The University of New South Wales

Sciences
Board of Studies in Science and Mathematics
Faculty of Biological Sciences
Faculty of Science

1984 Faculty Handbook
How to use this Handbook

The information in this book has been divided into seven parts.

General Information (the India coloured pages) lists what you need to know about the University as a whole, introduces some of the services available and notes the most important rules and procedures. You should read this part in its entirety.

For further information about the University and its activities, see the University Calendar.

Faculty Information.

Undergraduate Study outlines the courses available in each school in the faculty.

Graduate Study is about higher degrees.

Subject Descriptions lists each subject offered by the schools in the faculty. The schools are listed numerically.

Information includes:
- Subject number, title and description
- Prerequisite, co-requisite and excluded subjects, where applicable
- Additional information about the subject such as unit values, credit hours, teaching hours per week, sessions when taught

Financial Assistance to Students is a list of scholarships and prizes, available at undergraduate and graduate level in the faculty.

Staff list.

For detailed reference, see the list of Contents.
The University of New South Wales
PO Box 1 Kensington NSW Australia 2033 Phone 663 0351

Sciences
Board of Studies in Science and Mathematics
Faculty of Biological Sciences
Faculty of Science

1984 Faculty Handbook
The address of the University of New South Wales is:

PO Box 1, Kensington
New South Wales, Australia 2033

Telephone: (02) 663 0351
Telegraph: UNITECH, SYDNEY
Telex AA26054
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 12 September 1983, but may be amended without notice by the University Council.

Contents

General Information .. 1

Some People Who Can Help You .. 1

Calendar of Dates
The Academic Year ... 2
1984 ... 2
1985 ... 4

Organization of the University ... 5
Arms of the University/University Colours/Council/Professorial Board/Faculties/Boards of Study/Schools/Executive Officers/Administration/Student Representation/Award of the University Medal/Subject Numbers/Textbook Lists/Textbook Costs etc/Co-operative Bookshop/General Studies

Student Services and Activities
Accommodation ... 7
Residential Colleges .. 7
Other Accommodation ... 7
Associations, Clubs and Societies ... 8
The Sports Association .. 8
School and Faculty Associations .. 8
Australian Armed Services .. 8
Chaplaincy Centre .. 8
Deputy Registrar (Student Services) .. 8
Sport and Recreation Section .. 9
Physical Education and Recreation Centre .. 9
Student Counselling and Research Unit .. 9
Careers and Employment Section ... 9
Student Health Unit .. 9
The Students’ Union .. 10
The University Library .. 10
The University Union .. 11

Financial Assistance to Students .. 11
Tertiary Education Assistance Scheme/Other Financial Assistance/Financial Assistance to Aboriginal Students
Psychology ... 55
Geology .. 56
Geography ... 58
Biochemistry .. 60
Biotechnology ... 62
Botany ... 63
Microbiology ... 65
Zoology ... 66
History and Philosophy of Science 69
Board of Studies in Science and Mathematics 72
Marine Science .. 72
Genetics ... 74
Chemical Physics ... 75
Anatomy .. 77
Physiology and Pharmacology ... 79

3611 Combined Science/Aeronautical Engineering Course
3661 Combined Science/Industrial Engineering Course
3681 Combined Science/Mechanical Engineering Course
3701 Combined Science/Naval Architecture Course

Programs .. 81

3725 Combined Science/Electrical Engineering Course

Programs .. 84

3730 Combined Science/Civil Engineering Course

Programs .. 86

3820 Combined Science and Medicine Course

Programs .. 89

4070 Mathematics/4080 Science Education Courses
4070 Mathematics Education Course

Objectives ... 90
Honours and Pass Degree Requirements 90
Components ... 91
Enrolment Requirements ... 91
Programs .. 92

4080 Science Education Course

Objectives ... 93
Honours and Pass Degree Requirements 93
Components ... 94
Enrolment Requirements ... 94
Programs .. 95

4770 Combined Science/Law Course

Programs .. 100

Table 1: Units offered by the Board of Studies in Science and Mathematics........ 104
Physics ... 104
Chemistry ... 106
Metallurgy ... 108
Mechanical and Industrial Engineering 109
Electrical Engineering and Computer Science 109
Mathematics .. 110
Psychology ... 115
Biological Sciences ... 116
Applied Geology .. 117
Geography ... 118
Surveying ... 119
Biochemistry ... 119
Biotechnology .. 120
Botany ... 120
Microbiology ... 121
Zoology ... 121
Introduction

Course Outline 3430
3430 Psychology Degree Course (BSc) Full-time
Rules governing the Psychology Course
Rules governing admission to the Psychology Course with advanced standing
Recommended Psychology Course patterns
Compulsory Psychology Subjects for all Courses

Faculty of Biological Sciences

Introduction

Course Outlines
3910 Pure and Applied Chemistry Course
Electives offered by the School of Chemistry
3910 Pure and Applied Chemistry (BSc)
Full-time 145
Extended Time Program 146
3950 Optometry Course (BOptom) Full-time
Conditions for the Award of the double degree of BSc BOptom in the Faculty of Science

Faculty of Science

Introduction

Course Outlines
3910 Pure and Applied Chemistry Course
Electives offered by the School of Chemistry
3910 Pure and Applied Chemistry (BSc)
Full-time 145
Extended Time Program 146
3950 Optometry Course (BOptom) Full-time
Conditions for the Award of the double degree of BSc BOptom in the Faculty of Science

Sciences

Graduate Study
Faculty of Biological Sciences and Faculty of Science Enrolment Procedures
Faculty of Biological Sciences

Biotechnology
5320 Biochemical Engineering Graduate Diploma Course (GradDip) 152
5340 Biotechnology Graduate Diploma Course (GradDip) 152
8260 Master of Science (Biotechnology) (MSc(Biotech)) 153

Psychology
8250 Master of Psychology (MPsychol) Full-time 153
8255 Master of Science (Psychology) (MSc(Psychol)) Full-time 154

Faculty of Science

Chemistry
8770 Master of Chemistry (MChem) 155
5510 Food and Drug Analysis Graduate Diploma (DipFDA) 156

History and Philosophy of Science
8780 Master of Science and Society (MScSoc) 156

Mathematics
8740 Master of Mathematics (MMath) 157
8750 Master of Statistics (MStats) 157

Optometry
8760 Master of Optometry (MOptom) 158

Physics
8730 Master of Physics (MPhysics) 158
<table>
<thead>
<tr>
<th>Subject Descriptions</th>
<th>Identification of Subjects by Number</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>181</td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>185</td>
</tr>
<tr>
<td>Metallurgy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>186</td>
</tr>
<tr>
<td>Mechanical and Industrial Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science: Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td>Pure Mathematics 190, Applied Mathematics 194, Statistics 196, Theoretical and Applied Mechanics 198</td>
<td>190</td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>Accountancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>205</td>
</tr>
<tr>
<td>Economics: Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Applied Geology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>General Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Geography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Surveying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>Organizational Behaviour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>Optometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>Graduate Study</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Study</td>
<td></td>
<td>220</td>
</tr>
</tbody>
</table>
General Information

To obtain the maximum benefit from your studies you should make an effort to learn what facilities the University offers, to investigate the best methods of study and to discover as much as possible about the course for which you are enrolled.

This Handbook has been specially designed as a detailed source of reference for you in all matters related to your Faculty. This General Information Section is intended to help you put the Faculty into perspective with the University as a whole, to introduce you to some of the services available to students and to note some of the most important rules and procedures.

For fuller details about some aspects of the University and its activities you might need to consult the University Calendar.

Some people who can help you

If you are experiencing difficulties in adjusting to the requirements of the University you will probably need advice. The best people to talk to on matters relating to progress in studies are your tutors and lecturers. If your problem lies outside this area there are many other people with specialized knowledge and skills who may be able to help you.

The Deputy Registrar (Student Services), Mr Peter O'Brien, and members of his staff, are located on the first floor of the Chancellery. They will help those students who need advice and who have problems but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with general enquiries they are especially concerned with the problems of overseas, Aboriginal, and physically handicapped and disabled students. Enquire at Room 148E, phone 2482.

The Assistant Registrar (Admissions and Examinations), Mr Jack Hill, is located on the ground floor of the Chancellery. General inquiries should be directed to 3715. For information regarding examinations, including examination timetables and clash of examinations, contact the Senior Administrative Officer, Mr John Grigg, phone 2143.

Note: All phone numbers below are University extension numbers. If you are outside the University, dial 6630351 and ask for the extension. Alternatively you may dial 662 and then the extension number. This prefix should only be used when you are certain of the extension that you require as callers using 662 cannot be transferred to any other number.
The Assistant Registrar (Student Records and Scholarships — Undergraduate and Postgraduate), Mr Graham Mayne is located on the ground floor of the Chancellery. For particular enquiries regarding illness and other matters affecting performance in examinations and assessment, academic statements, graduation ceremonies, prizes, release of examination results and variations to enrolment programs, phone 3317.

The Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery and is available for personal interview. For an appointment phone 3453.

The Assistant Registrar (Careers and Employment), Mr Jack Foley, is located in the Chancellery. Enquiries should be directed to 3259.

The Off-campus Housing Officer, Mrs Judy Rawson, is located in Room 148E in the Chancellery. For assistance in obtaining suitable accommodation phone 3260.

Student Loans enquiries should be directed to Mrs Judy Rawson, Room 148E in the Chancellery, phone 3164.

The Student Health Unit is located in Hut E15b at the foot of Basser Steps. The Director is Dr Geoffrey Hansen. For medical aid phone 2679, 2678 or 2677.

The Student Counselling and Research Unit is located at the foot of Basser Steps. Dr Pat Cleary is the Head of the Unit. For assistance with educational or vocational problems ring 3681 or 3685 for an appointment.

The University Librarian is Mr Allan Horton. Library enquiries should be directed to 2048.

The Chaplaincy Centre is located in Hut E15a at the foot of Basser Steps.

The Students' Union is located on the second floor of Stage III of the University Union, where the SU President, Secretary-Treasurer, Education Vice-President, Women's Officer, Director of Overseas Students and a full-time solicitor employed by the Students' Union are available to discuss any problems you might have.

Cashier's Hours The University Cashier's office is open from 9.30 am to 1.00 pm and from 2.00 pm to 4.30 pm, Monday to Friday. It is open for additional periods at the beginning of Session 1. Consult noticeboards for details.

Calendar of Dates

The Academic Year

The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of five weeks between the two sessions and there are short recesses of one week within each of the sessions.

Session 1 commences on the first Monday of March.

1984

Faculties other than Medicine

Session 1	5 March to 13 May
(14 weeks)	May Recess: 14 May to 20 May
	21 May to 17 June
Examinations	Midyear Recess: 18 June to 22 July
	19 June to 4 July
Session 2	23 July to 26 August
(14 weeks)	August Recess: 27 August to
	2 September
	3 September to 4 November
Examinations	Study Recess: 5 November to
	11 November
	12 November to 30 November

Faculty of Medicine

First and Second Years	As for other faculties
Term 1 (10 weeks)	23 January to
	1 April
Term 2 (9 weeks)	9 April to 13 May
May Recess:	14 May to 20 May
Term 3 (9 weeks)	21 May to 17 June
August Recess:	25 June to
Term 4 (10 weeks)	26 August
	2 September
	3 September to
	11 November

Third and Fourth Years	23 January to
Term 1 (8 weeks)	18 March
Term 2 (8 weeks)	26 March to
Term 3 (8 weeks)	20 May
	28 May to 22 July

Fifth Year
Term 4 (8 weeks) 30 July to 23 September
Term 5 (8 weeks) 2 October to 25 November

April
Thursday 19
Last day for undergraduate students to discontinue without failure subjects which extend over Session 1 only
Friday 20
Good Friday — Public Holiday
Saturday 21
Easter Saturday — Public Holiday
Monday 23
Easter Monday — Public Holiday
Wednesday 25
Anzac Day — Public Holiday

May
Wednesday 2
Confirmation of Enrolment forms despatched to all students
Friday 11
Last day for acceptance of corrected Confirmation of Enrolment forms
Monday 14

May Recess begins
Wednesday 16
Last day for undergraduate students completing requirements for degrees at the end of Session 1 to submit Application for Admission to Degree forms
Thursday 17
Publication of provisional timetable for June/July examinations
Sunday 20
May Recess ends
Friday 25
Last day for students to advise of examination clashes

June
Tuesday 5
Publication of timetable for June/July examinations
Monday 11
Queen's Birthday — Public Holiday
Session 1 ends
Monday 17
Midyear Recess begins
Sunday 18
Examinations begin
Tuesday 19

July
Wednesday 4
Examinations end
Monday 16
Examination results mailed to students
Tuesday 17
Examination results displayed on University noticeboards
To Friday 20 July: Students to amend enrolment programs following receipt of June examination results
Midyear Recess ends
Sunday 22
Monday 23
Session 2 begins

List of graduands for April/May ceremonies and 1983 prizewinners published in The Sydney Morning Herald

Monday 5
Session 1 begins — all courses except Medicine III, IV and V

Wednesday 7
List of graduands for April/May ceremonies and 1983 prizewinners published in The Sydney Morning Herald

Monday 12
Last day for notification of correction of details published in The Sydney Morning Herald on 7 March concerning April/May graduation ceremonies

Friday 16
Last day for acceptance of enrolment by new undergraduate students (late fee payable thereafter)

Friday 30
Last day for acceptance of enrolment by undergraduate students re-enrolling in second and later years (late fee payable thereafter)
<table>
<thead>
<tr>
<th>August</th>
<th>November</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday 3</td>
<td>Sunday 4</td>
</tr>
<tr>
<td>Monday 27</td>
<td>Monday 5</td>
</tr>
<tr>
<td>Tuesday 28</td>
<td>Sunday 11</td>
</tr>
<tr>
<td>August Recess begins</td>
<td>Study Recess begins</td>
</tr>
<tr>
<td>Tuesday 28</td>
<td>Monday 12</td>
</tr>
<tr>
<td>Last day for undergraduate students who have completed requirements for pass degrees to advise the Registrar they are proceeding to an honours degree or do not wish to take out the degree for which they have applied for any other reason</td>
<td>Examinations begin</td>
</tr>
<tr>
<td>Friday 30</td>
<td>Friday 30</td>
</tr>
<tr>
<td>Last day for students to discontinue without failure subjects which extend over the whole academic year</td>
<td>Examinations end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>September</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday 2</td>
<td>Monday 17</td>
</tr>
<tr>
<td>August Recess ends</td>
<td>Examination results mailed to students</td>
</tr>
<tr>
<td>Wednesday 5</td>
<td>List of graduands in Medicine for February Graduation Ceremony published in The Sydney Morning Herald</td>
</tr>
<tr>
<td>Monday 10</td>
<td>Tuesday 18</td>
</tr>
<tr>
<td>List of graduands for October graduation ceremonies published in The Sydney Morning Herald on 5 September concerning October graduation ceremonies</td>
<td>Examination results displayed on University noticeboards</td>
</tr>
<tr>
<td>Friday 14</td>
<td>Tuesday 25</td>
</tr>
<tr>
<td>Last day for undergraduate students to discontinue without failure subjects which extend over Session 2 only</td>
<td>Christmas Day — Public Holiday</td>
</tr>
<tr>
<td>Monday 24</td>
<td>Wednesday 26</td>
</tr>
<tr>
<td>Confirmation of Enrolment forms despatched to all students</td>
<td>Boxing Day — Public Holiday</td>
</tr>
<tr>
<td>Friday 28</td>
<td></td>
</tr>
<tr>
<td>Last day to apply to UCAC for transfer to another tertiary institution in New South Wales</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>October</th>
<th>1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 1</td>
<td></td>
</tr>
<tr>
<td>Eight Hour Day — Public Holiday</td>
<td>Faculties other than Medicine and Military Studies</td>
</tr>
<tr>
<td>Wednesday 3</td>
<td></td>
</tr>
<tr>
<td>Last day for acceptance of corrected Confirmation of Enrolment forms</td>
<td></td>
</tr>
<tr>
<td>Thursday 4</td>
<td></td>
</tr>
<tr>
<td>Publication of provisional examination timetable</td>
<td>Session 1 (14 weeks) 4 March to 12 May</td>
</tr>
<tr>
<td>Friday 5</td>
<td></td>
</tr>
<tr>
<td>Last day for applications from undergraduate students completing requirements for degrees at the end of Session 2 to submit applications for Admission to Degree forms</td>
<td>May Recess: 13 May to 19 May</td>
</tr>
<tr>
<td>Friday 12</td>
<td></td>
</tr>
<tr>
<td>Last day for students to advise of examination timetable clashes</td>
<td>20 May to 16 June</td>
</tr>
<tr>
<td>Thursday 25</td>
<td></td>
</tr>
<tr>
<td>Publication of examination timetables</td>
<td>Midyear Recess: 17 June to 21 July</td>
</tr>
</tbody>
</table>

1985

Faculties other than Medicine and Military Studies

<table>
<thead>
<tr>
<th>Session 1 (14 weeks)</th>
<th>Session 2 (14 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 March to 12 May</td>
<td>22 July to 25 August</td>
</tr>
<tr>
<td>May Recess: 13 May to 19 May</td>
<td>August Recess: 26 August to 1 September</td>
</tr>
<tr>
<td>20 May to 16 June</td>
<td>2 September to 3 November</td>
</tr>
<tr>
<td>Midyear Recess: 17 June to 21 July</td>
<td>Study Recess: 4 November to 10 November</td>
</tr>
<tr>
<td>Examinations</td>
<td>Examinations</td>
</tr>
<tr>
<td>18 June to 3 July</td>
<td>11 November to 29 November</td>
</tr>
</tbody>
</table>
Faculty of Medicine

First and Second Years

Third and Fourth Years

As for other faculties

Term 1 (10 weeks) 21 January to 31 March
Term 2 (9 weeks) 9 April to 12 May
May Recess: 13 May to 19 May
20 May to 16 June
Term 3 (9 weeks) 24 June to 25 August
August Recess: 26 August to 1 September
Term 4 (10 weeks) 2 September to 10 November

Fifth Year

Term 1 (8 weeks) 21 January to 17 March
Term 2 (8 weeks) 25 March to 19 May
Term 3 (8 weeks) 27 May to 21 July
Term 4 (8 weeks) 29 July to 22 September
Term 5 (8 weeks) 30 September to 24 November

January

Tuesday 1 Public Holiday (New Year)
Friday 11 Last day for acceptance of applications by office of the Admissions Section for transfer to another undergraduate course within the University
Monday 14 Last day for applications for review of results of annual examinations
Monday 28 Australia Day — Public Holiday

February

Monday 19 Enrolment period begins for second and later year undergraduate students and graduate students enrolled in formal courses

March

Monday 4 Session 1 begins — all courses except Medicine III, IV and V

April

Friday 5 to Monday 8 Easter — Public Holiday
Thursday 25 Anzac Day — Public Holiday

Organization of the University

The University of New South Wales was first incorporated by an Act of Parliament in 1949, under the name of the New South Wales University of Technology.

In 1983 the University had 18,376 students and over 3,600 staff who worked in more than eighty buildings. These figures include staff and students at Broken Hill (W.S. and L.B. Robinson University College), Duntroon (the Faculty of Military Studies) and Jervis Bay.

Arms of the University of New South Wales

The arms of the University are reproduced on the front cover of this handbook. The arms were granted by the College of Heralds in London, on 3 March 1952, and the heraldic description is as follows:

'Argent on a Cross Gules a Lion passant guardant between four Mullets of eight points Or a Chief Sable charged with an open Book proper thereon the word SCIENTIA in letters also Sable.'

'The lion and the four stars of the Southern Cross on the Cross of St George have reference to the State of New South Wales which brought the University into being; the open book with SCIENTIA across its page reminds us of its original purpose. Beneath the shield is the motto 'Manu et Mente', which is the motto of the Sydney Technical College, from which the University has developed. The motto is not an integral part of the Grant of Arms and could be changed at will; but it was the opinion of the University Council that the relationship with the parent institution should in some way be recorded.'

The University Colours

The colours of the University are black and gold.

The Council

The chief governing body of the University is the Council which has the responsibility of making all major decisions regarding its policy, conduct and welfare.

The Council consists of 44 members from the State Parliament, industry and commerce, agriculture, the trade unions, professional bodies, the staff, the students and the graduates of the University.

The Council meets six times per year and its members also serve on special committees dealing with, for example, academic matters, finance, buildings and equipment, personnel matters, student affairs and public relations.

The Chairman of the Council is the Chancellor, the Hon. Mr Justice Samuels.
The Professorial Board

The Professorial Board is one of the two chief academic bodies within the University and includes all the professors from the various faculties, non-professorial Heads of Schools and Chairmen of Faculty, and several ex-officio and appointed members. It deliberates on all questions such as matriculation requirements, the content of courses, the arrangement of syllabuses, the appointment of examiners and the conditions for graduate degrees. Its recommendations on matters of major policy are presented to Council for its consideration and adoption.

The Faculties/Boards of Studies

The executive head of a faculty or board of studies is the dean, with the exception of the Australian Graduate School of Management, where the executive head is the director. Members of each faculty or board meet regularly to consider matters pertaining to their own areas of teaching and research, the result of their deliberations being then submitted to the Professorial Board.

The term ‘faculty’ is used in two distinct senses in the University. Sometimes it is used to refer to the group of schools comprising the faculty, and at others to the deliberative body of academic members of the Schools within the faculty.

The eleven faculties are Applied Science, Architecture, Arts, Biological Sciences, Commerce, Engineering, Law, Medicine, Military Studies, Professional Studies and Science. In addition, the Board of Studies of the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education fulfill a function similar to that of the faculties. The Board of Studies in Science and Mathematics, which was established to facilitate the joint academic administration of the Science and Mathematics degree course by the faculties of Biological Sciences and Science, considers and reports to the Professorial Board on all matters relating to studies, lectures and examinations in the science and mathematics degree course.

The Schools

Subjects come under the control of the individual schools (eg the School of Chemistry, the School of Accountancy). The head of the school in which you are studying is the person in this academic structure with whom you will be most directly concerned.

Executive Officers

As chief executive officer of the University, the Vice-Chancellor and Principal, Professor Michael Birt, is charged with managing and supervising the administrative, financial and other activities of the University.

He is assisted in this task by two Pro-Vice-Chancellors, Professor Ray Golding and Professor Athol Carrington, together with the Deans and the three heads of the administrative divisions.

General Administration

The administration of general matters within the University comes mainly within the province of the Registrar, Mr Ian Way, the Bursar, Mr Tom Daly, and the Property Manager Mr Peter Koller.

The Registrar's Division is concerned chiefly with academic matters such as the admission of students, and the administration of examinations as well as the various student services (health, employment, amenities, and counselling).

The Bursar's Division is concerned with the financial details of the day-to-day administration and matters to do with staff appointments, promotions, etc.

The Property division is responsible for the building program and the ‘household’ services of the University, including electricity, telephones, cleaning, traffic and parking control and maintenance of buildings and grounds.

Student Representation on Council and Faculties/Boards

Three members of the University Council may be students elected by students. All students who are not full-time members of staff are eligible to stand for a two-year term of office. The students who are elected to the Council are eligible for election to the committees of Council.

Students proceeding to a degree or a graduate diploma may elect members for appointment by the Council to their faculty or board of studies. Elections are for a one-year term of office.

Open Faculty/Board Meetings

If you wish you may attend a faculty or board meeting. You should seek advice at the office of the faculty whose meeting you wish to attend, as the faculties have their own rules for the conduct of open meetings.

Award of the University Medal

The University may award a bronze medal to undergraduate students who have achieved highly distinguished merit throughout their degree course.

Identification of Subjects by Numbers

For information concerning the identifying number of each subject taught in each faculty as well as the full list of identifying numbers and subjects taught in the University, turn to the first page of the section Subject Descriptions. This list is also published in the Calendar.

Textbook Lists

Textbook lists are issued early in the year and are available from School and Faculty offices for re-enrolling students and from the Unisearch House Enrolment Centre for first year students.
Textbook Costs and Course-Related Costs
Students should allow quite a substantial sum for textbooks. This can vary from $250 to $600 per year depending on the course taken. These figures are based on the cost of new books. The Students' Union operates a secondhand bookshop. Information about special equipment costs, accommodation charges and cost of subsistence on excursions, field work, etc. and for hospital residence (medical students) are available from individual schools.

Co-operative Bookshop
Membership is open to all students, on initial payment of a fee of $12, refundable after 2 years.

General Studies Program
Almost all undergraduates in faculties other than Arts and Law are required to complete a General Studies program. The Department of General Studies within the Board of Studies in General Education publishes its own Handbook which is available free of charge. All enquiries about General Studies should be made to the General Studies Office, Room G56, Morven Brown Building, phone 3476.

Residential Colleges
There are seven residential colleges on campus. Each college offers accommodation in a distinctive environment which varies from college to college, as do facilities and fees. A brief description of each college is given below, and further information may be obtained directly from the individual colleges. In addition to basic residence fees, most colleges make minor additional charges for such items as registration fees, caution money or power charges. Intending students should lodge applications before the end of October in the year prior to the one in which they seek admission. Most colleges require a personal interview as part of the application procedure.

The Kensington Colleges
The Kensington Colleges comprise Basser College, Goldstein College and Philip Baxter College. They house 450 men and women students, as well as tutorial and administrative staff members. Fees are payable on a session basis. Apply in writing to the Master, PO Box 24, Kensington, NSW 2033.

International House
International House accommodates 154 male and female students from Australia and up to thirty other countries. Preference is given to more senior undergraduates and graduate students. Eight tutors are available to help students. Apply in writing to the Warden, International House, PO Box 1, Kensington, NSW 2033.

New College
New College is an Anglican college and it provides accommodation (with all meals) for 220 graduates and undergraduates, without regard to race, religion, or sex. The College has its own resident tutors, and sponsors a wide range of sporting and social activities. Apply to the Master, New College, Anzac Parade, Kensington 2033 (telephone 662 6066).

Shalom College
Shalom College is a Jewish residential college. It provides accommodation for 86 men and women students. Non-resident membership is available to students who wish to avail themselves of the Kosher dining room and tutorial facilities. Fees are payable on a session basis. Conferences are catered for, particularly with Kosher requirements. Rates are available on application. Apply in writing to the Master, Shalom College, the University of New South Wales, PO Box 1, Kensington, NSW 2033.

Warrane College
Warrane College provides accommodation for 200 men and is open to students of all ages, backgrounds and beliefs. The College offers a comprehensive tutorial program along with a wide range of activities, professional orientation and opportunities to meet members of the University staff informally. Non-resident membership is available to male students who wish to participate in College activities and to make use of its facilities. The general spiritual care of the College has been entrusted to Opus Dei. Enquiries: The Master, Warrane College, PO Box 123, Kensington 2033. Telephone (02) 662 6199.

Creston Residence
Creston Residence offers accommodation to 25 undergraduate and graduate women students. Activities and tutorials are open to non-resident students. The spiritual activities offered at Creston are entrusted to the Women's Section of Opus Dei. Enquiries: 36 High Street, Randwick 2031. Telephone (02) 398 5693.

Other Accommodation

Off-campus Accommodation
Students requiring other than College accommodation may contact the Housing Officer in the Chancellery, Room 148E for assistance in obtaining suitable accommodation in the way of rooms with cooking facilities, flats, houses, share flats, etc. Extensive listings of all varieties of housing are kept up-to-date throughout the year and during vacations. Accom
modation in the immediate vicinity of the University is not usually easy to find at short notice, and is expensive.

No appointment is necessary but there may be some delay in February and March. The Housing staff are always happy to discuss any aspect of accommodation.

Special pamphlets on accommodation, lists of estate agents and hints on house-hunting are available on request.

Australian Armed Services

The University maintains links with the Royal Australian Navy, the Australian Army Reserve and the Royal Australian Air Force, and opportunities exist for student participation in their activities. See the General Information section of the Faculty Handbooks for details.

Chaplaincy Centre

The University Chapel

The University provides a small chapel for the use of all faiths. In its temporary housing it is located in Hut E15a near the Chemistry Building. The chapel is available for services of worship by arrangement with the full-time chaplains. At other times it is available for private meditation to all members of the University.

Chaplaincy Service

A Chaplaincy Service is available within the University of New South Wales for the benefit of students and staff.

The service offers fellowship, personal counselling and guidance, together with leadership and biblical and doctrinal studies and in worship. The chaplains maintain close liaison with student religious societies.

The chaplains are located in Hut E15a at the foot of Basser steps, which also contains the temporary chapel.

Deputy Registrar (Student Services)

The Deputy Registrar (Student Services), Mr Peter O'Brien, and his Administrative Assistant, Mrs Anne Beaumont, are located on the first floor of the Chancellery.

They will help those students who have problems and need advice but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with those enquiries, they are especially concerned with the problems of physically handicapped and disabled students, overseas students, and aboriginal students.

All enquiries should be made either at room 148E or by telephoning extension 2482 (general enquiries).

Associations, Clubs and Societies

The Sports Association

The Sports Association is a student organization within the University which caters for a variety of sports for both men and women. In December 1952 the University Council approved the establishment of the Sports Association, which then consisted of five clubs. As the University has grown the Association has expanded, and it now includes thirty-eight clubs.

The Association office is situated on the 3rd floor, Squarehouse, E4, lower campus, and can be contacted on extension 2673. The control of the Association is vested in the General Committee which includes delegates from all the clubs.

Membership is compulsory for all registered students, and the annual fee is as set out later, in Rules and Procedures, Enrolment Procedures and Fees Schedules, section 15. Fees. Membership is also open to all members of staff and graduates of the University on payment of a fee as prescribed in the By-laws of the Association. All members are invited to take part in any of the activities arranged by the Association, and to make use of the University’s sporting and recreational facilities.

The Association is affiliated with the Australian Universities Sports Association (AUSA) which is the controlling body for sport in all Australian universities.

School and Faculty Associations

Many schools and faculties have special clubs with interests in particular subject fields. Enquire at the relevant Faculty or School Office for information.
Sport and Recreation Section

The Sport and Recreation Section seeks ways to encourage students and staff to include exercise as an essential part of their daily lives. It does this through Sports Clubs on a competitive basis and by offering physical recreation on a more casual basis to the University community.

The Section serves the Sports Association and its 38 constituent clubs and is responsible for the continuing management of the Physical Education and Recreation Centre at which recreational programs are available for both students and staff.

It makes bookings for use of sporting facilities including tennis courts and playing fields. This section is located on the 3rd Floor, Squarehouse, E4, lower campus. The various services may be contacted by phone on the following extensions: Recreation Program 3271; Grounds Bookings 2235; Tennis Bookings 2617; Sports Association 2673.

Physical Education and Recreation Centre

The Sport and Recreation Section provides a recreational program for students and staff at the Physical Education and Recreation Centre. The Centre consists of eight squash courts, seven tennis courts, a main building, and a 50-metre indoor heated swimming pool. The main building has a large gymnasium and practice rooms for fencing, table tennis, judo, weight-lifting, karate and jazz ballet, also a physical fitness testing room. The recreational program includes intramurals, teaching/coaching, camping. The Centre is located on the lower campus adjacent to High Street. The Supervisor at PERC may be contacted on extension 3271.

Student Counselling and Research Unit

The Student Counselling and Research Unit provides counselling services to students, prospective students, parents and other concerned persons.

The unit is located in the huts near the foot of Basser Steps (access from College Road or Engineering Road).

Appointments are offered throughout the academic year and during recesses between 8 am to 5 pm on week days (up to 7 pm on some evenings). A 'walk-in' service for short interviews is available between 9 am and 5 pm. Appointments may be made by phoning extension 3685 or 3681 between 8.30 am and 5.30 pm.

Counsellors offer assistance in planning, decision-making, problem solving, social and emotional development, and dealing with grievances. Group programs on such topics as study, tutorial and examination skills, stress management, communicating, and self-confidence are offered each session. Brochures are available from the receptionist.

Careers and Employment Section

The Careers and Employment Section provides careers advice and assistance in finding employment.

Assistance with careers and permanent employment opportunities includes: the regular mailing of a Job Vacancy Bulletin to registered students and graduates, a Library, and a Campus Interview Program in which final year students have the opportunity to speak to employers regarding employment prospects.

Assistance is also provided in obtaining course-related employment during long vacations as required by undergraduates in Engineering and Applied Science.

The Section is located in Undercroft Room LG05 in the Chancellery.

For further information, telephone as follows: careers and employment assistance 3259 or 3630; long vacation industrial training 2086.

Student Health Unit

A student health clinic and first aid centre is situated within the University. The medical service although therapeutic is not intended to replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected the student may be referred to a private practitioner or to an appropriate hospital. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.

The service is available to all enrolled students by appointment, free of charge, between 9 am and 5 pm Mondays to Fridays. For staff members, immunizations are available, and first aid service in the case of injury or illness on the campus.

The centre is located in Hut E15b on the northern side of the campus in College Road at the foot of the Basser Steps.

Appointments may be made by calling at the centre or by telephoning extension 2679, 2678 or 2677 during the above hours.

The Family Planning Association of NSW conducts clinics at the Student Health Unit and at the adjacent Prince of Wales Hospital which are available for both staff and students. Appointments may be made for the Student Health Unit clinic by telephoning 5882833 or for the Prince of Wales Hospital clinics by telephoning 3990111.
The Students' Union

The Students' Union was formed in 1952 as an organization, duly recognized by the University Council, to represent the student body and to provide a central organization for the administration of student activities. In the words of its constitution "The Students' Union is formed for the purpose of advancing the interests of University men and women, facilitating their general scientific and technical education, and fostering a University spirit among them.'

The Students' Union affords a recognized means of communication between the student body and the University administration, and represents its members in all matters affecting their interests. It aims to promote the cultural, educational and recreational life of the University and to encourage a permanent interest among graduates in the life and progress of student activities within the University. The Students' Union also makes representations to government and other bodies outside the University on behalf of its members.

Membership of the Students' Union is compulsory for all registered students of the University; the annual subscription for full-time and part-time students is set out later, in Rules and Procedures, Enrolment and Procedures and Fees Schedules, section 15. Fees. All alumni of the University are eligible for Life Membership.

The Students' Union is governed by a Council consisting in the main of elected student representatives from the various faculties of the University. There are also representatives of the University Council, Life Members, the Staff Association and the Sports Association. The Council is elected annually.

A full-time President, elected each year by popular ballot, directs the entire administration of the Students' Union and its activities, assisted by a Secretary-Treasurer.

Other officers are the Education Vice-President who works towards the implementation of Students' Union education policy; the Welfare-Research Officer concerned with helping students with problems they may encounter in the University; the Electronic Media Officer; and the Director of Overseas Students who deals with specific problems these students may encounter while in Australia.

The Students' Union has three full-time officers who are elected each year by popular ballot. They are the President, who is mainly the political figure-head of the Union; the Secretary/Treasurer, who organizes the smooth operation of the SU offices, keeps the membership rolls up to date, and oversees the financial operations; and the Women's Officer who represents women on campus and formulates, maintains and co-ordinates the Students' Union policy on women's affairs.

Other officers are the Education Vice-President, who works towards the implementation of Students' Union education policy; the Education Officer concerned with helping students with problems relating to TEAS, Show-Cause and other matters relevant to their courses; the Vice-President who ensures the efficient running of CASOC: and the Director of Overseas Students who deals with specific problems these students may encounter while in Australia.

The activities in which the Students' Union is involved include:

1. Publication of the Student Paper Tharunka.
2. Production of the student video program Campuswide.
3. A free legal service run by a qualified lawyer employed by the Students' Union Council.
4. The Secondhand Bookshop for cheap texts.
5. A child care centre, House at Pooh Corner.
6. CASOC (Clubs and Societies on Campus) which provides money from the SU for affiliated clubs and societies on campus.
7. A video service with access for students to equipment and advice.
8. A noticeboard for casual job vacancies.
9. Organization of orientation for new students.
10. Organization of Foundation Day.

The SU has two offices on campus. One is located at the back of the Library Lawn (between the Chancellery and the Morven Brown Building), the other is on the Second Floor of the Squarehouse (above the bar) at the bottom end of campus.

The University Library

The University libraries are mostly situated on the upper campus. The library buildings house the Undergraduate Library on Level 3, the Social Sciences and Humanities Library on Level 4, the Physical Sciences Library on Level 7 and the Law Library on Level 8. The Biomedical Library is in the western end of the Mathews Building and is closely associated with libraries in the teaching hospitals of the University.

For details consult Faculty Information in the relevant Faculty Handbook.

There are also library services at other centres:

The Water Reference Library situated at Manly Vale (telephone 948 0261) which is closely associated with the Physical Sciences Library.

The library at the Royal Military College, Duntroon, ACT, serving the Faculty of Military Studies.

Each library provides reference and lending services to staff and students and each of the libraries on the Kensington campus is open throughout the year during the day and evening periods. The exact hours of opening vary during the course of the academic year.

Staff and students normally use a machine-readable identification card to borrow from the University libraries.
The University Union

The University Union provides the facilities students, staff and graduates require in their daily University life and thus an opportunity for them to know and understand one another through associations outside the lecture room, the library and other places of work.

The Union is housed in three buildings near the entrance to the Kensington Campus from Anzac Parade. These are the Roundhouse, the Blockhouse and the Squarehouse. Membership of the Union is compulsory for all registered students and is open to all members of staff and graduates of the University.

The control of the Union is vested in the Board of Management whose Chief Executive Officer is the Warden.

The full range of facilities provided by the Union includes a cafeteria service and other dining facilities, a large shopping centre (including clothing shop and delicatessen); travel service; banking, pharmaceutical, optometrical and hairdressing facilities; showers; common, games, reading, meeting, music, practice, craft and dark rooms. The Union also has shops on Campus which cater for student needs, including art materials and calculators. The Union also operates various Food Service Points on the Upper Campus including the Sciences Cafeteria, Golf House and the Undercroft with a late night service in the Sciences Cafeteria. Photocopying, sign printing, and stencil cutting services are also available. The Union also sponsors special concerts (including lunchtime concerts) and conducts courses in many facets of the arts including weaving, photography, creative dance and yoga. Full information concerning courses is contained in a booklet obtainable from the Union's program department.

The University Union should not be confused with the Students' Union or Students' Representative Council as it is known in some other universities. This latter body has a representative function and is the instrument whereby student attitudes and opinions are crystallized and presented to the University and the community.

Financial Assistance to Students

Tertiary Education Assistance Scheme

Under this scheme, which is financed by the Commonwealth Government, assistance is available for full-time study in approved courses, to students who are not bonded and who are permanent residents of Australia, subject to a means test on a non-competitive basis. The allowances paid are unlikely to be sufficient, even at the maximum rate, for all the living expenses of a student. Family help and/or incomes from vacation or spare-time work would also be needed.

Students in the following types of university courses are eligible for assistance:

- Undergraduate and graduate bachelor degree courses
- Graduate diplomas
- Approved combined bachelor degree courses
- Master's qualifying courses (one year)

The rates of allowance and conditions for eligibility are set out in a booklet obtainable from the Commonwealth Department of Education.

Tertiary students receiving an allowance, and prospective tertiary students, will be sent application forms in January 1984. Forms are also available from the Admissions Section or the Careers and Employment Section, or from the Director, Department of Education, 59 Goulburn Street, Sydney, NSW 2000 (telephone 2188800). Continuing students should submit applications as soon as examination results are available. New students should do so as soon as they are enrolled. All students should apply by 31 March 1984, otherwise benefits will not be paid for the earlier months of the year.

It is most important that students advise the TEAS office if at any time they change or discontinue their study programs, as their eligibility for benefits might be affected.

Other Financial Assistance

In addition to the Tertiary Education Assistance Scheme financed by the Australian Government the following forms of assistance are available:

1. Deferment of Payment of Fees

Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided the deferment is requested prior to the due date for fee payments.

2. Short Term Cash Loans

Donations from various sources have made funds available for urgent cash loans not exceeding $100. These loans are normally repayable within one month.

3. Early in 1973 the Commonwealth Government made funds available to the University to provide loans to students in financial difficulty. The loans are to provide for living allowances and other approved expenses associated with attendance at university. Students are required to enter into a formal agreement with the University to repay the loan. The University is unable to provide from the fund amounts large enough for all or even a major part of the living expenses of a student.

From the same source students who are in extremely difficult financial circumstances may apply for assistance by way of a non-repayable grant. In order to qualify for a grant a student must generally show that the financial difficulty has arisen from exceptional misfortune. Grants are rarely made.

The University has also been the recipient of generous donations from the Arthur T. George Foundation, started by Sir Arthur George and his family, for the endowment of a student loan fund.

The George Foundation, started by Sir Arthur George and his family, for the endowment of a student loan fund.
In all cases assistance is limited to students with reasonable academic records and whose financial circumstances warrant assistance.

Enquiries about all forms of financial assistance should be made at the office of the Deputy Registrar (Student Services), room 148E, in the Chancellery.

Financial Assistance to Aboriginal Students

Financial assistance is available to help Aboriginal students from the Commonwealth Government's Aboriginal Study Grant Scheme. Furthermore, the University may assist Aboriginal students with loans to meet some essential living expenses.

The University has also received a generous bequest from the estate of the late Alice Brooks Gange for the education of Australian aborigines within the University. The University is engaged in consultations with groups and individuals for advice on the most effective ways of using the funds and has established a committee to advise the Vice-Chancellor in the matter.

All enquiries relating to these matters should be made at the office of the Deputy Registrar (Student Services), Room 148E, in the Chancellery.

Rules and Procedures

The University, in common with other large organizations, has established rules and procedures which are designed for the benefit of all members of the University. In some cases there are penalties (eg fines or exclusion from examinations) for non-compliance. Any student who, after carefully reading the rules set out in the following pages, requires further information on their application should seek further advice, in the first instance, at the Enquiry Counter in the North Wing of the Chancellery Building.

General Conduct

The University has not considered it necessary to formulate a detailed code of rules relating to the general conduct of students. Enrolment as a student of the University, however, involves an undertaking to observe the regulations, by-laws and rules of the University, and to pay due regard to any instructions given by any officer of the University.

Appeals

Section 5(c) of Chapter III of the By-laws provides that 'Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action by the Vice-Chancellor, whether on appeal or otherwise, to the Council'.

Admission and Enrolment

The Student Enquiry Counter, located near the Cashier in the Chancellery on the upper campus, provides information for students on admission requirements, undergraduate and graduate courses and enrolment procedures. Faculty handbooks and the Calendar may be purchased from the Cashier. The Enquiry Counter is open from 9 am to 5 pm, Monday to Friday. During enrolment it is also open for some part of the evening.

Information may be obtained here about special admission, admission with advanced standing and admission on overseas qualifications. Applications are also received from students who wish to transfer from one course to another, resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled. It is essential that the closing dates for lodgement of applications are adhered to. For further details see the section on Enrolment Procedures and Fees.

Applications for admission to undergraduate courses from students who do not satisfy the requirements for admission (see section on Admission Requirements) are referred by the Admissions Section to the Admissions Committee of the Professorial Board.

Students wishing to enrol as higher degree candidates should first consult the Head of the School in which they wish to study. An application is then lodged on a standard form and the Postgraduate Section, after obtaining a recommendation from the Head of School, refers the application to the appropriate Faculty or Board of Studies Higher Degree Committee.

Details of the procedure to be followed by students seeking entry to first year undergraduate degree courses at the University may be obtained from the Student Enquiry Counter or the Universities and Colleges Admissions Centre.

An Adviser for Prospective Students, Mrs Fay Lindsay, is located in the Chancellery, and is available for personal interview with those who require additional information about the University.

First Year Entry

Those seeking entry to first year courses in one or more of eighteen institutions in the State including the University of Wollongong and the three universities in the Sydney Metropolitan area (Macquarie University, the University of New South Wales and the University of Sydney) are required to lodge a single application form with the Universities and Colleges Admissions Centre, Challis House, 10 Martin Place,
Sydney 2000 (GPO Box 7049, Sydney 2001). On the application form provision is made for applicants to indicate preferences for courses available in any of the three universities and fifteen other tertiary institutions. Students are notified individually of the result of their applications and provided with information regarding the procedures to be followed in order to accept the offer of a place at this university. Enrolment is completed at the Enrolment Bureau, Unisearch House, 221 Anzac Parade, Kensington.

Deferment of First Year Enrolment
Students proceeding directly from school to University who have received an offer of a place may request deferment of enrolment for one year and will usually receive permission providing they do not enrol at another tertiary institution in that year.

Enrolment Procedures and Fees Schedules 1984

1. Introduction
All students, except those enrolling in graduate research degree courses (see sections 5. and 6. below), must lodge an authorized enrolment form with the Cashier either on the day the enrolling officer signs the form or on the day any required General Studies electives are approved.

All students, except those enrolling in graduate research degree courses and those exempted as set out in section 17. below, should on that day also either pay the required fees or lodge an enrolment voucher or other appropriate authority.

Such vouchers and authorities are generally issued by the NSW Department of Education and the NSW Public Service. They are not always issued in time and students who expect to receive an enrolment voucher or other appropriate authority but have not done so should pay the student activities fees and arrange a refund later. Such vouchers and authorities are not the responsibility of the University and their late receipt is not to be assumed as automatically exempting a student from the requirements of enrolling and paying fees.

If a student is unable to pay the fees the enrolment form must still be lodged with the Cashier and the student will be issued with a 'nil' receipt. The student is then indebted to the University and must pay the fees by the end of the second week of the session for which enrolment is being effected.

Penalties apply if fees are paid after the time allowed (see section 16. below) unless the student has obtained an extension of time in which to pay fees from the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery). Such an application must be made before the fee is due. Payment may be made through the mail, in which case it is important that the student registration number be given accurately. Cash should not be sent through the mail.

2. New Undergraduate Enrolments
Persons who are applying for entry in 1984 must lodge an application for selection with the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1983.

Those who are selected will be required to complete enrolment at a specified time before the start of Session 1. Compulsory student activities fees should be paid on the day.

In special circumstances, however, and provided class places are still available, students may be allowed to complete enrolment after the prescribed time.

Application forms and details of the application procedures may be obtained from the Student Enquiries Counter, Ground Floor, North Wing of the Chancellery Building.

3. Re-enrolment
See also sections 4., 6. and 7. below.

Students who are continuing courses (or returning after approved leave of absence) should enrol through the appropriate school in accordance with the procedures set out in the current Enrolment Procedures booklet, available from the Student Enquiries Counter in the Chancellery and from School offices. Those who have completed part of a course and have been absent without leave need to apply for entry through the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1983.

4. Restrictions Upon Re-enrolling
Students who in 1983 have infringed the rules governing re-enrolment should not attempt to re-enrol in 1984 but should follow the written instructions they will receive from the Registrar.

5. New Research Students
Students enrolling for the first time in graduate research degree courses will receive an enrolment form by post. They have two weeks from the date of offer of registration in which to lodge the enrolment form with the Cashier. Completion of enrolment after this time will incur a penalty (see section 16. below).

6. Re-enrolling Research Students
Students undertaking purely research degree programs (course codes 0-2999) will be re-enrolled automatically each year and sent an account for any fees due.

7. Submission of Project Report
Students registered for formal masters degree programs (course codes 8000-9999) who at the commencement of Session 1 have completed all the work for a degree or diploma except for the submission of the relevant thesis or project report are required to re-enrol by the end of the
second week of Session 1. Completion of enrolment after then will incur a penalty (see section 16. below).

Information about possible student activities fees exemption is set out in section 17. (10) below.

8. Enrolments by Miscellaneous Students

Enrolments by Miscellaneous students are governed by the following rules:

(1) Enrolment in a particular subject or subjects as a miscellaneous student — ie as a student not proceeding to a degree or diploma — may be permitted provided that in every case the Head of School offering the subject considers that the student will benefit from the enrolment and provided also that accommodation is available and that the enrolment does not prevent a place in that subject being available to a student proceeding to a degree or diploma.

(2) A student who is under exclusion from any subject in the University may not be permitted to be enrolled as a miscellaneous student in that subject.

(3) A student who is under exclusion from any course in the University may not be permitted to enrol in any subject which forms a compulsory component of the course from which the student is excluded.

(4) A student who is subsequently admitted to a course of the University for which any subjects completed as a miscellaneous student form a part may receive standing for those subjects.

9. Final Dates for Completion of Enrolment

No enrolments for courses extending over the whole year or for Session 1 only will be accepted from new students after the end of the second week of Session 1 (16 March 1984) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned; no later year enrolments for courses extending over the whole year or for Session 1 only will be accepted after the end of the fourth week of Session 1 (30 March 1984) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned. No enrolments for courses in Session 2 only will be accepted after the end of the second week of Session 2 (3 August 1984) except with the express approval of the Deputy Registrar (Student Services) and the Heads of the Schools concerned.

10. University of New South Wales and University Union Membership Card

All students enrolled in degree or diploma courses or as miscellaneous students, except those exempt from University Union fees under provisions of section 17. below, are issued with a University of New South Wales and University Union Membership Card. This card must be carried during attendance at the University and shown on official request.

The number appearing on the front of the card above the student’s name is the student registration number used in the University’s records. This number should be quoted in all correspondence.

The card must be presented when borrowing from the University libraries, when applying for travel concessions, and when notifying a change of address. It must also be presented when paying fees on re-enrolment each year when it will be made valid for the year and returned. Failure to present the card could result in inconvenience in completing re-enrolment.

Life members of the University Union and those exempt from payment of University Union fees, if enrolled in degree or diploma courses or miscellaneous students use the University’s fees receipt in place of the card when applying for travel concessions and when notifying a change of address. The University Library issues a library borrowing card on production of the fees receipt.

A student who loses a card must notify the University Union as soon as possible.

New students are issued with cards on enrolment if eligible.

New graduate students should complete an application for a card when they enrol unless they already possess one from previous study at the University. The card can be collected from the second floor of the University Union Blockhouse approximately three weeks after enrolment. The fees receipt may be used as necessary until the card is available.

11. Payment of Fees

The fees and charges which are payable include those charges raised to finance the expenses incurred in operating activities such as the University Union, the Students’ Union, the Sports Association, and the Physical Education and Recreation Centre. Penalty payments are also incurred if a student fails to complete procedures as required. Charges may also be payable, sometimes in the form of a deposit, for the hiring of kits of equipment in certain subjects. Accommodation charges, costs of subsistence on excursions, field work, etc, and for hospital residence (medical students) are payable in appropriate circumstances.

12. Assisted Students

Scholarship holders and sponsored students who have not received an enrolment voucher or appropriate letter of authority from their sponsor at the time when they are enrolling should complete their enrolment by paying their own fees.

A refund of fees will be made when the enrolment voucher or letter of authority is subsequently lodged with the Cashier.

Those unable to pay their own fees in these circumstances can apply to the office of the Deputy Registrar (Student Services) (Room 146E, the Chancellery) for an extension of time in which to pay. Such an application must be made before the fees are due.
13. Extension of Time

Students who are unable to pay fees by the due date may apply to the office of the Deputy Registrar (Student Services) (Room 148E, the Chancellery) for an extension of time, which may be granted in extenuating circumstances. Such applications must be made before the due date.

14. Failure to Pay Fees and Other Debts

Students who fail to pay prescribed fees or charges or are otherwise indebted to the University and who fail either to make a satisfactory settlement of indebtedness upon receipt of due notice or to receive a special exemption ceases to be entitled to the use of University facilities. Such students are not permitted to register for a further session, to attend classes or examinations, or to be granted any official credentials. In the case of students enrolled for Session 1 only or for both Sessions 1 and 2 this disbarment applies if any portion of fees is outstanding after the end of the eight week of Session 1 (27 April 1984). In the case of students enrolled for Session 2 only this disbarment applies if any portion of fees is outstanding after the end of the sixth week of Session 2 (31 August 1984).

In special cases the Registrar may grant exemption from the disqualification referred to in the preceding paragraph upon receipt of a written statement setting out all relevant circumstances.

15. Fees

Fees and penalties quoted are current at the time of publication but may be amended by the University without notice.

University Union Entrance Fee
Payable on first enrolment $35
Students enrolling for only one session must pay the full University Union entrance fee.

Student Activities Fees
All students (with the exceptions set out in section 17, below) are required to pay the following fees if enrolling for a program involving two sessions. Those enrolling for only one session will pay the full University Union Entrance Fee, if applicable, and one-half of any other fees due.

Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies.

Students often seek exemption from some or all of the student activities fees for reasons other than those set out in section 17, below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.

Student Activities Fees are adjusted annually by a system of indexation and those set out below are current in 1983 and are therefore subject to an increase in 1984.

University Union annual subscription $101
Sports Association annual subscription $21
Students' Union Annual Subscription
Students enrolling in full-time courses $30
Students enrolling in part-time courses or as miscellaneous students $25

These two fees will be increased for 1984; the amounts have yet to be determined at the time of publication.

Miscellaneous Fund annual fee $35
This fee is used to finance expenses generally of a capital nature relating to student activities and amenities. Funds are allocated for projects recommended by the Student Affairs Committee and approved by the University Council.

Special Examination Fees
Examinations conducted in special circumstances for each subject $20
Review of examination results for each subject $20

Other Charges
In addition to the fees outlined above and depending on the subject being taken, students may be required to make a payment for equipment; money so paid is, in general, refunded if the equipment is returned in satisfactory condition.

16. Penalties

(1) Failure to lodge enrolment form according to enrolment procedure $20
(2) Payment of fees after end of second week of session $20
(3) Payment of fees after end of fourth week of session $40

Penalties (1) and (2) or (1) and (3) may accumulate.

17. Exemptions — fees

Students often seek exemption from the fees for reasons other than those set out below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.

(1) Life members of the University Union, the Sports Association, and Students' Union are exempt from the relevant fee or fees.

Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies, not at the office of the Deputy Registrar (Student Services) or at the Cashier's office.

$35
(2) Students enrolled in courses classified as External are exempt from all Student Activities Fees and the University Union Entrance Fee.

(3) Students enrolled in courses at the W. S. and L. B. Robinson University College and in the Faculty of Military Studies are exempt from the Student Activities Fees and the University Union Entrance Fee in section 15, above but shall pay such other fees and charges as the Council may from time to time determine.

(4) University Union fees and subscriptions may be waived by the Deputy Registrar (Student Services) for students enrolled in graduate courses in which the formal academic requirements are undertaken at a part of the University away from the Kensington campus.

(5) Students who while enrolled at and attending another university (or other tertiary institution as approved by the Vice-Chancellor) in a degree or diploma course are given approval to enrol at the University of New South Wales but only as miscellaneous students for subjects to be credited towards the degrees or diplomas for which they are enrolled elsewhere are exempt from all Student Activities Fees and the University Union Entrance Fee.

Institutions approved are: Australian Film and Television School, New South Wales Institute of Technology, Sydney College of Advanced Education and Sydney College of Chiropractic.

(6) Undergraduate students of a recognized university outside Australia who attend the University of New South Wales with the permission of the dean of the appropriate faculty and of the head of the appropriate school or department to take part as miscellaneous students in an academic program relevant to their regular studies and approved by the authorities of their own institution are exempt from all Student Activities Fees and the University Union Entrance Fee.

(7) Graduate students not in attendance at the University and who are enrolling in a project only other than for the first time, are exempt from all Student Activities Fees.

(8) Graduate students resubmitting a thesis or project only are exempt from all Student Activities Fees.

(9) All Student Activities Fees, for one or more sessions, may be waived by the Deputy Registrar (Student Services) for students who are given formal permission to pursue their studies at another institution for one or more sessions.

(10) Graduate students who have completed all the work for a qualification at the commencement of session, except for the submission of the relevant thesis or project report, may be exempted from the payment of Student Activities Fees by the Deputy Registrar (Student Services) on production of an appropriate statement signed by the relevant Supervisor or Head of School.

(11) Students enrolled in a session or sessions devoted entirely to training or experience away from the campus and its associated laboratories, hospitals, centres, institutes, and field stations are exempt from all Student Activities Fees for that session or sessions.

(12) Students whose registration is cancelled or suspended by the University shall receive refunds of fees paid in accordance with the provisions of section 18, (5) below except that a refund of one half of the fees shall be made if such cancellation or suspension takes place between the end of the fourth week of Session 1 and the end of the fourth week of Session 2.

18. Variations in Enrolment (including Withdrawal)

(1) Students wishing to vary an enrolment program must make application on the form available from the appropriate Course Authority.

(2) Students withdrawing from courses (and see also information about withdrawal from subjects below) are required to notify the Registrar in writing. In some cases such students will be entitled to fee refunds (see below).

(3) Enrolment in additional subjects

Applications for enrolment in additional subjects must be submitted by:

30 March 1984 for Session 1 only and whole year subjects;

17 August 1984 for Session 2 only subjects.

(4) Withdrawal from subjects

Applications to withdraw from subjects may be submitted throughout the year but applications lodged after the following dates will result in students being regarded as having failed the subjects concerned, except in special circumstances:

(a) for one session subjects, the end of the seventh week of that session (20 April or 7 September)

(b) for whole year subjects, the end of the second week of Session 2 (3 August).

(5) Withdrawal from Course - Refunds - Student Activities Fees

Whether or not a student's withdrawal entails academic penalties (covered in item (4) above) there are rules governing Student Activities Fees refunds in the case of complete withdrawal from a course as follows:

(a) If notice of withdrawal from a course is received by the Student Records and Scholarships Office before the first day of Session 1, a refund of all Student Activities Fees paid will be made.

(b) If notice of withdrawal is received on or after the first day of Session 1, a partial refund of the University Union Entrance Fee will be made on the following basis: any person who has paid the entrance fee in any year and who withdraws from membership of the University Union after the commencement of Session 1 in the same year, or who does not renew membership in the immediately succeeding year may on written application to the Warden receive a refund of half the entrance fee paid.

(c) If the notice of withdrawal is given before the end of the fourth week of Session 1 (30 March 1984) a full refund of Student Activities Fees paid will be made; if notice is given before the end of the seventh week of Session 1 (20 April 1984) a refund of three-quarters of the Student Activities Fees paid will be made; if notice is given before the beginning of Session 2 (23 July 1984) a refund of one-half of the
Student Activities Fees paid will be made; if notice is given before the end of the seventh week of Session 2 (7 September 1984) a refund of one-quarter of Student Activities Fees paid will be made; thereafter no refund will be made except that provided for in (d) below.

(d) If a student's enrolment in any year is for one session only and the student gives notice of withdrawal prior to the end of the fourth week of that session (30 March or 17 August 1984) a full refund of Student Activities Fees paid will be made; if notice is given before the end of the seventh week of that session (20 April or 7 September 1984) a refund of one-half of the Student Activities Fees paid will be made; thereafter no refund will be made.

(e) The refunds mentioned in (c) and (d) above may be granted by the Deputy Registrar (Student Services) to a student unable to notify the Student Records and Scholarships Office in writing by the times required provided evidence is supplied that the student has ceased attendance by those times.

(6) Acknowledgements
The Student Records and Scholarships Office will acknowledge each application for a variation in enrolment (including withdrawals from subjects) as follows:

(a) variations lodged before the Friday of the seventh week of each session (20 April or 7 September) will be incorporated in the Confirmation of Enrolment Program notice forwarded to students on 30 April or 20 September as appropriate

(b) variations lodged after those dates will be acknowledged by letter

(c) withdrawals from a course are acknowledged individually whenever they are lodged.

(7) It is emphasized that failure to attend for any assessment procedure, or to lodge any material stipulated as part of an assessment procedure, in any subject in which a student is enrolled will be regarded as failure in that assessment procedure unless written approval to withdraw from the subject without failure has been obtained from the Student Records and Scholarships Office.

19. Exemption – Membership
The Registrar is empowered to grant exemption from membership of any or all of the University Union, the Students' Union and the Sports Association to students who have a genuine conscientious objection to such membership, subject to payment of the prescribed fees to the Miscellaneous Fund.

Course Transfers

Students wishing to transfer from one course to another must complete and submit an application form, obtainable from the office of the Admissions Section, the Chancellery, by Friday 13 January 1984.

Students whose applications to transfer are successful, and who are transferring from one school to another, are required to comply with the enrolment procedure laid down for new students with advanced standing. Students transferring from one course to another within the same school are required to attend the appropriate enrolment session for the course to which they have approval to transfer.

Students must present the approval to transfer to the enrolling officer, and those who have not received advice regarding their application to transfer before the date on which they are required to enrol should check with the office of the Admissions Section.

Students should also advise the enrolling officer in the school in which they were enrolled in 1983 of their intention to transfer.

Admission with Advanced Standing

Any persons who make application to register as a candidate for any degree or other award granted by the University may be admitted to the course of study leading to such degree or award with such standing on the basis of previous attainments as may be determined by the Professorial Board provided that:

1. the Board shall not grant such standing under these rules as is inconsistent with the rules governing progression to such degree or award as are operative at the time the application is determined;

2. where students transfer from another university such students shall not in general be granted standing in this Univer-
sity which is superior to what they have in the University from which they transfer;

3. the standing granted by the Board in the case of any application based on any degree/s or other awards already held by the applicants, shall not be such as will permit them to qualify for the degree or award for which they seek to register without completing the courses of instruction and passing the examinations in at least those subjects comprising the later half of the course, save that where such a program of studies would involve them repeating courses of instruction in which the Board deems them to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof;

4. the standing granted by the Board in the case of any application based on partial completion of the requirements for any degree or other award of another institution shall not be such as will permit the applicants to qualify for the degree or award for which they seek to register by satisfactory completion of a program of study deemed by the Board to be less than that required of students in full-time attendance in the final year of the course in which the applicants seek to register;

5. the standing granted by the Board in the case of any application based on the partial completion of the requirements for any degree or other award of the University may be such as to give full credit in the course to which the applicants seek to transfer for work done in the course from which they transfer.

Where the identity between the requirements for any award of the University already held and that of any other award of the University is such that the requirements outstanding for the second award are less than half the requirements of that award, students who merely complete such outstanding requirements shall not thereby be entitled to receive the second award but shall be entitled to receive a statement over the hand of the Registrar in appropriate terms.

Resumption of Courses

Students who have had a leave of absence for twelve months and wish to resume their course should follow the instructions about re-enrolling given in the letter granting leave of absence. If these instructions are not fully understood or have been lost, students should contact the office of the Admissions Section before November in the year preceding the one in which they wish to resume their course.

If students have not obtained leave of absence from their course and have not been enrolled in the course over the past twelve months or more, they should apply for admission to the course through the Universities and Colleges Admissions Centre before 1 October in the year preceding that in which they wish to resume studies.

Examinations

Examinations are held in June/July and in November/December.

Provisional timetables indicating the dates and times of examinations are posted on the University noticeboards.

Students must advise the Examinations Section (the Chancellery) of any clash in examinations. Final timetables indicating the dates, times, locations, and authorized aids are available for students two weeks before the end of each session.

Misreading of the timetable is not an acceptable excuse for failure to attend any examination.

Assessment of Course Progress

In the assessment of a student's progress in a course, consideration may be given to work in laboratory and class exercises and to any term or other tests given throughout the year as well as to the results of written examinations.

Examination Results

Grading of Passes

Passes are graded as follows:

- High Distinction: an outstanding performance
- Distinction: a superior performance
- Credit: a good performance
- Pass: an acceptable level of performance
- Satisfactory: satisfactory completion of a subject for which graded passes are not available

Pass Conceded

A pass conceded may be granted provided that the overall performance is considered to warrant such a concession. A pass conceded in a subject will allow progression to another subject for which the former subject is a prerequisite.

Pass Terminating

A pass terminating may be granted provided that the overall performance is considered to warrant such a concession. A pass terminating does not allow progression to another subject for which the former subject is a prerequisite.

Availability of Results

Final examination results will be posted to a student's term address, or vacation address if requested. Forms requesting that results be posted to a vacation address are included in the examination timetable (November/December only) and change of address forms are obtainable at the Student Enquiry Counter, the Chancellery. Forms can be accepted up to Friday 1 July for Session 1 results and Friday 2 December for Session 2 and whole year results. Results are
also posted on School noticeboards and in the University Library. Results on noticeboards are listed by Student Registration Number.

No examination results are given by telephone.

Review of Results
A student may make application to the Registrar for the review of a result. The application form, accompanied by an appropriate fee, must be submitted not later than fifteen working days after the date of issue of the Notification of Result of Assessment form.

In reviewing a result, the subject authorities shall ensure that all components of the assessment have been assessed and a mark assigned.

A review of a result is not a detailed reassessment of a student's standard of knowledge and understanding of, and skills in, the subject. It is rather a search for arithmetic error in arriving at the composite mark and for gross and obvious error in assignment of marks in components of the final composite mark.

When a change in grade is recommended, the application fee will be refunded by the Registrar.

Special Consideration
Students who believe that their performance in a subject, either during session or in an examination, has been adversely affected by sickness or any other reason should inform the Registrar and ask for special consideration in the determination of their standing.

Such requests should be made as soon as practicable after the occurrence. Applications made more than seven days after the final examination in a subject will only be considered in exceptional circumstances.

When submitting a request for special consideration students should provide all possible supporting evidence (e.g., medical certificates) together with their registration number and enrolment details.

Physical Disabilities
Students suffering from a physical disability which puts them at a disadvantage in written examinations should advise Student Records (Ground Floor, the Chancellery) immediately their disability is known. If necessary, special arrangements will be made to meet the student's requirements.

Students who are permanently disabled and need the Examinations Section to make special arrangements for their examinations, should contact Student Records as soon as the final timetable becomes available.

Use of Electronic Calculators
Where the use of electronic calculators has been approved by a faculty or school, examiners may permit their use in examinations. Authorized electronic calculators are battery operated with the minimum operations of addition, subtraction, multiplication and division and are of a type in common use by university students. They are not provided by the University, although some schools may make them available in special circumstances.

Examinations Held Away from the Campus
Except in the case of students enrolled on external courses, examinations will not be permitted away from the campus unless the candidate is engaged on compulsory industrial training. Candidates must advise the Officer-in-charge, Examinations Section, immediately the details of the industrial training are known. Special forms for this purpose are available at the Student Enquiry Counter in the north wing of the Chancellery.

Arrival at Examinations
Examination Rooms will be open to students twenty-five minutes before the commencement of the examination. Candidates are requested to be in their places at least fifteen minutes before the commencement to hear announcements. The examination paper will be available for reading ten minutes before commencement.

Use of Linguistic Dictionaries
The answers in all examinations and in all work submitted must be in English unless otherwise directed. Students may apply for permission to use standard linguistic dictionaries in the presentation of written work for assessment. Such applications should be made in writing to the Examinations Section not later than 14 days prior to the need to use the linguistic dictionary.

Academic Misconduct
Students are reminded that the University regards academic misconduct as a very serious matter. Students found guilty of academic misconduct are usually excluded from the University for two years. Because of the circumstances in individual cases the period of exclusion can range from one session to permanent exclusion from the University.

The following are some of the actions which have resulted in students being found guilty of academic misconduct in recent years: use of unauthorized aids in an examination; submitting work for assessment knowing it to be the work of another person; improperly obtaining prior knowledge of an examination paper and using that knowledge in the examination; failing to acknowledge the source of material in an assignment.

Conduct of Examinations
Examinations are conducted in accordance with the following rules and procedure:

1. Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.
2. Candidates are required to be in their places in the examination room not less than fifteen minutes before the time for commencement.

3. No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.

4. Candidates shall not be admitted to an examination after thirty minutes from the time of commencement of the examination.

5. Candidates shall not be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.

6. Candidates shall not be re-admitted to the examination room after they have left it unless, during the full period of their absence, they have been under approved supervision.

7. Candidates shall not by any improper means obtain, or endeavour to obtain, assistance in their work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.

8. All answers must be in English unless otherwise stated. Foreign students who have the written approval of the Registrar may use standard linguistic dictionaries.

9. Smoking is not permitted during the course of examinations.

10. A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room and to such further penalty as may be determined in accordance with the By-Laws.

Acknowledgement of Sources

Students are expected to acknowledge the source of ideas and expressions used in submitted work. To provide adequate documentation is not only an indication of academic honesty but also a courtesy enabling the marker to consult sources with ease. Failure to do so may constitute plagiarism, which is subject to a charge of academic misconduct.

Further Assessment

In special circumstances further assessment including assessment or further assessment on medical or compassionate grounds may be granted.

Further assessment may be given by the subject authority at his or her discretion at any time prior to the meeting of the relevant faculty assessment committee (normally the fourth week of the Midyear Recess and the second week of December). Further assessment may also be awarded at the faculty assessment committee and students affected may need to be free to undertake that further assessment in the last week in the Midyear Recess and in the period up to the end of the second week in January; students should consult their subject authority for details of further assessment immediately their results are known.

Restrictions upon Student Re-enrolling

The University Council has adopted the following rules governing re-enrolment with the object of requiring students with a record of failure to show cause why they should be allowed to re-enrol and retain valuable class places.

First Year Rule

1. Students enrolled in the first year of any undergraduate course of study in the University shall be required to show cause why the should be allowed to continue the course if they do not pass the minimum number of subjects, units or credits prescribed for this purpose by the relevant faculty or board of studies.

The prescribed minimum for each undergraduate course may be found in Schedule A below; the schedule may be varied from time to time by the Professorial Board.

Repeated Failure Rule

2. Students shall be required to show why they should be allowed to repeat a subject which they have failed more than once. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue that course.

General Rule

3. (1) Students shall be required to show cause why they should be allowed to repeat a subject they have failed the assessment committee of the faculty or board of studies so decides on the basis of previous failures in that subject or in a related subject. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue their course.

(2) Students shall be required to show cause why they should be allowed to continue their course if the assessment committee of the faculty or board of studies so decides on the basis of their academic record.

The Session-Unit System

4. (1) Students who infringe the provisions of Rules 1. or 2. at the end of Session 1 of any year will be allowed to repeat the subject(s) (if offered) and/or continue the course in Session 2 of that year, subject to the rules of progression in the course.

(2) Such students will be required to show cause at the end of the year, except that students who infringe Rule 2. at the end of Session 1, and repeat the subjects in question in Session 2, and pass them, will not be required to show cause on account of any such subjects.
Exemption from Rules by Faculties
5. (1) A faculty or board of studies examinations committee may, in special circumstances, exempt students from some or all of the provisions of Rules 1. and 2.

(2) Such students will not be required to show cause under such provisions and will be notified accordingly by the Registrar.

Showing Cause
6. (1) Students wishing to show cause must apply for special permission to re-enrol. Application should be made on the form available from the Registrar and must be lodged with the Registrar by the dates published annually by the Registrar. A late application may be accepted at the discretion of the University.

(2) Each application shall be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies which shall determine whether the cause shown is adequate to justify the granting of permission to re-enrol.

Appeal
7. (1) Students who are excluded by the Admissions and Re-enrolment Committee from a course and/or subject under the provisions of the Rules will have their applications to re-enrol reconsidered automatically by the Re-enrolment Committee of the Professorial Board.

(2) Students whose exclusion is upheld by the Re-enrolment Committee may appeal to an Appeal Committee constituted by Council for this purpose with the following membership:

A Pro-Vice-Chancellor, nominated by the Vice-Chancellor who shall be Chairman.

The Chairman of the Professorial Board, or if its chairman is unable to serve, a member of the Professorial Board, nominated by the Chairman of the Professorial Board, or when the Chairman of the Professorial Board is unable to make a nomination, nominated by the Vice-Chairman.

One of the category of members of the Council elected by the graduates of the University, nominated by the Vice-Chancellor.

The decision of the Committee shall be final.

(3) The notification to students of a decision which has been upheld by the Re-enrolment Committee of the Professorial Board to exclude them from re-enrolling in a course and/or subject shall indicate that they may appeal against that decision to the Appeal Committee. The appeal must be lodged with the Registrar within fourteen days of the date of notification of exclusion; in special circumstances a late appeal may be accepted at the discretion of the chairman of the Appeal Committee. In lodging such an appeal with the Registrar students should provide a complete statement of all grounds on which the appeal is based.

(4) The Appeal Committee shall determine appeals after consideration of each appellant's academic record, application for special permission to re-enrol, and stated grounds of appeal. In particular circumstances, the Appeal Committee may require students to appear in person.

Exclusion
8. (1) Students who are required to show cause under the provisions of Rules 1. or 3. and either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in the subjects and courses on account of which they were required to show cause. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

(2) Students required to show cause under the provisions of Rule 2. who either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in any subject they have failed twice. Where the subjects failed are prescribed as part of a course they shall also be excluded from that course. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

Re-admission after Exclusion
9. (1) Excluded students may apply for re-admission after the period of exclusion has expired.

(2) (a) Applications for re-admission to a course should be made to the Universities and Colleges Admissions Centre before the closing date for normal applications in the year prior to that in which re-admission is sought. Such applications will be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies.

(b) Applications for re-admission to a subject should be made to the Registrar before 30 November in the year prior to that in which re-admission is sought. Such applications will be considered by the relevant subject authority.

(3) Applications should include evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity and/or evidence of action taken (including enrolment in course/s) to improve capacity to resume studies.

(4) Students whose applications for re-admission to a course or subject are unsuccessful (see 9. (2) (a), (b) respectively) will be invited to appeal to the Re-enrolment Committee of the Professorial Board. The decision of the Re-enrolment Committee will be final.

10. Students who fail a subject at the examinations in any year or session and re-enrol in the same course in the following year or session must include in their programs of studies for that year or session the subject which they failed. This requirement will not be applicable if the subject is not offered the following year or session, is not a compulsory component of a particular course, or if there is some other cause which is acceptable to the Professorial Board for not immediately repeating the failed subject.
Restrictions and Definitions
11. (1) These rules do not apply to students enrolled in programs leading to a higher degree or graduate diploma.

(2) A subject is defined as a unit of instruction identified by a distinctive subject number.

Schedule A

(See First Year Rule 1. above)

Where the minimum requirement is half the program, this is defined as half the sum of the unit values of all the subjects in the program where the unit value for each subject in a course is defined as follows:

<table>
<thead>
<tr>
<th>Faculty/Board of Studies</th>
<th>Minimum Requirement</th>
<th>Course</th>
<th>Unit Values (UV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Science</td>
<td>Half the program</td>
<td>3000-3220 One-session subjects: UV 1 Two-session subjects: UV 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4190-4220 One-session subjects: UV 1 Two-session subjects: UV 2</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>Half the program</td>
<td>3270, 3330 Elective subjects: UV 0 All other subjects: appropriate UV corresponding to credit points*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3320, 3360, 3380 All subjects: UV equal to the allocated hours*</td>
<td></td>
</tr>
<tr>
<td>Arts</td>
<td>18 first-level credit points</td>
<td>3400, 3420 Science subjects: appropriate UV* Arts subjects: • 6 credit points = UV 1 • 12 credit points = UV 2</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>3430</td>
<td>Science and Mathematics 2 units</td>
<td>3970 All subjects: appropriate UV* One General Studies elective: UV 1</td>
</tr>
</tbody>
</table>

*For details see the appropriate Faculty Handbook.

[Faculty/Board of Studies] [Minimum Requirement] [Course] [Unit Values (UV)]

[Commerce] Three subjects 3490-3595 FT in both sessions Two subjects 3490-3595 PT in either session

[Engineering] Half the program including Physics I or Mathematics I Half the program including Mechanics of Solids or Mathematics I Half the program including Mechanics of Solids or Mathematics I Half the program including Mechanics of Solids or Mathematics I Half the program including Mechanics of Solids or Mathematics I Half the program including Mechanics of Solids or Mathematics I Half the program including Mechanics of Solids or Mathematics I Half the program including Mechanics of Solids or Mathematics I

[Law] Half the program 4710-4790 One-session subjects: UV 1 Two-session subjects: UV 2

[Medicine] Half the program 3800 80.010: UV 3 81.001: UV 3 81.002: UV 6 70.001: UV 4 General Studies: UV 1

[Military Studies] Half the program BA, BSc BE All subjects: UV 1 All subjects: appropriate weighted mark*

[Professional Studies] Half the program 4030, 4040 4070-4080 All subjects: UV 1 All subjects: appropriate UV* One General Studies elective: UV 1

[Science] Half the program 3910, 3950 All subjects: appropriate UV* General Studies: UV 1

[Science and Mathematics] 2 units 3970 All subjects: appropriate UV* One General Studies elective: UV 1

*For details see the appropriate Faculty Handbook.
Admission to Degree or Diploma

Students whose current program will enable them to complete all requirements for the degree or diploma, including industrial training where necessary, should lodge with the Registrar the form Application for Admission to Degree/Diploma and return it to the Registrar by the second Monday in May for the October ceremonies, and the first Tuesday in October for all other ceremonies. The forms are available from the Student Enquiry Counter in the north wing of the Chancellery.

Students who have indicated on their enrolment form that they are potential graduands are forwarded an application form with their Enrolment Details form in September (or, in the case of students who expect to satisfy requirements at the end of Session 1, with the form issued in April). Students who do not complete an application form will not graduate; students who do not return their application form by the due date will graduate at a later series of ceremonies.

Students enrolled in courses 3400, 3910 and 3970 who have completed an application form to graduate at the pass level and who then decide to proceed to an honours year should advise the Registrar, in writing before 1 September for those completing requirements at the end of Session 1, or before 28 February for those completing requirements at the end of Session 2.

A list of graduands in Medicine who have applied for their degree is published in The Sydney Morning Herald in December.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in October is published in The Sydney Morning Herald on the second Wednesday in September.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in April/May the following year is published in The Sydney Morning Herald on the second Wednesday in March.

Students who are potential graduands and who wish to notify the Registrar of a change of address should submit an addition form Final Year Students' Graduation: Change of Address.

Absence from Classes

Explanations of absences from classes, or requests for permission to be absent from forthcoming classes, should be addressed to the Registrar and, where applicable, should be accompanied by a medical certificate. If examinations or other forms of assessment have been missed, this should be stated in the application.

If students attend less than eighty per cent of their possible classes they may be refused final assessment.

Student Records

Confirmation of Enrolment Program notices are sent to all students on 30 April and 24 September. It is not necessary to return these forms unless any of the information recorded is incorrect. If amendments need to be made, students should contact the appropriate course office.

Release of Information to Third Parties

The University treats results of assessment and information it receives from a student as confidential and will not reveal such information to third parties without the permission of the student except at the discretion of senior officers in circumstances considered of benefit to the student and when it is either impossible or impracticable to gain the student's prior permission. This happens rarely. This policy is considered so important that it often involves officers of the University in very difficult situations, for example, when they must refuse to reveal the address of a student to parents or other relatives.

In spite of the policy, all students should be aware that students' addresses are eagerly sought by various commercial agents and that subterfuges of various kinds can be used to obtain them. From time to time, for example, people claiming to be from the University telephone students or their families and ask for information (usually another student's address) which is often given, unsuspectingly. There is evidence that this is a technique used by some commercial agents.

It would be generally helpful if students (and their families and friends) are cautious in revealing information, making it a practice to ask the name, position, and telephone extension of any caller claiming to be from the University and, if suspicious, returning the call to the extension given.

Attendance at Classes

Students are expected to be regular and punctual in attendance at all classes in the subjects in which they are enrolled. All applications for exemption from attendance at classes of any kind must be made in writing to the Registrar.

In the case of illness or of absence for some other unavoidable cause students may be excused by the Registrar for non-attendance at classes for a period of not more than one month or, on the recommendation of the Dean of the appropriate faculty, for a longer period.
Change of Address

The Student Records and Scholarships Office of the Registrar's Division should be notified as soon as possible of any change of address. Failure to do this could lead to important correspondence (including results of assessment) going astray. The University cannot accept responsibility if official communications fail to reach students who have not given notice of their change of address. Change of Address Advice forms are available at Faculty and School offices and from the Student Enquiry Counter in the north wing of the Chancellery.

All communications from the University will be sent to the Session or Term address except when arrangements are made otherwise in the case of results of assessment (see Examinations: Availability of Results, earlier in this section). Change of Address Advice forms will be accepted up to Friday 25 November, except for final-year students wishing to change their Application for Admission for Degree/Diploma form. Changes to this form will be accepted up to a date four weeks before the student's graduation ceremony.

