How to use this Handbook

The information in this book has been divided into nine parts.

General Information (pages 1-24) lists what you need to know about the University as a whole, introduces some of the services available and notes the most important rules and procedures. You should read this part in its entirety.

For further information about the University and its activities, see the University Calendar.

Faculty Information.

Undergraduate Study outlines the courses available in each school in the faculty.

Undergraduate Study: Subject Descriptions lists each subject offered by the schools in the faculty. The schools are listed numerically.

Information includes:
- Subject number, title and description
- Prerequisite, co-requisite and excluded subjects, where applicable
- Additional information about the subject such as credit value, class contact or teaching hours per week, sessions when taught

Graduate Study is about higher degrees.

Graduate Study: Subject Descriptions lists each subject offered by the schools in the faculty. The schools are listed numerically.

Information included is as for Undergraduate Study: Subject Descriptions, above.

Conditions for the Award of Higher Degrees.

Scholarships and Prizes available at undergraduate and graduate level in the faculty.

Staff list.

For detailed reference, see the list of Contents.
The University of New South Wales
PO Box 1 Kensington NSW Australia 2033 Phone 697 2222

Sciences
Board of Studies in Science and Mathematics
Faculty of Biological Sciences
Faculty of Science

1986 Faculty Handbook
The address of the University of New South Wales is:

PO Box 1, Kensington
New South Wales, Australia 2033

Telephone: (02) 6972222

Telegraph: UNITECH, SYDNEY

Telex AA26054
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 8 July 1986, but may be amended without notice by the University Council.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>1</td>
</tr>
<tr>
<td>Some People Who Can Help You</td>
<td>1</td>
</tr>
<tr>
<td>Calendar of Dates</td>
<td>2</td>
</tr>
<tr>
<td>The Academic Year</td>
<td>2</td>
</tr>
<tr>
<td>1986</td>
<td>2</td>
</tr>
<tr>
<td>1987</td>
<td>5</td>
</tr>
<tr>
<td>Organization of the University</td>
<td>6</td>
</tr>
<tr>
<td>Arms of the University/University Colours/Council/Professorial Board/Faculties/Boards of Study/Schools/Executive Officers/General Administration/Student Representation/Award of the University Medal/Subject Numbers/Textbook Lists/Textbook Costs etc/Co-operative Bookshop/General Studies</td>
<td></td>
</tr>
<tr>
<td>Student Services and Activities</td>
<td>7</td>
</tr>
<tr>
<td>Accommodation</td>
<td>7</td>
</tr>
<tr>
<td>Residential Colleges</td>
<td>8</td>
</tr>
<tr>
<td>Other Accommodation</td>
<td>8</td>
</tr>
<tr>
<td>Associations, Clubs and Societies</td>
<td>8</td>
</tr>
<tr>
<td>The Sports Association</td>
<td>8</td>
</tr>
<tr>
<td>School and Faculty Associations</td>
<td>8</td>
</tr>
<tr>
<td>Australian Armed Services</td>
<td>8</td>
</tr>
<tr>
<td>Chaplaincy Centre</td>
<td>8</td>
</tr>
<tr>
<td>Student Services</td>
<td>9</td>
</tr>
<tr>
<td>Sport and Recreation Section</td>
<td>9</td>
</tr>
<tr>
<td>Physical Education and Recreation Centre</td>
<td>9</td>
</tr>
<tr>
<td>Student Counselling and Research Unit</td>
<td>9</td>
</tr>
<tr>
<td>Careers and Employment Section</td>
<td>9</td>
</tr>
<tr>
<td>Student Health Unit</td>
<td>9</td>
</tr>
<tr>
<td>The Students' Union</td>
<td>10</td>
</tr>
<tr>
<td>The University Library</td>
<td>10</td>
</tr>
<tr>
<td>The University Union</td>
<td>11</td>
</tr>
<tr>
<td>Financial Assistance to Students</td>
<td>11</td>
</tr>
<tr>
<td>Tertiary Education Assistance Scheme/Other Financial Assistance/Financial Assistance to Aboriginal Students</td>
<td></td>
</tr>
</tbody>
</table>
Introduction to the Sciences Handbook
Faculty Information
Some People Who Can Help You
Enrolment Procedures
Faculty of Biological Sciences
Faculty of Science
Board of Studies in Science and Mathematics
Sciences Library Facilities
Student Clubs and Societies
Statistical Society of Australia; New South Wales Branch

Undergraduate Study: Board of Studies in Science and Mathematics

Introduction

3970 Science and Mathematics Course
Aims
Objectives
The Structure
The three year program
The four year program
Workload
Rules governing admission to the course with advanced standing
Programs
Physics
Chemistry
Metallurgy and Materials Science
Table 2: Course 3970 — Units available in specific programs

Table 3: Level IV units offered by the Board of Studies in Science and Mathematics

Undergraduate Study: Faculty of Biological Sciences

Introduction

Course Outline 3430
3430 Psychology Degree Course (BSc(Psychol)) Full-time
Rules governing the Psychology Course
Rules governing admission to the Psychology Course with advanced standing
Recommended Psychology Course patterns
Compulsory Psychology Subjects

Undergraduate Study: Faculty of Science

Introduction

Course Outlines
3910 Pure and Applied Chemistry Course
Electives offered by the School of Chemistry
3910 Pure and Applied Chemistry (BSc)
Full-time 118
Extended Time Program 118
3950 Optometry Course (BOptom) Full-time
Conditions for the Award of the double degree of BSc BOptom in the Faculty of Science

Undergraduate Study: Subject Descriptions

Identification of Subjects by Number
Physics
Chemistry
Metallurgy
Mechanical and Industrial Engineering
Electrical Engineering and Computer Science
Mathematics
Pure Mathematics 138, Applied Mathematics 140, Statistics 142, Theoretical and Applied Mechanics 144
Psychology
Accountancy
Economics
Biological Sciences
Applied Geology
Geography
Surveying
Optometry
Biochemistry
Biotechnology
Botany
Microbiology
Zoology
Chemical Engineering and Industrial Chemistry
Philosophy .. 166
Sociology ... 169
Education ... 169
History and Philosophy of Science .. 171
Board of Studies in Science and Mathematics ... 175
Anatomy .. 175
Pathology .. 176
Physiology and Pharmacology .. 177
Community Medicine ... 178
Faculty of Medicine .. 178

Graduate Study: Faculty of Biological Sciences/Faculty of Science

Faculty of Biological Sciences and Faculty of Science Enrolment Procedures ... 179
Faculty of Biological Sciences ... 179

Biotechnology
5320 Biochemical Engineering Graduate Diploma Course (GradDip) 180
5340 Biotechnology Graduate Diploma Course (GradDip) 180
8260 Master of Science (Biotechnology) (MSc(Biotech)) 180

Psychology
8250 Master of Psychology (MPsychol) Full-time 181
8255 Master of Science (Psychology) (MSc(Psychol)) Full-time 182

Faculty of Science
5530 Physical Oceanography Graduate Diploma Course (GradDip) 183

Chemistry
8770 Master of Chemistry (MChem) 183
5510 Food and Drug Analysis Graduate Diploma Course (DipFDA) 184

History and Philosophy of Science
8780 Master of Science and Society (MScSoc) 184

Mathematics
8740 Master of Mathematics (MMath) 185
8750 Master of Statistics (MStats) 185

Optometry
8760 Master of Optometry (MOptom) 186

Physics
8730 Master of Physics (MPhysics) 186

Graduate Study: Subject Descriptions
Identification of Subjects by Number ... 187
Physics ... 187
Chemistry ... 189
Mathematics ... 189
Psychology ... 190
Economics .. 192
Organizational Behaviour .. 193
Optometry ... 193
Biotechnology ... 194
Microbiology .. 194
Zoology .. 195
Chemical Engineering and Industrial Chemistry ... 195
Sociology ... 196
History and Philosophy of Science ... 196
Faculty of Science ... 196
Pathology ... 197

Graduate Study: Conditions for the Award of Higher Degrees 199
Doctor of Philosophy ... 201
Master of Chemistry ... 203
Master of Mathematics ... 203
Master of Optometry ... 203
<table>
<thead>
<tr>
<th>Scholarship/Prize</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Physics</td>
<td>203</td>
</tr>
<tr>
<td>Master of Psychology</td>
<td>207</td>
</tr>
<tr>
<td>Master of Science</td>
<td>204</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>206</td>
</tr>
<tr>
<td>Master of Science (Biotechnology)</td>
<td>208</td>
</tr>
<tr>
<td>Master of Science (Psychology)</td>
<td>208</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>209</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>211</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>212</td>
</tr>
<tr>
<td>Scholarships and Prizes</td>
<td></td>
</tr>
<tr>
<td>Scholarships</td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>213</td>
</tr>
<tr>
<td>Graduate</td>
<td>215</td>
</tr>
<tr>
<td>Prizes</td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>218</td>
</tr>
<tr>
<td>Graduate</td>
<td>224</td>
</tr>
<tr>
<td>Staff</td>
<td></td>
</tr>
<tr>
<td>Faculty of Biological Sciences</td>
<td>225</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>229</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>235</td>
</tr>
</tbody>
</table>
General Information

To obtain the maximum benefit from your studies you should make an effort to learn what facilities the University offers, to investigate the best methods of study and to discover as much as possible about the course for which you are enrolled.

This Handbook has been specially designed as a detailed source of reference for you in all matters related to your Faculty. This General Information Section is intended to help you put the Faculty into perspective with the University as a whole, to introduce you to some of the services available to students and to note some of the most important rules and procedures.

For fuller details about some aspects of the University and its activities you might need to consult the University Calendar.

Some people who can help you

If you are experiencing difficulties in adjusting to the requirements of the University you will probably need advice. The best people to talk to on matters relating to progress in studies are your tutors and lecturers. If your problem lies outside this area there are many other people with specialized knowledge and skills who may be able to help you.

The Student Services staff, located on the ground floor of the Chancellery, will help those students who need advice and who have problems but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with general enquiries the staff is especially concerned with the problems of overseas, Aboriginal, and physically handicapped and disabled students. Enquire at Room G19, phone 3114.

The Senior Assistant Registrar (Student Administration), Ms Judith Tonkin, is located on the ground floor of the Chancellery. For particular enquiries regarding illness and other matters affecting performance in examinations and assessment, graduation ceremonies, release of examination results and variations to enrolment programs, phone 3102 or 3097.

The Senior Administrative Officer (Admissions), Mr John Beauchamp, is located on the ground floor of the Chancellery. General inquiries should be directed to 3095.

Note: All phone numbers below are University extension numbers. If you are outside the University, dial 6972222 and ask for the extension. Alternatively you may dial 697 and then the extension number. This prefix should only be used when you are certain of the extension that you require as callers using 697 cannot be transferred to any other number.
The Senior Administrative Officer (Examinations), Mr John Grigg, is located on the ground floor of the Chancellery. Enquiries regarding examinations, including examination timetables and clash of examinations should be directed to 3088.

The Adviser for Prospective Students, Mrs Fay Lindsay, is located with the Careers and Employment Section and is available for personal interview. For an appointment phone the University switchboard.

The Careers and Employment Section is located in Hut E15c at the foot of Basser Steps. Enquiries should be directed to 3122.

The Off-campus Housing Service is located in Room G19 in the Chancellery. For assistance in obtaining suitable accommodation phone 3116.

Student Loans enquiries should be directed to Room G19 in the Chancellery, phone 3115.

