

6.647 Business Information Systems

Introduction to accounting systems — general ledger, debtors and creditors; auditing and internal system controls; models of business information systems; integrated business systems. System specification, system analysis, system design and implementation; testing and debugging. Managing a project team, project control. The COBOL programming language. File organization and design; sequential, indexed sequential, random, inverted, B-tree file organizations; file updating. The course includes an invited lecture strand presented by guests from commerce and industry. A major project, written in COBOL, is undertaken as a team exercise.

6.649 Computing Practice**

Not offered in 1982.

For students majoring in Computer Science who seek a programming career in government or commercial industry. Topics, related to current computing practice, include: Comparative study of computer hardware in current popular use; Comparative study of the 'popular' programming languages, eg COBOL, RPG, BASIC, FORTRAN, PL/1, APL. Job control languages. Data Preparation procedures. Key-board entry. Verification. Word processing; report preparation; documentation. Social Implications of computing. Professional responsibilities and ethics. Project management; software engineering; psychology of computer programming.

* Pass Conceded (PC) result is not acceptable as a prerequisite.
** Can only be counted with at least 3 other Level III Computer Science units.
Mathematics

Undergraduate Study**

Many units in the School of Mathematics are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered grades higher than Credit are only awarded in the ordinary level in exceptional circumstances.

Students should note that all of the Mathematics honours programs require them to take most of their Mathematics units at higher level. However, students should not think that the higher level units are intended only for those in honours programs. Any student with the ability to undertake higher units benefits from so doing.

✓ 10.001 Mathematics I

Prerequisite: IHSC Exam
Percentile Range Required
2 unit Mathematics 71-100
or
3 unit Mathematics 21-100
or
4 unit Mathematics 1-100

Excluded: 10.011, 10.021A, 10.021B, 10.021C.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.011 Higher Mathematics I

Prerequisite: IHSC Exam
Percentile Range Required
3 unit Mathematics 71-100
or
4 unit Mathematics 11-100

Excluded: 10.001, 10.021A, 10.021B, 10.021C.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.021A General Mathematics IA†

Number systems (including absolute value, inequalities, surds, etc.); co-ordinate geometry; polynomials, quadratics; concept of the function; trigonometric functions, logarithmic and indicial functions and their laws of operation; introduction to differentiation and integration with simple applications.

10.021B General Mathematics IB

Prerequisite: IHSC Exam
Percentile Range Required
2 unit Mathematics 51-100
or
3 unit Mathematics 11-100
or
4 unit Mathematics 1-100
or
10.021A

Excluded: 10.011, 10.001.

Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the Binomial Theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra.

10.021C General Mathematics IC

Prerequisite: 10.021B. Excluded: 10.001, 10.011, 10.021A.

Techniques for integration, improper integrals; Taylor’s Theorem; first order differential equations and applications; introduction to multivariable calculus; conics; finite sets; probability; vectors, matrices and linear equations.

✗ 10.031 Mathematics (one Level II unit)*

Prerequisite: 10.001 or 10.021C (CR).

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods.

10.032 Mathematics (one Level III unit)*

Prerequisite: 10.031.

Vector Calculus: special functions; convolution theorem and applications; complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.

10.081 Mathematics IX

Co-requisites: 10.001 or 10.011, 6.611 or 1.041.

Elementary logic, finite structures, errors in computing, simple algorithms. Problem solving as a multi-stage process: comprising Markov processes and matrices, population dynamics, electrical currents and their differential equations (interpretation of analytic and numerical solutions), data structures and semi-numerical algorithms

** When a unit is listed as a prerequisite or co-requisite, the appropriate higher unit may be substituted.
† Entry to General Mathematics IA is allowed only with the permission of the Head of the School of Mathematics, and that permission will be given only to students who do not qualify to enter General Mathematics IB.
* These units are also available to Faculty of Science students as a sequence of two units constituting a terminating service course in mathematics. As such they are mutually exclusive to any other Level II or level III units in Pure and/or Applied Mathematics and/or Theoretical Mechanics except that 10.412A may be taken with 10.031 and 10.032.
Pure Mathematics

10.111A Pure Mathematics II — Linear Algebra S L1½T1
Prerequisite: 10.001. Excluded: 10.121A.

10.1111 Pure Mathematics II — Group Theory S1 L1½T½
Prerequisite: 10.001. Co-requisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112. Excluded: 10.121A.
Mathematical systems, groups, determination of small groups, homomorphisms and normal subgroups.

10.1112 Pure Mathematics II — Geometry S2 L1½T½
Prerequisite: 10.001. Co-requisite: 10.1111. Excluded: 10.121C.
Elementary concepts of Euclidean, affine and projective geometries.

10.1113 Pure Mathematics II — Multivariable Calculus S1 or S2 L1½T1
Prerequisite: 10.001. Excluded: 10.1213.
Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

10.1114 Pure Mathematics II — Complex Analysis S1 or S2 L1½T1
Prerequisite: 10.001. Excluded: 10.1214.
Analytic functions, Taylor and Laurent series, integrals. Cauchy’s Theorem, residues, evaluation of certain real integrals.

10.121A Higher Pure Mathematics II — Algebra F L2T½
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.111A, 10.1113.

10.1121 Pure Mathematics III — Number Theory SS L1½T½
Prerequisites: ***. Excluded: 10.121C.
Euclidean algorithm, congruences, sums of squares, diophantine equations.

10.1113 Pure Mathematics II — Multivariable Calculus S1 or S2 L1½T1
Prerequisite: 10.001. Excluded: 10.1213.
Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

10.1122 Pure Mathematics III — Algebra S2 L1½T½
Prerequisite: 10.111A. Co-requisite: 10.1111. Excluded: 10.122A.
Rings, polynomials, fields.

10.1123 Pure Mathematics III — Logic and Computability SS L1½T½
Prerequisites: ***.
The propositional calculus — its completeness and consistency; Turing machines; unsolvable problems; computability and Church’s thesis; Godel’s incompleteness theorems.

10.1124 Pure Mathematics III — Combinatorial Topology SS L1½T½
Prerequisites: ***.
Elementary combinatorial topology of surfaces.

10.1125 Pure Mathematics III — Ordinary Differential Equations S1 L1½T½
Prerequisites: 10.111A ***. Excluded: 10.122E.
Systems of ordinary differential equations; variations of constants formula; stability; Poincaré space; Lyapunov’s direct method.

10.1126 Pure Mathematics III — Partial Differential Equations S2 L1½T½
Prerequisites: 10.1113, 10.1114. Co-requisite: 10.1125.
System of partial differential equations; characteristic surfaces; classifications; Cauchy problem; Dirichlet and Neumann problems; the maximum principle; Poisson’s formula; conformal mapping.

*** Students are not normally permitted to attempt a Level III pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.

169
10.1127 Pure Mathematics III —
History of Mathematics S2L1T1
Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

Topics from the History of Mathematics, with emphasis on the development of those ideas and techniques used in undergraduate courses. Students are expected to read widely and to present written material based on their readings.

10.1128 Pure Mathematics III —
Foundations of Calculus S1L1½T½
Prerequisites: ***. Excluded: 10.122B.

10.1129 Pure Mathematics III —
Real Analysis S2L1½T½
Prerequisites: 10.2112, 10.1128. Excluded: 10.122B.

10.1521 Pure Mathematics III —
Combinatorics and Its Applications SS L1½T½
Prerequisites: ***.

Generating functions, their properties and applications to partitions and recurrence relations. Branching processes, trees and the analysis of their paths, the analysis of algorithms and the Galton-Watson process. Coding theory and other design problems, Latin squares, block designs and error-correcting codes.

10.1522 Pure Mathematics III —
Differential Geometry SS L1½T½
Prerequisites: 10.1113. Co-requisites: *** Excluded: 10.112C, 10.122C.

10.122A Higher Pure Mathematics III — Algebra F L2T½
Prerequisite: 10.121A. Excluded: 10.1122.

Field theory and theory of rings and modules.

10.122B Higher Pure Mathematics III —
Integration and Functional Analysis F L2T½

Lebesque integration; Fourier series; normed vector spaces; Hilbert spaces; measure theory.

10.122C Higher Pure Mathematics III —
Topology and Differential Geometry F L2T½
Prerequisite: 10.121A, 10.1213. Excluded: 10.1124, 10.112C.

The axiom of choice, metric and topological spaces, compactness. Compact surfaces, triangulations, geodesics, Gauss-Bonnet theorem.

10.122E Higher Pure Mathematics III — Complex Analysis and Differential Equations F L2T½
Prerequisites: 10.1213, 10.1214. Excluded: 10.1125.

Analytic continuation; entire and meromorphic functions; elliptic functions; normal families and further advanced topics in complex analysis. Existence and uniqueness theorems for ordinary differential equations; linear systems; qualitative theory of autonomous systems; equations on manifolds.

10.123 Pure Mathematics IV

An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses on topics chosen from fields of current interest in Pure Mathematics. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

Applied Mathematics

10.2111 Applied Mathematics II —
Vector Calculus S1 or S2 L1½T1
Prerequisite: 10.001. Excluded: 10.2211.

Vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss' and Stokes' theorems. Curvilinear coordinates.

10.2112 Applied Mathematics II —
Mathematical Methods for Differential Equations S1 or S2 L1½T1
Prerequisites: 10.001. Excluded: 10.2212.

*** Students are not normally permitted to attempt a Level III pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.113, 10.1114, 10.2111 and 10.2112.
10.2113 Applied Mathematics II — Introduction to Linear Programming
Prerequisite: 10.001. Excluded: 10.2213.

Linear programming: the standard problem, basic solutions, fundamental theorem, simplex tableau, initial solution, unbounded and multiple solutions, degeneracy, duality: the dual simplex method, post optimal analysis.

10.2115 Applied Mathematics II — Discrete-Time Systems
Prerequisite: 10.001. Excluded: 10.2215.
Applications selected from problems of importance in engineering, biological, social, management, and economic systems.

10.211E Applied Mathematics II — Numerical Methods
Prerequisite: 10.001.

10.2211 Higher Applied Mathematics II — Vector Analysis
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2111.
As for 10.2111 but in greater depth.

10.2212 Higher Applied Mathematics II — Mathematical Methods for Differential Equations
Prerequisite: 10.2211. Excluded: 10.2112.
As for 10.2212 but in greater depth.

10.2213 Higher Applied Mathematics II — Introduction to Linear Programming
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2113.

Linear programming: the standard problem, basic solutions, fundamental theorem, simplex tableau, initial solution, unbounded and multiple solutions, degeneracy, revised simplex method, duality, dual simplex method, post optimal analysis.

10.2215 Higher Applied Mathematics II — Discrete-Time Systems
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2215.
As for 10.2215, but in greater depth and with additional material on positive linear systems and Markov chains.

10.212A Applied Mathematics III — Numerical Analysis
Prerequisites: 10.2112, 10.111A. Excluded: 10.222A.

10.212L Applied Mathematics III — Optimization Methods
Prerequisites: 10.1113**. Excluded: 10.222L.
Unconstrained multivariable search procedures; including steepest descent, D-F-P method, Hooke and Jeeves method. Constrained optimization; including convexity, Lagrange multipliers, Kuhn-Tucker conditions, duality, simple constrained search methods, penalty functions. Special methods; including geometric programming, separable programming, branch and bound. Applications of these methods to resource allocation, production problems, capital investment and economic models.

10.212M Applied Mathematics III — Optimal Control Theory
Prerequisites: 10.1113 & 10.1114, 10.111A or 10.2113. Excluded: 10.222M.
[Examples and applications are drawn not only from the physical sciences but also from economics, resource and financial management, social and biological sciences.]

10.222A Higher Applied Mathematics III — Numerical Analysis
Prerequisites: 10.2212 or 10.2212 (DN), 10.121A or 10.111A (DN). Excluded: 10.212A.
As for 10.2212A but in greater depth.
** At least 1 further unit chosen from the following: 10.111A, 10.1114, 10.2111, 10.2112, 10.2113.

Prerequisites: 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN). Excluded: 10.212L.

Statistics

10.311A Theory of Statistics II — Probability and Random Variables

Prerequisite: 10.001 or 10.021C (CR). Excluded: 10.321A, 10.301, 10.331, 45.101.

10.311B Theory of Statistics II — Basic Inference

Prerequisite: 10.311A. Excluded: 10.321B, 10.301, 10.331, 45.101.

Point estimation (moments, maximum likelihood, minimum χ^2, etc.) Confidence interval estimation, exact and approximate. Elementary Neyman-Pearson theory of tests of significance, standard significance tests. Regression (including curvilinear) on a single fixed variable. Analysis of variance. Non-parametric methods.

Prerequisite: 10.001. Excluded: 10.311A, 10.301, 10.331, 45.101.

10.311A at greater depth and covering a slightly wider field.

10.321B Higher Theory of Statistics II — Basic Inference

Prerequisite: 10.321A. Excluded: 10.311B, 10.301, 10.331, 45.101.

10.311B at greater depth and covering a slightly wider field.

Prerequisites: 10.311A, 10.111A, 10.1113, 10.2112. Excluded: 10.322A.

Elementary treatment of probability and moment generating functions and characteristic functions. Convergence in distribution. Central

10.322A Applied Mathematics IV (Short Course)

6 units consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced optimization and control theory, functional analysis and applications, numerical analysis, mathematics of economic models and of economic prediction, stability theory of differential and differential-difference equations, stochastic processes, statistical mechanics, quantum physics, astro-physics. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

10.323 Applied Mathematics IV (Short Course)

6 units consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced optimization and control theory, functional analysis and applications, mathematics of economic models and of economic prediction, stability theory of differential and differential-difference equations, stochastic processes. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

10.312B Theory of Statistics III — Experimental Design (Applications) and Sampling

Prerequisite: 10.311B or 10.331 (normally CR). Excluded: 10.322B.

10.312C Theory of Statistics III — Experimental Design (Theory)

Prerequisites: 10.311A, 10.111A, 10.1113, 10.2112. Excluded: 10.322D.

10.312E Theory of Statistics III — Statistical Inference

Prerequisites: 10.311B, 10.111A, 10.1113, 10.2112. Co-requisites: Any two Level III Pure Mathematics or Applied Mathematics or Theoretical Mechanics units. Excluded: 10.322E.

10.3321 Regression Analysis and Experimental Design

Prerequisite: 10.331 or 10.311B or approved equivalent. Excluded: 10.322B.

10.3322 Applied Stochastic Processes

Prerequisite: 10.331 or 10.311A or 10.321A, or approved equivalent. Excluded: 10.312A, 10.322A.

An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions: binomial, Poisson and normal; an introduction to multivariate distributions. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models, involving multiple comparisons and estimation of variance components.

Theoretical and Applied Mechanics

10.411A Theoretical Mechanics II — Hydrodynamics S2 L3T1
Prerequisite: 10.001. Co-requisites: 10.411B or 1.012, 10.1114. Excluded: 10.421A.
Conservation laws and Bernoulli’s equation for one-dimensional flow. Equations of continuity and Euler’s equation. Kelvin’s Theorem. Incompressible, irrotational flow in two and three dimensions, including applications of complex variables, methods of images, harmonic functions, and axially symmetric flow. Introduction to compressible and viscous fluids.

10.411B Theoretical Mechanics II — Principles of Theoretical Mechanics S1 L3T1
Prerequisites: 10.001, 1.001 or 10.041 or 5.010. Co-requisites: 10.2111, 10.2112, 10.1113. Excluded: 10.421B.
Revision of vectors, kinematics of particles and rigid bodies. Dynamics of particles including simple harmonic and projectile motion. Systems of particles: conservation principles, collisions, rocket motion, the catenary. Work and energy. Rotating frames; moments of inertia.
Elementary problems derived from continuum mechanics including conservation laws, one-dimensional fluid flow, extension and bending of beams.

10.421A Higher Theoretical Mechanics II — Hydrodynamics S2 L3T1
Prerequisites: 10.011 or 10.001 (DN). Co-requisites: 10.421B, 10.1114. Excluded: 10.411A.
As for 10.411A but in greater depth.

10.421B Higher Theoretical Mechanics II — Principles of Theoretical Mechanics S1 L3T1
Prerequisites: 10.011 or 10.001 (DN), 1.001 or 5.010 or 10.041. Co-requisites: 10.2211, 10.2212, 10.1113. Excluded: 10.411B.
As for 10.411B but in greater depth.

10.412A Theoretical Mechanics III — Dynamical and Physical Oceanography F L1½T½
Prerequisites: 10.2111 & 10.2112 or 10.031, 1.001. It is recommended that one of the following be taken concurrently: 10.411A or 1.012 or 1.913.
1. The physical properties of the oceans and their measurement, including: salinity, temperature, density, dynamic heights. Currents, waves and tides. 2. Theoretical models of current and waves.
Up to seven days field/laboratory work per year.

10.412B Theoretical Mechanics III — Continuum Mechanics F L1½T½
Prerequisites: 10.2111, 10.2112, 10.111A, 10.1113, 10.1114. Co-requisites: 10.411A or 1.012 or 1.913. Excluded: 10.422B.

10.412D Theoretical Mechanics III — Mathematical Methods F L1½T½
Prerequisites: 10.2112, 10.111A, 10.1113, 10.1114. Excluded: 10.422D.
Sturm-Liouville equation, eigenvalues, expansion in orthonormal functions. Fourier, Fourier-Bessel and Legendre series as special cases. Fourier and Laplace transforms, with application to ordinary and partial differential equations. Diffusion equation and transmission-line equation. Wave equation.

10.422A Higher Theoretical Mechanics III — Fluid Dynamics S2 L3T1
Prerequisite: 10.421A or 10.411A (DN). Co-requisite: 10.422B.
Compressible flow, viscous flow, boundary layers, hydrodynamic stability, simple wave motions in fluids.

10.422B Higher Theoretical Mechanics III — Mechanics of Solids S1 L3T1
Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112, 10.421B or 10.411B (DN) or 1.012. Excluded: 10.412B.
As for 10.412B but in greater depth.

10.422D Higher Theoretical Mechanics III — Mathematical Methods F L1½T½
Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN). Excluded: 10.412D.
10.423 Theoretical Mechanics IV

An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses on topics chosen from fluid mechanics, solid mechanics, planetary science and special mathematical and numerical techniques applied to partial differential equations. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools on topics such as optimal control theory, optimization theory, thermodynamics, numerical analysis or statistics.

Servicing Subjects

10.021A General Mathematics IA
10.022 Engineering Mathematics II
10.033 Electrical Engineering Mathematics III
10.341 Statistics SU
10.351 Statistics SM
10.361 Statistics SE
10.381 Statistics SC
11.4320 Geometry

Graduate Study

10.194G Advanced Mathematics Lecture Courses

Each year a selection of courses is offered in the following areas:

Algebraic geometry; algebraic topology; categorical and homological algebra; commutative algebra; group theory; Lie groups and algebras; representation theory; group theory and its physical applications; advanced quantum mechanics; differential geometry; differential equations; optimal control theory; functional analysis; applied functional analysis; operator theory; harmonic analysis; advanced numerical analysis; theory of functions; finite mathematics; number theory; logic; theoretical astrophysics; history of mathematics; recent advances in mathematics; mathematical economics; optimization and control.

10.302G Regression Analysis and Experimental Design

Prerequisite: 1st course in Statistics.

10.303G Applied Stochastic Processes

Prerequisite: 1st course in Statistics.

10.372G Statistical and Experimental Design

The concepts of random variables, means, variances, the common tests and confidence intervals based on the normal distribution, some simple analyses of variance.
10.390G Statistical Inference
Decision theory. General theory of estimation and hypothesis testing.

10.391G Special Topic A
To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.

10.392G Project

10.393G Special Topic B
To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, and other topics.

10.394G Discrete Distributions
Discrete and lattice distributions — their general properties mostly via generating functions. The structures of contagious (clustered) distributions, with a study of specific examples such as the negative binomial, Neyman and Poisson-Pascal families, together with estimation and fitting procedures.

10.401G Seiches and Tides

Servicing Subjects

32.012G Biomedical Statistics
10.061G Advanced Mathematics for Electrical Engineers
32.101G Mathematical Modelling for Biomedical Engineers
10.181G Advanced Analysis
10.182G Characters and Crystals
10.183G Geometry
10.184G Number Theory
10.185G Distributions
10.186G Hilbert Space
10.187G History of Mathematics
10.188G Topology
10.189G Seminar in Mathematics Education
10.190G Graph Theory and Combinatorics
10.191G Mathematics Education A
10.192G Mathematics Education B
10.281G Mathematical Methods
10.282G Mathematics of Optimization
10.284G Relativity and Cosmology
10.283G Quantum Mechanics
10.361G Statistics
10.371G Statistics
10.481G Essay

Psychology

Undergraduate Study

Psychology Level I Unit

12.100 Psychology I F L3T2
Excluded: 12.001.
An introduction to the content and methods of psychology as a behavioural science, with emphasis on the biological and social bases of behaviour, relationship to the environment, and individual differences. Training in the methods of psychological enquiry, and in the use of elementary statistical procedures.

Psychology Level II Units

12.200 Research Methods II F L2T1
Prerequisite: 12.001 or 12.100. Excluded: 12.152.
General introduction to the design and analysis of experiments; hypothesis testing, estimation, power analysis; general treatment of simple univariate procedures; correlation and regression.

12.201 Basic Psychological Processes II S1 L2T2
Prerequisite: 12.001 or 12.100. Excluded: 12.052.
The basic phenomena of behaviour and experience in a biological context.

12.202 Complex Psychological Processes II S2 L2T2
Prerequisite: 12.001 or 12.100. Excluded: 12.062.
Information processing and cognitive functioning, and social bases of behaviour and personality.

12.203 Psychology IIA F L2T2
Available to Course 3430 students only.
Session 1: As for 12.330 Psychological Assessment III. Session 2: Current trends and issues in psychology.

12.204 Human Relations II S1 L2T2
Prerequisite: 12.001 or 12.100. Excluded: 12.072.
The personality development of the individual from birth through to death, focusing on the influences on such development from the family of origin, school, peers, work, marriage and other social groups. The theoretical contributions to an understanding of development from Freud, Piaget and Erikson.
12.205 Individual Differences II S2 L2T2
Prerequisite: 12.001 or 12.100. Excluded: 12.082 & 12.304.
Measurement and significance of individual differences in intellectual, motivational and personality functioning. Statistics, to cover the fundamentals of hypothesis testing.