Ownership of Students' Work

The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, theses or other work executed by students as part of their courses, or submitted for any award or competition conducted by the University.

Notices

Official University notices are displayed on the noticeboards and students are expected to be acquainted with the notices which concern them. These boards are in the Biological Sciences Building, the Mathews Building, the Chancellery (lower ground floor), Central Lecture Block, Dalton Building (Chemistry), Main Building (Physics and Mining) and in the Western Grounds Area.

Parking within the University Grounds

A limited amount of parking is available on campus. Copies of the University's parking rules may be obtained on application to Room 240, the Chancellery.

Academic Dress

Information about the University's academic dress requirements may be obtained from the Alumni and Ceremonials Section, Room 148E, the Chancellery (phone extension 2998).

Further Information

Lost Property

All enquiries concerning lost property should be made to the Superintendent on extension 3892 or to the Lost Property Office at the Union.

The Calendar

Please consult the Calendar for a more detailed account of the information contained in this section.

Vice-Chancellor's Official Welcome to New Students

All students initially enrolling in the University are officially welcomed by the Vice-Chancellor and Principal at the following times:

Faculties of Architecture, Arts, Biological Sciences, Commerce, Law:
Tuesday 28 February 1984
9 am in the Clancy Auditorium

Faculties of Applied Science, Engineering, Medicine, Professional Studies, Science, and the Board of Studies in Science and Mathematics:
Tuesday 28 February 1984
11 am in the Clancy Auditorium

Meeting for Parents of New Students

Friday 2 March 1984
7.30 pm in the Clancy Auditorium
Introduction to the Sciences Handbook

This handbook has been designed to assist understanding of the academic activities of three inter-related groups within the university, namely the Board of Studies in Science and Mathematics, the Faculty of Biological Sciences and the Faculty of Science. The Board is responsible for the undergraduate studies of students majoring in disciplines associated with the two faculties and several schools from other faculties. The regulations governing the award of the degree of Bachelor of Science form a substantial part of the handbook. Other parts include details of the Science component of the combined degrees, Science/Law, Science/Civil Engineering, Science/Electrical Engineering, Science/Aeronautical Engineering, Science/Industrial Engineering, Science/Mechanical Engineering, Science/Naval Architecture, Science/Medicine, Science/Optometry, and of the two concurrent courses in Mathematics Education and Science Education.

Several specialist courses of study, also leading to the award of the degree of Bachelor of Science, are offered by the two faculties and the regulations covering these are given under the separate faculty sections. In addition the two faculties make available facilities to proceed to higher degrees and the conditions under which these awards are made are listed under the sections devoted to graduate study.

In the last part of the handbook there are brief statements of the syllabuses for units prescribed in the various regulations.
Faculty Information

Who to Contact

If you require advice about enrolment, degree requirements, progression within courses or any other general matters related to the Board, contact one of the following:

Ms Robyn Mulholland, Administrative Assistant
Dr B. J. Burn, Co-ordinator of Studies in Science and Mathematics
Room 211, Plaza Level, Mathews Building

For information regarding particular courses, advice may be obtained from staff members listed in the Introduction to each of the sections related to the Board, the Faculty of Biological Sciences and the Faculty of Science, later in this handbook.

Enrolment Procedures

- Faculty of Biological Sciences
- Faculty of Science
- Board of Studies in Science and Mathematics

All students re-enrolling in 1984 or enrolling in graduate courses should obtain a copy of the free booklet Enrolment Procedures 1984 available from Course Administration Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

The subject timetable for the Science and Mathematics Course (Course 3970) is available in late October/early November from the Science and Mathematics Course Office, Room 211, Mathews Building. All re-enrolling students should collect one of these timetables along with a preliminary enrolment form (SM84). The preliminary enrolment form is to be completed and returned to the Science and Mathematics Office by the end of the first week in January.

Sciences Library Facilities

Although any of the University Libraries may meet specific needs, staff and students of the Faculty of Biological Sciences are served mainly by the Biomedical and Undergraduate Libraries while those of the Faculty of Science are served mainly by the Physical Sciences and Undergraduate Libraries.
The Biomedical Library
This library is situated on Levels 2, 3 and 4 of the Mathews Building Annexe. It aims to serve the specialized reference and research needs of staff, graduate students and undergraduate students in the Biological Sciences.

Trained staff are available at all times in the Biomedical Library to assist staff and students in making best use of the library.

Biomedical Librarian George Franki

The Physical Sciences Library
This library, situated on Levels 6 and 7 of the Library tower, caters for the information needs of staff, graduate students and senior undergraduate students in the pure and applied sciences, engineering and architecture. Details of the books, serials and microforms in the Physical Sciences Library are included in the microfiche monograph and serials catalogues, and the items themselves are identified by the prefix 'P'.

Serials with the prefix 'PJ' are not for loan but self-service photocopying facilities are available on Level 7.

This Library provides reference, reader assistance and reader education services and also, where appropriate, inter-library loan and literature-searching services.

Trained staff are always available on Level 7 to assist readers with their enquiries.

Physical Sciences Librarian Marian Bate

The Undergraduate Library
This library caters for the library needs of first and second year students and other groups where large numbers require mass teaching.

It provides a reader education program and reader assistance service aimed at teaching students the basic principles of finding information.

Services of particular interest to undergraduates and academic staff are:

• The Open Reserve Section, housing books and other material which are required reading.

• The Audio-Visual Section, containing cassette tapes, mainly lectures and other spoken word material. The Audio-Visual Section has wired study carrels and cassette players for student use.

Undergraduate Librarian Pat Howard

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

The Psychology Society
The Psychology Society aims to provide activities both educational and social for students of psychology, and, more generally, to act as an intermediary body between students and staff. While psychology is one of the most popular subjects available, many students have only a vague conception of psychology and are unsure where their courses will lead them.

One of the aims of the Psychology Society is to provide information relevant to these matters. In a large School it is difficult to develop contacts between students of different years and staff. The Society attempts to provide opportunities for such contact, to foster staff-student relations and to act in the interest of psychology students as a whole. Accordingly, we hope to provide staff-student luncheons, informal discussions and theatre parties. On the educational side there are film showings and occasional talks and seminars (eg on careers, course requirements). An activities fee enables the committee to meet any of the finances needed to support its functions.

Statistical Society of Australia: New South Wales Branch

The Branch offers student membership to undergraduates who are following a recognized course of study which includes Statistics. The subscription for a student member is $15 per annum with a $4 rebate if paid before 1 March.

The Branch holds about four general meetings each year at the end of which two talks, one theoretical and the other applied, are given on the one topic. The Branch conducts a Research Section, and membership of this group is open to members of the Branch free of charge. Each year the Branch also conducts a symposium for the study and discussion of particular statistical techniques or of statistical methods in a specialized field; symposia are open to members at reduced rates.

Members of the Branch receive The Australian Journal of Statistics, which is published three times a year by the Statistical Society of Australia, together with the Society's Newsletter.

Applications and requests for further information should be sent to the Hon. Secretary, Dr H. M. Hudson, School of Economic and Financial Studies, Macquarie University, North Ryde, NSW 2113.
Board of Studies in Science and Mathematics
Introduction

The Science and Mathematics Course (3970) leads to the Bachelor of Science Degree on the completion of a three year program or a four year program chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The Board of Studies in Science and Mathematics offers a wide choice of programs each designed to meet specific aims and objectives. Most programs are identified with a particular School or discipline but some are multi-disciplinary.

All students in the Science and Mathematics Course must enrol in two units of first year Mathematics; either Mathematics I or Higher Mathematics I or General Mathematics. Care must be taken in making the choice as, in general, General Mathematics considerably limits the choice of units in following years.

Some Schools do not offer a full range of Level III units in the evening. The Schools concerned are marked below with t.

Students seeking general advice should contact the Board of Studies in Science and Mathematics Office (Room 211, Mathews Building, map reference F23) and for advice in specific disciplines should contact the representative of the relevant School as listed below:

- First Year Biology Unit......................... Dr M. Augee
- School of Anatomy.............................. Dr B. W. Freeman (Year 2 and Year 3)
 Professor F. W. D. Rost (Year 4)
- School of Applied Geology.................. Mr G. J. Baldwin
- School of Biochemistry......................... Professor W. J. O'Sullivan
- School of Biotechnology...................... Dr N. W. Dunn
- School of Botany................................ Associate Professor J. H. Palmer
- School of Chemistry............................ Mr W. J. Dunstan
- School of Community Medicine................ Dr A. E. Stark
- School of Electrical Engineering and Computer Science...... Mr L. C. Hill
- School of Geography............................ Mr N. Lonergan
- School of History and Philosophy of Science Dr D. R. Oldroyd
- School of Mathematics.......................... Associate Professor A. H. Low (Year 1)
 Miss M. Potter
- Marine Science.................................. Dr P. Dixon
- School of Mechanical and Industrial Engineering........ Mr K. Kjorrefjord
The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences* and the Faculty of Science* and some members of specific Schools in other faculties contributing to the Science and Mathematics Course: Applied Geology, Chemical Engineering and Industrial Chemistry, Geography, Metallurgy (Applied Science); History and Philosophy of Science, Philosophy (Arts); Accountancy, Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Surveying (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

The Dean is the Dean of the Faculty of Science, Professor V. T. Buchwald.

The Chairman is Professor A. J. Wicken.

The Co-ordinator of Studies in Science and Mathematics is Dr B. J. Burn. The Administrative Assistant is Ms Robyn Mulholland.

‡See text of Introduction, on previous page.
*See Staff, listed later in this handbook.
The Science and Mathematics Course, which leads to the Bachelor of Science degree, is administered by the Board of Studies in Science and Mathematics and offers a wide choice of programs, each designed to meet specific aims and objectives. Most programs are identified with a particular school or discipline but some are multi-disciplinary.

Aims of the Science and Mathematics Course

The main aims of the Science and Mathematics Course, diverse and not necessarily exclusive, may be summarized as providing opportunities to students to prepare themselves for careers in:

- research
- technology
- science and mathematics education
- areas of management or public policy involving the use of science or mathematics

Objectives of the Science and Mathematics Course

The important general objectives of most programs in the Science and Mathematics Course are:

1. To develop and sustain an interest in and knowledge of Science and Mathematics.
2. To develop a working knowledge of scientific methods of investigation and a favourable attitude towards them.
3. To encourage curiosity and creative imagination and an appreciation of the role of speculation in the selection and solution of problems, the construction of hypotheses, and the design of experiments.
4. To develop an appreciation of scientific criteria and a concern for objectivity and precision.
5. To develop confidence and skill in formulating problems and in treating both qualitative and quantitative data.
6. To develop the ability and disposition to think logically, to communicate clearly by written and oral means, and to read critically and with understanding.
7. To develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.
8. To promote understanding of the significance of science, technology, economics and social factors in modern society, and of the contributions they can make in improving man's material conditions and in widening his imaginative horizons and his understanding of the universe.
9. To provide opportunities for the development of a student's motivation and social maturity, and an awareness of his own capabilities in relation to a choice of career which will be fruitful to himself and to society.

There is a wide range of programs in single and multi-disciplinary areas leading to a three year degree or a four year degree.

The Structure of the Science and Mathematics Course

The Science and Mathematics Course consists of a number of individual programs, based on units ranked as Level I, Level II, Level II/III, Level III and Level IV with a unit size varying from 56-84 hours.

The terms Levels I, II, III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

The Bachelor of Science degree is awarded on completion of

- a three year program
or
- a four year program
chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The three year program leading to the award of the pass degree consists of:

1. at least 23 units at Level I, II, II/III, III as specified in an individual program, with the following requirements:
 (1) not less than eight nor more than ten units may be from Level I;
 (2) two of the Level I units must be 10.001 Mathematics I, 10.001 Higher Mathematics I or 10.021 B and 10.021 C;
 (3) not less than four units from Level III or as specified in an individual program.

2. General Studies electives as specified in an individual program.

In order to graduate a student must pass all the units specified in the program of his/her choice.

The four year program

The four year program, leading to an Honours Class I, II/1, II/2, III or pass degree consists of:

1. at least 23 units at Level I, II, II/III, III as specified in an individual program, with the following requirements:
 (1) not less than eight nor more than ten units may be from Level I;
 (2) two of the Level I units must be 10.001 Mathematics I, 10.001 Higher Mathematics I or 10.021 B and 10.021 C;
 (3) not less than eight units from Level III or as specified in an individual program.

2. 1. an approved honours program offered by one or more schools;
any degree(s) or other award held by applicants, should not be such as will permit the applicants to qualify for the science degree, without completing the course of instruction and passing examinations in at least those subjects comprising the latter half of the Science and Mathematics course, so that where such a program of study would involve the applicants in repeating courses of instruction in which the Board of Studies in Science and Mathematics deems the applicants to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof.

(4) The standing granted by the Board of Studies in Science and Mathematics in the case of applications based on partial completion of the requirement for any degree or other award of another institution shall not be such that it will permit the applicants to qualify for the award of the science and mathematics degree by satisfactory completion of the program of study deemed by the Board to be less than that required for students in full time attendance in the final year of the Science and Mathematics Course (course 3970).

A person on whom the pass degree of Bachelor of Science of the University has been conferred may be admitted by the Board of Studies in Science and Mathematics, on the recommendation of the relevant Heads of Schools, to candidacy for an honours degree conversion program with credit for all units completed, if during his studies for the pass degree, he has satisfied the prerequisites for proceeding to honours level laid down by the School or Schools concerned.

Rules governing admission to the Science and Mathematics Course with advanced standing

Any person who makes application to enrol in the Science and Mathematics Course (course 3970) or in a double degree course which includes the Science degree course administered by the Board of Studies in Science and Mathematics may be admitted to the course of study leading to such degree with such standing on the basis of previous attainment as may be determined by the Board of Studies in Science and Mathematics provided that:

(1) Where students transfer from another tertiary institution, such students shall not in general be granted standing in the course which is superior to that which they have enjoyed at the institution from which they transferred.

(2) The standing granted by the Board of Studies in Science and Mathematics in the case of any application based upon

Programs

Students are advised that it may not be possible to complete their studies by attendance at evening classes alone.

Each program has a four-digit identifying number.

Most programs have been set out as Years 1, 2, 3 and 4 for the four year program and in these cases Years 1, 2 and 3 comprise a three year program. Some programs are designed as an integrated four year program leading to the award of the honours degree. A few programs are set out as Years 1, 2 and 3 and lead to the pass degree only.

To progress through a program a student must meet all the prerequisites and co-requisites as detailed in Tables 1, 2 and 3.

The range of programs has been designed to cover a wide variety of needs in the various areas of science and mathematics:

Anatomy see programs 7001, 7002, 7003, 1270, 4170, 4570, 6270, 7073

Biochemistry see programs 4101, 0241, 4142, 4143, 4144, 4145, 4162, 4170, 4173

Biology Biology is taught in Year 1 as a single discipline but in later years as specific subjects: biological technology, biochemistry, botany, entomology, genetics, immunology, microbiology and zoology
Physics

It is appropriate that Physics should be allocated the first entries in this handbook since the subject is at the very basis of all science and technology. This is reflected in the various programs which the School offers and which range from those designed for the intending professional physicist to the many areas in which Physics combines with other disciplines. The following table serves to illustrate this fact and to summarize the several avenues open to the student for the study of Physics.

Professional Training in Physics

<table>
<thead>
<tr>
<th>Program</th>
<th>Physics with other Disciplines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101 Physics</td>
<td>Program (or Course)</td>
</tr>
<tr>
<td>0102 Physics (Single Major)</td>
<td>0125 Physics/Geology</td>
</tr>
<tr>
<td>0103 Theoretical Physics</td>
<td>0161 Physics/Computer Science</td>
</tr>
<tr>
<td>0105 Theoretical Physics</td>
<td>0162 Physics and Science Policy Studies</td>
</tr>
<tr>
<td>0106 Biophysics</td>
<td>2503 Geophysics</td>
</tr>
<tr>
<td></td>
<td>6201 History and Philosophy of Science/Physics</td>
</tr>
</tbody>
</table>

Physics in other Courses

- 3170 Textile Physics
- 3611 Aeronautical Engineering with Physics
- 3661 Industrial Engineering with Physics
- 3681 Mechanical Engineering with Physics
- 3701 Naval Architecture with Physics
- 3725 Electrical Engineering with Physics
- 3730 Civil Engineering with Physics and Mathematics
- 4770 Law with Physics

Professional Training

Of these various programs all, except for 0102*, are designed to enable a student to proceed to Year 4 (Honours) and thence into professional employment or to the higher degrees MSc PhD. Program 0101 provides the greatest degree of flexibility in the choice of units. 0103 and 0105 recommend certain units (particularly in Year 3) which it is considered will best equip the student for entry into industry.

In addition to Course 3970 programs are also included for Courses 3611 (Science/Aeronautical Engineering), 3661 (Science/Industrial Engineering), 3681 (Science/Mechanical Engineering), 3701 (Science/Naval Architecture), 3725 (Science/Electrical Engineering), 3730 (Science/Civil Engineering), 3620 (Science/Medicine), 3951 (Science/Optometry), 4070 (Mathematics/Education), 4080 (Science/Education), 4770 (Science/Law).

<table>
<thead>
<tr>
<th>Science Field</th>
<th>Programs</th>
<th>Science Field</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnology</td>
<td>see programs 4201, 0242, 4142, 4244</td>
<td>Botany</td>
<td>see programs 4306, 4309, 2543, 2743, 4143, 4344, 4345, 4543, 6243</td>
</tr>
<tr>
<td>Chemistry</td>
<td>see programs 0201, 0202, 0203, 0204, 0225, 0241, 0242, 0261, 0262, 7302</td>
<td>Community Medicine</td>
<td>units available in some programs (the identifying number is 79)</td>
</tr>
<tr>
<td>Computer Science</td>
<td>see programs 0601, 0610, 0611, 0161, 0261, 1061, 1062, 4561</td>
<td>Genetics</td>
<td>see program 6840</td>
</tr>
<tr>
<td>Geography</td>
<td>see programs 2701, 2703, 2725, 2743</td>
<td>Geology</td>
<td>see programs 2501, 2502, 2503, 0125, 0225, 1025, 2725, 2543, 6225</td>
</tr>
<tr>
<td>History and Philosophy of Science</td>
<td>see programs 6200, 6201, 6225, 6243, 6245, 6270, 0162, 0262, 4162</td>
<td>Information Systems</td>
<td>see program 1401</td>
</tr>
<tr>
<td>Information Systems</td>
<td></td>
<td>Marine Science</td>
<td>see programs 6831, 6832, 6833, 6834</td>
</tr>
<tr>
<td>Mathematics</td>
<td>see programs 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1061, 1062, 0610, 0611</td>
<td>Metallurgy</td>
<td>see programs 0401, 0402, 0403</td>
</tr>
<tr>
<td>Microbiology</td>
<td>see programs 4401, 4402, 4403, 4404, 4144, 4244, 4344</td>
<td>Philosophy</td>
<td>units available in some programs (the identifying number is 52)</td>
</tr>
<tr>
<td>Philosophy</td>
<td>see programs 0101, 0102, 0103, 0105, 0106, 0125, 0161, 2503, 0162, 6201</td>
<td>Physiology</td>
<td>see programs 7301, 7302, 7303, 7312, 7345, 7073, 4173</td>
</tr>
<tr>
<td>Physiology</td>
<td>see programs 1201, 1270, 7312</td>
<td>Psychology</td>
<td>see programs 2543, 4501, 4502, 4508, 4509, 4514, 4543, 4145, 4345, 4561, 4570, 6245, 7345</td>
</tr>
<tr>
<td>Zoology</td>
<td>see programs 2543, 4501, 4502, 4508, 4509, 4514, 4543, 4145, 4345, 4561, 4570, 6245, 7345</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
or will enable him to specialize in the theoretical rather than
the experimental aspects of the subject. The Biophysics
program is more akin to those in the right hand column
above and provides for earlier specialization leading to a
career in biomedical physics.

Since Physics is expressed in the language of Mathematics
a good grounding in this area is essential and students are
couraged to select higher level mathematics units whenever
possible.

The subject descriptions of the units may be found in the
latter section of this handbook. A study of these will show
that it is possible to gain experience in a wide variety of
areas representative of this School's interest in astrophysics,
solid state physics and materials science, lasers and their
applications, biophysics, etc.

Physics with other Disciplines
The right hand column above lists those programs which
have been arranged with other Schools. Several of these
can lead to honours in Physics or to joint honours with other
Schools, eg 0125, 0161, 6201, 3725, 5801, so it must not be
thought that the only avenue to specialization in Physics is
via the professional programs 0101, etc.

Students should also bear in mind that prerequisites and co-
requisites can be waived in certain cases, eg when it is
judged that an equivalent study has been undertaken in
some other combinations of units. The possibility also exists
of relaxing the requirements of programs to allow a student
to select a unit in which he has a special interest but which
is not a recommended one in the program.

*In certain circumstances students completing program 0102 may be accepted
into honours Physics. Further detail is available from the School.

0101 Physics

Year 1
- 1.001 or 1.011
- 10.001 or 10.011*

Choose 2 units from:
- 2.111, 2.121, 2.131, 2.141

Choose 2 Level I units from:
- 1.041, 1.061
- 5.010
- 6.611
- 10.081
- 17.031, 17.041
- 25.110, 25.120

Year 2
- 1.002, 1.012, 1.022, 1.032
- 10.111*, 10.1114*, 10.2111*, 10.2112*

1 General Studies elective††

Choose 2 units from:
- 1.042, 1.052, Level II units in Table 1†

Year 3
- 1.0133, 1.0143, 1.023, 1.0333, 1.0343, 1.043

1 General Studies elective

Choose at least 3 units from:
- Level III Physics units in Table 1, 10.111A*, 10.212A*, 10.412D*, including at least one of: 1.0533, 1.0543, 1.763‡

Year 4
- 1.104

*Students are encouraged to select higher level mathematics units where applicable.

††Enrolment in General Studies may be deferred until later years but a minimum
of 112 general studies elective hours must be satisfactorily completed for degree
requirements unless the program specifies otherwise.

‡Students are reminded that for some recommended Level III Mathematics
units, 10.111A is a prerequisite.

‡‡Students wishing to specialize in Laser and Advanced Optical Technology
should consult the School to ascertain additional requirements.

0102 Physics

Single major†

Year 1
- 1.001, 1.011
- 10.001, 10.011

Choose 4 Level I units from Table 1 and/or Table 2 for program 0102

Year 2
- 1.012, 1.022, 1.032
- 10.2111 & 10.2112

1 General Studies elective††

Choose 4 units from Table 1 and/or Table 2 for program 0102

Year 3
- 1.0133, 1.023, 1.0333, 1.043

1 General Studies elective

Choose at least 4 units from Table 1 and/or Table 2 for program 0102 to include at least one Level III Physics unit*

††See footnote to program 0101.

†Under exceptional circumstances students taking this program may be eligible for
transfer into Year 4 of program 0101 or 0103 provided a satisfactory level is
attained in a number of Mathematics units. Students should consult the School
of Physics for further details.

*Students are advised that unit 1.002 is compulsory and must be taken in either
Year 2 or Year 3.
0103
Applied Physics

Year 1
1.001 or 1.011
10.001 or 10.011*
Choose 2 units from:
2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from:
1.041, 1.061
5.010
6.611
10.081
17.031, 17.041
25.110, 25.120

Year 2
1.002, 1.012, 1.022, 1.032
10.1113*, 10.1114*, 10.2111*, 10.2112*
1 General Studies elective††
Choose 2 units from:
1.042, Level II units in Table 1**

Year 3
1.0133, 1.0143, 1.023, 1.0333, 1.0343, 1.043
1 General Studies elective
Choose at least 3 units from:**
1.0533, 1.0543, 1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533,
1.713, 1.763, 1.773
including at least one of:
1.0533, 1.0543, 1.763‡

Year 4
1.304

*††See footnote to program 0101.

**Consideration is given to the choice of units of an applied nature offered by other Schools (e.g. Engineering) which may be listed in Table 1 or in the handbooks of other Boards and Faculties. Students must consult the School of Physics in the first instance.

0105
Theoretical Physics

Year 1
1.001 or 1.011
10.001 or 10.011*
Choose 2 units from:
2.111, 2.121, 2.131, 2.141
Choose 2 Level I units from Table 1 and/or Table 2 for program 0105

0106
Biophysics

Year 1
1.001 or 1.011
2.121, 2.131
10.001 or 10.011*
17.031, 17.041†

Year 2
1.012, 1.022, 1.032
2.002B
10.1113*, 10.1114*, 10.2111*, 10.2112*
73.111** or 73.121
1 General Studies elective††

Year 3
1.023, 1.0333, 1.1433, 1.1533
Choose 1½ units from Level III Physics units in Table 1***
Choose 2 units from:
1.041, Level II or Level III Mathematics units in Table 1
Choose 1 unit from Level II or Level III Biological units in Table 1
1 General Studies elective

Year 4
1.604

*††See footnote to program 0101.

**Entry to 73.111 requires the approval of the Head of School of Physiology and Pharmacology. If approved, the co-requisite 41.101 is waived.

***Recommended Physics units are 1.002, 1.0133.
0125
Physics/Geology

Year 1
1.001 or 1.011
2.121 & 2.131 or 2.141
10.001 or 10.011*
25.110, 25.120

Year 2
1.002, 1.012, 1.022, 1.032
10.211*, 10.2112*, 10.1113*, 10.1114*
1 General Studies elective
Choose 2 Geology units from Table 1 and/or Table 2 for program 0125

Year 3
1.0133, 1.023, 1.0333, 1.043, 1.0143, 1.0343
1 General Studies elective
Choose 4 Geology units from Table 1 and/or Table 2 for program 0125

Year 4
25.434 or 1.104 or 1.304
or
68.430 (a combined Geology and Physics program by arrangement with Heads of the two Schools)

††*See footnote to program 0101.

0162
Physics and Science Policy Studies§‡

Year 1
1.001 or 1.011
10.001 or 10.011
Choose 4 Level I units from Table 1 and/or Table 2 for program 0162

Year 2
1.012, 1.022, 1.032
10.211, 10.2112
62.022, 62.052, 62.062
Choose 1 unit from:
62.012, 62.032

Year 3
1.0133, 1.023, 1.0333, 1.043, 1.002
1 General Studies elective‡‡
Choose 3 units from:
Choose 1 unit from:
15.001, 15.703, 15.753, 10.212A or 10.412D

Year 4
62.024

§This program is intended for students wishing to major in Physics and at the same time acquire an understanding of the social dimensions of science and the role of science in the economy. It also provides elements of a training in science policy studies, important for those wishing to engage in administration and policy-making in science and technology. Honours students will complete a thesis concerned with an aspect of science policy.

‡Under exceptional circumstances students taking this program may be eligible for transfer into Year 4 of program 0101 or 0103 or 0105.

**26.251, 26.2506, 26.561, 26.564, 26.817 may not be included in the program.

††See footnote to program 0101.

‡‡See footnote to program 6200.

0161
Physics/Computer Science

Year 1
1.001 or 1.011
10.001 or 10.011*
6.611
Choose 3 units from Table 1**

Year 2
1.012, 1.022, 1.032
6.621, 6.641
10.211*, 10.2112*, 10.1113*, 10.1114*
1 General Studies elective††
Choose 1 unit from:
1.042, 1.052, 6.631***, 10.111A*

Year 3
1.002
Choose 3 Level III Physics units from Table 1 to include
1.0133, 1.023 and 1.0333
1 General Studies elective
Choose 4 units from:**
Level III Physics units in Table 1, 1.042, 6.631***, 10.212A*, 10.412D*, 10.612 including at least one Level III Computer Science unit from Table 1 or 2

Year 4
1.104** or 1.304** or 1.504**
Chemistry

The School of Chemistry is divided into four departments (Physical, Organic, Inorganic and Nuclear, and Analytical) and a First Year Teaching unit.

Each department contributes to first year teaching and offers specialty courses in its own area for the Science and Mathematics programs, Pure and Applied Chemistry and servicing to other faculties.

The course programs leading to a major in Chemistry are programs 0201 Chemistry (single major), 0202 Chemistry, 0203 Chemistry (double major), 0204 Chemistry/Chemical Engineering Science, 0225 Chemistry/Geology, 0241 Chemistry/Biochemistry, 0242 Chemistry/Biotechnology, 0261 Chemistry/Computer Science, 0262 Chemistry with Science Studies and 7302 Chemistry/Physiology.

The School also offers a program in the Faculty of Science called Pure and Applied Chemistry (course 3910) similar to 0203 and described later in this Handbook.

Program 0201 provides the opportunity for greater concentration on units offered by the School of Chemistry than is provided by program 0202. It also offers increased options in chemistry subjects in Year 3 (Level III units), whereas program 0202 allows for a wider choice from other selected fields in the Science and Mathematics course. With either it is possible to study chemistry and another branch of science to an advanced level. For example, a combination of Level III Chemistry and Mathematics units provide a useful basis for later specialization in X-ray crystallography or theoretical chemistry. Program 0225 contains a combination of Level III Chemistry and Geology units and is designed for those who wish to specialize later in Geochemistry. In Program 7302 a combination of Level III Chemistry and Physiology units could form the basis of later specialized studies of the chemical function of the control systems in the animal body.

Program 0203 is designed for major specialization in Chemistry at Level II and Level III and should be selected by students who wish to devote their studies at Level III almost entirely to chemical topics. (This program is similar to the Pure and Applied Chemistry course 3910, in the Faculty of Science.)

Program 0241 and 0242 are designed for those students who wish to undertake a co-major in Chemistry and Biochemistry or Biological Technology. The choice and direction of Honours and graduate work is thereby widened and such work may be undertaken in any of the fields covered by the co-major.

Program 0204 enables the inclusion of some elements of Chemical Engineering in Year 3 as well as Level III Chemistry units, whilst Program 6834 Marine Science also involves a substantial study of chemistry. Program 0261 includes Computing Science in each of Years 1, 2 and 3.

The programs are open to all students who have satisfied the requirement for entry into the Science and Mathematics course. However, those who have not studied sufficient science at school (see prerequisites under subject number) may be required to study a special introductory unit (2.111) before enrolling in the Level I Chemistry units (2.121, 2.131, 2.141) specified in the Chemistry programs. The Level I subject 2.141 is designed specifically for students intending to major in Chemistry. It covers the same material, at a similar level to that in 2.121 and 2.131, but is a full year subject and the order of treatment of the topics is different.

All Chemistry programs have a common first year of study which includes chemistry, physics, mathematics and an elective. It is thus not mandatory for a student to make a final choice of program before the commencement of Year 2. There is further, though limited, choice between programs after the prescribed Level II units have been completed.

Most of the Chemistry programs lead to studies at the Honours level (Level IV) and to graduate studies in Chemistry. The usual introduction to research in Chemistry is in Level IV and at this level the student devotes the major part of his time to research under the direction of a member of staff as supervisor. A small proportion of the time is taken up with formal course work. The Honours year (or its equivalent in qualifying studies) may be followed by a higher research degree. Further information about graduate courses is included in this handbook and in a booklet: 'Postgraduate Studies and Research in the School of Chemistry'.

0201 Chemistry*

Single major

Year 1

- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
- or
- 10.021B & 10.021C

Choose 2 Level I units from Table 1

Year 2

- 2.002A, 2.002B, 2.042C, 2.002D
- 1 General Studies elective††

Choose 3 units from Table 1

Year 3

- 1 General Studies elective

Choose 8 units from Table 1 including 4 Level III Chemistry units

Year 4

- 2.004

*Students wishing to undertake a co-major in Chemistry and History and Philosophy of Science are advised that they may do so by enrolling in 0201 or 0202 and choosing appropriate History and Philosophy of Science units from Table 1. In such cases, 26.561, 26.564 and 26.817 may not be included in the choice of General Studies electives.

††See footnote to program 0101.
0202
Chemistry*

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
Choose 2 Level I units from Table 1

Year 2
2.002A, 2.002B
1 General Studies elective††
Choose at least 5 units from Table 1 including at least one of:
2.042C and 2.002D

Year 3
1 General Studies elective
Choose 8 Level III units from Table 1 including only 4 Chemistry units

Year 4
2.004

*See footnote to program 0201.
††See footnote to program 0101.

0203
Chemistry
Double major

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (3910) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 3910, the transfer may still be made before the commencement of Year 3.

The Pure and Applied Chemistry Course is described in detail later in this handbook (Faculty of Science) and enables specialization in Chemistry.

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
Choose 2 Level I units from Table 1

0204
Chemistry/Chemical Engineering Science‡

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose either:
1. 5.030 and 1 Level I unit from Table 1, or
2. 2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
10.031
or
10.111A and 10.2111 and 10.2112*
48.023
1 General Studies elective††
Choose either:
1. 5.030 or
2. 1 Level II unit from Table 1

Year 3
48.037
1 General Studies elective
Choose 4 Level III Chemistry units from Table 1
Choose 2 units from Table 1

Year 4
2.004

*Students electing 10.111A and 10.2111 and 10.2112 need not make an election under Year 2 clauses 1, and 2.
††See footnote to program 0101.
‡‡Owing to timetabling difficulties this program could take longer than 3 years to complete.
0225
Chemistry/Geology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120

Year 2
2.002D, 2.042C
25.211, 25.221, 25.212
1 General Studies elective††
Choose 2 units from:
2.002A, 2.002B, 2.003E, 2.003H, 25.223

Year 3
1 General Studies elective
Choose 4 units from:
2.003B, 2.003C, 2.003D, 2.003E, 2.003H, 2.013D, 2.043A

Year 4
2.004 or 25.434

††See footnote to program 0101.

0242
Chemistry/Biotechnology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041

Year 2
2.002A, 2.002B
41.101
42.101
44.101
1 General Studies elective††
Choose 1 unit from:
2.042C, 2.002D

Year 3
42.102A, 42.102B
1 General Studies elective
Choose 6 units from Table 1 including 4 Chemistry Level III units; all should be Level III if proceeding to Year IV

Year 4
2.004 or
42.103
††See footnote to program 0101.

0241
Chemistry/Biochemistry

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041

Year 2
2.002A, 2.002B, 2.042C, 2.002D
41.101, 41.111
1 General Studies elective††

Year 3
41.102A
1 General Studies elective
Choose 2 units from 4.102B, 41.102C, 41.102E
Choose 4 Chemistry Level III units from Table 1

Year 4
41.103 or
2.004
††See footnote to program 0101.

0261
Chemistry with Computer Science

Year 1
1.001 or 1.011
2.121 and 2.131, or 2.141
10.001 or 10.011
6.611
Choose 1 Level I unit from Table 1*

Year 2
2.002A, 2.002B, 2.042C, 2.002D
6.621, 6.641
10.331**
Choose 1 unit from Table 1***
1 General Studies elective††

Year 3
6.646
Choose 4 Level III Chemistry units†
Choose 3 units††† from Table 1 or Table 2‡
1 General Studies elective
Year 4
2.004

*The unit 1.041 is recommended.
**Or other approved unit of statistics.
***The unit 6.631 is recommended. It is a prerequisite for 6.632 and 6.613.
†Students must consult the School of Chemistry for approval of their choice of Level III Chemistry units, before the end of Session 2 in the preceding year.
††See footnote to program 0101.
†††Students intending to proceed to Year 4 must choose appropriate units, as approved by the School of Chemistry.
‡Quota restrictions apply to Computer Science Level III units. Application must be made in writing to the Head of School of Electrical Engineering and Computer Science before the end of Session 2 in the preceding year.

0262
Chemistry and Science Policy Studies§

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
2 Level I units from Table 1

Year 2
2.002A, 2.002B, 2.042C, 2.002D
62.022, 62.052, 62.062
Choose 1 unit from Table 1

Year 3
4 Chemistry Level III units from Table 1
†General Studies elective††
Choose 3 units from:
Choose 1 unit from:
15.001, 15.703, 15.753

Year 4
2.004 or
62.024

§This program is intended for students wishing to major in Chemistry and at the same time acquire an understanding of the social dimensions of science and the role of science in the economy. It also provides elements of a training in science policy studies, important for those wishing to engage in administration and policy-making in science and technology. Honours students will complete a thesis in either Chemistry or an aspect of science policy.
†See footnote to program 6200.
††See footnote to program 0101.

0401
Physical Metallurgy

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
2.002A
4.402, 4.512
†General Studies elective††
Choose 4 Level II units from Table 1 or 3 Level II units from Table 1 and 1 unit from Table 2 for program 0401

Year 3
4.403, 4.703, 4.522
†General Studies elective
Choose 4 Level III units from Table 1 or 3 Level III units from Table 1 and 1 Level III unit from Table 2 for program 0401

Year 4
4.004
††See footnote to program 0101.

0402
Chemical Metallurgy

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
2.002A
4.302, 4.602, 4.412
†General Studies elective††
Choose 4 Level II units from Table 1 or 3 Level II units from Table 1 and 1 Level II unit from Table 2 for program 0402

Year 3
4.303, 4.613*, 4.422
7.023*
†General Studies elective
Choose 4 Level III units from Table 1 or 3 Level III units from Table 1 and 1 unit from Table 2 for program 0402

Year 4
4.004

*Students not proceeding to Honours may substitute another Level II or Level III unit from Table 1 for 4.613 and 7.023.
††See footnote to program 0101.

7302
Chemistry/Physiology

See 7302 Physiology/Chemistry
Double major

Students wishing to take more than 4 Level III Metallurgy units are required to transfer to the four year Metallurgy BSc degree course (3120) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course 3120 the transfer may still be made before the commencement of Year 3.

The Metallurgy BSc degree course is described in detail in the Faculty of Applied Science Handbook and enables specialization in Metallurgy.

Year 1

1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose either:
25.110, 25.120
or
5.010 and 5.030

Year 2

2.002A
4.302, 4.402, 4.502, 4.602, 4.802
10.031
25.523
1 General Studies elective††

Year 3

4.303, 4.403, 4.613, 4.703, 4.813,
7.023
1 General Studies elective

Year 4

4.024, 4.054, 4.314, 4.324, 4.414, 4.424, 4.504
††See footnote to program 0101.

Computer Science

Computer Science involves the study of the design, construction and uses of computer systems. It is concerned with the representation of data and data structures in computer systems and the design of algorithms for automatic manipulation of this information by programming languages and machine systems. It is very much concerned with the design and development of hardware and software tools by which computer applications may be developed, but not so much with the applications themselves. At the University of New South Wales, particular emphasis is given to comprehension of the basic principles behind computing tools, operating systems, compilers and translators, and computer hardware.

Graduates who major in Computer Science frequently find employment where the requirement is for an expert knowledge of computer systems rather than extensive experience in a particular application area. Potential employers include the computer manufacturers, consulting companies, specialist companies marketing computer hardware and software services, and many large organizations with major computing establishments.

All Science students with the appropriate Mathematics prerequisites have entry into all Year 1 and Year 2 Computer Science units. Resources limit the number of students who may enter most Year 3 Computer Science units but other subjects are proposed which will allow computer applications majors to complete an appropriate course of study.

Entry to a Computer Science major is either by direct selection at university entry or by competitive entry at the end of Year 1 or Year 2. Students who wish to compete at the end of their first year for a place in Computer Science majors (programs 0601 (Computer Science), 0610 (Computer Science/Mathematics), or 0611 (Computer Science/Statistics)) enrol in their first year in program 6806. Students in program 6806 may also have the alternative of entering program 1401 (Commercial Information Systems with Computer Science) at the end of their first year. Acceptance into programs 0601, 0610, 0611 or 1401 is based on academic performance in Year 1 or Year 2.

Science/Law students may enrol directly into Year 1 of the Course 4770 Computer Science program. To progress into Year 2 of this program, these students must, at the end of Year 1, compete with students in Course 3970.

Students majoring in other disciplines may undertake all Level I and Level II and one of the Level III Computer Science units and thus undertake a substantial amount of Computing. Programs available are Physics/Computer Science (0161); Chemistry/Computer Science (0261) and Mathematics with Computer Science (1061). Students with very good academic records may be able to enrol in further Computer Science units by special permission from the Head of the Department of Computer Science.

There are many ways to study Computer Science and computer applications at this University, apart from the Science and Mathematics Course. Students may major in Computer Science as part of the 5 year combined degree programs in Electrical Engineering, Aeronautical Engineering, Industrial
Engineering, Mechanical Engineering and Naval Architecture which leads to the award of the two degrees of BE and BSc (see under Courses 3725, 3611, 3661, 3681 and 3701 respectively and the Faculty of Engineering Handbook). Students may also major in Computer Science in the combined Science/Law degree course. A major sequence in Computer Science is also available in the Bachelor of Arts course (see the Faculty of Arts Handbook). Other courses and subjects which include computing and computing applications are available in other Schools, for example students may major in Computers and Information Systems in the Bachelor of Commerce degree course: see the Faculty of Commerce Handbook.

0601
Computer Science

Year 1*

10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 2

6.621, 6.631, 6.641
1 General Studies elective††
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601 (except 14.501)**

Year 3†

Choose 4 Level III Computer Science units
1 General Studies elective
Choose 3 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601**

Year 4

6.606
** †See footnotes to program 0601.
††See footnote to program 0101.

0610
Computer Science/Mathematics

Year 1*

10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 0601 (except 14.501)**

Year 2

6.621, 6.631, 6.641
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or
10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
1 General Studies elective††
Choose 2 units from:
1. Table 1 &/or
2. The BA course* &/or
3. Table 2 for program 0601*

Year 3†

1 General Studies elective
Choose at least 7 units including 4 (or 3) Level III Computer Science units and 3 (or 4) Level III Mathematics units

Year 4

6.606
** †See footnotes to program 0601.
††See footnote to program 0101.

0611
Computer Science/Statistics

Year 1*

10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course* &/or
3. Table 2 for program 0601**

Year 2

6.621, 6.631, 6.641
10.311A (or 10.321A), 10.311B (or 10.321B), 10.111A (or
10.121A), 10.1113 (or 10.1213)
Choose 1 Level II unit from Table 1
1 General Studies elective††

Year 3†

1 General Studies elective
Choose at least 7 units including 4 (or 3) Level III Computer Science units and 3 (or 4) Level III Statistics units

Year 4

6.606, or 10.323 if 4 Level III Higher Statistics units have been successfully taken
** †See footnotes to program 0601.
††See footnote to program 0101.
0161 Computer Science/Physics
See 0161 Physics/Computer Science

4561 Computer Science/Zoology
See 4561 Zoology with Computer Science

0261 Computer Science/Chemistry
See 0261 Chemistry with Computer Science

1061 Computer Science/Mathematics
See 1061 Mathematics and Computing

1062 Computer Science/Statistics
See 1062 Statistics and Computing

See also

1401 Commercial Information Systems with Computer Science
Mathematics

The School of Mathematics is divided into Departments of Pure Mathematics, Applied Mathematics, Theoretical and Applied Mechanics, and Statistics. The School provides courses at the Pass and Honours levels based on the above departments and in specified interdisciplinary programs such as Mathematics of Management, Applied Mathematics (Economic Optimization). There is considerable overlap of interests and interaction between the departments; students in general will take units from more than one department.

Pure Mathematics is concerned with the whole structure of mathematics. Research focuses on the creation of new mathematical systems and the finer analysis of partially understood fields. Problems of mathematics come from many sources of science and industry but the pure mathematician is more concerned with the problems themselves than with the sources from which they arise. Courses in the Department of Pure Mathematics are designed to provide the necessary equipment for those who intend to use mathematics in any way; to give basic familiarity with the fundamental language of modern science and technology and to develop appreciation for and insight into one of our major cultural achievements.

Applied Mathematics and Theoretical Mechanics are concerned with the understanding of scientific phenomena by the construction, analysis, and interpretation of mathematical models. Problems may originate not only in the physical and engineering sciences, but also in the social, computing, biological, economic and management sciences.

The major interests of the Department of Applied Mathematics are:

1. Optimization and control theory, with special attention to social science applications (control of economic systems, resource allocation, etc)
2. Numerical analysis and computer-related mathematics
3. Modern theoretical physics

The department offers complete training to graduate research level in areas 1. and 2.; it provides some undergraduate training in area 3. in collaboration with other Schools, and accepts higher degree candidates in that area.

The Department of Theoretical and Applied Mechanics is interested in mathematical techniques and applications of mathematics to problems in classical and engineering science. There is also some emphasis on the environmental sciences, such as meteorology and oceanography.

Statistics is the science and art of using factual material for modelling and inference. Its mathematical foundations are in the theory of probability and it deals with how to estimate and make decisions using knowledge which is uncertain or observational material which is subject to error. There is a rich interplay of ideas between the theory of statistics and fields such as engineering, medicine and biological and behavioural sciences where statistical problems constantly arise. The department has strong interest in the areas of applied statistics, stochastic processes, biometry, inference, design of experiments, sequential analysis, discrete distributions, nonparametrics and statistical computing.

Programs of study
Programs 1001-1010 (Mathematics)
These are general Mathematics programs which are chosen by students wishing to major in Mathematics with most of the supporting subjects being Science subjects.

There are four specific programs in this group each available at pass level (3 years) or at honours level (4 years). These are in Pure Mathematics, Applied Mathematics, Statistics and Theoretical and Applied Mechanics. There is also a three year program leading to a combined major in Applied Mathematics and Theoretical and Applied Mechanics. Students are able to combine courses in Pure Mathematics, Applied Mathematics, Theoretical Mechanics, Theory of Statistics and Computer Science in accordance with their future interests. Such combinations of courses are particularly suitable for students intending to become secondary school teachers.

Programs 1011-1019 (Mathematics and Liberal Studies)
The Mathematics and Liberal Studies programs are aimed at encouraging students to see mathematics in a cultural and social setting. By combining mathematics units with suitable arts units, particularly those in Philosophy and History and Philosophy of Science, it is hoped that these programs will bring together the exactitude of mathematics with the freer creativity of the arts. It is expected that students would do History of Mathematics in their third year to provide an opportunity to bring together much of the 'mathematics' and 'liberal studies' of their earlier courses.

The liberal studies may be combined into a broad mathematics sequence or if students wish to specialize, then Pure Mathematics, Applied Mathematics, Theoretical Mechanics or Theory of Statistics sequences are available at pass or honours level.

Interdisciplinary Programs
Program 1061, Mathematics and Computing will be of particular interest to students who wish to combine a mathematics major with a substantial component of computing.

Programs 1020 and 1021, Applied Mathematics (Economic Optimization) includes subjects offered by the School of Economics, as well as mathematics subjects with a particular emphasis on optimization, optimal control, and related areas. This program is intended for students who are good at mathematics and interested in applications of mathematics to economic problems, particularly problems of economic planning and macro-economic modelling. The degree is a mathematics degree, but there is enough economics in it to provide a very good introduction for work in the area of mathematical economics and its applications. Program 1021 is the honours version of 1020.

Programs 1022 and 1023, Mathematics of Management include subjects given by the Schools of Accountancy and of Economics. There has been an increasing trend towards more use of mathematics, and the use of more advanced mathematics, in scientific management. These programs are intended to train mathematicians with an interest in the
application of mathematics to management science. The mathematics content is very solid indeed, amounting to a full mathematics degree. A student completing these courses with a good record is eligible for entry to the Master of Commerce graduate degree program in the School of Accountancy. If appropriate subjects are selected, then this degree (MCom), which may be awarded by part-time study, qualifies the graduate for provisional membership of the Australian Society of Accountants; full membership is then granted after appropriate experience.

Many units in the School of Mathematics are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered grades higher than Credit are only awarded in the ordinary level in exceptional circumstances.

Students should note that all of the Mathematics honours programs require them to take most of their Mathematics units at higher level. However, students should not think that the higher level units are intended only for those in honours programs. Any student with the ability to undertake higher units benefits from so doing.

1001
Mathematics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001 except 14.501

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
1 General Studies elective††
Choose 5 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 Level III§ Mathematics units other than 10.612 from Table 1 (or choose 5 if only 3 Level II Mathematics units taken)
1 General Studies elective
Choose 3 (or 2) units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

††See footnote to program 0101.
*It is strongly recommended that two of these units be 10.081 and 6.611.
**Up to 6 units of this program may be replaced by subjects offered in the BA degree course. (6 credit points at Level I or 4 credit points at Upper Level are equivalent to 1 unit.) The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.
†Not more than 8 units that are not in Table 1 may be taken without the approval of the Head of the School of Mathematics.
§Not to include more than one Level III/III unit.

1002
Pure Mathematics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001 except 14.501

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
1 General Studies elective††
Choose 5 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.1111, 10.1112, 10.1121, 10.1128
Choose 2 units from:
10.1123, 10.1124, 10.1125, 10.1126, 10.1127, 10.1521, 10.1522, 10.1523
1 General Studies elective
If only 3 Level II Mathematics units taken in Year 2 choose 1 further Level II or Level III Mathematics unit
Choose 3 (or 2) units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Note: 3rd Year Higher Pure Mathematics units may be substituted for equivalent pass units with the approval of the Head of School of Mathematics.

††See footnote to program 0101.
* **†See footnotes to program 1001.
1003

Pure Mathematics Honours

Year 1
10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001 except 14.501

Year 2
10.121A, 10.1213, 10.1214, 10.2211, 10.2212
1 General Studies elective††
Choose 5 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.122B
Either 10.1321, 10.1322, 10.1323, 10.1324, 10.1325, 10.1326, or 10.1421, 10.1422, 10.1423, 10.1424, 10.1425, 10.1426
1 General Studies elective
Choose 3 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 4
10.123
††See footnote to program 0101.
**‡‡See footnotes to program 1001.
Note: Where higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

1004

Applied Mathematics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001 except 14.501

Year 2
10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2113† (or 10.2213†), 10.2115†† (or 10.2215††)
1 General Studies elective††
Choose 4 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.222A, 10.222M
Choose 1 unit from:
10.222L, 10.222C, 10.222F
Choose 1 further Higher Level III§ Mathematics unit
1 General Studies elective
Choose 3 Level III§ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 4
10.223
††See footnote to program 0101.
**‡‡See footnotes to program 1001.
§Note: Where higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

1005

Applied Mathematics Honours

Year 1
10.011
Choose 6 units* from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001 except 14.501

Year 2†
10.121A, 10.1213, 10.1214, 10.2211, 10.2212, 10.2215††
1 General Studies elective††
Choose 4 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.222A, 10.222M
Choose 1 unit from:
10.222L, 10.222C, 10.222F
Choose 1 further Higher Level III§ Mathematics unit
1 General Studies elective
Choose 3 Level III§ units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 4
10.223
††See footnote to program 0101.
**‡‡See footnotes to program 1001.
§These units are strongly recommended but not essential to be taken. If not taken, one additional Mathematics unit at Level II or Level III must be taken in either Year 2 or Year 3.
**‡‡If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.
§Students should consult with a Professor of the Department before finalizing their Year 3 enrolment (see also * footnote for Table 3).
1006
Statistics

Year 1
10.001 or 10.011
Choose 6 units* from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001 except 14.501

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or
10.1214), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B
(or 10.321B)
1 General Studies elective††
Choose 2½ units from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001

Year 3
Choose 4 units from:
10.312A (or 10.322A), 10.312B (or 10.322B), 10.312C (or
10.322C), 10.312D (or 10.322D), 10.312E (or 10.322E)
1 General Studies elective
Choose 3 Level III Mathematics and/or Computer Science
units from Table 1
††See footnote to program 0101.
*** †See footnotes to program 1001

1007
Statistics Honours

Year 1
10.011 or 10.001
Choose 6 units* from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001 except 14.501

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or
10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.4112
(or 10.4212), 10.4111 (or 10.4211)
1 General Studies elective††
Choose 2½ units from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001

Year 3
Choose 4 units from:
10.412A (or 10.422A), 10.412D (or 10.422D)
1 General Studies elective
Choose 2 units from:
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or
10.222M), (10.1125 and 10.1126) (or 10.1425 and 10.1426),
10.412B (or 10.422B)
Choose 3 units from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001
††See footnote to program 0101.
*** †See footnotes to program 1001.

1008
Theoretical Mechanics

Year 1
10.001 or 10.011
1.001 or 1.011
Choose 4 units* from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001 except 14.501

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or
10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.4112
(or 10.4212), 10.4111 (or 10.4211)
1 General Studies elective††
Choose 4 units from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001

Year 3
10.412A (or 10.422A), 10.412D (or 10.422D)
1 General Studies elective
Choose 2 units from:
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or
10.222M), (10.1125 and 10.1126) (or 10.1425 and 10.1426),
10.412B (or 10.422B)
Choose 3 units from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001
††See footnote to program 0101.
*** †See footnotes to program 1001.

1009
Theoretical Mechanics Honours

Year 1
10.011, 1.001 (or 1.011)
Choose 4 units* from:
1. Table 1 &lor
2. The BA course**t &lor
3. Table 2† for program 1001 except 14.501

Note: Where Higher units are specified, suitable ordinary units may, in excep-
tional circumstances and at the discretion of the Head of School of Mathematics,
be accepted as equivalent.
††See footnote to program 0101.
*** †See footnotes to program 1001

0611
Statistics/Computer Science

See 0611 Computer Science/Statistics
Year 2
10.121A (or 10.111A), 10.1213, 10.2211, 10.2212, 10.4212, 10.4211
1 General Studies elective††
Choose 4 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
10.422A, 10.422B, 10.222C, 10.422D
1 General Studies elective††
Choose 2 units from:
10.422A, 10.222A (or 10.212A), 10.222M (or 10.212M), 10.2213 (or 10.2113), 10.2215†† (or 10.2115††), 10.122B, (10.1425 and 10.1426), (10.1125 and 10.1126)
Choose 1 unit from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 4
10.423
1 General Studies elective

Note: Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.
††See footnote to program 0101.
**††See footnotes to program 1001.
††If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1011
Mathematics and Liberal Studies§

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.4112 (or 10.4212), 10.4111 (or 10.4211), 10.2113 (or 10.2213), 10.2115†† (or 10.2215††)
1 General Studies elective††
Choose 3 units from:
1. Table 1 &/or
2. The BA course**† &/or
3. Table 2† for program 1001

Year 3
Choose 4 Level III‡ Mathematics units other than 10.612 from Table 1 (or choose 5 if only 3 Level II Mathematics units taken)
Choose 5 (or 4) units from:
1. Table 1† &/or
2. The BA course§

Year 4
Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
*Except for Mathematics units, not more than 2 Level I units may be taken in one subject.
†It is strongly recommended that two of these units be 10.081 and 6.611.
‡Geography, History and Philosophy of Science, and Philosophy shall be from the BA degree course.
§At least 6 units of this program must come from subjects offered in the BA degree course [6 credit points at Level I or 4 credit points at Upper Level are equal to 1 unit]. The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, Geography, German, History, History and Philosophy of Science, Philosophy, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to those in Economic History plus 15.062, 15.072, 15.263 and 15.273.
‡Not to include more than one Level II/III unit.
1012
Pure Mathematics and Liberal Studies

Year 1
10.001 or 10.011

Choose 6 units* from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)

Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.1111, 10.1112, 10.1121, 10.1128

Choose 2 units from:
10.1123, 10.1124, 10.1125, 10.1126, 10.1127, 10.1521, 10.1522, 10.1523

If only 3 Level II Mathematics units were taken choose 1 further Level II or Level III Mathematics unit

Choose 5 (or 4) units from:
1. Table 1† &/or
2. The BA course§

Note:
1. The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may, in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

* † § See footnotes to program 1011.

1013
Pure Mathematics Honours and Liberal Studies

Year 1
10.011

Choose 6 units* from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A, 10.1213, 10.1214, 10.2211, 10.2212

Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.122B

* Either 10.1321, 10.1322, 10.1323, 10.1324, 10.1325, 10.1326, or 10.1421, 10.1422, 10.1423, 10.1424, 10.1425, 10.1426

Choose 5 units from:
1. Table 1† &/or
2. The BA course§, at least 1 of which must be a Mathematics unit

1014
Applied Mathematics and Liberal Studies

Year 1
10.001 or 10.011

Choose 6 units* from:
1. Table 1† &/or
2. The BA course§

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.2113† (or 10.2213†), 10.2115‡ (or 10.2215‡)

Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M)

Choose 1 unit from the Theory of Statistics Level III units or from the Theoretical Mechanics Level III units

Choose 5 units from:
1. Table 1† &/or
2. The BA course§

Note:
1. The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. This unit is strongly recommended but not essential. If not taken one additional Mathematics unit at Level II or Level III must be taken in either Year 2 or Year 3.
3. †‡ †§ already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1015
Applied Mathematics Honours and Liberal Studies

Year 1
10.011

Choose 6 units* from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A, 10.1213, 10.1214, 10.2211, 10.2212, 10.2213, 10.2215‡

Choose 4 units from:
1. Table 1† &/or
2. The BA course§
Year 3
10.222A, 10.222L, 10.222M
Choose 2 further Higher Level III Mathematics units one of which must not be a Pure Mathematics unit and one of which is recommended to be 10.122B
Choose 4 units from:
1. Table 1† &/or
2. The BA course §

Year 4
10.223
Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

1016
Statistics and Liberal Studies §

Year 1
10.001 or 10.011
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course §

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B)
Choose 2½ units from:
1. Table 1† &/or
2. The BA course §

Year 3
Choose 4 units from:
10.321A (or 10.322A), 10.321B (or 10.322B), 10.321C (or 10.322C), 10.312D (or 10.322D), 10.312E (or 10.322E)
Choose 3 Level III Mathematics and/or Computer Science units from Table 1
Choose 2 units from:
1. Table 1† &/or
2. The BA course §

1017
Statistics Honours and Liberal Studies §

Year 1
10.011 or 10.001
Choose 6 units* ** from:
1. Table 1† &/or
2. The BA course §

Year 2
10.121A (or 10.111A), 10.1213 (or 10.1113), 10.1214 (or 10.1114), 10.2212 (or 10.2112), 10.321A, 10.321B
Choose 2½ units from:
1. Table 1† &/or
2. The BA course §

Year 3
Choose 4 units from:
10.322A, 10.322B, 10.322C, 10.322D, 10.322E
Choose 3 Level III Mathematics and/or Computer Science units from Table 1
Choose 2 units from:
1. Table 1† &/or
2. The BA course §

Year 4
10.323
Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.

1018
Theoretical Mechanics and Liberal Studies §

Year 1
10.001 or 10.011
1.001 or 1.011
Choose 4 units* ** from:
1. Table 1† &/or
2. The BA course §

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.4112 (or 10.4212), 10.4111 (or 10.4211)
Choose 4 units from:
1. Table 1† &/or
2. The BA course §

Year 3
10.412A (or 10.422A), 10.412D (or 10.422D)
Choose 2 units from:
10.212A (or 10.222A), 10.212L (or 10.222L), 10.212M (or 10.222M), 10.412B (or 10.422B), (10.1125 and 10.1126), (10.1425 and 10.1426)
Choose 5 units from:
1. Table 1† &/or
2. The BA course §

Note: The program consists of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.

* †§See footnotes to program 1011.
1019
Theoretical Mechanics Honours and Liberal Studies

Year 1
10.011
1.001 or 1.011
Choose 4 units* ** from:
1. Table 1† &/or
2. The BA course§

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212,
10.2213, 10.2215‡‡ (or 10.2215‡‡), 10.4212, 10.4211
Choose 4 units from:
1. Table 1† &/or
2. The BA course§

Year 3
10.422A, 10.422B, 10.222C, 10.422D
Choose 2 units from:
10.412A, 10.212A (or 10.222A), 10.212M (or 10.222M),
10.212 (or 10.2213), 10.2215‡‡ (or 10.2115‡‡), 10.122B,
(10.1425 and 10.1426), (10.1125 and 10.1126)
Choose 3 units from:
1. Table 1† &/or
2. The BA course§

Year 4
10.423

Note: 1. The first three years of the program consist of at least 25 units of which not less than eight nor more than ten units may be from Level I; there is no General Studies requirement.
2. Where Higher units are specified, suitable ordinary units may in exceptional circumstances and at the discretion of the Head of School of Mathematics, be accepted as equivalent.
***$See footnotes to program 1011.
‡‡If already taken, 2114 and 2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1020
Applied Mathematics
(Economic Optimization)

Year 1
10.001 or 10.011
15.001, 15.011
Choose 4 units from:
1. Table 1 &/or
2. *The BA course &/or
3. Take 2 for program 1020 except 14.501

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212,
10.2213, 10.2215‡‡ (or 10.311A and 10.311B or both 10.321A and 10.321B
15.012, 15.052
1 General Studies elective††
Choose either 10.331 and 1 unit from:
1. Table 1 &/or
2. **The BA course &/or
3. Table 2 for program 1020
or
Choose both:
10.311A, 10.311B
or
Choose both:
10.321A, 10.321B

Year 3
10.212L (or 10.222L), 10.212M (or 10.222M)
15.003, 15.413, 15.423
Choose 2 Level III* Mathematics units from Table 1 if 10.331
was chosen and otherwise choose 1 Level III* Mathematics unit from Table 1 excluding 10.312C and 10.322C
½ General Studies elective

Note: Only ½ General Studies electives are required in this program. Each of
14.501, 15.501 and 15.611 (Table 2) may be substituted for a General Studies
elective but may not then count as a qualifying unit.
*The two half units 10.1125 and 10.1126 are recommended.
**Six credit points at Level I or 4 credit points at Upper Level equals 1 unit.
††See footnote to program 1011.
‡‡If already taken, 10.2114 and 10.2214 are acceptable in place of 10.2115 and 10.2215 respectively.

1021
Applied Mathematics Honours
(Economic Optimization)

Year 1
10.011
15.001, 15.011
Choose 4 units from:
1. Table 1 &/or
2. *The BA course &/or
3. Table 2 for program 1021 except 14.501

Year 2
10.121A (or 10.111A), 10.1213, 10.1214, 10.2211, 10.2212,
10.2213, 10.2215‡‡ (or 10.311A and 10.311B or both 10.321A and 10.321B
15.012, 15.052
1 General Studies elective††

Year 3
10.222A, 10.222L, 10.222M, 10.122B
15.013, 15.033, 15.413, 15.423
½ General Studies Elective
1022
Mathematics of Management**

Year 1
10.001 or 10.011
14.501, 14.511
15.001, 15.011
Choose 2 units from:
1. Table 1 &/or
2. Table 2 for program 1022

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.2113 (or 10.2213), 10.2115** (or 10.2215**), 10.311A (or 10.321A)

14.522, 14.602
Choose at least one of:
14.542, 14.603, 14.613
15.042
1 General Studies elective††

Year 3
14.583
Choose at least 4 Level III Mathematics units from Table 1, of which at least 2 shall be selected from:
10.212A (or 10.222A), 10.412D (or 10.422D), 10.212L (or 10.222L), 10.212M (or 10.222M), 10.311B (or 10.321B), 10.312A (or 10.322A)

Choose any remaining units from:
1. Table 1 &/or
2. Table 2 for program 1022
½ General Studies elective

Note: Only ½ General Studies electives are required in this program. Each of 14.601, 15.601 and 15.611 (Table 2) may be substituted for a General Studies elective but may not then count as a qualifying unit.

1025
Mathematics/Geology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
25.110, 25.120

Year 2
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
Choose 1 unit from:
10.211E, 10.331
1 General Studies elective††
Choose 4 Geology units from Table 1 and/or Table 2 for program 1025

For Year 3, Year 4 and footnotes, see overleaf
Year 3
Choose 4 Level III Mathematics units from Table 1
1 General Studies elective
Choose 4 Level III Geology units from Table 1 and/or Table 2 for program 1025.

Year 4
25.434 or 10.123* or 10.223* or 10.423*
†See footnote to program 0101.
*Provided students have taken appropriate Higher Mathematics units in earlier years.

1061 Mathematics and Computing
Year 1
10.001 (or 10.011)
6.611
5 further units from:
1. Table 1 (10.081 is strongly recommended) and/or
2. The BA course **† and/or
3. Table 2† for program 1001 (except 14.501)
Year 2
10.111A (or 10.121A)
10.1113 (or 10.1213)
10.1114 (or 10.1214)
10.2111 (or 10.2211)
10.2112 (or 10.2212)
6.621
6.641
Choose 2 further units from Level II Mathematics Subjects or 6.831 or Level II Information Systems*, and 1 unit from Table 1 to make 8 units in all.
1 General Studies elective††

Year 3
10.612
4 further units from Level III Mathematics units in Table 1
1 unit from Level III Computer Science
1 further unit from either Level III Mathematics or Level III Computer Science, or Level III Information Systems*
Note: Students with appropriate units in Years 1, 2 and 3 may transfer to one of the honours programs 1003, 1005 or 1009 in Year 4. Students with this in mind should consult with a Professor of the relevant Department as early as possible.
1 General Studies elective

1062 Statistics with Computer Science*
Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 (10.081 is strongly recommended) and/or
2. The BA course **† and/or
3. Table 2† for program 1001 (except 14.501)
Year 2
10.311A (or 10.312A), 10.311B (or 10.312B)
6.621, 6.641
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2112 (or 10.2212)
1 General Studies elective††
Choose ½ unit from Table 1

Year 3
10.321F (or 10.322F)
Choose 4 units from:
10.312A (or 10.322A), 10.312B (or 10.322B), 10.312C (or 10.322C), 10.312D (or 10.322D), 10.312E (or 10.322E)
1 General Studies elective
Choose 2 units, at least one of which must be a Computer Science unit from Table 1*
Year 4 (Honours)
10.323
*Quota restrictions may apply to some Computer Science Level III units. Application must be made in writing to the Head of School of Electrical Engineering and Computer Science before the end of Session 2 in the preceding year.
††See footnotes to program 0101.

Mathematics/Marine Science
See 6831 Marine Science (Physical Oceanography) and attached note relating to dual major with Mathematics

Mathematics/Marine Science Honours
See 6831 Marine Science (Physical Oceanography) and attached note relating to dual major with Mathematics
Modern psychology is both a basic discipline and a field of professional practice. As a science, psychology is concerned with the study of both the more complex forms of behaviour, and associated mental processes. It seeks to understand the basic psychological processes such as learning, memory, perception and motivation; the biological basis of behaviour; the development and decline of behavioural capacities from infancy to old age; individual differences in behaviour; social influences on behaviour; and the collective behaviour of social groups. In addition, disorders of behaviour form an important part of the subject matter of psychology.

In the Science and Mathematics course there are three programs which lead to a major in Psychology after 3 years or to honours after 4 years. These programs are 1201 Psychology, 1270 Psychology/Anatomy and 7312 Physiology/Psychology. There is also a four year full-time professional science degree course (Course 3430) which is described in detail later in this handbook (see Faculty of Biological Sciences).

Students who wish to obtain qualifications that will allow them to practise psychology need to complete one of the above four year honours programs. The present minimum qualifications for membership of the Australian Psychological Society (the professorial body of Australian psychologists) require a degree (with a major in psychology) and a fourth year of study of psychology, followed either by further graduate study or two years of supervised experience in some practical field of psychology. A professional qualification in psychology leads to careers in research, teaching and applied fields such as personnel selection and management, vocational guidance, advertising and clinical practice.

1201 Psychology

Year 1

10.001 or 10.011

or

10.021B and 10.021C

12.100

Choose 4 Level I units from Table 1 or Table 2 for program 1201

Year 2

12.200

Choose 2 units from:

12.201, 12.202, 12.204, 12.205

1 General Studies elective

Choose 5 units from Table 1

1270 Psychology/Anatomy

Year 1

2.121 & 2.131, or 2.141

10.001 or 10.011

or

10.021B and 10.021C

12.100

17.031, 17.041

Year 2

12.200, 12.201, 12.202

70.011A, 70.011C

73.121 or 73.111

1 General Studies elective

Choose 3** 70.011B or 70.012B or 70.304 or choose 1 unit from Table 1

Year 3

70.012C, 70.306, 70.307

1 General Studies elective

Choose at least 4 Psychology Level III units†, or

Choose 4** Psychology Level III units and 70.011B or 70.012B or 70.304 or 70.305

Year 4

12.403 or 12.404 or 70.013

*In Year 1, students must enrol in program 6601. Enrolment in Year 2 of program 1270 is based on academic performance in Year 1.

††See footnote to program 0101.

**Students taking Honours in Anatomy must have completed at least 4 Anatomy units at Level III. This requires one elective unit chosen from 70.011B, 70.012B, 70.304, or 70.305.

§Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.

†Students taking Honours in Psychology must have completed 8 Level III units of Psychology including 12.300, 12.305 and either 12.304 or 12.322 from Group A.

Additionally, students intending to take the research alternative in Psychology IV are required to include 12.301 from Group B.

7312 Psychology/Physiology

See 7312 Physiology/Psychology
1401
Commercial Information Systems with Computer Science

Year 1*
6.611
10.001 (or 10.011)
5 further units from Table 1 or Table 2 excluding 14.501 for program 1401 (strongly recommended is 10.081)

Year 2
6.621
6.641
14.501
14.511
14.602
14.603
10.331 (or 10.311 a)
1 General Studies elective††
Further units from Table 1 or Table 2 for 1401 to make 8 in all

Year 3
14.605
14.607
14.608
14.522
1 General Studies elective
3 further units, with at least one at Level III, from Table 1 or Table 2 for program 1401, or 14.611

*In Year 1 students must enrol in program 6806. Enrolment in Year 2 in program 1401 is based on academic performance in Year 1.
††See footnote to program 0101.

Geology

Geology is 'the science of the earth' and covers a broad range of topics that involve the sciences of physics, chemistry, biology and mathematics. Resource geology is the foundation on which much of mankind's well-being is now built. Thus geology has an applied, professional function as well as being a scientific discipline.

Program 2501 is a three-year program designed to prepare graduates for employment in some field of resource geology. The demands of industry are such that further training is desirable for a graduate geologist and suitable students may progress towards an honours degree by following a program identical to the one specified for fourth year in course 3000 in the Faculty of Applied Science. Training to meet this objective demands a thorough understanding of basic geological principles; accordingly, in the early part of the course students receive instruction in standard fundamental geological subjects. As the course progresses, increasing emphasis is placed on practical applications in engineering and environmental geology, mineral and energy exploration and development and mineral exploration techniques including geochemical and geophysical methods.

Program 2502 is designed for a single major in geology. Program 2503 prepares students in the fundamentals of geophysics, an essential aspect of modern resource exploration and development geology. Programs 0125, 0225, 1025 and 2543 provide opportunities to study the interrelationships between geology and physics, chemistry, mathematics, and the biological sciences, respectively. Programs 2703 and 2725 supply the link between the past and the present by associating geology with geography. Program 6225 affords the opportunity to study the historical, philosophical and sociological aspects of geology. Program 6833 is concerned with aspects of earth sciences, including geology, that concern the marine environment. Selected students who have completed these programs may read for an honours degree that includes geological studies.

Programs in geology are also offered in the combined Science/Civil Engineering course 3730, the Science Education Course 4080 and the combined Science/Law Course 4770.

2501
Geology
Double major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
Year 2
25.211, 25.221, 25.212, 25.223, 25.2261
1 General Studies elective††
Choose 3 units from Table 1

Year 3
25.3261, 25.3271, 25.333
1 General Studies elective

Year 4
25.410, 25.4101, 25.420
Choose 1 unit from:
25.412, 25.414, 25.415, 25.931
††See footnote to program 0101.

2502
Geology
Single major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120

Year 2
25.211, 25.221, 25.212, 25.223, 25.2261
1 General Studies elective††
Choose 3 units from Table 1

Year 3
25.311, 25.312
Choose two units from:
25.325
1 General Studies elective
Choose 4 units from Table 1

Year 4
25.434
††See footnote to program 0101.

2503
Geophysics

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
25.110, 25.120

Year 2
1.002, 1.012, 1.022, 1.032
10.2111, 10.2112, 10.331
25.5212, 25.223, 25.2261
1 General Studies elective††

Year 3
25.9311, 25.9312, 25.9313,
25.9314, 25.9321, 25.3162, 25.333
1 General Studies elective
Choose 4 units from Table 1 &/or Table 2 for program 2503,
selecting at least 2 units from:
1.042 and Level III Physics units

Year 4
25.434
††See footnote to program 0101.

2543
Geology with Botany & Zoology

Year 1
2.121 & 2.131
10.001 or 10.011 or
10.021B & 10.021C
17.031 & 17.041
25.110 & 25.120

Year 2
25.211, 25.221, 25.212
43.111
45.101, 45.201, 45.301
1 General Studies elective††
Choose 1 unit from:
17.012
43.112* (or 43.162*), 43.131

Year 3
25.311, 25.312, 25.324, 25.321 (or 25.325)
45.302
1 General Studies elective
Choose 2 units from 43.152, 43.162* (or 43.112*), 43.172,
45.112, 45.121, 45.402

Year 4
25.434
††See footnote to program 0101.
*These subjects are offered in alternate years; 43.112 requires the waiving of the co-requisite 43.101.

0125
Geology/Physics

See 0125 Physics/Geology
0225
Geology/Chemistry
See 0225 Chemistry/Geology

1025
Geology/Mathematics
See 1025 Mathematics/Geology

2725
Science Geography/Geology
See 2725 Geology/Science Geography

Geography

2701
Science Geography

Year 1
10.001 or 10.011
or
10.021B + 10.021C
27.111*
or
27.301* & 27.302*
Choose 4 Level I units from Table 1

Year 2
27.311*, 27.312*, 27.2813, 27.2814
1 General Studies elective††
Choose 4 units from Table 1 including not more than 2 Level I units

Year 3
1 General Studies elective
Choose 8 units from Table 1 including at least 4 Level III Geography units

Year 4
27.604

*Students who choose 27.111 instead of 27.301 and 27.302 in Year 1 should omit 27.301 and 27.311 from their program and complete 27.302 and 27.312 in Years 2 and 3 respectively.
††See footnote to program 0101.

2703
Science Geography with Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B + 10.021C
25.110, 25.120
27.111*
or
27.301* & 27.302*

Year 2
1.001
25.211, 25.221, 25.212
27.311*, 27.312*, 27.2813, 27.2814
1 General Studies elective††

Year 3
25.311, 25.312
27.183, 27.133
1 General Studies elective
Choose 3 units from:
Either
25.325 (or 25.314 or 25.324), 27.153, 27.143, 27.862
Year 4
27.604

*Students who choose 27.111 instead of 27.301 and 27.302 in Year 1 should omit 27.301 and 27.311 from their program and complete 27.302 and 27.312 in Years 2 and 3 respectively.
††See footnote to program 0101.

2725
Science Geography/Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
27.111
or
27.301* & 27.302*

Year 2
1.001
25.211, 25.221, 25.212, 25.223
27.311*, 27.2813, 27.2814
1 General Studies elective††

Year 3
27.183, 27.133, 27.312*
25.311, 25.312
Choose 2 units from:
1 General Studies elective
Choose 1 unit from:
27.153, 27.143, 27.862

Year 4
27.604 or 25.434

*Students who choose 27.111 instead of 27.301 and 27.302 in Year 1 should omit 27.301 and 27.311 from their program and complete 27.302 and 27.312 in Years 2 and 3 respectively.
††See footnote to program 0101.

2743
Science Geography/Botany

Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
27.111
or
27.301* & 27.302*
Choose 2 units from:
2.111, 2.121, 2.131, 2.141

Year 2
1.001
27.311*, 27.312*, 27.2813, 27.2814
43.101, 43.111
1 General Studies elective††
Choose 1 Level II unit from Table 1

Year 3
27.153, 27.143
43.112 or 43.162, 43.142
1 General Studies elective
Choose 3 units from:
27.183, 27.133
43.102, 43.152, 43.172

Year 4
27.604 or 43.103

*Students who choose 27.111 instead of 27.301 and 27.302 in Year 1 should omit 27.301 and 27.311 from their program and complete 27.302 and 27.312 in Years 2 and 3 respectively.
††See footnote to program 0101.
Biochemistry

Biochemistry means 'chemistry of life' and is a key subject in biological studies. Initially the approaches of chemistry were applied to biological systems but now Biochemistry has achieved its own techniques, approaches and body of knowledge and its ideas pervade the whole of biology. It, however, retains a molecular basis and is an ideal study for those interested in understanding and appreciating biological processes at the basic rather than descriptive level.

Study of Biochemistry begins at Level II (41.101 Biochemistry) building on a base of Level I Chemistry and Biology. The material in this double unit introduces the basic concepts of the subject, describes biological molecules, their reactivities and interconversions in cells and tissues. It is followed by the single unit 41.111 Biochemical Control that illustrates and amplifies the molecular control of cellular processes with particular emphasis on enzymes, hormones and nucleic acids.

At Level III further double units are offered at a more advanced level: 41.102A Biochemistry of Macromolecules; 41.102B Physiological Biochemistry; 41.102C Plant Biochemistry; 41.102E Molecular Biology of Higher Organisms.

Program 4101 Biochemistry leads to a single major in Biochemistry. The program contains provision for considerable choice of non-biochemical units. Frequently Biochemistry is studied with another discipline as co-major. These programs cater for students' interests and outline how to achieve a double major. Thus there are available Biochemistry courses co-majoring with Chemistry (0241), Biotechnology (4142), Botany (4143), Microbiology (4144), Zoology (4145), Science Policy Studies (4162), Anatomy (4170) and Physiology (4173). Program 4101 Biochemistry single major, could be used to take two minors, eg Chemistry and Microbiology or Chemistry and Botany, with Biochemistry.

In Year 4 the Honours course in Biochemistry (41.103) offers the opportunity for students to carry out a project and to receive training in research techniques.

4101
Biochemistry

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
42.101
44.101
1 General Studies elective††
Choose 1 unit from Table 1

Year 3
41.102A
42.102A, 42.102B
1 General Studies elective
Choose 4 units from Table 1 including at least 2 units from
41.102B, 41.102C and 41.102E; all should be at Level III if proceeding to Year IV

Year 4
41.103 or
42.103
††See footnote to program 0101.

0241
Biochemistry/Chemistry

See 0241 Chemistry/Biochemistry

4142
Biochemistry/Biotechnology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
42.101
44.101
1 General Studies elective††
Choose 1 unit from Table 1

Year 3
41.102A
42.102A, 42.102B
1 General Studies elective
Choose 4 units from Table 1 including at least 2 units from
41.102B, 41.102C and 41.102E; all should be at Level III if proceeding to Year IV

Year 4
41.103 or
42.103
††See footnote to program 0101.

4143
Biochemistry/Botany

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1.

Year 2
- 41.101, 41.111
- 44.101, 44.121
- 1 General Studies elective

Choose at least 2 units from:
- 43.101, 43.131, 17.012

Year 3
- 41.102A, 41.102C, 41.102E
- 43.122
- 1 General Studies elective

Year 4
- 41.103 or 43.103

††See footnote to program 0101.

4144
Biochemistry/Microbiology

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
- 10.021B & 10.021C
- 17.031, 17.041

Choose 2 Level I units from Table 1.

Year 2
- 2.002B
- 41.101, 41.111
- 44.101, 44.121
- 1 General Studies elective

Choose 1 unit from:
- 62.012, 62.022, 62.032

Year 3
- 41.102A
- 44.102, 44.112
- 1 General Studies elective

Choose either 41.102B or both 41.102C and 41.102E

Year 4
- 41.103 or 44.103

††See footnote to program 0101.

4162
Biochemistry and Science Policy Studies§

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
- 17.031, 17.041

Choose 2 Level I units from Table 1.

Year 2
- 2.002B
- 41.101, 41.111
- 45.101, 45.201, 45.301
- 1 General Studies elective

Choose 1 unit from:
- 2.002A, 2.002D, 2.042C
- 17.012
- 43.101

Year 3
- 41.102A, 41.102B
- 1 General Studies elective

Choose 4 Level III Zoology units from Table 1.

Year 4
- 41.103 or 45.103

††See footnote to program 0101.