The Student Health Unit is located in Hut E15b at the foot of Basser Steps. The Director is Dr Geoffrey Hansen. For medical advice phone 5427, 5426 or 5425.

The Student Counselling and Research Unit is located at the foot of Basser Steps. Dr Pat Cleary is the Head of the Unit. For assistance with educational or vocational problems ring 5418 or 5422 for an appointment.

The University Librarian is Mr Allan Horton. Library enquiries should be directed to 2686.

The Chaplaincy Centre is located in Hut E15a at the foot of Basser Steps.

The Students' Union has two offices on campus. One is located at the back of the Library Lawn (between the Chancellery and the Morven Brown Building), where the SU President, Education Vice President, Education Officer, Clubs and Societies Secretary and Postgraduate Officer are available to discuss student problems. The other is on the second floor of the Squarehouse, where the Secretary/Treasurer, Women's Officer, Overseas Student Director, the full-time Solicitor, Tharunka and Campuswide provide information and student services.

Cashier's Hours The University Cashier's office is open from 9.30 am to 1.00 pm and from 2.00 pm to 4.30 pm, Monday to Friday. It is open for additional periods at the beginning of Session 1. Consult noticeboards for details.

Calendar of Dates

The Academic Year

The academic year is divided into two sessions, each containing 14 weeks for teaching. There is a recess of six weeks between the two sessions and there are short recesses of one week within each of the sessions.

Session 1 commences on the first Monday of March.

1986

Faculties other than Medicine and University College/Australian Defence Force Academy

<table>
<thead>
<tr>
<th>Session 1</th>
<th>3 March to 11 May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May Recess: 12 May to 18 May</td>
</tr>
<tr>
<td></td>
<td>19 May to 15 June</td>
</tr>
<tr>
<td></td>
<td>Study Recess: 16 June to 22 June</td>
</tr>
<tr>
<td></td>
<td>Midyear Recess: 23 June to 27 July</td>
</tr>
<tr>
<td></td>
<td>23 June to 9 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exam Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 July to 24 August</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2</th>
<th>25 August to 31 August</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 September to 9 November</td>
<td></td>
</tr>
<tr>
<td>Study Recess: 10 November to 16 November</td>
<td></td>
</tr>
<tr>
<td>Exam Examinations</td>
<td></td>
</tr>
<tr>
<td>17 November to 5 December</td>
<td></td>
</tr>
</tbody>
</table>

Faculty of Medicine

First and Second Years

Third and Fourth Years

<table>
<thead>
<tr>
<th>Term 1 (10 weeks)</th>
<th>20 January to 30 March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term 2 (9 weeks)</td>
<td>7 April to 11 May</td>
</tr>
<tr>
<td>May Recess:</td>
<td>12 May to 18 May</td>
</tr>
<tr>
<td></td>
<td>19 May to 15 June</td>
</tr>
<tr>
<td>Term 3 (9 weeks)</td>
<td>23 June to 24 August</td>
</tr>
<tr>
<td>August Recess:</td>
<td>25 August to 31 August</td>
</tr>
<tr>
<td>Term 4 (10 weeks)</td>
<td>1 September to 9 November</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Term 1 (8 weeks)</th>
<th>20 January to 16 March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term 2 (8 weeks)</td>
<td>24 March to 18 May</td>
</tr>
<tr>
<td>Term 3 (8 weeks)</td>
<td>26 May to 20 July</td>
</tr>
<tr>
<td>Term 4 (8 weeks)</td>
<td>28 July to 21 September</td>
</tr>
<tr>
<td>Term 5 (8 weeks)</td>
<td>29 September to 23 November</td>
</tr>
</tbody>
</table>
Australian Graduate School of Management
Term 1 (10 weeks) 3 March to 9 May
Term 2 (10 weeks) 2 June to 8 August
Term 3 (10 weeks) 1 September to 7 November

Tuesday 25
Last day for undergraduate students who have completed requirements for pass degrees to advise the Registrar they are proceeding to an honours degree or do not wish to take out the degree for which they have applied for any other reason

University College/Australian Defence Force Academy
Session 1 3 March to 3 May
(14 weeks)
May Recess: 4 May to 18 May
19 May to 20 June
Midyear Recess: 21 June to 13 July
Examinations 23 June to 13 July
Session 2 14 July to 22 August
(13 weeks)
August Recess: 23 August to 7 September
8 September to 24 October
Examinations 25 October to 15 November

March
Session 1 begins — all courses except Medicine III, IV and V
Monday 3

Wednesday 5
List of graduands for April/May ceremonies and 1984 prizewinners published in The Sydney Morning Herald

Monday 10
Last day for notification of correction of details published in The Sydney Morning Herald on 6 March concerning April/May graduation ceremonies

Friday 14
Last day for acceptance of enrolment by new undergraduate students (late fee payable thereafter)

Thursday 27
Last day for acceptance of enrolment by undergraduate students re-enrolling in second and later years (late fee payable thereafter)

Friday 28
Good Friday — Public Holiday

Saturday 29
Easter Saturday — Public Holiday

Monday 31
Easter Monday — Public Holiday

January
Wednesday 1
Public Holiday — New Year's Day

Monday 6
List of graduands in Medicine for February Graduation Ceremony published in The Sydney Morning Herald

Friday 10
Last day for acceptance of applications by office of the Admissions Section for transfer to another undergraduate course within the University

Monday 13
Last day for applications for review of results of assessment

Monday 27
Public Holiday — Australia Day

April
Friday 18
Last day for undergraduate students to discontinue without failure subjects which extend over Session 1 only

Friday 25
Anzac Day — Public Holiday

Wednesday 30
Confirmation of Enrolment forms despatched to all students

May
Friday 9
Last day for acceptance of corrected Confirmation of Enrolment forms

Monday 12
Enrolment period begins for second and later year undergraduate students and graduate students enrolled in formal courses

Wednesday 14
May Recess begins

Thursday 15
Publication of provisional timetable for June/July examinations
Sunday 18
Friday 23

May Recess ends

Last day for students to advise of examination clashes

Monday 8

Last day for notification of correction of details published in *The Sydney Morning Herald* on 3 September concerning October graduation ceremonies

Friday 19

Last day for undergraduate students to discontinue without failure subjects which extend over Session 2 only

Monday 29

Confirmation of Enrolment forms despatched to all students

Tuesday 30

Last day to apply to UCAC for transfer to another tertiary institution in New South Wales

June

Tuesday 3

Publication of timetable for June/July examinations

Monday 9

Queen's Birthday — Public Holiday

Sunday 15

Session 1 ends

Monday 16

Study Recess begins

Sunday 22

Study Recess ends

Monday 23

Midyear Recess begins

Examinations begin

October

Wednesday 8

Last day for acceptance of corrected Confirmation of Enrolment forms

Thursday 9

Publication of provisional examination timetable

Friday 10

Last day for applications from undergraduate students completing requirements for degrees at the end of Session 2 to submit applications for Admission to Degree forms

Monday 6

Eight Hour Day — Public Holiday

Friday 17

Last day for students to advise of examination timetable clashes

Thursday 30

Publication of timetable for November examinations.

July

Wednesday 9

Examinations end

Monday 21

Assessment results mailed to students

Tuesday 22

Assessment results displayed on University noticeboards

To Friday 25 July: Students to amend enrolment programs following receipt of June examination results

Sunday 27

Midyear Recess ends

Monday 28

Session 2 begins

August

Friday 8

Last day for students to discontinue without failure subjects which extend over the whole academic year

Monday 25

August Recess begins

Tuesday 26

Last day for undergraduate students who have completed requirements for pass degrees to advise the Registrar they are proceeding to an honours degree or do not wish to take out the degree for which they have applied for any other reason

Sunday 31

August Recess ends

September

Wednesday 3

List of graduands for October graduation ceremonies published in *The Sydney Morning Herald*

November

Sunday 9

Session 2 ends

Monday 10

Study Recess begins

Sunday 16

Study Recess ends

Monday 17

Examinations begin

December

Friday 5

Examinations end

Monday 22

Assessment results mailed to students

Tuesday 23

Assessment results displayed on University noticeboards

Thursday 25

Christmas Day — Public Holiday

Friday 26

Boxing Day — Public Holiday
Faculties other than Medicine and University College/Australian Defence Force Academy

Session 1
- **2 March to 10 May**
- **May Recess: 11 May to 17 May**
- **18 May to 14 June**
- **Study Recess: 15 June to 21 June**
- **Midyear Recess: 22 June to 26 July**

Examinations
- 22 June to 8 July

Session 2
- **27 July to 23 August**
- **August Recess: 24 August to 30 August**
- **31 August to 8 November**
- **Study Recess: 9 November to 15 November**

Examinations
- 16 November to 4 December

Faculty of Medicine

First and Second Years
- As for other faculties

Third and Fourth Years
- **Term 1 (10 weeks) 19 January to 29 March**
- **Term 2 (9 weeks) 6 April to 10 May**
- **May Recess: 11 May to 17 May**
- **18 May to 14 June**
- **Term 3 (9 weeks) 22 June to 23 August**
- **August Recess: 24 August to 30 August**
- **Term 4 (10 weeks) 31 August to 8 November**

Fifth Year
- **Term 1 (8 weeks) 19 January to 15 March**
- **Term 2 (8 weeks) 23 March to 17 May**
- **Term 3 (8 weeks) 25 May to 19 July**
- **Term 4 (8 weeks) 27 July to 20 September**
- **Term 5 (8 weeks) 28 September to 22 November**

Australian Graduate School of Management

- **Term 1 (10 weeks) 2 March to 8 May**
- **Term 2 (10 weeks) 1 June to 7 August**
- **Term 3 (10 weeks) 31 August to 6 November**

University College/Australian Defence Force Academy

Session 1
- **(14 weeks)**
- **2 March to 3 May**
- **May Recess: 4 May to 17 May**
- **18 May to 19 June**
- **Midyear Recess: 20 June to 12 July**

Examinations
- 22 June to 10 July

Session 2
- **(13 weeks)**
- **13 July to 23 August**
- **August Recess: 24 August to 6 September**
- **7 September to 23 October**

Examinations
- 26 October to 13 November

January
- **Thursday 1**
 - Public Holiday (New Year)

- **Monday 5**
 - List of graduands in Medicine for February Graduation Ceremony published in *The Sydney Morning Herald*

- **Friday 9**
 - Last day for acceptance of applications by office of the Admissions Section for transfer to another undergraduate course within the University

- **Monday 12**
 - Last day for applications for review of results of annual examinations

- **Monday 26**
 - Australia Day — Public Holiday

February
- **Monday 16**
 - Enrolment period begins for second and later year undergraduate students and graduate students enrolled in formal courses

March
- **Monday 2**
 - Session 1 begins — all courses except Medicine III, IV and V

- **Friday 17 to Monday 20**
 - Easter — Public Holiday

April
- **Saturday 25**
 - Anzac Day — Public Holiday
Organization of the University

The University of New South Wales was first incorporated by an Act of Parliament in 1949, under the name of the New South Wales University of Technology.

In 1985 the University had 18,350 students and over 3,600 staff who worked in more than eighty buildings.

Arms of the University of New South Wales
The arms of the University are reproduced on the front cover of this handbook. The arms were granted by the College of Heralds in London, on 3 March 1952, and the heraldic description is as follows:

'Argent on a Cross Gules a Lion passant guardant between four Mullets of eight points Or a Chief Sable charged with an open Book proper thereon the word SCIENTIA in letters also Sable.'