Psychology Level III Units: Group A

12.300 Research Methods IIIA S1 L2T2
Analysis of variance for single factor and multifactor designs. Fixed, random and mixed models. Test procedures for planned and post-hoc contrasts defined on parameters of fixed and mixed models. General principles of experimental design.

12.304 Personality and Individual Differences III S2 L2T2
Personality dynamics and structure and differences in ability and intelligence.

12.305 Learning and Behaviour III S1 or S2 L2T2
The establishment and elimination of extended sequences of behaviour in complex environments. Implications of the theories and research for applied work.

Psychology Level III Units: Group B

12.301 Research Methods IIIB S2 L2T2
For students who intend to undertake a research thesis in Psychology IV. Data analysis using the SPSS and PSY systems of computer programs; their statistical basis.

12.310 Physiological Psychology III S2 L2T2

12.311 Perception III S2 L2T2
A common assumption is that we see things appropriately because we know how big things really are. This view is examined in an historical context, and its assumptions are examined in the light of data from studies of infant perception, of conflict between vision and other senses, of certain illusions, and of the perception of size and distance generally.

12.312 Cognition III S1 L2T2
The stages involved in the reception of stimulus information from the environment, its analysis, storage, and transmission into responses. Stress on processing of language.

12.314 Motivation and Emotion III S2 L2T2
An examination of contemporary research regarding 'drives', 'incentives' and 'emotions' as determinants of animal and human action. Theoretical perspectives cover biological and social influences.

12.320 Social Psychology III S2 L2T2
The social basis of human interaction.

12.321 Developmental Psychology III S2 L2T2
Cognitive development set loosely within the framework of Piagetian theory. Includes: the development of perception with special reference to the nativism/empiricism issue; the development of operational thought with emphasis on its origins in sensori-motor intelligence; the development of language and its relationship to the development of thought; and the development of reading.

12.322 Abnormal Psychology III S1 L2T2
Conflict, anxiety and avoidance behaviour. Anti-social behaviour, psychosomatic disorders, brain pathology, mental deficiency, schizophrenia, depression, sexual anomalies, methods of diagnosis and treatment.

12.330 Psychological Assessment III S1 L2T2
Prerequisites: 12.152 or 12.200, and 1 other Psychology Level II subject. Excluded: 12.042, 12.203, 12.373.
Principles and techniques of psychological assessment. Types of tests and their application in selection and allocation procedures.
12.331 Guidance and Counselling III S1 L2T2
Prerequisites: 2 Psychology Level II subjects. Excluded: 12.623.

A review of significant therapeutic approaches from Freud to the present day, and their implied views of man. The sources of the theories of, for example, Freud, Miller and Dollard, Ellis, Rogers, Perls and Janov, concluding with problems in evaluating the effects of psychotherapy. Practical work: interviewing, group process and structure, and interpersonal relations.

12.332 Behavioural Change III S2 L2T2

12.333 Ergonomics III
Prerequisite: 12.152 or 12.200. Excluded: 12.663.

Not offered in 1982.

Aspects of human performance relevant to work design. The principles involved in designing the environment in general, and work in particular, to suit man's capabilities.

12.334 Behaviour in Organisations III S1 L2T2
Prerequisites: 2 Psychology Level II subjects. Excluded: 12.653.

Theories and research methods for understanding behaviour in organisations and in the environment.

12.340 A Special Topic III

Not offered in 1982.

An occasional elective dealing with a special field of psychology.

Psychology Level IV Units

12.400 Psychology IV (Research) F
Prerequisite: All requirements for Years 1-3 of the course.

Psychology IV in the BSc in Psychology degree involves a supervised research thesis and course work to be determined in consultation with the Head of School.

12.401 Psychology IV (Course Work) F
Prerequisites: All requirements for Years 1-3 of the course.

Psychology IV in the BSc in Psychology degree involves course work and a supervised practical training to be determined in consultation with the Head of School.

12.403 Psychology IV (Research) F
Prerequisites: 12.100, 12.200, 12.201, 12.202 and *8 Psychology Level III units, including all units from Group A and 12.301 from Group B, at an average level of Credit or better.

Psychology IV in the Arts, and Science and Mathematics degrees involves a supervised research thesis and course work to be determined in consultation with the Head of School.

12.404 Psychology IV (Course Work) F
Prerequisites: 12.100, 12.200, 12.201, 12.202 and 8 Psychology Level III units, including all units from Group A, at an average level of Credit or better.

Psychology IV in the Arts, and Science and Mathematics degrees involves course work and a supervised practical training to be determined in consultation with the Head of School.

Psychology Servicing Units

12.651 Psychology (Industrial Relations) F L2T0
Prerequisite: 12.001 or 12.100.

Visual Perception — The nature and characteristics of visual perception. Topics to be discussed include: psychophysics, the organization of visual perception, the influence of context, and the effects of learning and motivation on perception. Throughout the course emphasis will be placed on an examination of relevant experimental data. Abnormal Psychology — The concepts of normality and abnormality, and an examination of the principal psychodynamic processes. Causes and symptoms of various mental disorders are introduced with some emphasis on the importance of these symptoms in optometrical practice.

Graduate Study

12.228G Research Project
For students who commenced the degree course before Session 1, 1980.

An individual research project in the general area of clinical or community psychology, with supporting seminars covering the selection and formulation of a problem, the choice of a design, the planning of the general methodology and the analysis of data.

12.230G Psychological Problems of Children
An essentially practical course focusing on childhood disorders, such as mental retardation, infantile autism, physical and sensory handicaps, specific learning difficulties, and hyperactivity. Methods of assessment to be studied include standardized tests of child development, behavioural check lists and interviews, and observation of present behaviour.

Behavioural change procedures that may be effective in the treatment and management of the behavioural problems in question.

* Students in program 7312 Physiology/Psychology take 4 Psychology Level III units approved by the Head of the School of Psychology.
12.231G Professional Practice
Supervised work with clients in the School's clinic, and in approved institutions.

12.235G Community Psychology
The history, theory, concepts and practices of what has come to be called community psychology. Systematic problem-solving approaches to the resolution of human misery; the social and institutional conditions which promote human well-being. Substantive topics include: models and perspectives in community psychology; values and community intervention; evaluation and research in community psychology; social systems' theory and ecology; coping and social competence; consultation theories; various social issues, eg alcoholism and drug dependence, mental health care.

12.237G Biological Aspects of Behavioural Disturbance
A series of lectures and seminars on biological aspects of the aetiology and treatment of behavioural disturbance. Includes: behavioural genetics; organic brain syndromes; schizophrenia; depression; psychophysiology of stress; metabolic and endocrinological aspects of behavioural disturbance; nutrition and behavioural disturbance; psychopharmacology and pharmacotherapy; somatic treatments.

12.239G Research and Evaluation Methods in Clinical and Community Psychology
Problems of experimental design in the clinical field; measurement and scaling; analysis of change, including sequential analysis, and the application of the experimental methods to the individual cases. Design and evaluation of community programs.

12.240G Graduate and Clinical Seminars
A series of seminars on topics of particular relevance to the practice of clinical psychology, e.g. the organization and regulation of psychology as a profession; ethical standards in relation to clients, members of other professions, and the public; legal aspects of psychological practice. Additional topics dealing with contemporary issues in clinical psychology are chosen in consultation with students undertaking the seminars.

12.241G Graduate Colloquium
Participation in the staff-graduate student colloquium.

12.242G Research Thesis
For students who commenced the degree course after Session 1, 1980.
A research thesis involving an investigation into some aspect of clinical or community psychology.

12.243G Experimental Clinical Psychology
1. The theoretical basis of clinical practice in individual, group, institutional, and community settings. 2. The application of the principles of experimental psychology to the analysis of both adaptive and maladaptive patterns of behaviour. 3. The study of a wide range of techniques of behavioural intervention.

12.244G Psychological and Behavioural Assessment
The application of the principles of experimental psychology to problems of behavioural assessment in a wide variety of situations, eg lifestyle change; the management of behavioural disorders; institutional behavioural programs. Assessment procedures studied include: psychological tests, behavioural analysis and case history taking, psychophysiological and other objective measures.

12.245G Behavioural Health Management
Lectures, practical classes and supervised clinical experience concerned with the theoretical and practical issues associated with the design, implementation and evaluation of behavioural programs for the promotion of positive mental and physical health.

Accountancy

Undergraduate Study

14.501 Accounting and Financial Management I A S1 or S2 LT4½
Prerequisite: Nil.
The basic concepts of financial model building and information systems, including the double-entry recording system, the accounting cycle, income measurement and financial reporting, and an introduction to basic elements of taxation and auditing.

14.511 Accounting and Financial Management IB S1 or S2 LT4½
Prerequisite: 14.501.
Development of basic concepts introduced in 14.501 Accounting and Financial Management I A, including management accounting and operations research, corporate reporting, business finance, system design, elementary computer programming and applications.

14.602 Information Systems IIA S1 or S2 L2T1
Prerequisite: Nil.
Introduction of information systems in business and commerce, systems design concepts, the theory of modelling, feasibility studies, internal control and auditing. An introduction to programming.

14.603 Information Systems IIB S2 L2T1
Prerequisite: 14.602.
A design of information systems at an advanced level, broad introduction to operations research in business, additional experience with higher level program languages and data manipulation.
14.604 Information Systems IIIA S1 L2T1
Prerequisite: 14.603.

Concepts and advantages of real-time systems, the design of more complex information systems utilizing data base and communication concepts, more complex data structures, and the design of large systems, additional programming experience with higher level languages plus some contact with operation systems.

14.605 Information Systems IIIB S2 L2T1
Prerequisite: 14.604.

Students are assigned a small project on a module of a systems development project involving analysis, design, programming and implementation. The theme throughout the course is the iterative nature of the analysis and design process. A series of seminars on the aspects of design currently being encountered by students in their projects is presented.

14.608 Advanced File Design and Commercial Programming S2 L2T1
Prerequisite: 14.604.

File design for a variety of applications, more detailed analysis of data base management systems, experience in writing programs in a commercial oriented higher level language.

Graduate Study

For students enrolled in the MScSoc degree course

15.715G Science, Society and Institutions S1 L2

A conceptual and empirical examination of the changing relationships between the social structure of science, social and cultural institutions, and social values. Attention on England and Europe in the period 1750-1850, when intellectual advance in science was closely related to economic and social change in an ongoing manner.

15.716G Science, Technology and Economic Development

The several functions of science and technology in development, past, present and possible future. Development economics and sociology; case studies, ranging from nineteenth century Japan to China since 1950. The place of technology in contemporary development and the role of international institutions (eg multinational corporations) in transfers of scientific and technical knowledge. The ‘appropriateness’ of introduced technique and the concept of alternative technology and alternative development patterns.

Economics

Undergraduate Study

Department of Economics

15.001 Microeconomics I S1 or S2 L2T1½
Prerequisite: Nil.

Introduction to micro-economic analysis and its application to contemporary policy issues. The indifference curve approach to consumer behaviour, income and substitution effects, market demand, consumer surplus. Isoquants, cost concepts, supply curves. Perfect and imperfect product markets, agricultural intervention schemes. Partial and general equilibrium, concept of efficiency, international trade and tariffs. Productivity of factors of production, labour markets, bilateral monopoly, wage fixing in Australia. Public goods, pollution and property rights.

15.011 Macroeconomics I S1 or S2 L2T1½
Prerequisite: 15.001.

The economics of output, employment and inflation, including social accounting, consumption and investment functions, the Keynesian goods market model, supply and demand for money, interactions between the goods and money markets in equilibrium and disequilibrium situations, inflation and the balance of payments.

Biological Sciences

Undergraduate Study

17.031 Cell Biology S1 L2T4
Prerequisites:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Science (any strand)</td>
<td>31-100</td>
</tr>
<tr>
<td>4 unit Science (any strand)</td>
<td>31-100</td>
</tr>
</tbody>
</table>

Basic cell structure; membranes, organelles, prokaryotic and eukaryotic cells; cellular locomotion; basic biological molecules; enzymes: structure and metabolic roles, cellular compartmentalization and enzyme function; diffusion, osmosis and active transport; theory of inheritance, linkage, gene interaction, sex determination, mutation, selection and evolution; information transfer and protein synthesis.

Requirements for Practical Work

Equipment required for practical work is set out in the Course Guide, available during Orientation Week from Laboratory A, Ground Floor, Biological Sciences Building. Students must purchase this prior to the first practical class.
The diversity of living things and the way in which they have adapted to varying environments. Stress on flowering plants and vertebrate animals, and the complex organ systems they possess. The structure and function of these organs, as well as their coordination and control, examined in practical experiments, as the basis of lecture and tutorial programs.

Applied Geology

Field tutorials are an essential part of these subjects, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

Undergraduate Study

25.110 Earth Materials and Processes S1 L2T4
Prerequisites:
HSC Exam Required
2 unit Science (any strand) or
4 unit Science (any strands)
Earth Processes: The origin of igneous rocks; plutonism and volcanism. The geological cycle. Weathering processes, soil formation and landforms. The origin of sedimentary rocks; transportation, deposition, lithification, Arid, glacial and periglacial processes: Geological time. Metamorphism and metamorphic rocks. Structural geology; classification and origin of faults and folds. Quaternary stratigraphic sequences, eustatics.
Field Work of up to two days is a compulsory part of the subject.

25.120 Earth Environments and Dynamics S2 L2T4
Prerequisite: 25.110.
Earth Environments: Introductory palaeontology, including the evolution of life, invertebrates and vertebrates. Principles of stratigraphy.

25.211 Earth Materials I S1 L2T4
Prerequisite: 25.120.
Practical: Macroscopic and microscopic examination of rock forming minerals and ore minerals and igneous rocks in the field and the laboratory.
Field Work of one day is a compulsory part of the subject.

25.221 Earth Materials II S2 L3T3
Prerequisite: 25.211.
Sedimentary Petrology: The influence of transportation, deposition and diagenesis on the composition, texture and structure of detrital sedimentary rocks. The chemically formed sedimentary rocks including the phosphates, zeolites, evaporites, ferruginous and siliceous deposits.
Field Work of up to eight days is a compulsory part of the subject.

25.212 Earth Environments I S1 L3T3
Prerequisite: 25.120.

* Students with percentile range 31-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.201, or 45.301 in lieu of 17.021 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.021 Biology of Higher Organisms for all units.

Field Work of up to four days is a compulsory part of the subject.

25.223 Earth Physics S2 L2T4

Global Geophysics: Principles of gravity, geomagnetism, palaeomagnetism, geothermy and seismology and their relation to shape, internal constitution, dynamic processes and major tectonic features of the earth.

Exploration Geophysics: Physical properties of rocks and soils. An introduction to electrical, electromagnetic, seismic, gravity, magnetic and radiometric methods of geophysical exploration. Application of these methods in the search for mineral deposits, petroleum, coal and groundwater and in civil and mining engineering projects.

Field Work of one day is a compulsory part of the subject.

25.311 Earth Materials III S1 L2T4

Prerequisite: 25.221. Co-requisite: 25.326.

25.321 Earth Materials IV S2 L3T3

Prerequisite: 25.311. Co-requisite: 25.326.

Clay Mineralogy: The structure and properties of the clay mineral groups including the kandites, illites, smectites, chlorites, mixed layered and fibrous clay minerals. Techniques for the identification of the clay minerals. Clay-water systems and ion exchange. Chemical weathering and the origin of the clay minerals.

Field Work of up to six days is a compulsory part of the subject.

25.312 Earth Environments II S1 L3T3

Prerequisite: 25.212. Co-requisite: 25.326.

Stratigraphy: Biological and physical methods of correlation. Definition of international stratigraphic boundaries, stratotypes and reference points. The development of the Precambrian craton of Australia. The geological evolution of eastern Australia, particularly the Late Palaeozoic and Mesozoic history of the Tasman Mobile Belt. Intracratonic basins of western and southern Australia and the effects of the dispersal of Gondwanaland. Geological evolution of the northern margin of the Australian plate, particularly the Mesozoic to Recent of Papua-New Guinea. Stratigraphic and structural evolution of aulacogens.

25.313 Exploration and Data Processing S1 L4T2

Prerequisite: 25.223.

Exploration Geophysics: The practice and theory of geophysics as a basic tool of geological exploration with applications in areas of energy, mineral and ground-water resources and engineering projects.

Mathematical Geology: An introductory course to develop proficiency in the acquisition, display and analysis of geological data utilizing digital computer processing. Elementary descriptive and inferential statistics and sampling. Fortran programming language (including hands-on computing experience). Analytical methods of mathematical geology including time series analysis, Markov Chain analysis, map analysis and multivariate identification and classification techniques. A practical approach is adopted throughout whereby the student makes extensive use of a library of programs implemented on the University's CDC multi-mainframe Cyber 72/171 installation for processing and interpretation of real data.

Field Work of up to five days is a compulsory part of the subject.

25.314 Mineral and Energy Resources I S1 L3T3

Prerequisite: 25.221. Co-requisite: 25.311.

Metallic Resources: Classification and origin of ore deposits, geochemical processes, research methods. Orthomagnetic, hydrothermal, porphyry, volcanic-sedimentary, Mississippi Valley type, chromium, iron, manganese ores, residual and mechanical ores. Introduction to mineral exploration. Laboratory study of hand specimens, thin sections and polished sections of various ore types; study of selected mining areas representing various genetic types of ore.

Economic Mineralogy: Nature of reflected light. Orthoscopic and conoscopic, rotation, dispersion phenomena. Microhardness and reflectivity, etch tests, XRD and microprobe techniques. Ore textures and their interpretation. Phase relations and paragenesis of ore minerals. Practical work in optical properties of ore materials, hardness and reflectivity measurements; study of selected ores and ore minerals under the microscope including textural studies.

Field Work of up to four days is a compulsory part of the subject.
25.324 Mineral and Energy Resources II S2 L3T3
Prerequisite: 25.312.

Field Work of one day is a compulsory part of the subject.

25.325 Engineering and Environmental Geology S2 L4T2

Field Work of up to three days is a compulsory part of the subject.

25.326 Geological Techniques S2 L3T3
Prerequisites: 25.212, 25.311.

Field Mapping: Geological mapping in a complicated geological terrain for up to eight days. Geological report writing and cartography.

Field Work not exceeding ten days is a compulsory part of the subject.

25.332 Geology for Geomorphologists and Pedologists S2 L2T3
Prerequisites: 25.211, 25.221, 25.212.

Clay Mineralogy: The structure and properties of the clay groups, including the kaolinites, illites, smectites, chlorites, mixed layered and fibrous clay minerals. Techniques for the identification of the clay minerals. Clay-water systems and ion exchange. Chemical weathering and the origin of the clay minerals.

25.621 Marine Geology I F L1T2
Prerequisites: 25.601 or both 25.110 & 25.120.

The form and nature of ocean basins; the origin, transport, distribution and deposition of suspended matter in ocean water. Principal groups of oceanic index fossils. Igneous and sedimentary rock types of the ocean floor and their significance. Tectonics of ocean basins.

Field Work of two days is a compulsory part of the subject.

25.622 Hydrological and Coastal Surveying F L1T2
Prerequisites: None.

Field Work of five days is a compulsory part of the subject.

25.631 Marine Geology II F L1T2
Prerequisite: 25.621.

Field Work not exceeding two days is a compulsory part of the subject.

25.632 Estuarine Geology S1 L2T4
Prerequisite: None.

The physical nature of the estuarine environment; its characteristic topography, chemistry and layering of water masses; tidal behaviour. Characteristic sediments, stratigraphy of sediment bodies and distribution patterns of sediments and microfossils in estuaries. Inorganic and microbial diagenesis of estuarine sediments. Procedures for map-
25.6341 Marine Mineral Deposits S1 L1T2

25.6342 Exploration and Seismic Methods S2 L2T1

Geophysics of ocean basins and off-shore areas and the techniques of their study. Seismic refraction, reflection and computational methods, instrumentation of seismic and acoustic sources, recording systems and signal processing. Geological and physical interpretation of results. Practical work on instrumentation, recording and interpretation of field data.

25.635 Marine Resources F L1T2

Prerequisite: 25.621. Co-requisite: 25.631.

Resources important to human civilization of a biological, fluid and mineral nature. Mining of ocean resources. Geological aspects of waste disposal and engineering works in the ocean. Tidal energy. Off-shore drilling.

25.411 Resource Geology S1

Offered in 1982.

Geophysics: The planning of geophysical surveys within the context of overall exploration and engineering development programs. Geological interpretation of geophysical data and discussion of selected case studies.

Mineral Exploration: Use of geology in mineral exploration and area selection; principles of exploration geochemistry; radiometric and remote sensing methods, exploration drilling; ore reserve estimation; exploration ground tenure in New South Wales.

World Evolution: Precambrian — global distribution and concepts; the Archean and Proterozoic of Australia; crustal development and the role of plate tectonics; special conditions and mineral resources. Stratigraphic and tectonic aspects of the Phanerozoic.

Field Work of up to 10 days is a compulsory part of this subject.

25.412 Mineral and Energy Resources F

Co-requisite: 25.411.

Offered in 1982.

Students taking this option are expected to show preference for either mineral or energy resources. (Other specializations, however, are not excluded eg petrology, mineralogy etc.) Projects, lectures, tutorials and seminars are designed accordingly.

Mineral Resources: A major part is a student field-laboratory research project in some aspect of mineral resources, as a general geological project, or a specialized mineral exploration project, eg, geochemical, geophysical, mineralogical. In Session 1 additional lectures/seminars follow on from 25.411 Resource Geology, giving more detailed appreciation of various aspects of mineral resources and include exploration management, mine evaluation, exploration geochemistry, exploration geophysics and mathematical geology. The content and extent of tuition in these subjects varies from year to year according to student requirements.