§This program is intended for students wishing to major in Biochemistry and at the same time acquire an understanding of the social dimensions of science and the role of science in the economy. It also provides elements of a training in science policy studies, important for those wishing to engage in administration and policy-making in science and technology. Honours students may complete a thesis in either Biochemistry or an aspect of science policy.

††See this footnote to program 6200.
4170
Biochemistry/Anatomy†

Year 1*

2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041

Choose 2 Level I units from Table 1

Year 2

2.002B
41.101, 41.111
70.011A, 70.011C
1 General Studies elective††
73.121 or 73.111** or choose 1 or 2 units from:
2.002A, 2.002D, 2.042C, 70.011B

Year 3

41.102A, 41.102B
70.012B, 70.304
1 General Studies elective

Choose 2 units from:
70.011B, 70.305, 70.306, 70.307, 70.012C

Year 4

41.103 or 70.013

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 4170 is based on academic performance in Year 1.
**Entry to 73.111 requires the approval of the Head of the School of Physiology and Pharmacology.
†Owing to timetabling difficulties this program may take longer than minimum time to complete.
††See footnote to program 0101.

4173
Biochemistry/Physiology

Year 1

2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041

Choose 2 Level I units from Table 1

Year 2

2.002B
41.101, 41.111
73.111
1 General Studies elective††

Choose 2 units from Table 1

Year 3

41.102A, 41.102B
73.012
1 General Studies elective

Year 4

41.103 or 73.103

††See footnote to program 0101.

Biotechnology

Students wishing to undertake training in biotechnology may do so by combining such training with a major in microbiology (Program 4244), biochemistry (Program 4142), chemistry (Program 0242) or another discipline (Program 4201).

All four programs can be extended to a fourth (honours) year which comprises further formal training, as well as research, in biotechnology. Alternatively, students with no previous training in biotechnology may undertake the honours year provided they have completed the necessary background training in biochemistry and microbiology. In such cases, Level III biotechnology units constitute the formal component of the honours year.

4201
Biotechnology (General)

Year 1

2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041

Choose 2 Level I units from Table 1

Year 2

41.101
42.101
44.101

1 General Studies elective††

Choose 3 units from Table 1

Year 3

42.102A, 42.102B
1 General Studies elective

Choose 6 units from Table 1, at least two of which are Level III; all should be Level III if proceeding to Year IV

Year 4

42.103

††See footnote to program 0101.

0242
Biotechnology/Chemistry

See 0242 Chemistry/Biotechnology
4142
Biotechnology/Biochemistry
See 4142 Biochemistry/Biotechnology

4244
Biotechnology/Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
41.101
42.101
44.101, 44.121
1 General Studies elective
Choose 2 units from Table 1

Year 3
42.102A, 42.102B
44.102, 44.112
1 General Studies elective
Choose 2 units from Table 1; these should both be Level III if proceeding to Year IV

Year 4
42.103 or 44.103
††See footnote to program 0101.

Botany

4306
Botany with Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
43.111
45.101, 45.201, 45.301
1 General Studies elective††
Choose at least 2 of:
17.012 (or 27.111)
43.101, 43.131
Choose remaining units from Table 1

Year 3
1 General Studies elective
Choose at least 7 units from Table 1 including at least 4 Level III Botany units. Students wishing to enter the Honours program must complete 8 Level III units.

Year 4
43.103
††See footnote to program 0101.

4309
Botany

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
43.111
1 General Studies elective††
Choose at least 2 of:
17.012 (or 27.111)
43.101, 43.131
Choose other units from Table 1

Year 3
1 General Studies elective
Choose at least 7 units from Table 1 including at least 4 Level III Botany units. Students wishing to enter the Honours program must complete 8 Level III units.

Year 4
43.103
††See footnote to program 0101.
2543
Botany & Zoology/Geology
See 2543 Geology with Botany & Zoology

2743
Science Geography/Botany
See 2743 Botany/Geography

4143
Botany/Biochemistry
See 4143 Biochemistry/Botany

4344
Botany/Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
41.101
44.101, 44.121
t General Studies elective††
Choose at least 2 units from:
17.012
43.111, 43.101

Year 3
43.131, 43.102 &/or 43.132 &/or 43.192
44.102, 44.112
t General Studies elective
Choose other Level III units in Botany to complete a total of 7 Level III units. Students wishing to enter the Honours program must complete 8 Level III units.

Year 4
43.103 or 44.103
††See footnote to program 0101.

4345
Botany/Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
43.111 and 2 of 43.101, 43.131, 17.012
45.101, 45.201, 45.301
1 General Studies elective††
Choose either 41.101 or at least 2 Level II units from one of the following Schools: Chemistry, Physics, Geography, Geology, or Mathematics

Year 3
1 General Studies elective
Choose 8 Level III units, 4 from Botany and 4 from Zoology. Students wishing to enter the Honours program must complete 8 Level III units.

Year 4
43.103 or 45.103
††See footnote to program 0101.
Microbiology

The discipline of microbiology encompasses the scientific study of the smallest forms of life, namely bacteria, viruses, algae, fungi and protozoa. Microorganisms are probably best known as agents of disease in man, in other animals and in plants. Other microorganisms cause food spoilage, as well as serious deterioration in textiles and structural materials. Not all microorganisms are harmful. We depend on microorganisms for the recycling of organic wastes, for the maintenance of soil fertility, and for the production of foods, beverages, pharmaceuticals (especially antibiotics), and other industrially important materials.

All programs in microbiology require students to take basic courses in Chemistry, Mathematics and Biology in Year 1, as well as 41.101 Introductory Biochemistry in Year 2. Program 4401 includes the maximum number of units of microbiology whereas program 4404 gives a minimum program for a major in the subject with the maximum opportunity for choice of other subjects. Other single major (4402 and 4403) and double major (4144, 4244 and 4344) programs are available.

4402
Microbiology (Immunology)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101
44.101, 44.121
70.011A
1 General Studies elective
Choose 1 unit from Table 1

Year 3
41.102A
44.102, 44.112, 44.122
1 General Studies elective
Choose 1 unit from:
42.102, 44.122

Year 4
44.103
††See footnote to program 0101.

4403
Microbiology (Ecology)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101
44.101, 44.121
45.201
1 General Studies elective
Choose 1 unit from:
43.111, 43.131

Year 3
43.132, 43.142, 43.172
44.102, 44.112
45.112
1 General Studies elective

Year 4
44.103
††See footnote to program 0101.
Zoology

The study of zoology as such does not begin until the second year of the Science and Mathematics course, but is built on a foundation of the two biological units: Biology A and Biology B, supported by chemistry and mathematics. The three Level II units are Invertebrate Zoology, Vertebrate Zoology, and Biometry (ie statistical methods and their application to biology).

Zoology Level III units cover a wide range of topics: eg marine ecology, evolutionary theory, animal behaviour, ecological physiology, comparative physiology, vertebrate zoogeography and evolution, population and community ecology, and insects.

There are many programs leading to a major in zoology in the Science and Mathematics course. The individual programs are constructed either on a broad zoological base with some degree of specialization at Level III (eg 4502 Entomology, 4508 Zoology (Population Biology), 4514 Zoology (Fisheries and Wildlife Biology)), or constructed to give a useful combination of Zoology with some other discipline (eg 4509 Zoology with Mathematics, 4145 Zoology with Biochemistry, 4570 Zoology with Anatomy).

Students who are unsure of their area of specialization are advised to enrol in 4501 Zoology (General) as this is the most flexible of the Zoology programs.

A Level II, students usually take Biometry, Vertebrate Zoology and Invertebrate Zoology. Students are also required to study two Level II units of either Biochemistry or Chemistry, or Mathematics or Physics. Students whose interests are mainly biological are encouraged to make their choice Biochemistry. Other units are then chosen to make up a total of at least seven for the year. The areas from which these units are chosen will depend mainly on the student's interests and on the specific program being undertaken. Examples of some of the units which Zoology students often include in their programs are: General Ecology, Introductory Microbiology, Flowering Plants, Plant Physiology, Genetics, Control Mechanisms, Organic Chemistry, Analytical Chemistry, Physiology and Mathematics.

A major in zoology requires the study of at least four zoology units at Level III. Again the nature of these is determined by the program being followed. For instance, those who are interested in Physiology, would probably include Ecological Physiology, Comparative Physiology and Animal Behaviour among their units; those interested in Entomology would include Economic Zoology and those interested in Ecology might include Marine Ecology, Population and Community Ecology, Evolutionary Theory and Vertebrate Zoogeography and Evolution. Additional units may be chosen either from those offered by the School of Zoology or by other schools to make up the total of seven or eight units required by the regulations of the Science and Mathematics course. The above are only a few suggestions as to the choices that might be made.
For students who achieve above average results in their studies a fourth year (honours) is available. The honours year is made up of formal course work on Concepts in Biology and a research project.

4501
Zoology (General)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
45.101, 45.201, 45.301, 17.012
1 General Studies elective††
Choose 4 units from Table 1 including at least 2 Level II units from one of the following Schools: Biochemistry, Chemistry, Physics or Mathematics

Year 3
1 General Studies elective
Choose 3 units from 45.121, 45.122, 45.142, 45.402
Choose one more Level III Zoology unit
Choose at least 3 units from Table 1 which may include additional Zoology units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
††See footnote to program 0101.

4502
Entomology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
41.101
45.101
45.201, 45.301
1 General Studies elective††
Choose 3 Level II units from: Zoology, Botany, Microbiology or Mathematics

Year 3
45.402, 45.422
Choose 2 units from 45.121, 45.122, 45.142
1 General Studies elective
Choose 3 Level III units from: Zoology, Botany, Microbiology, Mathematics or 79.201
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
††See footnote to program 0101.

*A laboratory computing unit is preferred.

4508
Zoology (Population Biology)

Year 1
2.121 & 2.131, or 2.141
6.611
10.001 or 10.011
17.031, 17.041
Choose 1 unit from Table 1*

Year 2
6.621
17.012
43.101
45.301
45.101 or 10.331
1 General Studies elective††
Choose 3 units from:
10.031
43.111
44.101
45.201

Year 3
43.152
45.121, 45.122, 45.152, 45.302, 45.402
79.201
1 General Studies elective
Choose 1 unit from:
6.646
10.032
43.102, 43.172
45.112
79.302
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
††See footnote to program 0101.

*A laboratory computing unit is preferred.
Zoology with Mathematics

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
10.111A, 10.1113 & 10.1114, 10.2111 & 10.2112
45.201, 45.301
1 General Studies elective††
Choose 3 units from Table 1 including at least 1 Level II Statistic unit

Year 3
1 General Studies elective
Choose 4 Level III Zoology units
Choose at least 3 Level III Mathematics units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
††See footnote to program 0101.

Zoology & Botany/Geology
See 2543 Geology with Botany & Zoology

Zoology (Fisheries and Wildlife Biology)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
17.012
43.101
45.101
45.201, 45.301
1 General Studies elective††
Choose 3 units from Table 1, including at least 2 Level II units from one of the following Schools: Biochemistry, Chemistry, Physics or Mathematics

Year 3
Choose at least 4 units from:
45.112, 45.121, 45.152, 45.302, 45.422
1 General Studies elective
Choose at least 2 units from:
43.152, 43.172, 45.122, 45.132, 45.402 to make a total of at least 7 Level III units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103
††See footnote to program 0101.

4543 Entomology and Plant Pathology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
41.101
43.101, 43.131
44.101
45.101
45.201, 45.301
1 General Studies elective††

Year 3
43.132, 45.402, 45.422
1 General Studies elective
Choose 2 units from 45.121, 45.122, 45.142
Choose 3 Level III Zoology or Botany units
Students wishing to enter the Honours program must complete 8 Level III units

Year 4
45.103 or 43.103
††See footnote to program 0101.

4145 Zoology/Biochemistry
See 4145 Biochemistry/Zoology

4561 Zoology with Computer Science*

Year 1
1.001 or 1.011
10.001 or 10.011
6.611
17.031 and 17.041
68.451
History and Philosophy of Science

Students may take courses within the School of History and Philosophy of Science leading to the award of pass or honours degrees in History and Philosophy of Science. There are also programs leading to joint majors in HPS with Physics, Geology, Botany, Zoology or Anatomy, and students in such programs may proceed to honours level in either HPS or the relevant science subject. In addition, there are programs (0162, 0262, 4162) in which students may combine courses in Science Policy Studies with science subjects.

Courses in HPS are quite different from ordinary science subjects. They involve thinking about science, from historical, philosophical and sociological perspectives. They consider the historical development of the various sciences, but not merely as the series of intellectual steps leading to the present state of scientific knowledge. Rather, the history of science is seen in relation to cultural history and to forces of social change, and to the parallel development of philosophical thought.

Philosophical problems engendered by science are also discussed, and considerable attention is given to the social structure of science and the ways in which science and technology fit into modern society, both in industrial and developing countries.

The programs where emphasis is laid on science policy issues are intended for students wishing to qualify themselves as science policy advisers. Training is provided therefore in both science, social studies of science, and science policy theory and practice.

Broadly speaking, students wishing to make their careers in areas related to HPS or Science Policy Studies (for example, museum work, science journalism, tertiary teaching, government administration, etc) will need to pursue their studies at graduate level, but there are some career opportunities for those who have bachelor degrees only.

Some students may wish to take a small number of HPS subjects, where their programs allow sufficient flexibility, as complements to their usual experimentally-based science subjects.

The School of History and Philosophy of Science offers a course-work program leading to the degree of Master of Science and Society, and research degrees at the Master and Doctoral level may also be undertaken. Interested students should enquire at the School.

4570
Zoology/Anatomy

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
45.101, 45.301
70.011A, 70.011C
1 General Studies elective††
Choose 3 units from Table 1 or Table 2 for program 4570, including 2 units from one of the following Schools: Biochemistry, Chemistry, Mathematics or Physics

Year 3
70.021B
1 General Studies elective
Choose 4 units from:
70.011B, 70.012C, 70.304, 70.305, 70.306, 70.307
Choose 4 Level III Zoology units from Table 1

Year 4
45.103 or
70.013

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 4570 is based on academic performance in Year 1.
††See footnote to program 0161.

7345
Physiology/Zoology

See 7345 Zoology/Physiology
6200**
History and Philosophy of Science

Year 1
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose at least 6 Level I units from Table 1

Year 2
62.012, 62.022, 62.032†
1 General Studies elective**††
Choose at least 4 units from Table 1

Year 3
1 General Studies elective*
Choose 8 units from Table 1 including 4 units from:
History and Philosophy of Science units
52.218, or 52.2030 and 52.2031

Year 4
62.014

**Students wishing to undertake a co-major in History and Philosophy of Science and Chemistry may do so by enrolling in program 6200 and choosing appropriate Chemistry units from Table 1.
††62.552 should be substituted for 62.032, which is not available this year. The prerequisite for 62.552 is waived for this year.
††See footnote to program 0101.

6201
History and Philosophy of Science/Physics

Year 1
1.001 or 1.011
10.001 or 10.011
2.121 & 2.131, or 2.141
Choose 2 Level I units from:
5.010, 5.030
17.031, 17.041
25.110, 25.120

Year 2
1.002, 1.012, 1.022, 1.032
10.2111 and 10.2112
1 General Studies elective**††
62.012, 62.032†, and 1 additional HPS unit from Table 1**

Year 3
1.0133, 1.0143, 1.023, 1.0333, 1.0343, 1.043
1 General Studies elective*
Choose 3 HPS units from Table 1**
or
Choose 2 HPS units from Table 1 and 10.1113 and 10.1114

†See footnote to program 6200
††See footnote to program 0101.

6225
History and Philosophy of Science/Geology

Year 1
1.001 (or 1.011) or 17.031 & 17.041
2.121 & 2.131, or 2.141
10.001 (or 10.011) or 10.021B & 10.021C
25.110, 25.120

Year 2
25.211, 25.221, 25.212
62.012, 62.032†, 62.103
1 General Studies elective*††
Choose 2 units from Table 1

Year 3
1 General Studies elective
25.311, 25.312, 25.314 (or 25.324 or 25.325)
Choose either 4 HPS units from Table 1
or
3 HPS units from Table 1 and one of 25.314, 25.324 or 25.325
(others than that already chosen)

Year 4
62.014

†See footnote to program 6200
††See footnote to program 0101.

6243
History and Philosophy of Science/Botany

Year 1
2.121 & 2.131, or 2.141
10.001 (or 10.011) or 10.021B and 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1
Year 2
43.101, 43.111
62.012, 62.032†, 62.104 and one additional unit from Table 1
1 General Studies elective**††
Choose 2 units from Table 1

Year 3
Choose 4 Botany Level III units from Table 1
Choose 4 HPS units from Table 1
1 General Studies elective

Year 4
Either
62.014
or 43.103
†See footnote to program 6200.
††See footnote to program 0101.

6245
History and Philosophy of Science/Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 (or 10.011) or 10.021B and 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
45.101, 45.201 (or 45.402), 45.301, 43.101
62.012, 62.032†
62.106 or 62.109 or 62.104
1 General Studies elective**††

Year 3
45.121, 45.302, 45.422
Choose 1 Level III Zoology unit from Table 1
Choose 4 HPS units from Table 1
1 General Studies elective*

Year 4
Either
62.014
or
43.103
†See footnote to program 6200.
††See footnote to program 0101.

0262
Science Policy Studies and Chemistry
See 0262 Chemistry and Science Policy Studies

4162
Science Policy Studies and Biochemistry
See 4162 Biochemistry and Science Policy Studies

0162
Science Policy Studies and Physics
See 0162 Physics and Science Policy Studies

6270
History and Philosophy of Science/Anatomy

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041

Year 2
62.012, 62.032†, and either 62.104 or 62.106** or 62.109**
70.011A, 70.011B, 70.011C
1 General Studies elective***††
Choose 1 unit from Table 1

Year 3
70.021B
1 General Studies elective***
Choose 4 History and Philosophy of Science units from Table 1
Choose 3 units from:
70.012, 70.304, 70.305, 70.306, 70.307

Year 4
Either
62.014
or
70.013

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 6270 is based on academic performance in Year 1.
†See footnote to program 6200.
"62.106 or 62.109 must be taken in Year 3 unless completed in Year 2.
Board of Studies in Science and Mathematics

6801
For Anatomy Programs

Year 1
10.001 or 10.011
or
10.021B and 10.021C
Choose 6 appropriate Level I units from Table 1

Enrolment in Year 2 of programs 1270, 4170, 4173, 4570, 6270, 7001, 7002, 7003, 7073, 7301, 7302, 7303, 7312, 7345 is based on academic performance in Year 1. Students should select the units specified in the program they wish to pursue in Year 2.

Students may obtain advice from the Office of the Board of Studies in Science and Mathematics in the Mathews Building.

6806
For Computer Science Programs

Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 6806**

**In Year 1 students must enrol in program 6806. Enrolment in Year 2 of program 6801, 6810, 6611 and 1401 is based on academic performance in Year 1. Students may obtain advice from the office of the Board of Studies in Science and Mathematics in the Mathews Building.

Marine Science

The Marine Science programs are designed to provide opportunities for students to specialize in selected areas of marine science, yet ensure that they receive an adequate exposure to other pertinent disciplines within this broad field. The programs have been constructed from subjects currently available in the faculties of Science, Biological Sciences and Applied Science. Introductory Marine Science is a subject common to all these programs, and unique to them, having been designed for and offered only in Marine Science Programs.

All students in the Marine Science programs must select one major sequence from the following options: 6831 Physical Oceanography, 6832 Biological Oceanography, 6833 Earth Science Oceanography and 6834 Environmental Chemistry. In addition, all students must select two minor sequences from the Physical, Biological, Earth Science, and Chemical minor sequences offered. A minor sequence in the same area as that selected for the major sequence is excluded.

Physical Oceanography includes units of basic and advanced Mathematics and Physics, as well as units in 10.412A Dynamical and Physical Oceanography and 10.4112 Hydrodynamics.

Biological Oceanography includes basic Mathematics, Chemistry and Biology as well as advanced courses in 43.111 Flowering Plants, 45.201 Invertebrate Zoology, 43.172 Phycology and Marine Botany, 45.112 Marine Ecology and 44.101 Introductory Microbiology. Further options include 17.012 General Ecology, 10.331 Statistics and 41.101 Biochemistry.

Environmental Chemistry includes basic chemistry and mathematics, and 2.002A Physical Chemistry, 2.002D Analytical Chemistry, 2.043A Environmental Chemistry and 2.003D Instrumental Analysis.

All programs offer some optional units to allow students a degree of freedom of choice of subjects. A fourth (Honours) year in Marine Science is available in all programs.

Mathematics/Marine Science

Mathematics/Marine Science Honours

See 6831 Marine Science (Physical Oceanography) and attached note relating to dual major with Mathematics.
6831
Marine Science (Physical Oceanography)

Year 1
1.001 or 1.011
10.001 or 10.011
1.041 or 6.611
Choose 2 units from one of the groups 1., 2., 3.
1. 2.121 & 2.131, or 2.141
2. 17.031, 17.041
3. 25.110, 25.120
Choose 10.081 or one extra unit from groups 1., 2. or 3.

Year 2
68.302
25.621, 25.622
1 General Studies elective
Choose at least 4 units from Table 1 including the units required from one of the groups
1., 2. and 3. chosen in Year 1:
1. 1.002A
2. At least one unit from 17.012 or 45.152 or 43.111
3. 25.621

Year 3
68.313
10.412D or 10.422D
1 General Studies elective
Choose at least 5 units from Table 1, at least 2 of which are Level III which may include subjects related to units from the
groups 1. and 2., chosen in Year 1:
1. 68.313, 10.032
2. 25.632

Year 4
68.304
*A total of at least 23 units must be completed in Years 1-3 in this program.
††See footnote to program 0101.

6832
Marine Science (Biological Oceanography)

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
10.021B & 10.021C
17.031, 17.041
Choose 2 units from group 1. or 2.
1. 1.001 or 1.011 or 1.021
2. 25.110, 25.120

Year 2
2.002A
43.111
44.101
45.201 or 41.101
68.302
1 General Studies elective
Choose at least 1 unit from:
17.012, 41.101, 44.121, 45.101, 45.201, 45.301
*Choose 1 unit from units related to units of groups 1. and 2. chosen in Year 1:
1. 10.031 or 10.331 or 10.301
2. 25.622

Year 3
43.172
45.112
1 General Studies elective
*Choose at least 5 units from Table 1, at least 2 of which are Level III which may include subjects related to units from the
groups 1. and 2. chosen in Year 1:
1. 68.313, 10.032
2. 25.632

Year 4
68.304

*Prerequisite for Year 4 in this program.
Note: Students may fulfill requirements of a Marine Science Mathematics program by completing 10 mathematics units in the above program.
††See footnote to program 0101.

6833
Marine Science (Earth Science Oceanography)

Year 1
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
Choose 4 units from 2 of the groups 1., 2. and 3.
1. 1.001 or 1.011 or 1.021
2. 17.031, 17.041
3. 2.121 & 2.131, or 2.141

Year 2
68.302
25.621, 25.622
1 General Studies elective
Choose at least 4 units from Table 1 including the units required from 2 of the groups 1., 2. and 3. chosen in Year 1:
1. 10.031 or 10.331 or 10.301
2. At least 1 unit from:
17.012
43.111
45.201
3. 2.002A

For Year 3, Year 4 and footnotes, see overleaf
Genetics

The Genetics program is designed to provide students with a firm foundation of genetical knowledge and also give them experience in pertinent related areas.

Because the subject matter of Genetics ranges from the structure of viruses to the co-evolution of populations, students are encouraged to choose between three sequences: molecular and microbial, population and ecological, and classical and organismal. The three groups in second year correspond to these sequences; the combination of subjects chosen then will determine the choices available in Year 3.

The choice of Year 1 subjects available include Physics, Psychology, Geography, and units in the laboratory applications of computers. Experience with laboratory computers is an asset in many areas of genetics.

Entry into a fourth (Honours) year is available, for above-average students, upon application to the Genetics Program Committee.

6840 Genetics

Year 1

2.121 & 2.131, or 2.141
10.001 or 10.011

Choose 2 Level I units from Table 1 (68.451 is strongly recommended as one of these units)

Year 2

41.101
43.101*
44.101

1 General Studies elective††

Choose 1 unit from:
43.111
43.131
44.121
45.201
45.301
45.402

Choose 1 unit from:
10.331
45.101

Choose 2 units from one of the groups 1., 2, or 3.

Year 3

2.002B
41.111
2.6.611
17.012
68.601

3. 43.111 or 43.131
45.201 or 45.402
45.301 or 9.801
62.104
68.601

††See footnote to program 0101.

6834 Marine Science (Environmental Chemistry)

Year 1

2.121 & 2.131, or 2.141
10.001 or 10.011

Choose 4 units from 2 of the groups 1., 2. and 3.
1. 1.001 or 1.011
2. 17.031, 17.041
3. 25.110, 25.120

Year 2

68.302
2.002A, 2.002D

1 General Studies elective††

Choose at least 4 units from Table 1 including the units required from 2 of the groups 1., 2. and 3, chosen in Year 1:
1. 10.031 or 10.331
2. At least 1 unit from:
17.012
43.111
45.201
3. 25.622

Year 3

2.043A, 2.003D

1 General Studies elective

Choose 6 units including at least 2 at Level III which may include units required from 2 of the groups 1., 2. and 3, chosen in Year 1:
1. 68.313, 10.032
2. 43.172
45.112
3. None

Year 4

68.304

††See footnote to program 0101.
Year 3
1 General Studies elective
Choose 8 units from:
6.621, 6.646
9.802, 9.811
41.102A, 41.102E
42.102A
43.102, 43.112
44.102, 44.122
45.121
68.602
79.201, 79.202, 79.302

Year 4
68.404
†Choosing 10.001 or 10.011 gives a wider choice of subjects in later years.
††See footnote to program 0101.
*Students who complete the subject 43.101 in Year 1 of the program should choose a replacement in Year 2.

6870
Hydrographic Studies

Year 1
1.001
2.121 and 2.131
10.001 or 10.011
25.601 (25.110 and 25.120 for Kensington students)

Year 2
10.031
25.621 and 25.622
29.001, 29.002, 29.191
Choose 2 appropriate units from the School of Geography
1 Level II unit from Table 1**
1 General Studies elective††

Year 3
10.331
25.631, 25.632, 25.6341, 25.6342, 25.635 or an appropriate unit from the School of Applied Geology
68.313
2 Level II or Level III units from Table 1
1 General Studies elective

††See footnote to program 0101.
**Students who have not taken 25.601 are strongly recommended to take 68.302 from Table 2.

Chemical Physics

Note: The Chemical Physics programs are not available to new enrollees after 1983.

The development of modern chemistry and physics has been such that there is no clearly defined boundary between the two subjects and problems in one area frequently require a thorough knowledge of the other. To cater for this situation, a set of programs in the subject area of Chemical Physics has been included in the Science and Mathematics Course 3970. These programs enable specialization in experimental and theoretical aspects of such topics as: structure and properties of materials, atoms and molecules; quantum theory and statistical mechanics; spectroscopic techniques; lasers and their applications in physics and chemistry; physical processes at interfaces (solid/gas, liquid/gas, and solid/liquid).

The programs also incorporate a solid background of mathematics to support the theoretical component of the programs.

There are three programs:

• 6851 Chemical Physics (Chemistry/Physics)
• 6852 Chemical Physics (Chemistry/Mathematics)
• 6853 Chemical Physics (Physics/Mathematics)

After a common first year, the three programs diverge in Year 2 to enable emphasis on subjects from two of the three contributing Schools (Physics, Chemistry, and Mathematics). Units 1.012, 1.022, 2.002, 10.111A/10.121A, 10.211/10.221, and 10.2112/10.2212 form a core for all programs in Year 2. In Year 3, a core of four subjects (1.023, 2.023A, 2.063A, 68.503) is presented together with 3 or more Level III units offered by the three contributing Schools. The programs lead directly to a fourth (honours) year of study and research which may be taken in either of the Schools of Physics or Chemistry.

6851
Chemical Physics (Chemistry/Physics)

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level 1 units from Table 1

For Year 2, Year 3, Year 4 and footnotes, see overleaf
6852
Chemical Physics (Chemistry/Mathematics)

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
1.012, 1.022
2.002B or 2.002D or 2.042C
2.002A, 2.013A
10.111A or 10.121A
10.2111 and 10.2112
or
10.2211 and 10.2212
1 General Studies elective††

Year 3
1.023
2.023A, 2.063A
68.503
1 General Studies elective
Choose at least 3 Level III units, offered by Schools of Physics, Chemistry and Mathematics, from Table 1*

Year 4
68.504
††See footnote to program 0101.
*See footnote to program 6851.

6853
Chemical Physics (Physics/Mathematics)

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
Choose 2 Level I units from Table 1

Year 2
1.012, 1.022, 1.032
2.002A, 2.013A
10.111A or 10.121A,
10.1113 and 10.1114,
or
10.1213 and 10.1214,
10.2111 and 10.2112,
or
10.2211 and 10.2212
1 General Studies elective††

Year 3
1.023
2.023A, 2.063A
68.503
1 General Studies elective
Choose at least 3 Level III units, offered by Schools of Physics, Chemistry and Mathematics from Table 1*

Year 4
68.504
††See footnote to program 0101.
*See footnote to program 6851.
Anatomy

There are 8 Anatomy programs: double major in Anatomy (7001), single majors in Anatomy (7002, 7003), and double majors with Psychology (1270), Biochemistry (4170), Zoology (4570), History and Philosophy of Science (6270) and Physiology (7073).

Entry to Anatomy programs is limited to a quota of approximately 80. Students in Year 1 should enrol in Program 6801, and apply in October for entry to Anatomy the following year. Selection is based on academic merit. Allowance is made for the relative difficulty of first year units in Mathematics and Physics. Part-time students are advised to seek advice from the School.

Students should note that the Cumberland College of Health Sciences no longer offers a diploma course in either Physiotherapy or Occupational Therapy for students graduating with an Anatomy major. The College may, however, offer some exemptions to students entering the College with an Anatomy major. Students should seek advice from the School or the College for details. To gain maximum exemptions students should enrol in 7002, choosing options as required by the Chiropractic College.

All Anatomy units are in Table 2, and in Course 3970 are unavailable outside Anatomy programs, except for students who:

- are enrolled in programs 4402 (Immunology) or 6840 (Genetics) who may take 70.011A and either 70.304 or 70.3041; or
- obtain special permission.

Students studying paramedical subjects (eg Biochemistry, Psychology, Physiology) and who wish to take one or more Anatomy units as options should consult the Head of School.

7001
Anatomy
Double major

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
70.011A, 70.011B, 70.011C
1 General Studies elective††
Choose at least 4 units from Table 1

Year 3
70.012B, 70.012C, 70.012D, 70.304, 70.305, 70.306, 70.307
1 General Studies elective
Choose at least 2 units from Table 1

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7001 is based on academic performance in Year 1.
††See footnote to program 0101.

7002
Anatomy
Single Major

Year 1*
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.041
Choose 4 Level I units from Table 1

Year 2
70.011A, 70.011C
1 General Studies elective††
Choose at least 5 units from Table 1 and/or Table 2†

Year 3
1 General Studies elective
Choose 8 units, including at least 4 units from:
70.011B, 70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307
and the remainder from Table 1

Year 4
70.013

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7002 is based on academic performance in Year 1.
††See footnote to program 0101.
†Table 2 Anatomy units only.

7003
Anatomy (Kinesiology)

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or 10.021B & 10.021C
17.031, 17.041
Choose 2 units from 1 of the groups 1 and 2.
1. 1.001, 1.021
2. 12.100

Year 2
70.011A, 70.011B, 70.011C
73.121 or 73.111†
1 General Studies elective††
Choose 1 unit from Table 1 (not Level I)
Choose 2 units from the appropriate group:
1. 1.001, 1.021
2. 12.100

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7003 is based on academic performance in Year 1.
††See footnote to program 0101.
†Table 2 Anatomy units only.

For Year 3, Year 4 and footnotes, see overleaf.
Program 7003 continued

Year 3
70.012B, 70.012C, 70.306, 70.307
1 General Studies elective
Choose at least 3 units from Level II or Level III Table 1, or 70.304, 70.305

Year 4
70.013

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7003 is based on academic performance in Year 1.
††See footnote to program 0101.

7073
Anatomy/Physiology

Year 1*
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
41.101
41.111
70.011A, 70.011C
73.111
1 General Studies elective††
Choose 70.011B, 70.012B, 70.304 or 1 unit from Table 1

Year 3
††73.012
1 General Studies elective
Choose 4 units from:
70.011B, 70.012B, 70.012C, 70.304, 70.305, 70.306, 70.307

Year 4
70.013 or 73.013

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 of program 7073 is based on academic performance in Year 1.
††See footnote to program 0101.

1270
Anatomy/Psychology

See 1270 Psychology/Anatomy

4170
Anatomy/Biochemistry

See 4170 Biochemistry/Anatomy

4570
Anatomy/Zoology

See 4570 Zoology/Anatomy

6270
Anatomy/History and Philosophy of Science

See 6270 History and Philosophy of Science/Anatomy
Physiology and Pharmacology

Physiology, the study of the processes and mechanisms which serve and control the various functions of the body, begins at the second year level with the full year subject Physiology IA (the core subject for students who intend to proceed to the study of Physiology at a higher level), or Physiology IB.

Prior to commencing these subjects, students are required to have satisfactorily completed Level I courses in Mathematics, Cell Biology and Chemistry, as a background in these subjects is considered essential to an understanding of how the body functions. In addition, Physiology IA students are normally required to enrol concurrently in the second year level, Session 1 subject, Biochemistry.

Physiology II is a major (third year level) subject in Physiology and in this subject various systems of the body are treated in considerable detail. Progression to this full year subject normally requires the satisfactory completion of Physiology IA (rather than IB), and of both of the Level 2 Biochemistry subjects. Physiology II provides the 4 units at third year level required for a degree with a single major in Physiology. Alternatively it may be undertaken concurrently with a Level 3 subject offered by other schools in allied disciplines, such as Chemistry, Psychology, Zoology, Biochemistry or Anatomy, to form a program leading to the award of a degree with a double major.

The School also offers the third year level subject Pharmacology, which includes a study of the uptake, distribution and excretion of drugs within the body, and of mechanisms by which drugs, and various endogenous chemicals, alter body function. This 2 unit subject is normally taken concurrently with Physiology II, or with Level 3 Biochemistry or Chemistry subjects. Pharmacology is also a full year subject.

Physiology II and Pharmacology are the most advanced undergraduate courses offered by the School which are conducted by way of formal lectures, tutorials and laboratory practical classes. Selected students who have satisfactorily completed one of these subjects may be permitted to enrol in a further year of study of either Physiology or Pharmacology which normally leads to their being awarded their degree with honours.

The honours year program, as presently conducted in this School, requires the student to complete a full year research project on a specific topic under the supervision of a member of staff, and to submit a thesis based on this work. The level of honours awarded is determined on the basis of the thesis, and on course work activities such as the preparation of literature reviews, and participation in seminar programs.

7301
Physiology
Single Major

<table>
<thead>
<tr>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121 & 2.131, or 2.141</td>
</tr>
<tr>
<td>10.001 or 10.011</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>10.021B & 10.021C</td>
</tr>
<tr>
<td>17.031, 17.041</td>
</tr>
<tr>
<td>Choose 2 Level I units from Table 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.101, 41.111</td>
</tr>
<tr>
<td>73.111</td>
</tr>
<tr>
<td>1 General Studies elective††</td>
</tr>
<tr>
<td>Choose 3 units from Table 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.012</td>
</tr>
<tr>
<td>1 General Studies elective</td>
</tr>
<tr>
<td>Choose 3-4 units from Table 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.013</td>
</tr>
</tbody>
</table>

††See footnote to program 0101.

7302
Physiology/Chemistry

<table>
<thead>
<tr>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121 & 2.131, or 2.141</td>
</tr>
<tr>
<td>1.001 or 1.011</td>
</tr>
<tr>
<td>10.001 or 10.011 or 10.021B & 10.021C</td>
</tr>
<tr>
<td>17.031, 17.041</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.111</td>
</tr>
<tr>
<td>2.002A, 2.002B, 2.042C or 2.002D</td>
</tr>
<tr>
<td>1 General Studies elective††</td>
</tr>
<tr>
<td>Choose either 41.101 & 41.111</td>
</tr>
<tr>
<td>or 2.003J & 10.2111 & 10.2112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.012</td>
</tr>
<tr>
<td>2.003A, 2.003B, 2.033A, 2.053A</td>
</tr>
<tr>
<td>1 General Studies elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.013 or</td>
</tr>
<tr>
<td>2.004</td>
</tr>
</tbody>
</table>

††See footnote to program 0101.
7303
Pharmacology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
73.111 or 73.121
1 General Studies elective††
Choose 6 units from Table 1

Year 3
73.022
1 General Studies elective
Choose 5 or 6 units from Table 1, including either
41.102A and 41.102B or
73.012

Year 4
73.023
††See footnote to program 0101.

7345
Physiology/Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
73.111
45.101, 45.201, 45.301
41.101, 41.111
1 General Studies elective††

Year 3
73.012
45.142, 45.132
1 General Studies elective
Choose 2 units from:
45.402, 45.121, 45.122

Year 4
73.013 or
45.103
††See footnote to program 0101.

4173
Physiology/Biochemistry

See 4173 Biochemistry/Physiology

7073
Physiology/Anatomy

See 7073 Anatomy/Physiology
3611
Combined Science/ Aeronautical Engineering Course

3661
Combined Science/ Industrial Engineering Course

3681
Combined Science/ Mechanical Engineering Course

3701
Combined Science/ Naval Architecture Course

These combined courses of five years full time study enable a student in the School of Mechanical and Industrial Engineering to qualify for the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc). The courses enable such combined degree students to major in the areas of computer science, materials science, mathematics, physics or statistics in addition to studying their chosen engineering specialty. The course is administered by the Faculty of Engineering.

All students who are accepted into the first year ‘science compatible’ course in the School of Mechanical and Industrial Engineering may enrol directly into these combined degree courses. Continued enrolment in Year 2 requires a pass at first attempt in all subjects of Year 1 and students who fail to achieve this will automatically be disenrolled from these courses and be enrolled in their respective engineering programs (3610, 3660, 3680 or 3700). Alternatively, students may transfer into Year 2 of these courses, provided they have obtained a clear pass in the Year 1 ‘science compatible’ course.

Normally, students enrolled in these BE BSc courses will be awarded their degrees at the conclusion of five years study. However, it is possible for students to take out the Science degree prior to the Engineering degree provided they have:

1. completed the requirements for Years 1, 2 and 3,
2. completed the General Studies requirements for the Science degree, and
3. obtained approval from the Board of Studies in Science and Mathematics.

Students may also undertake an additional honours year in Science and Mathematics and automatically re-enter the combined Science/Engineering course without having to re-apply for admission. To undertake such an honours year in Science and Mathematics, permission is to be obtained, at the end of Year 3, both from the Head of the School in which the honours year is to be undertaken and from the Head of the School of Mechanical and Industrial Engineering.

Students who commence the course and do not complete the Engineering component may take out a BSc degree on completion of one of the approved programs in the Science and Mathematics course. Similarly, students not wishing to complete the BSc degree course may revert to their respective Engineering programs (3610, 3660, 3680 or 3700) with appropriate credit for subjects satisfactorily completed.

Having completed the first three years as outlined below, students in Years 4 and 5 do Year 3 and Year 4 of their respective Engineering programs (3610, 3660, 3680 or 3700), except that significant repetition of subject material is not allowed. Instead, students are required to substitute either an appropriate Technical Elective or an appropriate Level II or III subject from Table 1 or Table 2, or in exceptional circumstances, some other equivalent subject with the permission of the School of Mechanical and Industrial Engineering. For more details of these combined courses, refer to the Faculty of Engineering Handbook.

Year 1

1.001 (or 1.011)
2.951 (or 2.121)
5.010, 5.020 (5.0201, plus 8.171, or 5.421), 5.030, 5.0303, 5.061, 5.072
10.001 (or 10.011)

Year 2

5.300, 5.422
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214)
10.2111 (or 10.2211), 10.2112 (or 10.2212)
18.020

Choose 4 2- Level II units from Table 1 or Table 2 for course 3681
Choose 5 Level II or III units from Table 1 or Table 2 for course 3681, of which at least 4 must be Level III
1 General Studies elective.

Years 4 and 5
Years 3 and 4 of respective Engineering programs 3610, 3660, 3680, 3700

Subject selections which satisfy the specific requirements for the various majors are summarized below. Provided co- and prerequisites are satisfied, there is scope for some subjects to be taken either in Year 2 or Year 3.

Computer Science Majors

Year 2
5.0201, 5.300, 5.422
6.621, 6.631, 6.641
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.331
18.020

Year 3
1.9222 and 1.9322 (recommended), or 1.032, or 2.002A
5.043, 5.122, 5.622
6.646 plus 3 Level III units from Table 2 offerings of School of Electrical Engineering and Computer Science for course 3681
1 General Studies elective.

Materials Science Majors

Year 2
2.002A
4.402, 4.502
5.300, 5.4221
18.020
and either
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
or
4.302, 4.602
10.022

Year 3
4.403, 4.703, 4.802
5.043, 5.122, 5.622
10.331
1 General Studies elective

Mathematics Majors

Year 2
Same Year 2 as for Computer Science or Materials Science (3 units of Level II mathematics option) or Physics or Statistics majors
or
1.9222 and 1.9322 (recommended), or 1.032 or 2.002A
5.300, 5.422

Physics Majors

Year 2
1.002, 1.012, 1.022, 1.032
5.300, 5.422
10.111A, (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
18.020

Year 3
1.0133, 1.023, 1.0333, 1.043
1 Level III unit from School of Physics offerings in Table 1
5.043, 5.122, 5.622
10.331
1 General Studies elective

Statistics Majors

Year 2
1.9222 and 1.9322 (recommended), or 1.032, or 2.002A
5.300, 5.422
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B)
18.020

Year 3
5.043, 5.122, 5.622
4 Level III units from Statistics offerings in Table 1
1 Level II or III unit from School of Mathematics or School of Physics offerings in Table 1
1 General Studies elective.
Notes
1. Students planning to take higher level Computer Science subjects should take 6.611 Computing I or 8.360 Computing instead of 5.0201 Engineering Dynamics IA in Year 1; they must then take 5.0201 prior to taking 5.300.

2. The following considerations pertain to the choice of optional units in Years 2 and 3:
 (1) The Level III units satisfy the relevant major requirements.
 (2) They should include no more than one unit from schools other than Chemistry, Electrical Engineering and Computer Science, Mathematics, Metallurgy, and Physics.
 (3) They should include 1.032 Laboratory, or 1.9222 Electronics plus 1.9322 Introduction to Solids; or 2.002A Physical Chemistry.
 (4) They should include 10.331 Statistics or 10.311B Basic Inference.
 (5) 4.502 Mechanical Metallurgy and 4.512 Mechanical Properties of Solids are deemed to have reduced unit values of 1 and 1/2 respectively.

3. Students are recommended to take 5.421 instead of 8.171.

4. Materials Science majors may substitute 10.022 Engineering Mathematics II and 2 Level II units from School of Metallurgy offerings in Table 1 or from Table 2 for course 3681.

5. If 4.402 Physical Metallurgy I or 4.422 Metallurgical Phases II is taken, students should take 5.4221 instead of 5.422.

6. Anticipated General Studies requirements correspond on whatever is required in Year 2 of the normal Mechanical and Industrial Engineering degree course.

8. Excluded for students in course 3661 who should substitute a Level III unit from Table 2 offerings of School of Electrical Engineering and Computer Science.

9. Students may substitute any other appropriate Level II or III offering(s) from the School of Metallurgy in Table 1 or from Table 2 for course 3681.

10. In special circumstances and with permission of the School of Mechanical and Industrial Engineering, students may substitute 4.813 Mathematical Methods for 10.331.

11. Under special circumstances, and with permission of the School of Physics, a student may substitute alternative Physics Level III offerings of equivalent unit value.

12. Substitute one Level II or III unit from School of Mathematics or School of Physics offerings in Table 1 if 10.311B or 10.321B was taken in Year 2.

13. Quota restrictions apply to certain Computer Science Level III units and application must be made in writing to the Head of the School of Electrical Engineering and Computer Science before the end of Session 2 in the preceding year. Prospective Computer Science majors should aim for a creditable academic attainment (65%) over Years 1 and 2.

14. Students are recommended to choose 2.951 unless they wish to pursue studies requiring 2.121. The prerequisite of 2.121 for 2.002A Physical Chemistry may be waived on application to the Head of the School of Chemistry.
3725
Combined Science/
Electrical Engineering Course

Students in Electrical Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Electrical Engineering and Computer Science and with the approval of the Faculty of Engineering and the Board of Studies in Science and Mathematics. Students wishing to enrol in, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisite study, sequencing and academic attainment (a creditable performance, ie 65%).

Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. Tertiary Education Assistance Scheme (TEAS) support is available for the five years of the combined degree programs.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However, the choice of subjects and the time taken to complete the program can be seriously affected by this. Thus, students considering course 3725 should contact the Electrical Engineering School before completing their Year 2 enrolment. Application for transfer to a combined course must be made in writing to the Head of School by 6 January 1984.

Having completed Years 1 and 2 of course 3640 students in their third year complete a specific course of study consisting of four Level 3 Science units chosen from related disciplines, the appropriate General Studies electives and no less than four other Level 2 or Level 3 units, and otherwise accord with the rules of course 3970 leading to a major in Computer Science, Mathematics or Physics.

Students wishing to gain a degree at honours level in Science as part of their combined degree program shall meet all the relevant requirements of the Board of Studies in Science and Mathematics and of the School concerned. Such students may enrol for the honours year only on the recommendation of the Head of the School of Electrical Engineering and Computer Science and with the approval of the Head of the appropriate Science School, the Faculty of Engineering and the Board of Studies in Science and Mathematics.

In Years 4 and 5 the students do Year 3 and Year 4 of course 3640. Depending on the program followed in their year of Science they may have already completed parts of the normal third and fourth year programs of the Electrical Engineering course, and they will be required to omit these from their program and to include an equivalent amount of other subjects chosen with the approval of the Head of the School.

Year 1
1.961
2.121
5.006
6.010
6.611
10.001
1 General Studies elective

Year 2†
1.972, 1.982
10.111A, 10.1113, 10.1114, 10.2111, 10.2112
1 General Studies elective
Year 3†

Either
Computer Science
1 General Studies elective
Choose at least 8 Level II or Level III units including at least 4 Computer Science units at Level III, the balance to be chosen from Level III Computer Science units and other Level II or Level III units in Table 1 or Table 2 for program 0601
or
Mathematics
1 General Studies elective
Choose at least 5 Mathematics units, 4 of which are Level III
Choose at least 3 Level II or Level III units from Table 1 or Table 2 for program 1001
or
Physics
1 General Studies elective
Choose 7 Level II or Level III units from Table 1 of which four must be Level III Physics units, chosen to include 1.0133, 1.0143, 1.023 and 1.0333

Year 4
From Electrical Engineering course, modified as required by Head of School

Year 5
From Electrical Engineering course

†Students intending to major in Computer Science should include 6.641 in their Year 2 enrolment. Students intending to major in Physics are required to take unit 1.992 in Year 2.

*For Year 3 refer to course 3970 and to this Handbook.
Programs in the Combined Science/Civil Engineering Course

For details of the combined Science/Civil Engineering Course refer to the Faculty of Engineering Handbook.

Physical Metallurgy and Chemistry

Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
2.002A, 2.042C
4.402, 4.512
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.022
1 General Studies elective†

Year 3
4.403, 4.703
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.362, 8.400,
8.571
10.381
29.441, 29.491
1 General Studies elective†

Year 4
2.003A, 2.003C, 2.013C
4.522
8.2731, 8.2732, 8.2733, 8.572, 8.581, 8.582, 8.671,
8.672
1 General Studies elective†

Year 5
1 Technical elective†
Choose 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.274, 8.401, 8.583, 8.673, 8.674,
8.051, 8.052, 8.053, 8.054

Note: All material not in italics typeface refers to the BE degree component of this combined course.

*Students are advised to attempt 1.981 Physics 1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt 1.001 Physics I or 1.011 Higher Physics I. On successful completion of one of these latter subjects together with 2.981 Chemistry 1CE students will be exempted from one technical elective.

**Students who have not satisfied the science prerequisite for 2.981 Chemistry 1CE (ie 2 or 4 unit Science including Physics or Chemistry or 4 unit Science (multistrand) at HSC Exam in the percentile range 31-100) are advised to apply to enrol in two acceptable alternatives subjects. 2.111 Introductory Chemistry and 2.121 Chemistry 1A.

†Students who have achieved a certain standard may attempt 10.011 Higher Mathematics 1.

The combined degree program requires completion of one technical elective, and three General Studies Electives (56 hours each). Students who have completed General Studied Electives on the old basis (42 hours) will be informed of their General Studies requirements by the School. The technical electives are listed after Stage 7 in Course 3620. The choice of the technical elective must be approved by the Head of the School of Civil Engineering.
Geography and Environmental Chemistry

Year 1
- 1.981*
- 2.981**
- 5.0102, 5.0201, 5.0301
- 8.170, 8.171, 8.271, 8.360, 8.670
- 10.001***

Year 2
- 2.002A, 2.002D, 2.042C
- 8.172, 8.1811, 8.1812, 8.2721, 8.2722
- 10.022
- 27.111

Year 3
- 2.043A
- 8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.362, 8.400, 8.571
- 10.381
- 27.172
- 29.441, 29.491

1 General Studies elective†

Year 4
- 8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
- 27.133, 27.1711, 27.1712

At least 2 units chosen from:
- 27.143, 27.183, 27.153, 27.862, 27.863

2 General Studies electives†

Mathematics

Year 1
- 1.981*
- 2.981**
- 5.0102, 5.0201, 5.0301
- 8.170, 8.171, 8.271, 8.360, 8.670
- 10.001***

Year 2
- 8.172, 8.1811, 8.1812, 8.2721, 8.2722
- 10.111A or 10.121A,
- 10.111B or 10.121B

Note: All material not in italic typeface refers to the BE degree component of this combined course.

Year 3
- 8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.362, 8.400, 8.571
- 10.111A*, 10.381
- 29.441, 29.491

1 General Studies elective†

Year 4
- 1.0333
- 8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672

1 General Studies elective†

Choose 2 Level II or Level III Mathematics units from Table 1
Choose 1 unit from:
- 1.133, 1.3233, 1.0533, 1.0133, 1.0143

Year 5
- 8.001, 8.191, 8.2741, 8.2742, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054, 8.401

1 Technical elective†

Choose 1 or 2 units from Table 1 at Level II or higher

Note: All material not in italic typeface refers to the BE degree component of this combined course.

*See footnote Physical Metallurgy and Chemistry above.

Physics with Mathematics

Year 1
- 1.001 or 1.011
- 2.981**
- 5.0102, 5.0201, 5.0301
- 8.170, 8.171, 8.271, 8.360, 8.670
- 10.001***

Year 2
- 1.012, 1.022, 1.032
- 8.172, 8.1811, 8.1812, 8.2721, 8.2722
- 10.1113, 10.1114*, 10.2111*, 10.2112*

2 General Studies electives†

Year 3
- 1.002, 1.023, 1.043
- 8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.362, 8.400, 8.571
- 10.111A*, 10.381
- 29.441, 29.491

1 Technical elective†

Choose 2 units from Table 1 of the Combined Sciences Handbook at Level II or higher

Note: All material not in italic typeface refers to the BE degree component of the combined course.

*See footnote Physical Metallurgy and Chemistry above.

For Year 4, Year 5 and footnotes, see overleaf
Year 4
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
1 General Studies elective‡
Choose 3 Level III (not Level IIIII) Mathematics units from Table 1 in the Combined Sciences Handbook

Year 5
8.001, 8.191, 8.2741, 8.2742, 8.401, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054
1 Technical elective†
Choose 1 or 2 units from Tables 1 or 3 in the Combined Sciences Handbook at Level II or higher

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.
‡‡‡ Already taken. 10.2114 or 10.2214 are acceptable in place of 10.2115 or 10.2215 respectively.

Computing with some Mathematics
Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
6.621, 6.631, 6.641
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214
2 General Studies electives†

Year 3
6.642, 6.643
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.362, 8.400, 8.571
10.381
10.2111 or 10.2211,
10.2112 or 10.2212
29.441, 29.491
Choose 1 Level II or Level III Mathematics unit from Table 1 in the Combined Sciences Handbook

Year 4
6.646, 6.647
One of 6.613, 6.632, 6.633
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
1 General Studies elective†
Choose 1 Level II or Level III Mathematics unit from Table 1 in the Combined Sciences Handbook

Year 5
1 Technical elective†
Choose 1 or 2 units from Table 1 in the Combined Sciences Handbook at Level II or higher
8.001, 8.191, 8.2741, 8.2742, 8.401, 8.583, 8.673, 8.674, 8.051, 8.052, 8.053, 8.054
Note: All material not in italic typeface refers to the BE degree component of this combined degree course.
‡‡‡‡ See footnotes Physical Metallurgy and Chemistry above.

Geology with some Mathematics
Year 1
1.981*
2.981**
5.0102, 5.0201, 5.0301
8.170, 8.171, 8.271, 8.360, 8.670
10.001***

Year 2
8.172, 8.1811, 8.1812, 8.2721, 8.2722
10.111A or 10.121A,
10.1113 or 10.1213,
10.1114 or 10.1214
2 General Studies electives†

Year 3
2.042C
8.173, 8.174, 8.1821, 8.1822, 8.311, 8.312, 8.362, 8.400, 8.571
10.381
25.110, 25.120
29.441, 29.491
1 General Studies elective†

Year 4
8.2731, 8.2732, 8.2733, 8.572, 8.573, 8.581, 8.582, 8.671, 8.672
Choose four units from the following:

Note: All material not in italic typeface refers to the BE degree component of this combined degree course.
††† See footnotes Physical Metallurgy and Chemistry above.
A limited number of places (up to 8) are available in this course, and these are open only to students who have been accepted into the Faculty of Medicine.

For further details refer to the Faculty of Medicine Handbook. Below are programs for Years 1, 2 and 3 and the optional honours Year only; subsequent years (3, 4 and 5 of the Medical Course) are detailed in the Faculty of Medicine Handbook. Students must major in either Anatomy, Biochemistry, Physiology, Psychology, or any two of these, as well as satisfactorily completing a core course. Students majoring in Biochemistry must decide accordingly before enrolment in Year 2; other majors can be decided before enrolment in Year 3. Subjects chosen each year must be approved by the Course Controller prior to enrolment.

Year 1

- **1.001 or 1.011**
- **2.121 & 2.131 or 2.141**
- **10.001 or 10.011 or 10.021B & 10.021C**
- **17.031, 17.041**
- **1 General Studies elective**

Year 2

| 41.101 |
| 41.111* |
| 70.011A, 70.011C |
| 73.111 |
| 80.014** |
| 1 General Studies elective†† |

Year 3

There are 10 options, as set forth immediately below. The columns represent the primary choice (major in Anatomy, Biochemistry or Physiology); the rows represent the secondary choices (single or double major). Elective units may be selected from Table 1 and/or from the Anatomy units in Table 2.

<table>
<thead>
<tr>
<th>Core Units</th>
<th>Anatomy Major</th>
<th>Biochemistry Major</th>
<th>Physiology Major</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Studies elective</td>
<td>General Studies elective</td>
<td>General Studies elective</td>
</tr>
<tr>
<td>80.014**</td>
<td>4 Level III Anatomy unit†† together with: 2 Level III Anatomy unit†</td>
<td>41.102A</td>
<td>73.012</td>
</tr>
<tr>
<td></td>
<td>together with: 2 Level III Anatomy unit†</td>
<td>41.102B</td>
<td>73.012</td>
</tr>
<tr>
<td></td>
<td>together with: 2 Level III Anatomy unit†</td>
<td>73.012F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Elective units</td>
<td>1 Elective unit</td>
<td>2 Elective units</td>
</tr>
<tr>
<td>73.012F</td>
<td>4 Level III Anatomy unit† (makes total of 7)</td>
<td>4 Level III Anatomy unit†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Level III Anatomy unit†</td>
<td>73.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Level III with Anatomy</td>
<td>73.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.102A (double major not available)</td>
<td>41.102A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.102B (not available)</td>
<td>41.102B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73.012 (double major not available)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 4

Students may join Year 3 of the Medical Course, or apply to take Honours and proceed to the Medical Course the following year. For honours courses, see Table 3.

*Students majoring in Biochemistry should take 2.002B Organic Chemistry instead of 41.111 Biochemical Control. For students majoring in Biochemistry, 2.002B is accepted in lieu of 41.111 as a prerequisite for 73.012 Physiology II.

**80.014 Human Behaviour is offered in even numbered years only and is taken in either Years 2 or 3.

††Enrolment in General Studies may be deferred until later years but two electives must be satisfactorily completed for a BSc degree and three electives for the MB BS degrees. Students are strongly advised to complete these requirements during the first three years, before entering the Medical Course, otherwise there will be timetabling difficulties.

Note: Students not majoring in Anatomy commonly take an additional Anatomy unit in Session 2. This may be either 70.012B, 70.011A, or 70.304 (listed in approximate order of likely usefulness).
4070 Mathematics Education Course
4080 Science Education Course

The Mathematics Education Course is a concurrent course leading to the award of the qualifications BSc DipEd and is designed primarily to prepare students for entry into the teaching profession as teachers of mathematics in secondary schools.

An important feature of the course is that students take education subjects along with mathematics subjects in second, third and fourth years. The Mathematics component is based on programs offered in the Science and Mathematics course. Students may proceed to honours level in either mathematics or in education.

Objectives of the Course

The objectives of the Mathematics components broadly aim: to develop a comprehensive knowledge and interest in mathematical techniques and problem solving, to develop an ability to reason mathematically and to present mathematical reasoning clearly and persuasively, and to ensure the student's understanding of the applications of mathematics.

Objectives related to the education component seek: to develop skills in teaching mathematics, to provide an understanding of the major disciplines which contribute to educational theory, to develop a knowledge of the latest innovations in educational practice and theory and to clarify the methodologies and curriculum materials relevant to secondary mathematics teaching.

Students enrolling in this course must seek advice from the Director of Science Teachers' Courses, Room 41, Building G2, Western Campus or at the enrolment centre.

Honours and Pass Degree Requirements

The course is offered at both pass and honours levels.

1. The pass course requires successful completion of a four-year program.

2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following options:

 Pure Mathematics, Applied Mathematics, Mathematical Statistics, Theoretical Mechanics, or Education*.

 The grades in this program shall be Honours Class I, II/1, II/2 and III.

 Students who wish to proceed to the honours year should apply in writing to the Head of the School of Education. A letter of acceptance from the Head of the School in which they wish to study during the honours year should be included with this application.

*Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.
Components of the Course

The Mathematics Education Course consists of Mathematics, Education and General Studies components.

1. Mathematics Component

Two alternative programs are available. The programs consist of units ranked as Level I, Level II, Level II/III, Level III and Level IV. These units vary from 56 to 84 hours in duration. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

Students must select one of the following programs:

5811 The Mathematics and Science Program

The pass course requires at least 23 units in addition to Education and General Studies subjects

or

5812 The Mathematics and Liberal Studies Program

The pass course requires at least 24 units in addition to Education subjects.

For both programs the selection of units is subject to the requirements listed below:

(1) Not less than 8 units, nor more than 10 units selected from Level I. Except with the approval of the Head of the School of Mathematics and the Director of Science Teacher Courses, not more than 2 Level I units may be taken in any one discipline other than Mathematics.

(2) The following subjects or their higher equivalents shall be included:

10.001, 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

(3) Courses amounting to at least 2 full units chosen from:

10.1111, 10.1112, 10.1121, 10.1123, 10.1127, 10.1128, 10.1153, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by a professor of Pure Mathematics.

(4) Not less than 2 units from the following:

10.2113, 10.2115, 10.212L, 10.212M, 10.331, 10.311A, 10.311B, 10.312A, 10.312B, 10.312C, 10.312D, 10.312E, 10.411A, 10.411B, 10.412A, 10.1127, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by the Head of the School of Mathematics.

(5) Not less than 8 Level II or Level III Mathematics units from Table 1 (see below) and of these not less than four shall be Level III units of which only one may be Level II/III.

(6) For the award of honours the student must complete 10 units as specified in an individual program and must meet prerequisite requirements set out in Table 3 (see below).

(7) In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component

The Education component is one of the major sequences in the course. It consists of subjects grouped as follows:

Theory of Education 58.702, 58.703, 58.704
Mathematics Curriculum and Instruction 58.742, 58.743, 58.744
School Experience 58.712 58.713, 58.714
Honours 58.793, 58.794

3. General Studies Component

(1) The General Studies component involves 56 hours in the pass course, which is made up of two half electives or their equivalent. The distribution of the two half electives may be varied to suit the programs of individual students.

(2) In the Mathematics and Liberal Studies Program the Liberal Studies subjects provide the General Studies component.

Enrolment Requirements

1. A student in first year must be enrolled in a Mathematics program in either the Science and Mathematics Course (3970) or the Mathematics Education Course (4070). In the second, third and fourth years a student must be enrolled in one of the Mathematics programs for the Course 4070, the Education program and, in the case of Mathematics and Science program, General Studies.

2. A student may with the approval of the Director of Science Teachers’ Courses, and in consultation with the Head of the School of Mathematics, change from one selected Mathematics program to another. A written application to make the change must be lodged, including details of optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. A student must take care to satisfy the requirements of sequences of units such as prerequisites and co-requisites. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-requisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. In exceptional circumstances, on the recommendation of the Head of the School of Mathematics, the particular prerequisite or co-requisite may be waived by the Director of Science Teachers’ Courses.
Programs

The course taken by each student has three component programs:

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.702</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>58.712</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.742</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>58.703</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>58.713</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>58.743</td>
<td>2½</td>
</tr>
<tr>
<td></td>
<td>58.714</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>58.744</td>
<td>2½</td>
</tr>
</tbody>
</table>

Honours in Education

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>58.793</td>
<td>1½</td>
</tr>
<tr>
<td>4</td>
<td>58.794</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>58.795</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.799</td>
<td></td>
</tr>
</tbody>
</table>

*Average for 26 weeks.

2. General Studies Program

(1) For students electing the Mathematics and Science Program:
Two half electives (or equivalent) taken during Years 2, 3 and/or 4 for the pass degree.

(2) For students electing the Mathematics and Liberal Studies Program:
No specific General Studies subjects are required.

3. Mathematics Program

5811
Mathematics and Science

Year 1
10.001 or 10.011
Choose 6 units from:
Table 1 &/or
The BA course*† &/or
Table 2† for program 5811 except 14.501

Year 2
10.111A or 10.121A, 10.1113 or 10.1213, 10.1114 or 10.1214, 10.2111 or 10.2211, 10.2112 or 10.2212
Choose 4 or 5 units from:
Table 1 &/or
The BA course*† &/or
Table 2† for program 5811

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1 &/or
The BA course*† &/or
Table 2† for program 5811

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose a further Level II or III Mathematics unit if needed to make up the required 8
Choose 1 or 2 units from:
Table 1 &/or
The BA course*† &/or
Table 2† for program 5811

Year 5
10.123 or 10.223 or 10.323 or 10.423.

*Up to 5 units of this program may be replaced by subjects offered in the BA degree course (6 credit points at level I, or 4 credit points at Upper Level are equivalent to 1 unit). The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.
†Not more than 8 units that are not in Table 1 may be taken without the approval of the Director of Science Teacher Courses.

5812
Mathematics and Liberal Studies

Year 1
10.011 or 10.001
Choose 4-6 units from:
Table 1† &/or
The BA course*

Year 2
10.111A or 10.121A, 10.1113 or 10.1213, 10.1114 or 10.1214, 10.2111 or 10.2211, 10.2112 or 10.2212
Choose 4 or 5 units from:
Table 1† &/or
The BA course*

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1† &/or
The BA course*

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1† &/or
The BA course*
Units in Geography, History and Philosophy of Science, and Philosophy shall be those from the BA degree course.

At least 6 units of this program must come from subjects offered in the BA degree course (6 credit points at Level I, or 4 credit points at Upper Level are equivalent to 1 unit). The BA degree subjects are limited to those offered by the following Schools: Drama, Economics, English, French, Geography, German, History, History and Philosophy of Science, Philosophy, Political Science, Russian, Sociology Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.

Objectives of the Course

The objectives of the course are those of the Science and Mathematics Course (3970) together with others which are essential for a course which is designed to prepare science teachers.

In summary, the objectives of the Science and Mathematics course broadly aim to develop a working knowledge of scientific methods of investigation and to promote an understanding of the significance of science, technology, economics and sociological factors in modern society. The objectives seek to develop in the student the ability and disposition to think logically, to communicate clearly by written and oral means and to read critically. Students are encouraged to develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.

The education component of the course seeks to provide a knowledge of theories of education and the latest innovations in educational practice and theory, and the development of skills in teaching science.

Honours and Pass Degree Requirements

There are both pass and honours programs available in the course leading to the award of the qualifications Bachelor of Science and Diploma in Education (BSc DipEd).

1. The pass course requires successful completion of a four-year program.

2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following disciplines:

 - Physics
 - Chemistry
 - Geology
 - Biochemistry
 - Biological Technology
 - Botany
 - Microbiology
 - Zoology
 - Education*
 - Physiology

The grades in this program shall be Honours Class I, II/1, II/2 and III.

Students who wish to proceed to the honours year should apply in writing to the Head of School of Education. A letter of acceptance from the Head of the School in which they wish to study during the honours year should be included with this application.

*Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.
Components of the Course

The Science Education Course consists of Science, Education and General Studies components.

1. Science Component

The Science component is based on the prescribed programs from the Science and Mathematics Course (3970) rearranged to spread over one additional year. These programs are composed of units ranked as Level I, Level II, Level II/III, Level III, and Level IV, such units varying from 56 to 84 hours. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites. For the pass course the science component requires at least 23 units with the following requirements:

(1) There shall be ten units from Level I and these must come from the following subjects: 1.001 or 1.011, 2.121, 2.131, 10.001 or 10.011 or 10.021B and 10.021C, 17.031, 17.041, 25.110, 25.120.

(2) Not less than four units from Level III. For purposes of this clause Level II/III units are counted as Level III units.

(3) Not less than two units beyond Level I in science disciplines in any of the teaching areas physics, chemistry (including biochemistry), biology and geology other than that of the student's major. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers' Courses or as specified in individual programs.

(4) One unit shall be a History and Philosophy of Science subject selected from a list of subjects approved by the Director of Science Teachers' Courses. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers' Courses or as specified in individual programs.

(5) For the honours program with honours in a science discipline there shall be at least six Level III units and students must meet prerequisite requirements set out in Table 3.

(6) For the award of honours in a science discipline the student must complete at least ten Level IV units as specified in an individual program.

(7) In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component

The Education Component is one of the major sequences in the course. It consists of subjects grouped as follows:

- Theory of Education
- Science Curriculum and Instruction
- School Experience
- Honours

<table>
<thead>
<tr>
<th>Component</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Education</td>
<td>58.702, 58.703, 58.704</td>
</tr>
<tr>
<td>Science Curriculum and</td>
<td>58.732, 58.733, 58.734</td>
</tr>
<tr>
<td>Instruction</td>
<td></td>
</tr>
<tr>
<td>School Experience</td>
<td>58.712, 58.713, 58.714</td>
</tr>
<tr>
<td>Honours</td>
<td>58.795, 58.799</td>
</tr>
</tbody>
</table>

3. General Studies Component

The General Studies component involves 56 hours in the pass course, which is made up of two half electives or their equivalent. The distribution of the two half electives may be varied to suit the programs of individual students.

Enrolment Requirements

1. In all years of the course a student must be enrolled in one of the prescribed Science programs.

In years two, three and four a student must be also enrolled in the Education program and the General Studies program.

2. A student may, with approval of the Director of Science Teachers' Courses, change from one selected Science program to another. A written application to make the change must be lodged, including details of any optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. The allowed specific programs, listed in Programs below, are made up of sequences of units. Where a choice is indicated care must be taken to satisfy the requirements such as prerequisites and co-requisites.

4. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-requisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. An excluded subject is one which cannot be counted together with the subject which excludes it towards the degree of qualification. In exceptional circumstances, on the recommendation of the head of the appropriate school, the particular prerequisite or co-requisite may be waived by the Director of Science Teachers' Courses.

5. Students lacking the HSC prerequisites for 1.001 Physics I and/or 2.121 Chemistry IA may satisfy prerequisites by completing the respective introductory subjects 1.021 Introductory Physics for Health and Life Scientists or 2.111 Introductory Chemistry. Students requiring 10.001 Mathematics I for Physics programs may satisfy prerequisites by completing 10.021B where appropriate. Under these circumstances these introductory subjects are not counted among the units required for the degree course.
Programs

The Course followed by a particular student has three component programs.

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.702</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.712</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.732</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>58.703</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>58.713</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>58.733</td>
<td>4½</td>
</tr>
<tr>
<td>4</td>
<td>58.704</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>58.714</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>58.734</td>
<td>4</td>
</tr>
</tbody>
</table>

Honours in Education

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>58.793</td>
<td>1½</td>
</tr>
<tr>
<td>4</td>
<td>58.794</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>58.795</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.799</td>
<td></td>
</tr>
</tbody>
</table>

*Average for 28 weeks.

2. General Studies Program
Two half electives (or equivalent) taken during second, third and/or fourth years for the pass degree.

3. Science Program
Each Science program is based on a program in the Science and Mathematics Course. Each one has an identifying number. The Science Education programs have 58 as the first two digits of the identifying number.

5802

Physics
Single Major†

Year 1
1.001 or 1.011
10.001 or 10.011
2.121 & 2.131, or 2.141
17.031, 17.041
or
25.110, 25.120

Year 2
1.012, 1.022, 1.032
10.2111*, 10.2112*
10.1113*, 10.1114*
17.031, 17.041
or
25.110, 25.120

Year 3
Choose 1 HPS unit
1.002
Choose 2 units from:
1.0133, 1.023, 1.0333, 1.043, 1.0111A†

Year 4
Choose 4 units from:††
Level III Physics units in Table 1, 10.111A*, 10.212A*, 10.412D*

Year 5
1.104

†See footnote to program 0101.
††Students are advised that units 1.0133, 1.0143, 1.023, 1.0333, 1.0343 and 1.043 are compulsory and must be completed by the end of Year 4.

5801

Physics

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011*
17.031, 17.041
or
25.110, 25.120

Year 2
1.012, 1.022, 1.032
10.2111, 10.2112
17.031, 17.041
or
25.110, 25.120

Year 3
Choose 1 unit from Table 1**

Year 4
Choose 3 units from:
Level III Physics units in Table 1††
Choose 1 unit from Table 1**

†See footnote to program 0102
††See footnote to program 5801
**Units available for choice from Table 1 in this program are those from Schools other than Mechanical and Industrial Engineering, Electrical Engineering (except Level II), Mathematics, Psychology, Geography, Philosophy.
5803
Applied Physics

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011*
- 17.031, 17.041
- or
- 25.110, 25.120

Year 2
- 1.012, 1.022, 1.032
- 10.2111*, 10.2112*
- 10.1113*, 10.1114*
- 17.031, 17.041
- or
- 25.110, 25.120

Year 3
Choose 1 HPS unit
- 1.002
Choose 2 units from:
- 1.0133, 1.023, 1.0333, 1.043

Year 4
Choose 4 units from:
- 1.0133, 1.0143, 1.023, 1.0333, 1.043, 1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, 1.713, 1.763, 1.773

Year 5
- 1.304

*See footnote to program 0101.

**See footnote to program 5801.

5805
Theoretical Physics

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011*
- 17.031, 17.041
- or
- 25.110, 25.120

Year 2
- 10.111A*, 10.2111*, 10.2112*, 10.1113*, 10.1114*
- 17.031, 17.041
- or
- 25.110, 25.120
- 1.012, 1.022

Year 3
Choose 1 HPS unit
- 1.002, 1.032
Choose 1 unit from:
- 1.0133, 1.1133, 1.023, 1.0333

Year 4
Choose 2½ units from:
- 1.0133, 1.1133, 1.023, 1.0333, 1.043
Choose 1½ units from:
- 1.5133, 1.5233, 1.5333, 1.5433, 1.5533, 10.412D*

Year 5
- 1.504

*See footnote to program 0101.

5821
Chemistry Major

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.041
- or
- 25.110, 25.120

Year 2
- 2.002A, 2.002B, 2.042C, 2.002D
- 17.031, 17.041
- or
- 25.110, 25.120
Choose 1 unit from:
- Table 1**

Year 3
Choose 1 HPS unit
Choose 2 Level III Chemistry units
Choose 1 unit from:
- Table 1**

Year 4
Choose 2 Level III Chemistry units
Choose 2 units from Table 1**

Year 5
- 2.004

**See footnote to program 5802.

5831
Geology
Double Major

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
- or
- 10.021B & 10.021C
- 25.110, 25.120

Year 2
- 17.031, 17.041
- 25.211, 25.221, 25.212, 25.223, 25.2261
Choose 1 HPS unit
Year 3
Choose 4 out of the following:

Year 4
Take the remaining 4½ units of Level III Geology II not taken in Year 3

Year 5
Program as in 2501 Year 4

5832
Geology
Single Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120

Year 2
17.031, 17.041
25.211, 25.221, 25.212, 25.223
Choose 1 unit from Table 1**

Year 3
Choose 2 units from the following:
Choose 1 HPS unit
Choose 1 unit from Table 1**

Year 4
Choose 2 units of Level III Geology
Choose 2 units from Table 1**

Year 5
25.434
**See this footnote to program 5802.

5841
Biochemistry

Year 1
1.001 or 1.011
2.121 & 2.131 or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
2.002B
25.110, 25.120
41.101, 41.111
Choose 1 unit from Table 1**

Year 3
41.102A
Choose 1 HPS unit
Choose 1 unit from Table 1**

Year 4
Choose either 41.102B or 41.102C & 41.102E
Choose 2 units from Table 1**

Year 5
41.103
**See this footnote to program 5802.

5842
Microbiology and Biochemistry

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2*
2.002B
25.110, 25.120
41.101
44.101, 44.121

Year 3
41.102A, 41.102B, or 41.102C & 41.102E

Year 4
44.102, 44.112

Year 5
41.103 or 44.103
*Students are advised to include, where possible, the subject 41.111 in addition to those listed.

5854
Botany

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
17.012
25.110, 25.120
43.101, 43.111
Choose 2 units from Table 1**

Year 3
43.131
Choose 2 Level III Botany units
Choose 1 HPS unit

Year 4
Choose 2 Level III Botany units
Choose 2 units from Table 1**

Year 5
43.103
**See this footnote to program 5802.
5855
Botany with Zoology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
Choose 3 units from 17.012, 43.101, 43.111, 43.131
Choose 2 units from 45.101, 45.201, 45.301

Year 3
Choose 2 Level III Botany units
Choose 1 Level III Zoology unit
Choose 1 HPS unit

Year 4
Choose 2 Level III Botany units
Choose 2 Level III Zoology units

Year 5
43.103

5862
Microbiology (General)

Year 1
1.001 or 1.011
2.121 & 2.131 or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
41.101
44.101, 44.121
Choose 1 unit from Table 1**

Year 3
44.102, 44.112

Year 4
Choose 1 HPS unit
Choose 3 units from Table 1**

Year 5
44.103

See this footnote to program 5802.

5861
Microbiology

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
2.002B
25.110, 25.120
41.101
44.101, 44.121

Year 3
41.102A
44.102

Year 4
44.112, 44.132
Choose 1 HPS unit

Year 5
44.103

5866
Zoology (General)

Year 1
1.001 or 1.011
2.121 & 2.131 or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
45.101, 45.201, 45.301
Choose 2 Level II units of Biochemistry, Chemistry, Physics, Geology or Mathematics

Year 3
43.101
Choose 1 HPS unit
Choose 2 Level III Zoology units from Table 1

Year 4
Choose 2 Level III Zoology units from Table 1
Choose 2 units from Table 1**

Year 5
45.103

See this footnote to program 5802.
5867
Zoology with Botany

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
17.012
25.110, 25.120
43.101, 43.111
45.201, 45.301

Year 3
45.101
Choose 1 HPS unit
Choose 2 Level III Zoology units

Year 4
Choose 2 Level III Zoology units
Choose 2 Level III Botany units

Year 5
45.103

5871
Physiology
Single Major

Year 1
1.001 or 1.011
2.121 & 2.131, or 2.141
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
41.101, 41.111
73.111

Year 3
73.012

Year 4
Choose 1 HPS unit
Choose 3 units from Table 1**

Year 5
73.013

**See this footnote to program 5802.
4770
Programs in the Combined Science/Law Course

For details of the combined Science/Law Course refer to the Faculty of Law Handbook.

Below are approved programs for Years 1, 2 and 3 only. Years 4 and 5 are detailed in the Faculty of Law Handbook.

Note that where the levels of elective units are not specified they must be chosen so that the maximum number of Level I units, viz 8, is not exceeded.