'The lion and the four stars of the Southern Cross on the Cross of St George have reference to the State of New South Wales which brought the University into being; the open book with SCIENTIA across its page reminds us of its original purpose. Beneath the shield is the motto 'Manu et Mente,' (with Hand and Mind') which is the motto of the Sydney Technical College, from which the University has developed. The motto is not an integral part of the Grant of Arms and could be changed at will; but it was the opinion of the University Council that the relationship with the parent institution should in some way be recorded.'

The University Colours
The colours of the University are black and gold.

The Council
The chief governing body of the University is the Council which has the responsibility of making all major decisions regarding its policy, conduct and welfare.

The Council consists of 29 members including parliamentary and ex officio members, members elected by the staff, students and graduates of the University and some appointed by the Minister for Education.

The Council meets at least five times per year and its members also serve on special committees dealing with, for example, academic matters, finance, buildings and equipment, personnel matters, student affairs and public relations.

The Chairman of the Council is the Chancellor, the Hon. Mr Justice Samuels.

The Professorial Board
The Professorial Board is one of the two chief academic bodies within the University and includes all the professors from the various faculties, non-professorial Heads of Schools and Chairmen of Faculty, and several ex-officio and appointed members. It deliberates on all questions such as matriculation requirements, the content of courses, the arrangement of syllabuses, the appointment of examiners and the conditions for graduate degrees. Its recommendations on matters of major policy are presented to Council for its consideration and adoption.

The Faculties/Boards of Studies
The executive head of a faculty or board of studies is the dean, with the exception of the Australian Graduate School of Management, where the executive head is the director. Members of each faculty or board meet regularly to consider matters pertaining to their own areas of teaching and research, the result of their deliberations being then submitted to the Professorial Board.

The term 'faculty' is used in two distinct senses in the University. Sometimes it is used to refer to the group of schools comprising the faculty, and at others to the deliberative body of academic members of the Schools within the faculty.

The ten faculties are Applied Science, Architecture, Arts, Biological Sciences, Commerce, Engineering, Law, Medicine, Professional Studies and Science. In addition, the Board of Studies of the Australian Graduate School of Management (AGSM), the Board of Studies in General Education and the Academic Board of the University College, Australian Defence Force Academy fulfil a function similar to that of the faculties. The Board of Studies in Science and Mathematics, which was established to facilitate the joint academic administration of the Science and Mathematics degree course by the faculties of Biological Sciences and Science, considers and reports to the Professorial Board on all matters relating to studies, lectures and examinations in the Science and Mathematics degree course.

The Schools
Subjects come under the control of the individual schools (eg the School of Chemistry, the School of Accountancy). The head of the school in which you are studying is the person in this academic structure with whom you will be most directly concerned.

Executive Officers
As chief executive officer of the University, the Vice-Chancellor and Principal, Professor Michael Birt, is charged with managing and supervising the administrative, financial and other activities of the University.

He is assisted in this task by three Pro-Vice-Chancellors, together with the Deans and the two heads of the administrative divisions.

General Administration
The administrative work of the University is divided between the Deputy Principal (Administration) who is responsible for registrarial, property and staffing matters and the Deputy Principal (Planning and Information) who is responsible for planning information and analysis, finance and the provision of computing services.
Student Representation on Council and Faculties/Boards
Three members of the University Council may be students elected by students. All students who are not full-time members of staff are eligible to stand for a two-year term of office. The students who are elected to the Council are eligible for election to the committees of Council.

Students proceeding to a degree or a graduate diploma may elect members for appointment by the Council to their faculty or board of studies. Elections are for a one-year term of office.

Open Faculty/Board Meetings
If you wish you may attend a faculty or board meeting. You should seek advice at the office of the faculty whose meeting you wish to attend.

Award of the University Medal
The University may award a bronze medal to undergraduate students who have achieved highly distinguished merit throughout their degree course.

Identification of Subjects by Numbers
For information concerning the identifying number of each subject taught in each faculty as well as the full list of identifying numbers and subjects taught in the University, turn to the first page of the section Subject Descriptions. This list is also published in the Calendar.

Textbook Lists
Textbook lists are issued early in the year and are available from School and Faculty offices for re-enrolling students and from the Unisearch House Enrolment Centre for first year students.

Textbook Costs and Course-Related Costs
Students should allow quite a substantial sum for textbooks. This can vary from $250 to $600 per year depending on the course taken. These figures are based on the cost of new books. The Students’ Union operates a secondhand bookshop.

Information about special equipment costs, accommodation charges and cost of subsistence on excursions, field work, etc, and for hospital residence (medical students) is available from individual schools.

Co-operative Bookshop
Membership is open to all members of the community, on initial payment of a fee of $12, refundable after 2 years.

General Studies Program
Almost all undergraduates in faculties other than Arts and Law are required to complete a General Studies program. The Department of General Studies within the Board of Studies in General Education publishes its own Handbook which is available free of charge. All enquiries about General Studies should be made to the General Studies Office, Room G56, Morven Brown Building, phone 2436.

Student Services and Activities

Accommodation

Residential Colleges
There are seven residential colleges on campus. Each college offers accommodation in a distinctive environment which varies from college to college, as do facilities and fees. A brief description of each college is given below, and further information may be obtained directly from the individual colleges. In addition to basic residence fees, most colleges make minor additional charges for such items as registration fees, caution money or power charges. Intending students should lodge applications before the end of October in the year prior to the one in which they seek admission. Most colleges require a personal interview as part of the application procedure.

The Kensington Colleges
The Kensington Colleges comprise Bass College, Goldstein College and Philip Baxter College. They house 416 men and women students, as well as tutorial and administrative staff members. Some aspects of traditional College life are maintained in an atmosphere which emphasises co-operation and mutual respect. Apply in writing to the Master, PO Box 24, Kensington, NSW 2033.

International House
International House accommodates 154 male and female students from Australia and up to thirty other countries. Generally about 25 disciplines are represented. College life is multicultural and multidisciplinary. Eight tutors are available to help students. Apply in writing to the Warden, International House, PO Box 1, Kensington, NSW 2033.

New College
New College is an Anglican college and it provides accommodation (with all meals) for 220 graduates and undergraduates, without regard to race, religion, or sex. The College has its own resident tutors, and a Senior Resident Academic Fellow, who sponsors a wide range of activities and encourages interdisciplinary discussion. Apply to the Master, New College, Anzac Parade, Kensington 2033 (telephone 662 6066).

Shalom College
Shalom College is a Jewish residential college. It provides accommodation for 86 men and women students. Non-resident membership is available to students who wish to avail themselves of the Kosher dining room and tutorial facilities.
Fees are payable on a session basis. Conferences are catered for, particularly with Kosher requirements. Rates are available on application. Apply in writing to the Master, Shalom College, the University of New South Wales, PO Box 1, Kensington, NSW 2033.

Warrane College
Warrane College provides accommodation for 190 men and is open to students of all ages, backgrounds and beliefs. The College offers a comprehensive tutorial program along with a wide range of activities, professional orientation and opportunities to meet members of the University staff informally. Non-resident membership is available to those students who wish to participate in College activities and to make use of its facilities. The general spiritual care of the College has been entrusted to Opus Dei, a personal prelature of the Catholic Church. Enquiries: The Master, Warrane College, PO Box 123, Kensington 2033. Telephone (02) 662 6199.

Creston Residence
Creston Residence offers accommodation to 25 undergraduate and graduate women students. Activities and tutorials are open to non-resident students. The spiritual activities offered at Creston are entrusted to the Women's Section of Opus Dei. Enquiries: 36 High Street, Randwick 2031. Telephone (02) 398 5693.

Other Accommodation
Off-campus Accommodation
Students requiring other than College accommodation may seek assistance in Room G19, the Chancellery, in obtaining suitable accommodation in the way of rooms with cooking facilities, flats, houses, share flats, etc. Extensive listings of all varieties of housing are kept up-to-date throughout the year and during vacations. Accommodation in the immediate vicinity of the University is not usually easy to find at short notice, and is expensive.

No appointment is necessary but there may be some delay in February and March. The Housing staff are always happy to discuss any aspect of accommodation.

Special pamphlets on accommodation, lists of estate agents and hints on house-hunting are available on request.

Associations, Clubs and Societies
The Sports Association
The Sports Association is a student organization within the University which caters for a variety of sports for both men and women. In December 1952 the University Council approved the establishment of the Sports Association, which then consisted of five clubs. As the University has grown the Association has expanded, and it now includes thirty-seven clubs.

School and Faculty Associations
Many schools and faculties have special clubs with interests in particular subject fields. Enquire at the relevant Faculty or School Office for information.

Australian Armed Services
The University maintains links with the Royal Australian Navy, the Australian Army Reserve and the Royal Australian Air Force, and opportunities exist for student participation in their activities.

Chaplaincy Centre
The University Chapel
The University provides a small chapel for the use of all faiths. In its temporary housing it is located in Hut E15a near the Chemistry Building. The chapel is available for services of worship by arrangement with the full-time chaplains. At other times it is available for private meditation to all members of the University.

Chaplaincy Service
A Chaplaincy Service is available within the University of New South Wales for the benefit of students and staff.

The service offers fellowship, personal counselling and guidance, together with leadership and biblical and doctrinal studies and in worship. The chaplains maintain close liaison with student religious societies.

The chaplains are located in Hut E15a at the foot of Basser steps, which also contains the temporary chapel.
Student Services

The Student Services staff, located on the ground floor of the Chancellery, will help those students who have problems and need advice but who do not seem to be provided for by the other organizations and services mentioned. As well as dealing with those enquiries and with off-campus housing and student loan matters, they are especially concerned with the problems of physically handicapped and disabled students, overseas students, and aboriginal students.

All enquiries should be made either at Room G19 or by telephoning 6973111.

Sport and Recreation Section

The Sport and Recreation Section seeks ways to encourage students and staff to include exercise as an essential part of their daily lives. It does this through Sports Clubs on a competitive basis and by offering physical recreation on a more casual basis to the University community.

The Section serves the Sports Association and its thirty-seven constituent clubs and is responsible for the continuing management of the Physical Education and Recreation Centre at which recreational programs are available for both students and staff.

It makes bookings for use of sporting facilities including tennis courts and playing fields. This section is located on the 3rd Floor, Squarehouse, E4, lower campus. The various services may be contacted by telephoning Recreation Program 6974884; Grounds Bookings 6974878; Tennis Bookings 6974877; Sports Association 6974880.

Physical Education and Recreation Centre

The Sport and Recreation Section provides a recreational program for students and staff at the Physical Education and Recreation Centre. The Centre consists of eight squash courts, seven tennis courts, a main building, and a 50-metre indoor heated swimming pool. The main building has a large gymnasium and practice rooms for fencing, table tennis, judo, weight-lifting, karate and jazz ballet, also a physical fitness testing room. A new three-storey 'Link Building' will be completed by mid-1986 between the gymnasium and squash courts. It provides three additional training rooms on the upper floors and administrative and control functions at ground floor level. The recreational program includes intramurals, teaching/coaching, camps. The Centre is located on the lower campus adjacent to High Street. The Supervisor at PERC may be contacted by telephoning 6974884.

Student Counselling and Research Unit

The Student Counselling and Research Unit provides counselling services to students, prospective students, parents and other concerned persons.