Energy Resources: A major part is a field mapping project in a sedimentary terrain. Depending on students' requisites, specialized field/laboratory studies are arranged in sedimentology, macro- and microfauna, petrology, mathematical geology, geophysics and well-log analysis. Where possible, projects are directly related to problems of coal and petroleum occurrence. In Session 1 attendance is expected at lectures/seminars described in Mineral Resources above and of common interest to the understanding of evaluation and exploitation of energy resources.

25.413 Engineering and Environmental Resources

Co-requisite: 25.411.

Offered in 1982.

A major part is a field/laboratory research project in some aspect of engineering or environmental geology. In Session 1 additional lectures are on: foundation geology, construction materials, rock weathering and fabric analysis applications to engineering problems, site investigations, practical construction geology, soil slope stability analyses and stabilization, geomechanical principles, engineering geophysical techniques, engineering geological case histories and advanced geological surveying applied to engineering works.

25.414 Geology IV Honours

Single major.

Further details of the honours course may be obtained from the Head of the School of Geology.

General Studies

Graduate Study

For students enrolled in the MScSoc degree course

25.568G Technology for Alternative Development S1L2

The need for alternative theories and models of development. Trends in economic development theory and development in practice. Current choice of science and technology in developing countries. The results of contemporary strategies of development and their relation to the policies of industrialized nations. The professed goals of development plans. Preferred models of development and the technology appropriate to them. The social, political and economic implications of choosing alternative goals and technologies in developing countries.
Geography

Undergraduate Study

27.111 Applied Physical Geography I F L2T4

Field Work of up to 3 days is an integral part of the subject.

27.801 Introduction to Physical Geography S1 L2T2½
Excluded: 27.111.

The mechanism of the physical environment, with particular exemplification within the Sydney region. Geological controls of landform development; fluvial, slope and coastal processes and landforms; cyclic and equilibrium approaches to landform studies. The global radiation budget and atmospheric circulation; weather and climate in the Sydney region. The hydrologic cycle. Processes and factors of soil formation and the soil profile. Controls of vegetation in the Sydney region. The ecosystem.

Laboratory classes include: study and use of geologic and topographic maps and air photographs; use of climatic data and the weather map; soil description. Two field tutorials, equivalent to 16 tutorial hours, are a compulsory part of the course. Students must provide basic drawing equipment and tracing paper, and will be asked to contribute towards the cost of the field tutorials.

27.802 Introduction to Human Geography S2 L2T2½
The relationships between man and the environment, their spatial consequences and the resulting regional structures that have emerged on the earth’s surface. Basic concepts and methods for studying the spatial organization of human activities, particularly as they relate to patterns of location and distribution, to the flows, movements and linkages between places and activities, and to the processes operating that give rise to variations from place to place, particularly between urban and rural areas. Australian and South-East Asian examples are used where relevant.

Laboratory classes: presentation and description of geographical data, analysis of spatial patterns, together with appropriate statistical exercises. Includes a compulsory field excursion equivalent to eight tutorial hours.

27.811 Physical Geography S2 L2T2½
Prerequisites: 27.801, 27.2813† Excluded: 27.111.

Laboratory classes: climatic analysis and mapping, and analysis of natural landscapes, including airphoto interpretation, together with appropriate statistical exercises.

27.812 Human Geography S2 L2T2½
Prerequisites: 27.802, 27.2813†.

The urbanization process in underdeveloped and industrialized societies. Theories, concepts and principles relating to the location, size and spacing of settlements; the economic and social structure of urban areas; city-region relationships. Geographical perspectives on contemporary urban problems are offered, particularly those associated with the concentration of people and activities between regions and within cities; emphasis on spatial variations in housing, employment and service provision.

Laboratory classes: case studies, methods of analysis and practical applications in the local region including a compulsory field excursion equivalent to sixteen tutorial hours.

27.2813 Geographic Methods S1 L1T2
Prerequisites: 27.111 or 27.801† & 27.802.

Statistical procedures used in both human and physical geography. Includes: measures of dispersion; samples and estimates; hypothesis testing; association; correlation and regression; tests for distribution in space; data collection and analysis.

Field Work of up to 5 days is a compulsory part of the subject.

27.2814 Geographical Field Methods S2 T2
Prerequisites: 27.111, 27.801 & 27.802, 27.2813.

Field methods as used in both human and physical geography. The subject involves a five-day field tutorial and associated laboratory work.

27.153 Climatology S2 L2T3
Prerequisites: 1.001, 27.811 or 25.110 & 25.120 or 17.031 & 17.021 or 27.111.

27.143 Biogeography S1 L2T3
Prerequisites: 27.811 or 17.031 & 17.021 or 27.111.

† In special circumstances a student may apply to the Head of School for permission to take 27.2813 as a co-requisite.
27.183 Geomorphology S2 L2T3
Prerequisite: 25.001 or 27.811 or 27.111. Excluded: 27.860.

27.133 Pedology S1 L2T3
Prerequisites: any two units from 2.111, 2.121, 2.131, 2.141, and 27.811 or 27.111.

Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Assessment of land hazards and land capability as related to soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erosibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping.

27.824 Spatial Population Analysis S2 L2T2
Prerequisite: 27.812.

Population growth and structure in an urban and regional context, stressing the components and processes of population change: fertility, mortality and migration set within the framework of demographic transition theory. Theories of migration and mobility and of optimal populations. Demographic and social indicators for urban and regional analysis and their implications for disparities in living conditions, residential differentiation and regional growth. The adjustment of immigrant and migrant populations to the urban environment.

27.825 Urban Activity Systems S1 L2T2
Prerequisite: 27.812. Excluded: 27.835.

Interaction in time and space within cities and between regions, stressing relationships between transportation, mobility and the environment structure of groups and individuals, as well as problems of accessibility to a wide range of activities, including services and employment. Patterns of flow, transaction and linkage between economic activities. Topics include: the journey-to-work, shopping and travel behaviour, contact networks, and the optimal location of facilities.

27.826 Urban and Regional Development S1 L2T2
Prerequisite: 27.812. Excluded: 27.836.

Processes of change in the distribution of settlement and economic activity at the regional and metropolitan scales, with special attention to urban and regional development in Australia. Topics include: regional balance and polarization, industrial concentration and linkages; dispersal and relocation of manufacturing and services; growth centres and regional multipliers; changes in the inner city and the urban fringe; problems of resource allocation and equity, and regional policies and strategies for urban and regional development; approaches to urban and regional analysis and definition of regional indicators.

27.827 Environment and Behaviour S2 L2T2
Prerequisite: 27.812. Excluded: 27.837.

For subject description, see School of Geography.

27.860 Landform Studies S2 L2T2/V
Prerequisite: 27.811 or 27.111. Excluded: 27.183, 27.870.

The study of landforms, with particular reference to Australian examples. Geomorphic regions. Planation surfaces and processes and associated weathering features. The evolutionary and dynamic approaches to landforms, with particular reference to fluvial landforms. Coastal processes and forms. Desert landforms as evidence of climatic change.

27.862 Australian Environment and Natural Resources* S2 L2T2/V
Prerequisite: 27.111 or 27.811 or 27.812.

Regional patterns of natural land and water resources of Australia. Climatic, geomorphic, soil and biotic features affecting past, present and potential modes of land use and stability of primary production. Conditions of the physical environment which favour or impede productive utilization and further development of land, marine, freshwater and energy resources under a changing technology. Problems of avoiding degradation of land quality and natural ecosystems. Case studies from distinctive environmental settings in Australia.

Laboratory/workshop sessions include the study of maps and air photographs of typical environments: local environmental problems are investigated in the field.

27.863 Ecosystems and Man*† S1 L2T2/V
Prerequisite: 27.111 or 27.811 or 27.812.

Soils as an expression of endogenic and external factors and of physical and biological controls, and as a bridge between the physical environment and man's use of the land. Materials and properties of soils. Soils in the ecosystem; interrelationships between soil and climatic, biotic and geomorphic features of the environment. Constraints imposed by soil properties on land use, in both rural and urban settings. Man's effect on the soil, and its consequences, eg soil pollution, disturbance of soil-moisture and nutrient cycles, soil depletion and erosion.

These themes will be co-ordinated in the study of regional examples in Australia and South-East Asia. There are laboratory workshops, field excursions and group projects.

* Subject to availability of staff.
† Not offered in 1982.
27.834 Spatial Population Analysis (Advanced) S2 L3T3
Prerequisites: Graded passes in 27.812, 27.2813. Excluded: 27.824.
Additional and more advanced work relating to the content of 27.824.

27.835 Urban Activity Systems (Advanced) S1 L3T3
Prerequisites: Graded passes in 27.812, 27.2813. Excluded: 27.825.
Additional and more advanced work relating to the content of 27.825.

27.836 Urban and Regional Development (Advanced) S1 L3T3
Prerequisites: Graded passes in 27.812, 27.2813. Excluded: 27.826.
Additional and more advanced work relating to the content of 27.826.

27.837 Environment and Behaviour (Advanced) S2 L3T3
Prerequisites: Graded passes in 27.813, 27.2813. Excluded: 27.827.

27.870 Landform Studies (Advanced) S1 L3T3
Prerequisites: Graded passes in 27.111 or 27.811, 27.2813. Excluded: 27.825.
As for 27.860 with additional and more advanced work, including selected studies of geomorphic processes and of man's influence on those processes.

27.872 Australian Environment and Natural Resources (Advanced)* S2 L3T3
Prerequisites: Graded passes in 27.111 or 27.811, 27.812. Excluded: 27.862.
As for 27.862 plus further study based on additional seminars and reading. Additional topics include 1. environmental bases for reserving land and water resources for forestry, water supply, wildlife protection, and recreation; 2. conflicting demands in regional resource development.

27.873 Ecosystems and Man (Advanced)† S1 L3T3
Prerequisites: Graded passes in 27.111 or 27.811 or 27.812. Excluded: 27.863.
As for 27.863, with additional and more advanced work.

27.880 Advanced Geographic Methods F L1T2
Prerequisites: Graded Passes in 27.111 or 27.811 or 27.812 and 27.2813.
Additional quantitative research techniques normally taken by Honours students in their third year. Research organization; computing including Fortran; collection and organization of data; statistical description; hypothesis testing and sampling; simple and multiple association analysis; nonparametric methods.

27.412 Coastal Geomorphology† S2 L2T3
Prerequisite: 27.111 or 27.811 or 25.011.
Advanced work in selected areas of coastal geomorphology. The characteristics of waves in deep and shallow water. Beach morphology and sediments. Coastal barrier systems. Lagoons and estuaries. Quaternary sea-level changes. A field project is undertaken as part of this course. Laboratory time is devoted to sedimentary analysis and statistical exercises using data collected from maps, air photos and in the field.

27.604 Geography IV (Honours) F
Prerequisite: 27.880.
Honours students in their final year are required to prepare a thesis of not more than 20,000 words and to attend a series of seminars on their thesis and supporting topics. The thesis topic must be approved by the Head of the School during the second half of the year preceding entry into the final year, while the thesis must be submitted before the examination period in November of the final year. It is expected that research work for the thesis is undertaken during the summer vacation preceding the final year. In addition, students are required to undertake advanced studies in a branch of geography appropriate to the area of research chosen for the thesis.

Organizational Behaviour

Graduate Study

For students enrolled in the MScSoc degree course

30.960G Technology and Organizations S2 L3
The relationship between technological change, employment and organizations. Students specialize in particular areas of interest within this focus, eg the origins, nature, rate, industrial distribution and prevailing ideologies of technological innovation, adaptation and diffusion may be examined, and consideration given to their relationship to 1. major organizational variables such as organizational size and structure; centralization and decentralization of control and power; employment, underemployment and unemployment, and the design of work. 2. the interests of key groups such as technical specialists (eg engineers), management, general employees, industrial tribunals, unions, and disadvantaged groups such as immigrants, women, youth and aged, and 3. factors affecting the quality of working life such as alternative patterns of work, industrial accidents and occupational health, work satisfaction, formal and informal learning and recurrent education.

* Subject to the availability of staff.
† Only students enrolled in the Marine Science program.
Optometry

Undergraduate Study

31.811 Optometry I F L4T4
Prerequisites: 1.011 or 1.001 or 1.021 or 1.031, 10.001 or 10.021B & 10.021C or 10.011. Co-requisite: 31.821.

Geometrical and Physical Optics — Extension of Physics I content on the nature of light, reflection, refraction, thin lenses, optical instruments, dispersion and colour.

Lens systems and thick lenses, Interference, Diffraction, Polarisation, Photometry.

31.812 Optometry II F L8T7

31.813 Optometry III F L6T0
Prerequisite: 31.812, 31.831.

31.821 Special Anatomy and Physiology F L3T3
Prerequisites: 17.031, 17.021. Co-requisite: 73.011A.

31.831 Diseases of the Eye F L2T1

31.841 Clinical Optometry F L1T14
Prerequisites: 31.812, 31.831.

Each student examines and prescribes for about fifteen patients per week. Special emphasis is placed on perimetry, aniseikonia studies, orthoptic diagnosis and treatment, reading deficiency diagnosis and treatment, and other advanced optometrical techniques. Each student keeps a detailed case book of all patients examined and treated, and conducts a number of visual surveys and visual job analyses; experience is also gained in the fitting of contact and corneal lenses on selected patients.

Graduate Study

31.701G Advanced Clinical Optometry F T4
Clinical work on selected patients, with special emphasis on advanced techniques and new developments. All areas of optometric examin-
31.702G Advanced Physiological Optics F L2T2

31.703G Pleorthoptics and Binocular Vision F L2T2
An integrated subject, in which binocular vision and pleorthoptics are studied from theoretical and clinical viewpoints. Clinical experience is provided by selected patients. Includes: The nature and control of eye movements, and their role in maintaining the perception of a stable visual world. Binocular and monocular subjective visual directions. The neurophysiological substrate of binocular vision and its phenomena. Stereopsis and its measurement. Accommodation, convergence, and oculo-motor imbalance. Laboratory and clinical methods of measuring eye position and visual directions. The aetiologies, measurement, and treatment of strabismus, anomalous correspondence, eccentric fixation and amblyopia.

31.704G Advanced Contact Lens Studies F L1T3

31.705G Advanced Contact Lens Practice F L1T3
The examination, evaluation and aftercare of contact lens patients.

31.706G Occupational Optometry F L2T2

31.707G Clinical Photography F L2T2
Introduction to clinical photography, cameras and lens systems, colour films, black-and-white films and filters, apparatus and accessories. Patient preparation and positioning, backgrounds and foregrounds, lighting, the 'safe-set' method. Copying, slide making, macrophotography, microphotography. 'Invisible light' photography (ultra-violet and infra-red), photofluorography, speedlight techniques, fundus photography. Dark-room techniques, portable dark-rooms. Quantitative photographic data analysis.

31.799G Project

Biochemistry

Undergraduate Study

41.101 Biochemistry S1 L4T8
Prerequisites: 17.021, and 2.121 & 2.131, or 2.141. Excluded: 2.003J.
The chemical properties of amino acids, peptides and proteins, carbohydrates, nucleic acids and lipids and the biological roles of these compounds. The nature and function of enzymes. The intermediary metabolism of carbohydrates, lipids and nitrogenous compounds. The molecular mechanism of gene expression and protein synthesis. Photosynthesis. Practical work to amplify the lecture course.

41.111 Biochemical Control S2 L2T4
Prerequisite: 41.101.
The relationship between structure and function of enzymes, selected protein systems and hormones. Metabolic networks and control mechanisms. Practical work to amplify the lecture course.

* Students must obtain a clear pass (PS) in either 41.101 or 41.111.
Pharmacology.

In conjunction with School of Anatomy and School of Physiology and
80.112 Human Structure and Function II

Servicing Subjects

80.111 Human Structure and Function I
80.112 Human Structure and Function II

In conjunction with School of Anatomy and School of Physiology and Pharmacology.

41.102A Biochemistry of Macromolecules

Prerequisites: 41.101* or 41.111*, 2.002B.

Polysaccharides and glycoproteins including bacterial cell walls. Chemistry and biology of polynucleotides. Methods of amino acid and nucleic acid sequence analysis. Protein structure and synthesis. Active centres of some proteins. Sub-unit organization of proteins. Enzyme kinetics. Practical work to illustrate the lecture course and to provide experience in modern biochemical techniques.

41.102B Physiological Biochemistry

Prerequisites: 41.101* or 41.111*, 2.002B.

41.102C Plant Biochemistry

Prerequisites: 41.101* or 41.111*, 2.002B.

The biochemistry of the major pathways characteristic of plants will be studied; topics include the energetics and carbon path of photosynthesis, glycolate cycle, growth hormones and regulatory phenomena, nitrogen fixation and assimilation.

Experimental work to illustrate and amplify the course utilizes radioactive isotopes and a number of newer techniques.

41.102D Biosynthesis of Plant Metabolites

Prerequisites: 41.101* or 41.111*, 2.002B. Co-requisite: 41.102C.

This unit complements 41.102C and is taken with it.

Topics: cell wall formation and the synthesis and mobilization of reserve materials; biosynthesis of amino acids, its regulation, and their conversion into non-protein materials, eg alkaloids and cyanogenic glycosides; aromatic ring formation and the isoprene pathway as a source of rubber, steroids, carotenes and essential oils. Flower pigments and phytalexins.

A combined practical with unit 41.102C illustrates and amplifies the course and includes a wide range of the latest techniques.

41.103 Biochemistry Honours

Advanced training in selected areas of biochemistry including a supervised research program of 500 hours minimum duration that places emphasis on the use of specialized techniques relevant to the research area. A written thesis on the research is required.

Biotechnology

Undergraduate Study

42.101 Introduction to Biotechnology

Prerequisites: 2.121 & 2.131, or 2.141, 17.021, 10.011 or 10.001 or 10.021B & 10.021C.

An introduction to biotechnology as a multidisciplinary subject, dealing with the application of biochemical systems or their products in industry. Industrial uses include production of single products such as amino acids, vitamins, antibiotics etc, single cell protein, alternate fuels from renewable resources and fermented foods and beverages. Biological waste treatment, aspects of pollution control, biodegradation and principles of enzyme technology. Concepts relevant to productivity in these systems, including: thermodynamic feasibility, techniques of environmental and genetic manipulation, choice of the appropriate biological catalysate(s) for a particular process, regulation of gene activity, principles of equipment design and biochemical engineering for construction of production plants. The laboratory component emphasizes the manipulation of different classes of microorganisms and the use of biochemical products involved in a variety of biotechnological areas.

42.102A Biotechnology A

Prerequisites: 41.101 and 41.201 or 44.101 (PC not acceptable).

The basic principles involved in the operation of microbial processes on an industrial scale. Includes: the selection, maintenance and improvement of microorganisms; the influence of physical and chemical factors on the microbial environment; the control of environmental factors; the effects of operational patterns on batch and continuous flow cultivation; aeration and agitation; scale-up of microbial processes; air and media sterilization; the harvesting, purification and standardization of products. The principles involved in microbial processes for chemical, pharmaceutical and food production, microbial waste treatment and environmental control. The laboratory component includes manipulation of microorganisms, laboratory-scale fermenter operation, microbial enzyme isolation, visits to industrial fermentation plants and industrial seminars.

42.102B Biotechnology B

Prerequisite: 42.101 (PC not acceptable).

Application of principles of biotechnology to the analysis and design of microbial processes of industrial relevance (antibiotics, microbial enzymes, single cell protein from carbohydrates and hydrocarbons, fermented foods and beverages, amino acids and vitamins, microbial polysaccharides, activated sludge and photosynthetic processes for waste treatment, microbial leaching of low-grade minerals). Emphasis on quantitative approach: mass and heat balance calculations, kinetic and thermodynamic analysis, detailed equipment design and specification, process design and layout, process simulation, plant location, application of optimization techniques. The economics of microbial processes are considered and comparison made with alternative modes of production or treatment. The economics of agro-industry in Australia using microbial processes. Marketing of fermentation products, clinical trials required, legal constraints, patent rights. Technical and economic feasibility studies, and a design project.

* Students must obtain a clear pass (PS) in either 41.101 or 41.111.
42.103 Biological Technology (Honours)
Advanced formal training in selected areas of biotechnology and participation in one of the school's research projects.

42.114 Fermentation Processes
(Component topic of 22.114 Processes.) Factors governing the use of micro-organisms in industrial processes, including the selection, maintenance and improvement of micro-organisms, the control of environmental factors, batch and continuous flow operational patterns, product recovery, process optimization and waste disposal. Demonstrations of the operation and control of fermenter systems and of microbial process simulation.

Graduate Study

42.104G Graduate Seminars

42.111G Reading List in Biotechnology
(Microbiology)

42.112G Reading List in Biotechnology
(Biochemistry)

42.211G Principles of Biology
A study of the characteristics of living systems, including a functional treatment of cytology, metabolism, bioenergetics; structure, function and characteristics of single and multicellular systems; growth; cell division; reproduction; heredity and evolution.

42.212G Principles of Biochemistry
A condensed treatment of biochemistry comprising the following aspects: the elemental and molecular composition of living organisms; the chemistry and roles of the biological elements and molecules; the thermodynamics and enzymatic catalysis of metabolism; catabolic, anabolic, amphiphilic and anaerobic processes, with emphasis on hydrolysis and synthesis of polymers, glycolysis and gluconeogenesis of glucose, β-oxidation and synthesis of fatty acids, deamination and decarboxylation of amino acids, the tricarboxylic acid cycle, electron transport and oxidative phosphorylation; metabolic regulation and integration.

42.213G Biochemical Methods
A laboratory program in practical biochemistry. The basic instrumentation and methodology of the biochemist will be introduced by practical exercises and demonstrations. A comprehensive treatment of the relevance and applicability of biochemical techniques is covered in tutorials.

42.214G Biotechnology
The selection, maintenance and genetics of industrial organisms; metabolic control of microbial synthesis; fermentation kinetics and models of growth; batch and continuous culture; problems of scale-up and fermentor design; control of the microbial environment, computer/fermentor interactions. Industrial examples will be selected from: antibiotic and enzyme production, alcoholic beverages, single cell protein (SCP), microbial waste disposal and bacterial leaching.

42.215G Practical Biotechnology
Illustration, demonstration and operation of laboratory-scale and pilot-scale equipment. Visits to appropriate industries. Experimental project or critical review.