Chemistry

Year 1
- 1.001 or 1.011
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 90.112, 90.711

Year 2
- 2.002A, 2.002B, 2.042C, 2.002D
- 90.141, 90.161

Choose 2 Level I or Level II units from Table 1

Year 3
- 90.216, 90.301, 90.621

Choose 4 Level III Chemistry units from Table 1

Choose 2 other units of appropriate levels from Table 1

Physics

Year 1
- 1.001 or 1.011
- 10.001 or 10.011
- 90.112, 90.711

Choose 2 Level I units from Table 1

Year 2
- 1.002, 1.012, 1.022, 1.032
- 10.2111, 10.2112
- 90.141, 90.161

Choose 1 Level I or Level II unit from Table 1

Year 3
- 1.0133, 1.0143, 1.023, 1.0333, 1.0343, 1.043
- 90.216, 90.301, 90.621

Choose 2 units of appropriate levels from Table 1

Computer Science

Year 1
- 6.611
- 10.001 or 10.011
- 90.112, 90.711

Choose 3 Level I units from Table 1
Mathematics

Year 1
10.001 or 10.011
90.112, 90.711
Choose 4 Level I units from Table 1

Year 2
10.111A or 10.121A,
10.1113 & 10.1114
or
10.1213 & 10.1214,
10.2111 & 10.2112
or
10.2211 & 10.2212
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Mathematics units from Table 1
Choose 2 other units of appropriate levels from Table 1

Psychology

Year 1
10.001 or 10.011
or
10.021B & 10.021C
12.100
90.112, 90.711
Choose 2 Level I units from Table 1

Geology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
25.110, 25.120
90.112, 90.711

Year 2
1.001 or 1.011
25.211, 25.221, 25.212, 25.223
90.141, 90.161

Year 3
Choose four units from the following:
90.216, 90.301, 90.621
Choose 2 Level II or Level III units from Table 1

Geography

Year 1
10.001 or 10.011
or
10.021B & 10.021C
27.111*
or
27.301* & 27.302
90.112, 90.711
Choose 2 Level I units from Table 1

Year 2
27.311*, 27.312*, 27.2813, 27.2814
90.141, 90.161
Choose 1 Level II unit from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 units from:
27.133, 27.143, 27.153, 27.183, 27.862, 27.363
Choose 2 units of appropriate levels from Table 1

*Students who choose 27.111 instead of 27.301 & 27.302 in Year 1 should omit 27.301 & 27.311 from their program and complete 27.302 & 27.312 in Years 2 and 3 respectively.
Biochemistry

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
90.112, 90.711

Year 2
2.002B
41.101
90.141, 90.161
Choose 1 Level II unit from Table 1 (preferably 41.111)
Choose 2 Level I or Level II units from Table 1

Year 3
41.102A
41.102B
or 41.102C & 41.102E
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1

Botany

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
90.112, 90.711

Year 2
43.101, 43.111
90.141, 90.161
Choose 2 Level II units from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Botany units from Table 1
Choose 2 other units of appropriate levels from Table 1

Microbiology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
90.112, 90.711

Year 2
41.101
44.101, 44.121
90.141, 90.161
Choose 2 Level II units from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
44.102, 44.112
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1

Zoology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.021B & 10.021C
17.031, 17.041
90.112, 90.711

Year 2
45.101, 45.201, 45.301
90.141, 90.161
Choose 41.101 or 2 Level II Chemistry units or 2 Level II Mathematics units
Choose 1 other Level I or Level II unit from Table 1

Biotechnology

Year 1
2.121 & 2.131, or 2.141
10.001 or 10.011
or
10.031B & 10.021C
17.021, 17.041
90.112, 90.711

Year 2
41.101
42.101
90.141, 90.161
Choose group 1. or 2. or 3.
1. 44.101, 44.121
1 Level I or Level II unit from Table 1
2. 2.002B
41.111
1 Level I or Level II unit from Table 1
3. 2.002A, 2.002B
2.042C or 2.002D

Year 3
42.102A, 42.102B
90.216, 90.301, 90.621
Choose group 1. or 2. or 3. as appropriate.
1. 44.102
Choose 2 other units of appropriate levels from Table 1
2. 41.102A
Choose 2 other units of appropriate levels from Table 1
3. Choose 2 Level III Chemistry units
Choose 2 other units of appropriate levels from Table 1
Ecology

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011
- or
- 10.021B & 10.021C
- 17.031, 17.041
- 90.112, 90.711

Year 2
- 17.012
- 43.111
- 44.101
- 45.101, 45.201, 45.301
- 90.141, 90.161

Year 3
- 90.216, 90.301, 90.621
- Choose 4 units from:
 - 43.152, 43.172
 - 45.112, 45.122, 45.302
- Choose 2 other units of appropriate levels from Table 1

Anatomy

Year 1
- 10.001 or 10.011
- or
- 10.021B & 10.021C
- 17.031, 17.041
- 90.112, 90.711
- Choose 2 Level I units from Table 1

Year 2
- 70.011 A, 70.011C
- 90.141, 90.611
- Choose: one or two of the following as appropriate:
 - 2.002A
 - 10.031,
 - 10.331 or 10.301
 - 17.012
 - 25.622
 - 44.121

Year 3
- 73.012
- 90.216, 90.301, 90.621
- Choose 2 units of appropriate levels from Table 1

Marine Science

Year 1
- 10.001 or 10.011
- or
- 10.021B & 10.021C
- 17.031, 17.041
- 90.112, 90.711
- Choose one of the following:
 - 1.01 or 1.011
 - 2.121 & 2.131 or 2.141
 - 25.110, 25.120

Year 2
- 43.111
- 44.101
- 45.201 or 41.101
- 68.302
- 90.141, 90.161
- Choose: one or two of the following as appropriate:
 - 2.002A
 - 10.031,
 - 10.331 or 10.301
 - 17.012
 - 25.622
 - 44.121

Year 3
- 90.216, 90.301, 90.621
- Choose 4 Level III Zoology units from Table 1
- Choose 2 other units of appropriate levels from Table 1

Physiology and Pharmacology

Year 1
- 2.121 & 2.131, or 2.141
- 10.001 or 10.011 or 10.021B & 10.021C
- 17.031, 17.041
- 90.112, 90.711

Year 2
- 41.101
- 41.111
- 73.111
- 90.141, 90.161
- Choose 1 Level I or Level II unit from Table 1

Year 3
- 73.012
- 90.216, 90.301, 90.621
- Choose 2 units of appropriate levels from Table 1

Anatomy units from Table 2 may be taken in lieu.
Units offered by the Board of Studies in Science and Mathematics

Table 1

Information Key
The following is the key to the information supplied about each subject in the table below: F (Full year, ie both sessions); S1 (Session 1); S2 (Session 2); SS (single session, ie one only); I, II, III (Levels, I, II, III); Hpw (Hours per week); C (Credit).

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>Physics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>10.021C, or 10.001, or 10.011</td>
<td></td>
</tr>
<tr>
<td>1.011</td>
<td>Higher Physics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td>1.021</td>
<td>Introductory Physics I*</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>10.021B and 10.021C or 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For students who enrol in and successfully complete the subjects 1.021 Introductory Physics (2 units) and 1.001 Physics (2 units) the total unit value of the combined subjects be counted as 3 units.
<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.041</td>
<td>Laboratory Computers in Physical Science</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>As for 1.001</td>
<td>10.001 and Programs 0601, 0610, 1.021 or 1.001 or 0611, 6806 1.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.061</td>
<td>Computer Applications in Experimental Science</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6.611</td>
<td></td>
<td>1.001</td>
<td>10.001 or 10.011</td>
<td>1.041, 1.042</td>
</tr>
</tbody>
</table>

Physics Level II*

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.002</td>
<td>Mechanics, Waves and Optics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.001, 10.001</td>
<td>10.2111</td>
<td>10.4111, 10.4211, 1.992</td>
<td></td>
</tr>
<tr>
<td>1.012</td>
<td>Electromagnetism and Thermal Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.001, 10.001</td>
<td>10.2111</td>
<td></td>
<td>1.9322, 1.9222, 1.9422, 1.962</td>
</tr>
<tr>
<td>1.022</td>
<td>Modern Physics</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.001, 10.001</td>
<td>10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.032</td>
<td>Laboratory</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>1.001, 10.001</td>
<td>10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.042</td>
<td>Measurement and Measurement Control Systems</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.001, 10.001</td>
<td>10.2111, 10.2112</td>
<td></td>
<td>1.042, 1.032, 4.402, 4.412</td>
</tr>
<tr>
<td>1.052</td>
<td>Methods in Mathematical Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.001, 10.001</td>
<td>10.2111, 10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9222</td>
<td>Electronics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.021</td>
<td></td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>1.9322</td>
<td>Introduction to Solids</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.021</td>
<td></td>
<td>1.022, 4.402</td>
<td></td>
</tr>
<tr>
<td>1.9422</td>
<td>Introduction to Physics of Measurement</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001</td>
<td></td>
<td>1.042</td>
<td></td>
</tr>
</tbody>
</table>

Physics Level III*

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.013</td>
<td>Quantum Mechanics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.022, 10.2112</td>
<td></td>
<td>1.013, 2.023A, 10.222F</td>
<td></td>
</tr>
<tr>
<td>1.0143</td>
<td>Nuclear Physics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.0133</td>
<td></td>
<td>1.013</td>
<td></td>
</tr>
<tr>
<td>1.023</td>
<td>Statistical Mechanics and Solid State Physics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.012, 1.022, 10.2112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.033</td>
<td>Electromagnetism</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.012, 10.2111, 10.2112</td>
<td>10.222C, 1.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0343</td>
<td>Advanced Optics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.002</td>
<td></td>
<td>1.033</td>
<td></td>
</tr>
<tr>
<td>1.043</td>
<td>Experimental Physics A</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>1.032</td>
<td></td>
<td>1.033</td>
<td></td>
</tr>
<tr>
<td>1.053</td>
<td>Experimental Physics B1</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td>1.032</td>
<td></td>
<td>1.053</td>
<td></td>
</tr>
<tr>
<td>1.0543</td>
<td>Experimental Physics B2</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>4</td>
<td>1.032</td>
<td></td>
<td>1.053</td>
<td></td>
</tr>
<tr>
<td>1.1133</td>
<td>Advanced Quantum Mechanics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.0133</td>
<td></td>
<td>2.023A, 10.222F</td>
<td></td>
</tr>
<tr>
<td>1.133</td>
<td>Electronics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>1.032 or 1.9222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1433</td>
<td>Biophysics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.012, 1.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1533</td>
<td>Biophysical Techniques</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.012, 1.022, 1.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1633</td>
<td>Astrophysics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1733</td>
<td>Conceptual Framework of Physics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.012, 1.022</td>
<td>1.0133, 1.023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3033</td>
<td>Mechanical Properties of Materials</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.023</td>
<td></td>
<td>4.403</td>
</tr>
<tr>
<td>1.3133</td>
<td>Electrical, Optical and Thermal Properties of Materials</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3233</td>
<td>Measurement and Non-destructive Testing</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3333</td>
<td>Applications of Radiation</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.033, 1.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3533</td>
<td>Marine Acoustics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5133</td>
<td>Classical Mechanics and Field Theory</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.002 (or 10.4111)</td>
<td>10.1113, 10.2111, 10.2112</td>
<td></td>
</tr>
<tr>
<td>1.5233</td>
<td>Electrodynamics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.022</td>
<td>1.0333</td>
<td>10.222C</td>
</tr>
<tr>
<td>1.5333</td>
<td>Radiation and Matter</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.012, 1.022</td>
<td>1.0133 or 10.222F or 2.023A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0333 (or 10.222C)</td>
<td></td>
</tr>
<tr>
<td>1.5433</td>
<td>Plasmas and Laser Fusion</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.012, 1.022</td>
<td></td>
<td>1.513</td>
</tr>
<tr>
<td>1.5533</td>
<td>General Relativity</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.012, 1.022</td>
<td></td>
<td>1.523</td>
</tr>
<tr>
<td>1.713</td>
<td>Advanced Laser and Optical Applications</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.763</td>
<td>Laser and Optical Technology Laboratory I</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>1.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.773</td>
<td>Laser and Optical Technology Laboratory II</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>1.763</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where mathematics units are specified as prerequisites or as co-requisites, the higher levels of such units are acceptable and preferable. Similarly Physics 1.011 is acceptable in place of 1.001 and either of these units in place of 1.021. Students are also advised that other units may be acceptable equivalent prerequisites or co-requisites to those listed, eg Unit 1.982 of course 3640 may be acceptable in place of 1.022. Enquiry should be made to the School of Physics.

Chemistry

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121</td>
<td>Chemistry IA</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>2.141</td>
</tr>
<tr>
<td>2.131</td>
<td>Chemistry IB</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.111 or 2.121</td>
<td></td>
<td>2.141</td>
</tr>
<tr>
<td>2.141</td>
<td>Chemistry IM‡</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>---</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2.002A</td>
<td>Physical Chemistry</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.121 or 2.141, 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002B</td>
<td>Organic Chemistry</td>
<td>II</td>
<td>1</td>
<td>F or S1 or S2</td>
<td>6</td>
<td>2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.002D</td>
<td>Analytical Chemistry</td>
<td>II</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.042C</td>
<td>Inorganic Chemistry</td>
<td>II</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>S1 or S2 or F</td>
<td>6</td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003H</td>
<td>Molecular Spectroscopy and Structure</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003J</td>
<td>Fundamentals of Biological and Agricultural Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003K</td>
<td>Solid State Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.121 & 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013A</td>
<td>Introductory Quantum Chemistry</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>2.001 or 2.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.011 or 2.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003A</td>
<td>Physical Chemistry</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003B</td>
<td>Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003C</td>
<td>Inorganic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.042C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003D</td>
<td>Instrumental Analysis</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.002D, 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003L</td>
<td>Applied Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td>2.033L</td>
</tr>
<tr>
<td>2.003M</td>
<td>Organometallic Chemistry</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013B</td>
<td>Synthetic Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013C</td>
<td>Advanced Inorganic Chemistry</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.042C</td>
<td></td>
<td>2.003C</td>
</tr>
<tr>
<td>2.013D</td>
<td>Advanced Analytical Chemistry</td>
<td>III</td>
<td>1</td>
<td>F or S2</td>
<td>6</td>
<td>2.002D</td>
<td></td>
<td>2.003D</td>
</tr>
<tr>
<td>2.013L</td>
<td>Chemistry and Enzymology of Foods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.023A</td>
<td>Quantum Theory of Atoms and Molecules</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>2.002A, 10.2111 & 10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.023B</td>
<td>Natural Product Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.023L</td>
<td>Biological and Agricultural Chemistry</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.033A</td>
<td>Physical Chemistry of Macromolecules</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003J or 2.002B, 1.012 or 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.043A</td>
<td>Environmental Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.002A, 2.002D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf.
Chemistry (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.043L</td>
<td>Chemistry and Enzymology of Foods†</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td>2.013L, 2.023L, 2.053L</td>
</tr>
<tr>
<td>2.053A</td>
<td>Chemical Kinetics and Reaction Mechanisms</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>6</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.053L</td>
<td>Biological and Agricultural Chemistry†</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td>2.013L, 2.023L, 2.043L</td>
</tr>
<tr>
<td>2.063A</td>
<td>Advanced Molecular Spectroscopy</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.013A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Students majoring in Chemistry may take 2.141 in lieu of 2.121 and 2.131.

†Only one of these double units may be chosen.

Metallurgy

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.302</td>
<td>Chemical and Extraction Metallurgy I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>2.002A*</td>
<td></td>
</tr>
<tr>
<td>4.402</td>
<td>Physical Metallurgy I</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>2.002A*, 4.502</td>
<td>1.9322, 4.412, 4.422</td>
</tr>
<tr>
<td>4.412</td>
<td>Metallurgical Phases — Structure and Equilibrium Part I</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>2.002A, 4.302</td>
<td>1.9322, 4.402</td>
<td></td>
</tr>
<tr>
<td>4.422</td>
<td>Metallurgical Phases — Structure and Equilibrium Part II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>4.412</td>
<td>4.303</td>
<td>4.402</td>
</tr>
<tr>
<td>4.502</td>
<td>Mechanical Metallurgy</td>
<td>II</td>
<td>1½</td>
<td>F</td>
<td>4S1</td>
<td>4.402</td>
<td></td>
<td>4.512, 4.522</td>
</tr>
<tr>
<td>4.512</td>
<td>Mechanical Properties of Solids</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>4.402</td>
<td>4.502</td>
</tr>
<tr>
<td>4.522</td>
<td>Mechanical Metallurgy</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>4.512</td>
<td></td>
<td>4.502</td>
</tr>
<tr>
<td>4.602</td>
<td>Metallurgical Engineering I</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>4.302</td>
<td></td>
</tr>
<tr>
<td>4.303</td>
<td>Chemical and Extraction Metallurgy II</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td>4.302, 4.602 and 4.402 or 4.412</td>
<td>4.422</td>
<td></td>
</tr>
<tr>
<td>4.403</td>
<td>Physical Metallurgy II</td>
<td>III</td>
<td>3</td>
<td>F</td>
<td>9</td>
<td>4.402</td>
<td></td>
<td>1.3033</td>
</tr>
<tr>
<td>4.613</td>
<td>Metallurgical Engineering II A</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>4.602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.703</td>
<td>Materials Science</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>4.403</td>
<td></td>
</tr>
</tbody>
</table>

*This unit must be taken in Session 1.
Mechanical and Industrial Engineering

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.006</td>
<td>Engineering E*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.010</td>
<td>Engineering A†</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td></td>
<td>See Subject Descriptions</td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C**††</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td></td>
<td>later in this Handbook</td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B†</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>5.010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: for this subject, Excluded: 5.010, 5.020, 5.030.

**Students who wish to enrol in this subject can make up for the lack of the prerequisite by work taken in Physics in the first half of first year.

†Note: for this subject, Excluded: 5.006.

‡Also offered over the full year at 3 hours per week, for the 'Production Technology' option only.

Electrical Engineering and Computer Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.611</td>
<td>Computing I</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>HSC Mathematics as for 10.001</td>
<td>10.001 or 10.011</td>
<td>1.041*</td>
</tr>
<tr>
<td>6.621</td>
<td>Computing IIA</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td>6.611**</td>
<td></td>
<td>6.620</td>
</tr>
<tr>
<td>6.631</td>
<td>Computing II B</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td>6.621** or 6.620‡** or 6.021D**</td>
<td></td>
<td>6.021E</td>
</tr>
<tr>
<td>6.641</td>
<td>Computing IIC</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td>6.621** or 6.620‡** or 6.021D**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.646</td>
<td>Computer Applications</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>6.620‡** or 6.021D**</td>
<td></td>
<td>6.622</td>
</tr>
</tbody>
</table>

*Excluded for students in programs 6806, 0601, 0611.

**Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.

‡Students who have completed 6 600 at a grade of credit or better, may be enabled to undertake this subject with permission.
Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite†</th>
<th>Co-requisite†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.001</td>
<td>Mathematics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>10.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>10.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.021B</td>
<td>General Mathematics IB</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>10.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.021C</td>
<td>General Mathematics IC</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>10.021B</td>
<td></td>
<td>10.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.081</td>
<td>Mathematics IX</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>As for 10.001</td>
<td></td>
<td>10.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 6.611 or 1.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.031‡</td>
<td>Mathematics</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.021C (CR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.032§</td>
<td>Mathematics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.612</td>
<td>Mathematical Software</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>6.621, 10.111A</td>
<td></td>
<td>10.2112 (or equivalent)</td>
</tr>
</tbody>
</table>

†For any listed unit an appropriate higher unit may be substituted.
‡If a unit in this column is counted the corresponding unit in the first column may not be counted.
§Mathematics 10.031 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics, Applied Mathematics or Theoretical Mechanics are taken, 10.031 Mathematics will not be counted.

Pure Mathematics

Pure Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite†</th>
<th>Co-requisite†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.111A</td>
<td>Linear Algebra</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.121A</td>
</tr>
<tr>
<td>10.1113</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.1213</td>
</tr>
<tr>
<td>10.1114</td>
<td>Complex Analysis</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.1214</td>
</tr>
<tr>
<td>10.1115</td>
<td>Finite Mathematics A</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.1115 (or any other level II Mathematics half unit)</td>
</tr>
<tr>
<td>10.1116</td>
<td>Finite Mathematics B</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.1115 (or any other level II Mathematics half unit)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level II†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite†</th>
<th>Co-requisite†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.121A</td>
<td>Algebra</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td></td>
<td>10.111A</td>
</tr>
<tr>
<td>10.1213</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td></td>
<td>10.1113</td>
</tr>
<tr>
<td>10.1214</td>
<td>Complex Analysis</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td></td>
<td>10.1114</td>
</tr>
</tbody>
</table>

Pure Mathematics Level III*

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite†</th>
<th>Co-requisite†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1111</td>
<td>Group Theory</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>***</td>
<td></td>
<td>10.121A</td>
</tr>
<tr>
<td>10.1112</td>
<td>Geometry</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>***</td>
<td></td>
<td>10.121C</td>
</tr>
<tr>
<td>10.1121</td>
<td>Number Theory</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td></td>
<td>10.1421</td>
</tr>
</tbody>
</table>

For footnotes, see overleaf.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1123</td>
<td>Logic and Computability</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1124</td>
<td>Combinatorial Topology</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1125</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.111A</td>
<td>***</td>
<td>10.122C</td>
</tr>
<tr>
<td>10.1126</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.1113, 10.1114</td>
<td>10.1125</td>
<td>10.1426</td>
</tr>
<tr>
<td>10.1127</td>
<td>History of Mathematics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.111A, 10.1114, 10.2111, 10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1128</td>
<td>Foundations of Calculus</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>***</td>
<td></td>
<td>10.122B</td>
</tr>
<tr>
<td>10.1521</td>
<td>Combinatorics and its Applications</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1522</td>
<td>Differential Geometry</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>10.1113</td>
<td>***</td>
<td>10.112C, 10.1325, 10.122C</td>
</tr>
<tr>
<td>10.1523</td>
<td>Functional Analysis and Applications</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>10.111A</td>
<td>***</td>
<td>10.122B</td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.122B</td>
<td>Real Analysis and Functional Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.112B</td>
<td></td>
</tr>
<tr>
<td>10.1321</td>
<td>Rings and fields</td>
<td>III</td>
<td>½</td>
<td>S1††</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1321</td>
<td></td>
</tr>
<tr>
<td>10.1322</td>
<td>Galois Theory</td>
<td>III</td>
<td>½</td>
<td>S2††</td>
<td>2</td>
<td></td>
<td>10.122B</td>
<td></td>
</tr>
<tr>
<td>10.1323</td>
<td>Complex Analysis</td>
<td>III</td>
<td>½</td>
<td>S1††</td>
<td>2</td>
<td>10.1214 or 10.1114 DN</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>10.1324</td>
<td>Integration and Fourier Analysis</td>
<td>III</td>
<td>½</td>
<td>S2††</td>
<td>2</td>
<td>10.1213 or 10.1113 DN</td>
<td>10.1522</td>
<td></td>
</tr>
<tr>
<td>10.1325</td>
<td>Differential Geometry</td>
<td>III</td>
<td>½</td>
<td>S1††</td>
<td>2</td>
<td>10.1214 or 10.1114 DN</td>
<td>10.1522</td>
<td></td>
</tr>
<tr>
<td>10.1326</td>
<td>Calculus on Manifolds</td>
<td>III</td>
<td>½</td>
<td>S2††</td>
<td>2</td>
<td></td>
<td>10.1325</td>
<td></td>
</tr>
<tr>
<td>10.1421</td>
<td>Number theory</td>
<td>III</td>
<td>½</td>
<td>S1††</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1121</td>
<td></td>
</tr>
<tr>
<td>10.1422</td>
<td>Groups and Representations</td>
<td>III</td>
<td>½</td>
<td>S2††</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1112</td>
<td></td>
</tr>
<tr>
<td>10.1423</td>
<td>Topology</td>
<td>III</td>
<td>½</td>
<td>S1††</td>
<td>2</td>
<td>10.1213 or 10.1113 DN</td>
<td>10.1125</td>
<td></td>
</tr>
<tr>
<td>10.1424</td>
<td>Geometry</td>
<td>III</td>
<td>½</td>
<td>S2††</td>
<td>2</td>
<td>10.1213 or 10.1113 DN</td>
<td>10.1125</td>
<td></td>
</tr>
<tr>
<td>10.1425</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S1††</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1425</td>
<td>10.1126</td>
</tr>
<tr>
<td>10.1426</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S2††</td>
<td>2</td>
<td>10.1213 or 10.1113 DN</td>
<td>10.1425</td>
<td>10.1126</td>
</tr>
</tbody>
</table>

††For any listed unit an appropriate higher unit may be substituted.

*If a unit in this column is counted the corresponding unit in the first column may not be counted.

††Students wishing to attempt Level III Higher Pure Mathematics units should consult the School of Mathematics prior to enrolment. Students will not normally be permitted to attempt a Level III Higher Pure Mathematics unit unless they have completed at least 2 Level II units from 10.121A, 10.1213, 10.1214, 10.1221, 10.1222 or 10.2112, obtained sufficiently good gradings in the corresponding ordinary Level II units.

2. Students majoring in Physics who wish to take Higher Pure Mathematics II should attempt 10.121A, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

3. Students aiming at Honours in Pure Mathematics must take 10.121A, 10.121C, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

4. Students wishing to attempt Level III Higher Pure Mathematics units should consult the School of Mathematics prior to enrolment. Students will not normally be permitted to attempt a Level III Higher Pure Mathematics unit unless they have completed at least 2 Level II units from 10.121A, 10.1213, 10.1214, 10.2211, 10.2212, or obtained sufficiently good gradings in the corresponding ordinary Level II units.

*Students not normally permitted to attempt a Level III Pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.

†These subjects are to be offered in odd numbered years.

‡These subjects are to be offered in even numbered years.

†††The unit 10.122B is strongly recommended.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite††</th>
<th>Co-requisite††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2111</td>
<td>Vector Calculus</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.2211, 4.813</td>
</tr>
<tr>
<td>10.2112</td>
<td>Mathematical Methods for Differential Equations</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.2212, 4.813</td>
</tr>
<tr>
<td>10.2113</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td>10.2213</td>
</tr>
<tr>
<td>10.2115</td>
<td>Discrete-Time Systems</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td>10.2215</td>
</tr>
</tbody>
</table>

Higher Applied Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite††</th>
<th>Co-requisite††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2211</td>
<td>Vector Analysis</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2½</td>
<td>10.001 or 10.001 DN**</td>
<td></td>
<td>10.2111</td>
</tr>
<tr>
<td>10.2212</td>
<td>Mathematical Methods for Differential Equations</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2½</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2113</td>
</tr>
<tr>
<td>10.2213</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2115</td>
</tr>
<tr>
<td>10.2215</td>
<td>Discrete-Time Systems</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2115</td>
</tr>
</tbody>
</table>

Applied Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite††</th>
<th>Co-requisite††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.212A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2112, 10.111A</td>
<td></td>
<td>10.222B</td>
</tr>
<tr>
<td>10.212L</td>
<td>Optimization Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.1113***</td>
<td></td>
<td>10.222L</td>
</tr>
<tr>
<td>10.212M</td>
<td>Optimal Control Theory</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.1113 and 10.1114</td>
<td></td>
<td>10.222M</td>
</tr>
</tbody>
</table>

Higher Applied Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite††</th>
<th>Co-requisite††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.222A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2122 or 10.2112</td>
<td></td>
<td>10.2122A</td>
</tr>
<tr>
<td>10.222C</td>
<td>Maxwell's Equations and Special Relativity</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2122 or 10.2111</td>
<td></td>
<td>1.033</td>
</tr>
<tr>
<td>10.222F</td>
<td>Quantum Mechanics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2122 or 10.2111 DN**, 10.121A or 10.111A DN**</td>
<td></td>
<td>1.013</td>
</tr>
</tbody>
</table>

Applied Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite††</th>
<th>Co-requisite††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2122L</td>
<td>Optimization Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.1113 DN** ****</td>
<td></td>
<td>10.212L</td>
</tr>
</tbody>
</table>

††For any listed unit an appropriate higher unit may be substituted.
*If a unit in this column is counted the corresponding unit in the first column may not be counted.
**With the permission of the Head of the Department a sufficiently good grading may be substituted.
***At least one further unit chosen from the following: 10.111A, 10.1114, 10.2111, 10.2112, 10.2113.
****At least 1½ further units chosen from the following: 10.121A or 10.111A DN, 10.1214 or 10.1114 DN, 10.2211 or 10.2111 DN, 10.2212 or 10.2112 DN, 10.2213 or 10.2113 DN, 10.2215 or 10.2113 DN.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite †</th>
<th>Co-requisite †</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.311A</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1½</td>
<td>S1†</td>
<td>7</td>
<td>10.001 or 10.021C CR</td>
<td></td>
<td>10.321 A</td>
</tr>
<tr>
<td>10.311B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1½</td>
<td>S2</td>
<td>7</td>
<td>10.311A</td>
<td></td>
<td>10.311 A</td>
</tr>
<tr>
<td>10.331</td>
<td>Statistics SS</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.001 or 10.021C CR</td>
<td></td>
<td>10.311 A</td>
</tr>
</tbody>
</table>

Higher Theory of Statistics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite †</th>
<th>Co-requisite †</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.321A</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1½</td>
<td>S1</td>
<td>8</td>
<td>10.001</td>
<td></td>
<td>10.311 A</td>
</tr>
<tr>
<td>10.321B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1½</td>
<td>S2</td>
<td>8</td>
<td>10.321A</td>
<td></td>
<td>10.311 A</td>
</tr>
</tbody>
</table>

Theory of Statistics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite †</th>
<th>Co-requisite †</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.312A</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311A, 10.111A, 10.1113</td>
<td></td>
<td>10.322 A</td>
</tr>
<tr>
<td>10.312B</td>
<td>Experimental Design (Applications) and Sampling</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311B or 10.331</td>
<td></td>
<td>10.322 B</td>
</tr>
<tr>
<td>10.312C</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311B, 10.111A, 10.1113</td>
<td></td>
<td>10.322 C</td>
</tr>
<tr>
<td>10.312D</td>
<td>Probability Theory</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311A, 10.111A, 10.1113, 10.2112</td>
<td></td>
<td>10.322 D</td>
</tr>
<tr>
<td>10.312E</td>
<td>Statistical Inference</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311B, 10.111A, 10.1113</td>
<td></td>
<td>10.322 E</td>
</tr>
<tr>
<td>10.312F</td>
<td>Statistical Computation</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>4</td>
<td>10.311B (or 10.312B or 10.3321)</td>
<td></td>
<td>10.322 F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite †</th>
<th>Co-requisite †</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3321</td>
<td>Regression Analysis and Experimental Design</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.311 or 10.311B or 10.312B</td>
<td></td>
<td>10.312 B</td>
</tr>
<tr>
<td>10.3322</td>
<td>Applied Stochastic Processes</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.311 or 10.311A or 10.312A</td>
<td></td>
<td>10.312 A</td>
</tr>
</tbody>
</table>

Higher Theory of Statistics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisite †</th>
<th>Co-requisite †</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.322A</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.312A, 10.111A, 10.1113</td>
<td></td>
<td>10.312 A</td>
</tr>
<tr>
<td>10.322B</td>
<td>Experimental Design (Applications) and Sampling</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113</td>
<td></td>
<td>10.312 B</td>
</tr>
</tbody>
</table>

113
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.322C</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113</td>
<td>10.322B†</td>
<td>10.312C</td>
<td></td>
</tr>
<tr>
<td>10.322E</td>
<td>Statistical Inference</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113</td>
<td>†</td>
<td>10.312E</td>
<td></td>
</tr>
</tbody>
</table>

††For any listed unit an appropriate higher unit may be substituted.
*If a unit in this column is counted, the corresponding unit in the first column may not be counted.
† Plus any two Level III Pure Mathematics, Applied Mathematics, Theoretical Mechanics or Computer Science units. It is sufficient to take 10.312B (10.322B) in the same year.
**For a student taking four of the units 10.312A, 10.312B, 10.312C, 10.312D, 10.312E (or the corresponding higher units) a project is required as part of either 10.312C (10.322C) or 10.312E (10.322E).
‡The evening course 10.311A will, subject to sufficient enrolment, run at 3½ hours per week throughout the year.

Theoretical and Applied Mechanics

Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4111</td>
<td>Introduction to Theoretical Mechanics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.001, 10.001 or 5.006</td>
<td>10.2111, 10.2112, 10.411B, 10.1113</td>
<td>10.421B, 10.421D, 1.002, 1.992</td>
<td></td>
</tr>
<tr>
<td>10.4112</td>
<td>Introduction to Hydrodynamics</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.001</td>
<td>10.4111 or 1.002</td>
<td>10.411A, 10.421A, 10.421D</td>
<td></td>
</tr>
</tbody>
</table>

Higher Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4211</td>
<td>Introduction to Theoretical Mechanics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.011 or 10.001 DN**</td>
<td>10.2211, 10.2212, 10.411B, 10.1113</td>
<td>10.421B, 10.421D, 10.411B, 1.002, 1.992</td>
<td></td>
</tr>
<tr>
<td>10.4212</td>
<td>Introduction to Hydrodynamics</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.011 or 10.001 DN**</td>
<td>10.4211</td>
<td>10.411A, 10.421A, 10.421D</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Mechanics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.412A</td>
<td>Dynamical and Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.001, 10.2111 and 10.2112 or 10.031</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.412B</td>
<td>Continuum Mechanics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2111, 10.2112, 10.1113, 10.1114, 10.111A</td>
<td>10.4112 or 1.012 or 1.913</td>
<td>10.422D, 10.4331</td>
<td></td>
</tr>
<tr>
<td>10.412D</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.2112, 10.1113, 10.1114, 10.111A</td>
<td>10.331 or equivalent</td>
<td>10.422D, 10.4331</td>
<td></td>
</tr>
<tr>
<td>10.4129</td>
<td>Applied Time Series Analysis</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.2112 or 10.031 or 10.022</td>
<td>10.331 or equivalent</td>
<td>10.422D, 10.422D</td>
<td></td>
</tr>
<tr>
<td>10.4331</td>
<td>Transform Methods</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.1113, 10.1114, 10.2112 or equivalent</td>
<td>10.412D, 10.422D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Higher Theoretical Mechanics Level III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.422A</td>
<td>Fluid Dynamics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.421A or 10.411A DN**</td>
<td>10.422B</td>
<td></td>
</tr>
<tr>
<td>10.422B</td>
<td>Mechanics of Solids</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.2111, 10.2112, 10.1113, 10.1114, 10.111A, 10.421B or 10.411B DN**</td>
<td>or 1.012</td>
<td>10.412B</td>
</tr>
</tbody>
</table>

With the permission of the Head of the Department a sufficiently good grading may be substituted.

††It is recommended that one of the following be taken concurrently: 10.4112 or 1.3533.

*If a unit in this column is counted the corresponding unit in the first column may not be counted.

††For any listed unit an appropriate higher unit may be substituted.

Psychology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychology Level I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.100</td>
<td>Psychology I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td></td>
<td></td>
<td>12.001</td>
</tr>
</tbody>
</table>

		Psychology Level II							
12.200	Research Methods II	II	1	F	3	12.100*		12.152	
12.201	Basic Psychological Processes II	II	1	S2	4	12.100*		12.052	
12.202	Complex Psychological Processes II	II	1	S1	4	12.100*		12.062	
12.204	Human Relations II	II	1	S1	4	12.100*		12.072	
12.205	Individual Differences II	II	1	S2	4	12.100*		12.082	

		Psychology Level III: Group A							
12.300	Research Methods IIIA	III	1	S1	4	12.200		12.153	
12.304	Personality and Individual Differences III	III	1	S1	4	2 Psychology Level II subjects		12.303	
12.305	Learning and Behaviour III	III	1	S1 or S2	4	12.200 and 12.201		12.253	
12.322	Abnormal Psychology III	III	1	S1	4	12.200 and 12.201		12.603	
Psychology (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites†</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.301</td>
<td>Research Methods III B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200 and 12.300</td>
<td></td>
<td>12.163</td>
</tr>
<tr>
<td>12.310</td>
<td>Physiological Psychology III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
<td>12.413</td>
</tr>
<tr>
<td>12.311</td>
<td>Perception III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
<td>12.473</td>
</tr>
<tr>
<td>12.314</td>
<td>Motivation and Emotion III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
<td>12.323</td>
</tr>
<tr>
<td>12.320</td>
<td>Social Psychology III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.202</td>
<td></td>
<td>12.503</td>
</tr>
<tr>
<td>12.324</td>
<td>Experimental Psychopathology III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.330</td>
<td>Psychological Assessment III</td>
<td>III</td>
<td>1</td>
<td>Not offered</td>
<td>4</td>
<td>12.200, and 1 other</td>
<td>Psychology Level II subject</td>
<td>12.203 and 12.373</td>
</tr>
<tr>
<td>12.331</td>
<td>Counselling Psychology III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>2 Psychology Level II</td>
<td></td>
<td>12.623</td>
</tr>
<tr>
<td>12.332</td>
<td>Behavioural Change III</td>
<td>III</td>
<td>1</td>
<td>Not offered</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
<td>12.713</td>
</tr>
<tr>
<td>12.333</td>
<td>Ergonomics III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200</td>
<td></td>
<td>12.663</td>
</tr>
<tr>
<td>12.334</td>
<td>Behaviour in Organizations III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>2 Psychology Level II</td>
<td></td>
<td>12.653</td>
</tr>
<tr>
<td>12.335</td>
<td>Behavioural Evaluation and Assessment III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.340</td>
<td>Special Topic III</td>
<td>III</td>
<td>1</td>
<td>Not offered</td>
<td>4</td>
<td>12.300, 12.304 and</td>
<td></td>
<td>12.305</td>
</tr>
</tbody>
</table>

Notes:
1. A student may not enrol in more than four Level II Psychology units.
2. A student may not enrol in more than three Level III Psychology units unless 12.200 Research Methods II has been passed.
3. A student may not enrol in more than six Level III Psychology units unless 12.300 Research Methods III A has been passed.
4. A major in Psychology is 12.100, two Psychology Level II units, including 12.200 and four Psychology Level III units.
5. A student may not enrol in more than three Psychology Level III subjects selected from 12.304 Personality and Individual Differences III, 12.322 Abnormal Psychology III, 12.324 Experimental Psychopathology III, 12.331 Counselling Psychology III, and 12.335 Behavioural Evaluation and Assessment III.
6. A student may not enrol in more than eight Level III Psychology units in course 3970.

Biological Sciences

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites†</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.031</td>
<td>Biology A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.041</td>
<td>Biology B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031</td>
<td></td>
<td>17.021</td>
</tr>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Students with percentile range 61-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.201 or 45.301 in lieu of 17.041 after completion of 17.031. Students are selected by the head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.041 Biology B for all units.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.110</td>
<td>Earth Materials and Processes**</td>
<td>I</td>
<td>I</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.120</td>
<td>Earth Environments and Dynamics****</td>
<td>I</td>
<td>I</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.211</td>
<td>Earth Materials I*</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.221</td>
<td>Earth Materials II†</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.212</td>
<td>Earth Environments †</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.223</td>
<td>Earth Physics**</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.2261</td>
<td>Mathematical Geology I</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.621</td>
<td>Marine Geology I**</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.662</td>
<td>Hydrological and Coastal Surveying†</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.311</td>
<td>Earth Materials III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.321</td>
<td>Earth Materials IV†</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.312</td>
<td>Earth Environments II†</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.314</td>
<td>Mineral and Energy Resources I****</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3162</td>
<td>Mathematical Geology II</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.324</td>
<td>Mineral and Energy Resources II*</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.325</td>
<td>Engineering and Environmental Geology***</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3261</td>
<td>Geochemical Analytical Techniques</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3271</td>
<td>Advanced Structural Geology***</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.333</td>
<td>Exploration Geophysics***</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3S1 2S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.6342</td>
<td>Exploration and Seismic Methods</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.9311</td>
<td>Gravity and Magnetic Methods*</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.9312</td>
<td>Seismic Methods*</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.9313</td>
<td>Electrical Methods*</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Field work of up to 1 day
**Field work of up to 2 days
***Field work of up to 3 days.
****Field work of up to 4 days.
†Field work of up to 5 days
‡Field work of up to 6 days.
††Field work of up to 8 days.
†††Not available for programs 2501, 2502, 2703, 2725, nor in Geology program of Course 4770, nor in Geology with some Mathematics program of Course 3730
†††It is desirable that students taking 25 312 should also have taken 25 223.

Field tutorials are an essential part of the subject, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.111</td>
<td>Applied Physical Geography I</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.301</td>
<td>Introduction to Physical Geography*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>27.801 or 27.301, 27.2813†</td>
<td></td>
<td>27.111, 27.301, 27.801, 27.811</td>
</tr>
<tr>
<td>27.302</td>
<td>Introduction to Human Geography*</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>27.802 or 27.302, 27.2813†</td>
<td></td>
<td>27.302</td>
</tr>
<tr>
<td>27.311</td>
<td>Physical Geographyφ</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>27.801 or 27.301, 27.2813†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.312</td>
<td>Human Geographyφ</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>27.802 or 27.302, 27.2813†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2813</td>
<td>Geographic Methods</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>27.111 (or 27.301†) and 27.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2814</td>
<td>Geographic Field Methods**</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>27.111 (or 27.301) and 27.302, 27.2813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.153</td>
<td>Climatology**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>1.001 (or 27.311) (or 25.110 & 25.120) (or 17.031 and 17.041†) or 27.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.143</td>
<td>Biogeography**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>27.311 or 27.111 (or 17.031 & 17.041)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.183</td>
<td>Geomorphology**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>25.110 & 25.120 or 27.311 or 27.111</td>
<td></td>
<td>27.860</td>
</tr>
<tr>
<td>27.133</td>
<td>Pedology**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>27.111 or any 2 units from: 2.111, 2.121, 2.131, 2.141, 27.811 or 27.311 (or 25.012 or 25.022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.860</td>
<td>Landform Studies*</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>27.301 or 27.111</td>
<td></td>
<td>27.111, 27.183, 27.870</td>
</tr>
<tr>
<td>27.862</td>
<td>Australian Environment and Natural Resources**%</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>27.111 or 27.311 or 27.312 or 25.110 and 25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.363</td>
<td>Ecosystems and Man**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>27.111 or 27.311 or 27.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.324</td>
<td>Spatial Population Analysis**</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.325</td>
<td>Urban Activity Systems**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.326</td>
<td>Urban and Regional Development**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.327</td>
<td>Environment and Behaviour**</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.834</td>
<td>Spatial Population Analysis (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>27.312 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.835</td>
<td>Urban Activity Systems (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>27.312 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.836</td>
<td>Urban and Regional Development (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>27.312 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.837</td>
<td>Environment and Behaviour (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>27.312 CR, 27.2813 CR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geography (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.870</td>
<td>Landform Studies (Advanced)**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>27.111 CR or 27.311 CR, 27.2813 CR</td>
<td>27.860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.872</td>
<td>Australian Environment and Natural Resources (Advanced)**%</td>
<td>III</td>
<td>1</td>
<td>φφ</td>
<td>6</td>
<td>27.111 CR or 27.311 CR, or 27.312 CR</td>
<td>27.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.873</td>
<td>Ecosystems and Man (Advanced)</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>27.111 CR or 27.311 CR, 27.2813 CR, 27.312 CR</td>
<td>27.863, 27.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.880</td>
<td>Advanced Geographic Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>27.2813 CR or 27.312 CR, 27.111 CR</td>
<td>27.880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.604</td>
<td>Geography 4 (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.880</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Field work of up to 2 days is a compulsory part of the subject.
†In special circumstances a student may apply to the Head of School for permission to take 27.301 as a co-requisite.
‡This prerequisite unit may be waived for students not proceeding into a major Geography sequence.
**Field work of up to 5 days is a compulsory part of the subject.
φφ3 days field work equivalent to 24 tutorial hours is a compulsory part of the subject.
††Not offered in 1984.

Surveying

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.001</td>
<td>Surveying I*</td>
<td>I</td>
<td>1½</td>
<td>S1</td>
<td>4½</td>
<td>29.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.002</td>
<td>Surveying II*</td>
<td>I</td>
<td>1½</td>
<td>S2</td>
<td>5</td>
<td>29.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*These two subjects must be taken together in the one year.

Biochemistry‡

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites*</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.101</td>
<td>Biochemistry</td>
<td>II</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>17.041†, 2.121† & 2.131†, or 2.141†</td>
<td>2.003J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.111</td>
<td>Biochemical Control</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102A</td>
<td>Biochemistry of Macromolecules</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102B</td>
<td>Physiological Biochemistry</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102C</td>
<td>Plant Biochemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102E</td>
<td>Molecular Biology of Higher Organisms</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.102A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‡Level III units available only during the daytime.
*In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
†Terminating pass not acceptable.
**Students must obtain a clear pass (PS) in either 41.101 or 41.111.

119
Biotechnology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites*</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.101</td>
<td>Introduction to Biotechnology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141, 17.041, 10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102A</td>
<td>Biotechnology A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>41.101†</td>
<td>42.101† or 44.101†</td>
<td></td>
</tr>
<tr>
<td>42.102B</td>
<td>Biotechnology B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>42.102A†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
†Pass Conceded (PC) or Terminating Pass (TP) awarded prior to Session 2, 1983 is not acceptable.

Botany

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041*</td>
<td>See under Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>43.101</td>
<td>Introductory Genetics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.111</td>
<td>Flowering Plants</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.131</td>
<td>Fungi and Man</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.102</td>
<td>Microbial Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>43.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.112</td>
<td>Taxonomy and Systematics</td>
<td>III</td>
<td>1</td>
<td>S2§</td>
<td>6</td>
<td>43.111</td>
<td>43.101</td>
<td></td>
</tr>
<tr>
<td>43.122</td>
<td>Plant Physiology†</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041, 2.121 and 2.131, or 2.141</td>
<td>43.121</td>
<td></td>
</tr>
<tr>
<td>43.132</td>
<td>Mycology-Plant Pathology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.131***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.142</td>
<td>Environmental Botany</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.152</td>
<td>Plant Community Ecology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.111 & 17.012 or 27.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.162</td>
<td>The Plant Kingdom</td>
<td>III</td>
<td>1</td>
<td>S1§</td>
<td>6</td>
<td>43.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.172</td>
<td>Phycology and Marine Botany</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>43.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.192</td>
<td>Ultrastructure</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td>43.182</td>
<td></td>
</tr>
</tbody>
</table>

*Students with percentile range 61-100 in HSC Examination 4 unit Science with Biology or 2 unit Biology may apply to enrol in 43.101, 45.201 or 45.301 in lieu of 17.041 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.041 Biology B for all units.
†Students intending to undertake honours work in the field of Plant Physiology should have obtained a pass in 41.101 (Biochemistry) or 45.101 (Biometry) or 2.002A (Physical Chemistry) depending on their proposed field of specialization.
***A student may apply to the School for variation of the prerequisite.
§These units will alternate each year 43.112 Taxonomy and Systematics is offered in 1984. If both units 43.112 and 43.162 are to be included in a three-year pass degree program, one should be completed in Year 2.
Microbiology

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101</td>
<td>Introductory Microbiology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.121</td>
<td>Microbiology I</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.102</td>
<td>General Microbiology</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>17.031 and 17.041</td>
<td>44.101, 44.121†, 41.101</td>
<td></td>
</tr>
<tr>
<td>44.112</td>
<td>Applied Microbiology</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td>17.031 and 17.041</td>
<td>44.102</td>
<td></td>
</tr>
<tr>
<td>44.122</td>
<td>Immunology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td>41.101</td>
<td></td>
</tr>
<tr>
<td>44.132</td>
<td>Virology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td>44.102</td>
<td></td>
</tr>
</tbody>
</table>

†All units available only during the daytime.
*In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
†Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.

Zoology

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>See under Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.101</td>
<td>Biometry</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.201</td>
<td>Invertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.301</td>
<td>Vertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.112</td>
<td>Marine Ecology§</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td>45.201</td>
<td></td>
</tr>
<tr>
<td>45.121</td>
<td>Evolutionary Theory</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.122</td>
<td>Animal Behaviour</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.132</td>
<td>Ecological Physiology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.142</td>
<td>Comparative Physiology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.152</td>
<td>Population and Community Ecology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.302</td>
<td>Vertebrate Zoogeography and Evolution</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.402</td>
<td>Insects§</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.422</td>
<td>Economic Zoology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.432</td>
<td>Project‡‡</td>
<td>III</td>
<td>1</td>
<td>‡‡</td>
<td>6</td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A student will not be admitted to Level III Zoology units without special permission of the Head of School, unless Chemistry 2.001 or 2.121 and 2.131, or 2.141, has been completed.
Students who wish to complete a major in the School of Zoology must take Biometry 45.101 and at least two Level II units from one of the following Schools: Biochemistry, or Chemistry, or Physics, or Mathematics, except as detailed in an approved program.
†Level III courses conducted by the School of Zoology are available only during the daytime to part-time students enrolling for the first time in 1973 or later.
§Students intending to enrol in this unit should register with the School of Zoology for the February field trip by 14 January.
‡One of: 10.311A; 10.321A; 10.331 may be substituted for 45.101 with special permission of the Head of School.
‡‡Not offered in 1984
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.103</td>
<td>Introductory Philosophy A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.104</td>
<td>Introductory Philosophy B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2010</td>
<td>Reasoning Skills</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Any Level I Subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2020</td>
<td>Descartes</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2021</td>
<td>Spinoza and Leibniz</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.2020 or 52.163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2030</td>
<td>Predicate Logic A</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Any Level I Subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2031</td>
<td>Predicate Logic B</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.2030 or 52.1531</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2040</td>
<td>Greek Philosophy: Thales to Plato</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2050</td>
<td>Classical Political Philosophy</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2060</td>
<td>Sartre</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2130</td>
<td>British Empiricism</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2140</td>
<td>Scientific Method</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2150</td>
<td>Philosophy of Law</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.219</td>
<td>Philosophical Foundations of Marx's Thought</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2170</td>
<td>Hume</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2220</td>
<td>Classical Greek Ethics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2230</td>
<td>Theories in Moral Philosophy</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2240</td>
<td>Philosophical Study of Woman</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2250</td>
<td>Plato's Theory of Forms</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2260</td>
<td>Aesthetics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2270</td>
<td>Social and Political Philosophy</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2330</td>
<td>Psychoanalysis — Freud and Lacan</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2360</td>
<td>Theories, Values and Education</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2371</td>
<td>Plato's Later Dialogues</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>52.2250 or 52.483*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2411</td>
<td>History of Logic</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>52.2030 or 52.1531</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not offered in 1984
**Colours may differ in actual print copy.
Philosophy (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.2980</td>
<td>Seminar A</td>
<td>II/II</td>
<td>½ S2</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.423</td>
</tr>
<tr>
<td>52.2990</td>
<td>Reading Option A</td>
<td>II/II</td>
<td>½ S1</td>
<td></td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.413</td>
</tr>
<tr>
<td>52.3010</td>
<td>Seminar B</td>
<td>II/II</td>
<td>½ S1</td>
<td>or S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.433</td>
</tr>
<tr>
<td>52.3020</td>
<td>Seminar C</td>
<td>II/II</td>
<td>½ S2</td>
<td>S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.443</td>
</tr>
<tr>
<td>52.3030</td>
<td>Reading Option B</td>
<td>II/II</td>
<td>½ S1</td>
<td>or S2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.453</td>
</tr>
</tbody>
</table>

*In exceptional circumstances a student may apply to the School for variation of the prerequisite or co-requisite.

**Level II status in Philosophy consists in 1. being in second or later year of university study and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.*

History and Philosophy of Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.012</td>
<td>The Origins of Modern Science</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>26.564,</td>
</tr>
<tr>
<td>62.022</td>
<td>Materials, Machines, and Men</td>
<td>II/III</td>
<td>1 S2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>26.251</td>
</tr>
<tr>
<td>62.032</td>
<td>The Scientific Theory*</td>
<td>II/III</td>
<td>1 S2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.033</td>
<td>The Development of Theories of Matter*</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.052</td>
<td>Scientific Knowledge and Political Power</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.062</td>
<td>The Social System of Science</td>
<td>II/III</td>
<td>1 S2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.072</td>
<td>Historical Origins of the American Scientific Estate</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.082</td>
<td>Science, Technology and Developing Countries</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.103</td>
<td>The Discovery of Time</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.104</td>
<td>The Darwinian Revolution</td>
<td>II/III</td>
<td>1 S2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.106</td>
<td>Mind, Mechanism and Life</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>62.043</td>
</tr>
<tr>
<td>62.109</td>
<td>The History of Medical Theory and Practice</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>62.043</td>
</tr>
<tr>
<td>62.551</td>
<td>The Arch of Knowledge: History of the Philosophy and Methodology of Science to 1800</td>
<td>II/III</td>
<td>1 S1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>62.013</td>
</tr>
</tbody>
</table>

A pass in two of 1.001 or 1.011 2.121 & 2.131, or 2.141 10.001 or 10.011 or 10.021B and 10.021C 12.100 17.031 and 17.041 25.110 and 25.120 27.801 and 27.802 (or 27.301 and 27.302)

For footnotes, see overleaf
History and Philosophy of Science (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites††</th>
<th>Co-requisites††</th>
<th>Excluded*</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.552</td>
<td>Modern History of the Philosophy and Methodology of Science</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td>62.551 or by permission of Head of School</td>
<td></td>
<td>62.013</td>
</tr>
<tr>
<td>62.553</td>
<td>The Social Construction of Scientific Knowledge</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for 62.012</td>
<td></td>
<td>62.083</td>
</tr>
<tr>
<td>62.554</td>
<td>Computers, Brains and Minds: Foundations of the Cognitive Sciences</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for 62.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.105</td>
<td>Research Methods in History and Philosophy of Science</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>1½</td>
<td>Completion of 3 HPS units with an average of Credit or better, or by permission of Head of School</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not offered in 1984.

Board of Studies in Science and Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.313</td>
<td>Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.001 or 10.011 * end 1.001 or 1.011</td>
<td></td>
<td>79.402</td>
</tr>
<tr>
<td>68.601</td>
<td>Genetics of Behaviour I</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>17.031</td>
<td></td>
<td>79.403</td>
</tr>
<tr>
<td>68.602</td>
<td>Genetics of Behaviour II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>79.402 or 68.601</td>
<td></td>
<td>1.041 and Programs 0601, 0610, 0611, 6806</td>
</tr>
<tr>
<td>68.451</td>
<td>Biological Laboratory Computing</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>As for 10.021B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pathology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.301</td>
<td>Basic and Applied Pathology</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>70.011A 70.011C 73.111 * or equivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physiology and Pharmacology

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.111</td>
<td>Physiology IA</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.121 and 2.131, or 2.141, 10.001 or 10.011 or 10.021B and 10.021C, 17.041</td>
<td>41.101</td>
<td>73.121</td>
</tr>
<tr>
<td>73.121</td>
<td>Physiology IB</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>2.121 or 2.141, 10.001 or 10.011 or 10.021B and 10.021C, 17.041</td>
<td>2.131*</td>
<td>73.111</td>
</tr>
<tr>
<td>73.012</td>
<td>Physiology II</td>
<td>III</td>
<td>4</td>
<td>F</td>
<td>12</td>
<td>73.111, 41.101, 41.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012A</td>
<td>Membrane Biology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>Normally as for 73.012, but may be studied only with permission of Head of School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012B</td>
<td>Neurophysiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012C</td>
<td>Organ Physiology</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.022</td>
<td>Pharmacology</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>73.111 or 73.121 or 41.101A and 41.101B or 2.003J and 2.033A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The above represent the normal prerequisites for the courses in Physiology, but the Head of School may recommend that students with a good academic record be granted exemption from them.

*Not if 2.141 has been completed.

Community Medicine

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.201</td>
<td>Population Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>45.101 or 10.331 or 10.311A and 10.311B or 10.321A and 10.321B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.202</td>
<td>Quantitative Methods in Human Genetics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>See * below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.302</td>
<td>Biochemical Genetics of Man</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>43.101, 41.101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A unit of genetics and a unit of statistical methods, or theory, as approved by the Head of School.
Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.111</td>
<td>Introductory Chemistry*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>0101, 0103, 0105, 1201, 2743</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any appropriate program except 0201, 0202, 0203, 0204, 0241, 0242, 0261, 0262 and Course 3910</td>
</tr>
<tr>
<td>2.013E</td>
<td>Advanced Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.951</td>
<td>Chemistry I ME</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>Course 3681</td>
</tr>
<tr>
<td>4.802</td>
<td>Metallurgical Physics†††</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.001 or 1.011</td>
<td></td>
<td></td>
<td>0401, 0402, 0403, Course 3681</td>
</tr>
<tr>
<td>4.813</td>
<td>Mathematical Method††††</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>10.001 or 10.011</td>
<td></td>
<td></td>
<td>0401, 0402, 0403, Course 3681</td>
</tr>
<tr>
<td>5.0201</td>
<td>Engineering Dynamics 1A</td>
<td>I</td>
<td>½</td>
<td>S1 or S2</td>
<td>3</td>
<td>5.010</td>
<td></td>
<td></td>
<td>5.020</td>
</tr>
<tr>
<td>5.300</td>
<td>Engineering Dynamics 1B</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.001, 5.020 or 5.0201, 10.001</td>
<td></td>
<td></td>
<td>Course 3681</td>
</tr>
<tr>
<td>5.421</td>
<td>Mechanics of Solids I</td>
<td>I</td>
<td>½</td>
<td>S2</td>
<td>4</td>
<td>5.010</td>
<td></td>
<td></td>
<td>5.020, 8.171</td>
</tr>
<tr>
<td>5.422</td>
<td>Mechanics of Solids II/ Materials</td>
<td>II</td>
<td>1½</td>
<td>F</td>
<td>4½</td>
<td>5.020 or 5.421 or 5.4221</td>
<td></td>
<td></td>
<td>4.402, 4.442, 5.4221</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Course 3681</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>How</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>---------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>5.4221</td>
<td>Mechanics of Solids II/ Materials</td>
<td>II</td>
<td>1½</td>
<td>F</td>
<td>3½</td>
<td>F</td>
<td>5.020</td>
<td>4.402 or</td>
<td>5.422</td>
</tr>
<tr>
<td>5.622</td>
<td>Fluid Mechanics/Thermodynamics</td>
<td>II</td>
<td>1½</td>
<td>F</td>
<td>4</td>
<td>F</td>
<td>1.001, 5.010,</td>
<td>5.020 or</td>
<td>5.0201</td>
</tr>
<tr>
<td>6.010</td>
<td>Electrical Engineering</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>S2</td>
<td>Electrical and magnetism section of 1.001 or 1.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.021A</td>
<td>Basic Circuit Theory</td>
<td>II</td>
<td>½</td>
<td>S1 or</td>
<td>4</td>
<td>S1</td>
<td>6.010, 1.001,</td>
<td>6.0318</td>
<td></td>
</tr>
<tr>
<td>6.021C</td>
<td>Electronics</td>
<td>II</td>
<td>½</td>
<td>S1 or</td>
<td>4</td>
<td>S1</td>
<td>6.021A, 1.982</td>
<td>0102, 0601</td>
<td></td>
</tr>
<tr>
<td>6.613</td>
<td>Computer Organization and Design**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>6.631*** or 6.021E***, 6.021D*** or 6.620*** or 6.621***</td>
<td>6.672</td>
<td></td>
</tr>
<tr>
<td>6.632</td>
<td>Operating Systems**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>S1</td>
<td>6.631*** or 6.021E***, 6.641***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.633</td>
<td>Data Bases and Networks**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>S2</td>
<td>6.641***</td>
<td>6.622, 6.652, 14.607, 14.608</td>
<td></td>
</tr>
<tr>
<td>6.642</td>
<td>Design and Analysis of Algorithms**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>S1</td>
<td>6.641***</td>
<td>6.672</td>
<td></td>
</tr>
<tr>
<td>6.643</td>
<td>Compiling Techniques and Programming Languages**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>S2</td>
<td>6.641***</td>
<td>6.672</td>
<td></td>
</tr>
<tr>
<td>6.649</td>
<td>Computing Practice***+*++++</td>
<td>III</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td>6.641*** 6.633 or 6.643 or 6.647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.023</td>
<td>Mineral Process Engineering</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>S1</td>
<td></td>
<td>0402, 0403</td>
<td></td>
</tr>
<tr>
<td>8.171</td>
<td>Mechanics of Solids I</td>
<td>I</td>
<td>½</td>
<td>SS</td>
<td>3</td>
<td>SS</td>
<td>5.010</td>
<td>5.020, 5.421</td>
<td></td>
</tr>
<tr>
<td>8.360</td>
<td>Computing</td>
<td>I</td>
<td>½</td>
<td>SS</td>
<td>3</td>
<td>SS</td>
<td>6.611</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.801</td>
<td>Genetics I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6840</td>
</tr>
<tr>
<td>9.811</td>
<td>Biostatistics I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>45.101</td>
<td></td>
<td></td>
<td></td>
<td>6840</td>
</tr>
<tr>
<td>9.802</td>
<td>Genetics II</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>S1</td>
<td>4</td>
<td>9.801</td>
<td></td>
<td></td>
<td>Courses 3681, 3730</td>
</tr>
<tr>
<td>10.022</td>
<td>Engineering Mathematics II</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>S1</td>
<td>4</td>
<td>10.001</td>
<td></td>
<td></td>
<td>6832, 6833</td>
</tr>
<tr>
<td>10.301</td>
<td>Statistics SA</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>S1</td>
<td>2</td>
<td>10.001 or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.501</td>
<td>Accounting and Financial Management I</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.511</td>
<td>Accounting and Financial Management II</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>14.501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.522</td>
<td>Accounting and Financial Management IIIA</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.542</td>
<td>Accounting and Financial Management IIIB</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>14.511</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.563</td>
<td>Accounting and Financial Management III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.573</td>
<td>Accounting and Financial Management IIIA (Honours)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>14.542</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.583</td>
<td>Accounting and Financial Management IIIB</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>14.522</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.593</td>
<td>Accounting and Financial Management IIIIB (Honours)</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>14.522</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.601</td>
<td>Law and Society I</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.602</td>
<td>Computer Information Systems I</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.603</td>
<td>Computer Information Systems II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.602</td>
<td>6.647</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.605</td>
<td>Information Systems Implementation</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.603</td>
<td>6.647</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.607</td>
<td>Distributed Computer Systems</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.603</td>
<td>6.633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.608</td>
<td>Database Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.603</td>
<td>6.633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.611</td>
<td>Information Systems Development</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.603</td>
<td>6.633</td>
<td>Head of Department of Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.613</td>
<td>Business Finance II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Specific When Offered</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded Programs</td>
<td>Specific Programmes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
<td>---------</td>
<td>------------------------</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.614</td>
<td>Business Finance IIIA</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.613</td>
<td></td>
<td>0601, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.615</td>
<td>Business Finance IIIB</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.614</td>
<td></td>
<td>0601, 1022, 1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.851</td>
<td>Current Developments in Accounting Thought — Financial</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>Admission to BCom degree course at honours level</td>
<td>1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.852</td>
<td>Current Developments in Accounting Thought — Managerial</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.001</td>
<td>Microeconomics I</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>3½</td>
<td>2 unit A English or 2 unit English or 3 unit English</td>
<td>31-100, 21-100, 11-100</td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 1401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.002</td>
<td>Microeconomics II</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011 plus 2 unit Mathematics or 3 unit Mathematics or 4 unit Mathematics</td>
<td>51-100, 21-100, 1-100</td>
<td>0601, 1001, 1020, 1023, 5811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.003</td>
<td>Macroeconomics III</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.042</td>
<td></td>
<td>0601, 1020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.011</td>
<td>Macroeconomics I</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>3½</td>
<td>15.001</td>
<td></td>
<td>0601, 1001, 1020, 1021, 1022, 1023, 1401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.012</td>
<td>Microeconomics II (Honours)</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011 plus 2 unit Mathematics or 3 unit Mathematics or 4 unit Mathematics</td>
<td>51-100, 21-100, 1-100</td>
<td>0601, 1001, 1020, 1022, 1023, 1401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.013</td>
<td>Macroeconomics III (Honours)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.052</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.024</td>
<td>Advanced Macroeconomics</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.473, 15.013 and 15.153</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.034</td>
<td>International Trade</td>
<td>IV</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td>15.024</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.042</td>
<td>Macroeconomics II</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>0601, 1022, 1023, 5811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.052</td>
<td>Macroeconomics II (Honours)</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.012</td>
<td></td>
<td>1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.062</td>
<td>Applied Macroeconomics</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.063</td>
<td>Money Banking and the Financial System</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.013 or 15.003 or 15.062 at CR level or better</td>
<td></td>
<td>1020, 1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.072</td>
<td>Applied Microeconomics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>1023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.073</td>
<td>Natural and Environmental Resources Economics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.001 or 15.072 or 15.012</td>
<td></td>
<td>1020, 1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.103</td>
<td>International Economics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.002 or 15.012</td>
<td></td>
<td>1020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.113</td>
<td>International Economics (Honours)</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.001 or 15.012</td>
<td></td>
<td>1020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.143</td>
<td>Microeconomics III</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td></td>
<td>0601, 1001, 1020</td>
</tr>
<tr>
<td>15.153</td>
<td>Microeconomics III (Honours)</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td></td>
<td>1021</td>
</tr>
<tr>
<td>15.183</td>
<td>The Less Developed Countries in the World Economy</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>15.103 or 15.113 or 15.062 and 15.072</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.413</td>
<td>Econometrics A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3½</td>
<td>10.311B††</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.423</td>
<td>Econometrics B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3½</td>
<td>15.413 or††10.312C</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.440</td>
<td>Operations Research in Economics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3½</td>
<td>15.442 or equivalent, or 10.311B</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.434</td>
<td>Mathematical Economics A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>††</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.444</td>
<td>Mathematical Economics B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>††</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.416</td>
<td>Applied Business Statistics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>15.421 or equivalent, or 10.311B</td>
<td></td>
<td></td>
<td>1020, 1021</td>
</tr>
<tr>
<td>15.666</td>
<td>Australia in the International Economy in the Twentieth Century</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>3½</td>
<td></td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
</tr>
<tr>
<td>15.777</td>
<td>Management Strategy and Business Development</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3½</td>
<td>15.601 or 15.666</td>
<td></td>
<td></td>
<td>1020, 1021, 1022, 1023</td>
</tr>
<tr>
<td>25.5212</td>
<td>Sedimentology</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>25.120</td>
<td></td>
<td></td>
<td>0125, 1025, 2503</td>
</tr>
<tr>
<td>25.5313</td>
<td>Stratigraphy</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>25.5212</td>
<td></td>
<td></td>
<td>0125, 1025, 2503</td>
</tr>
<tr>
<td>25.523</td>
<td>Mineralogy</td>
<td>II</td>
<td>½</td>
<td>F</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0401, 0402, 0403</td>
</tr>
<tr>
<td>25.631</td>
<td>Marine Geology II</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833, 6870</td>
</tr>
<tr>
<td>25.632</td>
<td>Estuarine Geology‡</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>6833, 6833, 6870</td>
</tr>
<tr>
<td>25.6341</td>
<td>Marine Mineral Deposits</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>25.621</td>
<td>25.631</td>
<td></td>
<td>6833, 6870</td>
</tr>
<tr>
<td>25.635</td>
<td>Marine Resources</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.621</td>
<td>25.631</td>
<td></td>
<td>6833, 6870</td>
</tr>
<tr>
<td>25.9314</td>
<td>Geological Applications</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td>25.120</td>
<td></td>
<td></td>
<td>2503</td>
</tr>
<tr>
<td>25.9321</td>
<td>Geophysical and Geological Applications</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>25.120</td>
<td>25.6342</td>
<td></td>
<td>2503</td>
</tr>
<tr>
<td>27.1711</td>
<td>Introduction to Remote Sensing</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>†</td>
<td></td>
<td></td>
<td>2701, 2703, 2743, Course 3730</td>
</tr>
<tr>
<td>27.1712</td>
<td>Remote Sensing Applications</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>27.1711</td>
<td></td>
<td></td>
<td>2701, 2703, 2743, Course 3730</td>
</tr>
<tr>
<td>27.172</td>
<td>Environmental Measurements</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>27.111</td>
<td></td>
<td></td>
<td>2701, 2703, 2743, Course 3730</td>
</tr>
<tr>
<td>29.191</td>
<td>Survey Camp</td>
<td>I</td>
<td>½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6870</td>
</tr>
<tr>
<td>48.023</td>
<td>Chemical Engineering Science I</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td></td>
<td></td>
<td>6S1 1.001, 10.001</td>
<td></td>
<td>0204</td>
</tr>
<tr>
<td>48.024</td>
<td>Chemical Engineering Principles I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
<td>3S1 1.001, 10.001</td>
<td></td>
<td>1001, 5811</td>
</tr>
<tr>
<td>48.037</td>
<td>Chemical Engineering Science II</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td></td>
<td></td>
<td>7S1 2.002A, 48.023</td>
<td></td>
<td>0204</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>-----------------------------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>48.038</td>
<td>Chemical Engineering III</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4SI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.302</td>
<td>Introductory Marine Science</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.503</td>
<td>Science of Interfaces</td>
<td>III</td>
<td>1</td>
<td>†</td>
<td>5</td>
<td>1.012, 1.022, 2.002A</td>
<td></td>
<td></td>
<td>6851, 6852, 6853</td>
</tr>
<tr>
<td>70.011A</td>
<td>Histology I</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.041, 17.031***</td>
<td>70.011A***</td>
<td></td>
<td>4402‡‡</td>
</tr>
<tr>
<td>70.011B</td>
<td>Mammalian Embryology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A***</td>
<td></td>
<td>1270, 4170</td>
<td></td>
</tr>
<tr>
<td>70.011C</td>
<td>Introductory Anatomy</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.041, 17.031***</td>
<td></td>
<td>4570, 6270, 6840‡‡</td>
<td></td>
</tr>
<tr>
<td>70.021B</td>
<td>Visceral Anatomy</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A, 70.011C***</td>
<td>70.03041§, 70.304§</td>
<td></td>
<td>7001, 7002, 7003, 7073§§ Courses</td>
</tr>
<tr>
<td>70.012C</td>
<td>Neuroanatomy I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>70.011A, 70.011C***</td>
<td></td>
<td>4770 (Anatomy)</td>
<td></td>
</tr>
<tr>
<td>70.304</td>
<td>Histology II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.011A***</td>
<td>§§ §§ 70.304§</td>
<td></td>
<td>70.304§</td>
</tr>
<tr>
<td>70.305</td>
<td>Neuroanatomy II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>70.012C (CR)</td>
<td></td>
<td>3820</td>
<td></td>
</tr>
<tr>
<td>70.306</td>
<td>Functional Anatomy I</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>70.011A, 70.011C***</td>
<td></td>
<td>3820</td>
<td></td>
</tr>
<tr>
<td>70.307</td>
<td>Functional Anatomy II</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>70.012C, 70.306***</td>
<td></td>
<td>3820</td>
<td></td>
</tr>
<tr>
<td>70.3041</td>
<td>Histological and Histochemical Techniques†††</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>17.031***, 17.041*** and any 1 of 41.101, 45.301, or 70.011A***</td>
<td>§§ §§</td>
<td>3820</td>
<td>§70.304 and 70.3041 are mutually exclusive (see Subject Descriptions later in this handbook)</td>
</tr>
<tr>
<td>70.3041</td>
<td>Histological and Histochemical Techniques†††</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>17.031***, 17.041*** and any 1 of 41.101, 45.301, or 70.011A***</td>
<td>§§ §§</td>
<td>3820</td>
<td>§70.304 and 70.3041 are mutually exclusive (see Subject Descriptions later in this handbook)</td>
</tr>
<tr>
<td>73.012F</td>
<td>Clinical Physiology</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>73.111, 41.101; 41.111 or 2.002B, 70.011A, 70.011C, 80.014</td>
<td></td>
<td>3820</td>
<td></td>
</tr>
<tr>
<td>80.014</td>
<td>Human Behaviour</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td>3820</td>
<td></td>
</tr>
</tbody>
</table>

*Students who have passed 2.121 may not subsequently enrol in 2.111. A student meeting the 2.121 prerequisite is not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Once a student enrols in 2.111 he must pass 2.111 before he can proceed to 2.121 or 2.131. A student may not count more than two Level I Chemistry units towards BSc degree requirements.

**In exceptional circumstances the Head of School may give permission for students outside the specified programs to undertake one of these subjects.

***Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable.

****Not available in Year 1 of programs 0601, 1001, 1020, 1021, 6811, 1401.

*****Can only be counted with at least 3 other Level III Computer Science units.

†Not offered in 1984.

‡‡Consult with Head of Department.

††May be counted as Level III for Courses 3611, 3661, 3681 and 3701.

†††May be counted as a Level II unit for Courses 3611, 3661, 3681 and 3701 in special circumstances only.

‡‡‡May be counted as a Level II unit for Courses 3611, 3661, 3681 and 3701 in special circumstances only.

§Excluded by 25 211.

§§70.011A, 70.304 and 70.3041 only.

§§§May not be offered in 1984 if insufficient enrollments.

§§‡‡‡Anatomy units may be counted as Level III in any program on obtaining special permission of the Head of the School of Anatomy.

¶¶See subject description for prerequisite requirements.
A student planning to complete a program involving any unit/units from this table must seek the approval of the Head of the School in which the unit is taught.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Prerequisites in Years 1, 2, 3 or 4</th>
<th>Number of Level III Units Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.104</td>
<td>Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101, 0103, 0105, 0125, 0161</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 6201</td>
<td>5</td>
</tr>
<tr>
<td>1.304</td>
<td>Applied Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101, 0103, 0105, 0125, 0161</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5803</td>
<td>6</td>
</tr>
<tr>
<td>1.504</td>
<td>Theoretical Physics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0101, 0105, 0161</td>
<td>7</td>
</tr>
<tr>
<td>1.604</td>
<td>Biophysics IV (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0106</td>
<td>6</td>
</tr>
<tr>
<td>2.004</td>
<td>Chemistry IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Chemistry units</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5821</td>
<td>7</td>
</tr>
<tr>
<td>4.004</td>
<td>Metallurgy IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0401, or 0402</td>
<td>7-8</td>
</tr>
<tr>
<td>6.606</td>
<td>Computer Science IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>6.613, 6.632, 6.642, 6.643</td>
<td>8</td>
</tr>
<tr>
<td>10.123</td>
<td>Pure Mathematics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1003, 1013 or 1025</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>*</td>
</tr>
<tr>
<td>10.223</td>
<td>Applied Mathematics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1005, 1015 or 1025</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>10.233</td>
<td>Applied Mathematics Honours (Short Course)</td>
<td>IV</td>
<td>6</td>
<td>F</td>
<td>Program 1021 or 1023</td>
<td>*</td>
</tr>
<tr>
<td>10.323</td>
<td>Theory of Statistics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1007 or 1017 or 0611</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>10.423</td>
<td>Theoretical Mechanics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1009, 1019 or 10423</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>12.403</td>
<td>Psychology IV (Research)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1201, 1270 or 7312</td>
<td>8</td>
</tr>
<tr>
<td>12.404</td>
<td>Psychology IV (Course Work)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1201 or 1270</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Prerequisites in Years 1, 2, 3 or 4</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>14.851</td>
<td>Current Developments in Accounting Thought — Financial</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td></td>
<td>See program 1023</td>
</tr>
<tr>
<td>14.852</td>
<td>Current Developments in Accounting Thought — Managerial</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td></td>
<td>See program 1023</td>
</tr>
<tr>
<td>15.024</td>
<td>Advanced Macroeconomics</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td></td>
<td>See program 1021</td>
</tr>
<tr>
<td>15.034</td>
<td>International Trade</td>
<td>IV</td>
<td>2</td>
<td>S2</td>
<td></td>
<td>See program 1021</td>
</tr>
<tr>
<td>25.410</td>
<td>Resource Geology†</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.4101</td>
<td>Topics in Advanced Geology†</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.420</td>
<td>Field Project†</td>
<td>IV</td>
<td>5</td>
<td>S2</td>
<td></td>
<td>Programs 2501 and 5831</td>
</tr>
<tr>
<td>25.412</td>
<td>Sedimentary Basin Resources†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.414</td>
<td>Mineral Resources†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.415</td>
<td>Engineering and Environmental Geology†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.931</td>
<td>Geophysics†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.434</td>
<td>Geology IV Honours (Single Major)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Programs 5854 or 5855 0125, 0225, 1025, 2543, 2725 Program 5832 7 Program 2701, 2703, 2725 or 2743 8 4 Level III units in a discipline, or disciplines, related to Biotechnology 8 4 Level III Botany units or a closely related discipline 8</td>
</tr>
<tr>
<td>27.604</td>
<td>Geography IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.103</td>
<td>Biochemistry IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>4 Level III Biochemistry units 8 Program 5841 or 5842 7 4 Level III units in a discipline, or disciplines, related to Biotechnology 8</td>
</tr>
<tr>
<td>42.103</td>
<td>Biotechnology IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.103</td>
<td>Botany</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.103</td>
<td>Microbiology Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 5854 or 5855 0125, 0225, 1025, 2543, 2725 Program 5832 7 Program 2701, 2703, 2725 or 2743 8 4 Level III Zoology units 8 Program 5866 or 5867 7 Program 6200,6201, 6225, 6243, 6245, 6270 8 Program 0162, 0262 or 4162 8 Program 6831, 6832, 6833 or 6834 8</td>
</tr>
<tr>
<td>45.103</td>
<td>Zoology IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.014</td>
<td>History and Philosophy of Science Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 0162, 0262 or 4162 8 4 Level III Anatomy units 6</td>
</tr>
<tr>
<td>62.024</td>
<td>Science Studies Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6834 7 Program 0125 8</td>
</tr>
<tr>
<td>68.304</td>
<td>Marine Science IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6831, 6832, 6833 or 6834 8</td>
</tr>
<tr>
<td>68.404</td>
<td>Genetics IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6840 7 Program 0125 8</td>
</tr>
<tr>
<td>68.430</td>
<td>Combined Geology Physics Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6840 7 Program 0125 8</td>
</tr>
<tr>
<td>70.013</td>
<td>Anatomy IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6840 7 Program 0125 8</td>
</tr>
<tr>
<td>72.402G</td>
<td>Principles of Disease Processes</td>
<td>IV</td>
<td>1</td>
<td>F</td>
<td></td>
<td>Program 6840 7 Program 0125 8</td>
</tr>
<tr>
<td>73.013</td>
<td>Physiology IV</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6840 7 Program 0125 8</td>
</tr>
<tr>
<td>73.023</td>
<td>Pharmacology</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6840 7 Program 0125 8</td>
</tr>
<tr>
<td>79.014</td>
<td>Human Genetics</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>Program 6840 7 Program 0125 8</td>
</tr>
</tbody>
</table>

Higher level units of Mathematics must be included at Levels I, II and III in order to comply with the prerequisites for admission to Level IV Mathematics. Since entry to Level IV is only with approval of the Head of School, students should discuss their Year 3 program with a Professor of the Department concerned. In special circumstances additional prerequisites may be required, or some of those listed may be waived.

§Students entering 1 504 from the 0101 program should have demonstrated adequate mathematical ability.

Field work of up to 7 days duration is a compulsory part of the subject.

†Students undertaking Geology IV Honours in program 2501 or 5831 must enrol in 25.410, 25.4101, 25.420 and one of the subjects 25.412, 25.414, 25.415, or 25.931.
Faculty of Biological Sciences
Faculty of Biological Sciences

Introduction

The Schools of the Faculty of Biological Sciences contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises the undergraduate course in Psychology (3430). The Schools of the Faculty also offer facilities for students to proceed to the award of a Graduate Diploma in Biochemical Engineering (5320); Graduate Diploma in Biotechnology (5340); to masters degrees in Biological Technology (8260) and in Psychology (8250 and 8255); and to the award of masters degrees by research and the award of the degree of Doctor of Philosophy.

Students requiring advice about the undergraduate course should contact
School of Psychology ... Dr K. R. Llewellyn
Mr T. J. Clulow

Students requiring advice about graduate studies should check details later in this handbook and also enquire from the Head of the appropriate School.
Course Outline 3430

3430 Psychology Degree Course — Full-time Course
Bachelor of Science BSc

The four-year course in Psychology, which leads to the award of the degree of Bachelor of Science, is designed to meet the requirements of students who intend to become professional psychologists, as either practitioners or research workers. It provides extensive study of psychological theory and practice, supported by an appropriate selection of other subjects.

The course is available on a full-time basis only. Entry into the course is subject to a quota which is determined from time to time.

In the fourth year, students undertake a program of study which includes courses in the major areas of general psychology and in a number of applied fields. In addition, each student must complete either a research thesis or a group research project.

Details of the qualifications required for admission to the Psychology Course leading to the award of BSc, the course requirements for Pass and Honours at graduation and rules governing admission with advanced standing are given below.

Rules governing the Psychology Course

1. Applicants for admission to the Course must be matriculated to this University, and also have satisfied either the entrance requirements for 10.001 Mathematics I or 10.021B General Mathematics I or 10.021C General Mathematics I C or for 17.031 Biology A and 17.041 Biology B.

2. (1) In order to qualify for admission to the award of degree of BSc in Psychology under these regulations a candidate must attend classes and satisfy the examiners in the following subjects:

(a) Each of:
- 12.100 Psychology I
- 12.200 Research Methods II
- 12.201 Basic Psychological Processes II
- 12.202 Complex Psychological Processes II
- 12.203 Psychology IIA

A total of 8 Level III units of Psychology including 12.300, 12.305 and either 12.304 or 12.322 from Group A (see Table 1). Additionally, students intending to take the research alternative in Psychology Level IV Honours are required to include 12.301 Research Methods III B from Group B (see Table 1).

(In special cases, the Head of the School of Psychology or his representative may approve of the substitution of some other appropriate course or equivalent units.)

and either
- 12.400 Psychology IV (Research — Course 3430) or 12.401 Psychology IV (Course Work — Course 3430) leading to the award of the degree of Bachelor of Science in Psychology.

(b) Five other subjects (or their equivalent in units) selected to meet the following requirements:

(i) that they shall include at least one of:
- 10.011 Higher Mathematics I or
- 10.001 Mathematics I or
- 10.021B General Mathematics I B and 10.021C General Mathematics I C or for 17.031 Biology A and 17.041 Biology B.