Together with the Careers and Employment Section, the unit is located in the huts near the foot of Basser Steps (access from College Road or Engineering Road).

Appointments are offered throughout the academic year and during recesses between 8 am to 5 pm on week days (up to 7 pm on some evenings). A 'walk-in' service for short interviews is available between 9 am and 5 pm. Appointments may be made by telephoning 6975418 between 8.30 am and 5.30 pm.

Counsellors offer assistance in planning, decision-making, problem solving, social and emotional development, and dealing with grievances. Group programs on such topics as study, tutorial and examination skills, stress management, communicating, and self-confidence are offered each session. Brochures are available from the receptionist.

Careers and Employment Section

The Careers and Employment Section provides careers advice and assistance in finding employment.

Assistance with careers and permanent employment opportunities includes: the regular mailing of a Job Vacancy Bulletin to registered students and graduates, a Library, and a Campus Interview Program in which final year students have the opportunity to speak to employers regarding employment prospects.

Assistance is also provided in obtaining course-related employment during long vacations as required by undergraduates in Engineering and Applied Science.

Together with the Student Counselling and Research Unit, this section is located in the huts near the foot of Basser Steps (access from College Road or Engineering Road).

For further information, telephone 6975470.

Student Health Unit

A student health clinic and first aid centre is situated within the University. The medical service although therapeutic is not intended to replace private or community health services. Thus, where chronic or continuing conditions are revealed or suspected the student may be referred to a private practitioner or to an appropriate hospital. The health service is not responsible for fees incurred in these instances. The service is confidential and students are encouraged to attend for advice on matters pertaining to health.
The service is available to all enrolled students by appointment, free of charge, between 9 am and 5 pm Mondays to Fridays. For staff members, immunizations are available, and first aid service in the case of injury or illness on the campus.

The centre is located in Hut E15b on the northern side of the campus in College Road at the foot of the Basser Steps.

Appointments may be made by calling at the centre or by telephoning 697 5425, 697 5426 or 697 5427 during the above hours.

The Family Planning Association of NSW conducts clinics at the Student Health Unit and at the adjacent Prince of Wales Hospital which are available for both staff and students. Appointments may be made for the Student Health Unit clinic by telephoning 588 2833 or for the Prince of Wales Hospital clinics by telephoning 399 0111.

The Students’ Union

The Students’ Union was formed in 1952 as an organization, duly recognized by the University Council, to represent the student body and to provide a central organization for the administration of student activities. In the words of its constitution ‘The Students’ Union is formed for the purpose of advancing the interests of University men and women, facilitating their general scientific and technical education, and fostering a University spirit among them’.

The Students’ Union affords a recognized means of communication between the student body and the University administration, and represents its members in all matters affecting their interests. It aims to promote the cultural, educational and recreational life of the University and to encourage a permanent interest among graduates in the life and progress of student activities within the University. The Students’ Union also makes representations to government and other bodies outside the University on behalf of its members.

Membership of the Students’ Union is compulsory for all registered students of the University; the annual subscription for full-time and part-time students is set out later, in Rules and Procedures, Enrolment and Procedures and Fees Schedules, section 15. Fees. Only those persons who were enrolled as Life Members prior to January 1 1985, shall retain such membership.

The Students’ Union is governed by a Council consisting in the main of elected student representatives from the various faculties of the University. There are also representatives of the University Council, Life Members, the Staff Association and the Sports Association. The Council is elected annually in May-June.

The Students’ Union has three full-time officers who are elected each year by popular ballot. They are the President, who is mainly the political figure-head of the Union; the Secretary/Treasurer, who organizes the smooth operation of the SU offices, keeps the membership rolls up to date, and oversees the financial operations; and the Women’s Officer who represents women on campus and formulates, maintains and co-ordinates the Students’ Union policy on women’s affairs.

Other officers are the Education Vice-President, who works towards the implementation of Students’ Union education policy; the Education Officer concerned with helping students with problems relating to TEAS, Show-Cause and other matters relevant to their courses; the Vice-President who ensures the efficient running of CASOC: and the Director of Overseas Students who deals with specific problems these students may encounter while in Australia.

The activities in which the Students’ Union is involved include:
1. Publication of the Student Paper Tharunka.
2. Production of the student video program Campuswide.
3. A free legal service run by a qualified lawyer employed by the Students’ Union Council.
4. The Secondhand Bookshop for cheap texts.
5. A child care centre, House at Pooh Corner.
6. CASOC (Clubs and Societies on Campus) which provides money from the SU for affiliated clubs and societies on campus.
7. A video service with access for students to equipment and advice.
8. A noticeboard for casual job vacancies.
9. Organization of orientation for new students.

The SU has two offices on campus. One is located at the back of the Library Lawn (between the Chancellery and the Morven Brown Building), where the SU President, Education Vice-President, Education Officer, Clubs and Societies Secretary and Postgraduate Officer are available to discuss student problems. The other is on the Second Floor of the Squarehouse (above the bar) at the bottom end of campus, where the Secretary/Treasurer, Women’s Officer, Overseas Student Director, the full-time Solicitor, Tharunka and Campuswide provide information and student services.

The University Library

The University libraries are mostly situated on the upper campus. The library buildings house the Social Sciences and Humanities Library on Level 4, the Physical Sciences Library on Level 7 and the Law Library on Level 8. The undergraduate collection is on Levels 3 and 4. The Biomedical Library is in the western end of the Mathews Building and is closely associated with libraries in the teaching hospitals of the University.

For details consult Faculty Information in the relevant Faculty Handbook.

There are also library services at other centres:
- The Water Reference Library situated at Manly Vale (telephone 948 0261) which is closely associated with the Physical Sciences Library.
- The library at the Australian Defence Force Academy, ACT, serving the Faculty of Military Studies.
Each library provides reference and lending services to staff and students and each of the libraries on the Kensington campus is open throughout the year during the day and evening periods. The exact hours of opening vary during the course of the academic year. For recorded hours of opening telephone 697 2687.

Staff and students normally use a machine-readable identification card to borrow from the University libraries.

The University Union

The University Union provides the amenities which students, staff and graduates require in their daily University life and thus facilitates their knowing and understanding one another through associations outside the lecture room, the library and other places of work.

The Union is housed in a range of buildings across the campus, principal among which are the Roundhouse, the Blockhouse and the Squarehouse located near the Anzac Parade entrance to the University. Membership of the Union is compulsory for all registered students and is open to all members of staff and graduates of the University.

The control of the Union is vested in the Board of Management whose Chief Executive Officer is the Warden.

The Union operates a licensed Bar and twelve Food Service points on the campus, providing services ranging from takeaway snacks and cafeteria-type meals to an a la carte restaurant operation.

Shops run directly by the Union are the Logo Shop (University-crested gifts, mementos and clothing), two newsagency/stationery shops, one stationery shop specializing in architecture requisites and an ice cream/confectionery shop. Other facilities operating within buildings occupied by the Union are banks, a credit union agency, hairdressers and a beauty salon, barber, delicatessen, casual clothing shop, pharmacy, dentist, optical dispensing and travel services.

Showers, meeting, games, music practice, reading, craft and dark rooms are provided as well as a Student Resource Area where photocopying, screen printing, stencil cutting and typewriter services and equipment hire are available.

The Union's cultural activities program encompasses creative leisure classes, lunch hour concerts and films, market days and exhibitions.

Further information on Union programs, activities and services is provided in the Annual Union Handbook and in the Creative Leisure Classes and Activities brochures published each session.

Financial Assistance to Students

Tertiary Education Assistance Scheme

Under this scheme, which is financed by the Commonwealth Government, assistance is available for full-time study in approved courses, to students who are not bonded and who are permanent residents of Australia, subject to a means test on a non-competitive basis. The allowances paid are unlikely to be sufficient, even at the maximum rate, for all the living expenses of a student. Family help and/or income from vacation or spare-time work would also be needed.

Students in the following types of university courses are eligible for assistance:

- Undergraduate and graduate bachelor degree courses;
- Graduate diplomas;
- Approved combined bachelor degree courses;
- Masters qualifying courses (one year).

The rates of allowance and conditions for eligibility are set out in a booklet obtainable from the Commonwealth Department of Education.

It is most important that students advise the TEAS office if at any time they change or discontinue their study programs, as their eligibility for benefits might be affected.

Other Financial Assistance

In addition to the Tertiary Education Assistance Scheme financed by the Australian Government the following forms of assistance are available:

1. Deferment of Payment of Fees Deferments may be granted for a short period, usually one month, without the imposition of a late fee penalty, provided the deferment is requested prior to the due date for fee payments.

2. Short Term Cash Loans Donations from various sources have made funds available for urgent cash loans not exceeding $100. These loans are normally repayable within one month.

3. The Commonwealth Government has made funds available to the University to provide loans to students in financial difficulty. The loans are to provide for living allowances and other approved expenses associated with attendance at university. Students are required to enter into a formal agreement with the University to repay the loan. The University is unable to provide from the fund amounts large enough for all or even a major part of the living expenses of a student.

Students who are in extremely difficult financial circumstances may apply for assistance by way of a grant. In order to qualify for a grant a student must generally show that the financial difficulty has arisen from exceptional misfortune. Grants are rarely made.

The University has also been the recipient of donations from the Arthur T. George Foundation, started by Sir Arthur George and his family, for the endowment of a student loan fund.
The University has not considered it necessary to formulate a detailed code of rules relating to the general conduct of students. Enrolment as a student of the University, however, involves an undertaking to observe the regulations, by-laws and rules of the University, and to pay due regard to any instructions given by any officer of the University.

Rules and Procedures

The University, in common with other large organizations, has established rules and procedures which are designed for the benefit of all members of the University. In some cases there are penalties (eg fines or exclusion from examinations) for non-compliance. Any student who, after carefully reading the rules set out in the following pages, requires further information on their application should seek further advice, in the first instance, at the Enquiry Counter in the North Wing of the Chancellery Building.

Financial Assistance to Aboriginal Students

Financial assistance is available to help Aboriginal students from the Commonwealth Government’s Aboriginal Study Grant Scheme. Furthermore, Aboriginal students may apply for loans from the Student Loan Funds.

The University has also received a generous bequest from the estate of the late Alice Brooks Gange for the education of Australian aborigines within the University. Under the terms of this Bequest the Vice-Chancellor approved the establishment of a Centre for Aboriginal Students. This Centre, which began operating in 1985, provides support for Aboriginal students who are enrolled in the University and who wish to use the Centre and its resources. The Centre has a Resident Supervisor.

All enquiries relating to these matters should be made at the office of Student Services, Room G19, the Chancellery.

Financial Assistance to Aboriginal Students

Financial assistance is available to help Aboriginal students from the Commonwealth Government’s Aboriginal Study Grant Scheme. Furthermore, Aboriginal students may apply for loans from the Student Loan Funds.

The University has also received a generous bequest from the estate of the late Alice Brooks Gange for the education of Australian aborigines within the University. Under the terms of this Bequest the Vice-Chancellor approved the establishment of a Centre for Aboriginal Students. This Centre, which began operating in 1985, provides support for Aboriginal students who are enrolled in the University and who wish to use the Centre and its resources. The Centre has a Resident Supervisor.

All enquiries relating to these matters should be made at the office of Student Services, Room G19, the Chancellery.