42.301G Microorganism Productivity
Mechanisms of metabolic control — induction, repression and forms of activation and inhibition; microbial genetics — mutation, selection, genetic transfer and manipulation; environmental parameters — oxygen tension, pH, temperature, energy source etc. as are relevant to productivity in industrially important microorganisms.

Detailed studies — choice of substrate, screening and isolation of microorganisms, systematic application of techniques of genetic and physiological manipulation required to optimize product formation (products include for example, amino acids, nucleotides, enzymes and other macromolecules, antibiotics and other physiologically active compounds), potential strain improvement of microorganisms involved in other industrial processes (for example, mineral leaching, single cell protein production, detoxification and waste disposal).

Laboratory component will include current techniques of microorganism isolation and maintenance, genetic manipulation and physiological manipulation.

42.302G Enzyme Technology
Enzymes in vivo; properties; roles; sources; optimization of enzyme concentration, for example by nutritional control, environmental control and by genetic manipulation; isolation of enzymes: methods of extraction and purification; stabilizing safeguards; assay procedures; kinetics of isolated enzymes. Immobilization of enzymes: entrapment in insoluble matrices; adsorption on high molecular weight inert carriers; ionic binding to ion-exchange materials; covalent enzyme-enzyme linkage via a low molecular weight bifunctional reagent; covalent linkage to a high molecular weight support; changes in kinetic parameters and stability after immobilization; advantages and disadvantages of immobilization. Enzyme Reactor Engineering: design of batch and continuous systems, including open and closed plug flow and stirred reactors; comparison of kinetics in various designs; scale-up. Enzyme application: analysis; fabric, food and biochemical industries; medical treatment; medical diagnosis. Occupational hazards: allergic responses to enzymes; infection from pathological samples.

Methods of isolation, immobilization and application of enzymes for analytical, industrial and medical purposes will be illustrated by laboratory exercises and short projects. Practical comparison of various reactor designs will also be made.

42.303G Biochemical Process Control
Biochemical reactors: range of basic designs; range of biocatalysts, from microbial conglomerates to free enzymes, heat and mass transfer; design; scale-up; sterility; kinetics; economic considerations. Techniques for efficient operation and control of batch, single-stage continuous and multi-stage continuous processes.

Use of computers: aids to understanding the effects of operating variables for process optimization and control. Detailed examples: microbial processes such as production of antibiotics, organic acids, amino acids and enzymes; enzyme processes.

Practical illustration of: sample processes such as yeast and antibiotic production; mathematical simulation by analog computation; computer control of biochemical processes.
42.304G Biodeterioration and Biodegradation

Basic mechanisms of biodeterioration and biodegradation; direct and indirect attack mechanisms; co-metabolism and mixed population phenomena; factors controlling rates of degradation and calcitrance of materials to biological attack; biological accelerators.

Detailed treatment of: biological corrosion of metals and alloys; biodeterioration of fuels, petrochemical products, synthetic materials, timber and cellulosic products, building materials etc.; degradation of rocks and minerals; biological leaching of ores and mineral processing residues.

The laboratory component includes assessment of biodegradability of common industrial materials (detergents, surface coatings, fuels, biocides etc.); evaluation of protective methods; determination of biological leachability of minerals and mineral processing residues.

42.305G Case Studies

Critical evaluation of industrial processes and research and development procedures. Includes: study of isolated and selected areas of biotechnology, detailed study and evaluation of all aspects of an industrial process from the isolation of the appropriate organism or other biological starting material to the production and use of the final products, critical evaluation of techniques arising from current research and development programs.

42.306G Project

An experimental or technical investigation or design project in the general field of biotechnology with supporting seminars.

42.999G Alternative Higher Degree Qualifying Program

Training similar in content and standard to 42.103 Biological Technology (Honours), but designed specifically for students who cannot regularly attend the University.

43.101 Introductory Genetics

Prerequisites: 17.031 & 17.021.

Various aspects of molecular, organismal and population genetics, including: mechanisms of recombination and mapping in higher organisms; recombination and mapping in microorganisms; mutagens, structural and gene mutations, molecular structure of the gene, biochemical genetics, control of gene expression, genetic interaction, gene pools and gene frequencies, genetics and disease, genetic engineering.

43.102 Microbial Genetics

Prerequisite: 43.101.

A detailed study of the mutational basis of microbial variation. Mutagens; mechanisms of mutagenesis; induction, enrichment, isolation and characterization of mutants; mechanisms of repair of mutational damage. Systems of gene transfer and recombination in fungi, bacteria and viral viruses; the use of these systems in constructing genetic maps, and as tools for probing aspects of microbial physiology and biochemistry. Genetic control of gene expression; the operon concept and its application to specific regulatory systems. Genetic code, collinearity between a gene and its product, genes within genes, suppression of mutations. Restriction and modification of DNA; genetic engineering — its implications and prospects. Genetics of nitrogen fixation.

43.111 Flowering Plants

Prerequisites: 17.031 & 17.021.

Plant cell structure, structure and functions of the major organs in Angiosperms (flowers, roots, stems and leaves), secondary thickening and arborescence, transport systems in plants, seeds and germination. Variation in structure and function in relation to environment. Introduction to taxonomy and identification of major Australian plant families. A weekend field excursion is part of the subject.

43.121 Plant Physiology

Prerequisites: 17.031 & 17.021; any two (2) units of: 2.111; 2.121; 2.131. Students may apply to the School for variations of the prerequisites.

The physiology of the whole plant including a consideration of photosynthesis, the role of phycocyanin in plant morphogenesis and flowering, inorganic nutrition, transport, translocation, physiology of growth and development, seed physiology and plant growth substances and their application in agriculture.

43.131 Fungi and Man

Prerequisites: 17.031 & 17.021.

An introduction to the biology and taxonomy of fungi followed by a study of their economic importance to man. Includes: fungi as pathogens of plants and animals; use of fungi as food and in the production of useful chemical products; medical uses of fungi, including drugs and hallucinogens; degradation of organic matter, particularly in soils and of timber; interaction of fungi with other organisms; chemical control of fungi.

* Students with percentile range 31-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.101, 45.201 or 45.301 in lieu of 17.021 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.021 Biology of Higher Organisms for all units. Students should consult lecturers before purchasing textbooks.
43.112 Plant Taxonomy

Prerequisite: 43.111. Co-requisite: 43.101.

The assessment, analysis and presentation of data for classifying plants both at the specific and supra-specific level; the emphasis is on vascular plants. Field work is part of the course.

43.122 Biochemical Approaches to Plant Physiology

Prerequisites: 41.101.

The physiology and biochemistry of plant lipids with special reference to developing tissues; development and ripening of fruit. Project work is an important part of the subject and some attendance is required outside the hours set down in the time-table. Reading and interpreting original scientific papers are an important part of these projects which relate to current work in the fields covered.

43.132 Mycology and Plant Pathology

Prerequisite: 43.131.

A detailed study of the fungi, including both saprophytic and plant pathogenic species. Includes: hyphal structure and ultrastructure; morphology and taxonomy of members of major taxonomic groups; spore liberation, dispersal, deposition, germination, infection and the establishment of a host-pathogen relationship; morphogenesis of vegetative and fructifying structures; cytology, genetics; ecological considerations of fungi in specialized habitats, survival mechanisms and methods of control of plant pathogens.

43.142 Environmental Botany

Prerequisites: 17.031 & 17.021.

The soil and atmospheric environments in which plants live and a study of the interaction of plants with their environment. Energy and mass transfer. Emphasis is placed on the role of environmental science in food production. Students are required to attend one week-day field excursion as part of the practical course.

43.152 Plant Community Ecology

Prerequisites: 43.111 and 17.012 or 27.111.

Recognition and delimitation of plant communities. Ecology of selected Australian vegetation types. Use of numerical methods and application of community concept to palaeoecology. Field work will be an integral part of this course.

43.162 The Plant Kingdom

Prerequisite: 43.111.

The major taxa of the Plant Kingdom with emphasis on the green plants. The evolution of basic vegetative structures, reproductive structures and genetic systems are studied. Field work will be part of the course.

43.172 Phycology and Marine Botany

Prerequisite: 43.111.

The biology of freshwater, marine and soil algae with particular emphasis on the marine flora of S.E. Australia. Field work is part of the course.

43.182 Cellular and Developmental Botany

Prerequisite: 43.111 or 43.121. This latter unit may be taken as a co-requisite in some circumstances.

The organization and interrelations of higher plant cells. Emphasis is placed on the interactions between plant cells and cellular events which control such processes as the regulation of growth and division, movement in cells, secretion, seed germination, flowering and senescence.

Servicing Subject

43.202 Plant Structure and Function

Microbiology

Undergraduate Study

Level II Units

44.101 Introductory Microbiology

Prerequisites: 17.031 & 17.021.

The general nature, occurrence and importance of microorganisms. A systematic review of the major groups of microorganisms: the eucaryotic protista (micro-algae, protozoa and fungi); procaryotic protista (blue-green algae, “higher” bacteria, typical unicellular bacteria and small bacteria-like forms); plant, animal and bacterial viruses. The relationship between microorganisms and their environment; ecological considerations. Interactions between microorganisms and higher organisms.

* This unit alternates each year with 43.162 The Plant Kingdom. 43.162 is given in 1983. If both units are to be included in three-year pass degree program, one should be completed in second year.
† These units may be taken in either second or third year of the science course provided that prerequisites have been completed.
‡ These units may be taken in either second or third year of the Science and Mathematics course provided that prerequisites have been completed.
§ This unit alternates each year with 43.112 Taxonomy.
44.121 Microbial Growth

Prerequisites: 44.101 & 41.101 or 2.003J.

Level III Units

44.102 General Microbiology

Prerequisites: 44.101, 44.121*, 41.101.

Systems for the isolation, identification and taxonomic description of microorganisms; fine structure, cyto-chemistry, genetics of bacteria and viruses; metabolic requirements of microorganisms; microorganisms and their environment; growth, inhibition and death; energy-yielding and biosynthesizing systems; genotypic and phenotypic control systems.

44.112 Applied Microbiology

Prerequisite: 44.102.

Endeavours to relate the basic facts about microorganisms to a variety of practical conditions. The occurrence, importance, activity and control of microorganisms in soil, air, water and in their relationship with higher organisms (other than man); their industrial applications including manufacture, preservation and spoilage of food and dairy products. The nature of bacterial and fungal diseases of man, their cultural and serological diagnosis, epidemiology, treatment and prevention will be discussed in some detail.

44.122 Immunology

Prerequisites: 17.031 & 17.021, 41.101.

Basic immunology and immunological techniques. The interdisciplinary nature of the subject makes this unit suitable for students taking any major sequence in biological science and also for higher degree students who require a background training in immunology. The course includes phylogeny and ontogeny of the immune response; antigen and antibody structure; antigen-antibody reaction; immunochemistry; immunogenetics, clinical immunology; transplantation.

44.132 Virology

Prerequisite: 44.102.

The structure, replication and behaviour of animal, plant and bacterial viruses; applications of virological techniques; virus diseases of animals and plants, their epidemiology and control.

Servicing Subjects

44.143 Microbiology AS

80.311 Paraclinical Science

In conjunction with School of Pathology and School of Physiology and Pharmacology.

* Pass conceded not acceptable.
Undergraduate Study

45.101 Biometry S1 L2T4

Statistical methods and their application to biological data, including: introduction to probability; the binomial, poisson, normal distributions; student’s t, χ² and variance ratio tests of significance based on the above distributions; the analysis of variance of orthogonal and some non-orthogonal designs; linear regression and correlation. Non-linear and multiple regression. Introductory factorial analysis. Introduction to experimental design. Non-parametric statistics, including tests based on χ², the Kruskal-Wallis test, Fisher’s exact probability test and rank correlation methods. Introduction to programming in BASIC.

45.112 Marine Ecology S1 L2T4
Prerequisites: 17.031 & 17.021, 45.201 or 25.022 or 2.002D.

A study of the ecology of marine organisms with particular reference to the physical, chemical and biological environment in which they occur. Both field and laboratory practical work are included.

Students intending to enrol in this unit should register with the School of Zoology, for the February field trip by 14 January.

45.121 Evolutionary Theory S1 L3T3
Prerequisites: 17.031 & 17.021.

Current evolutionary theory, emphasizing the population level. Ecological genetics, evolutionary aspects of ecological niche theory, speciation, evolution of social behaviour, molecular evolution and general evolutionary genetics. Some background in genetics is desirable.

45.122 Animal Behaviour S2 L1T4
Prerequisites: 45.101 and (45.201 or 45.301).

An introduction to Ethology, the biological study of behaviour. Physiological, ecological, developmental and evolutionary aspects of behaviour are examined as important elements in the analysis of behaviour, particularly social behaviour. Both field and laboratory work are included.

45.132 Ecological Physiology S2 L2T4
Prerequisites: 45.201 or 45.301.

A study of physiological adaptation to habitat in animals. The problems imposed by the basic physiological characteristics of major animal groups under different environmental conditions are examined, especially osmotic and ionic regulation, oxygen availability, metabolism and temperature regulation/acclimation. Particular attention is given to Australian fauna and conditions.

45.142 General and Reproductive Physiology S1 L2T4
Prerequisite: 45.201 or 45.301.

Basic physiology of nerves, muscles, sensory perception, blood circulation, respiration, gastrointestinal tract, kidneys and hormones. Physiology of reproduction. The control of organ systems and body functions.

45.152 Population and Community Ecology S1 L2T4
Prerequisites: 17.021 & 10.001 or 10.011.

Examination of the dynamics of one, two or more interacting populations. Systems analysis and simulation in ecology. Theoretical and mathematical analysis of the dynamics and stability of ecosystems. Topics in the optimal management of renewable resources. Unifying concepts in ecology.

45.201 Invertebrate Zoology S2 L2T4
Prerequisites: 17.031 and 17.021.

A comparative study of the major invertebrate phyla with emphasis on morphology, systematics and phylogeny. Practical work to illustrate the lecture course. Obligatory field camp.

45.202 Environmental and Social Biology of Invertebrates S1 L2T4
Prerequisite: 45.201.

A comparative study of environmental and sensory physiology of invertebrates, with special emphasis on orientation behaviour, reproductive behaviour, social organization, pheromones, bioluminescence and rhythms. Experimental work is included.

45.301 Vertebrate Zoology S1 S2 L2T4
Prerequisites: 17.031 & 17.021.

A comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement the lecture course. Field excursions as arranged.

45.302 Vertebrate Zoogeography and Evolution S2 L2T4
Prerequisite: 45.301.

A geographic approach to the current distribution, abundance and types of vertebrate species in the Australian region. Particular emphasis is placed on the basic principles of speciation, the history of the Australian continent, vertebrate adaptations and changes in the distribution and abundance of the Australian vertebrate fauna under the influence of man. Field excursions as arranged.

† Students are not admitted to Level III Zoology units, without special permission of the Head of School, unless Chemistry 2.001 or 2.121 and 2.131, or 2.141, has been completed.
45.402 Insects

Prerequisites: 17.031 & 17.021.

A comparative study of the internal anatomy and external morphology of insects. Classification and biometrics of major groups and families. A collection of insects is to be made. Practical work to include dissections, a study of mouthparts, wing venations, segmentation. Field excursions as arranged.

Students intending to enrol in this unit should register with the School of Zoology, for the February field trip, by 14 January.

45.412 Insect Physiology

Prerequisite: 45.101. Co-requisite: 45.402.

The functions of the various organ systems and of the whole insect. Various aspects of reproduction, growth and metabolism. Experimental work to illustrate the lecture course.

45.422 Economic Zoology

Prerequisite: 45.201 or 45.402.

A study of the biology, ecology and control of vertebrate and invertebrate animals which harm man and his possessions. Human and domestic animal parasitology; pests on plants; diseases caused or spread by animals; chemical, biological and physical control, and side effects.

45.432 Project

Prerequisite: 45.412.

Selected aspects of insect physiology; ecology and toxicology. Treatment of topics in depth rather than breadth. Practical work illustrates the lectures and places emphasis on design and planning of experiments.

Chemical Engineering and Industrial Chemistry

Undergraduate Study

48.023 Chemical Engineering

Science I

Prerequisites: 1.001, 10.001.

Flow of Fluids

Dimensions and Dimensional Analysis

Units and measures. Conversions of units and equations. Dimensions and Dimensional Analysis. Basic principles of modelling.

Heat Transfer I

Introduction to steady state heat transfer including conduction, convection, radiation, boiling and condensation with an emphasis on problem solving. Resistance concept in heat transfer with series and parallel combinations.

Pumps and Pumping

Types of piping and fittings. Blow cases. Air lift pumps. Reciprocating pumps, centrifugal pumps and gear pumps. Blowers and compressors.

Material Balances

A revision and extension of material balance calculations with more complex examples, including those arising from stagewise operation of extraction equipment. Graphical solution of multi-stage calculations.

Computations I

A review of the fundamentals of FORTRAN, with extension to formatting, dimensioned variables and sub-routines. Application to the solution of selected problems involving heat and mass balances, fluid flow and pumping.

48.024 Chemical Engineering

Principles I

Prerequisites: 1.001, 10.001.

The following topics, from 48.023: Flow of Fluids, Heat Transfer I, Dimensions.

48.037 Chemical Engineering

Science II

Prerequisites: 2.002A, 48.023.

Mass Transfer (Theory)

Molecular diffusion in gases, liquids and solids and the measurement and calculation of diffusion coefficients. Diffusion at an interface — one component unidirectional diffusion and equimole counterdiffusion under steady state conditions. Mass transfer coefficients. Estimation and application of chemical and phase equilibria. Stage calculations applied to liquid/liquid, vapour/liquid and other mass transfer operations. The two film theory and the transfer unit concept in gas/liquid, vapour/liquid, and other operations.

Heat Transfer II (Theory)

An extension of the work covered in Heat Transfer I, with an emphasis on the fundamentals of convection and condensation; unsteady state conduction; introduction to heat exchanger design.

Surface Separation Processes

Principles of membrane processes, reverse osmosis ultrafiltration dialysis and electro dialysis. Design calculations for batch and continuous operation of reverse osmosis and ultrafiltration equipment. Principles of sorption processes such as adsorption on exchange and molecular sieves. Design of fixed bed sorption equipment. Principles and design of the surface separation processes such as foam and bubble fractionation.

Fluid-particle Systems

Interaction between particles and fluids; drag, terminal velocity, sedimentation. Flow through porous media; pressure gradient, filtration, fluidization, dispersion; multiphase flow, irrigated packed columns.

Reactor Engineering

Introduction to reactor design: ideal batch, steady state mixed flow; steady state plug flow, size comparisons of ideal reactors, optimization.
of operating conditions. Multiple reactor systems: reactors in series and parallel, mixed flow reactors of different sizes in series, recycle reactor, autocatalytic reactions. Multiple reactions: reactor design for reactions in parallel and reactions in series, series-parallel reactions. Temperature effects: heat of reaction, equilibrium constants, optimum temperature progression, adiabatic and non-adiabatic operation, product distribution and temperature.

Kinetics of Rate Processes
Basic concepts: rate laws, correlation with driving force, linear and non-linear systems, lumped and distributed parameter systems. Experimental measurement and correlation of process rates.

Thermodynamics

Computations II

Analogue computation: An introduction to the theory and programming of analogue computers, with application to the solution of differential equations and the simulation of dynamic systems.

Undergraduate Study

52.103 Introductory Philosophy A S1 L3T1
The material bears on the general topic of Persons. Topics: Plato's arguments for the immortality of the soul; Freud's theory of mental processes; Sartre's account of human existence; and the problem of personal identity.

52.104 Introductory Philosophy B S2 L3T1
Topics include: the rise of modern scepticism and problems about the source of our knowledge; the nature of moral problems; deduction in modern formal logic and related problems of the ambiguity of natural languages.

52.105 Philosophy of Law S2 L2T0
Prerequisite: Level II status in Philosophy.**
Selected conceptual and normative issues in the philosophy of law, centreing around the broad areas of law (eg its nature, validity, bindingness, and relation to morality), liberty, justice, responsibility (including strict and vicarious liability), and punishment.

52.153 Predicate Logic A S1 L2T0
Prerequisite: Any Level I unit. Not available to students who have already taken 52.153 or 52.162.
A system of natural deduction is presented for the first-order predicate calculus. Emphasis is upon construction of formal derivations, methods of showing the invalidity of formal arguments, and the evaluation of informal arguments by symbolization.

** Level II status in Philosophy consists in 1. being in second or later year of university study, and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.
52.1532 Predicate Logic B
S2 L2T0
Prerequisite: 52.1531. Not available to students who have already taken 52.153 or 52.162.
A continuation of Predicate Logic A, including the theories of identity and of definite descriptions.

52.163 Descartes
S1 L2T0
Prerequisite: Level II status in Philosophy.**
The main issues raised in the philosophy of Descartes and their importance for the development of modern philosophy. Emphasis is on the cogito ergo sum argument, the Cartesian method and the search for rational certainty, his theory of ideas, the body-mind problem and his account of freedom.

51.173 British Empiricism
S2 L2T0
Prerequisite: Level II status in Philosophy.**
The empiricist tradition with special concentration on Locke and Berkeley.

52.183 Greek Philosophy:
Thealess to Plato
S1 L0T2
Prerequisite: Level II status in Philosophy.**
The leading ideas of the Greek philosophers from Thales to Plato, with special reference to Pre-Socrates.

52.193 Scientific Method
S1 L2T0
Prerequisite: Level II status in Philosophy.**
The nature of empirical knowledge as exemplified in the physical and social sciences and in history, with emphasis on the concept of explanation, the nature of induction and scientific laws, counterfactual statements, and the paradoxes of confirmation.

52.203 Classical Political Philosophy
S1 L2T0
Prerequisite: Level II status in Philosophy.** Excluded: 52.182.
The basis of political society, its various functions and its relation to the individuals in it, investigated primarily through the works of Hobbes, Locke, Rousseau and Mill. Topics include the theory of a social contract, the establishment of political rights and obligations, and the relation of moral and political concerns within a political society.

52.213 Sartre
S1 L2T0
Prerequisite: Level II status in Philosophy.**
Sartre's account of freedom, relations between persons and his social theory.