(They may include both the above alternatives.)
and corequisites for the subjects chosen.

Progression in the Course shall be by subjects, and the way as to fit in with the timetable.

During enrolment. The courses must be chosen in such a way as to fit in with the timetable. The student should refer to the appropriate Faculty Handbook for a statement of subject prerequisites and/or corequisites.

1. Graduates of the University of New South Wales may be admitted to the Psychology Course leading to the award of the degree of BSc with exemption from no more than five subjects or their unit equivalents that they have completed. No more than two Psychology subjects may be included in these exemptions.

2. Undergraduates of the University of New South Wales who transfer from another course to the Psychology Course may be admitted to the Psychology Course with exemption in no more than seven Psychology Course subjects or their unit equivalents.

3. Graduates or undergraduates of other universities may be admitted to the Psychology Course with advanced standing.

4. Students admitted under Rule 3 who have satisfied the examining departments in subjects of the same title or subject matter as those permissible in the Psychology Course may, subject to the approval of the appropriate Heads of School, be granted exemption in no more than five subjects, of which no more than two may be Psychology subjects.

Examples of recognized sequences are:

- 10.001 Mathematics I, followed by two Mathematics Level II units (chosen from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112) or by both of 10.311A Probability and Random Variables and 10.311B Statistical Inference;

- 17.031 Biology A and 17.041 Biology B followed by two Level II units chosen from the following units according to the regulations of the Board of Studies in Science and Mathematics:

 - 41.101 Biochemistry (equivalent to 2 units)
 - 41.111 Biochemical Control
 - 43.101 Introductory Genetics
 - 45.101 Biometry
 - 45.301 Vertebrate Zoology
 - 73.121 Physiology I (equivalent to 2 units)
 - 68.601 Genetics of Behaviour I
 - 68.602 Genetics of Behaviour II

- 53.001 Introduction to Sociology followed by twelve credit points value of Sociology Upper Level subjects

- 15.001 Microeconomics I and 15.011 Macroeconomics I followed by twelve credit points value of Economics Upper Level subjects

- Political Science I followed by twelve credit points value of Political Science Upper Level subjects

- 52.103 Introductory Philosophy A and 52.104 Introductory Philosophy B followed by twelve credit points value of Philosophy Upper Level subjects

(ii) that they shall include at least one of:

- 53.001 Introduction to Sociology or 15.001 Microeconomics I or Political Science I (select two of 54.1002 Power and Democracy in Australia, 54.1003 Australian Political Institutions, 54.1004 Government in the Modern World and 54.1005 A History of Political Thought) or

- 52.103 Introductory Philosophy A and 52.104 Introductory Philosophy B.

or with the approval of the Head of the School of Psychology, one other Arts I subject.

(iii) that they shall include at least one subject (two Science and Mathematics Level II units or twelve Arts Upper Level credit points are equivalent to one Level II subject and three Science and Mathematics Level III units are equivalent to one Level III subject) which together with the subject meeting the requirements of (i) or (ii) immediately above constitutes a recognized sequence of two courses.

Recommended Psychology Course patterns

The course requirements have been so designed that they allow for:

1. a solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques;

2. supporting studies in mathematics and/or biology (a minimum of one such course is compulsory);

3. supporting studies in the social sciences (a minimum of one such course is compulsory); and
4. the special needs, interests and academic or vocational background of individual students.

For these reasons, no course patterns are prescribed. The patterns to be completed by students who are admitted with advanced standing will take into account the subjects credited.

Students commencing university studies for the first time will arrange their pattern of supporting subjects in consultation with the Head of the School or his representative before completing enrolment.

In Year 1, students must take four subjects which include 12.100, either Biology I or a first-year Mathematics, one of Economics I, Sociology I, Philosophy I or Political Science I or one other Arts subject, and a fourth subject. (It should be noted that the University has arranged these subjects so that there is no clash of timetables. If other subjects are taken, care must be taken to check that there is no timetable clash in the program that is chosen.)

In Year 2 students take 12.200, 12.201, 12.202, 12.203, a second-year follow on subject from one of the non-Psychology subjects completed in Year 1, and one other Level I, II or III non-Psychology subject. Eight Level III units of Psychology are taken in Year 3, while Year 4 consists of either 12.400 or 12.401 only.

Some examples of patterns, based on different supporting subjects are suggested below:

Compulsory Psychology Subjects

Year 1

12.100

Year 2

12.200, 12.201, 12.202, 12.203

Year 3

8 Psychology Level III units including 12.300, 12.305 and either 12.304 or 12.322 from Group A. Additionally, if intending to take the research alternative in Psychology IV 12.301 must be taken from Group B.

Year 4

Either 12.400 or 12.401

With Pure Mathematics or Statistics as the main supporting subject

Year 1

10.001 Mathematics I

A Level I Social Science subject, and

One other Level I subject

Year 2

Either two units of Level II Pure and Applied Mathematics, or 10.311A and 10.311B Theory of Statistics Level II, and

One other Level I or II subject

With Biochemistry or Physiology as the main supporting subject

Year 1

2.121 Chemistry IA and 2.131 Chemistry IB

Either 10.001 Mathematics I, or 10.021B General Mathematics IB and 10.021C General Mathematics IC, and

17.031 Biology A and 17.041 Biology B

Year 2

A Level I Social Science subject, and

Either 41.101 Biochemistry, or 73.121 Physiology IB

With Zoology or Genetics as the main supporting subject

Year 1

10.001 Mathematics I, or 10.021B General Mathematics IB and 10.021 General Mathematics IC

17.031 Biology A and 17.041 Biology B, and

A Level I Social Science subject

Year 2

Either 45.101 Biometry, 45.201 Invertebrate Zoology, 45.301 Vertebrate Zoology and one other unit for Zoology, or

43.101 Introductory Genetics, 68.601 Genetics of Behaviour I

68.602 Genetics of Behaviour II and one other unit for Genetics

With Social Sciences as the main supporting subject

Year 1

10.001 Mathematics I, or 10.021B General Mathematics IB and 10.021C General Mathematics IC, or

17.031 Biology A and 17.041 Biology B

A Level I Social Science subject, and

One other Level I subject

Year 2

An Upper Level Social subject, and

One other Level I or II subject
Faculty of Science
Faculty of Science

Introduction

The Schools of the Faculty of Science contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises the undergraduate courses in Pure and Applied Chemistry (3910) and Optometry (3950) and the graduate diploma course Food and Drug Analysis (5510). The Schools of the Faculty also offer facilities for students to proceed to Masters Degrees in Chemistry (8770), Mathematics (8740), Optometry (8760), Physics (8730), Statistics (8750) and Master of Science and Society (8780), to the award of masters degrees by research and to the award of the degree of Doctor of Philosophy.

Students requiring information about the undergraduate course should contact the representative of the appropriate School:
School of Chemistry .. Mr W. J. Dunstan
School of Optometry .. Dr J. Alexander

Students requiring information about the graduate studies which are available should seek advice from:
Graduate Diploma in Food and Drug Analysis........................ Associate Professor G. Crank
or
in the case of masters and doctors degrees from:
School of Chemistry .. Associate Professor B. J. Orr
School of Mathematics .. Associate Professor M. N. Barber
School of Optometry ... Professor H. B. Collin
School of Physics .. Associate Professor H. G. L. Coster
Faculty of Science

Course Outlines

3910
Pure and Applied Chemistry Course
Specialization in Chemistry

While some students will wish to include a small number of chemistry units in courses leading to major studies in other disciplines, there will be others who wish to specialize in chemistry to varying degrees.

1. Major in Chemistry in the Science and Mathematics Course.
For purposes of graduation Science and Mathematics course regulations require students to study a minimum of four Level III units in related disciplines, such a combination being regarded as major study in that discipline or group of disciplines.

When studies in chemistry are required to be regarded as being major studies at least seven units of chemistry must be included after completing Level I Chemistry and these must include at least three of the four Level II units.

Students wishing to take 8 or more Level III Chemistry units are required to transfer to the Pure and Applied Chemistry Course (3910) before the commencement of Year 2. If Year 2 studied in the Science and Mathematics course is similar to Year 2 of Course (3910), the transfer may still be made before the commencement of Year 3.

2. Pure and Applied Chemistry Course. This course which allows intensive specialization in chemistry according to a prescribed pattern, leads to the award of the Bachelor of Science degree, and is administered by the Faculty of Science. It may be taken at pass or honours standard. The pass course requires full-time attendance at the University for three years.

An additional year is required for the honours degree. The program may also be extended over a longer period (previously referred to as part-time).

A total of 23 units is required for graduation at the pass level. First years is similar to the Science and Mathematics Course and covers 8 units. Of the remaining 15 units at least 12 must be chemistry units and must include the following: 2.002A, 2.002B, 2.002D, 2.003B, 2.003C, 2.003D, 2.003H, 2.013A, 2.042C and 4 other Chemistry units.

The remaining 2 units may be chosen from any of the Science and Mathematics course topics listed in Table 1.

In all cases prerequisites, co-requisites and exclusions are similar to those prescribed for the units in the Science and Mathematics course.

Electives offered by the School of Chemistry

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>II/III</td>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>2.121 &</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.131, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.001 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.011 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.021B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/III</td>
<td>2.003H</td>
<td>Molecular Spectroscopy and Structure</td>
<td>2.121 &</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.131, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/III</td>
<td>2.003J</td>
<td>Fundamentals of Biological and Agricultural Chemistry</td>
<td>2.121 &</td>
<td></td>
<td>2.013L,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.131, or</td>
<td></td>
<td>41.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>No.</td>
<td>Title</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------------------------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>II/III</td>
<td>2.003K</td>
<td>Solid State Chemistry</td>
<td>2.121 & 2.131, or 2.141</td>
<td>10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td>II/III</td>
<td>2.013A</td>
<td>Introductory Quantum Chemistry</td>
<td>1.001 or 1.011 and 2.121 & 2.131, or 2.141</td>
<td>10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003A</td>
<td>Physical Chemistry</td>
<td></td>
<td>2.002A</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003B</td>
<td>Organic Chemistry</td>
<td></td>
<td>2.002B</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003C</td>
<td>Inorganic Chemistry</td>
<td></td>
<td>2.042C</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003D</td>
<td>Instrumental Analysis</td>
<td>2.002D and 2.002A</td>
<td>2.003L</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003L</td>
<td>Applied Organic Chemistry</td>
<td>2.002B</td>
<td>2.033L</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003M</td>
<td>Organometallic Chemistry</td>
<td></td>
<td>2.002B</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013B</td>
<td>Synthetic Organic Chemistry</td>
<td></td>
<td>2.003B</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013C</td>
<td>Advanced Inorganic Chemistry</td>
<td>2.042C 2.003C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013D</td>
<td>Advanced Analytical Chemistry</td>
<td>2.002D 2.003D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013E</td>
<td>Advanced Nuclear and Radiation Chemistry</td>
<td>2.003E Not available in Course 3910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.013L</td>
<td>Chemistry and Enzymology of Foods</td>
<td>2.002B 2.003J, 2.043L, 2.023L, 2.053L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.023A</td>
<td>Quantum Theory of Atoms and Molecules</td>
<td>2.002A and 10.2111 and 10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.023B</td>
<td>Natural Product Chemistry</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.023L</td>
<td>Biological and Agricultural Chemistry</td>
<td>2.002B 2.053L, 2.013L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.033A</td>
<td>Physical Chemistry of Macromolecules</td>
<td>2.002B 1.012 or 2.022A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.043A</td>
<td>Environmental Chemistry</td>
<td>2.002A 2.013L, 2.023L, 2.053L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.043L</td>
<td>Chemistry and Enzymology of Foods† (double unit)</td>
<td>2.002B 2.013L, 2.023L, 2.043L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.053A</td>
<td>Chemical Kinetics and Reaction Mechanisms</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.053L</td>
<td>Biological and Agricultural Chemistry† (double unit)</td>
<td>2.002B 2.013L, 2.023L, 2.043L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.063A</td>
<td>Advanced Molecular Spectroscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Only one of these double units may be chosen.

3910

Pure and Applied Chemistry — Full-time Course

Bachelor of Science BSc

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.011</td>
<td>Higher Physics I or Physics I</td>
</tr>
<tr>
<td>2.121</td>
<td>Chemistry IA & IB</td>
</tr>
<tr>
<td>2.141</td>
<td>Chemistry IM</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics I or Mathematics I</td>
</tr>
<tr>
<td>10.021B</td>
<td>General Mathematics IB & IC</td>
</tr>
<tr>
<td>10.021C</td>
<td>General Mathematics IC</td>
</tr>
<tr>
<td>5.010</td>
<td>Engineering A and Engineering B</td>
</tr>
<tr>
<td>5.020</td>
<td>Engineering B or Engineering C</td>
</tr>
<tr>
<td>17.031</td>
<td>Biology A and Biology B</td>
</tr>
<tr>
<td>17.041</td>
<td>Biology B or Human Geography</td>
</tr>
<tr>
<td>25.110*</td>
<td>Earth Materials and Processes and</td>
</tr>
<tr>
<td>25.120**</td>
<td>Earth Environment and Dynamics</td>
</tr>
<tr>
<td>27.301</td>
<td>Introduction to Physical Geography and Human Geography</td>
</tr>
</tbody>
</table>

*Field work of up to 1½ days is a compulsory part of the subject.
**Field work of up to 3½ days is a compulsory part of the subject.
Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002A Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.002B Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.002D Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003H Molecular Spectroscopy and Structure</td>
<td>3</td>
</tr>
<tr>
<td>2.042C Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Science Electives* (2 units)</td>
<td>6</td>
</tr>
<tr>
<td>One General Studies Elective</td>
<td>1½</td>
</tr>
</tbody>
</table>

Total: 22½

*To be chosen from units in the Science and Mathematics course in accordance with Science course requirements. The following are recommended.

Chemistry

Any non-compulsory units for which prerequisites are held.

Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.031 Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>10.331 Statistics SS</td>
<td>2</td>
</tr>
<tr>
<td>10.111A</td>
<td></td>
</tr>
<tr>
<td>10.1113</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>10.1114 Mathematics II</td>
<td>6</td>
</tr>
<tr>
<td>10.2111</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>10.2112</td>
<td></td>
</tr>
</tbody>
</table>

Physics

Choose 2 of

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9222 Electronics</td>
<td>3</td>
</tr>
<tr>
<td>1.9322 Introduction to Solids</td>
<td></td>
</tr>
<tr>
<td>1.9422 Introduction to Physics of Measurement</td>
<td></td>
</tr>
</tbody>
</table>

Biological Science

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.031 Biology A and</td>
<td>6</td>
</tr>
<tr>
<td>17.041 Biology B</td>
<td></td>
</tr>
<tr>
<td>41.101 Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>44.101 Introductory Microbiology</td>
<td>6</td>
</tr>
</tbody>
</table>

Geology

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.110 Earth Materials and Processes</td>
<td>6</td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>25.120 Earth Environment and Dynamics</td>
<td></td>
</tr>
<tr>
<td>25.211 Earth Materials I</td>
<td>3</td>
</tr>
<tr>
<td>25.221 Earth Materials II</td>
<td>3</td>
</tr>
<tr>
<td>25.212 Earth Environment I</td>
<td>3</td>
</tr>
<tr>
<td>25.223 Earth Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.003B Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003C Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003D Instrumental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>2.013A Introductory Quantum Chemistry</td>
<td></td>
</tr>
<tr>
<td>Advanced Electives* (4 units)</td>
<td>12</td>
</tr>
<tr>
<td>One General Studies Elective</td>
<td>1½</td>
</tr>
<tr>
<td>Science Electives* (2 units)</td>
<td></td>
</tr>
</tbody>
</table>

Total: 25½

*Chosen from Level II/III or Level III units offered by the School of Chemistry in the Science and Mathematics course and in accordance with Science and Mathematics course regulations.

Year 4 Honours

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.004 Chemistry Honours</td>
<td>24</td>
</tr>
</tbody>
</table>

Extended Time Program

The course in Pure and Applied Chemistry may be extended over a longer period of time (previously referred to as part-time); however, evening instruction is not necessarily offered in all subjects.

This provision has been designed for students employed in the chemical industry, but employment in this industry is not obligatory for extending the time for the program of study.

A possible way in which this extended time program may be done over six years is set out below:

Stages 1 and 2

Two of the following subjects are taken in the first year and the other two in the second year (as directed).

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.011 Higher Physics I or</td>
<td></td>
</tr>
<tr>
<td>1.001 Physics I</td>
<td></td>
</tr>
<tr>
<td>2.121 Chemistry IA and</td>
<td></td>
</tr>
<tr>
<td>2.131 Chemistry IB or</td>
<td></td>
</tr>
<tr>
<td>2.141 Chemistry IM</td>
<td></td>
</tr>
<tr>
<td>10.001 Mathematics I</td>
<td></td>
</tr>
<tr>
<td>10.021B General Mathematics IB and</td>
<td></td>
</tr>
<tr>
<td>10.021C General Mathematics IC</td>
<td></td>
</tr>
</tbody>
</table>

Plus one of

<table>
<thead>
<tr>
<th>Course</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.010 Engineering A and</td>
<td></td>
</tr>
<tr>
<td>5.020 Engineering B or</td>
<td></td>
</tr>
<tr>
<td>5.030 Engineering C or</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>17.031 Biology A and</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>17.041 Biology B or</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>25.110* Earth Materials & Processes</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>25.120** Earth Environment & Dynamics or</td>
<td></td>
</tr>
<tr>
<td>27.301 Introduction to Physical Geography</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>27.302 Introduction to Human Geography***</td>
<td>4½</td>
</tr>
</tbody>
</table>

*Field work of up to 1½ days is a compulsory part of the subject.
**Field work of up to 3½ days is a compulsory part of the subject.
***Field work (to be arranged by the School of Geography) is a compulsory component of each unit.
Stage 3

2.002A Physical Chemistry 3
2.042C Inorganic Chemistry 3
Science Electives* (two units) 6

Stage 4

2.022B Organic Chemistry 3
2.022D Analytical Chemistry 3
2.003H Molecular Spectroscopy and Structure 3
General Studies Elective 1½

Stage 5

2.003B Organic Chemistry 3
2.003C Inorganic Chemistry 3
2.003D Instrumental Analysis 3
2.013A Introductory Quantum Chemistry 3
General Studies Elective 1½

Stage 6

Advanced Electives* (4 units) 12

Honours

The requirements for admission to the honours course and the program of study are the same as for Year IV of the full-time course. A student wishing to do honours over a longer period should consult the Head of the School of Chemistry. Students are, however, advised to make every effort to do the honours year full time.

3950 Optometry Course

The School of Optometry provides a four year full-time course in Optometry leading to the award of the degree of Bachelor of Optometry. Students who have completed the first year of a science course including physics, chemistry, mathematics and general and human biology or zoology at any Australian university are eligible for selection for admission to the second year of the course. Second, third and fourth years are devoted to professional training in optometry including clinical optometry in the final year.

3950 Optometry — Full-time Course

Bachelor of Optometry — BOptom

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics I 6</td>
</tr>
<tr>
<td>2.121 Chemistry IA and 6</td>
</tr>
<tr>
<td>2.131 Chemistry IB or 6</td>
</tr>
<tr>
<td>2.141 Chemistry IM 6</td>
</tr>
<tr>
<td>10.001 Mathematics I or 6</td>
</tr>
<tr>
<td>10.011 Higher Mathematics I or 6</td>
</tr>
<tr>
<td>10.021B General Mathematics IB and 6</td>
</tr>
<tr>
<td>10.021C General Mathematics IC 6</td>
</tr>
<tr>
<td>17.031 Biology A and 6</td>
</tr>
<tr>
<td>17.041 Biology B 6</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.811 Optometry I 10</td>
</tr>
<tr>
<td>31.821 Anatomy and Physiology of the Eye and Visual System 6</td>
</tr>
<tr>
<td>73.011A Principles of Physiology 6</td>
</tr>
<tr>
<td>General Studies Elective 2</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.100 Psychology I 5</td>
</tr>
<tr>
<td>31.812 Optometry II 15</td>
</tr>
<tr>
<td>31.831 Diseases of the Eye 3</td>
</tr>
<tr>
<td>Two General Studies Electives 4</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Year S1 S2</td>
</tr>
<tr>
<td>12.741 Psychology (Optometry) 2 2</td>
</tr>
<tr>
<td>31.813 Optometry III 6 6</td>
</tr>
<tr>
<td>31.841 Clinical Optometry 15 15</td>
</tr>
</tbody>
</table>

Session 2

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.001 Indication for Medical Referral 0 1</td>
</tr>
</tbody>
</table>

In special cases, students who do not meet the prerequisites for admission to 2.121 Chemistry IA may be enrolled in 2.111 Introductory Chemistry in Session 1, 2.121 Chemistry IA in Session 2 and be permitted to carry 2.131 Chemistry IB into Session 1 of Year 2.
Conditions for the combined course leading to the award of the degrees of BSc BOptom in the Faculty of Science

1. Undergraduates* of the University of New South Wales who have satisfied the examiners in at least the first two years of the Optometry degree course may be admitted to the Science degree course with advanced standing for the purpose of qualifying for the award of the two degrees of BSc BOptom. Such undergraduates' performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. In order to qualify for the award of the degree of BSc, students so admitted shall be required to complete the appropriate general studies subjects and no less than four units of either Level II or Level III and four other Level III units, in accordance with the Science and Mathematics Course regulations.

The units submitted for the award of the Bachelor's degree under these regulations must include at least four Level III units chosen from related disciplines in accordance with the Science Course regulations.

3. In order to qualify for the award of the degree of BOptom, students so admitted shall complete the requirements of the Optometry degree course.

*In Rule 1, the word 'undergraduates' includes graduands, i.e., a person may be admitted under these rules if he has met all requirements for a first degree which has not yet been conferred on him and his admission under these rules shall be no bar to the subsequent award of the first degree.
Graduate Study
Conditions of the Award of Higher Degrees
Subject Descriptions

Sciences
Faculty of Biological Sciences and
Faculty of Science

Graduate Study

Faculty of Biological Sciences and
Faculty of Science Enrolment Procedures

All students re-enrolling in 1984 or enrolling in graduate courses should obtain a copy of the free booklet Enrolment Procedures 1984 available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Faculty of Biological Sciences

Facilities are available in each of the Schools for research leading to the degrees of Master of Science and Doctor of Philosophy. The School of Biotechnology offers a graduate diploma course in Biochemical Engineering, a graduate diploma in Biotechnology and a Master’s course in Biotechnology by formal study, and the School of Psychology offers Master of Psychology and Master of Science (Psychology) degree courses.

Higher Degree Qualifying Program

Students without a BSc Honours degree wishing to register as higher degree candidates must usually complete a qualifying program, admission to which is subject to the approval of the Faculty Higher Degree Committee.

Applicants must normally have a degree or diploma in an appropriate field of study from an approved university or institution, and in the case of a diploma, appropriate professional experience.

Undergraduates of this University may be admitted to the full-time or part-time Honours undergraduate course. Other applicants may be admitted to a full-time, part-time or external qualifying program. The duration of the qualifying program is a minimum of one year for full-time and two years for part-time or external students.

Content of Qualifying Program

The qualifying program consists of the whole of the usual program for the final Honours year of the undergraduate course, the following being the prescribed Level IV subjects:

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.103</td>
<td>Biochemistry Honours</td>
</tr>
<tr>
<td>42.103</td>
<td>Biotechnology Honours</td>
</tr>
<tr>
<td>43.103</td>
<td>Botany Honours</td>
</tr>
<tr>
<td>44.103</td>
<td>Microbiology Honours</td>
</tr>
<tr>
<td>12.403</td>
<td>Psychology IV (Research)</td>
</tr>
<tr>
<td>45.103</td>
<td>Zoology Honours</td>
</tr>
</tbody>
</table>

The qualifying program is graded in the usual way, and in appropriate cases the results are expressed as a grading equivalent to Honours.

Alternative Qualifying Program

Applicants who cannot attend the University regularly for the above programs may be admitted as external qualifying students to a program similar to a standard Honours year. The following are the alternative qualifying subjects:

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.999G</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>42.999G</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>43.999G</td>
<td>Botany</td>
</tr>
<tr>
<td>44.999G</td>
<td>Microbiology</td>
</tr>
<tr>
<td>12.999G</td>
<td>Psychology</td>
</tr>
<tr>
<td>45.999G</td>
<td>Zoology</td>
</tr>
</tbody>
</table>
The results in alternative qualifying subjects are graded Pass or Fail only.

Fees
Candidates enrolled in the Alternative Qualifying Program are exempt from student service fees.

Biotechnology

5320

Biochemical Engineering Graduate Diploma Course

Graduate Diploma GradDip

The School of Biotechnology, conjointly with the School of Chemical Engineering and Chemical Technology, offers a course in biochemical engineering which leads to the award of a graduate diploma (GradDip). The course is open to graduates in the biological sciences, chemistry, chemical engineering or agriculture, and can be completed in one year of full-time or over a longer period by part-time study. It contains a component of graduate level 'bridging' subjects, designed to facilitate the introduction of graduates with a variety of backgrounds to the current practice of biochemical engineering.

The normal entrance requirement is an appropriate degree or equivalent qualification in biological sciences, chemistry, chemical engineering or agriculture. Intending students are referred to the conditions for the award of Graduate Diplomas set out later in this handbook.

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.211G Principles of Biology</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>42.212G Principles of Biochemistry</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>44.101 Introductory Microbiology</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>48.282G Thermodynamics</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>48.284G Mass Heat and Momentum Transfer</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.213G Biochemical Methods</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>42.214G Biotechnology</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>48.283G Process Dynamics and Biochemical Engineering Design</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

5340

Biotechnology Graduate Diploma Course

Graduate Diploma GradDip

The graduate diploma course provides the opportunity for graduates with no previous tuition in biotechnology to undertake training in this discipline.

A degree in a science-based course is required for admission. If the degree course has not included a biology component, the candidate is required to undertake some basic biology training as a prerequisite or co-requisite.

Under normal circumstances, students whose previous training has included a substantial component of biotechnology will not be admitted to the course.

The course comprises study of undergraduate and graduate formal subjects, plus extensive laboratory training in biotechnology.

The diploma is awarded after one year's full-time study, consisting of an average of 19 hours per week, or two years part-time study, consisting of an average of 9½ hours per week. The program includes the listed obligatory subjects plus sufficient of the listed elective subjects to meet the hours of study required. The electives include subjects necessary for students without previous tuition in biochemistry and/or microbiology, as well as alternatives for those with previous tuition in these disciplines. The choice of electives in each individual case is subject to approval by the Head of School.

Obligatory Subjects

<table>
<thead>
<tr>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.215G Practical Biotechnology</td>
</tr>
<tr>
<td>42.102A Biotechnology A</td>
</tr>
</tbody>
</table>

Elective Subjects

<table>
<thead>
<tr>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.104G Graduate Seminars</td>
</tr>
<tr>
<td>42.111G Reading List in Biotechnology (Microbiology)</td>
</tr>
<tr>
<td>42.112G Reading List in Biotechnology (Biochemistry)</td>
</tr>
<tr>
<td>42.305G Case Studies</td>
</tr>
</tbody>
</table>

Session 1

| 44.101 Introductory Microbiology | 6 |
| 42.212G Principles of Biochemistry | 3 |

Session 2

42.101 Introduction to Biotechnology	6
42.102B Biotechnology B	6
44.121 Microbiology I	6

Master of Science (Biotechnology)

The School also offers a formal graduate course at the masters' level (Master of Science (Biotechnology)). The course includes advanced treatments of all areas of biotechnology. It is open to graduates with a four-year degree in biotechnology or a related discipline, or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Intending students are referred to Conditions for the Award of Graduate Degrees set out later in this handbook.
The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The minimum period of registration before the award of the degree is two sessions for full-time students and four sessions for part-time students.

To qualify for the degree students must satisfy the examiners in the prescribed examinations, which include the submission and assessment of a report on the specified project.

8260
Master of Science (Biotechnology) Graduate Course
Master of Science (Biotechnology)
MSc(Biotech)

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Session 1
42.303G Biochemical Process Control
42.304G Biodeterioration and Biodegradation

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>0</th>
</tr>
</thead>
</table>

Session 2
42.301G Microorganism Productivity
42.302G Enzyme Technology
42.305G Case Studies

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>19</th>
</tr>
</thead>
</table>

Psychology

Head of School
Vacant
Administrative Officer
Mr T. J. Clulow

The School of Psychology offers courses leading to the award of the degrees of Master of Psychology and Master of Science (Psychology).

Master of Psychology

This course is designed to provide professional training at an advanced level for honours graduates in psychology.

The normal entrance requirements are:

1. a degree of Bachelor, with Honours Class I or Class II in Psychology:

and

2. completion of approved courses in learning, perception and cognition, physiological psychology, psychological statistics, psychometrics and abnormal psychology, or in such other fields as may be prescribed by the Head of the School.

A student who does not satisfy the above requirements may be permitted to undertake a qualifying course prescribed by the Head of School, satisfactory completion of which will be accepted as meeting entrance requirements.

Selection of students is based on academic qualifications and suitability for the course. It may be necessary to limit the number of new enrolments in any year. An application to register for the degree of Master of Psychology must be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students.

To qualify for the degree, students must satisfy the examiners in respect of their academic attainments, and their skill and competence in relevant aspects of practical professional work.

The course consists of lectures, seminars, demonstrations and practical work, supervised clinical and community work, and a research thesis.

The major aims of the course are: 1. to acquaint students with the issues, findings and problems of contemporary clinical and community psychology; and 2. to equip them with basic clinical skills and techniques. A total of 250 hours of supervised clinical practice must be completed in the first year, and a further 430 hours in the second year.

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

It should be noted that the course extends over two calendar years and not just four academic sessions with vacation breaks.

8250
Master of Psychology Graduate Course—Full-time

Master of Psychology
MPsy chol

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>Full Year</td>
<td></td>
</tr>
<tr>
<td>12.231G Professional Practice: 250 hours</td>
<td>5</td>
</tr>
<tr>
<td>12.235G Community Psychology</td>
<td>2</td>
</tr>
<tr>
<td>12.237G Biological Aspects of Behavioural Disturbance</td>
<td>2</td>
</tr>
<tr>
<td>12.239G Research and Evaluation Methods in Clinical and Community Psychology</td>
<td>2</td>
</tr>
<tr>
<td>12.240G Graduate and Clinical Seminars</td>
<td>2</td>
</tr>
<tr>
<td>12.241G Graduate Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>12.242G Research Thesis*</td>
<td>1</td>
</tr>
<tr>
<td>12.243G Experimental Clinical Psychology</td>
<td>5</td>
</tr>
<tr>
<td>12.244G Psychological and Behavioural Assessment</td>
<td>1</td>
</tr>
<tr>
<td>12.245G Behavioural Health Management</td>
<td>2</td>
</tr>
</tbody>
</table>
Facility of Science

Facilities are available in each of the schools for research leading to the award of the higher degrees of Master of Science and Doctor of Philosophy.

The following formal courses leading to graduate awards are also offered:

- **Faculty of Science**
 - Graduate Diploma in Physical Oceanography
- **School of History and Philosophy of Science**
 - Master of Science and Society
- **School of Optometry**
 - Master of Optometry
- **School of Chemistry**
 - Master of Chemistry
 - Graduate Diploma in Food and Drug Analysis
- **School of Mathematics**
 - Master of Mathematics
 - Master of Statistics
- **School of Physics**
 - Master of Physics

For admission to registration for all degrees of Master (except Master of Statistics), candidates must have completed one of the following:

1. An approved degree of Bachelor with Honours.

2. An approved three year course leading to the degree of Bachelor plus an approved qualifying program. Suitable professional and/or research experience may be accepted in lieu of the qualifying program.

3. An approved four year course leading to the degree of Bachelor.

Applicants for registration for the degree of Master of Statistics shall have been admitted to the degree of Bachelor with major studies in the field of statistics in the University of New South Wales or other approved university.

The manner of presentation and examination of reports of projects undertaken as part of formal courses shall be determined by the Head of the School.

The conditions governing these awards are set out later in this handbook.
5530
Physical Oceanography Graduate Diploma
Course
Graduate Diploma in Physical Oceanography
GradDip
This graduate diploma is intended to train graduates in the physical sciences or engineering in the basic techniques of physical oceanography.
It is intended to develop student skills in planning and execution of oceanographic experiments, in the theory of oceanographic fluid mechanics, the applications and limitations of oceanographic equipment and of commonly used data analysis techniques.
Recent rapid developments in marine science coupled with the relative scarcity of persons able to take up support positions demonstrate the need for skilled persons who will be able to assist oceanographic research with minimum training. This program is aimed at providing such skilled graduates.
Intending students are referred to the conditions for the award of graduate diplomas set out elsewhere in this handbook. Basic entry qualifications for this program are a degree in Engineering or in Science with major studies in mathematics or physics.
The program, requiring 28 credits for completion, consists of a major project (67.001G) worth 50% of the total accreditation for the program, the remaining 50% being comprised as indicated below.

1. Compulsory Subjects
67.001G Experimental Project 14 credits
67.002G Geophysical Fluid Dynamics 4 credits
67.003G Instrumentation 1 credit
67.004G Applied Data Analysis 2 credits

2. Elective Subjects
67.005G Theoretical Project 7 credits
6.380G Data acquisition and analysis in Remote Sensing 1 credit
6.387G Programming and software in Remote Sensing 1 credit

Here 1 credit is defined as being 1 hour per week for one session. The course may be taken over one year (full-time) or two years (part-time).

8770
Master of Chemistry Graduate Course
Master of Chemistry
MChem
Three programs are available, emphasising different areas of chemistry. Each program consists of a number of lecture courses (each separately examinable), laboratory instruction and visits to laboratories. In addition each student undertakes a short research project, with a research report assessed by two examiners. The student may also be required to undergo an oral examination.
Program 2.581G Advanced Analytical Chemistry and 2.583G Analytical Science (Chemistry) are available only on a full-time basis; however, the qualifying program may be taken part-time.
Program 2.582G Food and Drug Chemistry may be taken either full-time or part-time.
Details of the programs are:

2.581G Advanced Analytical Chemistry
This program should be of interest to chemistry graduates who are involved in the practice or teaching of analytical chemistry.

1. 2.581G Advanced Analytical Chemistry Lecture Courses
Students are required to take all of the following nine core courses of lectures:
(1) Analytical flame spectroscopy;
(2) Advanced electrochemical analysis;
(3) Chromatography;
(4) Analytical chemistry of pollutants;
(5) Emission, IR, Mass and XRF spectroscopy;
(6) Calculations and statistics in analytical chemistry;
(7) Chemical analysis of organic and biological materials;
(8) Operations and applications of minicomputers in chemistry;
(9) Chemical microscopy.
The lecture time for the whole course is a minimum of 140 hours.

2. Laboratory Instruction and Visits to Laboratories
An additional minimum of 150 hours is spent by students in selected areas of laboratory practice, instruction and visits to laboratories.

3. Research Project
A short research project (with report) of approximately 4 months' duration full-time (400 hours laboratory work) is selected in relation to the combined interests of the student and the supervisor.

2.582G Food and Drug Chemistry
This program involves an advanced study of the chemistry, stability, mode of action (where applicable) and analysis of food constituents, food additives and selected drugs. Entry to this program is excluded in the case of applicants who have completed the Graduate Diploma in Food and Drug Analysis (course 5510).

Chemistry

Head of School
Professor J. S. Shannon
Executive Assistant to Head of School
Mr W. J. Dunstan
1. Food and Drug Chemistry Lecture/Laboratory Courses
(1) Food and Drugs I
(2) Treatment of Analytical Data
(3) Instrumental Techniques in Food and Drug Analysis
(4) Food and Drugs II
(5) Toxicology, Occupational and Public Health

The lecture time for the whole course is 132 hours. An additional 308 hours is spent by students in formal laboratory work. Students who have not previously taken an approved course in microbiology are required to complete unit 44.101 Introductory Microbiology (84 hours) in addition to the above program.

2. Research project
A short research project (with report) of approximately 4 months' duration full-time (400 hours laboratory work) is selected in relation to the combined interests of the student and the supervisor.

2.583G Analytical Science (Chemistry)
This program provides a more broadly based training in methods of chemical analysis than 2.581G.

1. Formal course work
Students are required to complete all of the following courses of lectures and associated laboratory work.

(1) Classical methods of chemical analysis
(2) Instrumental analysis
(3) Toxicology, occupational and public health
(4) Special instrumental analysis methods

The lecture time for the whole course is 98 hours. An additional 196 hours is spent in formal laboratory sessions.

2. Project
A short project (with report) requiring 400 hours of laboratory work, which may be either original research work or development work. The field of work will be selected considering the combined interests of the student and supervisor.

5510 Food and Drug Analysis Graduate Diploma Course

Diploma in Food and Drug Analysis DipFDA

According to demand the course may be available on a full-time basis over one year or on a part-time basis over two years.

The course in food and drug analysis is designed to provide systematic training at an advanced level for chemists who wish to extend their acquaintance with analytical techniques, and thus is suitable for those who may wish to practice as public analysts. It is also suitable for those who wish to work in the food or pharmaceutical industry. The prime aim is to present discussions of the principles and design of analytical methods which are therefore presented on a comparative basis.

It is considered that the techniques involved in the handling of foods and drugs together with those discussed in the ancillary subjects of the course provide a firm basis of approach to many other fields.

Intending students are referred to the conditions for the award of graduate diplomas set out later in this handbook.

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part-time**</td>
</tr>
<tr>
<td>2.231G Food and Drugs I</td>
</tr>
<tr>
<td>2.371G Treatment of Analytical Data</td>
</tr>
<tr>
<td>2.281G Instrumental Techniques in Food and Drug Analysis</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.242G Food and Drugs II</td>
</tr>
<tr>
<td>2.251G Toxicology, Occupational and Public Health</td>
</tr>
<tr>
<td>44.101 Introductory Microbiology</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*For 20 weeks.
†Offered in Session 1 only, at 6 hpw.
**Full-time students take Years 1 and 2 in the one year.

History and Philosophy of Science

Head of School
Professor J. Ronayne

The School of History and Philosophy of Science offers a graduate program of coursework and research leading to the award of the degree of Master of Science and Society. The course is designed for graduates in the natural sciences, the applied sciences, technology and the social sciences or other relevant disciplines, who have a special interest in or concern with problems in the contemporary relationships between science and society, government and politics. The conditions for the award of the degree are set out later in this handbook.

8780 Master of Science and Society Graduate Course

Master of Science and Society MScSoc

The MScSoc pass program comprises 8 units of the course, which should normally be completed over 4 sessions of part-time (evening) study. A unit of the course requires 28 hours of seminar classwork and additional private study.

The following core units are common to the programs of all candidates:

62.716G Science and Society in the Twentieth Century*
62.713G Project*
Candidates may select 4 further units from the following list:

- 62.701G Philosophy and Methodology of Science
- 62.709G The Scientific Community
- 62.710G Science, Philosophy and Social Values
- 62.714G Knowledge, Power and Public Policy
- 62.715G Cause, Belief and Progress in the History of Science
- 62.718G Science in National Cultures: Comparative Historical Perspectives
- 62.720G The Sociology of Scientific Knowledge
- 15.716G Science, Technology and Economic Development
- 26.568G Technology and Alternative Development
- 30.960G Technology and Organisations
- 53.309G Social and Technological Forecasting (2 units)

Selected candidates may undertake a third-year MScSoc honours degree program of advanced study which includes a dissertation based on supervised research into particular aspects of the relationships between science and technology and science and its institutions.

*2 units.

Mathematics

Head of School
Professor G. Brown

The School of Mathematics offers graduate courses leading to the award of the degrees of Master of Mathematics (MMath) and Master of Statistics (MStats). (The School also offers the pass degree of MA. For further details see the Faculty of Arts Handbook.)

8750 Master of Statistics Graduate Course

Master of Statistics MStats

The Master of Statistics Course covers a wide range of statistical theory and practice and provides advanced training for practising statisticians. The course may be completed in two years of full-time or four years of part-time study, and it is available to graduates with a pass degree in statistics or an honours degree in a related field (commonly mathematics) with supporting study in statistics. Honours graduates in statistics may be exempted from a maximum of half the course. The conditions for the award of the degree are set out later in this handbook.

The academic requirement for the degree is 24 credits.

Each candidate's program of study must be approved by the Head of the School.

Compulsory Subjects

- 10.381G Experimental Design I 2
- 10.383G Stochastic Processes 2
- 10.385G Multivariate Analysis I 2
- 10.390G Statistical Inference 2
- 10.392G Project 2

Elective Subjects

- 10.382G Experimental Design II 2
- 10.384G Time Series 2
- 10.386G Multivariate Analysis II 2
- 10.387G Sample Survey Design 2
- 10.388G Sequential Analysis 2
- 10.389G Non-Parametric Methods 2
- 10.391G Special Topic* A 2
- 10.393G Special Topic* B 2
- 10.394G Discrete Distributions 2
- 10.212M Optimal Control Theory or 3
- 10.222M Higher Optimal Control Theory

Up to 6 credits may be taken in graduate subjects offered by other Departments or Schools within the University, subject to the approval of the Head of School. Such subjects include:

- 8.403G Theory of Land Use/Transport Interaction
- 8.405G Urban Transport Planning Practice 2
- 8.417G Transport and Traffic Flow Theory 4
- 10.212L Optimization Methods or 3
- 10.222L Higher Optimization Methods
- 15.423 Econometrics B 2
- 18.771G Simulation in Operations Research 2

*To be arranged: eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.
Optometry

Head of School
Professor H. B. Collin

The School of Optometry offers a formal graduate course leading to the award of the degree of Master of Optometry (MOptom). This course comprises the study of three elective graduate subjects and of advanced Clinical Optometry, together with the preparation of a thesis on an assigned project. It may be completed in one year of full-time study, or (to meet the needs of practising optometrists) in two or three years of part-time study. The course provides advanced training in clinical and theoretical aspects of Optometry, with opportunities for specialization in fields such as contact lenses, occupational optometry, and orthoptics.

Conditions for admission and for the award of the degree of Master of Optometry are set out later in this handbook.

8760
Master of Optometry Graduate Course

Master of Optometry
MOptom

Hours per week

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.701G Advanced Clinical Optometry</td>
<td>4</td>
</tr>
<tr>
<td>Three elective graduate subjects</td>
<td></td>
</tr>
<tr>
<td>chosen from the list below (each 4 hours)</td>
<td>12</td>
</tr>
<tr>
<td>31.799G Project</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Elective Graduate Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.702G Advanced Physiological Optics</td>
<td>4</td>
</tr>
<tr>
<td>31.703G Pleorthoptics and Binocular Vision</td>
<td>4</td>
</tr>
<tr>
<td>31.704G Advanced Contact Lens Studies</td>
<td>4</td>
</tr>
<tr>
<td>31.705G Advanced Contact Lens Practice</td>
<td>4</td>
</tr>
<tr>
<td>31.706G Occupational Optometry</td>
<td>4</td>
</tr>
<tr>
<td>31.707G Clinical Photography</td>
<td>4</td>
</tr>
</tbody>
</table>

The six elective graduate subjects offered are quite independent, and any of them are suitable for a student seeking advanced professional training of a general nature. If clinical specialization is aimed at, the student would be advised to elect the graduate subjects shown below:

Specialization

<table>
<thead>
<tr>
<th>Graduate Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Lenses</td>
</tr>
<tr>
<td>1. Advanced Contact Lens Studies</td>
</tr>
<tr>
<td>2. Advanced Contact Lens Practice</td>
</tr>
<tr>
<td>3. Clinical Photography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupational Optometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Occupational Optometry</td>
</tr>
<tr>
<td>2. Pleorthoptics and Binocular Vision</td>
</tr>
<tr>
<td>3. Advanced Physiological Optics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orthoptics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pleorthoptics and Binocular Vision</td>
</tr>
<tr>
<td>2. Clinical Photography</td>
</tr>
</tbody>
</table>

Physics

Head of School
Professor H. J. Goldsmid

Executive Assistant to Head of School
Dr J. R. Hanscomb

Administrative Officer
Mrs P. Shaw

8730
Master of Physics Graduate Course

Master of Physics
MPhysics

The School of Physics offers a graduate course leading to the award of the Master of Physics degree (MPhysics).

The Master of Physics degree course is intended for honours graduates in physics. Others may be admitted if they have submitted evidence of such academic and professional attainments as may be approved by the Faculty of Science on the recommendation of its Higher Degree Committee. Applicants with other qualifications may be admitted after completing a qualifying examination approved by the Faculty of Science.

The subject matter of the course provides an advanced training in a branch of physics, the topic of which is determined during the year preceding that in which it is offered.

Students undertaking the masters course by formal study must enrol in one of the following subjects:

<table>
<thead>
<tr>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.801G Energy Alternatives</td>
</tr>
<tr>
<td>1.802G Astrophysics</td>
</tr>
<tr>
<td>1.803G Acoustics</td>
</tr>
<tr>
<td>1.804G Biophysics</td>
</tr>
<tr>
<td>1.805G Applied Physics</td>
</tr>
</tbody>
</table>

Enrolment in any one of the above subjects normally involves at least five units of lecture material, a literature survey, and small research project.
Graduate Study

Conditions for the Award of Higher Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Disciplines of the University: Faculty Table (Undergraduate Study) in the Calendar.

The following is the list of higher degrees and graduate diplomas of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Disciplines of the University: Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Calendar Medicine</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar and all handbooks</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>Arts</td>
</tr>
<tr>
<td>Military Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEnv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Education</td>
<td>MEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEdAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of General Studies</td>
<td>MGenStud</td>
<td>General Studies</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Pediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Psychology</td>
<td>MPSychol</td>
<td>Sciences§</td>
</tr>
<tr>
<td>Master of Public Administration</td>
<td>MPA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td></td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Science (Biotechnology)</td>
<td>MSc(Biotech)</td>
<td>Sciences§</td>
</tr>
<tr>
<td>Master of Science (Building)</td>
<td>MSc(Building)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Psychology)</td>
<td>MSc(Psychol)</td>
<td>Sciences§</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Surveying</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying without supervision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master of Surveying Science</td>
<td>MSurvSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Town Planning</td>
<td>MTP</td>
<td>Architecture*</td>
</tr>
</tbody>
</table>

Graduate Diploma: GradDip, DiplFD, DipEd, DiplM-ArchivAdmin, DiplM-Lib

Graduate Diplomas

*Faculty of Science.
§Faculty of Biological Sciences.

1. The degree of Doctor of Philosophy may be granted by the Council on the recommendation of the Professorial Board to a candidate who has made an original and significant contribution to knowledge and who has satisfied the following requirements:

2. A candidate for registration for the degree of Doctor of Philosophy shall:

 (1) hold an honours degree from the University of New South Wales; or

 (2) hold an honours degree or equivalent standing from another approved university; or

 (3) if the candidate holds a degree without honours from the University of New South Wales or other approved university, have achieved by subsequent work and study a standard recognised by the Higher Degree Committee of the appropriate faculty or board of studies (hereinafter referred to as the Committee) as equivalent to honours; or

 (4) in exceptional cases, submit such other evidence of general and professional qualifications as may be approved by the Professorial Board on the recommendation of the Committee.

3. When the Committee is not satisfied with the qualifications submitted by a candidate, the Committee may require the candidate, before being permitted to register, to undergo such examination or carry out such work as the Committee may prescribe.

4. A candidate for registration for a course of study leading to the degree of Doctor of Philosophy shall apply to the Registrar on the prescribed form at least one calendar month before the commencement of the session in which registration is to begin.
5. Subsequent to registration the candidate shall pursue a program of advanced study and research for at least six academic sessions, save that:

(1) a candidate fully engaged in advanced study and research for the degree, who before registration was engaged upon research to the satisfaction of the Committee, may be exempted from not more than two academic sessions;

(2) in special circumstances the Committee may grant permission for the candidate to spend not more than one calendar year of the program in advanced study and research at another institution provided that the work can be supervised in a manner satisfactory to the Committee;

(3) in exceptional cases, the Professorial Board on the recommendation of the Committee may grant permission for a candidate to be exempted from not more than two academic sessions.

6. A candidate who is fully engaged in research for the degree shall present for examination not later than ten academic sessions from the date of registration. A candidate not fully engaged in research shall present for examination not later than twelve academic sessions from the date of registration. In special cases an extension of these times may be granted by the Committee.

7. The candidate shall be fully engaged in advanced study and research, save that:

(1) the Committee may permit a candidate to undertake a limited amount of University teaching or outside work which in its judgment will not interfere with the continuous pursuit of the proposed course of advanced study and research;

(2) a member of the full-time staff of the University may be accepted as a part-time candidate for the degree, in which case the Committee shall prescribe a minimum period for the duration of the program;

(3) in special circumstances, the Committee may, with the concurrence of the Professorial Board, accept as a part-time candidate for the degree a person who is not a member of the full-time staff of the University and is engaged in an occupation which, in its opinion, leaves the candidate substantially free to pursue a program in a school* of the University. In such a case the Committee shall prescribe for the duration of the program a minimum period which, in its opinion, having regard to the proportion of the time which the candidate is able to devote to the program in the appropriate University school* is equivalent to the six sessions ordinarily required.

(4) the Committee may permit a candidate to transfer to part-time enrolment where that candidate has completed the research work, is writing the thesis, and has been registered as a full-time candidate for at least six academic sessions.

8. Every candidate shall pursue a program under the direction of a supervisor appointed by the Committee from the full-time members of the University staff. The work other than field work shall be carried out in a school* of the University save that in special cases the Committee may permit a candidate to conduct the work at other places where special facilities not possessed by the University may be available. Such permission will be granted only if the direction of the work remains wholly under the control of the supervisor.

9. Not later than two academic sessions after registration the candidate shall submit the topic of research for approval by the Committee. After the topic has been approved it may not be changed except with the permission of the Committee.

10. A candidate may be required by the Committee to attend a formal course of appropriate study.

11. On completing the course of study every candidate must submit a thesis which complies with the following requirements:

(1) the greater proportion of the work described must have been completed subsequent to registration for the PhD degree;

(2) it must be an original and significant contribution to the knowledge of the subject;

(3) it must be written in English except that a candidate in the Faculty of Arts may be required by the Faculty on the recommendation of the supervisor to write the thesis in an appropriate foreign language;

(4) it must reach a satisfactory standard of expression and presentation.

*Or department where a department is not within a school.
12. The thesis must present the candidate's own account of the research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied on the candidate's part in the joint research.

13. Every candidate shall be required to submit with the thesis a short abstract of the thesis comprising not more than 350 words.

The abstract shall indicate:
(1) the problem investigated;
(2) the procedures followed;
(3) the general results obtained;
(4) the major conclusions reached;
but shall not contain any illustrative matter, such as tables, graphs or charts.

14. A candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award.

15. The candidate shall give in writing two months' notice of intention to submit the thesis.

16. Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may also submit any work previously published whether or not such work is related to the thesis.

17. It shall be understood that the University retains the four copies of the thesis submitted for examination, and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

18. There shall normally be three examiners of the thesis appointed by the Professorial Board on the recommendation of the Committee, at least two of whom shall be external to the University.

19. At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:
(1) the candidate be awarded the degree without further examination; or
(2) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or
(3) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
(4) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(5) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

20. If the performance at the further examination recommended under Rule 19. (3) is not to the satisfaction of the Committee the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by them but not exceeding eighteen months.

21. The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be admitted to the degree.

22. A candidate shall be required to pay such fees as may be determined from time to time by the Council.
Master of Chemistry (MChem)

1. The degree of Master of Chemistry by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II honours in Chemistry.

Qualifications

(2) An applicant for registration with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

(3) In special circumstances a person may be permitted to register as a candidate for the degree by submitting evidence of such academic and professional attainments as may be approved by the Committee.

Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to present a report on a short research project (approximately 400 hours laboratory work) to be assessed by two examiners.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

Project

4. Three copies of the report referred to in paragraph 3. (3) above shall be retained by the University. The University shall be free to allow the report to be consulted or borrowed and, subject to the provisions of the Copyright Act, 1968, the University may issue the report in whole or in part, in photostat or microfilm or other copying medium.

Recommendation for Admission to Degree

5. Having considered the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree. Satisfactory completion of the project shall be regarded as part of the final examination.

Fees

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Mathematics (MMath)

1. The degree of Master of Mathematics by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Qualifications

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II honours in Mathematics.

(2) An applicant for registration, with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

Registration

(3) In special circumstances a person may be permitted to register as a candidate for the degree by submitting evidence of such academic and professional attainments as may be approved by the Committee.
3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to submit a report consisting of a critical review of the literature in an approved branch of Mathematics or a report on a short research project. In either case the report will be assessed by two examiners, and the candidate may be required to attend an oral examination. The report is to be presented in a form approved by the Head of the School of Mathematics.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

4. Having considered the examiners' reports and the candidate's other work in the prescribed course of study, the Committee shall recommend whether or not the candidate should be admitted to the degree.

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Optometry by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor in the discipline of Optometry in the University of New South Wales or other approved University at a standard acceptable to the Committee.

(2) In special circumstances a person may be permitted to register as a candidate for the degree by submitting evidence of such academic and professional attainments as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two full calendar months before the commencement of the course.

(2) An approved applicant shall register as a student in either full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed annual examinations. Under the supervision of a member of the academic staff a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the annual examinations.

4. Having considered the results of the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.
Master of Physics (MPhysics)

1. The degree of Master of Physics by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Qualifications

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Class I or Class II Honours in Physics.

(2) An applicant for registration, with an approved degree at a standard below honours Class II may be accepted following satisfactory performance at a qualifying examination approved by the Committee.

(3) In special circumstances a person may be permitted to register as a candidate for the degree by submitting evidence of such academic and professional attainments as may be approved by the Committee.

Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the session in which the candidate desires to register.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to submit a report consisting of a critical review of the literature in an approved branch of Physics and a report on a short research project. In either case the report will be assessed by two examiners, and the candidate may be required to attend an oral examination. The report is to be presented in a form approved by the Head of the School of Physics.

(4) A candidate shall not be considered for the award of the degree until the lapse of one academic year from the date of registration in the case of a full-time candidate or two academic years from the date of registration in the case of a part-time candidate.

Recommendation for Admission to Degree

4. Having considered the examiners' reports and the candidate's other work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Psychology (MPsychol)

1. The degree of Master of Psychology by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

The degree shall be awarded in two grades, namely Pass and Honours. There shall be two classes of Honours, namely Class I and Class II.

Qualifications

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Honours Class I or Class II in Psychology at a standard acceptable to the Committee.

(2) An applicant for registration, with an approved degree at a standard below Honours Class II may be accepted following satisfactory completion of a qualifying course and examination approved by the Committee.

(3) In special cases a person may be permitted to register as a candidate for the degree by submitting evidence of such academic and professional attainments as may be approved by the Committee.
(4) Notwithstanding any other provisions of these conditions, the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to:
(a) undertake the specified courses of advanced study;
(b) except in exceptional circumstances pass the prescribed examinations at the first attempt;
(c) submit a research thesis on an approved topic, prepared under the supervision of a member of the academic staff.

(4) The minimum period of registration before the award of the degree shall be of four sessions for full-time students, and six sessions for part-time students.

4. (1) Every candidate shall submit three copies of the research thesis. All copies shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses or reports. A candidate may submit also for examination any work the candidate has published whether or not such work is related to the research thesis.

(2) It shall be understood that the University retains the copies of the research thesis submitted for examination and is free to allow the research thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the research thesis in whole or in part, in photostat or microfilm or other copying medium.

5. Having considered the results of the candidate's work in the prescribed course of study and the skill and competence attained in relevant aspects of practical professional work the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.
(2) In every case before permitting an applicant to register as a candidate the Committee shall be satisfied that adequate supervision and facilities are available.

(3) An approved applicant shall register in one of the following categories:
 (a) student in full-time attendance at the University
 (b) student in part-time attendance at the University
 (c) student working externally to the University

(4) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an original investigation or design, to take such examinations and to perform such other work as may be prescribed by the Committee. This work shall be carried out under the direction of a supervisor appointed by the Committee or under such conditions as the Committee may determine.

(5) At least once a year and at any other time that the Committee sees fit, the candidate's supervisor shall present to the head of school or department in which the candidate is registered a report on the progress of the candidate. The Committee shall review the report and may, if it decides as a result of its review that the progress of a candidate is unsatisfactory, cancel registration or take such other action as it considers appropriate.

(6) Unless otherwise recommended by the Committee, no candidate shall be awarded the degree until the lapse of four complete sessions from the date of registration, save that the case of a candidate who obtained the degree of Bachelor with Honours or who has had previous research experience, this period may be reduced by up to two sessions with the approval of the Committee. A candidate who is fully engaged in research for the degree shall present for examination not later than six academic sessions from the date of registration. A candidate not fully engaged in research shall present for examination not later than twelve academic sessions from the date of registration. In special cases an extension of these times may be granted by the Committee.

4. (1) A candidate for the degree shall be required to submit three copies of the thesis referred to in paragraph 3. (4) which shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. The candidate may submit also for examination any work the candidate has published whether or not such work is related to the thesis.

(2) For each candidate there shall be at least two examiners, appointed by the Professorial Board on the recommendation of the Committee, one of whom, if possible, shall be external to the University.

(3) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part in photostat or microfilm or other copying medium.

5. Having considered the examiners' reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Science (MSc) without supervision

1. Where it is not possible for candidates to register under the normal conditions for the degree of Master of Science, Master of Engineering or Master of Surveying by reason of their location at centres which are distant from University Schools or where effective supervision is not practicable registration may be granted in these categories under the following conditions:

2. An applicant for registration shall have been admitted to a degree of Bachelor in the University of New South Wales at a standard acceptable to the Higher Degree Committee of the appropriate Faculty (hereinafter referred to as the Committee).
3. (1) An application to register as an external candidate for the degree of Master of Science, Master of Engineering or Master of Surveying without supervision shall be lodged with the Registrar for recommendation by the Head of School and consideration by the Higher Degree Committee of the appropriate Faculty (hereinafter referred to as the Committee) not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should in the graduate's own interest at an early stage, seek the advice of the appropriate School with regard to the adequacy of the subject matter for the degree. A synopsis of the work should be enclosed.

(2) A candidate shall not be considered for the award of the degree until the lapse of six sessions in the case of honours graduates and eight sessions in the case of pass graduates from the date of graduation.

4. (1) (a) Every candidate for the degree shall be required to submit three copies of a thesis embodying the results of an investigation or design. The thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses. A candidate may submit also for examination any work the candidate has published, whether or not such work is related to the thesis.

(b) Every candidate shall submit with the thesis a statutory declaration that the material contained therein is the candidate's own work, except where otherwise stated in the thesis.

(2) For each candidate there shall be at least two examiners appointed by the Professorial Board on the recommendation of the Committee, one of whom shall be an internal examiner.

(3) If the thesis reaches the required standard, the candidate shall be required to attend for an oral examination at a time and place nominated by the Committee. The examiners may also arrange at their discretion for the examination of the candidate by written and/or practical examinations on the subject of the thesis and/or subjects related thereto.

(4) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5. Having considered the examiners' reports the Committee shall recommend whether or not the candidate should be admitted to the degree.

6. An approved applicant shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Science (Biotechnology) may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration shall hold an approved degree of Bachelor with Honours Class I or Class II in Biological Technology or other relevant discipline.

(2) An applicant for registration with an approved degree at a standard below Honours Class II may be accepted following satisfactory completion of a qualifying course of not less than one year and examination approved by the Committee.

(3) In special cases a person may be permitted to register as a candidate for the degree by submitting evidence of such academic and professional attainments as may be approved by the Committee.

(4) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting such examinations as the Committee may determine.
Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the registrar at least two months before the commencement of the academic year.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the specified course of advanced study and pass the prescribed examinations. Under the supervision of a member of the academic staff, a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the examinations.

(4) The minimum period of registration before the award of the degree shall be two sessions for full-time students and four sessions for part-time students.

Recommendation for Admission to Degree

4. Having considered the results of the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.

Master of Science
(Psychology)
(MSc(Psychol))

1. The degree of Master of Science (Psychology) by formal course work may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

Qualifications

2. (1) An applicant for registration shall hold the degree of Doctor of Philosophy in an approved area of Psychology acceptable to the Committee.

(2) Notwithstanding any other provisions of these conditions, the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.

Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

(2) An approved applicant shall register as a student in full-time or part-time attendance at the University.

(3) A candidate for the degree shall be required to undertake the specified courses of advanced study and, other than in exceptional circumstances, pass the prescribed examinations at the first attempt.

(4) The minimum period of registration before the award of the degree shall be three sessions for full-time students, and six sessions for part-time students. Students with advanced standing may have the minimum period reduced by up to one-third of the program.

Recommendation for Admission to Degree

4. Having considered the results of the candidate's work in the prescribed course of study and the skill and competence attained in relevant aspects of practical professional work, the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

5. An approved candidate shall pay such fees as may be determined from time to time by the Council.
1. The degree of Master of Science and Society may be awarded at honours or pass level by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration for the degree shall have been admitted to a degree of Bachelor in the University of New South Wales or other approved university or tertiary education institution of acceptable standing, at a level approved by the Committee. Normally an honours degree or equivalent in science, applied science/technology, a social science or other relevant discipline, or a pass degree together with suitable professional experience would be deemed an appropriate qualification.

(2) In exceptional cases an applicant may be registered as a candidate for the degree by submitting evidence of such academic and professional attainment as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as it may determine.

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the course.

(2) An approved applicant shall register as a student in part-time attendance at the University.

(3) (a) A Candidate for the Pass degree shall undertake the approved course comprising of at least eight units which normally will be taken over four sessions.

(3) (b) A candidate for the Honours degree will undertake an additional two session program of advanced study including a dissertation based on research approved by the Committee on the recommendation of the School of History and Philosophy of Science.

(4) No candidate shall be considered for the award of the degree until the lapse of four sessions in the case of a pass candidate or six sessions in the case of an honours candidate.

(5) The progress of a candidate shall be reviewed annually by the Committee and as a result of such review the Committee may terminate the candidature or take such other action as it considers appropriate.

4. Having considered the candidate’s results in the prescribed course of study the Committee shall recommend whether the candidate may be admitted to the degree.

5. An approved candidate shall pay such fees as may be determined from time to time by Council.

1. The degree of Master of Statistics may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has satisfactorily completed an approved program of advanced study.

2. (1) An applicant for registration for the degree shall have been admitted to the degree of Bachelor at a standard acceptable to the Committee and with major studies in the field of Statistics, in the University of New South Wales or other approved University.

(2) In special circumstances a person may be permitted to register as a candidate for the degree by submitting evidence of such academic and professional attainments as may be approved by the Committee.

(3) Notwithstanding any other provisions of these conditions the Committee may require an applicant to demonstrate fitness for registration by carrying out such work and sitting for such examinations as the Committee may determine.
Registration

3. (1) An application to register for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two full calendar months before the commencement of the session in which the candidate desires to register.

(2) A candidate for the degree shall be required to undertake the appropriate course of study and pass the prescribed annual examinations. Under the supervision of a member of the academic staff a candidate shall be required to undertake a specified project, the satisfactory completion of which shall be regarded as part of the annual examinations.

(3) No candidate shall be considered for the award of the degree until a lapse of four complete sessions from the date of registration, save that in the case of a candidate who obtained the degree of Bachelor with Honours in Statistics this period may, with the approval of the Committee be reduced by up to two sessions by exemption from appropriate specified courses of study.

Recommendation for Admission to Degree

4. Having considered the results of the candidate's work in the prescribed course of study the Committee shall recommend whether or not the candidate should be admitted to the degree.

Fees

5. An approved applicant shall pay such fees as may be determined from time to time by the Council.

Graduate Diploma

1. An application for admission to a graduate diploma course shall be made on the prescribed form which should be lodged with the Registrar at least two full calendar months before the commencement of the course.

2. An applicant for admission to a graduate diploma course shall be:

(1) a graduate of the University of New South Wales or other approved university.

(2) a person with other qualifications as may be approved by Faculty.

3. Notwithstanding clause 2. above, Faculty may require an applicant to take such other prerequisite or concurrent studies and/or examinations as it may prescribe.

4. Every candidate for a graduate diploma shall be required to undertake the appropriate course of study, to pass any prescribed examinations, and if so laid down in the course, to complete a project or assignment specified by the Head of the School. The format of the report on such project or assignment shall accord with the instructions laid down by the Head of the School.

5. An approved applicant shall be required to pay the fee for the course in which the applicant desires to register. Fees shall be paid in advance.
Subject Descriptions

Identification of Subjects by Number

A subject is defined by the Professorial Board as ‘a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University’.

Each approved subject of the University is identifiable both by number and by name as this is a check against nomination of subject other than the one intended.

Subject numbers are allocated by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the number before the decimal point.

2. Each subject number is unique and is not used for more than one subject title.

3. Subject numbers which have not been used for some time are not used for new subject titles.

4. Graduate subjects are indicated by a suffix ‘G’ to a number with three digits after the decimal point. In other subjects three or four digits are used after the decimal point.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible to the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

The identifying numerical prefixes for each subject authority are set out below.

Servicing Subjects are those taught by a school or department outside its own faculty, and are published at the end of Undergraduate Study and Graduate Study of the relevant school. Their subject descriptions are also published in the handbook of the faculty in which the subject is taught.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information which may be supplied about each subject: S1 (Session 1); S2 (Session 2); F (Session 1 plus Session 2, ie full year); S1 or S2 (Session 1 or Session 2, ie choice of either session); SS (single session, ie which session taught is not known at time of publication); L (Lecture, followed by hours per week); T (Laboratory/Tutorial, followed by hours per week); Sem (Seminar, followed by hours per week) hpw (hours per week); C (Credit or Credit units), CR (Credit Level), DN (Distinction).
<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics</td>
<td>Science</td>
<td>175</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td>Science</td>
<td>181</td>
</tr>
<tr>
<td>School of Metallurgy*</td>
<td>Applied Science</td>
<td>186</td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering*</td>
<td>Engineering</td>
<td>188</td>
</tr>
<tr>
<td>School of Electrical Engineering and Computer Science*</td>
<td>Engineering</td>
<td>189</td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>Science</td>
<td>190</td>
</tr>
<tr>
<td>School of Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Psychology</td>
<td>Biological Sciences</td>
<td>201</td>
</tr>
<tr>
<td>School of Textile Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Accountancy*</td>
<td>Commerce</td>
<td>205</td>
</tr>
<tr>
<td>School of Economics*</td>
<td>Commerce</td>
<td>207</td>
</tr>
<tr>
<td>School of Health Administration</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>Biological Sciences</td>
<td>210</td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering (Industrial Engineering)</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Department of Industrial Arts</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Nuclear Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Applied Geology*</td>
<td>Applied Science</td>
<td>210</td>
</tr>
<tr>
<td>Department of General Studies*</td>
<td>Board of Studies in General Education</td>
<td>214</td>
</tr>
<tr>
<td>School of Geography*</td>
<td>Applied Science</td>
<td>214</td>
</tr>
<tr>
<td>School of Marketing</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>School of Surveying*</td>
<td>Engineering</td>
<td>218</td>
</tr>
<tr>
<td>Organizational Behaviour*</td>
<td>Commerce</td>
<td>218</td>
</tr>
<tr>
<td>School of Optometry</td>
<td>Science</td>
<td>218</td>
</tr>
<tr>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Building</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Town Planning</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Landscape Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Food Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Professorial Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Biochemistry</td>
<td>Biological Sciences</td>
<td>220</td>
</tr>
<tr>
<td>School of Biotechnology</td>
<td>Biological Sciences</td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Botany</td>
<td>Biological Sciences</td>
<td>223</td>
</tr>
<tr>
<td>School of Microbiology</td>
<td>Biological Sciences</td>
<td>224</td>
</tr>
<tr>
<td>School of Zoology</td>
<td>Biological Sciences</td>
<td>226</td>
</tr>
<tr>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Faculty of Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry*</td>
<td>Applied Science</td>
<td>227</td>
</tr>
<tr>
<td>School of English</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of History</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Philosophy*</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Sociology*</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Political Science</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Librarianship</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>School of French</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Drama</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Education*</td>
<td>Professional Studies</td>
<td>231</td>
</tr>
<tr>
<td>Department of Russian</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Faculty of Arts (Bachelor of Social Science)</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Department of Music</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of History and Philosophy of Science*</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Social Work</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>School of German Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Spanish and Latin American Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Subjects Available from Other Universities</td>
<td>Science</td>
<td>236</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>Board of Studies in Science and Mathematics</td>
<td>236</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>School of Anatomy*</td>
<td>Medicine</td>
<td>237</td>
</tr>
<tr>
<td>School of Medicine</td>
<td>Medicine</td>
<td>238</td>
</tr>
<tr>
<td>School of Pathology*</td>
<td>Medicine</td>
<td>238</td>
</tr>
<tr>
<td>School of Physiology and Pharmacology*</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Surgery</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Obstetrics and Gynaecology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Paediatrics</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Psychiatry</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Community Medicine*</td>
<td>Medicine</td>
<td>240</td>
</tr>
<tr>
<td>Faculty of Medicine*</td>
<td>Medicine</td>
<td>240</td>
</tr>
<tr>
<td>Medicine/Science/Biological Sciences</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Australian Graduate School of Management</td>
<td>AGSM</td>
<td></td>
</tr>
<tr>
<td>Division of Postgraduate Extension Studies</td>
<td>Law</td>
<td></td>
</tr>
</tbody>
</table>
Physics

Undergraduate Study

Physics Level I Units

1.001 Physics I F L3T3

Prerequisites: HSC Exam Percentile Range
2 unit Mathematics or 71-100
3 unit Mathematics or 21-100
4 unit Mathematics and (for 1.001 only) 10.021B
2 unit Science (Physics) or 1-100 or
2 unit Science (Chemistry) or 31-100
4 unit Science (Multistrand) or 31.100
Co-requisite: 10.021C or 10.001 or 10.011.

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertial mass, energy, momentum, charge, potential, fields. Application of the conservation principles to solution of problems involving charge, energy and momentum. Electrical circuit theory, application of Kirchoff's Laws to AC and DC circuits. Uniform circular motion, Kepler's Laws and rotational mechanics. Properties of matter: solids, liquids, gases. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization.

1.011 Higher Physics I F L3T3

Prerequisites: As for 1.001; plus permission of the Head of the School of Physics. Co-requisite: 10.001 or 10.011.

For students of all Faculties except Medicine who have a good secondary school record and who wish to do a more challenging course.

Vector algebra, kinematics, uniform circular motion, coriolis acceleration, dynamics of particles, motion in a resistive medium, work and energy, gravitation, rotational motion of rigid bodies about fixed axis, rotational motion about a fixed point. Harmonic motions, waves in elastic media. Sound waves, physical optics, polarization and double refraction. Electric charges, electric intensity, electric flux, Gauss' law, electric potential, capacity, dielectric materials, electric current and resistance, DC circuits, magnetic field, field due to current, electromagnetic induction, inductance, magnetic materials, transients, AC circuits, electronics, diode, rectifier circuit, simple power supplies, electronic amplifier systems, single loop feedback systems, signal processing circuits using operational amplifiers.

1.021 Introductory Physics I (For Health and Life Scientists) F L3T3

Principally for students majoring in the life and health sciences disciplines. Topics at an introductory level.

The methods of physics, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electromagnetic induction, alternating current, atomic nature of matter, X-rays, the nucleus and radio-activity, electronics, geometrical optics, optical instruments, wave optics, microscopes and their uses.

1.031 Physics I (Optometry) F L3T3

Prerequisites: None. Co-requisites: As for 1.021.

The description of motion, dynamics, statics, conservation of momentum and energy, rotation, elasticity and vibration, wave motion, fluids, temperature and expansion, heat and heat transfer, the theory of heat, electric charge, electric field, electric energy, electric circuits, electromagnetism, applied electricity, alternating current, analog electronics, digital electronics, modern physics.

1.041 Laboratory Computers in Physical Sciences S1 or S2 L2T4

Prerequisites: As for 1.001. Co-requisites: 10.001, and 1.021 or 1.001 or 1.011. Excluded: Programs 0601, 0610 & 0611, 6806.

Fundamentals of binary logic, binary arithmetic, arithmetic operations as logical algorithms. Electronic logic devices, principles of computer operation, microprocessors and microcomputer architecture. Machine language and BASIC programming in microcomputers. Fundamentals of real world interfacing techniques, flow of data and control across the interface. Mathematical modelling of the real world in BASIC, iteration and simulation techniques, laboratory experiments collecting real world data via an interface and analysing it in the microcomputer. The developing role of the laboratory computer in scientific research.

1.061 Computer Applications in Experimental Science I S2 L2T4

Prerequisites: 6.611. Co-requisite: 1.001, 10.001 or 10.011. Excluded: 1.041, 1.042, 1.952.

Review of binary logic variables, arithmetic operations as logical algorithms on binary variables, computer architecture and machine language instruction sets. Microprocessor and microcomputer architecture, Apple II microcomputer architecture, disk operating system, graphics, languages. Computer modelling of real physical systems iterative techniques. Fundamentals of interfacing, data and control flow across the interface. Transducers, encoding. Data collection techniques used in Experimental Sciences. Laboratory experiments involving direct data collection via interfaces, data reduction and comparison with computer models. The developing role of the laboratory computer in experimental science.
Physics Level II Units

1.002 Mechanics, Waves and Optics S1 L3T1
Prerequisites: 1.001 or 1.011, 10.001 or 10.011. Co-requisite: 10.2111. Excluded: 1.992, 10.4111, 10.4211.

Harmonic motion, systems of particles, central force problems, Lagrange's equations, coupled oscillations, travelling waves, pulses, energy and momentum transfer, polarization, birefringence, interference, thin films, gratings, lasers, holography, fibre optics, Faraday effect, photoelasticity.

1.012 Electromagnetism and Thermal Physics S2 L3T1
Prerequisites: 1.001 or 1.011, 10.001 or 10.011. Co-requisite: 10.2111. Excluded: 1.972.

Electric field strength and potential, Gauss' law, Poisson's and Laplace's equations, capacitance, dielectrics and polarization, magnetism, electro-magnetic induction, Maxwell's equations, electromagnetic waves. Laws of thermodynamics, kinetic theory, microscopic processes, entropy, solid state defects, Helmholtz and Gibbs functions, Maxwell's relations, phase diagrams, chemical and electro-chemical potential.

1.022 Modern Physics F L1½T½

Special theory of Relativity: time dilation, length contraction, simultaneity, Lorentz transformations, energy and mass. Photon properties, de Broglie relations, Uncertainty principle, operators in quantum mechanics, postulates of quantum mechanics, potential wells, steps and barriers, harmonic oscillator, H atom, angular momentum, magnetic moment, electron spin, nuclear spin. Atomic and molecular spectra, lasers, quantum statistics, free electron model of a metal, band theory; nuclear size, density, mass; nuclear models, fission and fusion, nuclear forces.

1.032 Laboratory F T3
Prerequisites: 1.001 or 1.011, 10.001. Excluded: 1.9222.

Alternating current circuits, complex impedance, resonance, mutual inductance, introductory electronics, diode and characteristics and circuits, power supplies, transistor characteristics, single stage and coupled amplifiers, experiments using AC circuits. Experimental investigations in a choice of areas including radioactivity, spectroscopy, properties of materials, Hall effect, nuclear magnetic resonance, photography, vacuum systems.

1.042 Measurement and Measurement Control Systems S2 L2T3
Prerequisites: 1.001 or 1.011, 10.001. Excluded: 1.9422, 1962.

Basics of instrumental measurement; errors of observation and their treatment: statistical design of experiments and analysis of data; transducers; measurement and measurement control systems; systems operating in the digital mode; encoding, actuation, display, system input/output consideration, some special purpose systems: signal averaging systems, real time spectrum analysis systems, etc.

1.052 Methods in Mathematical Physics S2 L3T1
Prerequisites: 1.001 or 1.011, 10.001 or 10.011. Co-requisites: 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.1113 (or 10.1213).

Terminating Physics Level II Units

1.9222 Electronics S1 L1T2
Prerequisites: 1.001 or 1.011 or 1.021. Excluded: 1.032.

The application of electronics to other disciplines. Includes: principles of circuit theory and analogue computing; amplifiers, their specification and application; transducers; electronic instrumentation; industrial data acquisition.

1.9322 Introduction to Solids S2 L2T1
Prerequisites: 1.001 or 1.011 or 1.021. Excluded: 1.022, 4.402, 4.412.

Introductory quantum mechanics and atomic physics; crystal structure; point and line defects; introductory band theory; conductors, semi-conductor and insulators; energy level diagrams.

1.9422 Introduction to Physics of Measurement S1 L1½T1½
Prerequisites: 1.001 or 1.011. Excluded: 1.042.

Resolution; accuracy and sensitivity of instruments, errors of observation; experimental design; transducers; thermometry; electrical noise; servo systems; mechanical design of apparatus; optical instruments; optical fibres; photometry; calorimetry; analogue to digital conversion and digital instruments; measurement of very large and very small quantities.

Physics Level III Units

1.0133 Quantum Mechanics S1 L1½T½
Prerequisites: 1.022; 10.2112. Excluded: 2.023A, 10.222F, 1.013.

Revision of basic concepts, harmonic oscillator systems, spherically symmetric systems, angular momentum, H atom, first-order perturbation theory, identical particles, Exclusion Principle, atomic structure, spin-orbit coupling, Helium atom, introductory quantum theory of molecules.

1.0143 Nuclear Physics S2 L1½T½

Nuclear shell model; theory of beta decay; the deuteron, nucleon-nucleon scattering; theories of nuclear reactions, resonances; mesons and strange particles, elementary particle properties and interactions; symmetries and quark models; strong and weak interactions.
1.023 Statistical Mechanics and Solid State Physics
Prerequisites: 1.012, 1.022, 10.2112.

Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations.

1.0333 Electromagnetism
Prerequisites: 1.012, 10.2111, 10.2112. Excluded: 10.222C, 1.033.

Electromagnetic fields; Maxwell's equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Fresnel equations, waveguides, radiation fields, dipoles and antenna theory.

1.043 Experimental Physics A
Prerequisite: 1.032.

Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics (including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems).

1.0533 Experimental Physics B1
Prerequisite: 1.032. Excluded: 1.053.

Selected experiments and projects. Advanced experimental techniques and open ended projects in the areas covered in 1.043 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and superconductivity. Fourier optics, holography.

1.0543 Experimental Physics B2
Prerequisite: 1.032. Excluded: 1.053.

As for 1.0533 Experimental Physics B1.

1.1133 Advanced Quantum Mechanics
Co-requisite: 1.0133. Excluded: 2.023A, 10.222F.

Formal structure, matrix formalism, relativistic quantum mechanics, spin, scattering theory. Born approximation, phase shifts, many particle systems, occupation number formalism.

1.133 Electronics
Prerequisites: 1.9222 or 1.032.

1.1433 Biophysics
Prerequisites: 1.012, 1.022.

1.1533 Biophysical Techniques
Prerequisites: 1.012, 1.022, 1.032.

The theory and application of physical techniques of relevance to the study of biological systems. Techniques considered may include optical and electron microscopy X-ray and neutron diffraction, magnetic resonance, lasers, light scattering, calorimetry, fluorescence, electrochemical techniques and electrophysiological methods and dielectric measurements.

1.1633 Astrophysics
Prerequisites: 1.022.

1.1733 Conceptual Framework of Physics
Prerequisites: 1.012, 1.022. Co-requisites: 1.0133, 1.023.

Physics and metaphysics, the place of speculation in theory formation. Space and time, coordinate systems, nature of time. Fundamental physical phenomena, electrical, gravitational, inertial, nuclear phenomena, entropy and probability. Field theory, formulation, action at a distance, propagation, energy. Relativity, postulates, simultaneity. Limiting speeds, mass energy. Relationship between micro and macrocosmos, statistics, entropy and information, arrow of time. Matter and anti-matter and energy, conservation laws, inertial mass, field energy. Quantum processes, granularity, measurements and uncertainty principle, determinism versus indeterminism, nuclear phenomena.
1.3033 Mechanical Properties of Materials

Properties of materials in relation to their structure: atomic and molecular structure of solids; elasticity, inelasticity, long-range (rubber) elasticity, viscoelasticity; plasticity; brittle fracture; viscosity and surface tension of liquids; adhesion; friction and lubrication.