General Conduct

The University has not considered it necessary to formulate a detailed code of rules relating to the general conduct of students. Enrolment as a student of the University, however, involves an undertaking to observe the regulations, by-laws and rules of the University, and to pay due regard to any instructions given by any officer of the University.

Appeals

Section 5(c) of Chapter III of the By-laws provides that 'Any person affected by a decision of any member of the Professorial Board (other than the Vice-Chancellor) in respect of a breach of discipline or misconduct may appeal to the Vice-Chancellor, and in the case of disciplinary action by the Vice-Chancellor, whether on appeal or otherwise, to the Council.'

Admission and Enrolment

The Student Enquiry Counter, located near the Cashier in the Chancellery on the upper campus, provides information for students on admission requirements, undergraduate and graduate courses and enrolment procedures. Faculty handbooks and the Calendar may be purchased from the Cashier. The Enquiry Counter is open from 9 am to 1 pm and 2 pm to 5 pm, Monday to Friday. During enrolment it is also open on some evenings.

Information may be obtained here about admission to first year undergraduate courses, special admission, admission with advanced standing and admission on overseas qualifications. Applications are also received from students who wish to transfer from one course to another, resume their studies after an absence of twelve months or more, or seek any concession in relation to a course in which they are enrolled.

Applications for admission to undergraduate courses from students who do not satisfy the requirements for admission (see section on Admission Requirements) are referred by the Admissions Section to the Admissions Committee of the Professorial Board.

It is essential that the closing dates for lodgement of applications are adhered to. For further details see the section on Enrolment Procedures and Fees.

Students wishing to enrol as higher degree candidates should first consult the Head of the School in which they wish to study. An application is then lodged on a standard form and the Postgraduate Section, after obtaining a recommendation from the Head of School, refers the application to the appropriate Faculty or Board of Studies Higher Degree Committee.

An Adviser for Prospective Students, Mrs Fay Lindsay, is located in the huts near the foot of Basser Steps (access from Engineering Road), and is available for personal interview with those who require additional information about the University.

First Year Entry

Those seeking entry to first year courses in one or more of twenty-two tertiary institutions in the State including all universities are required to lodge a single application form with the Universities and Colleges Admissions Centre (GPO Box 7049, Sydney 2001). On the application form provision is made for applicants to indicate preferences for courses available in any one of the seven universities and the other tertiary institutions. Students are notified individually of the result of their applications and provided with information.
Enrolment Procedures and Fees Schedules 1986

1. Introduction

All students, except those enrolling in graduate research degree courses (see sections 5. and 6. below), must lodge an authorized enrolment form with the Cashier either on the day the enrolling officer signs the form or on the day any required General Studies electives are approved.

All students, except those enrolling in graduate research degree courses and those exempted as set out in section 17. below, should on that day also either pay the required fees or lodge an enrolment voucher or other appropriate authority.

Such vouchers and authorities are generally issued by the NSW Department of Education and the NSW Public Service. They are not always issued in time and students who expect to receive an enrolment voucher or other appropriate authority but have not done so should pay the student activities fees and arrange a refund later. Such vouchers and authorities are not the responsibility of the University and their late receipt is not to be assumed as automatically exempting a student from the requirements of enrolling and paying fees.

If a student is unable to pay the fees the enrolment form must still be lodged with the Cashier and the student will be issued with a 'nil' receipt. The student is then indebted to the University and must pay the fees by the end of the second week of the session for which enrolment is being effected.

Penalties apply if fees are paid after the time allowed (see section 16. below) unless the student has obtained an extension of time (see section 13. below) in which to pay fees from the Student Enquiry Counter, the Chancellery. Such an application must be made before the fee is due. Payment may be made through the mail, in which case it is important that the student number be given accurately. Cash should not be sent through the mail.

2. New Undergraduate Enrolments

Persons who are applying for entry in 1986 must lodge an application for selection with the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1985.

Those who are selected will be required to complete enrolment at a specified time before the start of Session 1. Compulsory student activities fees should be paid on the day.

In special circumstances, however, and provided class places are still available, students may be allowed to complete enrolment after the prescribed time.

Application forms and details of the application procedures may be obtained from the Student Enquiries Counter, Ground Floor, North Wing of the Chancellery Building.

3. Re-enrolment

See also sections 4., 6. and 7. below.

Students who are continuing courses (or returning after approved leave of absence) should enrol through the appropriate school in accordance with the procedures set out in the current Enrolment Procedures booklet, available from the Student Enquiry Counter in the Chancellery and from School offices. Undergraduate students who have completed part of a course and have been absent without leave need to apply for entry through the Universities and Colleges Admissions Centre, GPO Box 7049, Sydney 2001, by 1 October 1985.

4. Restrictions Upon Re-enrolling

Students who in 1985 have infringed the rules governing re-enrolment should not attempt to re-enrol in 1986 but should follow the written instructions they will receive from the Registrar in December 1985.

5. New Research Students

Students enrolling for the first time in graduate research degree courses will be advised by letter concerning the method of enrolment. Enrolment other than in accordance with the procedure set out in this letter will incur a penalty (see section 16. below).

6. Re-enrolling Research Students

Students undertaking research degree courses (course codes 0-2999) will be re-enrolled automatically each year and sent an account for any fees due.

7. Submission of Project Report

Students registered for formal masters degree courses (course codes 8000-9999) who at the commencement of Session 1 have completed all the work for a degree or diploma except for the submission of the relevant project report are required to re-enrol by the end of the second week.
of Session 1. Completion of enrolment after then will incur a penalty (see section 16. below).

Information about possible student activities fees exemption is set out in section 17. (10) below.

8. Enrolments by Miscellaneous Students
Enrolments by Miscellaneous students are governed by the following rules:

(1) Enrolment in a particular subject or subjects as a miscellaneous student — i.e as a student not proceeding to a degree or diploma — may be permitted provided that in every case the Head of School offering the subject considers that the student will benefit from the enrolment and provided also that accommodation is available and that the enrolment does not prevent a place in that subject being available to a student proceeding to a degree or diploma.

(2) A student who is under exclusion from any subject in the University may not enrol as a miscellaneous student in that subject.

(3) A student who is under exclusion from any course in the University may not enrol in any subject which forms a compulsory component of the course from which the student is excluded.

(4) A student who is subsequently admitted to a course of the University for which any subjects completed as a miscellaneous student form a part may receive standing for those subjects.

(5) There are quota restrictions on the number of students allowed to enrol as miscellaneous, irrespective of whether they have approval from the Head of School. Applicants with written Head of School approval may be permitted to enrol providing there are places available in the quotas.

(6) As a general rule the University does not permit miscellaneous students to enrol in first year undergraduate subjects. Enquiries concerning eligibility for enrolment may be made at the Student Enquiry Counter, the Chancellery (telephone 697 3095).

9. Final Dates for Completion of Enrolment
No enrolments for courses extending over the whole year or for Session 1 only will be accepted from new students after the end of the second week of Session 1 (14 March 1986) except with the express approval of the Registrar and the Heads of the Schools concerned; no later year enrolments for courses extending over the whole year or for Session 1 only will be accepted after the end of the fourth week of Session 1 (28 March 1986) except with the express approval of the Registrar and the Heads of the Schools concerned. No enrolments for courses in Session 2 only will be accepted after the end of the second week of Session 2 (8 August 1986) except with the express approval of the Registrar and the Heads of the Schools concerned.

10. Student Card — Conditions of Issue
All students enrolled in degree or diploma courses or as miscellaneous students are issued with a University of New South Wales Student Card. All students are issued with cards on their initial enrolment.

The number appearing on the card below the student’s name is the student registration number used in the University’s records. This number should be quoted in all correspondence.

(1) The card must be carried at the University and shown on request. It must be presented when borrowing from the University libraries, when using Library facilities and when applying for concessions.

(2) The card is not transferable.

(3) The student to whom the card has been issued must notify the Circulation Department of the Library of its loss or theft. Failure to do so may result in the cardholder being held responsible for items issued on the card after its loss or theft.

(4) The card is valid only for the period of enrolment as indicated on the receipt issued by the Cashier at enrolment each year.

(5) The cardholder accepts responsibility for all Library books issued on his/her card and agrees to return books by the due date.

(6) If the card is damaged or becomes otherwise unusable, it is the cardholder’s responsibility to seek replacement.

(7) The card always remains the property of the University and must be returned to it when the holder leaves the University.

11. Payment of Fees
The fees and charges which are payable include those charges raised to finance the expenses incurred in operating activities such as the University Union, the Students’ Union, the Sports Association, and the Physical Education and Recreation Centre. Penalty payments are also incurred if a student fails to complete procedures as required. Charges may also be payable, sometimes in the form of a deposit, for the hiring of kits of equipment in certain subjects. Accommodation charges, costs of subsistence on excursions, field work etc, and for hospital residence (medical students) are payable in appropriate circumstances.

12. Assisted Students
Scholarship holders and sponsored students who have not received an enrolment voucher or appropriate letter of authority from their sponsor at the time they are enrolling should pay their own fees and a refund will be made when the enrolment voucher or letter of authority is subsequently lodged with the Cashier.

Those unable to pay their own fees in these circumstances can apply for an extension of time (see section 13. below) in which to pay. Such an application must be made before the fees are due.

13. Extension of Time
Students who are unable to pay fees by the due date may apply for an extension of time, which may be granted in extenuating circumstances. Such applications must be made, in writing, before the due date and lodged at the student Enquiry Counter, the Chancellery.
14. Failure to Pay Fees and Other Debts

Students who fail to pay prescribed fees or charges or are otherwise indebted to the University and who fail either to make a satisfactory settlement of indebtedness upon receipt of due notice or to receive a special exemption cease to be entitled to the use of University facilities. Such students are not permitted to enrol for a further session, to attend classes or examinations, or to be granted any official credentials. In the case of students enrolled for Session 1 only or for both Sessions 1 and 2 this disbarment applies if any portion of fees is outstanding after the end of the eighth week of Session 1 (25 April 1986). In the case of students enrolled for Session 2 only this disbarment applies if any portion of fees is outstanding after the end of the sixth week of Session 2 (5 September 1986).

In special cases the Registrar may grant exemption from the disqualification referred to in the preceding paragraph upon receipt of a written statement setting out all relevant circumstances.

15. Fees

Fees and penalties quoted are current at the time of publication but may be amended by the University without notice.

University Union Entrance Fee

Payable on first enrolment $40

Students enrolling for only one session must pay the full University Union entrance fee.

Student Activities Fees

All students (with the exceptions set out in section 17, below) are required to pay the following fees if enrolling for a program involving two sessions. Those enrolling for only one session will pay the full University Union Entrance Fee, if applicable, and one-half of any other fees due.

Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies.

Students often seek exemption from some or all of the student activities fees for reasons other than those set out in section 17, below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.

Student Activities Fees are adjusted annually by a system of indexation and those set out below have been approved for 1986.

<table>
<thead>
<tr>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Union annual subscription</td>
<td>$115</td>
</tr>
<tr>
<td>Sports Association annual subscription</td>
<td>$25</td>
</tr>
<tr>
<td>Students' Union Annual Subscription</td>
<td>$34</td>
</tr>
<tr>
<td>Students enrolling in full-time courses</td>
<td></td>
</tr>
<tr>
<td>Students enrolling in part-time courses or as miscellaneous students</td>
<td>$28</td>
</tr>
</tbody>
</table>

Miscellaneous Fund annual fee $40

This fee is used to finance expenses generally of a capital nature relating to student activities and amenities. Funds are allocated for projects recommended by the Student Affairs Committee and approved by the University Council.