52.233 Argument
S2 L2T0
Prerequisite: Level II status in Philosophy.** (Some familiarity with elementary logic is desirable.)
Reasoning skills: examination of practical arguments in classroom exercises. Lectures on practical argument in the courtroom, politics and everyday life as compared with arguments in mathematics and theoretical science.

52.263 Philosophy of Psychology
S2 L2T0
Prerequisite: 52.193.
Some aspects of fundamental theory of psychology, with special emphasis on classical and contemporary behaviourism and behaviourist oriented psychology, and on the general conceptions of "behaviour" and "purpose".

52.273 Aesthetics
S2 L2T0
Prerequisite: Level II status in Philosophy.**
The central concepts, types of judgment and theories occurring in the fields of aesthetics, art criticism and literary criticism.

52.283 Philosophical Study of Woman
S2 L2T0
Prerequisite: Level II status in Philosophy.**
Crucial structures involved in woman’s situation.

52.293 Plato's Later Dialogues
S2 L2T0
Prerequisite: 52.483 (or, by permission, a course covering similar material).
Centred round some of Plato’s later dialogues, the Theaetetus and Sophist in particular.

52.303 Spinoza and Leibniz
S2 L2T0
Prerequisite: 52.163.
The main issues raised in the philosophy of the two great seventeenth century rationalists, with emphasis on the development of their metaphysical systems in response to unresolved problems in the philosophy of Descartes and to contemporary scientific thinking. Their ethical views.

52.323 Set Theory
S1 L2T0
Prerequisite: 52.153 or 52.1532 or 26.812 or 10.001 or 10.011 or 10.021B & 10.021C.
An axiomatic development of Zermelo-Fraenkel set theory, including a construction of the natural numbers, equinumerosity, ordinal and cardinal numbers, the axiom of choice and some of its consequences.

** Level II status in Philosophy consists in 1. being in second or later year of university study, and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.
52.333 Philosophy of Perception S2 L2T0
Prerequisite: 52.163 or 52.173.

What it is that we are directly aware of when we perceive something. Emphasis on twentieth-century sense-data theories and their critics.

52.343 Privacy and Other Minds S1 L2T0
Prerequisites: 52.163 and either 52.173 or 52.243.

The questions: 1. whether there is anything that a person can know which it is logically impossible for anybody else to know; 2. whether it is logically possible that anybody should speak a language that cannot be understood by anybody else; and 3. how we come to understand another person's mind.

52.373 Philosophical Foundations of Marx's Thought S1 L2T0
Prerequisite: Level II status in Philosophy.**

A discussion of the basics of Marx's historical materialism and dialectical materialism.

52.403 Model Theory S2 L2T0
Prerequisite: 52.323 or 10.1123.

An introduction to the metamathematics of the predicate calculus from the point of view of model theory. Topics include: the deduction theorem, consistency, completeness, theories with equality, prenex normal forms, categoricity and second order theories.

52.413 Reading Option A S1 or S2

Admission by permission, to suitable students with good passes in at least two half-units at Level II.

Individually supervised reading and assignments on an approved topic not otherwise offered.

52.423 Seminar A S2 L0T2

Admission by permission, based on a student's performance in Level II units. Topics vary from year to year and are influenced by student requests. Topics may include:
- Contemporary Ethics
- Contemporary Moral Issues
- Logical Atomism
- Wittgenstein
- Theories of the Emotions

52.433 Seminar B S1 L0T2

As for 52.423 Seminar A.

52.443 Seminar C S2 L0T2

As for 52.423 Seminar A.

52.453 Reading Option B S1 or S2

As for 52.413 Reading Option A.

52.463 Introduction to Transformational Grammar S1 L2T0
Prerequisite: Any Level I unit.

Transformational grammar from the beginning: its history, goals, theory, and practice, emphasizing understanding and constructing arguments for one transformational system over another.

52.473 Meaning and Truth S2 L2T0
Prerequisite: 52.1531 or 52.463 or 52.153.

An introductory survey of issues in philosophical and linguistic semantics; truth, meaning, and presupposition in natural language; meaning as conventional; meaning and intention; compositional semantics and Tarski's definition of truth.

52.483 Plato's Theory of Forms S2 L2T0
Prerequisite: Level II status in Philosophy.**

Some dialogues of Plato, with special attention to Socratic definition and Plato's Theory of Forms.

52.513 Social and Political Philosophy S2 L2T0
Prerequisites: Level II Status in Philosophy** and 52.182 or 52.203.

Largely through contemporary writings, including a number of journal articles, investigation of such topics as rights, freedom, law and legislation, responsibility, liability, coercion, punishment and justice.

52.5231 Classical Greek Ethics S1 L2T0
Prerequisite: Level II Status in Philosophy.**

A systematic investigation of the moral theories of Plato and Aristotle. The immoral and subsequent amoral position of Thrasymachus and his question in Book 1 of The Republic, "Why should I be just?"; investigation of the ways in which Plato and Aristotle each sets out the problems of the nature of morality and why a person should be moral, their approaches to the solution to these problems, and their positive moral theories.

52.5232 Theories in Moral Philosophy S2 L2T0
Prerequisite: Level II Status in Philosophy.**

An examination of three moral theories central in the history and development of moral philosophy. Hume, Kant, and Mill offer differing kinds of moral theories, differing approaches to arriving at a moral theory, and specific theories which are markedly different from each other. Examination of each moral theory in itself and in comparison with the other two theories.

52.543 The Philosophy of Love S1 L2T0
Prerequisite: Level II Status in Philosophy.**

Four main topics: 1. The distinction between eros and agape. This, together with the cognate distinctions between desire and love and between lust and love, is considered with an emphasis on Plato, St

** Level II status in Philosophy consists in 1. being in second or later year of university study, and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.
The nature of various contemporary approaches to the forecasting of social and technological change, and the use of forecasting in particular sectors of economic, social and technological activity. Examines a number of commonly held views about the future and their connection with theories about relations between science, technology and society.

Undergraduate Study

58.602 Theory of Education I

F L1

Educational Psychology: Includes learning, cognition, individual differences and cognitive development. Detailed classroom applications. Where possible, phenomena described is demonstrated experimentally. Sociology of Education: Stress on the problem of inequality of educational opportunity: different conceptions of inequality of opportunity; documentation of the extent to which different social groups experience inequality, with special reference to low socio-economic groups, migrants and women; the possible causes of difference in the achievement rates of different social groups; compensatory education and to implications for social policy.

58.603 Theory of Education II

F L1½

Prerequisite: 58.602.

Educational Psychology: Extension of the introductory studies of learning, cognition, individual differences and cognitive development with a concentration upon child development. Classroom applications are emphasized. Where possible, phenomena described is experimentally demonstrated. Sociology of Education: Stresses the sociological factors which influence educational practice and on the social consequences of educational practices, highlighting sociological phenomena which it is useful to be aware of in the process of educating and some of the connections between education and society which increase insight into the nature and purpose of education. Topics: the socialization function of education, along with related concepts such as social control, social order, anomie and deviance; perspectives offered by contemporary critics on the role of education in society; some major societal trends and the implications for education; sociological aspects of teaching, including the sociology of knowledge, the sociology of the school and the teaching profession.

58.604 Theory of Education III

S1L2 S2T4

Prerequisite: 58.603.

Consists of two components, Philosophy of Education and Selected Studies in Education.

Philosophy of Education

Session 1: exploration of philosophical questions concerning teaching and learning, with particular reference to the various subjects taught in schools. Issues are raised concerning the relationships between school subjects, a connection between knowledge and the development of mind, the value of school subjects in relation to other activities which could compose education and the social and ethical context of education. These issues are followed up in much more detail in Selected Studies in Session 2.

Focus on logical and epistemological questions which are internal to

Sociology

Graduate Study

For students enrolled in the MScSoc degree course

53.309G Social and Technological Forecasting

The nature of various contemporary approaches to the forecasting of social and technological change, and the use of forecasting in particular sectors of economic, social and technological activity. Examines a number of commonly held views about the future and their connection with theories about relations between science, technology and society.
the various teaching subjects. Students are assigned to one of the following Philosophy of Education groups:

Philosophical issues in Mathematics and Education
Philosophical Issues in Literary Appreciation and Education
Philosophical Issues in History and Education
Philosophical Issues in Science and Education
Philosophical Issues in Curriculum and education
Philosophical Issues in Language and Education
Philosophical Issues in Social Science and Education
Philosophical Issues in Industrial Arts Education

Selected Studies in Education

In the final session, each student selects two education theory options from among a number available. While some deal with the separate disciplines of psychology, sociology and philosophy, others may draw material from more than one. In any particular year, the options offered depend on staff available and, to some extent, on student demand. Topics to be studied may include the following:

Computer Assisted Instruction
The Talented Child
Learning Disabilities
Social Trends and Problems
Sociology of the School and Classroom
Methodology for Criticism
Ethical Theory and Moral Education
Science and Religion in Education

58.612 Teaching Practice I

A gradual introduction to teaching in the school situation.

58.613 Teaching Practice II

Prerequisites: 58.612, 58.622 or 58.632 or 58.642 or 58.652 or 58.662. Co-requisites: 58.623 or 58.633 or 58.643 or 58.653 or 58.663.

Extensive opportunities for students to develop teaching competence. Each student is placed in a high school for two weeks and works in close association with a teacher.

58.614 Teaching Practice III

Prerequisites: 58.613, 58.623 or 58.633 or 58.643 or 58.653. Co-requisites: 58.623 or 58.634 or 58.644 or 58.654 or 58.664.

Provision of further opportunities for students to develop teaching competence. Each student is placed in a high school for 20 days and works in close association with a teacher. At least 10 of these days must be in a block to provide experience of continuous teaching.

58.632 Science Curriculum and Instruction I

Prerequisites: 1.001 or 1.011; 2.121, 2.131. Co-requisite: 58.602.

Introduction to the application of educational studies to the teaching of the Science curriculum in high schools. Lesson planning and classroom management. Stress on the subject which is taught in Teaching Practice I. Students join other trainee-teachers in a segment known as ‘Applied Studies in Teaching Practice’. Here, problems of communication are discussed and the nature, use and role of language in learning situations examined. The development of communication and teaching skills is furthered by peer group microteaching.

58.633 Science Curriculum and Instruction II

Prerequisites: 17.021, 17.031; 25.110, 25.120; 58.602, 58.632.

Co-requisite: 58.603.

Learning in science and the role of teacher demonstrations/pupil practical work. Preparation and use of audio-visual aids, lesson planning and classroom management. Assistance in the development of teaching skills is provided in peer group microteaching situations. The teaching of selected topics in biology, chemistry, geology and physics is commenced and this is developed in the fourth year. A segment known as ‘Applied Studies in Teaching Practice’ is common to all third year curriculum and instruction subjects: study of a number of topics dealing with specific classroom problems, measurement and evaluation.

58.634 Science Curriculum and Instruction III

Prerequisites: 58.603, 58.613, 58.633.

Examination of New South Wales secondary school science syllabuses. Investigation of curriculum material suitable for use in teaching secondary school science. Development of teaching resources. The professional development of the science teacher. The teaching of biology, chemistry, geology and physics.

58.642 Mathematics Curriculum and Instruction I

Prerequisite: 10.001 or 10.011. Co-requisite: 58.602.

Introduction to the application of educational studies to the teaching of the Mathematics curriculum in high schools. Lesson planning and classroom management. Stress on the subject which will be taught in Teaching Practice I. Students join other trainee-teachers in a segment known as ‘Applied Studies in Teaching Practice’. Here, problems of communication are discussed and the nature, use and role of language in learning situations examined. The development of communication and teaching skills is furthered by peer-group microteaching.

58.643 Mathematics Curriculum and Instruction II

A continuation of the application of educational studies to the teaching of the mathematics curriculum in high schools. Lesson preparation and presentation, classroom management and organization. An introduction to special mathematics courses being used in high schools, eg elective and slow learner courses. Stress on preparation for Teaching
Continuation of the application of educational studies to the teaching of mathematics curriculum in secondary schools. The teaching of the senior high school syllabuses. Curriculum development projects and their application. The learning problems of school students are critically analysed and practical remedies investigated. Designed to complement 58.614 and these taken together are designed to provide potential teachers with a wide set of experiences which will help them fit successfully into the NSW teaching environment.

Educational Psychology: Introduction to selected aspects of on-going research activities in educational psychology. The area is selected following discussions with staff members.

Sociology of Education: More detailed and extensive examination of central topics studied in the pass strand. Consideration of selected issues to do with social theory, the nature of the sociological enterprise and sociological methods. A research project.

Research in Education: Aims to provide the student with sufficient knowledge of research methodology to enable intelligent reading and assessment educational research reports. Includes descriptive and inferential research and cover sampling, measurement, design, statistical analysis, statistical probability and interpretation of results. Emphasis is on interpretation of results rather than on numerical skill in analysing data. Further issues concerning interpretation include the nature of explanation, philosophy of probability theory, cause and effect, generalisation, selection and identification of research areas, ethical issues in research procedures.

Philosophy of Education segment

Some connected issues in social and political philosophy, and their implications for educational theory and practice. Includes: freedom, compulsion and the aims of education; neutrality of education systems, schools, teachers and courses; and justice and equality.

Enrolment is subject to approval by the Head of School.

In their full-time honours year, all students enrol in four twenty-eight-hour units of study appropriate to their research, as approved by the Head of School.

Enrolment is subject to approval by the Head of School.

In their full-time honours year, all students enrol in four twenty-eight-hour units of study appropriate to their research, as approved by the Head of School.

Enrolment is subject to approval by the Head of School.

In their full-time honours year, all students enrol in four twenty-eight-hour units of study appropriate to their research, as approved by the Head of School.
62.052 Scientific Knowledge and Political Power

Prerequisites: As for 62.012.

An introduction to the political dimensions of twentieth century science. Covers: growth of expenditure on science in the twentieth century; attempts to define the social function of science in the inter-war years; the radical scientists' movement of the 1930s — the freedom versus planning debate; science and politics in the Second World War; government patronage and political expectations in the post-war period; science and economic growth; the science-technology relationship; the rejection of laissez faire in the 1960s; approaches to science policy; critiques of the role of science in contemporary society; scientists as experts; the question of social responsibility in science.

62.062 The Social System of Science

Prerequisites: As for 62.012.

An introduction to the social dimension of the practice of science. The production and application of scientific knowledge is examined as an activity in constant interaction with its socio-economic, political and cultural environments. Aims to highlight the principal features of this interaction in relation to each of the following aspects of scientific activity: the processes of research and discovery; the dissemination of research findings and their acceptance or rejection; the development or abandonment of accepted theories; and the technological applications of scientific knowledge.

62.033 Development of Theories of Matter

Prerequisite: As for 62.012.

Not offered in 1982.

The development of man's ideas about the nature of matter: 'the oldest conceptual tool in the Western speculative tradition'. A broad coverage of this many-sided topic is offered, from antiquity to the mid-twentieth century, though the emphasis is placed largely on ideas in the nineteenth and twentieth centuries. The main areas of study are: Greek matter theory; the 'organic' theories of the Renaissance; the 'mechanical philosophy'; Newton, Leibniz and Boscovich; eighteenth-century chemistry; Dalton's atomic theory and the 'atomic debates'; the establishment of the atomic weight scale; nineteenth-century theories of bonding and structure; Faraday, Maxwell and Hertz and the origins of field theory; radioactivity; Thomson and Rutherford; the Bohr theory of the atom; the wave/particle model, the uncertainty principle, and associated controversies; anti-matter; electronic theories of valency.

A set of notes is distributed each week and the subject is conducted entirely by seminars.

62.072 Historical Origins of the American Scientific Estate

Prerequisite: As for 62.012.

The development of American scientific institutions and research from the early years of the Republic when that country was a scientific backwater to its present position of global dominance in terms of research resources. The historical roots of organized research in universities, industrial corporations and government organizations. The American case illustrates well the processes whereby the rapidly emerging scientific profession and its varied specialisms forged links between these sectors of society. Topics include the place of science in a young resource-rich democracy, the uses of science in Progressive ideology, and the war-born relationship of science, government and military.

62.082 Science, Technology and Developing Countries

The disparities between the scientific and technical capabilities of industrialized and developing societies; the reasons for these disparities and their economic and social consequences. Includes: the problems of dependency; the product cycle and its impact on location of production; concepts of the 'learning curve'; aspects of technology choice; bargaining processes; transnational corporations and the 'truncation' of the industrial sector; efforts to define 'appropriate' technologies; modes of technology transfer; alternate models and policies for scientific and technological development; the role of traditional technology; the impact of modern technology on international relations.

The consequences of modern science and technology for the role of the military in developing countries; food and population problems; energy use; environmental impacts; class structure; etc. The social role and function of scientific communities in less developed countries; the process of diffusion of science from the centre to the periphery and the evolution of national scientific communities and institutions addressed through case studies.

62.093 Science and the Strategy of War and Peace

Prerequisite: As for 62.012.

Not offered in 1982.

Aims to give historical perspective to the impact of science and technology on the art of war and to contemporary problems of nuclear disarmament and the arms race. Emphasis on the intellectual challenges, social consequences and moral dilemmas posed by twentieth century developments in propaganda, the mechanization of warfare, communications, surveillance and physical, chemical, nuclear and biological weaponry; the early history of the atomic scientists and the nuclear age; Einstein and Russell and the anti-war movements; the role of the military industrial complex; the dynamics of the arms race and its limitation; the technological elaboration of armaments in the 1960s; the opportunity cost of military expenditure and limits to growth.

62.103 The Discovery of Time

Prerequisite: As for 62.012.

The evolution of ideas concerning time and history, including the age and history of the earth, devoting particular attention to the period from the seventeenth century to the present. Consideration is given to such questions as philosophical and scientific problems about the nature of time, historiographical ideas, the authority of the scriptures, social theories, the concept of Nature, the rise of the Romantic
Movement, and the growth of historical consciousness, the intention being to provide an understanding of the intellectual setting within which ideas about time, history and geological theories developed.

62.104 The Darwinian Revolution S2 L1T1
Prerequisite: As for 62.012.

The scientific, philosophical and social antecedents and consequences of Darwin’s theory of evolution. The prevailing ideas in biology before Darwin, in the context of the general climate of ideas in the eighteenth and early nineteenth centuries. Darwin’s life and work. The work of Mendel and the establishment of the ‘synthetic’ theory of evolution. Major portion of subject is devoted to an examination of the impact of evolutionary ideas in such diverse fields of thought as religion, literature, music, political theory, epistemology, ethics, and the social and behavioural sciences. The subject is conducted entirely by seminars.

62.106 Mind, Mechanism and Life S1 L2T1
Prerequisite: As for 62.012. Excluded: 62.043.

The development of scientific ideas concerning the nature of life, mind and behaviour. Includes both a brief treatment of early ideas and reference to issues in contemporary biological and behavioural sciences; the main focus is on the period from the Proto-Scientific Revolution of the sixteenth century to the advent of the general purpose computer. Topics include: the Galenic heritage; Vesalius and the School of Padua; the biological thought of William Harvey; machines and the mechanical philosophy; Cartesianism and the mechanization of biology; classical theories of the relationship between mind and body; neurophysiology from the eighteenth to the early twentieth century; the mechanist-vitalist disputes; Wundt, Fechner and the rise of experimental psychology; Pavlov and the conditioned reflex; behaviourism and its critics; mind, brain, life and the computer.

62.107 The Freudian Revolution S2 L2T1
Prerequisite: As for 62.012.

Brief survey of nineteenth-century conceptions of psychology and psychiatry; the founding and development of psychoanalysis by Sigmund Freud and his associates. The reception of psychoanalytic theory, with particular attention to: the status of psychoanalysis as a science and its relation to other sciences; the development of alternative depth psychologies; and the application of psychoanalytic concepts in fields such as anthropology, history, literary criticism, and social and political theory.

62.109 The History of Medical Theory and Practice S1 L2T1

Development of theory and practice in Western Medicine from the time of Hippocrates to the introduction of the CAT Scanner. Topics: 1. ‘bedside’ medicine from antiquity to the French Revolution; 2. ‘hospital’ medicine in the early nineteenth century; 3. ‘laboratory’ medicine in the late nineteenth century; and 4. ‘technological’ medicine in the twentieth century, with particular emphasis on the social role of modern medicine.

Level III

62.013 History of the Philosophy and Methodology of Science F L0T2
Prerequisite: 62.012 or 62.022 or 62.032 or 62.052 or 62.062.

The development of ideas concerning the nature and methods of the sciences from antiquity to the present: Platonism and Aristotelianism; Galileo and the mathematization of science; Descartes, Leibniz and Continental rationalism; Bacon Newton, Locke, Berkeley, Hume and British empiricism; Condillac; Kant and Kantianism; Herschel, Whewell, Mill and the revival of inductivism; Comte, Mach and nineteenth-century positivism; Peirce, James and pragmatism; Poincaré and conventionalism; Duhem and instrumentalism; Russell and Wittgenstein; Einstein and the relativists; Eddington’s selective subjectivism; Bridgman and operationalism; the Vienna Circle and logical positivism; Carnap and positivist reductionism; Popper and falsificationism; Kuhn; Feyerabend and methodological anarchism.

A set of notes is distributed each week and the subject is conducted by seminars.

62.083 Marxism and Science S1 L2T1
Prerequisite: As for 62.013.

Introductory lectures on aspects of Marxist theory and practice relevant to the sciences, followed by more detailed consideration of the following topics: Marxist interpretations of the social role of the sciences and of their historical development; the materialist theory of knowledge and ideology, and the critique of non-Marxist philosophies of science; relations between science, technology, and social theory; the Marxist analyses of technological change and its effects on education and employment.

62.105 Research Methods in History and Philosophy of Science F L2T1
Prerequisite: Completion of three HPS units with an average grade of Credit or better, or by permission of the Head of School.

A series of methodological studies designed to prepare students and to carry out honours level research in HPS. The historiography of science, and its relations to philosophical and social studies of science, analyzed through discussion of texts representing predominant approaches to HPS during the last 30-40 years. Bibliographical, editorial, and other research exercises.