1.3133 Electrical, Optical and Thermal Properties of Materials
Co-requisite: 1.023.

1.3233 Measurement and Non-destructive Testing
Prerequisite: 1.032.

Design and analysis of experiments. Dynamics of measurement systems, 1st and 2nd order response, introduction to servomechanisms. Metrology, standards legislation. Techniques of mechanical, thermal, optical, photometric, fluidic and acoustic measurement. Introduction to nondestructive testing: radiography, surface crack and flaw detection, acoustic emission, magnetic and eddy current methods, acoustic spectroscopy.

1.3333 Applications of Radiation
Prerequisites: 1.033, 1.0343.

1.3533 Marine Acoustics

Wave theory: general wave equation for fluids, viscoelastic media and solids. Travelling and standing wave solutions. Wave Guides: fluid and solid wave guides, ray and mode theories. Sound transmission in the ocean and application of reflection and refraction theory, scattering and diffraction effects.

1.5133 Classical Mechanics and Field Theory
Prerequisites: 1.002 (or 10.411B), 10.1113, 10.2111, 10.2112.

Lagrange's equations and applications, variational principles, Hamiltonian formulation, canonical transformations. Poisson brackets, Hamilton-Jacobi equation, continuous systems and fields.

1.5233 Electrodynamics
Prerequisites: 1.022, 10.1113, 10.2111, 10.2112. Co-requisite: 1.0333. Excluded: 10.222C.

Special relativity, covariant formulation of electrodynamics, stress tensor, radiation from moving charges, Lienard-Wiechert potentials, synchrotron radiation, bremsstrahlung, electro-magnetic mass, radiative damping, multipole expansion for fields, scattering.

1.5333 Radiation and Matter
Prerequisites: 1.012, 1.022, 10.2111, 10.2112. Co-requisites: 1.0133 or 10.222F or 2.023A, 1.0333 or 10.222C.

1.5433 Plasmas and Laser Fusion
Prerequisites: 1.012, 1.022. Excluded: 1.513.

Microscopic and macroscopic descriptions of plasma, electromagnetic waves in plasma, stress tensor, ponderomotive force, laser-plasma interactions, momentum transfer and instabilities, non-linear force, self-focussing mechanisms, laser induced nuclear fusion, theoretical and experimental progress and prospects.

1.5533 General Relativity
Prerequisites: 1.012, 1.022, 10.1113, 10.2111, 10.2112. Excluded: 1.523.

Relativistic kinematics and dynamics, tensors and tensor operations. Christoffel symbols, formulation of general relativity, curvature of space, geodesics, gravitational field equations, Schwarzschild solution, tests of the theory, astrophysical and cosmological implications.

1.713 Advanced Laser and Optical Applications
Co-requisite: 1.002.

Laser operation, characteristics, theory, design of such types as gas, ion, molecular, excimer and dye lasers. Filter design, multiple beam interference, etalon use, dielectric mirror design. Modulators, theory and application, electro and acousto optic phenomena. Detectors, types, basic theory and design. Solid State and vacuum tube systems. Non-linear Optics, theory and applications. A design study and case history of a typical optical system. Materials processing fundamentals. Laser safety.

1.763 Laser and Optical Technology Laboratory I
Prerequisite: 1.032.

Aims to make students conversant with the techniques employed in advanced laser technology and to become familiar with the various components used in such applications. Includes: a study of advanced optical techniques including the construction, operation and characterization of various types of laser; preparation and investigation of optical, electro-optical and other related devices in terms of their basic behaviour and with respect to applications in complex optical systems; a small lecture content on a variety of topics relating to laser applications and including safety aspects.
1.773 Laser and Optical Technology
Laboratory II F T4

Co-requisite: 1.763.

This laboratory unit extends the work of the 1.763 unit in providing further experience with advanced optical systems. Students visit external establishments where lasers are being used for commercial purposes and are involved with experimental tasks related to these high technology applications. Session 2: each student is required to complete a design study and assembly of an advanced optical system selected to answer a specific problem appropriate to the subject.

Physics Level IV Units

All Physics honours courses consist of lecture units and project work. Some of the lecture units of which quantum mechanics, statistical mechanics and solid state physics are examples, are taken by all students. Other units which are considered particularly relevant to the type of honours chosen are also prescribed. The actual list of topics in this second category varies from time to time and is partly influenced by student numbers and interest. Examples of such units are given below under each honours subject heading. The project work may be experimental or theoretical and forms a very significant part of each course. Usually two projects are undertaken during the year of study.

Students whose academic records are satisfactory are invited to enrol in the honours year. Full details of courses and projects are then supplied. The approval of the Head of School is required for each program of study.

1.104 Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.104 only. Examples of specific lecture units which may be offered include: astronomy, additional topics in solid state physics, lasers, biophysics etc.

1.304 Applied Physics (Honours)

Students doing this honours course should enrol in the single subject 1.304 only. Examples of specific lecture units which may be offered include: physical principles of instrumentation, applied solid state physics, physics of materials etc.

1.504 Theoretical Physics IV (Honours)

Students doing this honours course should enrol in the single subject 1.504 only. Examples of specific lecture units which may be offered include: quantum theory of solids, plasma theory, quantum electrodynamics.

1.604 Biophysics IV (Honours)

Students taking this honours course should enrol in the single subject 1.604 only. Biophysics, statistical mechanics and solid state physics are examples of prescribed units. Additional lecture units may be selected from those on offer in other Physics honours courses and from Biochemistry and Physiology.

Servicing Subjects

These are subjects taught within courses offered by other schools or departments in a different faculty.

For further information regarding the following subject see the Faculty of Arts Handbook.

1.901 Astronomy S1 or S2 L2T2

Involves an overview of Astronomy, from the Solar System to the galaxies. Includes an exploration of the Solar System, to indicate the advances that have been made, particularly and most recently with space probes, in our understanding of planetary systems. The characteristics of stars discussed along with their use in establishing an understanding of stellar evolution. The treatment of galaxies includes consideration of the nature of our galaxy and its relation to other external systems, concluding with a brief discussion of aspects of observational cosmology. Discussion of such recent topics as black holes, pulsars, quasars.

For further information regarding the following subject see the Faculty of Architecture Handbook.

1.931 Physics I (Building) 4 credit points; compulsory. Prerequisites: nil.

For further information regarding the following subjects see the Faculty of Engineering Handbook.

1.951 Physics I (Mechanical Engineering) F L2T2

Prerequisites: As for 1.001 Physics I.

For students in the School of Mechanical Engineering.

1.961 Physics I (Electrical Engineering)
Prerequisite: As for 1.001 Physics 1.
For students in the School of Electrical Engineering.
Electrostatics in vacuum, electrostatics in dielectrics, steady state currents, magnetostatics in vacuum, ferromagnetism, electromagnetic induction, transient currents. Vectors, motion in one dimension, motion in a plane, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, collisions, rotational kinematics, rotational dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics, kinetic theory of gases. Waves in elastic media, sound waves, geometrical optics, interference, diffraction, gratings and spectra, polarization.

1.971 Physics I (Surveying)
Prerequisite: As for 1.001 Physics I.
For students in the School of Surveying.
Aims and nature of physics, linear and rotational mechanics, hydrostatics, elasticity, gravitation, temperature, electricity and magnetism, wave motion, optical instruments, interference and diffraction, lasers and atomic clocks. The importance in surveying of precise frequency, time, speed and distance measurements.

1.981 Physics I (Civil Engineering)
Prerequisite: As for 1.001 Physics I.
For students in the School of Civil Engineering.

1.962 Physics of Measurement (Surveying)
Prerequisite: 1.971.
For students in the School of Surveying.

1.972 Electromagnetism (Electrical Engineering)
Prerequisite: 1.961 or 1.001 or 1.011, 10.001. Co-requisites: 10.2111, 10.2112. Excluded: 1.012.
Electrostatics in vacuum, Electrostatics in Dielectrics, electric currents, magnetostatics in vacuum, magnetic scalar potential, magnetostatics in magnetic media, time varying fields, Maxwell's equations.

1.982 Solid State Physics (Electrical Engineering)
Prerequisite: 1.961 or 1.001 or 1.011, 10.001. Co-requisites: 10.2111, 10.2112. Excluded: 1.012.
The concepts of waves and particles, introductory quantum mechanics, atomic structure, optical spectra and atomic structure, structural properties of solids, band theory and its applications, uniform electronic semiconductors in equilibrium, excess carriers in semiconductors.

1.992 Mechanics and Thermal Physics (Electrical Engineering)
Particle mechanics, harmonic motion, central force problems, systems of particles, Lagrange's equations with applications, coupled oscillations, wave equation. Thermodynamic laws, entropy, kinetic theory. M-B distribution, microscopic processes, Maxwell's relations, chemical potential, phase diagrams, multicomponent systems, electrochemical potential, statistics of defects in solids.

Graduate Study
Not all graduate subjects are necessarily offered in any one year.

1.118G Methods of Theoretical Physics
For PhD degree, MSc and MPhysics degree course students.
1. Response functions and Green's functions. 2. Symmetry and group theory. 3. Many particle systems. 4. Tensor calculus and variational techniques.

1.128G Methods of Experimental Physics
For PhD degree, MSc and MPhysics degree course students.

1.801G Energy Alternatives
For MPhysics degree course students.
A study of energy alternatives: solar thermal and solar electric energy; energy from fossil fuels; conversions, hydrogen, nuclear fusion and fission, wind, ocean and geothermal sources of energy; political and sociological aspects of energy alternatives.

1.805G Applied Physics
For MPhysics degree course students.
A study of advanced physical instruments, data handling and control, measurement technology and materials science with special reference to physics in industry.
1.927G Acoustic Theory

2 credit points.

Sources of acoustic radiation; simple, dipole, quadrupole, plane, impulsive source, random source, aerodynamic sources. Free field propagation in fluids, interference and diffraction, absorption, shock waves. Boundary effects; reflection and transmission at fluid/fluid and fluid/solid interfaces, fluid waveguides, solid waveguides. Reception and analysis; transducers, Fourier analysis, statistical methods, impulse measurement.

2.121 Chemistry IA

Prerequisites:

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Note: Students who have passed 2.121 or 2.131 may not enrol in 2.111 or 2.141. Students meeting the 2.121 or 2.141 prerequisite are not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Students who enrol in 2.111 must pass 2.111 before they can proceed to 2.121 or 2.131 or 2.141.

2.131 Chemistry IB

Prerequisite: 2.111 or 2.121.

Chemical equilibrium, equilibrium constants, quantitative calculations applied to acid-base and solubility equilibria; buffers, titrations, chemical analysis. Oxidation and reduction reactions, electrode potentials. Chemical thermodynamics, entropy, free energy. Chemistry of carbon compounds, stereoisomerism; alkanes, alkenes, alkydes, aromatic compounds, alcohols, ethers, aldehydes, ketones, carboxylic acids and derivatives, amines.

2.141 Chemistry IM

Prerequisites: As for 2.121 Chemistry IA.

Note: As for note, 2.121 Chemistry IA.

The syllabus is an integrated one of 2.121 and 2.131 (see above). Students majoring in Chemistry may take 2.141 in lieu of 2.121 and 2.131.
Chemistry Level II Units

2.002A Physical Chemistry
Prerequisites: 2.121 or 2.141 and 10.011 or 10.001 or 10.021B & 10.021C.

Thermodynamics: first, second and third laws of thermodynamics; statistical mechanical treatment of thermodynamic properties; applications of thermodynamics: chemical equilibria, phase equilibria, solutions of nonelectrolytes and electrolytes, electrochemical cells. Kinetics: order and molecularity; effect of temperature on reaction rates; elementary reaction rate theory. Surface chemistry and colloids: adsorption, properties of dispersions; macromolecules and association colloids.

2.002B Organic Chemistry
Prerequisite: 2.131 or 2.141.

Chemistry of the more important functional groups: aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, alcohols, phenols, aldehydes, ketones, ethers, carboxylic acids and their derivatives, nitro compounds, amines and sulphonic acids.

2.002D Analytical Chemistry
Prerequisites: 2.121 & 2.131 or 2.141, 10.001 or 10.011 or 10.021B & 10.021C.

2.042C Inorganic Chemistry
Prerequisites: 2.121 or 2.131 or 2.141.

Chemistry of the non-metals including B, C, Si, N, P and S. Chemistry of the metals of groups IA, IIA, and AI. Typical ionic, giant-molecule and close-packed structures. Transition metal chemistry, including variable oxidation states, paramagnetism, Werner’s theory; isomerism of six and four-coordinate complexes, chelation, stabilization of valency states. Physical methods of molecular structure determination. Chemistry of Fe, Co, Ni, Cu, Ag, Au and Hg.

2.003E Nuclear and Radiation Chemistry
Prerequisites: 2.121 & 2.131, or 2.141, and 10.001 or 10.011 or 10.021B & 10.021C.

2.003H Molecular Spectroscopy and Structure
Prerequisite: 2.121 & 2.131, or 2.141.

Absorption and emission of radiation. Atomic spectra. Molecular spectroscopy: vibrational, including infrared and Raman; UV-visible; instrumentation and sample handling. Magnetic resonance. Mass spectrometry with particular reference to structure determination. Laboratory and tutorial work to illustrate the above, including inspection of major instruments.

Chemistry Level II/III Units

2.003J Fundamentals of Biological and Agricultural Chemistry
Prerequisites: 2.121 & 2.131, or 2.141. Excluded: 2.013L, 41.101.

Aspects of the chemical and physical properties of materials important in biological systems. Methods of separation, of purification and estimation, and correlations of structure with reactivity. Methods of separation and identification, such as gel permeation, discussed as appropriate to each topic. Significance of isomerism in biological systems, optical and geometrical, absolute configuration. Amino acids, peptides and introduction to protein structure. Relevant properties, acid/base properties, pK values, zwitterion, isoelectric points. Simple peptide synthesis. Treatment of carbohydrates, establishment of structures, reactivity. Chemistry of monosaccharides, disaccharides and polysaccharides. Methods of analysis, chemical and physico-chemical. Fats, correlation of properties with saturated and unsaturated fatty acid composition. Structural chemistry of fatty acids. Reaction of unsaturated fatty acids, urea complexes. Trace elements in biological systems. Chemistry of common heterocyclic systems with emphasis on molecules of biological importance.

2.003K Solid State Chemistry
Prerequisites: 2.121 & 2.131, or 2.141, and 10.001 or 10.011.

The determination of crystal structures by single crystal diffraction: X-ray and neutron diffraction methods. Practical and automated aspects of the solution of crystal structures: applications to inorganic, molecular and macromolecular crystals. Patterns of solid state structure: the structures of crystals with unusual and valuable chemical and physical properties. Solid state reactions, surface properties and catalysis. Applications of EPR, NMR and mass spectrometry.

2.013A Introductory to Quantum Chemistry
Prerequisites: 1.001 or 1.011, 2.121 & 2.131, or 2.141, and 10.001 or 10.011 or 10.021B & 10.021C.

2.003A Physical Chemistry

Prerequisite: 2.002A.
Thermodynamics, including non-ideal systems; advanced electrochemistry; statistical thermodynamics; applications to gases, liquids and chemical equilibria; states of matter.

2.003B Organic Chemistry

Prerequisite: 2.002B.
Alicyclic Chemistry: Stereochemistry of acyclic systems; classical and non-classical strain in cyclic systems; stereochemistry and conformation of monocyclic and polycyclic compounds; synthesis, reactions and rearrangement of monocyclic compounds including stereochemical selectivity; transannular reactions in medium rings. Synthesis and reactions of fused and bridged polycyclic systems.

Heterocyclic Chemistry: Synthesis and reactions of the following heterocyclic systems: pyridine, quinoline, isoquinoline. Flavones and isoflavones; pyrimidine; pyrrole, furan, thiophen. Indole, imidazole.

2.003C Inorganic Chemistry

Prerequisite: 2.042C.
Coordination chemistry: valence bond and crystal field theory and their application to magnetic and spectral properties of complexes. Factors affecting the stability of complexes; unusual oxidation states of transition metals. Chemistry of the groups IIIA (the lanthanides and actinides), IVA, VA, VIA and VIIA. More advanced chemistry of groups IIB, IVB, VB, VIB and VIB and the noble gases.

2.003D Instrumental Analysis

Prerequisites: 2.002A and 2.002D.

2.003L Applied Organic Chemistry

Prerequisite: 2.002B. Excluded: 2.033L.
Discussion at advanced level of the chemistry of selected commercially important groups of organic materials. Mechanisms of reaction and physical properties, together with methods of examination, in overall unit approach, correlating structure with behaviour. Emphasis on breakdown to model systems. Theory of physical techniques, refractometry, polarimetry etc. from basis of additivity. Fatty acids with emphasis on unsaturation, thermal and oxidative polymerizations, alkyl resins, analysis of mixtures. Waxes and sterols; selected natural and synthetic macromolecules; polymerization processes, including treatment of initiators, chain transfer agents, retarders. Vulcanization and sulphur-olefin reactions. Photochemical processes; electro-organic chemistry. Fine chemicals, soaps and detergents. Aspects of metal catalysis in industry.

2.003M Organometallic Chemistry

Prerequisite: 2.002B.
Synthesis, structure and reactions of metal alkyls and aryls; metal carbonyls, isonitriles and acetylides; compounds of metals with unsaturated hydrocarbons; organic chemistry of boron, silicon, phosphorus and arsenic; application of organometallic compounds in organic synthesis and homogeneous catalysis.

2.013B Synthetic Organic Chemistry

Prerequisite: 2.003B.

2.013C Advanced Inorganic Chemistry

Prerequisite: 2.042C. Co-requisite: 2.003C.

2.013D Advanced Analytical Chemistry

Prerequisite: 2.002D. Co-requisite: 2.003D.

2.013E Advanced Nuclear and Radiation Chemistry

Prerequisite: 2.003E.
Only available to non-Chemistry majors. It may not be included in course programs 0201, 0202, 0203, 0204, 0241, 0242, 0262 and Course 3910.
Advanced nuclear instrumentation and special counting methods; isotope effects and isotope separation methods; nuclear reactors, accelerators and isotope production; isotope labelling techniques; radiation sources and their uses; hot atom and recoil reactions; actinide chemistry and nuclear reactor fuel processing; environmental radioactivity; biochemical applications including radioimmunoassay techniques and the preparation of short lived radiopharmaceuticals; isotopic methods applied to chemical measurements; industrial tracer applications. Laboratory classes involve experiments associated with the above topics.
2.013L Chemistry and Enzymology of Foods F L1T2
Prerequisite: 2.002B. Excluded: 2.003J, 2.043L, 2.023L, 2.053L.

The chemistry of food constituents at an advanced level and the relationship between the chemistry and enzymology associated with the origin and handling of foodstuffs. Treatment of the stability of constituents, changes in colour and texture occurring during processing and storage. Methods of assessment, chemical and physical. General: classification of constituents, role of free and combined water. Fixed oils and fats, rancidity of enzymic and autoxidative origin, antioxidants — natural and synthetic — theories on mechanisms of action, carbohydrates, reactivity, role in brewing processes, carbohydrate polymers, starch structure, enzymic susceptibility and mode of action, estimations, enzymic degradation and enzymic browning, reactions and stability of natural pigments, vitamins, preservatives.

2.033A Physical Chemistry of Macromolecules S2 L2T4
Prerequisites: 1.012 or 2.002A and 2.002B or 2.003J.

Macromolecules in solution: determination of molecular size; gel permeation chromatography, diffusion, sedimentation, viscometry, osmometry and light scattering. Spectroscopic properties: circular dichroism and optical rotary dispersion; conformation of macromolecules in solution; helix-random coil transitions. Macromolecules in the solid state; X-ray diffraction, basic structural features.

2.043A Environmental Chemistry S2 L3T3
Prerequisites: 2.002A, 2.002D.

or
Distribution of elements and nutrient cycles in water; organic carbon cycles, oxygen balance (redox processes in aquatic systems). Chemical models of these processes (including an introduction to simple computing). Practical project (mostly field work) dealing with nutrient cycles.

2.053L Biological and Agricultural Chemistry F L2T4
Prerequisite: 2.002B. Excluded: 2.013L, 2.023L, 2.053L.

Reference: 2.043L and 2.053L: only one of these double units may be chosen.

As for 2.013L but in greater detail and depth.

2.023A Quantum Theory of Atoms and Molecules F L2T1
Prerequisites: 2.002A, 10.2111 & 10.2112.

Wave mechanics — linear operators; Schrödinger wave equation, applications, method of solution; variation principle, linear combinations, perturbation theory. Many-electron problems — central field method; electron spin; Fermi-Dirac statistics; angular momentum operators; Coulomb repulsion two-electron operator; spin-orbit coupling; Russell-Saunders and jj coupling; Zeeman effect; vector coupling and Wigner coefficients; allowed transitions. Group theory — symmetry operations; matrix representation; reducible representation; characters of a group; non-rigid molecules; antisymmetry operators.

2.023B Natural Product Chemistry S2 L2T4
Prerequisite: 2.003B.

The isolation, structure determination, synthesis and biosynthesis, and the reactions of selected classes of organic compounds of biological significance. The chemistry of plant and animal products — terrestrial and marine. Examples from carbohydrates, terpenoids and steroids, alkaloids and other naturally-occurring heterocyclic systems. Interdisciplinary aspects of the topic.

2.023L Biological and Agricultural Chemistry SS L2T4
Prerequisite: 2.002B. Excluded: 2.053L, 2.013L, 2.043L.

2.063A Advanced Molecular Spectroscopy
Prerequisite: 2.013A.

Theory: Born-Oppenheimer approximation; theory of transition probabilities; group theory; normal mode analysis.

Spectra: rotational, vibrational and electronic structure in molecular spectra, including microwave, infrared, Raman, UV-visible and photoelectron spectra. Kinetic spectroscopy. Lasers.

Chemistry Level IV Unit

2.004 Chemistry Honours

An honours program consisting of selected series of lectures on advanced topics in Chemistry and a research project.

Students intending to seek admission to this course should consult the School re selection of units in the earlier years and apply to the Head of the School for consideration for admission at the end of Year III (or completion of requirements for the pass degree).

Servicing Subjects

These are subjects taught within courses offered by other schools or departments in a different faculty.

81.002 Chemistry and Biochemistry for Medical Students

Conjoint subject with the School of Biochemistry.

For further information regarding the following subjects see the Faculty of Applied Science and Engineering Handbooks.

2.030 Organic Chemistry
Prerequisite: 2.002B.

The spectroscopic identification of organic compounds, free radical chemistry and electro-organic processes, various aspects of the organic industrial processes such as industrial synthesis based on petrochemicals, and organometallic reactions of industrial interest. Selected topics from the dyestuff, pharmaceutical and agricultural industries discussing syntheses and reactions including degradation.

2.981 Chemistry ICE
Prerequisite: As for 2.121 Chemistry IA.

Graduate Study

2.231G Food and Drugs I and II and (Including Pharmacognosy and

2.242G Microscopy of Crude Drugs)

Regarded as a unit, and may be spread over two years.

Treatment of the food section develops from considerations of proximate analysis — gross determination of classes of food components — to detailed examinations within the groups for more important compounds. Conversely the course in drug work progresses from the examination of simple materials, including identification of unknowns by macro and micro procedures to the examination of compounded materials. A background section on food handling is included, while some attention is given to chemotherapy etc in the drug course.

Subject-matter covers treatment of the main classes of foodstuffs, such as: Foods: Origin, general introduction to analytical methods, relation to likely adulterations and impurities, groups of constituents; carbohydrates, sugars, by physical and chemical methods, jams and preserves, pectin, agar, alginates, oils and fats; protein foods, meat, gelatin, fish products, dairy products, milk, cream, cheese, etc.; fermented liquids, beer, wine, spirits, minor constituents. Principles of food processing, dehydration, quick freezing, canning; cereal products; beverages and flavouring essences; nutritional aspects, vitamins in detail; preservatives and food additives; radiation chemistry of food products. Drugs: Elements of pharmacology chemotherapy and modes of action, galenicals, identification tests for alkaloids, etc. Analytical chemistry of analgesics, sedatives, hypnotics, steroid hormones, antihistamines, etc. Antibiotics, penicillin, streptomycin, aureomycin, sulphonamides. Activity of enzyme preparations; antibiotics and disinfectants; soaps and detergents.

Pharmacognosy and Microscopy of Crude Drugs

A graded subject of 20 hours, progressive from relatively simple structures to the examination of adulterated mixtures. Examples from the series: hairs and textile fibres of natural origin, woods, stems, leaves, and barks. Seeds, fruits, rhizomes and roots. Flowers, dried fruits and gums. Reactions of cell wall and cell contents. Steps in characterization of unknown powders, adulterants of food and drug powders.

2.251G Toxicology, Occupational and Public Health

Prerequisite: Nil.

Important classes of toxic materials found in the environment; treatment of pesticide residues, industrial chemicals of various types, toxic gases, mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals, etc. Effects of these substances on living organisms, particularly man. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling and analysis, trace metal determination and experiments on the animal metabolism of toxic substances.
2.271G Chemistry and Analysis of Foods

Illustrates the bases and application of analytical techniques as applied to foods. Emphasis is placed on the design of methods, on the preparation of material for instrumental analysis and on the interpretation of data. Includes: proteins and flesh foods, carbohydrates and saccharine foods, fats and oils, dairy and fermentation products, vitamins, food additives — preservatives and colouring matter, pesticide residues, metal contaminants — food microscopy.

2.281G Instrumental Techniques in Food and Drug Analysis

Principles involved in modern instrumental techniques; detailed application and interpretation of results. UV, IR, NMR, and ESR, emission and atomic absorption spectroscopy, polarography, X-ray methods, fluorescence spectroscopy and gas chromatography. Services 2.231G, 2.242G and 2.251G but is also suitable as a single subject for those wishing to familiarize themselves with modern techniques.

2.371G Treatment of Analytical Data

Errors of measurement, the treatment, interpretation and comparison of sets of measurements, associated data and problems involving analysis of variance. Topics: Description of sets of measurements, graphical representations, calculation of measures of location and spread; probability and random errors, binomial, normal and Poisson significance; comparisons of sets of measurements, tests of significance; associated data, linear regression analysis; analysis of variance; biological assays, bacteriological counts, sampling problems.

2.581G Advanced Analytical Chemistry

Research Project: Practice, instruction and visits.

2.582G Food and Drug Chemistry

Lectures/Laboratory: 1. Food and drugs I. 2. Treatment of analytical data. 3. Instrumental techniques in food and drug analysis. 4. Food and drugs II. 5. Toxicology, occupational and public health.

Research Project.

2.583G Analytical Science (Chemistry)

Lectures/Laboratory 1. Classical methods of chemical analysis: Solution equilibria, precipitation and complex formation, gravimetric, titrimetric and spectrophotometric methods, use of organic reagents, ion exchange and solvent extraction. 2. Instrumental analysis: Advanced treatment of modern instrumental methods including molecular and atomic spectroscopy, chromatography and electrochemistry. 3. Toxicology, occupational and public health. 5. Special instrumental methods: Theory, instrumentation and applications of X-ray fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectrometry Principles of automation and data processing.

Project.

Metallurgy

Undergraduate Study

4.024 Metallurgy Project

S1 6 S2 3

An experimental investigation of some aspects of metallurgy. Includes three weeks laboratory work during the mid-year recess.

4.054 Metallurgy Seminar

F L2

Lectures on the preparation and presentation of technical papers. Each student is required to prepare and present a paper on a nominated subject.

4.302 Chemical and Extraction Metallurgy I

F L1T2

Co-requisite: 2.002A.

Metal extraction from ores in terms of unit operations and overall systems, illustrated by the extraction of iron, copper, aluminium and other metals. Elementary process analysis. Laboratory — analysis and solution of problems.

4.303 Chemical and Extraction Metallurgy II

F L3T2

4.314 Chemical and Extraction Metallurgy IIIA

S1 L3 T1½

Prerequisite: 4.303.

4.324 Chemical and Extraction Metallurgy IIIB

S2 L3 ½T1

Prerequisite: 4.303.

A selection of advanced topics in chemical and extractive metallurgy.

4.402 Physical Metallurgy I

S1 L3T3 S2 L2T4

4.403 Physical Metallurgy II F L4T5
Prerequisite: 4.402. Excluded: 1.3033.

4.404 Physical Metallurgy III S1 L3T4½ S2 L3T1½
Applications of dislocation theory to work hardening and annealing processes. Phase transformations in alloys. Mathematical crystallography, reciprocal lattice, diffraction. Electron and X-ray metallography. Selection of advanced topics in physical metallurgy including radiation damage, martensitic transformations, neutron diffraction, internal friction, sintering, creep, superelasticity, fracture, microplasticity.

4.412 Metallurgical Phases — Structure and Equilibrium, Part 1 S1 L3T3

The crystal structure of metallic phases. Crystal defects. Physical properties of solids. Phase equilibrium in alloy systems. The genesis of microstructure. Metallography.

4.414 Physical Metallurgy II A S1 L3T1½
Prerequisite: 4.403.

4.422 Metallurgical Phases — Structure and Equilibrium, Part 2 S2 L2T4

4.502 Mechanical Metallurgy S1 L2T2 S2 L1T2
Co-requisite: 4.402.

Combination of 4.512 and 4.522.

4.512 Mechanical Properties of Solids S1 L2T2
Co-requisite: 4.402.

4.522 Mechanical Metallurgy S2 L1T2
Prerequisite: 4.512.

4.504 Mechanical and Industrial Metallurgy S1 L3T0 S2 L3T6
Prerequisites: 4.403 or 4.433, 4.502 or 4.522.

The application of metallurgical principles to industrial processing with particular reference to casting, welding, shaping, properties and selection of materials. Metal finishing. Metallurgical aspects in engineering design. Fracture mechanics, design against fatigue, brittle and ductile fracture.

4.602 Metallurgical Engineering I S2 L3T2
Co-requisite: 4.302.

Mass and energy accounting in metallurgical processes. An introduction to the principles and applications of transport processes in systems with specific reference to industrial processes in primary and secondary metallurgy.

4.613 Metallurgical Engineering IIA S1 L2T1
Prerequisite: 4.602.

An extension of the principles and applications of transport processes to metallurgical systems. The principles of metallurgical heating and cooling including fuels, refractories and furnace design and operation. Solidification in moulds, continuous casting. Process Economics: As for 48.031 Chemical Engineering IIA Unit 6.

4.703 Materials Science S2 L2T1
Co-requisite: 4.403.

The application of the principles of physical metallurgy to the development of modern materials. Particular attention is paid to the structure property relationships that determine the design of materials. The topics covered include materials used for structural purposes, high temperature application, corrosive environments, nuclear engineering, fuel cells, magnetic applications.
Mechanical and Industrial Engineering

Undergraduate Study

5.006 Engineering E

Prerequisite: as for 5.010. Excluded: 5.010, 5.020, 5.030.

5.010 Engineering A

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
</tr>
</tbody>
</table>

Either

- 2 unit Science (Physics) or 31-100
- 4 unit Science (multistrand) or 11-100
- 2 unit Industrial Arts or 31-100
- 3 unit Industrial Arts 11-100

Note: Students who wish to enrol in this subject in courses other than the full-time courses in Aeronautical Engineering, Civil Engineering, Industrial Engineering, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of the first year.

Statics: Composition and resolution of forces, laws of equilibrium. Friction. Statics of rigid bars, pin-jointed frames, and beams. Simple states of stress. Statics of fluids. Introduction to Engineering Design: Engineering method, problem identification, creative thinking, mathematical modelling, computer-aided design, materials and processes, communication of ideas, the place of engineering in society. Introduction to Materials Science: The structure and properties of the main types of engineering materials, with emphasis on the way in which properties may be controlled by controlling structure.

5.020 Engineering B

Prerequisite: 5.0101 or 5.010 or 8.170.

5.030 Engineering C

Prerequisites: as for 5.010.

and one of the following options (determined by the course of study)

1. Production Technology

(Mechanical, Industrial and Aeronautical Engineering and Naval Architecture students must take this option.) Description and appraisal of the processes classified as: forming from liquid or solid, material removal, material joining. Machines. Analysis of the primary functions of the machine tools and an appraisal of their limitations. Principles of operation of common machine tools and illustrations of their use.

2. Introduction to Chemical Industry

(Chemical Engineering and Industrial Chemistry students must take this option.) The chemical industry in Australia. The role of professional societies. Special topics on the engineering and chemical aspects of the industry, ie pollution control, energy sources, food and biochemicals and polymers, mineral processing, safety, etc. A visit to a factory in the Sydney area and the preparation of a short report after an introduction to information retrieval by university librarians.

3. Introduction to Metallurgical Engineering

(Metallurgy students must take this option.) History and significance of the exploitation of metals. Ores, mineral economics, mineral processing, and metal extraction and processing methods illustrated by reference to the Australian mineral and metal industries. Properties, uses and applications of metallic materials. The role of the metallurgist in industry and in processing and materials research, and in relation to conservation and the environment.

4. Introduction to Mining Engineering

(Mining Engineering students must take this option.) Mineral deposits; metallic, non-metallic and fuels. Elements of prospecting and exploration. Basic mining techniques. Mining phases; development, exploitation, beneficiation and withdrawal. Mining and the environment. Mining services. Relevance of basic science and engineering subjects to mining design and operations.

5. Introduction to Ceramic Engineering

(Ceramic Engineering students take this option.) The classification of materials. The nature of ceramics. The materials science approach. The scope of the ceramic industry. The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials. Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, pot forming and other forming procedures.
Computer Science

Undergraduate Study

6.606 Computing Science Honours

6.611 Computing I

Prerequisite: As for 10.001. Co-requisite: 10.001 or 10.011. Excluded: 6.600, 6.620, 6.021D (1.041 excluded for students enrolled in Program 6806 and Computer Science programs in the Science and Mathematics course).

Introduction to programming: design and correctness of algorithms and data structures; programming in a high-level algorithmic language which provides simple, high level program control and data structuring facilities. Problem solving: basic ideas of problem solving; introduction to abstract structures used for computing solutions to problems. Introduction to propositional logic, computing machinery, computer arithmetic, artificial intelligence, and operating systems.

6.613 Computer Organization and Design

Prerequisites: 6.631 or 6.021E, 6.021D or 6.620 or 6.621 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects). Excluded: 6.0318.

Bussing structures (asynchronous and synchronous); input/output organization; polling, interrupt and DMA control; parallel and serial device and processor communication and interfacing. Memory organization; CPU and control unit design. Processes: synchronization and communication. Microprocessor case studies.

6.621 Computing IIA

Prerequisites: 6.611 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject), 10.001 or 10.011. Excluded: 6.620, 6.021D.

For those students who intend to take further subjects in computer science.

Expansion and development of material introduced in 6.611 Computing I. Systematic program development: introduction to programming language semantics, reasoning about programs, program derivation, abstract programs, realization of abstract programs (conversion from abstract to concrete). Practice in programming in a high-level programming language. Data-structures: arrays, lists, sets, trees; recursive programming. Introduction to computer organization: a simple machine architecture. Introduction to operating systems.

6.622 Computer Applications

6.631 Computing IIB

Prerequisites: 6.620 or 6.621 or 6.021D (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects), 6.600 (CR). Excluded: 6.021E.

Assembler programming: programming in a low level machine oriented language in order to illustrate the mapping of higher level language constructs onto a typical machine and the interaction between operating systems and devices. Digital Logic Design: Boolean algebra and logic gates, simplification of Boolean functions, combinational logic, medium scale integration building blocks, clocked sequential circuits, registers and memory, computer arithmetic.

6.632 Operating Systems

Prerequisites: 6.631 or 6.021E, 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects). Excluded: 6.672.

Introduction to operating systems via an intensive case study of a particular system, namely the UNIX Time-sharing system which runs on the PDP11 computer. Includes system initialization, memory management, process management, handling of interrupts, basic input/output and file systems. A comparison of UNIX with other operating systems. General principles for operating system design.

6.633 Data Bases and Networks

Data Base Management Systems: data models; relational and network structures; data description languages; data manipulation languages; multi-schema structures. Data integrity and security; recovery; privacy. Computer Networks: economic and technological considerations; digital data transmission; error detection and recovery; network configurations; circuit switching, packet switching; communication protocols, current international standards; data compression; encryption and decryption.

6.641 Computing IIC

Prerequisites: 6.620 or 6.021D or 6.621 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects), 6.600 (CR).

6.642 Design and Analysis of Algorithms

Prerequisite: 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject).

Techniques for the design and performance analysis of algorithms for a number of classes of problems. Analysis of algorithms: order notation, recurrence equations, worst case and expected order statistics. Design of efficient algorithms: recursion, divide and conquer, balancing; backtracking algorithms, branch and bound, dynamic programming; set manipulation problems; fast search algorithms; balanced optimal and multiway trees; graph representations and algorithms; pattern matching algorithms. NP — complete problems. Design and specification of programs: modularization, interface design, introduction to formal specification techniques.

6.643 Compiling Techniques and Programming Languages

Prerequisite: 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject). Excluded: 6.672.

6.646 Computer Applications

Prerequisite: 6.620 or 6.021D or 6.621 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects), or 6.600 (CR), one of 10.311A, 10.321A, 10.301, 10.331, 45.101† or equivalent. Excluded: 6.622.

The use of computers for solving problems with a substantial mathematical and operational research content: includes use of some standard software packages. Topics selected from: discrete event simulation; a simulation language; pseudo random number generation; simple queueing theory; applications of mathematical programming; dynamic programming; statistical calculations; critical path methods; computer graphics, artificial intelligence.

6.647 Business Information Systems

Introduction to accounting systems — general ledger, debitors and creditors; models of business information systems; integrated business systems. System specification, system analysis, system design and implementation; testing and debugging. Managing a project team, project control. The COBOL programming language. File organization and design; sequential, indexed sequential, random, inverted, B-tree file organizations; data dictionaries, program generators, automatic system generators. A major project, written in COBOL, is undertaken as a team exercise.

6.649 Computing Practice

Prerequisite: 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject). Co-requisites: 6.633 or 6.643 or 6.647.

Not offered in 1984.

Can only be counted with at least 3 other Level III Computer Science units.

For students majoring in Computer Science who seek a programming career in government or commercial industry. Topics, related to current computing practice, include: Comparative study of computer hardware in current popular use; Comparative study of the 'popular' programming languages, eg COBOL, RPG, BASIC, FORTRAN, PL/1, APL. Job control languages. Data Preparation procedures. Keyboard entry. Verification. Word processing; report preparation; documentation. Social implications of computing. Professional responsibilities and ethics. Project management, software engineering, psychology of computer programming.

Mathematics

Undergraduate Study

Note: When a unit is listed as a prerequisite or co-requisite, the appropriate higher unit may be substituted.

Many units in the School of Mathematics are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered grades higher than Credit are only awarded in the ordinary level in exceptional circumstances.

Students should note that all of the Mathematics honours programs require them to take most of their Mathematics units at higher level. However, students should not think that the higher level units are intended only for those in honours programs. Any student with the ability to undertake higher units benefits from so doing.

First Year Mathematics

10.001 Mathematics I. This is the standard subject and is generally selected by the majority of students in the Faculties of Science, Biological Sciences, Engineering and Applied Science who intend to pursue further studies in mathematics, computer science, physics, chemistry or engineering.

10.011 Higher Mathematics I (day course only). This subject has the same purpose as 10.001, but is aimed at the more mathematically able students, including those who may wish to take an honours degree in mathematics. It covers all the material in 10.001, plus other topics, at greater depth and sophistication. It is intended for students who have obtained high marks in the 3 unit mathematics course of the Higher School Certificate as well as for those who have taken the 4 unit course.
General Mathematics

This is a combination of the single session units 10.021B and 10.021C and provides for students who do not intend studying mathematics beyond first year but whose other studies require some knowledge of basic mathematical ideas and techniques. It is particularly designed to meet the needs of such students in Biological Sciences, Optometry, Applied Psychology and Wool and Pastoral Sciences. However, students who select this subject should weigh seriously the implications of their choice because no further mathematical units are normally available. A student with meritorious performance in 10.021C may be permitted to proceed to a certain limited number of second year subjects intended for biologists and chemical engineers. The single unit 10.021B is also available to students seeking a prerequisite for 10.001.

Mathematics as a Subsidiary Subject

The School also provides the sequence of two units 10.031 and 10.032 at the second and third levels respectively, for students in the Science and Mathematics Course and the Faculty of Science who are mainly interested in the chemical and biological sciences. These courses offer an introduction to mathematical techniques for scientists and engineers.

There is also the Level II unit in Statistics, 10.331, which provides an introduction to statistical procedures commonly used in Science, and which also leads to the Level III units 10.3321 Regression Analysis and Experimental Design, 10.3322 Applied Stochastic Processes and, with a Credit Pass, to 10.312B Experimental Design (Applications) and Sampling.

For both the above Level II units the entry qualification is a pass in 10.001 Mathematics I, but in appropriate cases students who have passed in 10.021C General Mathematics IC at a satisfactory level may be given permission to enrol.

10.001 Mathematics I
Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
</tr>
</tbody>
</table>

2 unit Mathematics* or
3 unit Mathematics or
4 unit Mathematics
10.021B

Excluded: 10.011, 10.021B, 10.021C.

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.011 Higher Mathematics I
Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
</tr>
</tbody>
</table>

3 unit Mathematics or
4 unit Mathematics
10.021B

Excluded: 10.001, 10.021B, 10.021C.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.021B General Mathematics IB
Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
</tr>
</tbody>
</table>

2 unit Mathematics* or
3 unit Mathematics or
4 unit Mathematics
10.021A.

Excluded: 10.011, 10.001.

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the Binomial Theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra.

10.021C General Mathematics IC
Prerequisite: 10.021B. Excluded: 10.001, 10.011.

Techniques for integration, improper integrals; Taylor's Theorem; first order differential equations and applications; introduction to multivariable calculus; conics; finite sets; probability; vectors, matrices and linear equations.

10.031 Mathematics
Prerequisite: 10.001 or 10.011 or 10.021C (CR).

Note A: A unit, together with 10.032, which is available to Faculty of Science students as one of a sequence of two units constituting a terminating service course in mathematics. As such it is mutually exclusive to any other Level II or Level III unit in Pure and/or Applied Mathematics and/or Theoretical Mechanics except that 10.412A may be taken with 10.031 and 10.032.

Note B: Mathematics 10.031 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics or Applied Mathematics are taken, 10.031 Mathematics will not be counted.

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods.

10.032 Mathematics
Prerequisite: 10.031.

Note A: As for Note A in 10.031 Mathematics.

Note B: Mathematics 10.032 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics, Applied Mathematics or Theoretical Mechanics are taken, 10.032 Mathematics will not be counted.

Vector Calculus; special functions; convolution theorem and applications; complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.
10.081 Mathematics IX
Co-requisites: 10.001 or 10.011, 6.611 or 1.041.
Elementary logic, truth tables, finite structures, recurrence relations, combinatorics. Use of mathematics for real-world problems (mathematical modelling); practical applications of calculus to topics such as population dynamics.

10.612 Mathematical Software
Prerequisites: 6.621, 10.111A, 10.2112 (or equivalent).

10.1115 Pure Mathematics II —
Finite Mathematics A
Prerequisite: 10.001.
Positional number systems, floating-point arithmetic, Rational arithmetic, congruences, Euclid's algorithm, continued fractions, Chinese remainder theorem, Fermat's theorem, applications to computer arithmetic. Polynomial arithmetic, division algorithm, factorisation, interpolation, finite field. Codes, error-correcting codes, public-key cryptography.

10.1116 Pure Mathematics II —
Finite Mathematics B
Prerequisite: 10.1115 (or any other Year 2 Mathematics half-unit).
Introduction to combinatorial computing, recurrence relations, examples of divide and conquer strategies, backtrack and branch and bound algorithms. Finite Fourier transforms, roots of unity, convolutions, applications to fast multiplication and the analysis of pseudorandom numbers. Boolean algebra, switching circuits.

10.121A Higher Pure Mathematics II —
Algebra
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.111A, 10.1111.

10.1213 Higher Pure Mathematics II —
Multivariable Calculus
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.1113.
As for 10.1113 but in greater depth.

10.1214 Higher Pure Mathematics II —
Complex Analysis
Prerequisite: 10.1213. Excluded: 10.1114.
As for 10.1114 but in greater depth.

10.1111 Pure Mathematics III —
Group Theory
Prerequisite: 10.001. Co-requisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112. Excluded: 10.121A.
Mathematical systems, groups, determination of small groups, homomorphisms and normal subgroups.

10.1112 Pure Mathematics III —
Geometry
Elementary concepts of Euclidean, affine and projective geometries.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Level/Unit</th>
<th>Prerequisites/Exclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1121</td>
<td>Pure Mathematics III — Number Theory</td>
<td>SS L1½T½</td>
<td>Prerequisites: ***. Excluded: 10.1421, 10.121C.</td>
</tr>
<tr>
<td></td>
<td>Euclidean algorithm, congruences, sums of squares, diophantine equations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1123</td>
<td>Pure Mathematics III — Logic and Computability</td>
<td>SS L1½T½</td>
<td>Prerequisites: ***. The propositional calculus — its completeness and consistency; Turing machines; unsolvable problems; computability and Church's thesis; Godel's incompleteness theorems.</td>
</tr>
<tr>
<td>10.1124</td>
<td>Pure Mathematics III — Combinatorial Topology</td>
<td>SS L1½T½</td>
<td>Prerequisites: ***. Elementary combinatorial topology of surfaces.</td>
</tr>
<tr>
<td>10.1125</td>
<td>Pure Mathematics III — Ordinary Differential Equations</td>
<td>S1 L1½T½</td>
<td>Prerequisites: 10.111A ***. Excluded: 10.1425, 10.122E. Systems of ordinary differential equations; variations of constants formula; stability; Poincare space; Lyapunov's direct method.</td>
</tr>
<tr>
<td>10.1126</td>
<td>Pure Mathematics III — Partial Differential Equations</td>
<td>S1 L1½T½</td>
<td>Prerequisites: 10.1113, 10.1114. Co-requisite: 10.1125, 10.1426. System of partial differential equations; characteristic surfaces; classifications; Cauchy problem; Dirichlet and Neumann problems; the maximum principle; Poisson's formula; conformal mapping.</td>
</tr>
<tr>
<td>10.1127</td>
<td>Pure Mathematics III — History of Mathematics</td>
<td>S2 L1T1</td>
<td>Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112. Topics from the History of Mathematics, with emphasis on the development of those ideas and techniques used in undergraduate courses. Students are expected to read widely and to present written material based on their readings.</td>
</tr>
<tr>
<td></td>
<td>*Students are not normally permitted to attempt a Level III Pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1521</td>
<td>Pure Mathematics III — Combinatorics and Its Applications</td>
<td>SS L1½T½</td>
<td>Prerequisites: ***. Generating functions, their properties and applications to partitions and recurrence relations. Branching processes, trees and the analysis of their paths, the analysis of algorithms and the Galton-Watson process. Coding theory and other design problems, Latin squares, block designs and error-correcting codes.</td>
</tr>
<tr>
<td>10.1321</td>
<td>Higher Pure Mathematics III — Rings and Fields</td>
<td>S1 L1½T½</td>
<td>Prerequisites: 10.121A or 10.111A (DN). Rings; integral domains; factorisation theory. Fields; algebraic and transcendental extensions. Introduction to algebraic number theory; quadratic reciprocity.</td>
</tr>
<tr>
<td></td>
<td>*** See footnote in previous column.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.1323 Higher Pure Mathematics III — Complex Analysis S1 L1½T½
Prerequisites: 10.1214 or 10.1114 (DN). Co-requisites: 10.122B (strongly recommended).

10.1324 Higher Pure Mathematics III — Integration and Fourier Analysis S2 L1½T½
Co-requisite: 10.122B.
Lebesgue integration; measure theory. Fourier transforms.

10.1325 Higher Pure Mathematics III — Differential Geometry S1 L1½T½
Prerequisites: 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN). Excluded: 10.1522.
Curves and surfaces in space; classification of surfaces. Curvature; geodesics.

10.1326 Higher Pure Mathematics III — Calculus on Manifolds S2 L1½T½
Co-requisite: 10.1325.
Manifolds; vector fields; flows. Introduction to Morse theory. Differential forms; Stokes' theorem; the Gauss-Bonnet theorem.

10.1421 Higher Pure Mathematics III — Number Theory S1 L1½T½
Excluded: 10.1121.
Prime numbers; number theoretic functions; Dirichlet series; partitions. Continued fractions; diophantine approximation; p-adic numbers.

10.1422 Higher Pure Mathematics III — Groups and Representations S2 L1½T½
Prerequisites: 10.121A or 10.111A (DN) and 10.1111 (DN).
Abelian groups; composition series; nilpotent groups; soluble groups. Representations and characters of finite groups; induced representations.

10.1423 Higher Pure Mathematics III — Topology S1 L1½T½
Prerequisites: 10.1213 or 10.1113 (DN).
Naive set theory; the axiom of choice. Metric and topological spaces; compactness.

10.1424 Higher Pure Mathematics III — Geometry S2 L1½T½
Prerequisites: 10.121A or 10.111A (DN) and 10.1111 (DN). Excluded: 10.1125.
Axioms for a geometry; affine geometry. Desargues' theorem; projective geometry.

10.1425 Higher Pure Mathematics III — Ordinary Differential Equations S1 L1½T½
Existence and uniqueness theorems. Linearisation. Qualitative theory of autonomous systems.

10.1426 Higher Pure Mathematics III — Partial Differential Equations S1 L1½T½

10.123 Pure Mathematics IV
An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses on topics chosen from fields of current interest in Pure Mathematics. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

Applied Mathematics

10.2111 Applied Mathematics II — Vector Calculus S1 or S2 L1½T1
Prerequisite: 10.001 or 10.011. Excluded: 10.2211, 4.813.
Vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss' and Stokes' theorems. Curvilinear co-ordinates.

10.2112 Applied Mathematics II — Mathematical Methods for Differential Equations S1 or S2 L1½T1
Prerequisites: 10.001 or 10.011. Excluded: 10.2212, 4.813.
Series solution or ordinary differential equations; numerical methods. Partial differential equations: separation of variables. Fourier series, Bessel functions.
10.2113 Applied Mathematics II —
Introduction to Linear Programming
Prerequisite: 10.001. Excluded: 10.2213.

10.2115 Applied Mathematics II —
Discrete-Time Systems
Prerequisite: 10.001. Excluded: 10.2215.
Applications selected from problems of importance in engineering, biological, social, management, and economic systems.

10.212L Applied Mathematics III —
Optimization Methods
Prerequisites: 10.2113, 10.111A. Excluded: 10.222L.
Theory of unconstrained and constrained multivariable optimization; including necessary and sufficient optimality conditions, stationary points, Lagrange multipliers, Kuhn-Tucker conditions, convexity and duality. Numerical methods: one dimensional minimization methods, unconstrained multivariable methods (including steepest descent, Newton, quasi-Newton and conjugate gradient methods) and constrained multivariable methods (including linear programming, quadratic programming and penalty functions). A selection of special methods from branch and bound, geometric and separable programming.

10.2211 Higher Applied Mathematics II —
Vector Analysis
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2111.
As for 10.2111 but in greater depth.

10.2212 Higher Applied Mathematics II —
Mathematical Methods for Differential Equations
Prerequisite: 10.2211. Excluded: 10.2112.
As for 10.2112 but in greater depth.

10.2213 Higher Applied Mathematics II —
Introduction to Linear Programming
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2113.
Linear programming: the standard problem, basic solutions, fundamental theorem, simplex tableau, initial solution, unbounded and multiple solutions, degeneracy, revised simplex method, duality, dual simplex method, post optimal analysis.

10.2215 Higher Applied Mathematics II —
Discrete-Time Systems
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2215.
As for 10.2215, but in greater depth and with additional material on positive linear systems and Markov chains.

10.212A Applied Mathematics III —
Numerical Analysis
Prerequisites: 10.2112, 10.111A. Excluded: 10.222A.

10.212M Applied Mathematics III —
Optimal Control Theory
Prerequisites: 10.1113 & 10.1114, 10.111A. Excluded: 10.222M.
[Examples and applications are drawn not only from the physical sciences but also from economics, resource and financial management, social and biological sciences.]
10.222A Higher Applied Mathematics III — Numerical Analysis FL1\(\frac{1}{2}\)T\(\frac{1}{2}\)

Prerequisites: 10.2212 or 10.2112 (DN), 10.121A or 10.111A (DN). Excluded: 10.212A.

As for 10.212L but in greater depth.

10.222C Higher Applied Mathematics III — Maxwell’s Equations and Special Relativity FL1\(\frac{1}{2}\)T\(\frac{1}{2}\)

Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.2213 or 10.1113 (DN). Excluded: 10.033.

Electrostatics; Poisson and Laplace equations, potential theory, boundary value problems, spherical harmonics, Green’s functions, dielectrics. Magnetic fields and forces; applications, magnetohydrodynamics. Electromagnetic fields, electromagnetic potentials, waves and radiation, vector and scalar wave equations, spherical waves, applications. Lorentz transformation, relativistic electrodynamics.

10.222F Higher Applied Mathematics III — Quantum Mechanics FL1\(\frac{1}{2}\)T\(\frac{1}{2}\)

Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.2213 or 10.1113 (DN), 10.1214 or 10.1114 (DN). Excluded: 1.001.

10.222L Higher Applied Mathematics III — Optimization Methods FL1\(\frac{1}{2}\)T\(\frac{1}{2}\)

Prerequisites: 10.1213 or 10.1113 (DN) (at least 1\(\frac{1}{2}\) further units chosen from the following: 10.121A or 10.111A (DN), 10.1214 or 10.1114 (DN), 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.2213 or 10.2113 (DN), 10.2214 or 10.2114 (DN)). Excluded: 10.212L.

As for 10.212L but in greater depth.

10.222M Higher Applied Mathematics III — Optimal Control Theory FL1\(\frac{1}{2}\)T\(\frac{1}{2}\)

Prerequisites: 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN), 10.121A or 10.111A (DN). Excluded: 10.212M.

As for 10.212M but in greater depth and including: Liapunov functions and the stability of non-linear systems. Further optimal control theory. Stochastic and Adaptive Control.

10.223 Applied Mathematics IV

An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced optimization and control theory, functional analysis and applications, numerical analysis, mathematics of economic models and of economic prediction, stability theory of differential and differential-difference equations, stochastic processes, statistical mechanics, quantum physics, astro-physics. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

10.233 Applied Mathematics IV (Short Course)

6 units consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced optimization and control theory, functional analysis and applications, mathematics of economic models and of economic prediction, stability theory of differential and differential-difference equations, stochastic processes. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

Statistics

10.311A Theory of Statistics II — Probability and Random Variables S1 L4T3

Prerequisite: 10.001 or 10.021C (CR). Excluded: 10.321A, 10.301, 10.331, 45.101.

Note: The evening course for 10.3111A, subject to sufficient enrolment, runs at 3½ hours per week throughout the year.

10.311B Theory of Statistics II — Basic Inference S2 L4T3

Prerequisite: 10.311A. Excluded: 10.321B, 10.301, 10.331, 45.101.

Point estimation (moments, maximum likelihood, minimum \(\chi^2\), etc.) Confidence interval estimation, exact and approximate. Elementary Neyman-Pearson theory of tests of significance, standard significance tests. Regression (including curvilinear) on a single fixed variable. Analysis of variance. Non-parametric methods.

10.321A Higher Theory of Statistics II — Probability and Random Variables S1 L5T3

Prerequisite: 10.001. Excluded: 10.311A, 10.301, 10.331, 45.101.

10.311A at greater depth and covering a slightly wider field.

10.321B Higher Theory of Statistics II — Basic Inference S2 L5T3

Prerequisite: 10.321A. Excluded: 10.311B, 10.301, 10.331, 45.101.

10.311B at greater depth and covering a slightly wider field.

10.312A Theory of Statistics III — Probability and Stochastic Processes S1 L2T2

Prerequisites: 10.311A, 10.111A, 10.1113. Excluded: 10.322A.

10.312B Theory of Statistics III — Experimental Design (Applications) and Sampling S2 L2T2
Prerequisite: 10.311B or 10.331 (normally CR). Excluded: 10.322B.

10.312C Theory of Statistics III — Experimental Design (Theory) S1 L2T2
Prerequisites: 10.311B, 10.111A, 10.1113. Co-requisites: 10.312B, plus any two Level III Pure Mathematics or Applied Mathematics or Theoretical Mechanics or Computer Science units. Excluded: 10.322C.

10.312D Theory of Statistics III — Probability Theory S2 L2T2
Prerequisites: 10.311A, 10.111A, 10.2112. Excluded: 10.322D.

10.312E Theory of Statistics III — Statistical Inference S2 L2T2
Prerequisites: 10.311B, 10.111A, 10.1113. Co-requisites: Any two Level III Pure Mathematics or Applied Mathematics or Theoretical Mechanics or Computer Science units. Excluded: 10.322E.

10.312F Theory of Statistics III — Statistical Computing SS L2T2
Prerequisites: 10.311B or 10.321B or 10.3321, 6.621, 6.641.
A project, to construct a small package consistent with general specifications and with safeguards against common errors.

10.3321 Regression Analysis and Experimental Design S1 L1½T½
Prerequisite: 10.331 or 10.311B or approved equivalent. Excluded: 10.312B or 10.322B.

10.322A Higher Theory of Statistics III — Probability and Stochastic Processes S1 L2½T2
Prerequisites: 10.321B, 10.111A, 10.1113. Excluded: 10.312A.
As for 10.312A but in greater depth.

10.322B Higher Theory of Statistics III — Experimental Design (Applications) and Sampling S2 L2½T2
Prerequisites: 10.321B, 10.111A, 10.1113. Excluded: 10.322A.
As for 10.322A but in greater depth.

10.322C Higher Theory of Statistics III — Experimental Design (Theory) S1 L2½T2
As for 10.312C but in greater depth.

Prerequisites: 10.321A, 10.111A, 10.1113. Excluded: 10.312D.
As for 10.312D but in greater depth.

10.322E Higher Theory of Statistics III — Statistical Inference S2 L2½T2
As for 10.312E but in greater depth.

10.3322 Applied Stochastic Processes S2 L1½T½
Prerequisite: 10.331 or 10.311A or 10.321A, or approved equivalent. Excluded: 10.322A, 10.322A.

10.322F Theory of Statistics III — Experimental Design (Applications) and Sampling S2 L2½T2
Prerequisites: 10.311B or 10.331 (normally CR). Excluded: 10.322B.

Prerequisites: 10.321B, 10.111A, 10.1113. Excluded: 10.322G.

10.322H Theory of Statistics III — Statistical Inference S2 L2½T2
Prerequisites: 10.321B, 10.111A, 10.1113. Excluded: 10.322H.

10.322I Theory of Statistics III — Statistical Computing SS L2T2
Prerequisites: 10.321B or 10.321B or 10.3321, 6.621, 6.641.
A project, to construct a small package consistent with general specifications and with safeguards against common errors.

10.332J Regression Analysis and Experimental Design S1 L1½T½
Prerequisite: 10.331 or 10.311B or approved equivalent. Excluded: 10.312B or 10.322B.

10.322K Higher Theory of Statistics III — Probability and Stochastic Processes S1 L2½T2
Prerequisites: 10.321A, 10.111A, 10.1113. Excluded: 10.312A.
As for 10.312A but in greater depth.

10.322L Higher Theory of Statistics III — Experimental Design (Applications) and Sampling S2 L2½T2
Prerequisites: 10.321B, 10.111A, 10.1113. Excluded: 10.322A.
As for 10.322A but in greater depth.

10.322M Higher Theory of Statistics III — Experimental Design (Theory) S1 L2½T2
As for 10.312C but in greater depth.

Prerequisites: 10.321A, 10.111A, 10.1113. Excluded: 10.312D.
As for 10.312D but in greater depth.

10.322O Higher Theory of Statistics III — Statistical Inference S2 L2½T2
As for 10.312E but in greater depth.

10.332P Applied Stochastic Processes S2 L1½T½
Prerequisite: 10.331 or 10.311A or 10.321A, or approved equivalent. Excluded: 10.322A, 10.322A.
10.301 Statistics SA

Probability, random variables, independence, binomial, Poisson and normal distributions, transformations to normality, estimation of mean and variance, confidence intervals, tests of hypotheses, contingency tables, two sample tests of location, simple and multiple linear regression, analysis of variance for simple models.

10.331 Statistics SS

An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions: binomial, Poisson and normal; an introduction to multivariate distributions. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models, involving multiple comparisons and estimation of variance components.

Theoretical and Applied Mechanics

10.4111 Theoretical Mechanics II — Introduction to Theoretical Mechanics

10.4112 Theoretical Mechanics II — Introduction to Hydrodynamics

Equations of continuity and motion. Bernoulli's equation for an incompressible liquid. Kelvin's theorem. Some irrotational flow problems in one, two and three dimensions.

10.4211 Higher Theoretical Mechanics II — Introduction to Theoretical Mechanics

As for 10.4111, but in greater depth.

10.4212 Higher Theoretical Mechanics II — Introduction to Hydrodynamics

As for 10.4112 but with additional topics chosen from aerfoil theory, water waves and sound waves.

10.412A Theoretical Mechanics III — Dynamical and Physical Oceanography
Prerequisites: 10.2111 & 10.2112 or 10.031, 1.001. It is recommended that one of the following be taken concurrently: 10.4112 or 1.3533.

10.412B Theoretical Mechanics III — Continuum Mechanics
Prerequisites: 10.2111, 10.2112, 10.111A, 10.1113, 10.1114. Co-requisites: 10.411A or 1.012 or 1.913. Excluded: 10.422B.

10.412D Theoretical Mechanics III — Mathematical Methods
Prerequisites: 10.2112, 10.111A, 10.1113, 10.1114. Excluded: 10.422D.

10.4129 Theoretical Mechanics III — Applied Time Series Analysis
Prerequisites: 10.2112 or 10.031 or 10.022. Co-requisites: 10.31 or equivalent: 10.4331 or 10.412D or equivalent.

Classification of random processes, sampling for discrete analysis, Fourier analysis, spectra, filtering. Cross-spectra, estimation and hypothesis testing, confidence limits, application to experiment planning. Course emphasis is on computer analysis of actual data.

10.422A Higher Theoretical Mechanics III — Fluid Dynamics
Prerequisite: 10.421A or 10.411A (DN). Co-requisite: 10.422B.

Compressible flow, viscous flow, boundary layers, hydrodynamic stability, simple wave motions in fluids.

Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112, 10.421B or 10.411B (DN) or 10.012. Excluded: 10.412B.

As for 10.412B Theoretical Mechanics III — Continuum Mechanics but in greater depth.

10.422D Higher Theoretical Mechanics III — Mathematical Methods

Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN). Excluded: 10.412D.

10.4331 Theoretical Mechanics III — Transform Methods

Prerequisites: 10.1113, 10.1114, 10.2112 or equivalent. Excluded: 10.412D and 10.422D.

10.423 Theoretical Mechanics IV

An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses on topics chosen from fluid mechanics, solid mechanics, planetary science and special mathematical and numerical techniques applied to partial differential equations. With the permission of the Head of the Department, the subject may also include advanced lecture courses given by other Departments or Schools on topics such as optimal control theory, optimization theory, thermodynamics, numerical analysis or statistics.

Servicing Subjects

These are subjects taught within courses offered by other schools or departments in a different faculty.

For further information regarding the following subjects see the Faculty of Applied Science and Engineering Handbooks.

10.022 Engineering Mathematics II

Prerequisite: 10.001.

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.

10.033 Electrical Engineering Mathematics III

Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

Optimization.

10.341 Statistics SU

Prerequisite: 10.001 or 10.011.

Introduction to probability theory, random variables and distribution functions. Sampling distributions, including those of t, x² and F. Estimation procedures, including confidence interval estimation with an emphasis on Least Squares and surveying problems, and computer-based exercises.

10.351 Statistics SM

Prerequisite: 10.001 or 10.011.

For students in Aeronautical, Industrial and Mechanical Engineering and Naval Architecture as part of 5.071 Engineering Analysis or 5.072 Statistics/Computing.

Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, x² and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard test of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

10.361 Statistics SE

Prerequisite: 10.001 or 10.011.

For students in the School of Electrical Engineering.

Introduction to probability theory. Random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions, including those of x² and F. Estimation by moments and maximum likelihood; confidence interval estimation. The Standard tests of significance based on the above distribution with a discussion of power where appropriate.

10.381 Statistics SC

11.4320 Geometry
3 credit points. Prerequisites: nil.
Plane curves, conics and surfaces of revolution; quadric surfaces; ruled and warped surfaces, convex bodies; spherical trigonometry; projective configurations. Tutorials and project.

Graduate Study

10.194G Advanced Mathematics Lecture Courses
Each year a selection of courses is offered in the following areas:
Algebraic geometry; algebraic topology; categorical and homological

10.302G Regression Analysis and
Experimental Design
Prerequisite: First course in Statistics.
A revision of linear regression with extension to multiple and stepwise
linear regression. Analysis of block designs, Latin squares, factorial
designs, variance component and mixed model analyses. Bioassay,
logit models. Contingency tables.

10.303G Applied Stochastic Processes
Prerequisite: First course in Statistics.
An introduction to processes in discrete and continuous time. Markov
chains and Markov Processes, branching processes, Time Series
with moving average models.

10.372G Statistical and Experimental Design
The concepts of random variables, means, variances, the common
tests and confidence intervals based on the normal distribution,
some simple analyses of variance.
Comparative Experiments: Requirements of a good experiment, as-
sumptions underlying the conventional models of standard designs
and their analyses, purpose of randomisation; how the physical
circumstances of an experiment are related to its formal model on
which its analysis is based; the internal estimate of error obtained
from the variation left after accounting for all sources of systematic
variation, these points illustrated in some detail the fully randomized
design, the randomised block design, the 2\(^{2}\) factorial
fully randomized design, and the fully randomized design with one
concomitant variable.
Survey Sampling: the distinction between a survey sample and an
experiment planned to compare a set of treatments, and how it
affords the inferences that may be made; simple random sampling,
stratified random sampling.

10.381G Experimental Design I
Modified designs for fixed effects models. Incomplete and balanced
complete block designs. Confounding and fractional replication.
Randomization theory. Multiple comparisons.

10.382G Experimental Design II
Extensive treatment of random and mixed models. Combinatorial
structure of designs, cross-over and lattice designs, response sur-
faces.

10.383G Stochastic Processes
Discrete parameter, continuous time Markov processes. Brief survey
of birth-and-death, immigration, epidemic and predator-prey pro-
cesses. Introduction to dam and storage problems. Queueing pro-
cesses. Diffusion approximations.

10.384G Time Series
Spectral estimates, discrete and continuous spectra. Periodogram
analysis. Probability theory, special processes. Ergodicity, harmonic
analysis and linear filters. Estimation and hypothesis testing.

10.385G Multivariate Analysis I
Likelihood ratio tests for means, variances and structure. Discrimi-
ants, principal component, canonical and factor analysis.

10.386G Multivariate Analysis II
The general linear hypothesis and analysis of dispersion. Tests based
on roots, distribution theory.

10.387G Sample Survey Design
Simple, stratified and systematic random sampling. Estimation of
proportions, ratios, and sample sizes. Multi-stage sampling.

10.388G Sequential Analysis
The sequential probability ratio test — OC and ASN functions.
General theory of sequential tests. Sequential estimation.

10.389G Non-Parametric Methods
Sign test, run tests, goodness-of-fit tests. Order statistics and range.
Rank-order statistics. Wilcoxon signed-rank tests, one- and two-
way rank analyses of variance. Rank correlation. Randomization
theory and permutation tests. Paired comparisons. Censoring and
truncation.

10.390G Statistical Inference
Decision theory. General theory of estimation and hypothesis testing.

10.391G Special Topic A
To be arranged, eg biological statistics, further work on order statis-
tics, population statistics, non-linear programming, discrete distribu-
tion theory.
10.392G Project

10.393G Special Topic B
To be arranged, e.g., biological statistics, further work on order statistics, population statistics, non-linear programming, and other topics.

10.394G Discrete Distributions
Discrete and lattice distributions — their general properties mostly via generating functions. The structures of contagious (clustered) distributions, with a study of specific examples such as the negative binomial, Neyman and Poisson-Pascal families, together with estimation and fitting procedures.

10.401G Seiches and Tides

Servicing Subjects
These are subjects taught within courses offered by other schools or departments in a different faculty.

For further information regarding the following subject see the Faculty of Arts Handbook.

10.062G Advanced Mathematics General
For research workers throughout the University requiring employment of advanced mathematics. Topics vary from year to year according to demand and interest.

For further information regarding the following subjects see the Faculty of Engineering Handbook.

10.061G Advanced Mathematics for Electrical Engineers
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials.

10.361G Statistics
Probability theory, a survey of random processes with engineering applications — processes in discrete and continuous time. Markov processes, ergodicity, stationarity, auto-correlation, power spectra, estimation of auto-correlation and power spectra.

10.371G Statistics
Revision of probability and distribution theory, including estimation of hypothesis testing. Extension of this to include topics such as more complex probabilistic modelling, analyses of modified data (censored, truncated and missing observations), general statistical inference (decision theory), acceptance testing, and reliability analysis (hazard functions).

32.012G Biomedical Statistics

32.101G Mathematical Modelling for Biomedical Engineers
Model formulation and validation of ordinary and partial differential equations by analytical and numerical techniques.

Psychology

Undergraduate Study

Psychology Level I Unit

12.100 Psychology I
Excluded: 12.001.
An introduction to the content and methods of psychology as a basic science, with emphasis on the biological and social bases of behaviour, relationship to the environment, and individual differences. Training in the methods of psychological enquiry, and in the use of elementary statistical procedures.

Psychology Level II Units

12.200 Research Methods II
Prerequisite: 12.100. (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable). Excluded: 12.152.
General introduction to the design and analysis of experiments; hypothesis testing, estimation, power analysis; general treatment of simple univariate procedures; correlation and regression.

12.201 Basic Psychological Processes II
Prerequisite: 12.100 (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable). Excluded: 12.052.
The basic phenomena of behaviour and experience in a biological context.
12.202 Complex Psychological Process II
Prerequisite: 12.100 (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.) Excluded: 12.062.
Information processing and cognitive functioning, and social bases of behaviour and personality.

12.203 Psychology IIA
Available to Course 3430 students only.
Computing, assessment and introduction to clinical practice.

12.204 Human Relations II
Prerequisite: 12.100 (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.) Social and personality development of the individual; human relations in the family group. Public, industrial and international relations, human relations in a political and economic context.

12.205 Individual Differences II
Prerequisite: 12.100 (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.) Measurement and significance of individual differences in intellectual, motivational and personality functioning. Statistics, to cover the fundamentals of hypothesis testing.

Psychology Level III Units: Group B

12.301 Research Methods IIIB
Prerequisites: 12.200 & 12.300. Excluded: 12.163.
Multivariate statistics and computing. Data analysis using the SPSS and PSY computer programs, their statistical basis.

12.310 Physiological Psychology III
Prerequisites: 12.200 & 12.201. Excluded: 12.413.

12.311 Perception III
Studies of infant perception, conflict between vision and other senses, certain illusions, and of the perception of size and distance generally.

12.312 Language and Cognition III
The stages involved in the reception of stimulus information from the environment, its analysis, storage, and transmission into responses. Stress on processing of language.

12.314 Motivation and Emotion III
An examination of contemporary research regarding 'drives', 'incentives' and 'emotions' as determinants of animal and human action. Theoretical perspectives cover biological and social influences.

12.320 Social Psychology III
Contemporary research areas in social psychology. Topics may include the social basis of human interaction, interpersonal relationships, social perception and cognition, and interpersonal communication.

12.321 Developmental Psychology III
The development of perception and the development of operational thought; the development of language and its relationship to the development of thought; and the development of reading.
12.324 Experimental Psychopathology III S2 L2T2
Prerequisite: 12.322.
An examination of the aetiology and mechanisms of behavioural disorders in the light of experimental research and theory construction. Major topics include: aetiology and mechanisms of schizophrenia; affective disorders; psychophysiological disorders; anxiety, depression; driven behaviours.

12.325 Social Behaviour III S2 L2T2
Research and theory in applied social psychology. Topics may include the relation of the physical setting to behaviour, cross cultural studies, and race relations.

12.330 Psychological Assessment III S2 L2T2
Prerequisites: 12.200, and 1 other Psychology Level II subject. Excluded: 12.042, 12.203, 12.373.
Not offered in 1984.
Principles and techniques of psychological assessment. Types of tests and their application in selection and allocation procedures.

12.331 Counselling Psychology III S2 L2T2
Prerequisites: 2 Psychology Level II subjects. Excluded: 12.623.
Principles and techniques of counselling in a variety of contexts. Interviewing, group process and structure, and interpersonal relations.

12.332 Behavioural Change III S2 L2T2
Prerequisites: 12.200 & 12.201. Excluded: 12.713.
Not offered in 1984.

12.333 Ergonomics III S1 L2T2
Prerequisite: 12.200. Excluded: 12.663.
Aspects of human performance relevant to work design. The principles involved in designing the environment in general, and work in particular, to suit man's capabilities.

12.334 Behaviour in Organizations III S2 L2T2
Prerequisites: 2 Psychology Level II subjects. Excluded: 12.653.
Theories and research methods for understanding behaviour in organisations and in the environment.

12.335 Behavioural Evaluation and Assessment III S2 L2T2
Prerequisite: 12.322.
Assessment and evaluation of individual behaviour and behavioural change. Problems of measurement and scale construction, objective versus subjective measures; self report, behavioural and psychophysiological measures. Interviewing and behavioural analysis; psychometric testing and case history taking.

12.340 Special Topic III S2 L2T2
Prerequisites: 12.300, 12.304 & 12.305.
Not offered in 1984.
An occasional elective dealing with a special field of psychology.

Psychology Level IV Units

12.400 Psychology IV (Research-3430) F
Prerequisite: All requirements for Years 1-3 of the course.
Psychology IV in the BSc in Psychology degree course. A supervised research thesis and course work to be determined in consultation with the Head of School.

12.401 Psychology IV (Course Work-3430) F
Prerequisite: All requirements for Years 1-3 of the course.
Psychology IV in the BSc in Psychology degree course. Course work and a supervised group research project to be determined in consultation with the Head of School.

12.403 Psychology IV (Research) F
Prerequisites: 12.100, 12.200, 12.201, 12.202 and 8 Psychology Level III units (see Note), including 12.300, 12.305 and either 12.304 or 12.322 from Group A and 12.301 from Group B, with a weighted average of at least Credit, and at the discretion of the Head of School.

Note: Students in program 7312 Physiology/Psychology take 4 Psychology Level III units approved by the Head of the School of Psychology.
Psychology IV in the Arts, and Science and Mathematics degree courses. A supervised research thesis and course work to be determined in consultation with the Head of School.

12.404 Psychology IV (Course Work) F
Prerequisites: 12.100, 12.200, 12.201, 12.202 and 8 Psychology Level III units, including 12.300, 12.305 and either 12.304 or 12.322 from Group A, with a weighted average of at least Credit, and at the discretion of the Head of School.
Psychology IV in the Arts, and Science and Mathematics degree courses. Course work and a supervised group research project to be determined in consultation with the Head of School.
Psychology Servicing Units
These are units taught within courses offered by other schools or departments in a different faculty.

For further information regarding the following unit see the Faculty of Commerce Handbook.

12.651 Psychology (Industrial Relations) S1 L2T1
Prerequisite: Nil.
Problems and limitations affecting social research in industry. Critical review of American research from Hawthorne to Herzberg and of British research from Tavistock and Trist to Emery in Australia. Conflict and organic theories of organization and related theories of motivation and morale. The use of library resources. Practice in the skills and discipline required to obtain and evaluate empirical evidence in this field. Recent developments under the headings of 'participation' and 'democracy in industry'.

For further information regarding the following units see the Combined Sciences Handbook.

12.741 Psychology (Optometry) F L2T0
Prerequisite: 12.001 or 12.100.
Visual Perception: The nature and characteristics of visual perception. Topics to be discussed include: psychophysics, the organization of visual perception, the influence of context, and the effects of learning and motivation on perception. Throughout the course emphasis will be placed on an examination of relevant experimental data. Abnormal Psychology: The concepts of normality and abnormality, and an examination of the principal psychodynamic processes. Causes and symptoms of various mental disorders are introduced with some emphasis on the importance of these symptoms in optometrical practice.

Graduate Study

12.228G Research Project
For students who commenced the degree course before Session 1, 1980.
An individual research project in the general area of clinical or community psychology, with supporting seminars covering the selection and formulation of a problem, the choice of a design, the planning of the general methodology and the analysis of data.

12.230G Psychological Problems of Children
An essentially practical course focusing on childhood disorders, such as mental retardation, infantile autism, physical and sensory handicaps, specific learning difficulties, and hyperactivity. Methods of assessment to be studied include standardized tests of child development, behavioural check lists and interviews, and observation of present behaviour. Behavioural change procedures that may be effective in the treatment and management of the behavioural problems in question.

12.231G Professional Practice
Supervised work with clients in the School's clinic, and in approved institutions.

12.235G Community Psychology
The history, theory, concepts and practices of what has come to be called community psychology. Systematic problem-solving approaches to the resolution of human misery; the social and institutional conditions which promote human well-being. Substantive topics include: models and perspectives in community psychology; values and community intervention; evaluation and research in community psychology; social systems; theory and ecology; coping and social competence; consultation theories; various social issues, eg alcoholism and drug dependence, mental health care.

12.237G Biological Aspects of Behavioural Disturbance
A series of lectures and seminars on biological aspects of the aetiology and treatment of behavioural disturbance. Includes: behavioural genetics; organic brain syndromes; schizophrenia; depression; psychophysiology of stress; metabolic and endocrinological aspects of behavioural disturbance; nutrition and behavioural disturbance; psychopharmacology and pharmacotherapy; somatic treatments.

12.239G Research and Evaluation Methods in Clinical and Community Psychology
Problems of experimental design in the clinical field; measurement and scaling; analysis of change, including sequential analysis, and the application of the experimental methods to the individual cases. Design and evaluation of community programs.

12.240G Graduate and Clinical Seminars
A series of seminars on topics of particular relevance to the practice of clinical psychology eg the organization and regulation of psychology as a profession; ethical stands in relation to clients, members of other professions, and the public; legal aspects of psychological practice. Additional topics dealing with contemporary issues in clinical psychology are chosen in consultation with students undertaking the seminars.

12.241G Graduate Colloquium
Participation in the staff-graduate student colloquium.

12.242G Research Thesis
For students who commenced the degree course after Session 1, 1980.
A research thesis involving an investigation into some aspect of clinical or community psychology.

12.243G Experimental Clinical Psychology
1. The theoretical basis of clinical practice in individual, group, institutional, and community settings; 2. The application of the principles of experimental psychology to the analysis of both adaptive and maladaptive patterns of behaviour; 3. The study of a wide range of techniques of behavioural intervention.
12.244G Psychological and Behavioural Assessment
The application of the principles of experimental psychology to problems of behavioural assessment in a wide variety of situations, eg lifestyle change, the management of behavioural disorders, institutional behavioural programs. Assessment procedures studied include: psychological tests, behavioural analysis and case history taking, psychophysiological and other objective measures.

12.245G Behavioural Health Management
Lectures, practical classes and supervised clinical experience concerned with the theoretical and practical issues associated with the design, implementation and evaluation of behavioural programs for the promotion of positive mental and physical health.