Special Examination Fees

Examinations conducted in special circumstances for each subject $20

Review of examination results for each subject $20

Other Charges

In addition to the fees outlined above and depending on the subject being taken, students may be required to make a payment for equipment; money so paid is, in general, refunded if the equipment is returned in satisfactory condition.

16. Penalties

(1) Failure to lodge enrolment form according to enrolment procedure $20

(2) Payment of fees after end of second week of session $20

(3) Payment of fees after end of fourth week of session $40

Penalties (1) and (2) or (1) and (3) may accumulate.

17. Exemptions — fees

Students often seek exemption from the fees for reasons other than those set out below. It is stressed that the fees charged are a contribution by students towards services and amenities for the University community (both now and in the future) and exemption from them cannot be claimed because a student is unable or unwilling to make use of some of those services or amenities.

(1) Life members of the University Union, the Sports Association, and Students' Union are exempt from the relevant fee or fees.

Students who consider themselves eligible for life membership of the University Union, the Sports Association, or the Students' Union, should make enquiries about the matter at the offices of those bodies.

(2) Students enrolled in courses classified as External are exempt from all Student Activities Fees and the University Union Entrance Fee.

(3) Students enrolled in courses at the University College (Australian Defence Force Academy) are exempt from the Student Activities Fees and the University Union Entrance Fee in section 15, above but shall pay such other fees and charges as the Council may from time to time determine.

(4) University Union fees and subscriptions may be waived by the Registrar for students enrolled in graduate courses in which the formal academic requirements are undertaken at a part of the University away from the Kensington campus.

(5) Students who while enrolled at and attending another university (or other tertiary institution as approved by the Vice-Chancellor) in a degree or diploma course are given...
approval to enrol at the University of New South Wales but only as miscellaneous students for subjects to be credited towards the degrees or diplomas for which they are enrolled elsewhere are exempt from all Student Activities Fees and the University Union Entrance Fee.

Institutions approved are: Australian Film and Television School, New South Wales Institute of Technology, Sydney College of Advanced Education and Sydney College of Chiropractic.

(6) Undergraduate students of a recognized university outside Australia who attend the University of New South Wales with the permission of the head of the appropriate school or department to take part as miscellaneous students in an academic program relevant to their regular studies and approved by the authorities of their own institution are exempt from all Student Activities Fees and the University Union Entrance Fee.

(7) Graduate students not in attendance at the University and who are enrolling in a project only other than for the first time, are exempt from all Student Activities Fees.

(8) Graduate students resubmitting a thesis or project only are exempt from all Student Activities Fees.

(9) All Student Activities Fees, for one or more sessions, may be waived by the Registrar for students who are given formal permission to pursue their studies at another institution for one or more sessions.

(10) Graduate students who have completed all the work for a qualification at the commencement of session, except for the submission of the relevant thesis or project report, may be exempted from the payment of Student Activities Fees by the Registrar on production of an appropriate statement signed by the relevant Supervisor or Head of School.

(11) Students enrolled in a session or sessions devoted entirely to training or experience away from the campus and its associated laboratories, hospitals, centres, institutes and field stations are exempt from all Student Activities Fees for that session or sessions.

(12) Students whose registration is cancelled or suspended by the University shall receive refunds of fees paid in accordance with the provisions of section 18. (5) below except that a refund of one half of the fees shall be made if such cancellation or suspension takes place between the end of the fourth week of Session 1 and the end of the fourth week of Session 2.

18. Variations in Enrolment (including Withdrawal)

(1) Students wishing to vary an enrolment program must make application on the Variation of Enrolment form available from the appropriate Course Authority and the Student Enquiry Counter.

(2) Students withdrawing from courses (and see also information about withdrawal from subjects below) are required to notify the Registrar in writing or complete the withdrawal form available from the Student Enquiry Counter. In some cases such students will be entitled to fee refunds (see (5) below).

(3) Enrolment in additional subjects
Applications for enrolment in additional subjects must be submitted by:
28 March 1986 for Session 1 only and whole year subjects; 22 August 1986 for Session 2 only subjects.

(4) Withdrawal from subjects
Applications to withdraw from subjects may be submitted throughout the year but applications lodged after the following dates will result in students being regarded as having failed the subjects concerned, except in special circumstances:
(a) for one session subjects, the end of the seventh week of that session (18 April or 19 September).
(b) for whole year subjects, the end of the second week of Session 2 (8 August).

(5) Withdrawal from Course – Refunds – Student Activities Fees
Whether or not a student’s withdrawal entails academic penalties (covered in item (4) above) there are rules governing Student Activities Fees refunds in the case of complete withdrawal from a course as follows:
(a) If notice of withdrawal from a course is received before the first day of Session 1, a refund of all Student Activities Fees paid will be made.

(b) If notice of withdrawal is received on or after the first day of Session 1, a refund of all Student Activities Fee will be made on the following basis: any person who has paid the entrance fee in any year and who withdraws from membership of the University Union after the commencement of Session 1 in the same year, or who does not renew membership in the immediately succeeding year may on written application to the Warden receive a refund of half the entrance fee paid.

(c) If the notice of withdrawal is given before the end of the fourth week of Session 1 (28 March 1986) a full refund of Student Activities Fees paid will be made; if notice is given before the end of the seventh week of Session 1 (18 April 1986) a refund of three-quarters of the Student Activities Fees paid will be made; if notice is given before the beginning of Session 2 (28 July 1986) a refund of one-half of the Student Activities Fees paid will be made; if notice is given before the end of the seventh week of Session 2 (19 September 1986) a refund of one-quarter of Student Activities Fees paid will be made; thereafter no refund will be made except that provided for in (d) below.

(d) If a student’s enrolment in any year is for one session only and the student gives notice of withdrawal prior to the end of the fourth week of that session (28 March or 22 August 1986) a full refund of Student Activities Fees paid will be made; if notice is given before the end of the seventh week of that session (18 April or 19 September 1986) a refund of one-half of the Student Activities Fees paid will be made; thereafter no refund will be made.

(e) The refunds mentioned in (c) and (d) above may be granted by the Registrar to a student unable to notify the Registrar in writing by the times required provided evidence is supplied that the student has ceased attendance by those times.
Undergraduate Course Transfers

Students wishing to transfer from one course to another must complete and submit an application form, obtainable from the Student Enquiry Counter, the Chancellery, by Friday 10 January 1986.

Admission with Advanced Standing

Any persons who make application to register as a candidate for any degree or other award granted by the University may be admitted to the course of study leading to such degree or award with such standing on the basis of previous attainments as may be determined by the Professorial Board provided that:

1. the Board shall not grant such standing under these rules as is inconsistent with the rules governing progression to such degree or award as are operative at the time the application is determined;

2. where students transfer from another university such students shall not in general be granted standing in this University which is superior to what they have in the University from which they transfer;

3. the standing granted by the Board in the case of any application based on any degree/s or other awards already held by the applicants, shall not be such as will permit them to qualify for the degree or award for which they seek to register without completing the courses of instruction and passing the examinations in at least those subjects comprising the later half of the course, save that where such a program of studies would involve them repeating courses of instruction in which the Board deems them to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof;

4. the standing granted by the Board in the case of any application based on partial completion of the requirements for any degree or other award of another institution shall not be such as will permit the applicants to qualify for the degree or award for which they seek to register by satisfactory completion of a program of study deemed by the Board to be less than that required of students in full-time attendance in the final year of the course in which the applicants seek to register;

5. the standing granted by the Board in the case of any application based on the partial completion of the requirements for any degree or other award of the University may be such as to give full credit in the course to which the applicants...
seek to transfer for work done in the course from which they transfer.

Where the identity between the requirements for any award of the University already held and that of any other award of the University is such that the requirements outstanding for the second award are less than half the requirements of that award, students who merely complete such outstanding requirements shall not thereby be entitled to receive the second award but shall be entitled to receive a statement over the hand of the Registrar in appropriate terms.

Resumption of Courses

Students who have had a leave of absence for twelve months and wish to resume their course should follow the instructions about re-enrolling given in the letter granting leave of absence. If these instructions are not fully understood or have been lost, students should contact the office of the Admissions Section before November in the year preceding the one in which they wish to resume their course.

If students have not obtained leave of absence from their course and have not been enrolled in the course over the past twelve months or more, they should apply for admission to the course through the Universities and Colleges Admissions Centre before 1 October in the year preceding that in which they wish to resume studies.

Examinations

Examinations are held in June/July and in November/December.

Timetables

Provisional timetables indicating the dates and times of examinations are posted on the University noticeboards in May and October. Students must advise the Examinations Section (the Chancellery) of any clash in examinations.

Final timetables indicating the dates, times, locations, and authorized materials are available for students two weeks before the end of each session.

Misreading of the timetable is not an acceptable excuse for failure to attend any examination.

Assessment of Course Progress

In the assessment of a student's progress in a course, consideration may be given to work in laboratory and class exercises and to any term or other tests given throughout the year as well as to the results of written examinations.

Examination Results

Grading of Passes

Passes are graded as follows:

- **High Distinction**: an outstanding performance
- **Distinction**: a superior performance
- **Credit**: a good performance
- **Pass**: an acceptable level of performance
- **Satisfactory**: satisfactory completion of a subject for which graded passes are not available

Pass Conceded

A pass conceded may be granted provided that the overall performance is considered to warrant such a concession. A pass conceded in a subject will allow progression to another subject for which the former subject is a prerequisite.

Pass Terminating

A pass terminating may be granted provided that the overall performance is considered to warrant such a concession. A pass terminating does not allow progression to another subject for which the former subject is a prerequisite.

Availability of Results

Final examination results will be posted to a student's term address, or vacation address if requested. Forms requesting that results be posted to a vacation address and change of address forms are obtainable at the Student Enquiry Counter, the Chancellery. Forms can be accepted up to Friday 4 July for Session 1 results and Friday 5 December for Session 2 and whole year results. Results are also posted on School noticeboards and in the University Library. Results on noticeboards are listed by Student Registration Number.

No examination results are given by telephone.

Review of Results

A student may make application to the Registrar for the review of a result. The application form, accompanied by an appropriate fee, must be submitted not later than fifteen working days after the date of issue of the Notification of Result of Assessment form.

In reviewing a result, the subject authorities shall ensure that all components of the assessment have been assessed and a mark assigned.

A review of a result is not a detailed reassessment of a student's standard of knowledge and understanding of, and skills in, the subject. It is rather a search for arithmetic error in arriving at the composite mark and for gross and obvious error in assignment of marks in components of the final composite mark.

When a change in grade is recommended, the application fee will be refunded by the Registrar.

Special Consideration

Students who believe that their performance in a subject, either during session or in an examination, has been adversely affected by sickness or any other reason should inform the Registrar and ask for special consideration in the determination of their standing.
The examination paper will be available for reading ten minutes before the instruction is given to commence writing.

Use of Linguistic Dictionaries

Reading the Examination Paper

Examinations Held Away from the Campus

Arrival at Examinations

Examining the Examination Paper

Use of Linguistic Dictionaries

The answers in all examinations and in all work submitted must be in English unless otherwise directed. Students may apply for permission to use standard linguistic dictionaries in the presentation of written work for assessment. Such applications should be made in writing to the Officer-in-charge, Examinations Section not later than 14 days prior to the need to use the linguistic dictionary.