Level IV Honours Programs

62.014 History and Philosophy of Science Honours

Candidates are required to present a thesis and to complete, as determined by the Head of the School, EITHER one session Honours Seminar units OR at least two one session Honours Seminar units together with additional approved work, provided that the total coursework component is at least equivalent to four Honours Seminar units.

62.024 Science Studies Honours

Candidates are required to present a thesis and to complete a two session Honours Seminar unit together with additional coursework, of equivalent weight, to be determined by the Head of the School of History and Philosophy of Science.
Graduate Study

For students enrolled in the MScSoc degree course

62.701G Philosophy and Methodology of Science S2 L2
An introduction to some current and fundamental problems in the philosophy of science and society; the nature of scientific debates and forms of argument; the function of "scientific" images in the exploration and conquest of man and nature; scientific understanding and explanations in terms of models, analogies and laws of nature; problems of creativity and logic in the construction, establishment, acceptance and rejection of theories; the dynamics of scientific development and change; the concept of scientific revolutions.

62.709G The Scientific Community S2 L2
The sociological analysis of the pure science community, which establishes the characteristics of this subgroup of society by examining its internal and external social relations. The internal relations refer to cognitive and behavioural factors within the community itself that promote or retard the advancement of science. The external relations refer to the political, ideological, economic and bureaucratic forces in society that shape and control the scientific community and the knowledge it produces.

62.710G Science, Philosophy, and Social Values S2 L2
Exposition and appraisal of some of the classical ethical theories. Examination of the claims of science to be able to provide a basis for moral judgements. Attempted establishment of an ethical framework which may serve as a basis for decision making when problems of an ethical nature arise in science. Selected case studies, in which decisions as to the most appropriate form of action are evaluated in the light of the ethical framework previously established. The social responsibility in science movement and its problems.

62.711G Marxism and the Critique of Science S1 L2
1. Introduction to the basic concepts of historical and dialectical materialism; 2. The Marxist theory of the interdependence of scientific knowledge and social development; 3. The Marxist critique of the economic, political and ideological functions of science under capitalism; 4. The 'Stalinist' approach to science in the Soviet Union, 1930s to 1950s; 5. The 'Maoist' approach to science in China, 1966-1977; 6. The convergence of the capitalist 'Science Policy' approach with the Soviet and Chinese 'State Planning' approach in the 1970s; 7. The Western Marxist critique of bureaucratic technocracy.

62.713G Project FL1
Students are required to prepare a minor research dissertation under the supervision of a member of staff and to attend introductory seminars and occasional addresses by visiting speakers.

62.714G Knowledge, Power and Public Policy S2 L2
The growth of government interest in science during the 20th century. Issues, institutions and policies. The nature and consequences of government support for research. The debate over the 'planning' of science. The arguments in favour of 'science policy'.

Science policy placed against the general background of the growth of government intervention in economic and social life during the last 100 years. The impacts of two world wars and the 'cold war'. Differences between countries in scientific organization and science policy.

62.715G Cause, Belief and Progress in the History of Science S1 L2
An historical perspective on general ideas relating to scientific knowledge in the modern period, including: the Idea of Progress from Bacon to Social Darwinism; the relations between religion, theology and science; historiographical interpretations of revolutionary episodes in the history of science; the historical roots of contemporary issues in the philosophy of science.

62.716G Science and Society in the Twentieth Century FL2
An introduction to the key issues raised by the interaction between science and society in the twentieth century. The unit consists of six topic modules drawn from the following list, each presented over a period of four weeks.

1. The Social and Economic Relations of Technology: An introduction to fundamental concepts concerning: the imperatives of technology; the techno-structure; the political dimensions of technological change; technological determinism; the technological fix; the ideology of industrialization; alternative technology. 2. Theories of Social Change: A comparative analysis of leading theories of social change, including Marxism and theories of industrial and post-industrial society, with emphasis on the role of science and technology. 3. Technology and Social Change: A case study of the social impact of (a) energy technologies on Australia and/or the developing world; (b) the microelectronic revolution on commerce and industry. 4. Historical Dimensions of Scientific Change: A case study of a major conceptual advance in twentieth-century science (eg, the development of relativistic physics or of genetics and molecular biology) as an introduction to problems of (a) scientific change and 'progress', (b) scientific community relations, and (c) science, ideology and responsibility. 5. The Philosophy of Science: Contemporary issues in the philosophical analysis of science, with emphasis on (a) the dynamics of conceptual change, and (b), scientific reasoning and 'method'. 6. Science as a Social Enterprise: Scientific institutions; patterns of communication; norms and values; social determinants of conformity and innovation; the internal and external politics of science. 7. Social Responsibility in Science: A history of the 'Social Responsibility Movement'; ethical and political dimensions of the problem of responsibility in science.

62.718G Science in National Cultures: Comparative Historical Perspectives S2L2
Historical and contemporary aspects of the comparative development of scientific institutions and research styles in different national contexts. The modes of interaction and mutual perceptions of scientific communities in Western industrializing nations from the nineteenth century; the question of convergence in systems of scientific organization in East and West, the implications of science 'transfer' to developing nations.
Board of Studies in Science and Mathematics

Undergraduate Study

68.302 Introductory Marine Science S1 L3T1
Ocean basins, sediments, properties of seawater, ocean circulation, coasts and coastal processes. Marine biology and ecology, primary and secondary productivity.

68.313 Physical Oceanography S2 L2T2
Prerequisites: 10.001 or 10.011; 1.001 or 1.011.

The physical properties of the oceans, and their measurement. Oceanographic instrumentation. The design of small and large scale ocean experiments. Laboratory and field work.

68.503 Science of Interfaces L2T3
Prerequisites: 2.002A, 1.012, 1.022.

Elementary theory of terminated lattice and surface states; the solid-gas interface; general theory of absorption; corrosion; catalysis; liquid gas interface; ocean/atmosphere interactions; lung/air interactions; solid-liquid interactions and electrochemistry.

68.430 Geology and Physics Honours
An honours program combining Geology and Physics in Program 0125, made by arrangement with the Heads of the two Schools.

Anatomy

Undergraduate Study

Prerequisites: Pass Conceded (PC) in a prerequisite subject is not acceptable. Students who have obtained only Pass conceded in a prerequisite subject should consult the Head of the School of Anatomy.

70.011A Histology I S1 L2T4
Prerequisite: 17.021, 17.031.

70.011B Mammalian Embryology S2 L2T4
Prerequisite: 70.011A.

70.011C Introductory Anatomy S1 L2T4
Prerequisite: 17.021, 17.031.

Introduction to gross anatomy, based on a study of dissected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy. Normal variations including those related to sex and age (childhood, adolescence, maturity, senescence).

70.012B Visceral Anatomy S2 L2T4
Prerequisites: 70.011A, 70.011C.

The topographical anatomy of the great visceral systems — gastrointestinal, respiratory, cardiovascular, and genitourinary — and of the head and neck. Living and radiological anatomy.

70.012C Neuroanatomy I S1 L2T4
Prerequisites: 70.011A, 70.011C.

70.013 Anatomy IV F
Prerequisite: Completion of the first three years of any Science program with a major in Anatomy (see Table 3).

An honours program consisting of the preparation of an undergraduate thesis together with advanced tutorial courses and participation in School seminars.

70.304 Histology II S2 L2T4
Prerequisite: 70.011A. Excluded: 70.3041. (If 70.304 is taken after 70.3041, total counts only 1 unit.)

70.3041 Histological and Histochemical Techniques
Prerequisites: 17.021, 17.031, and any one of 41.101, 45.301, 70.011A. Excluded: 70.304.

70.305 Neuroanatomy II
Prerequisite: Credit or better in 70.012C.
Topics: sensory and motor areas of the neocortex, hippocampus, cerebellum, and sense organs. Recent work on the development of the central nervous system. Recent advances in neurohistochemistry and neuroendocrinology. Students are required to undertake a substantial amount of private study.

70.306 Functional Anatomy I
Prerequisites: 70.011A, 70.011C.
Introduction to fundamental issues in the morphology and dynamics of human movement systems: includes physical properties of bone, muscle and connective tissue; biomechanics, movement analysis and neuromuscular control. These basic principles are applied to a detailed study of musculoskeletal components of head and neck and upper limb. Emphasis on modern analytical techniques and findings. Tutorials include detailed limb and joint dissections plus intensive study of surface and radiological anatomy.

70.307 Functional Anatomy II
Prerequisites: 70.012C, 70.306.
A continuation of 70.306. Includes: a detailed study of the musculoskeletal components of trunk and lower limb, functional morphology of locomotion, including comparative and evolutionary aspects of bipedal locomotion, development of musculoskeletal system and locomotion.

Physiology and Pharmacology

Undergraduate Study

73.111 Physiology IA
Prerequisites: 17.021, 2.121 & 2.131, or 2.141; 10.001 or 10.011 or 10.021 B & C. Excluded: 73.121, 73.011A. Co-requisite: 41.101.
Introduction to fundamental physiological principles, dealing first, with basic cellular function in terms of chemical and physical principles, and second, with the operation of the various specialized systems in the body, for example, the cardiovascular system, whose function it is to transport materials to and form the tissues of the body; the respiratory system which must maintain the exchange of oxygen and carbon dioxide between the atmosphere and the blood; the gastrointestinal system which enables food materials to be modified by digestion and absorbed into the circulation; the kidney which is involved in the regulation of body fluid and electrolyte balance and with the excretion of the waste products of metabolism; the endocrine system which releases chemical messengers, called hormones, that are carried in the blood stream to regulate a great variety of body functions, e.g. metabolism and reproductive activity; the nervous system which by means of very rapidly propagated electrical impulses is responsible for all our movements, sensations, memories, emotions and consciousness itself. A substantial series of practical class experiments on these different areas of physiology is included in the course. This subject is taken by students enrolled in any of the Physiology programs.

73.121 Physiology IB
Prerequisites: As for Physiology IA except that 2.131 may be accepted as a co-requisite. Excluded: 73.111.
Covers the same general areas of physiology as Physiology IA but in less detail and with less intensive practical courses. Physiology IB may be taken by students not intending to study physiology in Level III. Principles of Physiology is taken only by students in the BOptom degree course.

73.011A Principles of Physiology (Optometry)
Prerequisites: 73.111, 41.101, 41.111. Students enrolled in the Program 7302 (Physiology/Chemistry) may choose 2.003J and 10.2111 and 10.2112 in place of 41.101 and 41.111.
A major subject offered in third year, providing a more advanced course of study in Physiology. Students spend considerable time performing laboratory experiments which illustrate various physiological principles and introduce them to the techniques used in physiological investigation. The course is orientated towards the areas of physiology constituting the major research interests of the School. It is divided into several sections which may be available in special circumstances as separate 1 and 2 unit Level III courses, including Membrane Biology, Neurophysiology and Organ Physiology, details of which are given below.

73.012A Membrane Biology
For entry consult Head of School of Physiology and Pharmacology.
The properties of cell membranes including permeation of ions, solutes and water across membranes, generation of electrical signals in nerve and muscle cells produced by ion movements, and transmission of information between cells. Stress on modern research techniques and on a critical examination of appropriate classical papers.

73.012B Neurophysiology
For entry consult Head of School of Physiology and Pharmacology.
A detailed study in two broad areas, neural mechanisms in sensation and the control of posture and movement. Includes the regulation of visceral and other autonomic effector structures and the neural substrates and correlates of certain higher functions such as speech, memory and consciousness. Directed towards the experimental analysis of nervous system function, to introduce the techniques and
undertaken by selected students. Higher degree study for an MSc or PhD degree may also be

the School. Within this research area the student is given a specific

project. The student can usually nominate the general

research area in which he wishes to work from those being studied in

under the supervision of a staff member and submits a thesis based on

an honours degree in Physiology or in Pharmacology. This would

usually be done by students planning a career in either of these fields.

During the honours year the student carries out a research project

by the Head of the School to undertake a fourth year of study towards

a degree. For entry consult Head of School of Physiology and Pharmacology.

An advanced study dealing with major physiological systems of the

body. The cardiovascular and respiratory systems, the endocrine sys-
tems, and the kidneys are usually studied in depth, and important

aspects of gastro-intestinal and fetal physiology are also treated. Con-

centrates on the functions of the individual organs within these sys-
tems, on the operation of the systems as wholes, and on the mechan-

isms (including neural mechanisms) controlling the systems. Emphasis

on the approaches and techniques involved in physiological research.

Students are therefore required to carry out an extensive series of

experiments which usually employ mammalian (including human)

preparations.

An advanced subject in the area of behaviour genetics in man and ani-
mals, including man, in which genetic factors can be identified.

Principal subject areas: Models for behaviour genetics in invertebrates
and mammals, with discussion of and practice in research methodology;
mathematical treatment of data; genetic factors in human intelligence;
genetics of mental retardation and psychological illness in man, with appro-

appropriate clinical contact and discussion.

An advanced subject in the area of behaviour genetics in man and ani-
mals, including more complex aspects of statistical analysis of data,
and options for in depth studies and practical experience in specific

aspects of human and animal behaviour genetics.
Financial Assistance to Students

The scholarships and prizes listed below are available to students whose courses appear in this handbook. Each faculty handbook contains in its Financial Assistance to Students section the scholarships and prizes available within that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

As well as the assistance mentioned earlier in this handbook (see General Information: Financial Assistance to Students), there are a number of scholarships available to students. What follows is an outline only. Full information may be obtained from Room G20, located on the Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursary Endowment Board*</td>
<td>$150 pa</td>
<td>Minimum period of approved degree/</td>
<td>Merit in HSC and total family income not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>combined degree course</td>
<td>exceeding $4000</td>
</tr>
</tbody>
</table>

* Apply to The Secretary, Bursary Endowment Board, Box 460, PO, North Sydney 2060 immediately after sitting for HSC.
<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need</td>
</tr>
<tr>
<td></td>
<td>payable in fortnightly instalments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girl Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress and continued demonstration of need</td>
<td>Available only to female students under 35 years of age enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Ragnar Anderson Memorial Bequest</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Permanent residence in Australia and eligibility for admission to the full-time degree course in Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivetti Australia Pty Ltd</td>
<td>Up to $600 pa</td>
<td>2 years subject to satisfactory progress</td>
<td>Eligibility for admission to the third year of an honours program in the School of Mathematics in Pure/Applied Mathematics, Theoretical Mechanics or Statistics and leading to the award of the degree of Bachelor of Arts, Bachelor of Science or Bachelor of Science Diploma in Education</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George Szekeres Award</td>
<td>$200 pa</td>
<td>1 year</td>
<td>Open to students entering the final year of the honours degree course in Pure Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Scholarships</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application forms and further information are available from the Student Enquiry Counter, located in the Chancellery. Information is available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

Where possible, the scholarships are listed in order of schools within the Faculty of Biological Sciences and the Faculty of Science.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td>nal allowance of $4620 Other Allowances may also be paid.</td>
</tr>
<tr>
<td>University of New South Wales Postgraduate Scholarships</td>
<td></td>
<td></td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Research Awards</td>
<td>Living allowance of $4620 Other Allowances may also be paid.</td>
<td>As above</td>
<td>Preference is given to applicants with employment experience. Applicants must be graduates or scholars who will graduate in current academic year and who are permanent residents of Australia, and who have not previously held a Commonwealth Postgraduate Award. Applications to Registrar by 30 September (in special circumstances applications will be accepted 30 November).</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Course Awards</td>
<td>1-2 years; minimum duration of course</td>
<td></td>
<td>Preference is given to applicants with employment experience. Applicants must be graduates or scholars who will graduate in current academic year and who are permanent residents of Australia, and who have not previously held a Commonwealth Postgraduate Award. Applications to Registrar by 30 September (in special circumstances applications will be accepted 30 November).</td>
</tr>
<tr>
<td>Australian American Educational Foundation Travel Grant*</td>
<td></td>
<td></td>
<td>Applications must be graduates, senior scholars or post-doctoral Fellows. Applications close 30 September.</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td>Amount varies, depending on award</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women</td>
</tr>
<tr>
<td>The British Council Academic Links and Interchange Scheme**</td>
<td>Cost of travel to UK</td>
<td></td>
<td>Applicants must be either senior or junior academic staff. Preference will be given to activities likely to lead to further collaboration through joint research, publication, and/or teaching programs. Applications may be made at any time and should be submitted to the Registrar.</td>
</tr>
<tr>
<td>The Caltex Woman Graduate of the Year</td>
<td>$5000 pa for further studies in USA, UK, Northern Europe or in special cases Australia. There are no special allowances for travel or accommodation for married graduates.</td>
<td>2 years</td>
<td>Applicants must be female graduates who will have completed a University degree or diploma this year and who are Australian citizens or have resided in Australia for at least seven years. Selection is based on scholastic and literary achievements, demonstrable qualities of character and accomplishments in cultural and/or sporting/recreational activities.</td>
</tr>
</tbody>
</table>

* Application forms are available from: The Secretary, Department of Education, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.

** Application forms available from The British Council, PO Box 88, Edgecliff, NSW 2077.
General (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</td>
<td>Usually 2 years, sometimes 3</td>
<td>Applicants must be graduates who are Commonwealth citizens or British Protected Persons, and who are not older than 35 years of age. Applications close with Registrar by 1 October.</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa</td>
<td></td>
<td>See above under Undergraduate Scholarships, General</td>
</tr>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$5000</td>
<td></td>
<td>Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia.</td>
</tr>
<tr>
<td>Gowrie Graduate Research</td>
<td>Maximum $2000 pa in Australia, and $2750 if tenable overseas</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during 1939-45 War</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York**</td>
<td>Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA</td>
<td>12 to 21 months</td>
<td>Candidates must be either: 1. Members of the Australian or a State Public Service or semi-government Authority. 2. Staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close July.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships at Harvard University</td>
<td>Stipend of $4000 pa plus tuition fees</td>
<td>1, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian University</td>
</tr>
<tr>
<td>Nuffield Foundation Commonwealth Travelling Fellowships*</td>
<td>Living and travel allowances</td>
<td>1 year</td>
<td>Australian citizens usually between 25 and 35 who are graduates preferably with higher degrees and who have at least a year’s teaching or research experience at a university. Applications close by February.</td>
</tr>
</tbody>
</table>

† Application forms must be obtained from the Australian representative of the Fund, Mr L. T. Hinde, Reserve Bank of Australia, Box 3947, GPO, Sydney, N.S.W. 2001. These must be submitted to the Registrar by 24 July.

* Applications to the Secretary, The Nuffield Foundation Australian Advisory Committee, PO Box 783, Canberra City 2061.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Rhodes Scholarship**</td>
<td>Approximately £4000 stg pa</td>
<td>2 years, may be extended for a third year</td>
<td>Unmarried male and female Australian citizens between the ages of 19 and 25 who have been domiciled in Australia at least 5 years and have completed at least 2 years of an approved university course. Applications close in early September each year.</td>
</tr>
<tr>
<td>Rothmans Fellowships Award‡</td>
<td>$14 000 pa</td>
<td>1 year, renewable up to 3 years</td>
<td>The field of study is unrestricted. Applications close early September each year.</td>
</tr>
</tbody>
</table>

Biological Sciences

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Elizabeth II Postdoctoral Fellowships in the Physical and Biological Sciences§</td>
<td>Stipend of $20 762 pa increased to $22 304 pa at age 28 years. $500 pa for dependent wife, $200 pa for each dependent child, plus other allowances.</td>
<td>2 years</td>
<td>Applicants must be Australian citizens or citizens of the UK who have gained a PhD degree or equivalent qualification in one of the physical or biological sciences. Usually applicants should be under 30 years of age. Applications close at the end of the first weeks in March and September.</td>
</tr>
</tbody>
</table>

Science

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Optical Corporation Scholarship</td>
<td></td>
<td></td>
<td>To enable a graduate in optometry to undertake study for the award of the degree of Master of Optometry. Inquiries to Dr B. Holden, School of Optometry.</td>
</tr>
<tr>
<td>Contavue Laboratories Contact Lens Graduate Research Scholarship</td>
<td>$1000 pa</td>
<td>1 year renewable</td>
<td>To enable a graduate in optometry, medicine, or other appropriate discipline to undertake the degree of Master of Science or PhD in the School of Optometry. Inquiries to Dr B. Holden, School of Optometry.</td>
</tr>
<tr>
<td>Hydron Laboratories Contact Lens Research Scholarship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Lens Society of Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The John Ragnar Anderson Memorial Scholarships in Chemistry</td>
<td>As determined by the Committee</td>
<td></td>
<td>To enable a graduate to undertake full-time study approved by the Head of School of Chemistry for the award of a higher degree. The scholarship may be held concurrently with another scholarship awarded for the same purpose. Applications to Registrar by 31 October.</td>
</tr>
</tbody>
</table>

** Applications to Mr H. McCredie, Secretary of the NSW Committee, University of Sydney, NSW 2006.
‡ Applications to The Secretary, Rothmans University Endowment Fund, University of Sydney, NSW 2006.
§ Applications obtainable from the Secretary, Queen Elizabeth Fellowships Committee, Department of Science and the Environment, PO Box 449, Woden, ACT 2606; the Minister (Scientific), Canberra House, 19-16 Maltravers Street, London WC2R 3EH, UK; or the Australian Embassy, 1601 Massachusetts Avenue, Washington DC 20036, USA.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Rutherford Scholarship</td>
<td>Travel, fees, etc. A stipend which, if held in the UK, is worth £2250 stg pa</td>
<td>3 years</td>
<td>To enable graduates under 26 years of age to undertake experimental research in a branch of natural science. It is tenable at a British Commonwealth University other than the country in which the applicant graduated</td>
</tr>
<tr>
<td>Science Research Scholarship of the Royal Commission for the Exhibition of 1851</td>
<td>£2900 stg pa</td>
<td>2 years. Renewal for further year possible</td>
<td>To enable graduates, usually not more than 26 years of age, to undertake research in some branch of pure or applied science at an overseas university. Applicants must be British Commonwealth citizens or citizens of the Republic of Ireland, Pakistan, or South Africa, who have done at least 3 years of a university science course.</td>
</tr>
<tr>
<td>Shell Scholarship in Science for Engineering</td>
<td>Approximately £4000 stg pa plus travelling expenses</td>
<td>2 years, sometimes 3</td>
<td>Applicants must be Australian citizens under 25 years of age, with at least 5 years' domicile in Australia and who are completing the requirements for an honours degree in Science or Engineering. The successful candidate will undertake 2 years' graduate study towards the award of a higher degree at a British university.</td>
</tr>
</tbody>
</table>

Prizes

Undergraduate University Prizes

Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded.

Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor of the Chancellery.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sydney Technical College Union Award</td>
<td>50.00 and medal</td>
<td>Leadership in the development of student affairs, and academic proficiency throughout the course</td>
</tr>
<tr>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit — students in their final or graduating year</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Accountancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Society of Accountants</td>
<td>75.00</td>
<td>14.501 Accounting and Financial Management IA</td>
</tr>
<tr>
<td></td>
<td>75.00</td>
<td>14.522 Accounting and Financial Management IIA or 14.532 Accounting and Financial Management IIA (Honours)</td>
</tr>
<tr>
<td>Chamber of Manufacturers of New South Wales</td>
<td>15.00</td>
<td>14.703 Advanced Auditing</td>
</tr>
<tr>
<td>Coopers and Lybrand</td>
<td>200.00</td>
<td>14.542 Accounting and Financial Management IIB</td>
</tr>
<tr>
<td>Corporate Affairs Commission</td>
<td>100.00</td>
<td>14.542 Accounting and Financial Management IIB</td>
</tr>
<tr>
<td>Datec Pty Ltd</td>
<td>200.00</td>
<td>14.605 Information Systems IIIB</td>
</tr>
<tr>
<td>Hungerford Hancock & Offner</td>
<td>25.00</td>
<td>14.511 Accounting and Financial Management IIB</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>14.593 Accounting and Financial Management IIIB (Honours)</td>
</tr>
<tr>
<td>Law Book Co Ltd</td>
<td>50.00</td>
<td>14.511 Accounting and Financial Management IIB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Books</td>
</tr>
<tr>
<td>Schroder Darling & Company Limited</td>
<td>200.00</td>
<td>14.613 Business Finance II</td>
</tr>
<tr>
<td>Wilson Bros (Printers) Pty Ltd</td>
<td>30.00</td>
<td>14.583 Accounting and Financial Management IIIIB</td>
</tr>
<tr>
<td>E. S. Wolfenden Memorial</td>
<td>50.00</td>
<td>14.563 Accounting and Financial Management IIIIA</td>
</tr>
<tr>
<td>Arthur Young & Co</td>
<td>60.00</td>
<td>14.613 Business Finance II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Winifred Dickes Rost</td>
<td>50.00</td>
<td>Outstanding merit in Anatomy in Final Year of the Science and Mathematics Course</td>
</tr>
<tr>
<td>Jane Skillen</td>
<td>40.00</td>
<td>Outstanding merit in all branches of Anatomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauri Brothers & Thomson (Aust) Pty Ltd</td>
<td>150.00</td>
<td>Best result in the Level II biotechnology subject</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best result in one of the Level III biotechnology subjects</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best result in the biotechnology honours program</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

Donor/Name of Prize Value $ Awarded for

School of Chemical Engineering and Industrial Chemistry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Paper Manufacturers Ltd</td>
<td>21.00</td>
</tr>
<tr>
<td>The Australian Gas Light Company's in Chemical Engineering</td>
<td>50.00</td>
</tr>
<tr>
<td>Stauffer Australia Limited</td>
<td>50.00</td>
</tr>
</tbody>
</table>

School of Chemistry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Analytical Chemistry</td>
<td>100.00</td>
</tr>
<tr>
<td>Australian Consolidated Industries Ltd</td>
<td>60.00</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
</tr>
<tr>
<td>CSR Chemicals Ltd</td>
<td>200.00</td>
</tr>
<tr>
<td>Inglis Hudson Bequest</td>
<td>Advised annually</td>
</tr>
<tr>
<td>Jeffery Bequest</td>
<td>40.00</td>
</tr>
<tr>
<td>Merck, Sharp & Dohme (Aust) Pty Ltd</td>
<td>52.50</td>
</tr>
<tr>
<td>The Nestlé Co (Aust) Ltd</td>
<td>150.00</td>
</tr>
<tr>
<td>Tooth & Co Ltd</td>
<td>50.00</td>
</tr>
<tr>
<td>UNSW Chemical Society George Wright</td>
<td>50.00</td>
</tr>
<tr>
<td>UNSW Chemical Society Parke-Pope</td>
<td>50.00</td>
</tr>
</tbody>
</table>

School of Economics

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brinds Ltd</td>
<td>100.00</td>
</tr>
</tbody>
</table>

School of Electrical Engineering

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
</tr>
<tr>
<td>J. Douglas Maclurcan</td>
<td>40.00</td>
</tr>
</tbody>
</table>

216
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICI Theory of Statistics IV</td>
<td>100.00</td>
<td>Theory of Statistics IV</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>30.00</td>
<td>Excellence in 10.011 Higher Mathematics I</td>
</tr>
<tr>
<td>The Pure Mathematics</td>
<td>50.00</td>
<td>Excellence in Level III Pure Mathematics subjects</td>
</tr>
<tr>
<td>The Applied Mathematics</td>
<td>50.00</td>
<td>Excellence in Level III Applied Mathematics subjects</td>
</tr>
<tr>
<td>The Theoretical Mechanics</td>
<td>50.00</td>
<td>Excellence in Level III Theoretical Mechanics subjects</td>
</tr>
<tr>
<td>Statistical Society of Australia (New South Wales Branch)</td>
<td>50.00 and one year's free membership of the Society</td>
<td>General proficiency — Theory of Statistics subjects</td>
</tr>
<tr>
<td>The Broken Hill Proprietary</td>
<td>50.00</td>
<td>Higher Theory of Statistics II</td>
</tr>
<tr>
<td>W. D. & H. O. Wills (Aust) Ltd</td>
<td>50.00</td>
<td>Higher Theory of Statistics III</td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcan Australia Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Austral Crane</td>
<td>150.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Australian Institute of Metals</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>Australian Welding Institute</td>
<td>30.00</td>
<td>book order</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>The Broken Hill Proprietary Co Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Eagle & Globe Steel Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>The Electrolytic Refining and Smelting Co of Australia Ltd</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>Zinc Corp Ltd</td>
<td>70.00</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Optometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Optometrical Association</td>
<td>200.00</td>
<td></td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>15.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>International Optics</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>Bausch & Lomb Soflens</td>
<td></td>
<td>31.841 Clinical Optometry</td>
</tr>
<tr>
<td>Contavue</td>
<td></td>
<td>Best essay or project on contact lenses</td>
</tr>
<tr>
<td>L. G. Darcey Memorial</td>
<td>30.00</td>
<td>31.811 Optometry I</td>
</tr>
<tr>
<td>Filmer Scoats Memorial</td>
<td>30.00</td>
<td>31.812 Optometry II</td>
</tr>
<tr>
<td>Hoya Australia Pty Ltd</td>
<td>250.00</td>
<td>Highest academic records in the Optometry degree course</td>
</tr>
<tr>
<td>Hydron (Australia) Pty Ltd</td>
<td>25.00</td>
<td>31.813 Optometry III</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>Optometry Year IV</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.841 Clinical Optometry</td>
</tr>
<tr>
<td>Martin Wells Pty Ltd</td>
<td>200.00</td>
<td>31.821 Special Anatomy and Physiology</td>
</tr>
<tr>
<td></td>
<td>200.00</td>
<td>31.831 Diseases of the Eye</td>
</tr>
<tr>
<td></td>
<td>200.00</td>
<td>Final Year Essay</td>
</tr>
<tr>
<td>G. Nissel & Co Aust Pty Ltd</td>
<td></td>
<td>31.813 Optometry III and 31.841 Clinical Optometry — Contact Lenses sections</td>
</tr>
<tr>
<td>Optical Products Pty Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Opticians and Optometrists’ Association</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>The Optometric Vision Research Foundation</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Optyl (Australia) Pty Ltd</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Bryan Powell</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>The Keith Woodland Memorial</td>
<td>75.00</td>
<td></td>
</tr>
<tr>
<td>School of Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institute of Physics</td>
<td>50.00</td>
<td>Highest aggregate marks in three of the Units 1.013, 1.023, 1.033 and 1.043</td>
</tr>
<tr>
<td>Head of School’s in Physics</td>
<td>30.00</td>
<td>Most creditable Year 4 honours thesis</td>
</tr>
<tr>
<td>Physics Staff for Applied Physics</td>
<td>30.00</td>
<td>Highest aggregate marks two units of the following subjects: 1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.343 and 1.3533</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics Staff for Physics I</td>
<td>50.00</td>
<td>Highest mark in 1.011</td>
</tr>
<tr>
<td>Physics Staff for Physics II</td>
<td>50.00</td>
<td>Highest mark in 1.012, 1.022 and 1.032</td>
</tr>
<tr>
<td>Physics Staff for Physics IV Honours</td>
<td>50.00</td>
<td>Highest mark in 1.104, 1.304 or 1.504</td>
</tr>
<tr>
<td>Physics Staff for Theoretical Physics</td>
<td>30.00</td>
<td>Highest marks in 1.513 and 1.523</td>
</tr>
<tr>
<td>School of Psychology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Psychological Society</td>
<td>100.00</td>
<td>A Year 4 Psychology subject selected by Head of School</td>
</tr>
<tr>
<td>Psychology Staff</td>
<td>10.00</td>
<td>Best Psychology Year II</td>
</tr>
<tr>
<td>W. S. and L. B. Robinson University College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken Hill Women's Auxiliary of the Australasian Institute of Mining and Metallurgy</td>
<td>30.00</td>
<td>Performance by a student who achieves second place in a complete stage of a degree course</td>
</tr>
<tr>
<td>Mining Managers Association Broken Hill</td>
<td>70.00</td>
<td>Best overall performance in a complete course</td>
</tr>
<tr>
<td>Mining Managers Association</td>
<td>40.00</td>
<td>Three prizes: one for each best pass in any complete stage of the degree courses in, respectively, Mechanical Engineering, Mining Engineering, Science</td>
</tr>
<tr>
<td>Mining Managers Association</td>
<td>30.00</td>
<td>Seven prizes to be awarded in individual subjects selected by the Director</td>
</tr>
<tr>
<td>Western Mining Corporation Limited</td>
<td>150.00</td>
<td>Four prizes to be awarded for best performance in 7.314R Mineral Process Technology, 7.313R Mineral Processing, 7.214R Mine Economics and Planning, 7.224R Operational Management</td>
</tr>
<tr>
<td>Donor/Name of Prize</td>
<td>Value $</td>
<td>Awarded for</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>School of Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauri Brothers & Thomson (Aust) Pty Limited</td>
<td>150.00</td>
<td>Best overall performance in the Master of Science (Biotechnology) degree course</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, Kline and French</td>
<td>50.00</td>
<td>Best performance in the Graduate Diploma in Food and Drug Analysis course</td>
</tr>
<tr>
<td>School of Optometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydron Contact Lens</td>
<td>A trial fitting set of contact lens</td>
<td>31.705G Advanced Contact Lens Theory and Practice</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.701G Advanced Clinical Optometry</td>
</tr>
</tbody>
</table>
Faculty of Biological Sciences

Staff

Comprises First Year Biology Teaching Unit, Schools of Biochemistry, Biotechnology, Botany, Microbiology, Psychology and Zoology.

Dean
Professor E. O. P. Thompson

Chairman
Professor L. B. Brown

Administrative Officer
Robert Anthony Hohen, BA Canberra C.A.E.

Professional Officers
Rose Ann Varga, BSc N.S.W.
John Campbell Woodard, BE N.S.W.

First Year Biology Teaching Unit

Director
Dr C. J. Quinn

Professional Officer
Anthony Ross Smith-White, BSc Syd., MSc N.S.W.

School of Biochemistry

Professor of Medical Biochemistry and Head of School
William James O'Sullivan, BSc W. Aust., PhD A. N. U.

Professor of Biochemistry
Barry Vaughan Milborrow, BSc PhD DSc Lond., FLS, FiBiol

Professor of Biochemistry
Edward Owen Paul Thompson, MSc DipEd Syd., PhD ScD Camb., FRACI

*For Board of Studies in Science and Mathematics see later in this section.
Associate Professors
John Bruce Adams, MSc Syd., PhD DSc N.S.W., ARACI
Keith Guenther Rienits, MSc Syd., PhD Birm.
Philip John Schofield, BSc PhD N.S.W.

Senior Lecturers
Aldo Sebastion Bagnara, BSc PhD Melb.
Kevin David Barrow, MSc PhD Adel.
Antony George Mackinlay, MSc PhD Syd.
Thomas Stanley Stewart, BSc Syd., PhD N.S.W.
George Zalitis, BSc PhD W. Aust.

Lecturers
Michael Richard Edwards, MA PhD Camb.
Ian James McFarlane, BSc PhD Syd.,
Kenneth Edward Moon, BSc PhD N.S.W.
Raymond Stanley Norton, BSc Melb., PhD A.N.U.

Senior Tutor
Jill Lorraine Gibbons, BSc Syd.

Tutors
Carol Druery, BSc Syd.
Joan Loke, MSc Syd., DipEd Kuring-gai C.A.E.
Mark Richter, BSc N.S.W.
David Webster, BSc N.S.W.
Heather Mary Weir, BSc Rhodes, MSc N.S.W.

Professional Officers
Antonio Luiz d'Assumpcao, BSc Syd.
Wendy Glenn, MSc N.S.W.
Walter Samuel Golder, BPharm MSc PhD DipMedTech Syd.,
ASTC, MPS
George Grossman, BSc N.S.W.
Wayne George Kelly, MSc N.S.W.
Choy Soong Daniel Lee, MSc N.S.W.
Andrew George Netting, BSc PhD N.S.W.

School of Botany

Professor of Botany and Head of School
Derek John Anderson, BSc Nott., PhD Wales

Associate Professors
John Henry Palmer, BSc PhD Sheff., FIBiol
Haydn John Willetts, MSc Brist., PhD N.S.W.

Senior Lecturers
Noel William Dunn, MSc Melb., PhD Monash
Peter Philip Gray, BSc Syd., PhD N.S.W., MIEAust

Lecturer
David Edward Tribe, BSc PhD Melb.

Professional Officers
Thomas Babij, BSc Syd., MSc PhD N.S.W., ARACI
Robert Barrie Doble, BSc N.S.W.
Ching Lien Wong, MSc PhD N.S.W.

School of Biotechnology

Professor of Biotechnology
Vacant

Associate Professors
Pamela Athalie Deidre Rickard, BSc Syd., MSc N.S.W., PhD Lond.
Peter Lindsay Rogers, BE Adel., DPhil Oxf.

Honorary Associates
Mary Maclean Hindmarsh, BSc PhD Syd.
Lawrence Alexander Sidney Johnson, BSc DSc Syd.
School of Microbiology

Professor of Medical Microbiology and Head of School
Geoffrey Norton Cooper, MSc PhD Melb., MASM

Professor of Microbiology
Kevin Charles Marshall, BScAgr Syd., MS PhD C'nell., MASM

Professor
Anthony John Wicken, BSc PhD Cape T., MA Camb., FNZIC, MASM

Senior Lecturers
Yvonne Marie Barnet, BScAgr Syd., PhD N.S.W.
Brian James Wallace, BSc PhD Melb.

Lecturer
Iain Couperwhite, BSc PhD Strath.

Senior Tutor
Barbara Lillian Blainey, BSc Melb., MSc Syd.
Nerissa Glenda Hartwig, BSc Adel.
Basil Patrick McBrien, MSc N.S.W., ASTC

Tutor
John Dominic Rossi, BSc N.S.W.

Professional Officers
Beverley Humphrey, BSc Syd.
Mary Essie Johnsen, BSc Qld.
Christine Elizabeth McNab, BScAgr Syd., MAppSc N.S.W.
Marshall Henry Maxwell Wilson, MSc N.S.W.

School of Psychology

Professor of Psychology and Head of School
Sydney Harold Lovibond, BA Melb., MA PhD DipSocSc Adel., FASSA

Professor of Psychology
Laurence Binet Brown, MA DipEd N.Z., PhD Lond.

Professor of Psychology
Vacant

Administrative Officer
Trevor John Clulow, BA N.S.W., MA Syd.

Senior Lecturers
Stephen Bochner, BA Syd., MA Hawaii, PhD N.S.W.
Alexander Edward Carey, BSc Lond.
James Christopher Clarke, MA N.Z., PhD N.Y. State
Evan Edwin Davies, MA Syd., PhD N.S.W.
Keith Raymond Llewellyn, BA PhD Syd.
George Paxinos, AB Calif., MA PhD McG.
Reginald Frederick Westbrook, MA Gias., DPhil Sus.

Lecturers
Austin Sorby Adams, BA Adel., MA PhD Mich.
Kevin Douglas Bird, BSc PhD N.S.W.
Peter Charles Birrell, BA Syd., PhD N.S.W.
Denis Kingsley Burnham, BA N.E., PhD Monash
Sydney Engleberg, BA Rand., MS Hebrew Univ. of Jerusalem, MA PhD N.Y. State
Joseph Paul Forgas, BA Macq., DPhil Oxf.
William Taylor Hardy, BA Claremont, MA PhD Calif.
William Hopes, BA Syd.
Edward James Kehoe, BA Lawrence, MA PhD Iowa
Charles Porter Kenna, BA BSc Syd.
Marcus Taft, BSc PhD Monash
John Eaton Taplin, BSc PhD Adel.

Tutors
Sally Margaret Andrews, BA N.S.W.
Eugene Stephan Chekaluk, BSc N.S.W.
John Crawford, MSc Syd.
Gail Florence Huon, BSc N.S.W.
Sachiko Kinoshita, BSc N.S.W.
Terry James Lewin, BCom N.S.W.
Philip Charles Marks, BSc N.S.W.
Jennifer Orjelick, BA N.S.W.
Theresa Olivia Van Zyl, BA Syd.
Susan Vallack Wayland, BA N.S.W.

Medical Microbiology

Associate Professor
Adrian Lee, BSc PhD Melb., MASM

Senior Lecturers
Royle Anthony Hawkes, BScAgr Syd., PhD A.N.U., MASM
Graham Douglas Fischer Jackson, BSc PhD Adel.

Lecturer
Elizabeth Hazel Hegarty, MSc Qld., PhD N.S.W.

Honorary Associate (School)
Phyllis Margaret Rountree, DSc Melb., DipBact Lond.
School of Zoology

Professor of Zoology and Head of School
Terence John Dawson, BRurSc PhD N.E.

Professor of Zoology
David Carter Sandeman, MSc Natal, PhD St.And.

Associate Professor
Erik Shipp, BSc Syd., PhD N.S.W.

Senior Lecturers
Michael Archer, BA Prin., PhD W.Aust.
Michael Lane Augee, BSc Willamette, PhD Monash
Alan Michel Beal, DipAH Qld. Agr. Coll., BSc PhD Qld.
Rossiter Henry Crozier, MSc Melb., PhD C'nell.
Charles Keith Goddard, BSc Edin., PhD St.And.
Peter Greenaway, BSc PhD N'cle. (U.K.)
Robert John MacIntyre, MSc Cantl., PhD McG.
Aola Mary Richards, MSc PhD N.Z., FRES
Arthur Woods, MA Oxf., FRES, MiBiol

Lecturers
David Benjamin Croft, BSc Flin., PhD Camb.
Alexander Mazanov, BSc A.N.U., PhD N.E.

Senior Tutors
Patricia Irene Dixon, BSc PhD N.S.W., DipEd Syd.
Barry James Fox, BSc N.S.W., DipEd N'cle.(N.S.W.),
MSc Windsor, PhD Macq.

Tutors
Jennifer Merciana Anderson, MScAgr Syd., PhD N.S.W.
John Hamlyn Harris, BVSc Syd.
Anthony Gerald Miskiewicz, BSc James Cook
Alan Dennis Needham, BSc N.S.W.
Barbara Dale Porter, BSc Syd.
Stephen Andrews Sparkes, BSc N.S.W.
Paul David Wettin, BSc New Mexico, MSc N.S.W.

Professional Officers
Francis Dominic Fanning, BSc N.S.W.
Lionel Winston Filewood, BSc Syd.
Faculty of Science

Staff

Comprises Schools of Chemistry, Mathematics, Optometry and Physics.

Dean
Professor V. T. Buchwald

Chairman
Professor K. N. R. Taylor

Lecturer
Jason Harry Falla Middleton, BSc PhD Monash

School of Chemistry

Professor of Chemistry and Head of School
James Stanley Shannon, DIC PhD Lond., DSc Adel., FRACI

Professor of Organic Chemistry and Head of Department of Organic Chemistry
George William Kenneth Cavill, MSc Syd., PhD DSc Liv., FAA, FRACI

Professor of Physical Chemistry and Head of Department of Physical Chemistry
Peter John Derrick, BSc PhD Lond., ARACI

Professor of Theoretical and Physical Chemistry
Raymund Marshall Golding, MSc Auck., PhD Camb., FNZIC, FinstP, FRACI

Professor† and Head of Department of Inorganic Chemistry
Stanley Edward Livingstone, PhD DSc N.S.W., FSTC, FRACI, FRSC, CChem

Professor of Analytical Chemistry and Head of Department of Analytical Chemistry
Lloyd Earle Smythe, MSc Syd., PhD Tas., FRACI

*For Board of Studies in Science and Mathematics, see later in this section.
†In the field of inorganic chemistry.
Department of Inorganic Chemistry

Associate Professors
Ian Gordon Dance, MSc Syd., PhD Man., ARACI
Harold Andrew Goodwin, BSc PhD Syd., ARACI

Senior Lecturers
James Roy Backhouse, MSc Syd., PhD N.S.W.
David John Phillips, BSc PhD Lond., ARACI

Tutors
Manorjan Das, BSc Calc., MSc Patna, PhD Boston and N.S.W., FRSC, CChem
Rodney Jack Secomb, BSc DipEd W.Aust.
William Anton Zimmermann, BSc DipEd N.S.W.