12.246G Behavioural Management in Institutions
Application of the principle of behavioural acquisition maintenance and change to the problems of designing appropriate social environments for dependent persons. Ethical and organizational problems facing psychologists working in institutions for dependent children and adults.

12.247G Graduate Seminars in Clinical Psychology
A series of seminars on topics of relevance to the practice of experimental clinical psychology. The distinctive features of psychology as both a basic discipline and an area of professional practice. The organization and regulation of psychology as a profession. Contemporary theoretical and social issues in the practice of psychology.

12.248G Community Psychology
Models and perspectives in community psychology; evaluation and research. Community intervention. Health care delivery systems.

14.511 Accounting and Financial Management IB
Prerequisite: 14.501.
Development of basic concepts introduced in 14.501 Accounting and Financial Management IA, including management accounting and operations research, corporate reporting, business finance, system design, elementary computer programming and applications.

14.522 Accounting and Financial Management IIA
Prerequisites: 14.511 plus HSC Exam
Percentile Range Required
2 unit Mathematics or 51-100
3 unit Mathematics or 21-100
4 unit Mathematics or 1-100
The design, production and use of accounting and other quantitative information in the planning and control of organizations, with particular reference to manufacturing activities and to long- and short-term decisionmaking and financial planning.

14.542 Accounting and Financial Management IIB
Prerequisite: 14.511 plus HSC results as for 14.522.
Critical examination of concepts and problems in income measurement, asset valuation and financial reporting for various forms of business undertaking with particular reference to corporate organizations, including associated aspects of auditing and taxation and methods of accounting for changing prices.

14.563 Accounting and Financial Management IIIA
Prerequisite: 14.542.

14.573 Accounting and Financial Management IIIA (Honours)
Prerequisite: 14.542.
Includes 14.563 Accounting and Financial Management IIIA as well as additional and more advanced work in both accounting theory and in the financial management and accountability of corporate enterprises.

14.583 Accounting and Financial Management IIIB
Prerequisite: 14.522.
Management Accounting: advanced treatment of management accounting theory and applications including statistical cost analysis, cost accounting, control systems, budgetary and strategic planning and decision models.
14.593 Accounting and Financial Management IIIB (Honours) S2 LT6

Prerequisite: 14.522.

Includes 14.583 Accounting and Financial Management IIIB, as well as additional and more advanced work in both management accounting and management information systems.

14.601 Law in Society S1 or S2 L2T1

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit A English</td>
<td>31-100</td>
</tr>
<tr>
<td>2 unit English</td>
<td>21-100</td>
</tr>
<tr>
<td>3 unit English</td>
<td>11-100</td>
</tr>
</tbody>
</table>

The nature of law, the sources of law, the Australian legal system, legal reasoning, the administration of justice, the legal profession, selected areas of substantive law and important issues in law in our society.

14.602 Computer Information Systems I S1 or S2 L2T1

Prerequisites: 14.511 plus 15.411 or approved studies in computer science.

Information systems and the organization, architecture of typical commercial application systems, the systems lifecycle, the systems analysis/design task, tools and techniques of the systems analyst, documentation techniques, internal controls and interfacing with the edp auditor, file design concepts, logic and computer hardware, commercial computer programming.

14.603 Computer Information Systems II S2 L2T1

Prerequisite: 14.602.

The systems design task; forms driven, data structure and data flow based design methodologies; top-down structured design; introduction to database management techniques; the systems software environment; graphics; communications networks and software; structured programming; program design; COBOL programming.

14.605 Information Systems Implementation S2 L2T1

Prerequisite: 14.603.

Supervised implementation of an information systems project in a commercial programming language. Advanced program design and structured techniques, interface with systems software at application implementation level, comparison of a range of programming languages, test data specification, implementation procedures.

14.607 Distributed Computer Systems S2 L2T1

Prerequisite: 14.603.

Advanced data communication concepts, computer networks, reference to international standards and common industry communications software packages; transaction processing software and interface with data management systems; local networks; interaction between text processing and data processing; a case study based on a microcomputer network.

14.608 Database Systems S1 L2T1

Prerequisite: 14.603.

Advanced data storage concepts, including detailed study of alternative approaches to database management systems. Management information needs and database specification in a commercial environment. Detailed evaluation, with project work, of a microcomputer based database management system. Information retrieval concepts, relational query-systems, security, control and audit considerations.

14.611 Information Systems Development S1 L2T1

Prerequisite: 14.603 and approval by the Head of the Department of Information Systems.

A systems analysis and design case study. Information systems project management, data processing administration, on-line systems, design techniques, internal controls.

14.613 Business Finance II S1 or S2 LT3

Prerequisite: Nil.

The essential aspects of financial decision-making in business including: factors influencing capital expenditure decisions; alternative approaches to valuation; factors affecting the formulation of the capital structure; influence of the capital market environment.

14.614 Business Finance IIIB S1 L3

Prerequisite: 14.613.

Financial decision making within the framework of capital market theory. Includes diversification, risk and return, determinents of risk, efficient market hypothesis with emphasis on Australian evidence, capitalization changes and performance measures, takeovers and mergers.

14.615 Business Finance IIIC S2 L3

Prerequisite: 14.614.

Theory and analytical techniques relevant to investment analysis and management. Includes analysis and valuation of securities, properties of accounting numbers, portfolio theory and asset pricing models, capital asset returns and information, bond ratings and yields and financial distress predictions.
14.851 Current Developments in Accounting
Thought — Financial

Prerequisite: Admission to BCom degree course at Honours level.
As for 14.951G.

14.852 Current Developments in Accounting
Thought — Managerial

Prerequisite: Admission to BCom degree course at Honours level.
As for 14.952G.

Economics

Undergraduate Study

Department of Economics

15.001 Microeconomics I

Commerce/Arts/Applied Science/Science Prerequisite:
HSC Exam
Percentile Range
Required
2 unit A English or 31-100
2 unit English or 21-100
3 unit English 11-100

15.002 Microeconomics II

S1 L2T2

Commerce/Arts/Applied Science/Science Prerequisites: 15.011 plus
HSC Exam
Percentile Range
Required
2 unit Mathematics or 51-100
3 unit Mathematics or 21-100
4 unit Mathematics 1-100
Excluded: 15.012, 15.072

Revealed preference theory of demand, index numbers and aggregation; externalities, time preference, consumer surplus and compensation concepts. Short and long-run costs, returns to scale, producer surplus and quasi-rents. Monopolistic competition, oligopoly, cartels, public enterprise. Investment criteria, benefit-cost analysis. Efficiency and equity trade-offs, microeconomic policy in a second best framework.

15.003 Macroeconomics III

S1 L2T2

Commerce/Applied Science/Science Prerequisite: 15.042.

Macroeconomic theory and policy including an introduction to the theory of economic policy, the structure and dynamic characteristics of macro-models, recent developments in monetary theory and policy, theories of inflation and policy in a dynamic setting.

15.011 Macroeconomics I

S1 or S2 L2T1½

Commerce/Arts/Applied Science/Science Prerequisite: 15.001.

The economics of output, employment and inflation, including social accounting, consumption and investment functions, the Keynesian goods market model, supply and demand for money, interactions between the goods and money markets in equilibrium and disequilibrium situations, inflation and the balance of payments.

15.012 Microeconomics II (Honours)

S1 L2T2

Commerce/Sciences Prerequisites: 15.011 plus HSC results as for 15.002.
Arts Prerequisite: Credit in 15.011 or consent of the Head of the Department plus HSC results as for 15.002. Excluded: 15.072, 15.002.
15.002 Microeconomics II at greater depth.

15.013 Macroeconomics III (Honours)

S1 L2T2

Commerce/Sciences Prerequisite: 15.052.
Arts Prerequisite: Credit or better in 15.052 or consent of the Head of the Department plus 15.421 or 15.412.
15.003 Macroeconomics III at greater depth and includes an introduction to the theory of economic growth.

15.024 Advanced Macroeconomics

S1 L4

Commerce Prerequisite: 15.013.
Science Prerequisites: 15.473, 15.013 and 15.153.

Advanced topics in macroeconomics including economic growth, monetary economics and international economics.

15.034 International Trade

S2 L2

Commerce/Sciences Prerequisite: 15.024.

Advanced topics in international trade.
15.042 Macroeconomics II
S2 L2T2

Commerce/Arts/Applied Science/Sciences Prerequisites: 15.011 plus HSC results as for 15.002. Excluded: 15.052, 15.062.

Extensions to the Keynesian model of income determination to include the government and overseas sectors and a more detailed examination of both demand and supply functions; money and financial institutions; an introduction to dynamic economics.

15.052 Macroeconomics II (Honours)
S2 L2T2

Commerce Prerequisite: 15.011 plus HSC results as for 15.002. Arts Prerequisite: Credit in 15.011 or consent of the Head of the Department. HSC results as for 15.002. Sciences Prerequisite: 15.012. Excluded: 15.042 and 15.062.

15.042 Macroeconomics II, but in greater depth.

15.062 Applied Macroeconomics
S1 or S2 L2T1½

Commerce/Arts/Applied Science/Science Prerequisite: 15.011. Excluded: 15.052.

15.063 Money Banking and the Financial System
S2 L2T1

Commerce/Sciences Prerequisite: 15.013 or 15.003 or 15.062 at credit level or better.
Arts Prerequisite: 15.013 or 15.062 at credit level or better.

Theory of financial intermediation, development and structure of Australian financial markets, social accounting (including flow of funds), development and structure of the Australian financial system, development of Australian banking system, overseas banking systems and international capital markets, instalment credit, finance companies and credit unions, housing finance, savings banks and building societies, money markets and merchant banks, insurance institutions, corporate finance and the capital market, the financial system, monetary policy, and the economic deficiencies of the Australian financial system.

15.072 Applied Microeconomics
S1 or S2 L2T1½

Commerce/Arts/Applied Science/Sciences Prerequisite: 15.011. Excluded: 15.012 and 15.002.

Structural change in the Australian economy. The effect of different market structures on firms and consumer welfare. The consequences of markets failure and the effects of government regulation. Investment decisions in the public and private sectors, including the estimation of future benefits, revenues and costs, the measurement of consumer and producer surplus. The economics of non-renewable and other resources. Australia's international trade and investment and the effects of restrictions on international trade and investment.

15.073 Natural and Environmental Resources Economics
S2 L2T1

Commerce/Arts/Applied Science/Sciences Prerequisite: 15.002 or 15.012 or 15.072.
Arts Prerequisites: 15.103 or 15.113 or 15.062 and 15.072.

Classification of renewable and non-renewable resources: reserves, resources and resource base; the concept and measurement of resource scarcity, costs, prices and rents; exhaustion of resources, ore quality, exploration, availability of substitutes; uncertainty of discovery, technical progress, market imperfections; renewable resources, sustainable yield concepts. Policy issues, with particular reference to Australia's role in the international economy.

15.103 International Economics
S2 L2T1

Commerce/Arts/Applied Science/Sciences Prerequisite: 15.002 or 15.012. Arts Prerequisites: 15.002 or 15.072 plus 15.402 or 15.421. Excluded: 15.113.

15.113 International Economics (Honours)
S2 L2T2

Commerce/Sciences Prerequisite: 15.002 or 15.012. Arts Prerequisite: Credit in 15.012 or consent of the Head of the Department plus 15.402 or 15.421 or 15.412. Excluded: 15.103.

15.103 International Economics at greater depth.

15.143 Microeconomics III
S2 L2T2

Commerce/Applied Science/Sciences Prerequisite: 15.002 or 15.012.

15.153 Microeconomics III (Honours)
S2 L2T2

Commerce/Sciences Prerequisite: 15.002 or 15.012. Arts Prerequisite: Credit in 15.012 or consent of the Head of the Department. Excluded: 15.062.

15.143 Microeconomics III at greater depth.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.183</td>
<td>The Less Developed Countries in the World Economy</td>
<td>Commerce/Arts/Sciences Prerequisite: 15.103 or 15.113 or 15.062 and 15.072.</td>
<td>S2 L2T1</td>
<td>The role of the less developed countries in the world economy, with special reference to the effects of the energy situation, the emergence of OPEC, the influence of multinational corporations and the role of the newly industrialized countries of the Asian-Pacific area and ASEAN. The effects of policies towards trade and investment, the role of trade preferences and international aid and the debt problems of less developed countries. The application of project analysis to investment decisions in less developed countries.</td>
</tr>
<tr>
<td>15.413</td>
<td>Econometrics A</td>
<td>Commerce/Sciences Prerequisite: 15.422, or with permission of the Head of the Department of Econometrics 10.311B.</td>
<td>S1 L2T1½</td>
<td>The econometric approach, the objectives of applied econometrics: structural analysis, forecasting and policy evaluation. Estimation of regression models under classical assumptions, and break down of these assumptions: multicollinearity, autocorrelation, heteroskedasticity. Asymptotic distribution theory, errors in variables, stochastic regressors and instrumental variables, lagged dependent variables, seemingly unrelated regressions.</td>
</tr>
<tr>
<td>15.423</td>
<td>Econometrics B</td>
<td>Commerce/Sciences Prerequisite: 15.413, or with permission of the Head of the Department of Econometrics 10.312C.</td>
<td>S2 L2T1½</td>
<td>Identification, specification and estimation of simultaneous equation models including forecasting, policy analysis and simulation. The estimation techniques include: two-stage least squares, three-stage least squares, limited information maximum likelihood and reduced form estimation. Students build their own models using standard computer packages.</td>
</tr>
<tr>
<td>15.440</td>
<td>Operations Research in Economics</td>
<td>Commerce Prerequisite: 15.442 or 15.421 plus 15.002 or 15.012. Sciences Prerequisite: 15.442 or equivalent, or with permission of the Head of the Department of Econometrics, 10.311B.</td>
<td>S2 L3</td>
<td>Applications of mathematical programming and statistics to economic problems. Use of computer programming. Inventory models, queuing problems, decision analysis, dynamic programming.</td>
</tr>
<tr>
<td>15.434</td>
<td>Mathematical Economics A</td>
<td>Commerce Prerequisite: 15.411 plus one of 15.432 or 15.442 or 15.002 or 15.012. Sciences Prerequisite: Consult with the Head of the Department of Econometrics.</td>
<td>S1 L3</td>
<td>General optimization problems in economics; individual preference and utility; social utility function and existence of general economic equilibrium.</td>
</tr>
<tr>
<td>15.444</td>
<td>Mathematical Economics B</td>
<td>Prerequisite: 15.411 plus one of 15.432 or 15.442 or 15.002 or 15.012.</td>
<td>S2 L3</td>
<td>Growth theory.</td>
</tr>
<tr>
<td>15.416</td>
<td>Applied Business Statistics</td>
<td>Commerce/Sciences Prerequisite: 15.421 or equivalent. (Sciences: also 10.311B.) Arts Prerequisite: 15.421.</td>
<td>S2 L3</td>
<td>Introduction to applied statistical techniques useful in economics, finance and marketing. Time series analysis involving trend line fitting, forecasting, lead indicators, exponential smoothing, etc. Simple survey design and analysis with emphasis on non-parametric methods.</td>
</tr>
<tr>
<td>15.666</td>
<td>Australia in the International Economy in the Twentieth Century</td>
<td>Commerce/Arts/Sciences Prerequisite: 15.421 or 15.422 or 15.432 or 15.002 or 15.012.</td>
<td>S1 or S2 L2T1½</td>
<td>The international economy at the end of the nineteenth century: trade, factor flows, and payment arrangements. Problems of the international economy between the wars. The impact of World War II and the international economy in the post-war era. Australian economic development and its relationship with the international economy; economic fluctuations; problems of the inter-war period; growth of manufacturing; government policy and action; the importance of the mining industry; economic development and the distribution of income and wealth.</td>
</tr>
<tr>
<td>15.777</td>
<td>Management Strategy and Business Development</td>
<td>Commerce/Applied Science/Sciences Prerequisite: 15.601 or 15.666.</td>
<td>S2 L2T1½</td>
<td>The strategy and structure of large scale business enterprise over the past century. An analysis of the process of growth from small family firms and partnerships to corporate enterprises and multinational corporations. The external business environment. Case studies of managerial hierarchies, investment strategy and diversification of firms in transport, mass retailing and mass production.</td>
</tr>
<tr>
<td>15.716G</td>
<td>Science, Technology and Economic Development</td>
<td></td>
<td></td>
<td>The several functions of science and technology in development, past, present and possible future. Development economics and sociology; case studies, ranging from nineteenth century Japan to China since 1950. The place of technology in contemporary development and the role of international institutions (eg, multinational corporations) in transfers of scientific and technical knowledge. The "appropriateness" of introduced technique and the concept of alternative technology and alternative development patterns.</td>
</tr>
</tbody>
</table>

Graduate Study

15.716G Science, Technology and Economic Development

The several functions of science and technology in development, past, present and possible future. Development economics and sociology; case studies, ranging from nineteenth century Japan to China since 1950. The place of technology in contemporary development and the role of international institutions (eg, multinational corporations) in transfers of scientific and technical knowledge. The "appropriateness" of introduced technique and the concept of alternative technology and alternative development patterns.
Biological Sciences

Undergraduate Study

17.031 Biology A

Prerequisite: 4 unit Science (multistrand)

2 unit Science (Physics) or 2 unit Science (Chemistry) or 2 unit Science (Geology) or 2 unit Science (Biology) or 4 unit Science (multistrand)

Basic cell structure; membranes, organelles, prokaryotic and eukaryotic cells; cellular locomotion; basic biological molecules; enzymes: structure and metabolic roles, cellular compartmentalization and enzyme function; diffusion, osmosis and active transport; theory of inheritance, linkage, mutation, information transfer and protein synthesis.

Requirements for Practical Work

Equipment required for practical work is set out in the Course Guide, available during enrolment time at the First Year Registration Centre (Physics Building). Students must purchase this prior to the first week of session.

17.041 Biology B

Prerequisite: 17.031. Excluded: 17.021.

The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes.

17.012 General Ecology

Prerequisites: 17.031 & 17.041.

Evolution and environmental selection in the Australian continent; geological, palaeoclimatological, biogeographical and historical background. Functional organization of ecosystems: energy budgets, hydrological and biogeochemical cycles. Integrated structure and function of ecosystems, including cropping and management of natural resources. Aspects of microbial ecology. Students are required to attend a field camp as an integral part of the course.

Applied Geology

Undergraduate Study

25.110 Earth Materials and Processes

Prerequisites:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Required</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics* or 3 unit Mathematics or 4 unit Mathematics and 2 unit Science (Physics) or 2 unit Science (Chemistry) or 4 unit Science (multistrand)</td>
<td>71-100</td>
<td>25.110.</td>
</tr>
</tbody>
</table>

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

25.120 Earth Environments and Dynamics

Prerequisites:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Required</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics* or 3 unit Mathematics or 4 unit Mathematics and 2 unit Science (Physics) or 2 unit Science (Chemistry) or 4 unit Science (multistrand)</td>
<td>71-100</td>
<td>25.110.</td>
</tr>
</tbody>
</table>

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

25.211 Earth Materials I

Prerequisite: 25.120.

25.212 Earth Environments I S1 L3T3
Prerequisite: 25.120.

Sedimentology: Flow regimes and bedding forms, sedimentary structures. Modern and ancient sedimentary environments of deposition: alluvial, nearshore, shelf and deep sea, in both terrigenous clastic and carbonate evaporite domains. The facies concept: lateral and vertical relationships between depositional environments and associated lithofacies within developing sediment wedges. Palaeontology: Morphology and stratigraphic distribution of invertebrates, including Foraminifera, Brachiopoda, Mollusca, Arthropoda, Protocorals and Echinodermata. Introductory palaeobotany Palaeoecology. Biogeography. Trace fossils. Reef building organisms and the evolution of reefs. Field Work of up to five days is a compulsory part of the subject.

25.221 Earth Materials II S2 L3T3
Prerequisite: 25.211.

25.223 Earth Physics S2 L2T4
Prerequisite: 25.110

25.2261 Mathematical Geology I S2 L2T1
Prerequisite: 25.120.

Geological Statistics: Measurement scales in geology. Probability distributions and their properties; sampling and test of significance. Application of these techniques using geological data. Geographical Computing: FORTRAN programming; text editing; control language for VAX and CYBER.

25.311 Earth Materials III S1 L2T4
Prerequisite: 25.221.

25.321 Earth Materials IV S2 L3T3
Prerequisite: 25.221.

25.312 Earth Environments II S1 L3T3
Prerequisite: 25.212 (note: it is desirable that students taking this unit have also taken 25.223).

25.314 Mineral and Energy Resources I S1 L3T3
Prerequisite: 25.221.

Metallic Resources: Classification and origin of the ore deposits, geochemical processes, research methods. Orthomagnetic, hydrothermal, porphyry, volcanic-sedimentary, Mississippi Valley type, chromium, iron, manganese ores, residual and mechanical ores. Introduction to mineral exploration. Laboratory study of hand speci-
mens, thin sections and polished sections of various ore types; study of selected mining areas representing various genetic types of ore. *Economic Mineralogy*: Nature of reflected light. Ore textures and their interpretation. Phase relations and paragenesis of ore minerals. Practical work in optical properties of ore minerals: hardness and reflectivity measurements: study of selected ores and ore minerals under the microscope including textural studies. Field Work of up to four days is a compulsory part of the subject.

25.3162 Mathematical Geology II

Prerequisite: 25.2261.

Application of the mathematical techniques listed below to geological data processing and analysis. Analysis of variance. Introduction to matrix algebra. Regression analysis; trend surface analysis; time series analysis; Markov chain analysis. Introduction to nonparametric statistics. Introduction to multivariate statistics. Practical work based on the use of SPSS, BMDP and other library programs.

25.324 Mineral and Energy Resources II

Prerequisite: 25.212.

25.325 Engineering and Environmental Geology

25.3261 Geochemical Analytical Techniques

Prerequisite: 25.311.

25.3271 Advanced Structural Geology

Prerequisite: 25.221.

Advanced Structural Geology: Analysis of structural elements at the microscopic, mesoscopic and macroscopic scales. Detailed studies of the analysis of metamorphic terrains, e.g. Cooma Complex, Broken Hill. Field Work of up to three days is a compulsory part of the subject.

25.333 Exploration Geophysics

Prerequisite: 25.120.

Physical properties of rocks and soils. Introduction to seismic, gravity, magnetic, electrical, electromagnetic and radiometric methods of geophysical exploration. Application of these methods in the search for mineral deposits, petroleum, coal and groundwater and in civil and mining engineering projects. Interpretation of geophysical data. Field Work of up to three days is a compulsory part of the subject.

25.410 Resource Geology

Prerequisite: 25.311.

25.412 Sedimentary Basin Resources

See Sedimentary Basin Resources strand in Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.

25.414 Mineral Resources

See Mineral Resources strand in Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.
25.415 Engineering and Environmental Geology

See Engineering and Environmental Geology strand in Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.

25.420 Field Project

A major field-laboratory project, which generally includes geological mapping, on some aspect of mineral or sedimentary basin resources, engineering or environmental geology or resource geophysics.

25.4101 Topics In Advanced Geology

Topics in geology selected from a list of subjects available from the Head of School.

25.434 Geology Honours (Single Major)

25.5212 Sedimentology

Prerequisite: 25.120. Excluded: 25.212.

Sedimentology, as in 25.212 Earth Environments I. Available only to Course 3145.

25.523 Mineralogy

Crystallography, crystalline state and crystal growth of minerals. Fundamentals of the atomic structure of minerals, with examples of Bravais lattices and introduction to space lattice group theory. Physical properties of crystals; cleavage, gliding, secondary twinning, elasticity. Elements of crystal optics in polarized light. Classification, descriptive mineralogy and occurrence of primary and secondary minerals with special emphasis on economic metallic and non-metallic minerals. Introduction to petrology. Mode of formation of minerals and ores in the igneous, sedimentary and metamorphic cycles. Examples of principal types of economic mineral deposits, their mode of formation, paragenesis, textures and intergrowths. Elements of fuel geology, construction and refractory materials. Laboratory: Crystallography — Examination of crystals and crystal models for symmetry. Stereographic projection of crystals. Optical Mineralogy — Examination of minerals and rocks in transmitted and incident light using the polarizing microscope. Determination of refractive indices of crystal fragments by the immersion method. Descriptive and Determinative Mineralogy — Macroscopic examination of common minerals with emphasis on economic minerals. Study of texture and intergrowths of common mineral parageneses including the principal rock types in which they occur.

25.5312 Geological Field Mapping

Prerequisite: 25.5212. Excluded: 25.312.

Field Mapping, as in 25.312 Earth Environments II. Available only to Course 3145.

25.5313 Stratigraphy

Prerequisite: 25.5212. Excluded: 25.312

Stratigraphy, as in 25.312 Earth Environments II.

25.621 Marine Geology I

Prerequisites: 25.601 or both 25.110 & 25.120.

The form and nature of ocean basins; the origin, transport, distribution and deposition of suspended matter in ocean water. Principal groups of oceanic index fossils. Igneous and sedimentary rock types of the ocean floor and their significance. Tectonics of ocean basins. Field Work of two days is a compulsory part of the subject.

25.622 Hydrological and Coastal Surveying

Prerequisites: None.

25.631 Marine Geology II

Prerequisite: 25.621.

Sedimentary and tectonic processes of the ocean basins and continental margins; ocean basin stratigraphy and the environmental and chronological utility of the principal groups of index fossils. Stratigraphical history and correlation of sedimentary rocks in the deep ocean basins and on continental shelves. Changes of sea level. The Quaternary history of the oceans. Reefs and carbonate sedimentation. Deep sea consolidated sediments. Magnetism and palaeomagnetism. Field Work not exceeding two days is a compulsory part of the subject.

25.632 Estuarine Geology

Prerequisite: None.

25.6341 Marine Mineral Deposits and Oceanic Minerals

Prerequisites: None.

25.6342 Exploration and Seismic Methods S2 L2T1
Geophysics of ocean basins and off-shore areas and the techniques of their study. Seismic refraction, reflection and computational methods, instrumentation of seismic and acoustic sources, recording systems and signal processing. Geological and physical interpretation of results. Practical work on instrumentation, recording and interpretation of field data.

25.635 Marine Resources F L1T2
Prerequisite: 25.621. Co-requisite: 25.631.
Resources important to human civilization of a biological, fluid and mineral nature. Mining of ocean resources. Geological aspects of waste disposal and engineering works in the ocean. Tidal energy. Off-shore drilling.

25.931 Geophysics
See Geophysics strand of Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.

25.9311 Gravity and Magnetic Methods S1 L2T1
Prerequisites: 1.001 and 10.001.
Fundamental principles. Field procedures and instruments. Reduction of field data. Regionals and residuals. Effects of sources of simple geometrical shapes and generalized two and three-dimensional distributions. Applications. Field Work of one day is a compulsory part of the subject.

25.9312 Seismic Methods S1 L2T1
Prerequisites: 1.001 and 10.001. It is desirable that students taking this unit have a background in geology.

25.9313 Electrical Methods S1 L2T1
Prerequisites: 1.001 and 10.001. It is desirable that students taking this unit have a background in geology.
Introductory theory and field practice of resistivity, self-potential, induced polarization and airborne and ground electromagnetic methods. Geological interpretation of field data. Geophysical logging. Field Work of one day is a compulsory part of the subject.

25.9314 Geological Applications S1 L1T1
Prerequisite: 25.120.
A subject of ten weeks' duration. Structural Geology: Elements of structural geology, stereographic projection and fracture analysis. Geology of Fuels: Origin of coal, oil and natural gas; stratigraphic and structural consideration of oil and coalfields. Hydrogeology: Principles of hydrogeology; transmission of groundwater in rocks and soils. Field Work of one day is a compulsory part of the subject.

25.9321 Geophysical and Geological Applications S2 L1T2
Prerequisite: 25.120. Excluded: 25.6342.
Geological interpretation of Geophysical data: Seismic stratigraphy. Coal-seam geometry from high resolution seismic and in-seam data. Geology of Ore Deposits: Mineralogy of industrially important metallic and non-metallic minerals. Theories of ore formation including secondary enrichment processes. Available only in program 2503.

General Studies

Graduate Study

26.568G Technology for Alternative Development S1L2
The need for alternative theories and models of development. Trends in economic development theory and development in practice. Current choice of science and technology in developing countries. The results of contemporary strategies of development and their relation to the policies of industrialized nations. The professed goals of development plans. Preferred models of development and the technology appropriate to them. The social, political and economic implications of choosing alternative goals and technologies in developing countries.

Geography

Undergraduate Study

27.111 Applied Physical Geography I F L2T3
Prerequisite:

HSC Exam
Percentile Range
Required
31-100

2 unit Science (Physics) or
2 unit Science (Chemistry) or
2 unit Science (Geology) or
2 unit Science (Biology) or
4 unit Science (multistrand)

Excluded: 27.301, 27.311, 27.801, 27.811.
A systematic introduction to physical geography as a basis for applied studies. Principles of meteorology and climatology with particular emphasis on climatic controls at global and regional scales. Weather systems and forecasting methods. Climatic classification and the regional pattern of climates in Australia. Geologic and climatic factors in landforms and soils, and in the physiographic build and major landforms of Australia. Mass movement and hillslope form. River action and associated valley and channel forms. Coastal environments, processes and forms. Properties and types of soil, with emphasis on factors and processes controlling global and regional distribution. Soil profiles and laboratory measurement of soil properties. Principles of soil classification and mapping. Spatial organization of plants and animals, and factors and processes relating to that organisation. Composition, structure, population dynamics and classification of vegetation. Laboratory classes concerned with the interpretation of various forms of data in physical geography and their representation quantitatively and graphically. Field work of up to three days is an integral part of the subject.

27.301 Introduction to Physical Geography
Prerequisite: Nil. Excluded: 27.111.

Themes selected from the mechanisms of the physical environment, with particular reference to Australia and to the Sydney region, landscape as an expression of dynamic response. Energy and Atmospheric Circulation over Australia: local climate and weather patterns. Climate-related Problems: the hazards of fire and flood. Geological Control of Landform Character: the development and stability of hillslopes. Soil, Vegetation and Drainage Relationships: soil erosion. The Coastal Ecosystem: problems of risk and management in the coastal zone. Lectures are supplemented with tutorials, laboratories and a field tutorial. Students are required to provide some materials for practical work and to contribute towards the cost of the field tutorial.

27.302 Introduction to Human Geography
Prerequisite: Nil.

Human geography as a problem-oriented and policy-relevant endeavour. Themes from the development and current state of human landscapes in Australia including aspects of growth and decline in the settlement system, utilization of agricultural and mineral resources and associated impacts, human aspects of environmental management and the spatial impacts of economic, social and technological change. Lectures are supplemented by tutorials, laboratories and a field excursion.

27.311 Physical Geography
Prerequisites: 27.301/801, 27.2813 (in special circumstances a student may apply to the Head of School for permission to take 27.2813 as a co-requisite). Excluded: 27.111.

Emphasising inter-dependence of climate, hydrology, landforms, soils and vegetation in major zones. Classification of climates and world climatic patterns. Soil zonality and world soil patterns. World vegetation types and distribution, and their controls. Studies of selected zones with particular reference to the Australian region. Laboratory classes: climatic analysis and mapping, and analysis of natural landscapes, including airphoto interpretation, together with appropriate statistical exercises.

27.312 Human Geography
Prerequisites: 27.302/802, 27.2813 (in special circumstances a student may apply to the Head of School for permission to take 27.2813 as a co-requisite).

The urbanization process in underdeveloped and industrialized societies. Theories, concepts and principles relating to the location, size and spacing of settlements; the economic and social structure of urban areas; city-region relationships. Geographical perspectives on contemporary urban problems are offered, particularly those associated with the concentration of people and activities between regions and within cities; emphasis on spatial variations in housing, employment and service provision. Laboratory classes: case studies, methods of analysis and practical applications in the local region including a compulsory field excursion equivalent to sixteen tutorial hours.

27.2813 Geographic Methods
Prerequisites: 27.111 or 27.301 or 27.801 (in special circumstances a student may apply to the Head of School for permission to take 27.2813 as a co-requisite) and 27.302 or 27.802.

Statistical procedures used in both human and physical geography. Includes: measures of dispersion; samples and estimates; hypothesis testing; association; correlation and regression; tests for distribution in space, data collection and analysis.

27.2814 Geographic Field Methods
Prerequisites: 27.111 or 27.301 or 27.801 & 27.301/801, 27.2813.

Field methods as used in both human and physical geography. The subject involves a three-day field tutorial and associated laboratory work.

27.133 Pedology
Prerequisites: 27.111 or any two units from 2.111, 2.121, 2.131, 2.141, and 27.811 or 27.111 or 25.012 or 25.022.

Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology.

27.143 Biogeography
Prerequisites: 27.311/811 or 17.031 & 17.041 or 27.111.

distributions of taxa. The role of man and climatic change on Australian vegetation. Detection of pattern and association and their causes. Classification, ordination and mapping of vegetation. Ecology of selected Australian vegetation types. Composition, structure, productivity and environmental controls of healthland, woodland, grassland and rainforest communities. Management of vegetation in different climate regimes. Field work of up to five days is a compulsory part of the subject.

27.153 Climatology S1 L2T3
Prerequisites: 1.001, 27.311/811 or 25.110 & 25.120 or 17.031 & 17.041 or 27.111.

27.183 Geomorphology S1 L2T3
Prerequisites: 25.110 & 25.120 or 27.311/811 or 27.111. Excluded: 27.860.

27.171 Introduction to Remote Sensing S1 L2T1
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts (or equivalent) as approved by the Head of School.

Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airborne interpretation techniques relevant to environmental assessment. Introduction to principles of the electromagnetic spectrum, photometry and radiometry. Sensor types, image formation and end products associated with selected satellite programs, including LANDSAT. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement.

27.1712 Remote Sensing Applications S2 L2T1
Prerequisite: 27.1711.

Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multitemporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

27.172 Environmental Measurements F L2T4
Prerequisite: 27.111.

Sampling strategies and survey methods for the collection of environmental data. Data analyses using laboratory and statistical methods. The collection and analyses of weather and climatic data, and the maintenance of meteorological stations. Methods of field surveying and instrumentation for the study of geomorphologic and hydrologic processes. Drainage basin morphometry, dynamics and function, including controls on run-off and sediment transport. The measurement of soil physical and chemical properties in the field and laboratory with special reference to plant growth and soil water and geomorphological processes. The relationships between weathering processes and soil properties. Methods of surveying, classifying and mapping soils. Measurement and description of vegetation. Vegetation survey, sampling and species abundance measure. Monitoring energy and nutrient flow and the effects of man on ecosystems.

27.324 Spatial Population Analysis S2 L2T2
Prerequisite: 27.312/812, or (for non-majoring Arts students) completion of Arts or other subjects approved by the Head of School, carrying at least 24 credit points.

Population growth and structure in an urban and regional context. The components and processes of population change; fertility, mortality and migration set within the framework of demographic transition theory. Theories of migration and mobility and of optimal populations. Demographic and social indicators for urban and regional analysis and their implications for disparities in living conditions, residential differentiation and regional growth. The adjustment of immigrant and migrant populations to the urban environment.

27.325 Urban Activity Systems S1 L2T2
Prerequisite: 27.312/812, or (for non-majoring Arts students) completion of Arts or other subjects approved by the Head of School, carrying at least 24 credit points. Excluded: 27.835.

The understanding of problems arising from processes of change in non-metropolitan areas, with particular reference to their effects on the functional structure of country towns in NSW. Topics include: functional classification, service provision, economic base, rural mobility decentralization and settlement policies, and urban systems.

27.326 Urban and Regional Development S2 L2T2
Prerequisite: 27.312/812, or (for non-majoring Arts students) completion of Arts or other subjects approved by the Head of School, carrying at least 24 credit points. Excluded: 27.836.

Theories of urban and regional change leading to assessment of the role of planning. Emphasis on resource allocation, conflict resolution and evaluation techniques including cost-benefit analysis and environmental impact assessment. Lectures accompanied by seminars and workshop sessions which concentrate on methodology.
27.327 Environment and Behaviour S1 L2T2
Prerequisite: 27.312/812, or (for non-majoring Arts students) completion of Arts or other subjects approved by the Head of School, carrying at least 24 credit points. Excluded: 27.837.
Socio-economic and behavioural issues relating to urban development, with special reference to social impact studies and the external effects of service provision. Examples selected from inner city and suburban districts, in metropolitan areas and new towns.

27.860 Landform Studies S1 L2T2½
Prerequisite: 27.301/801 or 27.111. Co-requisite: 27.311/811. Excluded: 27.183, 27.870.
The study of landforms, with particular reference to Australian examples. Geomorphic regions. Planation surfaces and processes and associated weathering features. The evolutionary and dynamic approaches to landforms, with particular reference to fluvial landforms. Coastal processes and forms. Desert landforms as evidence of climatic change.

27.862 Australian Environment and Natural Resources S2 L2T2½
Prerequisite: 27.111 or 27.311/811 or 27.312/812. Excluded: 27.872.
Not offered in 1984.
Continental and regional patterns of land, water and energy resources in Australia and its territorial waters, and natural factors affecting their development, including climate, soils and terrain; problems of limited surface and underground water resources and of conflicting demands, exemplified through particular basin studies; comparable reviews of energy, minerals and forest resources, human resources and development.

27.363 Ecosystems and Man S2 L2T2½
Prerequisite: 27.111 or 27.311/811 or 27.312/812. Excluded: 27.873.
The structure and functioning of ecosystems, man's interaction with ecosystems; Australian case studies of ecosystem management, including pastoral, cropping, forestry, coastal and urban ecosystems.

27.834 Spatial Population Analysis (Advanced) S2 L3T2
Prerequisites: Graded passes in 27.312/812, 27.2813. Excluded: 27.324/824.
Additional and more advanced work relating to the content of 27.324/824 Spatial Population Analysis.

27.835 Urban Activity Systems (Advanced) S1 L3T2
Prerequisites: Graded passes in 27.312/812, 27.2813. Excluded: 27.325/825.
Additional and more advanced work relating to the content of 27.325/825 Urban Activity Systems.

27.836 Urban and Regional Development (Advanced) S2 L3T2
Prerequisites: Graded passes in 27.312/812, 27.2813. Excluded: 27.326/826.
Additional and more advanced work relating to the content of 27.326/826 Urban and Regional Development.

27.837 Environment and Behaviour (Advanced) S1 L3T2
Prerequisites: Graded passes in 27.312/812, 27.2813. Excluded: 27.327/827.
Additional and more advanced work relating to the content of 27.327/827 Environment and Behaviour.

27.870 Landform Studies (Advanced) S1 L3T3
Prerequisites: Graded passes in 27.111 or 27.311/811, 27.2813. Excluded: 27.860.
As for 27.860 Landform Studies with additional and more advanced work, including selected studies of geomorphic processes and of man's influence on those processes.

27.872 Australian Environment and Natural Resources (Advanced) S2 L3T3
Prerequisites: Graded passes in 27.111 or 27.311/811 or 27.312/812.
Not offered in 1984.
As for 27.862 Australian Environment and Natural Resources, with additional and more advanced work.

27.873 Ecosystems and Man (Advanced) S2 L3T2
Prerequisites: Graded passes in 27.111 (CR) or 27.311/811 (CR) or 27.2813 (CR). Excluded: 27.363/863.
Offered subject to availability of staff.
As for 27.363/863 Ecosystems and Man, with additional and more advanced work.

27.880 Advanced Geographic Methods F L1T2
Prerequisites: Graded passes in 27.311 or 27.311/811 or 27.312/812 and 27.2813.
Additional quantitative research techniques normally taken by Honours students in their third year. Research organization; computer analysis; collection and organization of data; statistical description; hypothesis testing and sampling; simple and multiple association analysis; nonparametric methods.

27.604 Geography IV (Honours) F
Prerequisite: 27.880.
Honours students in their final year are required to prepare a thesis of not more than 20,000 words and to attend a series of seminars on their thesis and supporting topics. The thesis topic must be approved by the Head of the School during second half of the year preceding entry into the final year while the thesis must be submitted before the examination period in November of the final year. It is expected that research work for the thesis is undertaken during the summer vacation preceding the final year. In addition, students are required to undertake advanced studies in a branch of geography appropriate to the area of research chosen for the thesis.
Surveying

Undergraduate Study

29.001 Surveying I

29.002 Surveying II

Traversing: fieldwork, computation and adjustment. Principles of levelling, levels and associated equipment, field and reduction procedures, testing and adjustment of levels. Vertical staff tacheometry: principles, field and reduction procedures for stadia, self-reducing tacheometers. Survey methods for detail and contour surveys.

29.191 Survey Camp I

Co-requisites: 29.001, 29.002.

A one-week field camp equivalent to 42 contact hours. A series of field surveying tasks designed to consolidate the current year's work and serve as an introduction to the following year's work. Tasks include traversing, levelling, stadia and detail survey measurements for the production of a large-scale plan. Calculations, preparation of plans and reports.

Optometry

Undergraduate Study

31.811 Optometry I

Prerequisites: 1.001 or 1.031, 10.001 or 10.021B & 10.021C or 10.011.

Co-requisites: 31.821.

31.812 Optometry II

31.813 Optometry III

Prerequisites: 31.812, 31.831.

Organizational Behaviour

Graduate Study

30.960G Technology and Organizations

S1 L3

Prerequisite: 30.935G or other approved subject.

The complex relationships between technological change and organizations, workforces and skills in societies using advanced technology such as, Australia, California, Japan, Germany and Scandinavia. Students carry out projects analyzing the relationship between technological change and organizational variables; such as control and power; employment and skill formation in an industry, organization or group (eg engineers, women, immigrants); working environment, socio-technical systems, quality of working life, occupational health and safety, recurrent education, new patterns of work, industrial relations and industrial democracy.
31.821 Anatomy and Physiology of the Eye and Visual System F L4T2

31.831 Diseases of the Eye F L3

31.841 Clinical Optometry F L1T15½

Prerequisites: 31.812, 31.831

Students are required to examine patients in the Optometry Clinic, to diagnose their problems and to prescribe optical aids, orthoptic treatment or other management or referral as required. They also work in special clinics, including orthoptics, colour vision, low vision, children's vision and contact lenses, and participate in patient review clinics.

Graduate Study

31.701G Advanced Clinical Optometry F T4

Clinical work on selected patients, with special emphasis on advanced techniques and new developments. All areas of optometric examination procedures are covered, including: external and internal examination of the eyes; visual functions; tonometry; objective optometry; evaluation of binocular functions; aniseikonia; sub-normal vision; geriatric and pediatric optometry; the clinical application of electrophysiological techniques. The assessment of new instruments, methods and treatment.

31.702G Advanced Physiological Optics F L2T2

31.703G Pleothoptics and Binocular Vision F L2T2

An integrated subject, in which binocular vision and pleothoptics are studied from theoretical and clinical viewpoints. Clinical experience is provided by selected patients. Includes: The nature and control of eye movements and their role in maintaining the perception of a stable visual world. Binocular and monocular subjective visual directions. The neurophysiological substrate of binocular vision and its phenomena. Stereopsis and its measurement. Accommodation, vergence, and oculo-motor imbalance. Laboratory and clinical methods of measuring eye position and visual directions. The aetiologies, measurement, and treatment of strabismus, anomalous correspondence, eccentric fixation and ambyopia.

31.704G Advanced Contact Lens Studies F L1T3

31.705G Advanced Contact Lens Practice F L1T3

The examination, evaluation and aftercare of contact lens patients.
31.706G Occupational Optometry

31.707G Clinical Photography

31.799G Project

Biochemistry

Undergraduate Study

41.101 Biochemistry

Prerequisites: 17.041, and 2.121 & 2.131, or 2.141. Excluded: 2.003J.

The chemical properties of amino acids, peptides and proteins, carbohydrates, nucleic acids and lipids and the biological roles of these compounds. The nature and function of enzymes. The intermediary metabolism of carbohydrates, lipids and nitrogenous compounds. The molecular mechanism of gene expression and protein synthesis. Photosynthesis. Practical work to illustrate the lectures.

41.111 Biochemical Control

Prerequisite: 41.101.

The relationship between structure and function of enzymes, selected protein systems and hormones. Metabolic networks and control mechanisms. Practical work to amplify the lectures.

41.102A Biochemistry of Macromolecules

Prerequisites: 41.101 or 41.111 (students must obtain a clear pass (PS) in either of these subjects), 2.002B.

Polysaccharides and glycoproteins including bacterial cell walls. Chemistry and biology of polynucleotides. Methods of amino acid and nucleic acid sequence analysis. Protein structure and synthesis. Active centres of some proteins. Sub-unit organization of proteins. Enzyme kinetics. Practical work to illustrate the lectures and to provide experience in modern biochemical techniques.

41.102B Physiological Biochemistry

Prerequisites: 41.101 or 41.111 (students must obtain a clear pass (PS) in either of these subjects), 2.002B

41.102C Plant Biochemistry

Prerequisite: 41.102A.

The biochemistry of the major pathways characteristic of plants will be studied; topics include the energetics and carbon path of photosynthesis, glyoxalate cycle, growth hormones and regulatory phenomena, nitrogen fixation and assimilation. Experimental work to illustrate and amplify the lectures utilizes radioactive isotopes and a number of newer techniques.

41.102E Molecular Biology of Higher Organisms

Prerequisite: 41.102A.

The organization of the genomes of higher organisms derived mainly from the application of recombinant DNA technology and related techniques. Methods used for the isolation, identification and characterization of eukaryotic genomes in terms of the organization of single-copy and repeated sequences and of coding and non-coding sequences and of several gene clusters, e.g. the α- and β-globin gene cluster. Mechanisms known to operate in the control of eukaryotic gene expression, both at the DNA level and at the level of RNA processing. Review of several specialized genetic systems in plants and animals such as mitochondria, chloroplasts and RNA and DNA tumour viruses. Practical work provides training in the use of sterile techniques and in working with polynucleotides under nuclelease-free conditions, using basic techniques such as hybridization and DNA sequencing.

41.103 Biochemistry Honours

Advanced training in selected areas of biochemistry including a supervised research program of 500 hours minimum duration that places emphasis on the use of specialized techniques relevant to the research area. A written thesis on the research is required.
Servicing Subjects

These are subjects taught within courses offered by other schools or departments in a different faculty.

For further information regarding the following subjects see the Faculty of Medicine Handbook.

80.112 Human Structure and Function II

In conjunction with School of Anatomy and School of Physiology and Pharmacology.

81.002 Chemistry and Biochemistry for Medical Students

Biotechnology

Undergraduate Study

42.101 Introduction to Biotechnology S2 L2T4

Prerequisites: 2.121 & 2.131, or 2.141, 17.041, 10.011 or 10.001 or 10.021B & 10.021C.

An introduction to biotechnology as a multidisciplinary subject, dealing with the application of biochemical systems or their products in industry. Industrial uses include: production of single products (such as amino acids, vitamins, antibiotics etc), single cell protein, alternate fuels from renewable resources and fermented foods and beverages; biological waste treatment, aspects of pollution control, biodeterioration and biodegradation; and principles of enzyme technology. Concepts relevant to productivity in these systems, including: thermodynamic feasibility, techniques of environmental and genetic manipulation, choice of the appropriate biological catalyst(s) for a particular process, regulation of gene activity. The laboratory component emphasizes the manipulation of different classes of microorganisms and the use of biochemical products involved in a variety of biotechnological areas.

42.102A Biotechnology A S1 L2T4

Prerequisites: 41.101 and 42.101 or 44.101 (Pass Conceded (PC) or Terminating Pass (TP) awarded prior to Session 2, 1983, is not acceptable).

The basic principles involved in the operation of microbial processes on an industrial scale. Includes: the selection, maintenance and improvement of microorganisms; the influence of physical and chemical factors on the microbial environment; the control of environmental factors; the effects of operational patterns on batch and continuous flow cultivation; aeration and agitation; scale-up of microbial processes; air and media sterilization; the harvesting, purification and standardization of products; the principles involved in microbial processes for chemical, pharmaceutical and food production, microbial waste treatment and environmental control. The laboratory component includes manipulation of microorganisms, laboratory-scale fermenter operation, microbial enzyme isolation, visits to industrial fermentation plants and industrial seminars.

42.102B Biotechnology B S2 L2T4

Prerequisite: 42.102A (Pass Conceded (PC) or Terminating Pass (TP) awarded prior to Session 2, 1983, is not acceptable).

Application of principles of biotechnology to the analysis and design of microbial processes of industrial relevance (antibiotics, microbial enzymes, single cell protein from carbohydrides and hydrocarbons, fermented foods and beverages, amino acids and vitamins, microbial polysaccharides, activated sludge and photosynthetic processes for waste treatment, microbial leaching of low-grade minerals). Emphasis on quantitative approach: mass and heat balance calculations, kinetic and thermodynamic analysis, detailed equipment design and specification, process design and layout, process simulation, plant location, application of optimization techniques. The economics of microbial processes are considered and comparison made with alternative modes of production or treatment. The economics of agro-industry in Australia using microbial processes. Marketing of fermentation products, clinical trials required, legal constraints, patent rights. Technical and economic feasibility studies, and a design project.

42.103 Biotechnology (Honours)

Advanced formal training in selected areas of biotechnology and participation in one of the school's research projects.

42.114 Fermentation Processes

Factors governing the use of micro-organisms in industrial processes, including the selection, maintenance and improvement of microorganisms, the control of environmental factors, batch and continuous flow operational patterns, product recovery, process optimization and waste disposal. Demonstrations of the operation and control of fermenter systems and of microbial process simulation.

Graduate Study

42.104G Graduate Seminars

42.111G Reading List in Biotechnology (Microbiology)

42.112G Reading List in Biotechnology (Biochemistry)

42.211G Principles of Biology SS L3

A study of the characteristics of living systems, including a functional treatment of cytology, metabolism, bioenergetics; structure, function and characteristics of single and multicellular systems; growth; cell division; reproduction; heredity and evolution.
42.212G Principles of Biochemistry

A condensed treatment of biochemistry comprising the following aspects: the elemental and molecular composition of living organisms; the chemistry and roles of the biological elements and molecules; the thermodynamics and enzymatic catalysis of metabolism; catabolic, anabolic, amphiplastic and anaerobic processes, with emphasis on hydrolysis and synthesis of polymers, glycolysis and gluconeogenesis of glucose, β-oxidation and synthesis of fatty acids, deamination and decarboxylation of amino acids, the tricarboxylic acid cycle, electron transport and oxidative phosphorylation; metabolic regulation and integration.

42.213G Biochemical Methods

A laboratory program in practical biochemistry. The basic instrumentation and methodology of the biochemist will be introduced by practical exercises and demonstrations. A comprehensive treatment of the relevance and applicability of biochemical techniques is covered in tutorials.

42.214G Biotechnology

The selection, maintenance and genetics of industrial organisms; metabolic control of microbial synthesis; fermentation kinetics and models of growth; batch and continuous culture; problems of scale-up and fermenter design; control of the microbial environment; computer/fermenter interactions. Industrial examples will be selected from: antibiotic and enzyme production, alcoholic beverages, single cell protein (SCP), microbial waste disposal and bacterial leaching. Tutorial/practical sessions include: problem solving, instrumentation, continuous culture techniques, and mathematical modelling and simulation of industrial processes.

42.215G Practical Biotechnology

Illustration, demonstration and operation of laboratory-scale and pilot-scale equipment. Visits to appropriate industries. Experimental project or critical review.

42.301G Microorganism Productivity

Mechanisms of metabolic control: induction, repression and forms of activation and inhibition; microbial genetics; mutation, selection, genetic transfer and manipulation; environmental parameters; oxygen tension, pH, temperature, energy source etc. as are relevant to productivity in industrially important microorganisms.

Detailed studies: choice of substrate, screening and isolation of microorganisms, systematic application of techniques of genetic and physiological manipulation required to optimize product formation (products include for example, amino acids, nucleotides, enzymes and other macromolecules, antibiotics and other physiologically active compounds), potential strain improvement of micro-organisms involved in other industrial processes (for example, mineral leaching, single cell protein production, detoxification and waste disposal).

Laboratory component includes current techniques of micro-organism isolation and maintenance, genetic manipulation and physiological manipulation.

42.302G Enzyme Technology

Enzymes in vivo; properties; roles; sources; optimization of enzyme concentration, for example by nutritional control, environmental control and by genetic manipulation. Isolation of enzymes: methods of extraction and purification; stabilizing safeguards; assay procedures; kinetics of isolated enzymes. Immobilization of enzymes: entrainment in insoluble matrices; adsorption on high molecular weight inert carriers; ionic binding to ion-exchange materials; covalent enzyme-enzyme linkage via a low molecular weight bifunctional reagent; covalent linkage to a high molecular weight support; changes in kinetic parameters and stability after immobilization; advantages and disadvantages of immobilization. Enzyme Reactor Engineering: design of batch and continuous systems, including open and closed plug flow and stirred reactors; comparison of kinetics in various designs; scale-up. Enzyme application: analysis; fabric, food and biochemical industries; medical treatment; medical diagnosis. Occupational hazards: allergic responses to enzymes; infection from pathological samples.

Methods of isolation, immobilization and application of enzymes for analytical, industrial and medical purposes will be illustrated by laboratory exercises and short projects. Practical comparison of various reactor designs will also be made.

42.303G Biochemical Process Control

Biochemical reactors: range of basic designs; range of biocatalysts, from microbial conglomerates to free enzymes, heat and mass transfer; design; scale-up; sterility; kinetics; economic considerations. Techniques for efficient operation and control of batch, single-stage continuous and multi-stage continuous processes.

Use of computers: aids to understanding the effects of operating variables for process optimization and control. Detailed examples: microbial processes such as production of antibiotics, organic acids, amino acids and enzymes, enzymic processes.

Practical illustration of: sample processes such as yeast and antibiotic production; mathematical simulation by analog computation; computer control of biochemical processes.

42.304G Biodeterioration and Biodegradation

Basic mechanisms of biodeterioration and biodegradation; direct and indirect attack mechanisms; co-metabolism and mixed population phenomena; factors controlling rates of degradation and recalcitrance of materials to biological attack; biological accelerators.

Detailed treatment of: biological corrosion of metals and alloys; biodeterioration of fuels, petrochemical products, synthetic materials, timber and cellulotic products, building materials etc.; degradation of rocks and minerals, biological leaching of ores and mineral processing residues.

The laboratory component includes assessment of biodegradability of common industrial materials (detergents, surface coatings, fuels, biocides etc.); evaluation of protective methods; determination of biological leachability of minerals and mineral processing residues.

42.305G Case Studies

Critical evaluation of industrial processes and research and development procedures. Includes: study of isolated and selected areas of biotechnology, detailed study and evaluation of all aspects of an industrial process from the isolation of the appropriate organism or other biological starting material to the production and use of the final products, critical evaluation of techniques arising from current research and development programs.

42.306G Project

An experimental or technical investigation or design project in the general field of biotechnology.
Botany

Undergraduate Study

43.101 Introductory Genetics

Prerequisites: 17.031 and 17.041 (see Note).

Note: Students with percentile range 61-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 43.101, 45.201 or 45.301 in lieu of 17.041 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.041 Biology B for all units.

Students should consult lecturers before purchasing textbooks.

Various aspects of molecular, organismal and population genetics, including: mechanisms of recombination and mapping in higher organisms; recombination and mapping in microorganisms; mutagens, structural and gene mutations, molecular structure of the gene, biochemical genetics, control of gene expression, genetic interaction, gene pools and gene frequencies, genetics and disease, genetic engineering.

43.102 Microbial Genetics

Prerequisite: 43.101.

A detailed study of the mutational basis of microbial variation. Mutagens; mechanisms of mutagenesis; induction, enrichment, isolation and characterization of mutants; mechanisms of repair of mutational damage. Systems of gene transfer and recombination in fungi, bacteria and bacterial viruses; the use of these systems in constructing genetic maps, and as tools for probing aspects of microbial physiology and biochemistry. Genetic control of gene expression; the operon concept and its application to specific regulatory systems. Genetic code, collinearity between a gene and its product, genes within genes, suppression of mutations. Restriction and modification of DNA; genetic engineering — its implications and prospects. Genetics of nitrogen fixation.

43.111 Flowering Plants

Prerequisites: 17.031 & 17.041.

Plant cell structure, structure and functions of the major organs in Angiosperms (flowers, roots, stems and leaves), secondary thickening and arborescence, transport systems in plants, seeds and germination. Variation in structure and function in relation to environment. Introduction to taxonomy and identification of major Australian plant families. A weekend field excursion is part of the subject.

43.131 Fungi and Man

Prerequisites: 17.031 & 17.041.

An introduction to the biology and taxonomy of fungi followed by a study of their economic importance to man. Includes: fungi as pathogens of plants and animals; use of fungi as food and in the production of useful chemical products; medical uses of fungi, including drugs and hallucinogens; degradation of organic matter, particularly in soils and of timber; interaction of fungi with other organisms; chemical control of fungi.

43.112 Taxonomy and Systematics

Prerequisite: 43.111. Co-requisite: 43.101.

This unit alternates each year with 43.162 The Plant Kingdom. 43.112 is given in 1984. If both units are to be included in three-year pass degree program, one should be completed in Year 2.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

The assessment, analysis and presentation of data for classifying organisms both at the specific and supra-specific level.

43.122 Plant Physiology

Prerequisites: 17.041, 12.031, 2.121 and 2.131, or 2.141.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

The study of how plants work at all levels from the cell to the whole plant. Includes: photosynthesis, respiration, transport, inorganic nutrition, plant growth substances, germination, growth, development, and flowering. Important practical applications of plant physiology are also considered.

43.132 Mycology and Plant Pathology

Prerequisite: 43.131.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

A detailed study of the fungi, including both saprophytic and plant pathogenic species. Includes: hyphal structure and ultrastructure; morphology and taxonomy of members of major taxonomic groups; spore liberation, dispersal, deposition, germination, infection and the establishment of a host-pathogen relationship; morphogenesis of vegetative and fruiting structures; cytology, genetics, ecological considerations of fungi in specialized habitats, survival mechanisms and methods of control of plant pathogens.

43.142 Environmental Botany

Prerequisites: 17.031 & 17.041.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

The soil and atmospheric environments in which plants live and a study of the interaction of plants with their environment. Energy and mass transfer. Emphasis is placed on the role of environmental science in food production. Students are required to attend one week-day field excursion as part of the practical course.
43.152 Plant Community Ecology S2 L2T4

Prerequisites: 43.111 and 17.041 or 27.111.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

Recognition and delimitation of plant communities. Ecology of selected Australian vegetation types. Use of numerical methods and application of community concepts to palaeoecology. Field work an integral part of this course.

43.162 The Plant Kingdom S2 L2T4

Prerequisite: 43.111.

This unit alternates each year with 43.112 Taxonomy and Systematics. 43.112 is given in 1984. If both units are to be included in a three-year pass degree program, one should be completed in Year 2.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

The major taxa of the Plant Kingdom with emphasis on the green plants. The evolution of basic vegetative structures, reproductive structures and genetic systems are studied. Field work part of the course.

43.172 Phycology and Marine Botany S2 L2T4

Prerequisite: 43.111.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

The biology of freshwater, marine and soil algae with particular emphasis on the marine flora of SE Australia. Field work is part of the course.

43.192 Ultrastructure S2 L2T4

Prerequisites: 17.031, 17.041. Excluded: 43.182.

This unit may be taken in either Year 2 or Year 3 of the Science and Mathematics Course provided that prerequisites have been completed.

The impact of the study of ultrastructure in biological research and teaches techniques currently used in ultrastructural research. While covering the ultrastructure of prokaryotes and of eukaryote cells and organelles, emphasis also on areas where ultrastructural research is at present making an important contribution to understanding, how cells work; for example, motility, secretion, control of cell wall deposition, transport and cell communication. Practical work: students use transmission and scanning electron microscopes to investigate material they themselves prepare, using negative staining, ultramicrotomy and freeze-fracture; also includes optical systems in light microscopy, principles and practice of fixation and embedding tissues for light and electron microscopy; histochemistry and techniques of enzyme localization.

43.202 Plant Structure and Function S1 L2T3

How green plants function. What is known about how plants grow. Specific topics include: what happens in a plant meristem, hormone interactions and growth, transport systems in plants, water uptake and use, mineral nutrition, the role of light and leaves in photosynthesis, control of flowering process, germination and senescence. Emphasis is on the interaction between plant structure and function.

Graduate Study

Servicing Subject

This is a subject taught within courses offered by other schools or departments in a different faculty.

For further information regarding the following subject see the Faculty of Architecture Handbook.

43.211G Botany and Ecology

Microbiology

Undergraduate Study

Level II Units

44.101 Introductory Microbiology S1 L2T4

Prerequisites: 17.031 & 17.041.

The general nature, occurrence and importance of microorganisms. A systematic review of the major groups of microorganisms; the eucaryotic protista (micro-algae, protozoa and fungi); procaryotic protista (blue-green algae, "higher" bacteria, typical unicellular bacteria and small bacteria-like forms); plant, animal and bacterial viruses. The relationship between microorganisms and their environment, ecological considerations. Interactions between microorganisms and higher organisms.
Level III Units

44.102 General Microbiology

Prerequisites: 44.101, 44.121 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable), 41.101.

Systems for the isolation, identification and taxonomic description of microorganisms; fine structure, cytochemistry, genetics of bacteria and viruses; metabolic requirements of microorganisms; microorganisms and their environment, growth, inhibition and death; energy-yielding and biosynthesizing systems; geotypic and phenotypic control systems.

44.112 Applied Microbiology

Prerequisite: 44.102.

Endeavours to relate the basic facts about microorganisms to a variety of practical conditions. The occurrence, importance, activity and control of microorganisms in soil, air, water and in their relationship with higher organisms (other than man), their industrial applications including manufacture, preservation and spoilage of food and dairy products. The nature of bacterial and fungal diseases of man, their cultural and serological diagnosis, epidemiology, treatment and prevention will be discussed in some detail.

44.122 Immunology

Prerequisites: 17.031 & 17.041, 41.101.

Basic immunology and immunological techniques. The interdisciplinary nature of the subject makes this unit suitable for students taking any major sequence in biological science and also for higher degree students who require a background training in immunology. The course includes phylogeny and ontogeny of the immune response; antigen and antibody structure, antigen-antibody reaction, immunocytochemistry, immunogenetics, clinical immunology; transplantation.

44.132 Virology

Prerequisite: 44.102.

The structure, replication and behaviour of animal, plant and bacterial viruses; applications of virological techniques; virus diseases of animals and plants, their epidemiology and control.

Level IV Units

44.103 Microbiology Honours

Prerequisites: 44.101 & 41.101 or 2.003J.

Advanced training in selected areas of microbiology, 1. a formal component consisting of seminars, tutorials, introductory electron microscopy and written assignments, 2. a supervised research program in a specific area of microbiology or immunology.

Servicing Subjects

These are subjects taught within courses offered by other schools or departments in a different faculty.

For further information regarding the following subject see the Faculty of Applied Science Handbook.

44.143 Microbiology AS

Prerequisites: 17.031 and 17.041.

The history, general nature, occurrence and importance of microorganisms. General features of procaryotic and eucaryotic protista. Basic microbiological methodology; bacterial anatomy and cytology; cell walls, flagella, pili, nucleus, inclusions, capsules, endospores. Microbial growth; methods of measuring; growth curves; batch, continuous and synchronous cultures. Microbial nutrition and metabolism; autotrophs and heterotrophs; photosynthesis, fermentation and respiration; biosynthesis. Bacterial genetics: adaptation, mutation and transduction; conjugation; plasmids and drug resistance factors; genetic engineering concepts. Bacterial virology; lytic phages, lysogeny, transduction, phage typing. Bacterial taxonomy, ecology and diversity, basic principles and review of the major bacterial genera and groups. Yeasts and fungi; general ecology, morphology and modes of reproduction; mycotoxins. Immunology and serology: antigen-antibody and their interactions; applications to identification. Medical microbiology; microbes as pathogens. Applied microbiology Microbiology of soils and waters, nitrogen fixation, industrial fermentations, alcoholic beverages, single cell protein, food microbiology.

For further information regarding the following subject see the Faculty of Medicine Handbook.

80.311 Paraclinical Science

In conjunction with School of Pathology and School of Physiology and Pharmacology.

Graduate Study

44.999G Alternative Higher Degree Qualifying Program

Similar in standard to 44.103 Microbiology Honours, but designed for students who cannot regularly attend the University.
Zoology

Students are not admitted to Level III Zoology units, without special permission of the Head of School, unless Chemistry 2.001 or 2.121 and 2.131, or 2.141, has been completed.

Undergraduate Study

45.101 Biometry S2 L2T4

Statistical methods and their application to biological data, including introduction to probability; the binomial, poisson, normal distributions; student's t, x² and variance ratio tests of significance based on the above distributions, the analysis of variance of orthogonal and some non-orthogonal designs; linear regression and correlation. Non-linear and multiple regression. Introductory factorial analysis. Introduction to experimental design. Non-parametric statistics, including tests based on x², the Kruskal-Wallis test, Fisher's exact probability test and rank correlation methods. Introduction to programming in BASIC.

45.112 Marine Ecology S1 L2T4
Prerequisites: 17.031 & 17.041, 45.201 or 25.022 or 2.002D.

A study of the ecology of marine organisms with particular reference to the physical, chemical and biological environment in which they occur. Both field and laboratory practical work are included.

Students intending to enrol in this unit should register with the School of Zoology by 14 January for the February field trip.

45.121 Evolutionary Theory S1 L3T3
Prerequisites: 17.031 & 17.041.

Current evolutionary theory, emphasizing the population level. Ecological genetics, evolutionary aspects of ecological niche theory, speciation, evolution of social behaviour, molecular evolution and general evolutionary genetics. Some background in genetics is desirable.

45.122 Animal Behaviour S2 L2T4
Prerequisites: 45.101 and (45.201 or 45.301).

An introduction to Ethology, the biological study of behaviour. Physiological, ecological, developmental and evolutionary aspects of behaviour are examined as important elements in the analysis of behaviour, particularly social behaviour. Both field and laboratory work are included.

45.132 Ecological Physiology S2 L2T4
Prerequisites: 45.201 or 45.301.

A study of physiological adaptation to habitat in animals. The problems imposed by the basic physiological characteristics of major animal groups under different environmental conditions are examined, especially osmotic and ionic regulation, oxygen availability, metabolism and temperature regulation/acclimation. Particular attention is given to Australian fauna and conditions.

45.142 Comparative Physiology S2 L2T4
Prerequisite: 45.201 or 45.301.

Basic physiology of nerves, muscles, sensory perception, blood circulation, respiration, gastrointestinal tract, kidneys and hormones. Physiology of reproduction. The control of organ systems and body functions.

45.152 Population and Community Ecology S1 L2T4
Prerequisites: 17.041 & 10.001 or 10.011.

Examination of the dynamics of one, two or more interacting populations. Systems analysis and simulation in ecology. Theoretical and mathematical analysis of the dynamics and stability of ecosystems. Topics in the optimal management of renewable resources. Unifying concepts in ecology.

45.201 Invertebrate Zoology S2 L2T4
Prerequisites: 17.031 & 17.041.

A comparative study of the major invertebrate phyla with emphasis on morphology, systematics and phylogeny. Practical work to illustrate the lecture course. Obligatory field camp.

45.301 Vertebrate Zoology S1 L2T4
Prerequisites: 17.031 & 17.021 (or 17.041).

A comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement the lecture course. Field excursions as arranged.

45.302 Vertebrate Zoogeography and Evolution S2 L2T4
Prerequisite: 45.301.

A geographic approach to the current distribution, abundance and types of vertebrate species in the Australian region. Particular emphasis is placed on the basic principles of speciation, the history of the Australian continent, vertebrate adaptations and changes in the distribution and abundance of the Australian vertebrate fauna under the influence of man. Field excursions as arranged.
48.402 Insects

Prerequisites: 17.031 & 17.041.

A comparative study of the internal anatomy and external morphology, physiology and behaviour of insects. A collection of insects is to be made. Practical work to illustrate the lectures. Field excursions as arranged.

Students intending to enrol in this unit should register with the School of Zoology by 14 January for the February field trip.

45.422 Economic Zoology

Prerequisite: 45.201 or 45.402.

A study of the biology, ecology and control of vertebrate and invertebrate animals which harm man and his possessions. Human and domestic animal parasitology, pests on plants, diseases caused or spread by animals, chemical, biological and physical control, and side effects.

45.432 Project

Prerequisite: 45.402 or 45.201.

Not offered in 1984.

Selected aspects of insect physiology, ecology and toxicology. Treatment of topics in depth rather than breadth. Practical work illustrates the lectures and places emphasis on design and planning of experiments.

Graduate Study

45.900G Ecological Studies In Arid Lands Management

Prerequisite: Degree with background in bioscience of equivalent.

Techniques in ecological studies of animal communities. Adaptations to an arid environment — environmental and social determinants. Behaviour, diet and condition of native and feral animals. Competition between native and introduced herbivores. Strategies in the management of arid zone wildlife. Concurrent studies in relevant units in the School of Botany are prescribed to cover aspects of vegetation description and plant/environment interactions.

Chemical Engineering and Industrial Chemistry

Undergraduate Study

48.023 Chemical Engineering Science I

Prerequisites: 1.001, 10.001.

48.024 Chemical Engineering Principles I

Prerequisites: 1.001, 10.001.

The following topics, from 48.023: Flow of Fluids, Heat Transfer I, Dimensions.

48.037 Chemical Engineering Science II

Prerequisites: 2.002A, 48.023.

48.038 Chemical Engineering Principles II

Prerequisite: 48.024.

The following topics, from 48.037; Mass Transfer (Theory), Heat Transfer II (Theory), Fluid-particle Systems, Surface Separation Processes.

Philosophy

Undergraduate Study

First Enrolment in Philosophy

There are two Level I subjects:
52.103 Introductory Philosophy A (Session 1)
52.104 Introductory Philosophy B (Session 2)

Each of these has 1-unit value. They can be taken separately, but students normally enrol in both. However, a student can gain Upper Level status in Philosophy (qualify to enrol in Upper Level subjects) by passing in only one.

Level II

Students may not proceed to Level II work in Philosophy in their first year of study. Students in later years may proceed to Level II work after passing one Level I unit in either session.

At Level II a wide range of half-units and two full units are offered, some dealing with particular philosophical topics and others capable of being taken in sequence to give more sustained treatments of larger areas. Students may select freely among these, subject to stipulations regarding prerequisites.

In certain circumstances the prerequisites specified for units or half-units may be waived; for example, in the case of students who have already studied similar material, or who wish to take isolated units or half-units relevant to another discipline. Students who feel they have a case for a concession of this kind should consult the School.

A maximum of three units (six half-units) at Level II may be taken as part of the Science course, exclusive of General Studies. Additional units may, with permission, be substituted for a part of the General Studies requirement, in accordance with the provisions laid down in the General Studies Handbook.

Selection of Units

Although students at Level II have a wide choice of units, they are advised to plan a sequence of mutually relevant ones, taking into account the prerequisites of those they may wish to take later.
52.2030 Predicate Logic A S1 L2T0
Prerequisite: Any Level 1 subject. Excluded: 52.153, 52.162, 52.1531.
A system of natural deduction is presented for the first order predicate calculus, including identity and definite descriptions. Emphasis is upon construction of formal derivations, methods of showing the invalidity of formal arguments, and the evaluation of informal arguments by symbolization.
Assessment: Exercises.

52.2031 Predicate Logic B S2 L2T0
Prerequisite: 52.1531 or 52.2030. Excluded: 52.153, 52.1532.
A continuation of Predicate Logic A, including the theories of identity and of definite descriptions.
Assessment: Exercises.

52.2040 Greek Philosophy: Thales to Plato S1 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.183.
The leading ideas of the Greek philosophers from Thales to Plato with special reference to the Pre-Socratics.
Assessment: To be decided in consultation with students.

52.2050 Classical Political Philosophy S1 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.182, 52.203.
The basis of political society, its various functions and its relation to the individuals in it, investigated primarily through the works of Hobbes, Locke, Rousseau and Mill. Topics include the theory of a social contract, the establishment of political rights and obligations, and the relation of moral and political concerns within a political society.
Assessment: Essays and examination.

52.2060 Sartre S1 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.213.
An examination of Sartre's account of freedom, relations between persons and his social theory.
Assessment: Essays and exercises.

52.2130 British Empiricism S2 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded 52.173.
A survey of the empirist tradition with special concentration on Locke and Berkeley.
Assessment: Exercises and essays or examination.

52.2040 Scientific Method S1 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.193.
The nature of empirical knowledge as exemplified in the physical and social sciences, with emphasis on the concept of explanation, the nature of induction and scientific laws, and controversies over the nature of scientific knowledge.
Assessment: Exercises or essay and examination.

52.2150 Philosophy of Law S2 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.105.
Selected conceptual and normative issues in the philosophy of law, centring around the broad areas of law (eg, its nature, validity, bindingness, and relation to morality), liberty, justice, responsibility (including strict and vicarious liability), and punishment.
Assessment: Essays.

52.2170 Hume S1 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.152, 52.563.
A study of Hume's epistemology, his discussion of arguments for the existence of God, free will and the basis of morals.
Assessment: Essay and exercises or examination.

52.2220 Classical Greek Ethics S1 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.523, 52.5231.
A systematic investigation of the moral theories of Plato and Aristotle. Beginning with the immoral and subsequent amoral position of Thrasymachus and his question in Book 1 of The Republic, 'Why should I be just?', the subject investigates the ways in which Plato and Aristotle each set out the problems of the nature of morality and why a person should be moral, their approaches to the solutions of these problems, and their positive moral theories.
Assessment: Essays and examination.

52.2230 Theories in Moral Philosophy S2 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.523, 52.5232.
Three moral theories central in the history and development of moral philosophy. Hume, Kant, and Mill offer differing kinds of moral theories, differing approaches to arriving at a moral theory, and specific theories which are markedly different from each other. Each moral theory in itself and in comparison with the other two theories examined.
Assessment: Essays and examination.

52.2240 Philosophical Study of Woman S2 L2T0
Prerequisite: Upper Level status in Philosophy. Excluded: 52.283.
A discussion of crucial structures involved in women's situation.
Assessment: Exercises and essays.
52.2250 Plato's Theory of Forms
Prerequisite: Upper Level status in Philosophy. Excluded: 52.483.
A study of some dialogues of Plato, with special attention to Socratic
definition and Plato's Theory of Forms.
Assessment: To be decided in consultation with students.

52.2260 Aesthetics
Prerequisite: Upper Level status in Philosophy. Excluded: 52.273.
An examination of the central concepts, types of judgment and
theories occurring in the field of aesthetics or theory of art.
Assessment: Exercises or essay and examination.

52.2270 Social and Political Philosophy
Prerequisites: Upper Level status in Philosophy. Excluded: 52.513.
Not offered in 1984.
Largely through contemporary writings, including a number of journal
articles, investigation of, eg rights, freedom, law and legislation,
responsibility, liability, coercion, punishment and justice.
Assessment: Essay.

52.2330 Psychoanalysis — Freud and Lacan
Prerequisite: Upper Level status in Philosophy. Excluded: 52.573.
A discussion of psychoanalytic theory, particularly for what it shows
about the relation between the individual and the social.
Assessment: Exercises and essays.

52.2360 Theories, Values and Education
Prerequisite: Upper Level status in Philosophy. Excluded: 52.583.
The nature of theories of education, and the contributions to them of
philosophy, psychology and sociology; values in education and the
social sciences; the justification of an ordering of educational goals.
Assessment: Essay.

52.2371 Plato's Later Dialogues
Prerequisite: 52.483 or 52.2250 (or, by permission, a course covering
similar material). Excluded: 52.293.
Centred round some of Plato's later dialogues, the Theaetetus and
Sophist in particular.
Assessment: To be decided in consultation with students.

52.2411 History of Logic
Prerequisite: 52.1531 or 52.2030. Excluded: 52.353, 52.393, 52.593.
History of logic, especially the work of Aristotle, William of Sherwood
and Frege.
Assessment: Exercises and essay.

52.2980 Seminar A
Excluded: 52.423.
Admission by permission, based on a student's performance in Upper
Level subjects. Topics vary and are influenced by student requests.
Possible topics include: contemporary ethics; contemporary moral
issues; logical atomism; Wittgenstein; theories of the emotions; issues
in social and political philosophy.
Assessment: Essay.

52.2990 Reading Option A
Excluded: 52.413.
Admission by permission, to suitable students with good Passes in at
least two subjects at Upper Level. A course of individually supervised
reading and assignments on an approved topic not otherwise offered.
Assessment: Essay.

52.3010 Seminar B
Excluded: 52.433.
As for 52.2980 Seminar A.

52.3020 Seminar C
Excluded: 52.443.
As for 52.2980 Seminar A.

52.3030 Reading Option B
Excluded: 52.453.
As for 52.2990 Reading Option A.

52.2930 Plato's Later Dialogues
Prerequisite: 52.483 or 52.2250 (or, by permission, a course covering
similar material). Excluded: 52.293.
Centred round some of Plato's later dialogues, the Theaetetus and
Sophist in particular.
Assessment: To be decided in consultation with students.

53.309G Social and Technological Forecasting
The nature of various contemporary approaches to the forecasting of
social and technological change, and the use of forecasting in
particular sectors of economic, social and technological activity.
Examines a number of commonly held views about the future and
their connection with theories about relations between science,
technology and society.
Education

Undergraduate Study

58.702 Theory of Education I

Educational Psychology: includes learning, cognition, individual differences and cognitive development; detailed classroom applications; experimental demonstration of phenomena where possible.

58.703 Theory of Education II

Prerequisite: 58.702.

Educational Psychology: extension of the introductory studies of learning, cognition, individual differences and cognitive development with concentration upon child development; classroom applications emphasized and phenomena experimentally demonstrated where possible. Philosophy of Education: exploration of philosophical questions concerning teaching and learning with particular reference to the various subjects taught in schools; issues concerning the relationships between school subjects, a connection between knowledge and the development of mind, the value of school subjects in relation to other activities which could compose education and the social and ethical context of education. Focus on logical and epistemological questions which are internal to the various teaching subjects. Students are assigned to one of the following Philosophy of Education groups: Philosophical Issues in: Mathematics and Education; Literary Appreciation and Education; History and Education; Science and Education; Curriculum and Education; Language and Education; Social Sciences and Education; Industrial Arts Education. Sociology of Education: includes socialization, the family, the role of education in society, inequality of educational opportunity, multi-cultural education.

58.704 Theory of Education III

Prerequisite: 58.703.

Sociology of Education: includes sociology of the school and classroom, deviance, knowledge and the curriculum, sexism, in schools, social trends and problems and their implications for education, technology work and lifelong learning. Selected Studies in Education: two education theory options to be selected from among a number available; some deal with the separate disciplines of philosophy, psychology, sociology, others may draw from more than one. In any given year the options offered depend on the staff available and on student demand. Topics may include the following: Computer assisted instruction, the talented child, learning disabilities, social trends and problems, sociology of the school and classroom, methodology for criticism, ethical theory and moral education, science and religion in education.

58.712 Teaching Practice I

A gradual introduction to teaching in the school situation.

58.713 Teaching Practice II

F 15 days

Prerequisites: 58.712, 58.722 or 58.732 or 58.742 or 58.752 or 58.762.

Co-requisites: 58.723 or 58.733 or 58.743 or 58.753 or 58.763.

Extensive opportunities for students to develop teaching competence; each student is placed in a high school for 10 days and works in close association with a teacher.

58.714 Teaching Practice III

F 15 days

Prerequisites: 58.713, 58.723 or 58.733 or 58.743 or 58.753.

Co-requisites: 58.724 or 58.734 or 58.744 or 58.754 or 58.764.