Academic Misconduct

Students are reminded that the University regards academic misconduct as a very serious matter. Students found guilty of academic misconduct are usually excluded from the University for two years. Because of the circumstances in individual cases the period of exclusion can range from one session to permanent exclusion from the University.

The following are some of the actions which have resulted in students being found guilty of academic misconduct in recent years: taking unauthorized materials into an examination; submitting work for assessment knowing it to be the work of another person; improperly obtaining prior knowledge of an examination paper and using that knowledge in the examination; failing to acknowledge the source of material in an assignment.

Conduct of Examinations

Examinations are conducted in accordance with the following rules and procedure:

1. Candidates are required to obey any instruction given by an examination supervisor for the proper conduct of the examination.

2. Candidates are required to be in their places in the examination room not less than fifteen minutes before the time for commencement.

3. No bag, writing paper, blotting paper, manuscript or book, other than a specified aid, is to be brought into the examination room.

4. Candidates shall not be admitted to an examination after thirty minutes from the time of commencement of the examination.

5. Candidates shall not be permitted to leave the examination room before the expiry of thirty minutes from the time the examination commences.

6. Candidates shall not be re-admitted to the examination room after they have left it unless, during the full period of their absence, they have been under approved supervision.

7. Candidates shall not by any improper means obtain, or endeavour to obtain, assistance in their work, give, or endeavour to give, assistance to any other candidate, or commit any breach of good order.

8. All answers must be in English unless otherwise stated.

Foreign students who have the written approval of the Registrar may use standard linguistic dictionaries.

9. Smoking is not permitted during the course of examinations.

10. A candidate who commits any infringement of the rules governing examinations is liable to disqualification at the particular examination, to immediate expulsion from the examination room and to such further penalty as may be determined in accordance with the By-laws.
Writing in Examinations
Candidates are permitted to take pens, pencils and erasers into the examination room but are advised that all answers must be written in ink. Except where expressly required, pencils may be used only for drawing, sketching or graphical work.

Acknowledgement of Sources
Students are expected to acknowledge the source of ideas and expressions used in submitted work. To provide adequate documentation is not only an indication of academic honesty but also a courtesy enabling the marker to consult sources with ease. Failure to do so may constitute plagiarism, which is subject to a charge of academic misconduct.

Further Assessment
In special circumstances further assessment including assessment or further assessment on medical or compassionate grounds may be granted.

Further assessment may be given by the subject authority at his or her discretion at any time prior to the meeting of the relevant faculty assessment committee (normally the fourth week of the Midyear Recess and the second week of December). Further assessment may also be awarded at the faculty assessment committee and students affected may need to be free to undertake that further assessment in the last week in the Midyear Recess and in the period up to the end of the second week in January; students should consult their subject authority for details of further assessment immediately their results are known.

Restrictions upon Student Re-enrolling

The University Council has adopted the following rules governing re-enrolment with the object of requiring students with a record of failure to show cause why they should be allowed to re-enrol and retain valuable class places.

First Year Rule
1. Students enrolled in the first year of any undergraduate course of study in the University shall be required to show cause why they should be allowed to continue the course if they do not pass the minimum number of subjects, units or credits prescribed for this purpose by the relevant faculty or board of studies.

The prescribed minimum for each undergraduate course may be found in Schedule A below; the schedule may be varied from time to time by the Professorial Board.

Repeated Failure Rule
2. Students shall be required to show cause why they should be allowed to repeat a subject which they have failed more than once. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue that course.

General Rule
3. (1) Students shall be required to show cause why they should be allowed to repeat a subject they have failed if the assessment committee of the faculty or board of studies so decides on the basis of previous failures in that subject or in a related subject. Where the subject is prescribed as part of the course they shall also be required to show cause why they should be allowed to continue that course.

(2) Students shall be required to show cause why they should be allowed to continue their course if the assessment committee of the faculty or board of studies so decides on the basis of their academic record.

The Session-Unit System
4. (1) Students who infringe the provisions of Rules 1 or 2 at the end of Session 1 of any year will be allowed to repeat the subject(s) (if offered) and/or continue the course in Session 2 of that year, subject to the rules of progression in the course.

(2) Such students will be required to show cause at the end of the year, except that students who infringe Rule 2 at the end of Session 1, and repeat the subjects in question in Session 2, and pass them, will not be required to show cause on account of any such subjects.

Exemption from Rules by Faculties
5. (1) A faculty or board of studies assessment committee may, in special circumstances, exempt students from some or all of the provisions of Rules 1 and 2.

(2) Such students will not be required to show cause under such provisions and will be notified accordingly by the Registrar.

Showing Cause
6. (1) Students wishing to show cause must apply for special permission to re-enrol. Application should be made on the form available from the Registrar and must be lodged with the Registrar by the dates published annually by the Registrar. A late application may be accepted at the discretion of the University.

(2) Each application shall be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies which shall determine whether the cause shown is adequate to justify the granting of permission to re-enrol.

Appeal
7. (1) Students who are excluded by the Admissions and Re-enrolment Committee from a course and/or subject under the provisions of the Rules will have their applications to re-enrol reconsidered automatically by the Re-enrolment Committee of the Professorial Board.

(2) Students whose exclusion is upheld by the Re-enrolment Committee may appeal to an Appeal Committee constituted by Council for this purpose with the following membership:

A Pro-Vice-Chancellor, nominated by the Vice-Chancellor who shall be Chairman.

The Chairman of the Professorial Board, or if its Chairman is unable to serve, a member of the Professorial Board, nominated by the Chairman of the Professorial Board, or when the
Chairman of the Professorial Board is unable to make a nomination, nominated by the Vice-Chairman.

One of the category of members of the Council elected by the graduates of the University, nominated by the Vice-Chancellor.

The decision of the Committee shall be final.

(3) The notification to students of a decision which has been upheld by the Re-enrolment Committee of the Professorial Board to exclude them from re-enrolling in a course and/or subject shall indicate that they may appeal against that decision to the Appeal Committee. The appeal must be lodged with the Registrar within fourteen days of the date of notification of exclusion; in special circumstances a late appeal may be accepted at the discretion of the chairman of the Appeal Committee. In lodging such an appeal with the Registrar students should provide a complete statement of all grounds on which the appeal is based.

(4) The Appeal Committee shall determine appeals after consideration of each appellant's academic record, application for special permission to re-enrol, and stated grounds of appeal. In particular circumstances, the Appeal Committee may require students to appear in person.

Exclusion

8. (1) Students who are required to show cause under the provisions of Rules 1. or 3. and either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in the subjects and courses on account of which they were required to show cause. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

(2) Students required to show cause under the provisions of Rule 2. who either do not attempt to show cause or do not receive special permission to re-enrol from the Admissions and Re-enrolment Committee (or the Re-enrolment Committee on appeal) shall be excluded, for a period not in excess of two years, from re-enrolling in any subject they have failed twice. Where the subjects failed are prescribed as part of a course they shall also be excluded from that course. Where the subjects failed are prescribed as part of any other course (or courses) they shall not be allowed to enrol in any such course.

Re-admission after Exclusion

9. (1) Excluded students may apply for re-admission after the period of exclusion has expired.

(2) (a) Applications for re-admission to a course should be made to the Universities and Colleges Admissions Centre before the closing date for normal applications in the year prior to that in which re-admission is sought. Such applications will be considered by the Admissions and Re-enrolment Committee of the relevant faculty or board of studies.

(b) Applications for re-admission to a subject should be made to the Registrar before 30 November in the year prior to that in which re-admission is sought. Such applications will be considered by the relevant subject authority.

(3) Applications should include evidence that the circumstances which were deemed to operate against satisfactory performance at the time of exclusion are no longer operative or are reduced in intensity and/or evidence of action taken (including enrolment in course/s) to improve capacity to resume studies.

(4) Students whose applications for re-admission to a course or subject are unsuccessful (see 8. (2) (a), (b) respectively) will be invited to appeal to the Re-Enrolment Committee of the Professorial Board. The decision of the Re-Enrolment Committee will be final.

10. Students who fail a subject at the examinations in any year or session and re-enrol in the same course in the following year or session must include in their programs of studies for that year or session the subject which they failed. This requirement will not be applicable if the subject is not offered the following year or session, is not a compulsory component of a particular course, or if there is some other cause which is acceptable to the Professorial Board, for not immediately repeating the failed subject.

Restrictions and Definitions

11. (1) These rules do not apply to students enrolled in programs leading to a higher degree or graduate diploma.

(2) A subject is defined as a unit of instruction identified by a distinctive subject number.

Schedule A

(See First Year Rule 1. above)

Where the minimum requirement is half the program, this is defined as half the sum of the unit values of all the subjects in a student's program.

<table>
<thead>
<tr>
<th>Faculty/Board of Studies</th>
<th>Minimum Requirement</th>
<th>Course</th>
<th>Unit Values (UV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Science</td>
<td>Half the program</td>
<td>3000-3220</td>
<td>One-session subjects: UV 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two-session subjects: UV 2</td>
</tr>
<tr>
<td>Architecture</td>
<td>Half the program</td>
<td>3270, 3275, 3330</td>
<td>Elective subjects: UV 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All other subjects: appropriate UV corresponding to credit points*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3360, 3380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All other subjects: UV equal to the allocated hours*</td>
</tr>
</tbody>
</table>
| Arts | 18 Level I credit points | 3400-3420 | *For details see the appropriate Faculty Handbook.
<table>
<thead>
<tr>
<th>Faculty/Board of Studies</th>
<th>Minimum Requirement</th>
<th>Course</th>
<th>Unit Values (UV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>4 units</td>
<td>3430</td>
<td>Science subjects: appropriate UV* Arts subjects: 6 credit points = UV 1 12 credit points = UV 2</td>
</tr>
<tr>
<td>Commerce</td>
<td>Three subjects</td>
<td>3490-3595 FT in both sessions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two subjects</td>
<td>3490-3595 PT in either session</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Half the program</td>
<td>3610-3612, 3660-3662, 3680-3682, 3700-3702</td>
<td>5.061: UV 0 One-session subjects: UV 1 Two-session subjects: UV 2</td>
</tr>
<tr>
<td></td>
<td>including Physics I or Mathematics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half the program</td>
<td>3620, 3730</td>
<td>All subjects: UV equal to the allocated hours*</td>
</tr>
<tr>
<td></td>
<td>including Physics I or Mathematics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half the program</td>
<td>3640, 3720-3725</td>
<td>One-session subjects: UV 1 Two-session subjects: UV 2</td>
</tr>
<tr>
<td></td>
<td>including Physics I or Mathematics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half the program</td>
<td>3740, 3760</td>
<td>One-session subjects: UV 1 Two-session subjects: UV 2</td>
</tr>
<tr>
<td>Law</td>
<td>Half the program</td>
<td>4710-4790</td>
<td>One-session subjects: UV 1 90.741: UV 0 All other two-session subjects: UV 2</td>
</tr>
<tr>
<td>Medicine</td>
<td>Half the program</td>
<td>3800</td>
<td>80.010: UV 3 81.001: UV 3 81.002: UV 6 70.001: UV 4 One General Studies elective: UV 1</td>
</tr>
<tr>
<td>Professional Studies</td>
<td>Half the program</td>
<td>4030, 4040</td>
<td>All subjects: UV 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4070-4080</td>
<td>All subjects: appropriate UV* One General Studies elective: UV 1</td>
</tr>
<tr>
<td>Science</td>
<td>Half the program</td>
<td>3910, 3950</td>
<td>All subjects: appropriate UV* One General Studies elective: UV 1</td>
</tr>
<tr>
<td>Science and Mathematics</td>
<td>2 units</td>
<td>3970</td>
<td>All subjects: appropriate UV*</td>
</tr>
</tbody>
</table>

*For details see the appropriate Faculty Handbook.