Department of Nuclear and Radiation Chemistry

Associate Professor and Head of Department
Douglas John Carswell, MSc PhD DipEd Syd., CChem, FRACI, FRSC

Senior Lecturers
Norman Thomas Barker, MSc PhD N.S.W.
Mervyn Allan Long, MSc PhD Auck., ANZIC

Department of Analytical Chemistry

Associate Professor
Douglas Peter Graddon, MSc PhD Man., DSc N.S.W., FRSC, CChem, ARACI

Senior Lecturers
Peter William Alexander, MSc PhD Syd., ARACI
Ian Kelvin Gregor, BSc N.E., MSc PhD N.S.W.
Jaroslav Petr Matousek, IngChem T.U. Prague, PhD N.S.W., ARACI

Lecturers
Sergio Dilli, BSc PhD N.S.W., ASTC, ARACI
Paul Raymond Haddad, BSc PhD N.S.W., DipMilStud, ARACI

Tutors
Michael Gilhaus, BSc N.S.W.
Anton Philip Taverne, BSc N.S.W.

Department of Organic Chemistry

Associate Professors
Peter Steele Cleozy, BSc PhD Tas., ARACI
George Crank, MSc Qu., PhD Monash, CChem, MRSC
Ronald Arthur Eade, MSc Syd., PhD Liv., FRACI
Michael John Gallagher, MSc Qld., PhD Camb., ARACI
John Johnson Henry Simes, MSc DipEd Syd., PhD Liv., FRACI
Senior Lecturers
Roger Bishop, BSc St. And., PhD Camb.
Norman William Herbert Cheetham, BSc PhD Qld.
John Lawrence Courtney, BSc PhD N.S.W., ASTC, ARACI
William John Dunstan, MSc Syd., ARACI
Peter Thomas Southwell-Keely, BSc Syd., PhD N.S.W.
John David Stevens, BSc Tas., PhD N.E., ARACI

Lecturers
George Vernon Baddeley, BSc Manc., DPhil Oxf.
Robert Francis Tola, BSc PhD W. Aust., ARACI

Senior Tutors
Satya Narayana Murthy Durvasula, MSc And., PhD Syd., CChem, MRSC
Inno Salasoo, BSc PhD N.S.W., ASTC, ARACI

First Year Chemistry
Director of First Year Classes in Chemistry
Trevor Norman Lockyer, MSc PhD N.S.W.

Lecturer
Clive Reginald Taylor, BSc Syd.

Senior Tutors
Peter See Kien Chia, MSc PhD N.S.W.
Naseem Hasan Peerzada, MSc Punjab, PhD LaT.

Tutors
Judith Eileen Batts, BSc Old., PhD Macq.
Hai Hoang Minh, BSc PhD N.S.W.
Joan Pauline Ross, BSc Syd.

School of Mathematics

Department of Physical Chemistry

Associate Professors
John Lyndon Garnett, MSc N.S.W., PhD Chic., ASTC, FRACI
Brian John Orr, MSc Syd., PhD Brst., FRACI

Senior Lecturers
David Scott Alderdice, MSc Syd., PhD Lond.
Brian Raymond Craven, MSc PhD N.S.W., ASTC
Tristan John Victor Findlay, BSc PhD St. And., FRACI
William David Johnson, BSc Syd., MSc N.E., PhD N.S.W.
Prosper David Lark, BEc Syd., MSc PhD N.S.W., ASTC, FRACI
Alan David Rae, MSc PhD Auck., ANZIC

Lecturers
Martin Peter Bogaard, BSc PhD Syd.
Ruby Foon, MSc PhD Melb.

Professor of Pure Mathematics and Head of School
Gavin Brown, MA St. And., PhD N'cle. (U.K.), FAA

Professor of Applied Mathematics
Viliam Teodor Buchwald, BSc Manc., MSc PhD Lond., FIMA

Professor of Applied Mathematics
John Markus Blatt, BA Cinc., PhD C'nell. and Prin., FAA, FACS

Professor of Pure Mathematics
Vacant

Professor of Statistics
Abraham Michael Hasofer, BEE Faruk, BEc PhD Tas., MIEAust

Associate Professor and Director of First Year Studies
Angus Henry Low, MSc DipEd Syd., PhD N.S.W.
Senior Tutors
Mandel Brender, BSc McG.
Donald Sidney Craig, BSc Qld.
William Thomas Perrins, MA Camb., DipEd Mitchell C.A.E.

Tutors
Felicity Alison Dewar, BSc Qu., MSc N.S.W.
James William Franklin, MA Syd., PhD Warw.
Janette Patricia Keever, BSc N.S.W.
Neil James Ormerod, BA PhD N.S.W.
Lindsay Andrew Peters, BSc N.S.W.
Fernando Viera, BE MEngSc N.S.W.

Administrative Officer
Margaret Alison Potter, BA DipEd Syd.

Department of Applied Mathematics

Associate Professors
Michael Newton Barber, BSc N.S.W., PhD C'nell.
Ian Hugh Sloan, BA BSc Meib., MSc Adel., PhD Lond.
William Eric Smith, MSc Syd., BSc Oxf., PhD N.S.W., MInstP

Senior Lecturers
Brian James Burn, MSc Otago, PhD Camb.
Elvin James Moore, MSc W.Aust., PhD Harv.
Kazuto Okamoto, BS Tokyo, PhD Louisiana State
Alexander Hugh Opie, BSc DipEd Meib., PhD Monash, FAIP
Kok-Lay Teo, BSc Sing., MASc PhD Ott., MIEEE, AMIEEE

Lecturer
Robert Spencer Womersley, BSc Adel., MSc PhD Dund.

Senior Tutor
Veronica Paul, BSc Wales, DipEd N.E.

Department of Pure Mathematics

Senior Lecturers
Peter Windeyer Donovan, BA Syd., DPhil Oxf.
Jack David Gray, BA Syd., PhD N.S.W.
David Christopher Hunt, BSc Syd., MSc PhD Warw.
John Harold Loxton, MSc Meib., PhD Camb.
Ezzat Sami Noussair, BA BSc Cairo, PhD Br.Col.
John Frederick Price, MSc Meib., PhD A.N.U.
John St Alban Sandiford, MSc Syd.

Lecturers
Charles Dixon Cox, BSc DipEd Qld.
Shaun Anthony Requa Disney, BA BSc Adel., DPhil Oxf.
Mary Ruth Freischl, BA Witw., MA N.S.W.
Rodney Kelvin James, BSc PhD Syd.
Iain Raeburn, BSc Edin., PhD Utah
Jeffrey William Sanders, BSc Monash, PhD A.N.U.
Colin Eric Sutherland, BSc Cant., PhD Calif.
David Graham Tacon, BSc N'c/e.(N.S.W.), PhD A.N.U.

Senior Tutor
Michael David Hirschhorn, BSc Syd., MSc Edin., PhD N.S.W.

Emeritus Professor
George Szekeres, DipChemEng Bud., Hon.DSc N.S.W., FAA

Honorary Associate
Gregory Maxwell Kelly, BSc Syd., BA PhD Camb., FAA

Department of Statistics

Associate Professor of Mathematical Statistics
James Bartram Douglas, MA BSc DipEd Meib.

Associate Professor
Clyde Arnold McGilchrist, BSc BEd Qld., MSc PhD N.S.W.

Senior Lecturers
Peter John Cooke, MSc N.E., MS PhD Stan.
John Anthony Eccleston, BSc Syd., MSc Manc., PhD C'nell.
Anthony Gilbert Lewis Elliott, BSc W.Aust.
Manohar Khanderao Vagholkar, MSc Bom., DIC PhD Lond.

Lecturer
Ronald Bruce Davis, BSc Syd., MSc N.S.W., DipEd N.E.

Senior Tutor
Lynette Anne Perry, BSc MStats N.S.W.

Professional Officer
Rhonda Gock, BSc N.S.W.

Honorary Associate
Alan John Miller, MSc PhD Manc., FSS
Department of Theoretical and Applied Mechanics

Senior Lecturers
Michael Leslie Banner, BE MEngSc Syd., PhD Johns H.
John Desmond Fenton, BE MEngSc Melb., PhD Camb.
William Dennis McKee, BSc Adel., MSc Flin., PhD Camb.

Lecturers
Peter James Blennerhassett, BE W.Aust, PhD Lond.
Douglas Edward Mackenzie, BSc Tas., FIMA, MACE
David Allan Mustard, BSc Syd., MSc N.S.W.
Richard Wyndham O'Brien, BE N.S.W., PhD Camb.

Senior Tutor
Albert Tator Daoud, BSc R'dg., PhD N.S.W., FInstP

Honorary Associates
Bruce Valton Hamon, BSc BE Syd., MAIP
Captain Daniel James McKeegan, BSc Syd., MSc PhD N.S.W., RAN

School of Physics

Professor of Experimental Physics and Head of School
Kenneth Norman Robert Taylor, BSc PhD Birm., FInstP, FAIP

Professor of Physics
Vacant

Professor of Experimental Physics and Head of Department of Applied Physics
Hiroshi Julian Goldsmid, BSc PhD DSc Lond., FInstP, FAIP

Professor of Theoretical Physics and Head of Department of Theoretical Physics
Heinrich Hora, DiplPhys Halle, DrRerNat Jena, DSc N.S.W., FInstP, FAIP

Professor of Applied Physics
Vacant

Associate Professors
Hans Gerard Leonard Coster, MSc PhD Syd., MInstP, MAIP
Dan Haneman, DSc Syd., PhD R'dg., FAIP
John Charles Kelly, BSc Syd., PhD R'dg., DSc N.S.W., FInstP, MAIP, MAmpS
Lindsay George Parry, BSc DipEd Syd., MSc PhD N.S.W., MInstP, MAIP

School of Optometry

Professor of Optometry and Head of School
Vacant

Associate Professor
George Amigo, BSc(OptSc) PhD N.S.W., ASTC, FIO, FAAO

Senior Lecturers
John Andrew Alexander, MSc PhD N.S.W., ASTC, FIO, FAAO
Brien Anthony Holden, BAPPSc Melb., PhD City,
LOSc VCO(Melb), FAAO
Maxwell McNeil Lang, BSc PhD N.S.W., ASTC, FIO, FAAO, MAIP

Lecturers
Philip James Anderton, BOptom BSc N.S.W., MScOptom Melb.
Stephen John Dain, BSc PhD City, FBCO, MIES
Graham Leslie Dick, MSc N.S.W., ASTC, FIO
Elijah Udovitch, MOptom N.S.W.
Executive Assistant to Head of School
Dr P. R. Elliston

Director of First Year Studies
Dr G. J. Russell

Administrative Officer
Patricia Shaw, BCom N.S.W.

Senior Lecturers
Graham James Bowden, BSc DipAdvStudSc PhD Manc.
Peter Russell Elliston, BSc Melb., PhD Monash
Colin Trevor Grainger, BSc DipEdSyd., MSc N.E., PhD N.S.W., MInstP, MAIP
Eric Harting, BSc PhD N.S.W., ASTC
Veronica Jean James, BA BSc Qld., PhD N.S.W., MAIP
Peter Mitchell, BSc PhD Adel., MAIP
George Lange Paul, MSc Syd., PhD Edin., MAIP
James Martin Pope, MSc Brist., DPhil Sus., AInstP
Graeme John Russell, BSc PhD N.S.W., GradInstP, GradAIP
Raymond Garry Simons, BSc Syd., MSc Tel Aviv, PhD N.S.W.

Lecturers
Kenneth Hulme Marsden, BSc Lond., MSc N.S.W., MInstP, MAIP, ARCS
David John Miller, BSc PhD N.S.W., DipEd Syd., MAIP, MAmpS
Betty Louise Turtle, BSc Adel., PhD A.N.U.

Senior Tutors
Ian Richard Dunn, BSc BA Melb., MIEEE
Edward Peter Eyland, BSc MPhysics N.S.W., BD Lond.
Martin Desmond Knight, BSc N.S.W.
Paul Michael O'Halloran, BA Macq., GradAIP

Tutors
Lance Breger, BA Lake Forest Coll., MSc Northwestern, PhD Ill.
Ling Bun Chiu, BSc H.K.
Sophia Papaconstantinopoulos, DipPhysics Patras
Michael Ramsey, BSc N'cle. (N.S.W.)
Paul John Walker, BSc DipEd N.S.W.

Teaching Fellows
Stephen James Foster, BSc N'cle. (N.S.W.)
Roberta Anne Vaile, BSc N'cle. (N.S.W.)

Professional Officers
Peter Robert Barker, BSc PhD Monash
Robert Louis Dalglish, BSc PhD N.S.W.
Barry Perczuk, BSc PhD Monash
Jeremy Karl Walter, BSc Lond.

Honorary Associates
John Stuart Dryden, MSc Melb., DIC PhD Lond., FAIP
John Lloyd Symonds, BSc Adel., PhD Birm., FInstP, FAIP

Honorary Visiting Fellow
Victor Kastalsky, BSc PhD N.S.W., ASTC, MInstP, MAIP

Department of Applied Physics

Associate Professor
David Henry Morton, MA Oxf., FInstP, FAIP

Senior Lecturers
John Ian Dunlop, BSc PhD N.S.W., MAIP, MAASATI
John Robert Hanscomb, BSc Qld., MSc PhD N.S.W., MAIP, GradInstP
Leslie Bevan Harris, BSc Lond., BA DipEd Durh., PhD N.S.W., MIM, AInstP
Victor Raymond Howes, BSc PhD Lond.

Lecturer
Kenneth Mann, BSc Qld., MSc N.S.W.

Tutor
Christopher David Miller, BE Syd., BSc N.S.W.

Department of Theoretical Physics

Associate Professor
Jaan Oitmaa, BSc PhD N.S.W., FAIP

Senior Lecturer
David Neilson, BSc Melb., MS PhD N.Y. State

Lecturers
Michael Allister Box, BSc Monash, PhD Syd.
John Richard Shepanski, MSc Syd., MAIP

Tutors
Paul McNamara, BSc N.S.W.
Marlene Noella Read, BSc PhD N.S.W.
Roderick Ian Sutherland, BSc LaT., MSc PhD N.S.W.
Gabriel Viera, BSc N.S.W.
The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences and the Faculty of Science, and some members of specific schools in other faculties contributing to the Science and Mathematics Course: Applied Geology, Chemical Engineering and Industrial Chemistry, Geography, Metallurgy (Applied Science); History and Philosophy of Science; Philosophy, Sociology, Political Science (Arts); Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

Dean*
Professor E. O. P. Thompson

Chairman
Professor A. J. Wicken

Coordinator of Studies in Science and Mathematics
Associate Professor K. G. Rienits

Administrative Assistant
Robyn Kay Mulholland, BA DipEd N.S.W., MA Syd.

*For 1982-83. The Deans of the Faculty of Science and of the Faculty of Biological Sciences serve alternately as Deans responsible for the Board.
Broken Hill Division

Staff

Director
Professor J. E. Andersen

Librarian
Peter Geoffrey Longrigg, BA P.N.G., DipLib Canberra C.A.E., ALAA

Department of Mining and Mineral Sciences

Professional Officer
Kenneth James Murray, BSc Syd., MSc N.S.W., AMAusIMM

Mechanical Engineering

Lecturers
Llewellyn Ramsay Jones, BSc N.Z., DipAm MEng Sheff., PhD Wales, MIEAust, MiMechE
Ian Lachlan Maclainecross, BE Melb., PhD Monash, MIEAust, MAIRAH, MSES
Chakravarti Varadachar Madhusudana, BE Mys., ME I.I.Sc., PhD Monash, MIEAust

W.S. and L.B. Robinson University College

Head of Department of Science
Professor John Everard Andersen, BE Melb., PhD N.S.W., FIEAust, MAusIMM, ARACI

Head of Department of Mining and Mineral Sciences
Professor Leon John Thomas, BSc PhD Birm., CEng, FIEAust, FIMinE, MAusIMM

Mining Engineering

Senior Lecturer
Venkata Satyanarayana Vutukuri, BSc(Eng) Ban., MS Wis., MMGI, AIME, AMAusIMM
Mineral Science

Senior Lecturer
Barenya Kumar Banerji, MSc Patna, PhD Leeds, MAusIMM

Fowlers Gap Research Station

Officer-in-charge
Charles Richard Carter, BSc PhD Syd.

Geology

Senior Lecturer
Gerrit Neef, BSc Lond., PhD Well., FGS

Department of Science

Chemistry

Lecturer
Derek Richard Smith, BSc PhD Wales

Senior Tutor
Robert Edward Byrne, MSc N.S.W., ARACI, AMAusIMM

Mathematics

Senior Lecturers
Zdenek Kviz, DipPhys Brno, CSc RerNarDr Charles, PhD Prague
Dennis William Trenerry, BSc PhD Adel.

Lecturer
David Charles Guiney, BSc PhD Adel.

Physics

Senior Lecturers
Robert John Stening, MSc Syd., PhD Qld., DipTertEd N.E., FRMetS, MAIP
Kenneth Reid Vost, BSc Glas., MSc N.S.W., AMAusIMM
The University of New South Wales Kensington Campus 1982

Theatres

Biomedical Theatres E27
Central Lecture Block E19
Classroom Block (Western Grounds) H3
Electrical Engineering Theatre F17
Keith Burrows Theatre J14
Main Building Theatre K14
Mathewes Theatre D23
Parade Theatre E3
Science Theatre E13
Sir John Clancy Auditorium C24

Buildings

Affiliated Residential Colleges
New (Anglican) L6
Shalom (Jewish) N9
Warrane (Roman Catholic) M7
Applied Science F10
Architecture H14
Arts (Morven Brown) C20
Biological Sciences D26
Central Store B13
Child Care Centres N8, 014
Chancellery C22
Chemistry
Dalton F12
Robert Heffron E12
Civil Engineering H20
Commerce (John Goodsell) F20
Dalton (Chemistry) F12
Electrical Engineering G17
Geography and Surveying G17
Goldstein College D16
Golf House A27
Gymnasium B5
House at Pooh Corner N8
International House C6
John Goodsell (Commerce) F20
Kanga's House O14
Kensington Colleges C17
Basser C18
Goldstein D16
Philip Baxter D14
Main Building K15
Maintenance Workshop B13
Mathews F23
Mechanical and Industrial Engineering J17
Medicine (Administration) B27
Menzies Library E21
Metallurgy E8
Morven Brown (Arts) C20
New College (Anglican) L6
Newton J12
Parking Station H25
Philip Baxter College D14
Robert Heffron (Chemistry) E12
Sam Cracknell Pavilion H8
Shalom College (Jewish) N9
Sir Robert Webster (Textile Technology) G14
Squash Courts B7
Swimming Pool B4
Unsearch House L5
University Regiment J2
University Union (Roundhouse)—Stage I E6
University Union (Blockhouse)—Stage II G6
University Union (Squarehouse)—Stage III E4
Wallace Wurth School of Medicine C27
Warrane College (Roman Catholic) M7
Wool and Pastoral Sciences B8

General

Academic Staff Office C22
Accountancy F20
Admissions C22
Adviser for Prospective Students C22
Alumni and Ceremonials C22
Anatomy C27
Applied Geology F10
Applied Science (Faculty Office) F10
Architecture (including Faculty Office) H14
Arts (Faculty Office) C20
Australian Graduate School of Management G27
Biochemistry D26
Biological Sciences (Faculty Office) D26
Biomedical Library E23
Biotechnology D26
Bookshop G17
Botany D26
Building H14
Careers and Employment C22
Cashier's Office C22
Centre for Biomedical Engineering A28
Centre for Medical Education Research and Development C27
Chaplains E15a
Chemical Engineering and Industrial Chemistry F10
Chemistry E12
Child Care Centres N8, 014
Civil Engineering H20
Closed Circuit Television Centre F20
Commerce (Faculty Office) F20
Committee in Postgraduate Medical Education B27
Community Medicine D26
Computing Services Unit E21
Drama D9
Economics F20
Education G2
Electrical Engineering and Computer Science G17
Engineering (Faculty Office) K17
English C20
Examinations C22
Fees Office C22
Food Technology F10
French C20
General Staff Office C22
General Studies C20
Geography K17
German Studies C20
Graduate School of the Built Environment H14
Health Administration C22
History C20
History and Philosophy of Science C20
Industrial Arts C1
Industrial Engineering J17
Institute of Languages G14
Institute of Rural Technology B8b
Kindergarten (House at Pooh Corner/Child Care Centre) N8
Landscape Architecture H14
Law (Faculty Office) E21
Law Library E21
Librarianship F23
Library E21
Lost Property F20
Marketing F20
Mathematics F23
Mechanical Engineering J17
Medicine (Faculty Office) B27
Metallurgy E8
Microbiology D26
Mining Engineering K15
Music C1
National Institute of Dramatic Art C1
Nuclear Engineering G17
Off-campus Housing C22
Optometry J12
Organizational Behaviour F20
Pathology J12
Patrol and Cleaning Services F20
Philosophy C20
Physics K15
Physical Education and Recreation Centre (PERC) B5
Physiology and Pharmacology C27
Political Science C20
Postgraduate Extension Studies (Closed Circuit Television) F20
Postgraduate Extension Studies (Radio Station and Administration) F23
Psychology F23
Public Affairs Unit C22
Regional Teacher Training Centre G27
Russian C20
Science and Mathematics Course Office F23
Social Work G2
Sociology C20
Spanish and Latin American Studies K17
Sport and Recreation E15c
Student Counselling and Research E15c
Student Health E15b
Student Records C22
Students' Union E4
Surveys E17
Teachers' College Liaison Office F19
Tertiary Education Research Centre Textile Technology G14
Town Planning K15
University Archives C22
University Press A26
University Union (Blockhouse) G6
Wool and Pastoral Sciences B8a
Zoology D26
This Handbook has been specially designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University — its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce, Engineering, Law, Medicine, Professional Studies, Science (including Biological Sciences and the Board of Studies in Science and Mathematics), the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education.

The Calendar and Handbooks are available from the Cashier's Office. The Calendar costs $5.00 (plus postage and packing, 90 cents). The Handbooks vary in cost. Applied Science, Architecture, Arts, Commerce, Engineering, Professional Studies, and Sciences are $3.00. Law, Medicine and AGSM are $2.00. Postage is 90 cents in each case, or $1.20 ($3.00 interstate) for a complete set of books. The exception is General Studies, which is free (80 cents postage).