Provision for further opportunities for students to develop teaching competence; each student is placed in a high school for 20 days and works in close association with a teacher.

58.732 Science Curriculum and Instruction I

S1 L2T1 S2 L1

Prerequisites: 1.001 or 1.011; 2.121, 2.131. Co-requisite: 58.702.

Lessons planning, management in the science classroom, laboratory safety, legal aspects, introduction to audiovisual aids, demonstrations and practical work. Communication and Microteaching: techniques and problems of communication, development of teaching skills by peer-group microteaching. Classroom Issues and Strategies: topics include mixed ability groups, streaming, individual instruction, children with special needs (eg handicapped, talented, immigrant, Aboriginal children), language in learning, discipline and class control.

58.733 Science Curriculum and Instruction II

S1 T4 S2 L1T4

Methods of teaching and problems in learning science, the roles of teacher demonstrations and pupil practical work, preparation and use of audiovisual aids, the teaching of selected topics in biology, chemistry, geology and physics. Further development of teaching skills by peer-group microteaching may be undertaken. Classroom Issues and Strategies: aspects relating to classroom and community including the primary school, the teacher in the school community, teachers and parents, legal responsibilities and rights, transition, unemployment, leisure, support facilities.

58.734 Science Curriculum and Instruction III

S1 L1T4 S2 T3

Prerequisites: 58.703, 58.713, 58.733.

Examination of NSW secondary school science syllabuses, investigation of curriculum material suitable for use in teaching secondary school science, development of teaching resources, the professional development of the science teacher, the teaching of biology, chemistry, geology and physics. Classroom Issues and Strategies: aspects relating to assessment and measurement including test planning, standardized tests, marking and reporting, essay-type tests, scaling of test scores, uses and effects of assessment.
58.742 Mathematics Curriculum and Instruction I

Prerequisites: 10.001 or 10.011. Co-requisite: 58.702.

Introduction to the application of educational studies to the teaching of the Mathematics curriculum in high schools, lesson planning and classroom management. Communication and Microteaching: techniques and problems of communication, development of teaching skills by peer-group microteaching. Classroom Issues and Strategies: includes mixed ability groups, streaming, individual instruction, children with special needs (eg handicapped, talented, immigrant, Aborigina children), language in learning, discipline and class control.

58.743 Mathematics Curriculum and Instruction II

Prerequisites: 58.702, 58.742. Co-requisite: 58.703.

A continuation of the application of educational studies to the teaching of the Mathematics curriculum in secondary schools, lesson preparation and presentation, classroom organization and management, introduction to special mathematics courses being used in secondary schools, eg elective and slow learner courses, preparation for 58.713 Teaching Practice II. Further development of teaching skills by peer-group microteaching may be undertaken. Classroom Issues and Strategies: aspects relating to classroom and community including the primary school, the teacher in the school community, teachers and parents, legal responsibilities and rights, transition, unemployment, leisure, support facilities.

58.744 Mathematics Curriculum and Instruction III

Prerequisites: 58.703, 58.713, 58.743.

The teaching of senior secondary school mathematics syllabuses, curriculum development projects in mathematics and their application in NSW, critical analysis of learning problems of school students, investigation of practical remedies for such problems. The subject is designed to complement 58.714 Teaching Practice III, taken together these subjects provide a wide set of experiences which equip potential teachers to fit successfully into the NSW teaching environment. Classroom Issues and Strategies: aspects relating to assessment and measurement including test planning, standardized tests, marking and reporting, essay-type tests, scaling of test scores, uses and effects of assessment.

58.793 Advanced Education I

F 1CCH

Students study one of the following segments: Philosophy of Education segment: some connected issues in social and political philosophy, and their implications for educational theory and practice. Includes: freedom, compulsion and the aims of education; neutrality of education systems, schools, teachers and courses; and justice and equality. Educational Psychology segment: introduction to selected aspects of on-going research activities in educational psychology. The area is selected following discussions with staff members. Sociology of Education segment: more detailed and extensive examination of central topics studied in the pass strand. Consideration of selected issues to do with social theory, the nature of the sociological enterprise and sociological methods.

58.794 Advanced Education II

F 1CCH

Each student engages in twenty-eight hours of supervised study appropriate to his or her proposed research, as approved by the Head of School.

58.795 Advanced Education III

F 4CCH

Enrolment is subject to approval by the Head of School.

In their full-time Honours year, all students enrol in four twenty-eight-hour units of study appropriate to their research, as approved by the Head of School.

58.799 Thesis

Undergraduate Study

Students undertaking subjects in History and Philosophy of Science are required to supplement the class contact hours by study in the Library.

Level II/III

62.012 The Origins of Modern Science

S1 L2T1

Prerequisite: A pass in four Level I units from Table I.

An introductory subject dealing with the Scientific Revolution of the 17th century, the philosophical issues being discussed in their historical context. It surveys the major achievements of science during the period, particularly the Copernican Revolution, the construction of dynamics from Galileo to Newton, and Harvey's physiology. The cultural and intellectual background of these achievements and their effects on European thought will be discussed.

62.022 Materials Machines and Men

S2 L2T1

The rise of technology in its social and cultural context before, during and since the Industrial Revolution. This Revolution, which has been described as the most significant event in human history since the Agricultural Revolution of the New Stone Age, is examined in some detail, and concentrates on technology and its effects on human beings. Considers the professionalization of engineering, the spread of industrialization in Britain, in Europe and the USA, and examines the Second Industrial Revolution. Emphasis on the social and economic effects of the interactions of technology and society.

Assessment: Essays, tutorial papers and performance in class.

Note: This subject may be counted towards a major sequence in the School of History.
62.032 The Scientific Theory
Prerequisite: As for 62.012.
Not offered in 1984.
A critical examination of the scientific theory — its origins, nature and nurture. With particular reference to selected historical examples chosen from both the physical and biological sciences, a number of philosophically interesting problems relating to scientific theories are subjected to analysis. Topics include: the principles of theory construction; perception and observation; the structure of scientific revolutions; scientific explanation; the status of laws and theoretical terms; the 'existence' of theoretical entities; relationships between theory and observation; the functions of models; the principles of theory establishment and rejection.
Assessment: One essay (33½ percent); tests (33½ percent); tutorials (33½ percent).

62.033 Development of Theories of Matter
Prerequisite: As for 62.012.
Not offered in 1984.
The development of man's ideas about the nature of matter: 'the oldest conceptual tool in the Western speculative tradition.' A broad coverage from antiquity to the mid-20th century, though the emphasis is placed largely on ideas in the 19th and 20th centuries. The main areas of study are: Greek matter theory; the 'organic' theories of the Renaissance; the 'mechanical philosophy'; Newton, Leibniz and Bosovich; 18th century chemistry; Dalton's atomic theory and the 'atomic debates'; the establishment of the atomic weight scale; 19th century theories of bonding and structure; Faraday, Maxwell, Hertz, and the origins of field theory; radioactivity; Thomson and Rutherford; the Bohr theory of the atom, the wave/particle model, the uncertainty principle and associated controversies; anti-matter; electronic theories of valency.
A set of notes is distributed each week and the subject is conducted entirely by seminars.
Assessment: 2 essays (25 percent each); weekly seminars (50 percent).

62.052 Scientific Knowledge and Political Power
Prerequisite: As for 62.012.
An introduction to the political dimensions of 20th century science. Topics include: growth of expenditure on science in the 20th century; attempts to define the social function of science in the inter-war years; the radical scientists’ movement of the 1930s — the freedom versus planning debate; science and politics in the Second World War; government patronage and political expectations in the post-war period; science and economic growth; the science-technology relationship; the rejection of laissez-faire in the 1960s; approaches to science policy; critiques of the role of science in contemporary society; scientists as experts; the question of social responsibility in science.
Assessment: Essays (50 percent); tutorials (50 percent).

62.062 The Social System of Science
Prerequisite: As for 62.012.
An introduction to the social dimension of the practice of science. The production and application of scientific knowledge as an activity in constant interaction with its socio-economic, political and cultural environments. The principal features of this interaction in relation to each of the following aspects of scientific activity: the processes of research and discovery; the dissemination of research findings and their acceptance or rejection; the development or abandonment of accepted theories; and the technological applications of scientific knowledge.

62.072 Historical Origins of the American Scientific Estate
Prerequisite: As for 62.012.
The development of American scientific institutions and research from the early years of the Republic, when that country was a scientific backwater to its present position of global dominance in terms of research resources. Questions about the historical roots of organized research in universities, industrial corporations and government organizations. The American case illustrates well the processes whereby the rapidly emerging scientific profession and its varied specialties forged links between these sectors of society. Topics: the place of science in a young resource-rich democracy, the uses of science in Progressive ideology, and the war-born relationship of science, government and the military.
Assessment: 2 essays (60 percent); tutorial assessment (40 percent).
Note: This subject may be counted towards a major sequence in the School of History.

62.082 Science, Technology and Developing Countries
Prerequisite: As for 62.012.
The disparities between the scientific and technical capabilities of industrialized and developing societies. The reasons for these disparities and their economic and social consequences. Aspects include: the problems of dependency; the product cycle and its impact on location of production; concepts of the 'learning curve'; aspects of technology choice; bargaining processes; transnational corporations and the 'truncation' of the industrial sector; efforts to define 'appropriate' technologies; modes of technology transfer; alternate models and policies for scientific and technological development; the role of traditional technology; the impact of modern technology on international relations. Issues: the consequences of modern science and technology for the role of the military in developing countries; food and population problems; energy use; environmental impacts; class structure, etc. The social role and function of scientific communities in less developed countries and the process of diffusion of science from the centre to the periphery and the evolution of national scientific communities and institutions are addressed through the use of case studies.
Assessment: Essay (50 percent); tutorials (50 percent).

62.103 The Discovery of Time
Prerequisite: As for 62.012.
The evolution of ideas concerning time and history, including the age and history of the earth, devoting particular attention to the period from the 17th century to the present. Consideration is given to such questions as philosophical and scientific problems about the nature of time, historiographical ideas, the authority of the scriptures, social theories, the concept of Nature, the rise of the Romantic Movement,
the growth of historical consciousness, relativity and displacement in
time, the intention being to provide an understanding of the intellec-
tual setting within which history and geological theories and philo-
sophical, physical and speculative ideas about time developed.

Assessment: 2 essays (30 percent each); tutorials (20 percent); class
tests (20 percent).

Note: This subject may be counted towards a major sequence in the
School of History.

62.104 The Darwinian Revolution S2 L1T1

Prerequisite: As for 62.012.

Scientific, philosophical, and social antecedents and consequences
of Darwin's theory of evolution. The prevailing ideas in biology before
Darwin in the context of the general climate of ideas in the 18th and
early 19th centuries. Darwin's life and work in some detail, followed by
a consideration of the work of Mendel and the establishment of the 'synthetic' theory of evolution. The impact of evolutionary ideas in
such diverse fields of thought as religion, literature, music, political
theory, epistemology, ethics, and the social and behavioural sciences.

Assessment: (2 hours) (30 percent); tutorial exercises (40 percent);
essay (30 percent).

Note: This subject may be counted towards a major sequence in the
School of History.

62.106 Mind, Mechanism and Life S1 L2T1

Prerequisite: As for 62.012. Excluded: 62.043.

The development of scientific ideas concerning the nature of life,
mind and behaviour. While the subject includes both a brief treatment
of early ideas and reference to issues in contemporary biological and
behavioural sciences, the main focus is on the period from the Proto-
Scientific Revolution of the 16th century to the advent of the general
purpose computer. Topics include: Vesalius and the School of Padua;
the biological thought of William Harvey; machines and the mechanical
philosophy; Cartesianism and the mechanization of biology;
classical theories of the relationship between mind and body; neuro-
physiology from the 18th to the early 20th century; the mechanist-
vitalist disputes; Wundt, Fechner and the rise of experimental psy-
chology; the Freudian revolution; Pavlov and the conditioned reflex;
behaviorism and its critics; mind, brain, life and the computer.

Assessment: Essay (33 1/3 percent); tutorial assessment (33 1/3 percent);
tests (33 1/3 percent).

Note: This subject may be counted towards a major sequence in the
School of History.

62.109 The History of Medical Theory and Practice S1 L2T1

Development of theory and practice in Western Medicine from the
time of Hippocrates to the 20th century. Material covered in four
sections: 1. 'bedside' medicine from antiquity to the French Revolu-
tion; 2. 'hospital' medicine in the early 19th century; 3. 'laboratory'
medicine in the late 19th century; and 4. 'technological' medicine in
the 20th century, with particular emphasis on the social role of
modern medicine.

Assessment: Essays, tutorial work and short class tests.

Note: This subject may be counted towards a major sequence in the
School of History.

62.551 The Arch of Knowledge: History of the Philosophy
and Methodology of Science to 1800 S1 L0T2

The development of ideas concerning the nature and methods of the
sciences from antiquity to 1800: Platonism and Aristotelianism; scholar-

istic philosophy; the realist/nominalist debate, the Paduan school;
Galileo and the mathematization of nature; Bacon and Baconianism;
Descartes and Cartesianism; Newton and Newtonianism; Locke as
an under-labourer in the Newtonian garden; criticisms of Newtonian
science and Lockeian empiricist epistemology: Leibniz, Berkeley and
Hume; French empiricism and philosophy of language: Condillac;
Kant's Copernican Revolution and principles of Kantian philosophy.

A set of notes is distributed weekly and the subject is conducted by
seminars.

Assessment: 2 essays (50 percent); 2 seminar presentations (50 percent).

62.552 Modern History of the Philosophy and
Methodology of Science: 1800 to the Present S2 L0T2

Prerequisite: 62.551 or by permission of the Head of School. Ex-

The development of ideas concerning the nature and methods of the
sciences from 1800 to the present: Herschel, Mill and Whewell (British
empiricism in conflict with Kantian transcendental philosophy); Comte,
Mach and 19th century positivism; Peirce, James and pragmatism;
Poincaré and conventionalism; Duhen and instrumentalism; Meyers-
son and realism; Frege, Russell and logicism; Wittgenstein and
Hanson; Einstein and the new science; Bridgman and operationism;
Eddington and selective subjectivism; the Vienna Circle and logical
positivism; Carnap and positivist reductionism; Hesse and modellism;
Popper and falsificationism; Lakatos and 'research programs'; Fey-
erabend and methodological anarchism; sociologists of knowledge.

A set of notes is distributed weekly and the subject is conducted by
seminars.

Assessment: 2 essays (50 percent); 2 seminar presentations (50 percent).

62.553 The Social Construction of Scientific Knowledge S2 L2T1

Prerequisite: As for 62.012. Excluded: 62.083.

The nature and extent of the influence that social conditions have
upon the formation and acceptance of scientific knowledge. Topics
include: Marxist theories of science and ideology; the 'strong pro-
gram' for the sociology of scientific knowledge; 'field' theories and
the analysis of 'disciplinary power' in science; and epistemological
problems raised by commercial and governmental direction of science.

Assessment: Essays, tutorial work and short class tests.
62.554 Computers, Brains and Minds: Foundations of the Cognitive Sciences S2 L2T1

Prerequisite: As for 62.012.

Introduction to contemporary discussions of the mind, thought, intelligence and consciousness. Focus on the issues which arise in connection with the so-called 'cognitive sciences' — the disciplines which include such fields as computer science, the various neurosciences, cognitive psychology, linguistics and the philosophy of mind. Stress on the recent revolutionary developments in the computer simulation of thought or 'artificial intelligence' and linguistics, since both these areas shed new light on traditional questions concerning the mind. Questions are: Can computers think? and Is the brain a machine? Exploration of the theories, methods and philosophical issues which arise from the 'computational' or 'information processing approach' to the mind.

Assessment: Essay (40 percent); tests (30 percent); tutorials (30 percent).

Level III

62.105 Research Methods in History and Philosophy of Science F L0T2

Prerequisite: Completion of three HPS units with an average grade of Credit or better, or by permission of the Head of School.

A weekly seminar designed to prepare students to carry out Honours level research in HPS. The historiography of science, and its relations to philosophical and social studies of science, are analysed through discussion of texts representing predominant approaches to HPS during the last 30-40 years. In addition, bibliographical, editorial, and other research exercises are carried out.

Assessment: Essay, seminars and written exercises.

Level IV Honours Programs

62.014 History and Philosophy of Science Honours

Candidates are required to undertake a suitable program of study, as determined by the Head of School. The program includes 62.105, Research Methods in History and Philosophy of Science (unless this has previously been completed). It also includes seminars in either Advanced Philosophy of Science or Advanced Social Studies of Science, the presentation of a thesis, and such other course work as is determined by the Head of School. Students wishing to undertake this program should contact the School of History and Philosophy of Science at the earliest opportunity.

62.024 Science Studies Honours

As for 62.014 History and Philosophy of Science Honours. The program 62.014 normally includes the seminar in Advanced Social Studies of Science.

Graduate Study

62.701G Philosophy and Methodology of Science S1 L2

An introduction to some current and fundamental problems in the philosophy of science and society: the nature of scientific debates and forms of argument; the function of 'scientific' images in the exploration and conquest of man and nature; scientific understanding and explanations in terms of models, analogies and laws of nature; problems of creativity and logic in the construction, establishment, acceptance and rejection of theories; the dynamics of scientific development and change; the concept of scientific revolutions.

62.709G The Scientific Community S2 L2

The sociological analysis of the pure science community, which establishes the characteristics of this subgroup of society by examining its internal and external social relations. The internal relations refer to cognitive and behavioural factors within the community itself that promote or retard the advancement of science. The external relations refer to the political, ideological, economic and bureaucratic forces in society that shape and control the scientific community and the knowledge it produces.

62.710G Science, Philosophy, and Social Values S1 L2

Exposition and appraisal of some of the classical ethical theories. Examination of the claims of science to be able to provide a basis for moral judgments. Attempted establishment of an ethical framework which may serve as a basis for decision making when problems of an ethical nature arise in science. Selected case studies, in which decisions as to the most appropriate form of action are evaluated in the light of the ethical framework previously established.

62.713G Project F L1

Students are required to prepare a minor research dissertation under the supervision of a member of staff and to attend introductory seminars and occasional addresses by visiting speakers.

62.714G Knowledge, Power and Public Policy S1 L2

The growth of government interest in science during the 20th century, issues, institutions and policies. The nature and consequences of government support for research. The debate over the 'planning' of science. The arguments in favour of 'science policy'.

Science policy placed against the general background of the growth of government intervention in economic and social life during the last 100 years. The impacts of two world wars and the 'cold war'. Differences between countries in scientific organization and science policy.
62.715G Cause, Belief and Progress in the History of Science

An historical perspective on general ideas relating to scientific knowledge in the modern period, including: the Idea of Progress from Bacon to Social Darwinism; the relations between religion, theology and science; historiographical interpretations of revolutionary episodes in the history of science; ideas relating to contemporary issues in science.

62.716G Science and Society in the Twentieth Century

An introduction to the key issues raised by the interaction between science and society in the 20th century. The unit consists of six topic modules drawn from the following list, each presented over a period of four weeks.

1. The Social and Economic Relations of Technology: An introduction to fundamental concepts concerning: the imperatives of technology; the techno-structure; the political dimensions of technological change; technological determinism; the technological fix; the ideology of industrialization; alternative technology. 2. Theories of Social Change: A comparative analysis of leading theories of social change, including Marxism and theories of industrial and post-industrial society, with emphasis on the role of science and technology. 3. Technology and Social Change: A case study of the social impact of (a) energy technologies on Australia and/or the developing world; or (b) the microelectronic revolution on commerce and industry. 4. Historical Dimensions of Scientific Change: A case study of a major conceptual advance in 20th-century science (eg, the development of relativistic physics or of genetics and molecular biology) as an introduction to problems of (a) scientific change and 'progress'; (b) scientific community relations, and (c) science, ideology and responsibility. 5. The Philosophy of Science: Contemporary issues in the philosophical analysis of science, with emphasis on (a) the dynamics of conceptual change, and (b) scientific reasoning and 'method'. 6. Science as a Social Enterprise: Scientific institutions; patterns of communication; norms and values; social determinants of conformity and innovation; the internal and external politics of science. 7. Social Responsibility in Science: A history of the 'Social Responsibility Movement'; ethical and political dimensions of the problem of responsibility in science.

62.718G Science in National Cultures: Comparative Historical Perspectives

Historical and contemporary aspects of the comparative development of scientific institutions and research styles in different national contexts. The modes of interaction and mutual perceptions of scientific communities in Western industrializing nations from the 19th century; the question of convergence in systems of scientific organization in East and West.

62.720G The Sociology of Scientific Knowledge

An analysis of recent sociological theories concerning the nature and extent of the influence that social conditions have upon the formation and acceptance of scientific knowledge. Topics covered include: neo-marxist theories of science and ideology; the 'strong program' for the sociology of knowledge; 'field' theories and the analysis of 'disciplinary power' in science; and epistemological problems raised by commercial and governmental direction of scientific research. This unit builds upon the material covered in 62.709G The Scientific Community, although it may be taken independently of that unit, and it provides a suitable background for 62.701G Philosophy and Methodology of Science.
Physical Oceanography

Prerequisites: 10.001 or 10.011; 1.001 or 1.011.

The physical properties of the oceans, and their measurement. Oceanographic instrumentation. The design of small and large scale ocean experiments. Laboratory and field work.

Biological Laboratory Computing

Prerequisites: As for 10.021B. Excluded: 1.041, Programs 0601, 0610, 0611 & 6806.

Concepts and problems in biology and biology-related areas amenable to the application of computers; experience in elementary BASIC programming and data analysis using large mainframes and laboratory microcomputers; use of microcomputers for collecting data from laboratory instruments, and for controlling instruments in experiments. Includes a segment taught in common with 1.041 Laboratory Computers in Physical Sciences.

Geology and Physics Honours

An honours program combining Geology and Physics in Program 0125, made by arrangement with the Heads of the two Schools.

Science of Interfaces

Prerequisites: 2.002A, 1.012, 1.022.

Not offered in 1984.

Elementary theory of terminated lattice and surface states; the solid-gas interface; general theory of absorption; corrosion; catalysis; liquid gas interface; ocean/atmosphere interactions; lung/air interactions; solid-liquid interactions and electrochemistry.

Genetics of Behaviour I

Prerequisite: 17.031. Excluded: 79.402.

Introduction to gross anatomy, based on a study of prosected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy. Normal variations including those related to sex and age.

Genetics of Behaviour II

Prerequisite: 79.402 or 68.601. Excluded: 79.403.

An advanced subject in the area of behaviour genetics in man and animals, including more complex aspects of statistical analysis of data, and options for in depth studies and practical experience in specific aspects of human and animal behaviour genetics.
Prerequisite: Completion of the first three years of any Science program with a major in Anatomy (see Table 3).

An honours program consisting of the preparation of an undergraduate thesis together with advanced tutorial courses and participation in School seminars.

70.013 Anatomy IV

Prerequisite: Completion of the first three years of any Science program with a major in Anatomy (see Table 3).

An honours program consisting of the preparation of an undergraduate thesis together with advanced tutorial courses and participation in School seminars.

70.304 Histology II

Prerequisite: 70.011A. Excluded: 70.3041. (If 70.304 is taken after 70.3041, total counts only 1 unit.)

70.301 Basic and Applied Pathology

Prerequisites: 70.011A, 70.011C, 73.111 or equivalent.

Lectures and practical class demonstrations. Includes exposition of the basic classification of pathological processes, study of the processes of cell and tissue degeneration, acute and chronic inflammation, vascular disease, including thrombosis, embolism, ischaemia and infarction. Aberrations of cell growth including study of atrophy, hypertrophy, hyperplasia and metaplasia, used to introduce the subject of neoplasia and carcinogenesis. Exposure to examples of specific disease entities of general practical importance exemplifying the basic or fundamental processes such as appendicitis, pneumonia, arthritis, pulmonary and myocardial infarction as well as lung, alimentary and cerebral tumours. Coverage of the processes of healing and regeneration with specific reference to healing of skin wounds and the healing of fractures.

Graduate Study

72.402G Principles of Disease Processes

Prerequisite: 73.111 or equivalent, 70.011C or equivalent.

The reaction of cells to injury, the inflammatory reaction; necrosis-vascular changes and infarction; reparative processes; fracture healing; neoplasia; reaction to implants; specific processes requiring prosthetic assistance.

Pathology

Undergraduate Study

72.301 Basic and Applied Pathology

Prerequisites: 70.011A, 70.011C, 73.111 or equivalent.

Lectures and practical class demonstrations. Includes exposition of the basic classification of pathological processes, study of the processes of cell and tissue degeneration, acute and chronic inflammation, vascular disease, including thrombosis, embolism, ischaemia and infarction. Aberrations of cell growth including study of atrophy, hypertrophy, hyperplasia and metaplasia, used to introduce the subject of neoplasia and carcinogenesis. Exposure to examples of specific disease entities of general practical importance exemplifying the basic or fundamental processes such as appendicitis, pneumonia, arthritis, pulmonary and myocardial infarction as well as lung, alimentary and cerebral tumours. Coverage of the processes of healing and regeneration with specific reference to healing of skin wounds and the healing of fractures.

Physiology and Pharmacology

Undergraduate Study

73.111 Physiology I A

Prerequisites: 17.021 (or 17.041); 2.121 & 2.131, or 2.141; 10.001 or 10.011 or 10.021 B & C. Excluded: 73.121, 73.011A. Co-requisite: 41.101.

Introduction to fundamental physiological principles, dealing first, with basic cellular function in terms of chemical and physical princi-
Membrane Biology

For entry consult Head of School of Physiology and Pharmacology.

The properties of cell membranes including permeation of ions, solutes and water across membranes, generation of electrical signals in nerve and muscle cells produced by ion movements, and transmission of information between cells. Stress on modern research techniques and on a critical examination of appropriate classical papers.

73.012B Neurophysiology

For entry consult Head of School of Physiology and Pharmacology.

A detailed study in two broad areas, neural mechanisms in sensation and the control of posture and movement. Includes the regulation of visceral and other autonomic effector structures and the neural substrates and correlates of certain higher functions such as speech, memory and consciousness. Directed towards the experimental analysis of nervous system function, to introduce the techniques and approaches used in neurophysiological research. Sensation: an integrated lecture and experimental course is given on somatic, visual and auditory sensory mechanisms. Laboratory work: students conduct psychophysical experiments to evaluate subjective sensory capabilities. The neural mechanisms underlying these subjective abilities are examined in animals in electrophysiological experiments which involve recording the impulse patterns from individual neurons within the sensory systems. Students are required to analyze the mechanisms employed by the nervous system to code information about specific parameters of sensory stimuli.

Lectures and experiments on motor function are directed towards an understanding of the various reflex and voluntary mechanisms controlling posture and movement. The section dealing with nervous control of visceral function is concerned mainly with regulation of cardiorespiratory activity.

Clinical Physiology

Prerequisites: 73.111; 41.101; 41.111 or 2.002B; 70.011A; 70.011C; 80.014.

This Level III subject is only available in course 3820, and only to those students not undertaking Physiology II. The subject is intended to supplement the Level II, Physiology IA course in order to provide an adequate grounding for double degree students in applied or clinical aspects of physiology before they enter year three of the medical course.

Covers aspects of normal and disordered physiology in the following areas: cardiovascular and cardiorespiratory mechanisms; body fluid balance and kidney function; the endocrine system; central nervous system; gastrointestinal physiology.

Pharmacology

Prerequisites: 73.111 or 73.121. Co-requisites: 73.012 or 41.102 & 41.102B or 2.003J and 2.033A.

Includes a study of the absorption, distribution and metabolism of drugs as well as a study of the pharmacology of the autonomic nervous system, the cardiovascular system, the central nervous system, the kidney, the endocrine system and also a study of pharmacokinetics. A practical class program complements the lecture program by demonstrating a variety of basic pharmacological techniques.
Honours and Graduate Study

Depending on their undergraduate records students may be accepted by the Head of the School to undertake a fourth year of study towards an honours degree in Physiology or in Pharmacology. This would usually be done by students planning a career in either of these fields. During the honours year the student carries out a research project under the supervision of a staff member and submits a thesis based on the research project. The student can usually nominate the general research area in which he wishes to work from those being studied in the School. Within this research area the student is given a specific project by the supervisor.

Higher degree study for an MSc of PhD degree may also be undertaken by selected students.

Community Medicine

Undergraduate Study

79.201 Population Genetics S1 L2T3
Prerequisites: 45.101, or 10.311A and 10.311B, or 10.321A and 10.321B, or 10.331.

The genetic structure of populations: demographic structure, genetic relationships, mating systems (random and assortative mating, inbreeding, sexual selection), finite populations, systematic forces (selection, mutation, migration), genetic distance between populations, genetic load, stable populations, molecular population genetics, evolutionary trees; observed human population structures; computer methods.

79.202 Quantitative Methods in Human Genetics S2 L2T3
Prerequisites: one unit of genetics and one unit of statistical methods, or theory, as approved by the Head of School.

Collection, interpretation and uses of genetical information relating to human populations: design of surveys, including twin and family studies; estimation and applications of genic and genotypic frequencies, selective values, mutation and migration rates, coefficients of kinship, inbreeding and assortative mating, effective population sizes, recombination fractions and heritabilities; segregation analysis; risks of recurrence of disease; genetical consequences of human intervention; computer methods.

79.302 Biochemical Genetics of Man S1 L2T4
Prerequisite: 41.101.

Inherited variation of blood group antigens, serum proteins and red-cell enzymes, their possible selective roles, and their application to the study of differences between and within populations. Application of statistical techniques to analyzing population data.

Faculty of Medicine

Undergraduate Study

80.014 Human Behaviour F L3
Prerequisites: No formal prerequisites. Students normally take the subject in Year 2 of Course 3820.

The research techniques, theoretical concepts and basic findings of the behavioural sciences, especially as these relate to medicine. Special emphasis is placed on the development of skills for the critical evaluation of scientific data concerning human behaviour and the oral and written expression of such evaluations. Topics include: scientific methods in behavioural sciences; the influence of heredity and environment on behaviour; human motivation and emotion; thinking and language; learning and memory; the psychology of stress; the psychophysiology of sleep; the psychology of aging; addictive behaviours; altered states of consciousness; gender differences; and the psychology of interpersonal behaviour. In addition to attending seminars, students carry out experimental practical work.
Financial Assistance to Students

The scholarships and prizes listed below are available to students whose courses are listed in this handbook. Each faculty handbook contains in its Financial Assistance to Students section the scholarships and prizes available within that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

As well as the assistance mentioned, there are a number of scholarships available to students. What follows is an outline only. Full information may be obtained from Room G20, located on the Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bursary Endowment Board*</td>
<td>$180 pa</td>
<td>Minimum period of approved degree/combined degree course</td>
<td>Merit in HSC and total family income not exceeding $6000</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa payable in fortnightly instalments</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need</td>
</tr>
<tr>
<td>Girls Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress and continued demonstration of need</td>
<td>Available only to female students under 35 years of age enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need</td>
</tr>
</tbody>
</table>

*Apply to The Secretary, Bursary Endowment Board, PO Box 460, North Sydney 2060, immediately after sitting for HSC.
Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universities Credit Union</td>
<td>$500 pa</td>
<td>1 year with the</td>
<td>Prior completion of at least 1 year of any undergraduate degree course. Eligibility limited to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>possibility of renewal</td>
<td>members of the Universities Credit Union Ltd or members of the family of such members.</td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Ragnar Anderson Memorial Bequest</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Permanent residence in Australia and eligibility for admission to the full-time degree course in Chemistry</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivetti Australia Pty Ltd</td>
<td>Up to $600 pa</td>
<td>2 years subject to satisfactory progress</td>
<td>Eligibility for admission to the third year of an honours program in the School of Mathematics in Pure/Applied Mathematics, Theoretical Mechanics or Statistics and leading to the award of the degree of Bachelor of Arts, Bachelor of Science, or Bachelor of Science Diploma in Education</td>
</tr>
<tr>
<td>George Szekeres Award</td>
<td>$200 pa</td>
<td>1 year</td>
<td>Open to students entering the final year of the honours degree course in Pure Mathematics</td>
</tr>
</tbody>
</table>

Graduate Scholarships

Application forms and further information are available from the Student Enquiry Counter, located on the Ground Floor of the Chancellery. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

The following publications may also be of assistance: **1. Awards for Postgraduate Study in Australia** and **Awards for Postgraduate Study Overseas**, published by the Graduate Careers Council of Australia, PO Box 28, Parkville, Victoria 3052; **2. Study Abroad**, published by UNESCO*; **3. Scholarships Guide for Commonwealth Postgraduate Students**, published by the Association of Commonwealth Universities*.

Where possible, the scholarships are listed in order of faculty.

*Available for reference in the University Library
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year(s) of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of New South Wales Postgraduate Scholarships</td>
<td>Living allowance of $5750 pa. Other allowances may also be paid</td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates (or equivalent). Applications to Dean of relevant Faculty.</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Research Awards</td>
<td>Living allowance of $6850 pa. Other allowances may also be paid.</td>
<td>1-2 years; minimum duration of course</td>
<td>Preference is given to applicants with employment experience. Applicants must be graduates or scholars who will graduate in current academic year, and who have not previously held a Commonwealth Postgraduate Award. Applications to Registrar by 30 September.</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Course Awards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian American Educational Foundation Travel Grant (Fulbright)*</td>
<td>Amount varies, depending on award</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td></td>
<td></td>
<td>Application forms are available from The Secretary, Department of Education, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.</td>
</tr>
<tr>
<td>The Caltex Woman Graduate of the Year</td>
<td>$16000 over 2 years for further studies in USA, UK, Northern Europe or in special cases Australia. There are no special allowances for travel or accommodation for married graduates.</td>
<td>2 years</td>
<td>Applicants must be female graduates who will have completed a University degree or diploma this year and who are Australian citizens or have resided in Australia for at least seven years. Selection is based on scholastic and literary achievements, demonstrable qualities of character and accomplishments in cultural and/or sporting/recreational activities. Applications close 30 September.</td>
</tr>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</td>
<td>Usually 2 years, sometimes 3</td>
<td>Applicants must be graduates who are Commonwealth citizens or British Protected Persons, and who are not older than 35 years of age. Applications close with Registrar by 15 September.</td>
</tr>
</tbody>
</table>

*Application forms are available from The Secretary, Department of Education, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year(s) of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa</td>
<td></td>
<td>See above under Undergraduate Scholarships, General</td>
</tr>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$5000</td>
<td></td>
<td>Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia.</td>
</tr>
<tr>
<td>Gowrie Scholarship Trust Fund</td>
<td>$3500 pa. Under special circumstances this may be increased.</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with Registrar by 15 November.</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York*</td>
<td>Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA</td>
<td>12 to 21 months</td>
<td>Candidates must be: 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close early August.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships at Harvard University</td>
<td>Stipend of $5600 pa plus tuition fees</td>
<td>1, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university</td>
</tr>
<tr>
<td>The Rhodes Scholarship**</td>
<td>Approximately £3000 stg pa</td>
<td>2 years, may be extended for a third year</td>
<td>Unmarried male and female Australian citizens aged between 19 and 25 who have been domiciled in Australia at least 5 years and have completed at least 2 years of an approved university course. Applications close in early September each year.</td>
</tr>
<tr>
<td>Rothmans Fellowships Award†</td>
<td>$16500 pa</td>
<td>1 year, renewable up to 3 years</td>
<td>The field of study is unrestricted. Applicants must have at least 3 years graduate experience in research. Applications close in July.</td>
</tr>
</tbody>
</table>

*Application forms must be obtained from the Australian representative of the Fund, Mr L. T. Hinde, Reserve Bank of Australia, GPO Box 3947, Sydney, NSW 2001. These must be submitted to the Registrar by early August.
**Applications to Mr H. McCredie, Secretary of the NSW Committee, University of Sydney, NSW 2006.
†Applications to the Secretary, Rothmans University Endowment Fund, University of Sydney, NSW 2006.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Clark Memorial Award in Psychology</td>
<td>$1000</td>
<td>1 year</td>
<td>Applicants must be enrolled in a graduate course in psychology undertaking research in an area concerned with the ongoing problems of the community, particularly the behaviour of the 'whole person' in a social milieu.</td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Lens Society of Australia</td>
<td>$2000 pa</td>
<td></td>
<td>To enable a graduate in optometry, medicine, or other appropriate discipline to undertake the degree of Master of Science or PhD in the School of Optometry. Enquiries to Dr B. Holden, School of Optometry.</td>
</tr>
<tr>
<td>The John Ragnar Anderson Memorial Scholarships in Chemistry</td>
<td>As determined by the Committee</td>
<td></td>
<td>To enable a graduate to undertake full-time study approved by the Head of School of Chemistry for the award of a higher degree. The scholarship may be held concurrently with another scholarship awarded for the same purpose. Applications to Registrar by 31 October.</td>
</tr>
<tr>
<td>The Rutherford Scholarship</td>
<td>Travel, fees, etc. A stipend which, if held in the UK, is worth £3610 stg pa.</td>
<td>3 years</td>
<td>To enable graduates under 26 years of age to undertake experimental research in a branch of natural science. It is tenable at a British Commonwealth University other than the country in which the applicant graduated. Applications close mid-February.</td>
</tr>
<tr>
<td>Science Research Scholarship of the Royal Commission for the Exhibition of 1851</td>
<td>£3560 stg pa</td>
<td>2 years. Renewal for further year possible</td>
<td>To enable graduates, usually not more than 26 years of age, to undertake research in some branch of pure or applied science at an overseas university. Applicants must be British Commonwealth citizens or citizens of the Republic of Ireland, Pakistan or South Africa, who have done at least 3 years of a university science course. Applications close mid-February.</td>
</tr>
<tr>
<td>Shell Scholarship in Science or Engineering</td>
<td>Approximately £4000 stg pa plus travelling expenses</td>
<td>2 years, sometimes 3</td>
<td>Applicants must be Australian citizens, under 25 years of age, with at least 5 years' domicile in Australia and who are completing the requirements for an honours degree in Science or Engineering. The successful candidate will undertake 2 years' graduate study towards the award of a higher degree at a British university.</td>
</tr>
</tbody>
</table>
Prizes

Undergraduate University Prizes

The following table summarizes the undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded. Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor of the Chancellery.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sydney Technical College Union Award</td>
<td>150.00 and medal</td>
<td>Leadership in the development of student affairs, and academic proficiency throughout the course</td>
</tr>
<tr>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit – students in their final or graduating year</td>
</tr>
<tr>
<td>School of Accountancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Society of Accountants</td>
<td>75.00</td>
<td>14.501 Accounting and Financial Management IA</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>50.00</td>
<td>14.703 Advanced Auditing</td>
</tr>
<tr>
<td>Coopers and Lybrand</td>
<td>200.00</td>
<td>14.542 Accounting and Financial Management IIB</td>
</tr>
<tr>
<td>Corporate Affairs Commission</td>
<td>100.00</td>
<td>14.803/14.903G Regulation of Accounting</td>
</tr>
<tr>
<td>Datec Pty Ltd</td>
<td>200.00</td>
<td>14.605 Information Systems IIIB</td>
</tr>
<tr>
<td>Greenwood, Challoner & Co</td>
<td>100.00</td>
<td>14.742 Business Law II</td>
</tr>
<tr>
<td>Hungerford, Hancock & Offner</td>
<td>100.00</td>
<td>14.511 Accounting and Financial Management IB</td>
</tr>
<tr>
<td>Law Book Co Ltd</td>
<td>50.00</td>
<td>14.805/14.905G EDP Auditing</td>
</tr>
<tr>
<td>Peat, Marwick, Mitchell and Company</td>
<td>200.00</td>
<td>14.583 Accounting and Financial Management IIIB</td>
</tr>
<tr>
<td>Planning Research Corporation (Aust) Pty Ltd</td>
<td>200.00</td>
<td>General Proficiency in Accounting and Financial Management subjects</td>
</tr>
<tr>
<td>Price Waterhouse</td>
<td>250.00</td>
<td>14.613 Business Finance II</td>
</tr>
<tr>
<td>Schroder Darling & Company Limited</td>
<td>200.00</td>
<td>14.794 Honours thesis on an accounting topic</td>
</tr>
<tr>
<td>Rod Sinden Memorial</td>
<td>250.00</td>
<td>14.783 Taxation Law</td>
</tr>
<tr>
<td>Taxation Institute of Australia</td>
<td>100.00</td>
<td>14.859/14.959G Advanced Studies in Taxation</td>
</tr>
<tr>
<td>John Menzies McKellar White Memorial</td>
<td>200.00</td>
<td>14.563 Accounting and Financial Management IIIA</td>
</tr>
<tr>
<td>E. S. Wolfenden Memorial</td>
<td>100.00</td>
<td>14.613 Business Finance II</td>
</tr>
<tr>
<td>Arthur Young & Co</td>
<td>60.00</td>
<td></td>
</tr>
</tbody>
</table>
School of Anatomy

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Prize in Practical Anatomy</td>
<td>100.00</td>
<td>Practical Anatomy (including Radiological Anatomy) – Year 2 of the medical course</td>
</tr>
<tr>
<td>The Gray's Point Prize in Anatomy</td>
<td>50.00</td>
<td>Highest aggregate mark in Year 1 of Anatomy</td>
</tr>
<tr>
<td>The Winifred Dickes Rost</td>
<td>50.00</td>
<td>Outstanding merit in Anatomy in final year of the Science and Mathematics Course</td>
</tr>
<tr>
<td>Jane Skillen</td>
<td>40.00</td>
<td>Outstanding merit in all branches of Anatomy</td>
</tr>
</tbody>
</table>

School of Biotechnology

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mauri Brothers & Thomson (Aust) Pty Ltd</td>
<td>175.00</td>
<td>Best result in the Level II Biotechnology subject</td>
</tr>
<tr>
<td></td>
<td>175.00</td>
<td>Best result in one of the Level III Biotechnology subjects</td>
</tr>
<tr>
<td></td>
<td>175.00</td>
<td>Best result in the Biotechnology honours program</td>
</tr>
</tbody>
</table>

School of Chemical Engineering and Industrial Chemistry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Laboratories Pty Ltd</td>
<td>100.00</td>
<td>Bachelor of Engineering degree course in Chemical Engineering – Year 4</td>
</tr>
<tr>
<td>The Australian Gas Light Company’s in Chemical Engineering</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Australian Paper Manufacturers Ltd</td>
<td>100.00</td>
<td>Best result in 48.163 Instrumentation and Process Control in Industrial Chemistry</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>48.163 Instrumentation and Process Control I – in Chemical Engineering</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Chemical Technology Society</td>
<td>25.00</td>
<td>Bachelor of Science in Industrial Chemistry</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>Bachelor of Science degree course in Industrial Chemistry, Years 1 and 2 or Stages 1 to 4</td>
</tr>
<tr>
<td>CSR Limited</td>
<td>50.00</td>
<td>Subject within the discipline of Industrial Chemistry, selected by Head of School</td>
</tr>
<tr>
<td>Esso Australia Ltd</td>
<td>200.00</td>
<td>Best performance in Year 2 Chemical Engineering</td>
</tr>
<tr>
<td>Institution of Chemical Engineers</td>
<td>100.00</td>
<td>Best result for the thesis in the final year, or equivalent part time stage, of the Bachelor of Engineering degree course</td>
</tr>
<tr>
<td>and medal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>100.00</td>
<td>General proficiency in the second year or its part-time equivalent in either the Chemical Engineering course or the Industrial Chemistry course</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simon-Carves Australia</td>
<td>21.00</td>
<td>Best performance in 48.135 Thermodynamics</td>
</tr>
<tr>
<td>Stauffer Australia Limited</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Western Mining Corporation Ltd</td>
<td>150.00</td>
<td>Best overall performance in 48.036 Chemical Engineering Laboratory I</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best overall performance in 48.044 Chemical Engineering Laboratory II</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACI Australia Limited</td>
<td>60.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>CSR Chemicals Ltd</td>
<td>200.00</td>
<td>Chemistry Honours</td>
</tr>
<tr>
<td>Inglis Hudson Bequest</td>
<td>15.00</td>
<td>2.002B Organic Chemistry I</td>
</tr>
<tr>
<td>Jeffery Bequest</td>
<td>100.00</td>
<td>2.043L Chemistry and Enzymology of Foods</td>
</tr>
<tr>
<td>Merck Sharp & Dohme (Aust) Pty Ltd</td>
<td>52.50</td>
<td>Chemistry – Level II subjects in the Science and Mathematics Course</td>
</tr>
<tr>
<td></td>
<td>52.50</td>
<td>Chemistry – Level III subjects in the Science and Mathematics Course</td>
</tr>
<tr>
<td>RACI Analytical Chemistry Group</td>
<td>150.00</td>
<td>2.013D Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>The Nestlé Co (Aust) Ltd</td>
<td>175.00</td>
<td></td>
</tr>
<tr>
<td>Tooth & Co Ltd</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>UNSW Chemical Society Parke-Pope</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>UNSW Chemical Society George Wright</td>
<td>50.00</td>
<td></td>
</tr>
</tbody>
</table>

School of Economics

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Finance Conference</td>
<td>75.00</td>
<td>15.083 Public Finance</td>
</tr>
<tr>
<td>Brinds Ltd</td>
<td>100.00</td>
<td>15.013 Macroeconomics III (Honours) and 15.153 Microeconomics III (Honours)</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Economics (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Society in Economics</td>
<td>100.00</td>
<td>Final year in Bachelor of Arts degree course with honours in Economics, Bachelor of Commerce degree course with honours in Economics or Bachelor of Commerce degree course with honours in Economics and Econometrics and three years' membership of the Economic Society</td>
</tr>
<tr>
<td>The Statistical Society of Australia (New South Wales Branch)</td>
<td>100.00</td>
<td>General proficiency throughout the Bachelor of Commerce degree course in Econometrics and one year's free membership of the Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Electrical Engineering and Computer Science</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Austral Crane</td>
<td>37.50</td>
<td>Bachelor of Engineering degree course in Electrical Engineering, Year 3</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>50.00</td>
<td>Power or Control elective</td>
</tr>
<tr>
<td>Electricity Supply Engineers Association of New South Wales</td>
<td>40.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>J. Douglas Maclurcan</td>
<td>40.00</td>
<td>Overall performance including proficiency in Electric Power Distribution in Year 3 full-time or equivalent part-time degree course</td>
</tr>
<tr>
<td>The Wilfred Holmes Memorial Award</td>
<td>120.00</td>
<td>Control Systems</td>
</tr>
</tbody>
</table>

School of Mathematics

Applied Mathematics	50.00	Excellence in Level III Applied Mathematics subjects
Head of School's	50.00	Excellence in 5 or more Level II Mathematics subjects (Arts: 20 credit points or more)
J. R. Holmes	50.00	Excellent performance in at least 4 pass-level (up to 1 pass-level unit may be replaced by a higher-level unit) Pure Mathematics Level III units taken over no more than two consecutive years
ICI Theory of Statistics IV	100.00	Theory of Statistics IV
Pure Mathematics	50.00	Excellence in Level III Pure Mathematics subjects
School of Mathematics	30.00	Excellence in 10.011 Higher Mathematics I
	30.00	Excellence in basic second year Higher Mathematics subjects (10.121A, 10.1213, 10.1214, 10.2211, 10.2212)
	30.00	Excellence in 5 or more Level II Mathematics subjects (Arts: 20 credit points or more)
School of Mathematics (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. P. Sharp Associates</td>
<td>75.00</td>
<td>Higher Theory of Statistics II</td>
</tr>
<tr>
<td>Statistical Society of Australia (New South Wales Branch)</td>
<td>50.00</td>
<td>General proficiency – Theory of Statistics subjects</td>
</tr>
<tr>
<td>Theoretical Mechanics</td>
<td>50.00</td>
<td>Excellence in Level III Theoretical Mechanics subjects</td>
</tr>
</tbody>
</table>

School of Metallurgy

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aican Australia Ltd</td>
<td>100.00</td>
<td>Best overall performance in Year 3 full-time (or its equivalent part-time)</td>
</tr>
<tr>
<td>Austral Crane</td>
<td>150.00</td>
<td>in Bachelor of Engineering (or Bachelor of Science (Technology)) degree course</td>
</tr>
<tr>
<td>Australian Institute of Metals</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Australian Institute of Metals and one year's membership of the Institute</td>
<td>30.00</td>
<td>Book order</td>
</tr>
<tr>
<td>Australian Welding Institute</td>
<td>50.00</td>
<td>Best overall performance in Year 4 full-time (or its equivalent part-time)</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>100.00</td>
<td>in the Bachelor of Engineering (or Bachelor of Science (Technology)) degree course</td>
</tr>
<tr>
<td>The Broken Hill Proprietary Co Ltd</td>
<td>40.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>The Electrolytic Refining and Smelting Co of Australia Ltd</td>
<td>150.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Western Mining Corporation Ltd</td>
<td>80.00</td>
<td>Subject selected by Head of School</td>
</tr>
</tbody>
</table>

School of Optometry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Optometrical Association</td>
<td>200.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Bausch & Lomb Soflens</td>
<td>31.841 Clinical Optometry</td>
<td></td>
</tr>
<tr>
<td>Contavue</td>
<td>31.811 Optometry I</td>
<td></td>
</tr>
<tr>
<td>Trial fitting set of contact lenses</td>
<td>30.00</td>
<td>Highest academic record in the Optometry degree course</td>
</tr>
<tr>
<td>L. G. Darcey Memorial</td>
<td>250.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Hoya Australia Pty Ltd</td>
<td>31.841 Clinical Optometry</td>
<td></td>
</tr>
<tr>
<td>Diagnostic set of contact lenses valued at 700.00</td>
<td>31.811 Optometry I</td>
<td></td>
</tr>
<tr>
<td>Trial fitting set of contact lenses</td>
<td>31.841 Clinical Optometry</td>
<td></td>
</tr>
<tr>
<td>Best essay or project on contact lenses</td>
<td>31.811 Optometry I</td>
<td></td>
</tr>
<tr>
<td>Highest academic record in the Optometry degree course</td>
<td>31.841 Clinical Optometry</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Optometry (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydron (Australia) Pty Ltd</td>
<td>75.00</td>
<td>31.813 Optometry III</td>
</tr>
<tr>
<td></td>
<td>75.00</td>
<td>Optometry Year 4</td>
</tr>
<tr>
<td>International Optics</td>
<td>30.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.841 Clinical Optometry</td>
</tr>
<tr>
<td>G. Nissel & Co Aust Pty Ltd</td>
<td></td>
<td>Trial fitting set of contact lenses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.813 Optometry III and 31.841 Clinical Optometry — Contact Lenses sections</td>
</tr>
<tr>
<td>Optical Products Pty Ltd</td>
<td>100.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Optometric Vision Research Foundation</td>
<td>100.00</td>
<td>Research project</td>
</tr>
<tr>
<td>Optometrists’ Association of NSW</td>
<td>50.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Optyl (Australia) Pty Ltd</td>
<td>100.00</td>
<td>31.812 Optometry II</td>
</tr>
<tr>
<td>Bryan Powell</td>
<td>100.00</td>
<td>Colour vision section of 31.841 Clinical Optometry</td>
</tr>
<tr>
<td>Filmer Sceats Memorial</td>
<td>30.00</td>
<td>31.812 Optometry II</td>
</tr>
<tr>
<td>Martin Wells Pty Ltd</td>
<td>200.00</td>
<td>31.821 Special Anatomy and Physiology</td>
</tr>
<tr>
<td></td>
<td>200.00</td>
<td>31.831 Diseases of the Eye</td>
</tr>
<tr>
<td></td>
<td>200.00</td>
<td>Final Year Essay</td>
</tr>
<tr>
<td>The Keith Woodland Memorial</td>
<td>75.00</td>
<td>Binocular vision component of 31.813 Optometry III and 31.841 Clinical Optometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETP-Oxford</td>
<td>200.00</td>
<td>Student(s) who prepare the most meritorious design study of an optical system in 1.713 Advanced Laser and Optical Applications</td>
</tr>
<tr>
<td>The Gordon and Mabel Godfrey</td>
<td>100.00</td>
<td>Excellence in at least three of the Year 3 Theoretical Physics subjects 1.5133, 1.5233, 1.5333, 1.5433 and 1.5533</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>Excellence in 1.504 (Year 4 of the honours degree course in Theoretical Physics)</td>
</tr>
<tr>
<td></td>
<td>300.00</td>
<td>Student who has completed Year 3 and is entering the final year of the Honours degree course in Theoretical Physics</td>
</tr>
<tr>
<td>Head of School's in Physics</td>
<td>30.00</td>
<td>Most creditable Year 4 honours thesis</td>
</tr>
<tr>
<td>Institute of Physics</td>
<td>50.00</td>
<td>Highest aggregate marks in three of the Units 1.0133, 1.0143, 1.023, 1.0333, 1.043 and 1.0343</td>
</tr>
<tr>
<td>Laser Electronics</td>
<td>200.00</td>
<td>Excellence in the laboratory work in 1.763 Laser and Optical Technology Laboratory I</td>
</tr>
<tr>
<td>Physics Staff for Applied Physics</td>
<td>30.00</td>
<td>Highest aggregate marks in three units of the following subjects: 1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, 1.713, 1.763, 1.0533 and 1.0543</td>
</tr>
<tr>
<td>Physics Staff for Physics I</td>
<td>50.00</td>
<td>Highest mark in 1.011</td>
</tr>
<tr>
<td>Physics Staff for Physics II</td>
<td>50.00</td>
<td>Highest aggregate mark in 1.002, 1.012, 1.022 and 1.032</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics Staff for Physics IV Honours</td>
<td>50.00</td>
<td>Highest mark in 1.104, 1.304 or 1.504</td>
</tr>
<tr>
<td>Physics Staff for Theoretical Physics</td>
<td>30.00</td>
<td>Highest aggregate marks in 1.1133, 1.5133, 1.5233, 1.5333, 1.5433 and 1.5533</td>
</tr>
<tr>
<td>Quentron Optics</td>
<td>200.00</td>
<td>Excellence in 1.713 Advanced Laser and Optical Applications</td>
</tr>
<tr>
<td>Radiation Research</td>
<td>200.00</td>
<td>Excellence in the laboratory work in 1.773 Laser and Optical Technology Laboratory II</td>
</tr>
<tr>
<td>School of Psychology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Psychological Society</td>
<td>100.00</td>
<td>A Year 4 Psychology subject selected by Head of School</td>
</tr>
<tr>
<td>Milon Buneta</td>
<td>50.00</td>
<td>Best Psychology Year 2 performance by a student in the Bachelor of Science degree course in Psychology</td>
</tr>
<tr>
<td>Psychology Staff</td>
<td>80.00</td>
<td>Best Psychology Year 2</td>
</tr>
</tbody>
</table>

Graduate University Prizes

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauri Brothers & Thomson (Aust) Pty Limited</td>
<td>175.00</td>
<td>Best overall performance in the Master of Science (Biotechnology) degree course</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith Kline and French</td>
<td>100.00</td>
<td>Best performance in the Graduate Diploma in Food and Drug Analysis course</td>
</tr>
<tr>
<td>School of Optometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydron Contact Lens</td>
<td>A trial fitting set of contact lens</td>
<td>31.705G Advanced Contact Lens Theory and Practice</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.701G Advanced Clinical Optometry</td>
</tr>
</tbody>
</table>
Faculty of Biological Sciences*

Staff

Comprises First Year Biology Teaching Unit, Schools of Biochemistry, Biotechnology, Botany, Microbiology, Psychology and Zoology.

Dean
Professor E. O. P. Thompson

Chairman
Professor T. J. Dawson

Administrative Officer
Robert Anthony Höhnen, BA Canberra C.A.E.

Professional Officers
Rose Ann Varga, BSc N.S.W.
John Campbell Woodard, BE MSc N.S.W.

First Year Biology Teaching Unit

Director
Dr M. L. Augee

Professional Officer
Anthony Ross Smith-White, BSc Syd., MSc N.S.W.

School of Biochemistry

Professor of Medical Biochemistry and Head of School
William James O'Sullivan, BSc W.Aust., PhD A.N.U.

Professor of Biochemistry
Barry Vaughan Milborrow, BSc PhD DSc Lond., FLS, FIBiol

Professor of Biochemistry
Edward Owen Paul Thompson, MSc DipEd Syd., PhD ScD Camb., FRACI

Associate Professors
John Bruce Adams, MSc Syd., PhD DSc N.S.W., ARACI
Keith Guenther Rienits, MSc Syd., PhD Birm.
Philip John Schofield, BSc PhD N.S.W.

Senior Lecturers
Aldo Sebastian Bagnara, BSc PhD Melb.
Kevin David Barrow, MSc PhD Adel.
Antony George Mackinlay, MSc PhD Syd.
Thomas Stanley Stewart, BSc Syd., PhD N.S.W.
George Zalitis, BSc PhD W.Aust.

Lecturers
Michael Richard Edwards, MA PhD Camb.
Ian James McFarlane, BSc PhD Syd.
Kenneth Edward Moon, BSc PhD N.S.W.
Raymond Stanley Norton, BSc Melb., PhD A.N.U.

Senior Tutor
Jill Lorraine Gibbons, BSc Syd.

*For Board of Studies in Science and Mathematics see later in this section.
Tutors
Joan Loke, MSc Syd., DipEd Kuring-gai C.A.E.
Heather Mary Weir, BSc Rhodes, MSc N.S.W.

Professional Officers
Antonio Luiz d'Assumpcao, BSc Syd.
Wendy Glenn, MSc N.S.W.
Walter Samuel Golder, BPharm MSc PhD DipMedTech Syd., ASTC, MPS
George Grossman, BSc N.S.W.
Choy Soong Daniel Lee, MSc N.S.W.
Andrew George Netting, BSc PhD N.S.W.
Adrian Willebrand Rys, BSc N.S.W.I.T.

School of Biotechnology

Professor of Biotechnology
Pamela Athalie Deidre Rickard, BSc Syd., MSc N.S.W., PhD Lond.

Associate Professor
Peter Lindsay Rogers, BE Adel., DPhil Oxf.

Senior Lecturers
Noel William Dunn, MSc Melb., PhD Monash
Peter Philip Gray, BSc Syd., PhD N.S.W., MIEAust

Lecturer
John Colin Madgwick, MSc PhD N.S.W.

Senior Tutor
Helen Patricia Ramsay, MSc PhD Syd.

School of Microbiology

Professor of Microbiology and Head of School
Kevin Charles Marshall, BScAgr Syd., MS PhD C'nell., MASM

School of Botany

Professor of Botany and Head of School
Derek John Anderson, BSc Nott., PhD Wales, FLS

Associate Professors
John Henry Palmer, BSc PhD Sheff., FIBiol
Haydn John Willetts, MSc Brist., PhD N.S.W.
Senior Tutor
Barbara Lillian Blalney, BSc Melb., MSc Syd.
Nerissa Glenda Hartwig, BSc Adel.
Basil Partick McBrien, MSc N.S.W., ASTC

Professional Officers
Beverley Humphrey, BSc Melb.
Mary Essie Johnsen, BSc Qld.
Christine Elizabeth McNab, BScAgr Syd. MApSc N.S.W.
Marshall Henry Maxwell Wilson, MSc N.S.W.

Medical Microbiology

Associate Professors
Royle Anthony Hawkes, BScAgr Syd., PhD A.N.U., MASM
Graham Douglas Fischer Jackson, BSc PhD Adel.
Adrian Lee, BSc PhD Melb., MASM

Lecturer
Elizabeth Hazel Hegarty, MSc Qld., PhD N.S.W

Honorary Associate (School)
Phyllis Margaret Rountree, DSc Melb., DipBact Lond.

School of Psychology

Professor of Psychology and Head of School
Vacant

Professor of Psychology
Laurence Binet Brown, MA DipEd N.Z., PhD Lond.

Professor of Psychology
Vacant

Administrative Officer
Trevor John Clulow, BA N.S.W., MA Syd.

Senior Lecturers
Kevin Douglas Bird, BSc PhD N.S.W.
Peter Charles Birrell, BA Syd., PhD N.S.W.
Stephen Bochner, BA Syd., MA Hawaii, PhD N.S.W.
Alexander Edward Carey, BSc Lond.
James Christopher Clarke, MA N.Z., PhD N.Y. State
Joseph Paul Forgas, BA Macq., DPhil Oxf.
Edward James Kehoe, BA Lawrence, MA PhD Iowa

Keith Raymond Llewellyn, BA PhD Syd.
George Paxinos, BA Calif., MA PhD McG.
John Eaton Taplin, BSc PhD Adel.
Reginald Frederick Westbrook, MA Glas., DPhil Sus.

Lecturers
Austin Sorby Adams, BA Adel., MA PhD Mich.
Denis Kingsley Burnham, BA N.E., PhD Monash.
Sydney Engleberg, BA Rand., MS Hebrew Univ of Jerusalem,
MA PhD N.Y. State
William Taylor Hardy, BA Claremont, MA PhD Calif.
William Hopes, BA Syd.
Marcus Taft, BSc PhD Monash

Tutors
Eugene Stephan Chekaluk, BA N.S.W.
John Crawford, MSc Syd.
Wendy Ann Howard, BA DipPsychol Syd., MSc N.S.W.
Gail Florence Huon, BSc, N.S.W.

Professional Officers
Carl Frederick Bonkowsky, BE N.S.W., MIEEE
Angus John Fowler, BSc N.S.W.

Honorary Associate
Thomas Angus McKinnon, MA PhD Syd.

School of Zoology

Professor of Zoology and Head of School
David Cartner Sandeman, MSc Natal, PhD St.And.

Professor of Zoology
Terence John Dawson, BRurSc PhD N.E.

Associate Professors
Rossiter Henry Crozier, MSc Melb., PhD C'nell.
Erik Shipp, BSc Syd., PhD N.S.W.

Senior Lecturers
Michael Archer, BA Prin., PhD W.Aust.
Michael Land Augea, BSc Williamette, PhD Monash
Alan Michel Beal, DipAH Qld AgrCol., BSc PhD Qld.
Peter Greenaway, BSc PhD N'cle (U.K.)
Robert John MacIntyre, MSc Cant., PhD McG.
Aola Mary Richards, MSc PhD N.Z., FRES
Arthur Woods, MA Oxf, FRES, MiBiol
Lecturers
David Benjamin Croft, BSc Flin., PhD Camb.
Barry James Fox, BSc N.S.W., DipEd N‘cle.(N.S.W.),
MSc Windsor, PhD Macq.
Alexander Mazanov, BSc A.N.U., PhD N.E.

Senior Tutor
Patricia Irene Dixon, BSc PhD N.S.W., DipEd Syd.

Tutors
Jennifer Merciana Anderson, MScAgr Syd., PhD N.S.W.
Anthony Gerald Miskiewicz, BSc James Cook
Bryson Smith, BSc N.S.W.
Peter Wilson, BSc N.S.W.

Professional Officers
Francis Dominic Fanning, BSc N.S.W.
Lionel Winston Filewood, BSc Syd.
Renate Sandeman

Administrative Assistant
Louise Ann Mazzaroli, BA PhD N.S.W.

Honorary Associates
Ronald Strahan, MSc W.Aust., FSIH
Kenneth Radway Allen, MA ScD Camb.

Honorary Visiting Fellows
Thomas Ritchie Grant, BSc Cant., PhD N.S.W.
Robert Maxwell Herd, MSc N.S.W., PhD Car.
Bruce Roderick Hodgson, BSc PhD N.S.W.
Judith Everleigh Marlow, BSc Lond.
Charles Pregenzer, BS N.Y. State, MA Hofstra, PhD N.S.W.
Grahame John Wardon Webb, BSc PhD N.E.
Dedee Daryl Patrice Woodside, BSc Car., PhD A.N.U.
Faculty of Science*

Staff

Comprises Schools of Chemistry, Mathematics, Optometry and Physics.

Dean
Professor V. T. Buchwald

Chairman
Professor S. E. Livingstone

Lecturer
Jason Harry Falla Middleton, BSc PhD Monash

Professor of Physical Chemistry and Head of Department of Physical Chemistry
Peter John Derrick, BSc PhD Lond., ARACI

Professor of Theoretical and Physical Chemistry
Raymund Marshall Golding, MSc Auck., PhD Camb., FNZIC, FinstP, FRACI

Professor of Inorganic Chemistry and Head of Department of Inorganic and Nuclear Chemistry
Stanley Edward Livingstone, PhD DSc N.S.W, FSTC, FRACI, FRSC, CCChem

Professor of Analytical Chemistry and Head of Department of Analytical Chemistry
Vacant

Executive Assistant to Head of School
W. J. Dunstan

Administrative Officer
Frederick Ferris Lewis, CEng, MIREE

Administrative Assistant
Dominic Vincent Portelli, BA N.S.W.

Honorary Associates
Edward Ritchie Cole, MSc Syd., PhD N.S.W, FRACI
Lister Waverley Ormsby Martin, BSc Syd., ARACI
Neville Charles Stephenson, MSc Syd., PhD DSc N.S.W, FRACI

Honorary Visiting Fellow
Phyllis Lorraine Robertson, MSc N.Z., PhD Cant.

School of Chemistry

Professor of Chemistry and Head of School
James Stanley Shannon, DIC PhD Lond., DSc Adel., FRACI

Professor of Organic Chemistry and Head of Department of Organic Chemistry
David St Clair Black, MSc Syd., PhD Camb., AMusA, FRACI

*For Board of Studies in Science and Mathematics, see later in this section.
Professional Officers
Joseph John Brophy, BSc PhD N.S.W., DipEd Monash, ARACI
Leonard Alexander Cherkson, BE PhD Kiev, MIEAust
Donald Chadwick Craig, BSc Syd., MSc N.S.W.
Vladimir Djohadze, BSc N.S.W.
Richard James Finlayson, BSc N.S.W., ARACI
Anthony James S. Syd., BSc N.S.W., ASTC, ARACI
Derek Nelson, BSc DipEd Bell.
Huu-Phung Pham, BSc Saigon, PhD N.S.W.

Department of Analytical Chemistry

Associate Professors
Douglas Peter Graddon, MSc PhD Manc., DSc N.S.W., FRSC, CChem, ARACI
Ian Kelvin Gregor, BSc N.E., MSc PhD N.S.W.

Senior Lecturers
Peter William Alexander, MSc PhD Syd., ARACI
Sergio Dilli, BSc PhD N.S.W., ASTC, ARACI
Jaroslav Petr Matousek, IngChem T.U.Prague, PhD N.S.W., FRACI

Lecturer
Paul Raymond Haddad, BSc PhD N.S.W., DipMilStud, ARACI

Department of Inorganic and Nuclear Chemistry

Associate Professors
Douglas John Carswell, MSc PhD DipEd Syd., CChem, FRACI, FRSC
Ian Gordon Dance, MSc Syd., PhD Manc., ARACI
Harold Andrew Goodwin, BSc PhD Syd., ARACI

Senior Lecturers
James Roy Backhouse, MSc Syd., PhD N.S.W
Mervyn Allan Long, MSc PhD, Auck., ANZIC
David John Phillips, BSc PhD Lond., ARACI

Department of Organic Chemistry

Associate Professor
Michael John Gallagher, MSc Qld., PhD Camb., FRACI

Associate Professors
Peter Steele Clezy, BSc PhD Tas., DSc N.S.W., ARACI
George Crank, MSc Qu., PhD Monash, CChem, MRSC
John Johnson Henry Simes, MSc DipEd Syd., PhD Liv., FRACI

Senior Lecturers
Roger Bishop, BSc St.And., PhD Camb., ARACI
Norman William Herbert Cheetham, BSc PhD Qld.
John Lawrence Courtney, BSc PhD N.S.W., ASTC, ARACI
William John Dunstan, MSc Syd., ARACI
Peter Thomas Southwell-Keely, BSc Syd., PhD N.S.W.
John David Stevens, BSc Tas., PhD N.E., ARACI

Lecturers
George Vernon Baddeley, BSc Manc., DPhil Oxf.
Robert Francis Toia, BSc PhD W.Aust., ARACI

Senior Tutors
Satya Narayana Murthy Durvasula, MSc And., PhD Syd., CChem, MRSC
Inno Salasoo, BSc PhD N.S.W., ASTC, ARACI

Department of Physical Chemistry

Associate Professors
John Lyndon Garnett, MSc N.S.W., PhD Chic., ASTC, FRACI
Brian John Orr, MSc Syd., PhD Brist., FRACI

Senior Lecturers
David Scott Alderdice, MSc Syd., PhD Lond.
Brian Raymond Craven, MSc PhD N.S.W., ASTC
William David Johnson, BSc Syd., MSc N.E., PhD N.S.W.
Alan David Rae, MSc PhD Auck., ANZIC

Lecturers
Martin Peter Bogaard, BSc PhD Syd.
Ruby Foon, MSc PhD Melb.
Derek Richard Smith, BSc PhD Wales
Gary David Willett, BSc PhD Lat., ARACI
First Year Chemistry

Director of First Year Classes in Chemistry
Tristan John Victor Findlay, BSc PhD St And., FRACI, FRSC, CChem

Senior Lecturer
Norman Thomas Barker, MSc PhD N.S.W.

Lecturers
Helen Jane Dyson, BSc PhD Syd., ARACI
Clive Reginald Taylor, BSc Syd.

Senior Tutors
Peter See Kien Chia, MSc PhD N.S.W.
Naseem Hasan Peerzada, MSc Punjab, PhD LaT.
Joan Pauline Ross, BSc Syd.

Tutors
Jeffrey John Gibson, MSc Syd.
Derek Alan Harris, BSc Macq.

School of Mathematics

Professor of Pure Mathematics and Head of School
Gavin Brown, MA St.And., PhD N’cle.(U.K.), FAA

Professor of Applied Mathematics
Wiliam Teodor Buchwald, BSc Manc., MSc PhD Lond., FIMA

Professor of Applied Mathematics
John Markus Blatt, BA Cinc., PhD C’nell. and Prin., FACS

Professor of Pure Mathematics
Michael George Cowling, BSc A.N.U., PhD Flin.

Professor of Statistics
Abraham Michael Hasofer, BEE Faruk, BSc PhD Tas., MIEAust

Associate Professor and Director of First Year Studies
Angus Henry Low, MSc DipEd Syd., PhD N.S.W.

Senior Tutors
Donald Sidney Craig, BSc Qld.
William Thomas Perrins, MA Camb., DipEd Mitchell C.A.E.

Department of Pure Mathematics

Associate Professor
John Harold Loxton, MSc Melb., PhD Camb.

Senior Lecturers
Peter Windeyer Donovan, BA Syd., DPhil Oxf.
Mary Ruth Freistlich, BA Witw., MA N.S.W.
Jack David Gray, BA Syd., PhD N-SW.
David Christopher Hunt, BSc Syd., MSc PhD Warw.
Ezzat Sami Noussair, BA BSc Cairo, PhD Br.Col.
John Frederick Price, MSc Melb., PhD A.N.U.
Iain Raeburn, BSc Edin., PhD Utah
John St Alban Sandiford, MSc Syd.
Dennis William Trenerry, BSc PhD Adel.

Lecturers
Charles Dixon Cox, BSc DipEd Qld.
Shaun Anthony Requa Disney, BA BSc Adel., DPhil Oxf.
Rodney Kelvin James, BSc PhD Syd.
Colin Eric Sutherland, BSc Cant., PhD Calif.
David Graham Tacon, BSc N’cle.(N.S.W.), PhD A.N.U.

Senior Tutor
Michael David Hirschhorn, BSc Syd., MSc Edin., PhD N.S.W.

Emeritus Professor
George Szekeres, DiplChemEng Bud., Hon.DSc N.S.W., FAA

Honorary Associates
Gregory Maxwell Kelly, BSc Syd., BA PhD Camb., FAA
Alfred Jacobus van der Poorten, BSc PhD N.S.W.

Department of Applied Mathematics

Associate Professors
Michael Newton Barber, BSc N.S.W., PhD C’nell.
Ian Hugh Sloan, BA BSc Melb., MSc Adel., PhD Lond.
William Eric Smith, MSc Syd., and Oxf., PhD N.S.W., MInstP, MAIP
Senior Lecturers
Brian Jannes Burn, MSc Otago, PhD Camb.
Elvin James Moore, MSc W.Aust., PhD Harv.
Alexander Hugh Opie, BSc DipEd Melb., PhD Monash, FAIP
Kok-Lay Teo, BSc Sing., MASc PhD Ott., MIEEE, AMIEE

Department of Optometry

Professor of Optometry and Head of School
Hermann Barry Collin, BSc MAppSc PhD Melb., LOSc V.C.O., FAAO

Associate Professor
Brian Anthony Holden, BAppSc Melb., PhD City, LOSc V.C.O., FAAO

Senior Lecturers
John Andrew Alexander, MSc PhD N.S.W., ASTC, FIO, FAAO
Stephen John Dain, BSc PhD City, FBCO, MIESAust

Lecturers
Philip James Anderton, BOptom BSc N.S.W., MScOptom Melb.
David Philip Crewther, MSc Melb., PhD Caltech.
Graham Leslie Dick, MSc N.S.W., ASTC, FIO
Daniel James O'Leary, MSc PhD Wales, FBOA, FSMC
David Cecil Pye, MOptom N.S.W.

Professional Officer
Angela Kathleen McCarthy, MSc N.S.W., ASTC, FIO

Tutors
Shoba Ayyar, BOptom N.S.W.
Robin Esther Lee, BOptom N.S.W.

Instructor
Ian William Robinson

School of Physics

Professor of Experimental Physics and Head of School
Hiroshi Julian Goldsmid, BSc PhD DSc Lond., FAIP

Professor of Experimental Physics
Kenneth Norman Robert Taylor, BSc PhD Birm.

Professor of Physics
Vacant

Professor of Theoretical Physics and Head of Department of Theoretical Physics
Heinrich Hora, DiplPhys Halle, DrRerNat Jena, DSc N.S.W., FInstP, FAIP

School of Optometry

Professor of Optometry and Head of School
Hermann Barry Collin, BSc MAppSc PhD Melb., LOSc V.C.O., FAAO

Associate Professor
Brian Anthony Holden, BAppSc Melb., PhD City, LOSc V.C.O., FAAO

Senior Lecturers
John Andrew Alexander, MSc PhD N.S.W., ASTC, FIO, FAAO
Stephen John Dain, BSc PhD City, FBCO, MIESAust
Professor of Applied Physics
Vacant

Associate Professors
Graham James Bowden, BSc DipAdvStudSc PhD Manc.
Hans Gerard Leonard Coster, MSc PhD Syd., MInstP, MAIP
Dan Haneman, DSc Syd., PhD R'dg., FAIP
John Charles Kelly, BSc Syd., PhD R'dg., DSc N.S.W., FinstP, MAIP, MAmPS

Executive Assistant to Head of School
Dr J. R. Hanscomb

Director of First Year Studies
Dr G. J. Russell

Administrative Officer
Patricia Shaw, BCom N.S.W.

Senior Lecturers
Peter Russell Elliston, BSc Melb., PhD Monash
Colin Trevor Grainger, BSc DipEd Syd., MSc N.E., PhD N.S.W., MInstP, MAIP
John Robert Hanscomb, BSc Qld. MSc PhD N.S.W., MAIP, GrandinstP
Erik Harting, BSc PhD N.S.W., ASTC, MAIP
Veronica Jean James, BA BSc Qld., PhD N.S.W., MAIP
Zdenek Kviz, DipPhys Brno, CSCrerNatDr Charles, PhD Prague
Peter Mitchell, BSc PhD Adel., MAIP
George Lange Paul, MSc Syd., PhD Edin.
James Martin Pope, MSc Brist., DPhil Sus., AlinstP
Graeme John Russell, BSc PhD N.S.W., MIP, MAIP
Raymond Gary Simons, BSc Syd., MSc Tel Aviv, PhD N.S.W.
Kenneth Reid Vost, BSc Glas., MSc PhD N.S.W., AMAusIMM

Lecturers
Kenneth Hulme Marsden, BSc Lond., MSc N.S.W., MAIP, ARCS
David John Miller, BSc PhD N.S.W., DipEd Syd., MAIP, MAmPS, MAAPT
John William Vanstan Storey, BSc LaT., PhD Monash
Betty Louise Turtle, BSc Adel., PhD A.N.U.
Joseph Albert Wolfe, BSc Qld., PRD A.N.U.

Senior Tutors
Lance Breger, BA Lake Forest Coll., MSc Northwestern, PhD III., DipEd W.Aust.
Ian Richard Dunn, BSc BA Melb., MIIEEE
Edward Peter Eyland, BSc MPhysics N.S.W., BD Lond.
Martin Desmond Knight, BSc N.S.W.
Paul Michael O'Halloran, BA Macq., MEd N.S.W.

Tutors
Terence Patrick Beven, BSc PhD Tas., MAIP
Paul McNamara, BSc N.S.W.
Michael Ramsey, BSc N'cle (N.S.W.)
Sophia Sakellis, DipPhysics Patras, MSc N.S.W.
Lynette Heather Taaffe, BSc Syd.
Andrew Venning, BSc Griff.

Professional Officers
Peter Robert Barker, BSc PhD Monash
Robert Louis Daiglish, BSc PhD N.S.W.
Jerzy Kurianski
Barry Perczuk, BSc PhD Monash
Jeremy Karl Walter, BSc Lond.

Honorary Associates
John Stuart Dryden, MSc Melb., DIC PhD Lond., FAIP
John Eric Gludronich, BSc Syd., PhD N.S.W., MAIP

Administrative Officer
Patricia Shaw, BCom N.S.W.

Honorary Visiting Fellows
Victor Kastalsky, BSc PhD N.S.W., ASTC, MInstP, MAIP
Stephen George Szirmai, BSc PhD N.S.W.

Department of Applied Physics

Associate Professor
David Henry Morton, MA Oxf., FInstP, FAIP

Senior Lecturers
John Ian Dunlop, BSc PhD N.S.W., MAIP, MAASATI
Leslie Beven Harris, BSc Lond., BA DipEd Durh., PhD N.S.W., CEng, FIM, FinstP
Victor Raymond Howes, BSc PhD Lond.

Department of Theoretical Physics

Associate Professor
Jaan Oitmaa, BSc PhD N.S.W., FAIP

Senior Lecturers
David Neilson, BSc Melb., MS PhD N.Y. State
Robert John Stening, MSc Syd., PhD Qld., DipTertEd N.E., FRMetS

Lecturers
Michael Allister Box, BSc Monash, PhD Syd., GradAlnstP
John Richard Shepanski, MSc Syd., MAIP

Tutors
Roderick Ian Sutherland, BSc LaT., MSc PhD N.S.W.
Gabriel Viera, BSc N.S.W.
The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences and the Faculty of Science, and some members of specific schools in other faculties contributing to the Science and Mathematics Course: Applied Geology; Chemical Engineering and Industrial Chemistry; Geography, Metallurgy (Applied Science); History and Philosophy of Science, Philosophy (Arts); Accountancy, Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Surveying (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

Dean
Professor V. T. Buchwald

Chairman
Professor A. J. Wicken

Co-ordinator of Studies in Science and Mathematics
Dr B. J. Burn

Administrative Assistant
Robyn Kay Mulholland, BA DipEd N.S.W., MA Syd.
Student's Timetable

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This Handbook has been specially designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University — its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce, Engineering, Law, Medicine, Professional Studies, Science (including Biological Sciences and the Board of Studies in Science and Mathematics), the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education.

The Calendar and Handbooks are available from the Cashier's Office.

The Calendar costs $5.00 (plus postage $1.00, interstate $1.20).

The Handbooks vary in cost: Applied Science, Architecture, Arts, Commerce, Engineering, Professional Studies, and Sciences are $3.00. Postage is $1.00 in each case ($1.20 interstate). Law, Medicine and AGSM are $2.00. Postage is 60 cents in each case (70 cents interstate).

A set of books is $32.00. Postage is $2.00 ($4.50 interstate).

The General Studies Handbook is free. Postage is 60 cents (70 cents interstate).