Admission to Degree or Diploma

Students whose current program will enable them to complete all requirements for the degree or diploma, including industrial training where necessary, should lodge with the Registrar the form Application for Admission to Degree/Diploma and return it to the Registrar by the second Monday in May for the October ceremonies, and the second Friday in October for all other ceremonies. The forms are available from the Student Enquiry Counter in the north wing of the Chancellery.

Students who have indicated on their enrolment form that they are potential graduands are forwarded an application form with their Confirmation of Enrolment Program notice in September (or, in the case of students who expect to satisfy requirements at the end of Session 1, with the form issued in April). Students who do not complete an application form will not graduate; students who do not return their application form by the due date will graduate at a later series of ceremonies.

Students enrolled in courses 3400, 3910 and 3970 who have completed an application form to graduate at the pass level and who then decide to proceed to an honours year should advise the Registrar, in writing before 1 September for those completing requirements at the end of Session 1, or before 28 February for those completing requirements at the end of Session 2.

A list of graduands in Medicine who have applied for their degree is published in The Sydney Morning Herald in January.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in October is published in The Sydney Morning Herald on the first Wednesday in September.

A list of graduands other than Medicine who have applied for their degree/diploma and who expect to graduate in April/May the following year is published in The Sydney Morning Herald on the first Wednesday in March.

Students who are potential graduands and who wish to notify the Registrar of a change of address should submit an additional form Final Year Students' Graduation: Change of Address.
Students are expected to be regular and punctual in attendance at all classes in the subjects in which they are enrolled. All applications for exemption from attendance at classes of any kind must be made in writing to the Registrar.

In the case of illness or of absence for some other unavoidable cause students may be excused by the Registrar for non-attendance at classes for a period of not more than one month or, on the recommendation of the Dean of the appropriate faculty, for a longer period.

Absence from Classes
Explanations of absences from classes, or requests for permission to be absent from forthcoming classes, should be addressed to the Registrar and, where applicable, should be accompanied by a medical certificate. If examinations or other forms of assessment have been missed, this should be stated in the application.

If students attend less than eighty per cent of their possible classes they may be refused final assessment.

Confirmation of Enrolment Program notices are sent to all students on 28 April and 29 September. It is not necessary to return these forms unless any of the information recorded is incorrect. If amendments need to be made, students should contact the appropriate course office.

Change of Address
The Student Records and Scholarships Office of the Department of the Registrar should be notified as soon as possible of any change of address. Failure to do this could lead to important correspondence (including results of assessment) going astray. The University cannot accept responsibility if official communications fail to reach students who have not given notice of their change of address. Change of Address Advice forms are available at Faculty and School offices and from the Student Enquiry Counter in the north wing of the Chancellery.

All communications from the University will be sent to the Session or Term address except when arrangements are made otherwise in the case of results of assessment (see Examinations: Availability of Results, earlier in this section). Change of Address Advice forms will be accepted up to Friday 5 December, except for final-year students wishing to change their Application for Admission for Degree/Diploma form. Changes to this form will be accepted up to a date four weeks before the student's graduation ceremony.

Ownership of Students' Work
The University reserves the right to retain at its own discretion the original or one copy of any drawings, models, designs, plans and specifications, essays, theses or other work executed by students as part of their courses, or submitted for any award or competition conducted by the University.

Notices
Official University notices are displayed on the noticeboards and students are expected to be acquainted with the notices which concern them. These boards are in the Biological Sciences Building, the Mathews Building, the Chancellery (lower ground floor), Central Lecture Block, Dalton Building (Chemistry), Main Building (Physics and Mining) and in the Western Grounds Area.
Parking within the University Grounds

A limited amount of parking is available on campus. Copies of the University's parking rules may be obtained on application to Room 240, the Chancellery.

Academic Dress

Information about the University's academic dress requirements may be obtained from the Ceremonials Section, Room LG2, the Chancellery (phone extension 3112).

Further Information

Lost Property

All enquiries concerning lost property should be made to the Superintendent (Patrol and Cleaning Services) on extension 3460 or to the Lost Property Office at the Union.

The Calendar

Please consult the Calendar for a more detailed account of the information contained in this section.
Introduction to the Sciences Handbook

This handbook has been designed to assist understanding of the academic activities of three inter-related groups within the university, namely the Board of Studies in Science and Mathematics, the Faculty of Biological Sciences and the Faculty of Science. The Board is responsible for the undergraduate studies of students majoring in disciplines associated with the two faculties and several schools from other faculties. The regulations governing the award of the degree of Bachelor of Science form a substantial part of the handbook. Other parts include details of the Science component of the combined degrees, Science/Law, Science/Civil Engineering, Science/Electrical Engineering, Science/Aeronautical Engineering, Science/Industrial Engineering, Science/Mechanical Engineering, Science/Naval Architecture, Science/Medicine, Science/Optometry, and of the two concurrent courses in Mathematics Education and Science Education.

Several specialist courses of study, also leading to the award of the degree of Bachelor of Science, are offered by the two faculties and the regulations covering these are given under the separate faculty sections. In addition the two faculties make available facilities to proceed to higher degrees and the conditions under which these awards are made are listed under the sections devoted to graduate study.

In the last part of the handbook there are brief statements of the syllabuses for units prescribed in the various regulations.
Faculty Information

Some People Who Can Help You

If you require advice about enrolment, degree requirements, progression within courses or any other general matters related to the Board, contact one of the following:

Ms K. Irvine, Administrative Assistant
Dr B. J. Burn, Co-ordinator of Studies in Science and Mathematics
Room 211, Plaza Level, Mathews Building

For information regarding particular courses, advice may be obtained from staff members listed in the Introduction to each of the sections related to the Board, the Faculty of Biological Sciences and the Faculty of Science, later in this handbook.

Enrolment Procedures

- Faculty of Biological Sciences
- Faculty of Science
- Board of Studies in Science and Mathematics

All students re-enrolling in 1986 or enrolling in graduate courses should obtain a copy of the free booklet *Enrolment Procedures 1986* available from Course Administration Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

The subject timetable for the Science and Mathematics Course (Course 3970) is available in late October/early November from the Science and Mathematics Course Office, Room 211, Mathews Building. All re-enrolling students should collect one of these timetables along with a preliminary enrolment form (SM86). The preliminary enrolment form is to be completed and returned to the Science and Mathematics Office by the end of the first week in January.

Sciences Library Facilities

Although any of the University Libraries may meet specific needs, staff and students of the Faculty of Biological Sciences are served mainly by the Biomedical Library and the undergraduate collection while those of the Faculty of Science are served mainly by the Physical Sciences Library. The undergraduate collection and services are useful to students from both faculties.

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboard of the Board of Studies in Science and Mathematics and the official noticeboards of the University.
The Biomedical Library

The Biomedical Library provides library services for staff and students from the Faculties of Medicine and Biological Sciences, and from the Schools of Food Science and Technology, Health Administration and Wool and Pastoral Sciences. It is closely associated with the libraries of the teaching hospitals of the University.

The Biomedical Library is located on Levels 2, 3 and 4 of the Mathews Building Annexe and is connected to the other Special Libraries via a link through the undergraduate collection.

Professional staff are available at the Reader Assistance Unit on Level 2 to provide reference services and to assist in the use of the catalogues. Instructional classes in the use of the library and in specific subject material can be arranged.

Computerized literature searches and interlibrary loans are also available.

Acting Biomedical Librarian Betty McEwin

The Physical Sciences Library

This library, situated on Levels 6 and 7 of the Library tower, caters for the information needs of staff, graduate students and undergraduate students in the pure and applied sciences, engineering and architecture. Details of the books, serials and microforms in the Physical Sciences Library are included in the microfiche monograph and serials catalogues, and the items themselves are identified by the prefix 'P'.

Serials with the prefix 'PJ' are not for loan but self-service photocopying facilities are available on Level 7.

This Library provides reference, reader assistance and reader education services and also, where appropriate, interlibrary loan and literature-searching services.

Trained staff are always available on Level 7 to assist readers with their enquiries.

Physical Sciences Librarian Marian Bate

Undergraduate Services

- The undergraduate collection caters for the needs of students in Years 1 and 2 and other groups where large numbers require mass teaching. Levels 3 and 4.
- The Open Reserve Section, houses books and other materials which are required reading. Level 2.
- The Audio Visual Section contains cassette tapes, mainly of lectures and other spoken word material. The section has wired study carrels and cassette players for student use. Level 3.
- The Reader Education program provides orientation tours and introductory library research method lectures to students.

Student Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Registrar for approval by the University Council.

The Psychological Society

The Psychological Society aims to provide activities both educational and social for students of psychology, and, more generally, to act as an intermediary body between students of different years, and staff.

The Society organizes a variety of activities including staff-student functions, informal discussions, film showings, and occasional talks and seminars. An activities fee enables the Society to meet any of the finances needed to support its functions.

Statistical Society of Australia:
New South Wales Branch

The Branch offers student membership to undergraduates who are following a recognized course of study which includes Statistics. The subscription for a student member is $15 per annum with a $4 rebate if paid before 1 March.

The Branch holds about four general meetings each year at the end of which two talks, one theoretical and the other applied, are given on the one topic. The Branch conducts a Research Section, and membership of this group is open to members of the Branch free of charge. Each year the Branch also conducts a symposium for the study and discussion of particular statistical techniques or of statistical methods in a specialized field; symposia are open to members at reduced rates.

Members of the Branch receive The Australian Journal of Statistics, which is published three times a year by the Statistical Society of Australia, together with the Society's Newsletter.

Applications and requests for further information should be sent to the Hon. Secretary, Dr. R. L. Sandland, C.S.I.R.O.-D.M.S., P.O. Box 218, Lindfield, NSW 2070.
Undergraduate Study:
Board of Studies in
Science and Mathematics
Introduction

The Science and Mathematics Course (3970) leads to the Bachelor of Science Degree on the completion of a three year program or a four year program chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The Board of Studies in Science and Mathematics offers a wide choice of programs each designed to meet specific aims and objectives. Most programs are identified with a particular School or discipline but some are multi-disciplinary.

All students in the Science and Mathematics Course must enrol in two units of first year Mathematics; either Mathematics I or Higher Mathematics I or General Mathematics. Care must be taken in making the choice as, in general, General Mathematics considerably limits the choice of units in following years.

Some Schools do not offer a full range of Level III units in the evening. The Schools concerned are marked below with †.

Students seeking general advice should contact the Board of Studies in Science and Mathematics Office (Room 211, Mathews Building, map reference F23) and for advice in specific disciplines should contact the representative of the relevant School as listed below:

First Year Biology Unit ... Dr R. J. King
School of Anatomy .. Dr D. J. Tracey (Years 2 and 3)
School of Applied Geology .. Professor F. W. D. Rost (Year 4)
School of Biochemistry ... Mr G. J. Baldwin
School of Biotechnology .. Mrs J. Gibbons
School of Botany ... Associate Professor N. W. Dunn
School of Chemistry .. Dr R. J. King
School of Community Medicine Dr D. S. Alderdice
† School of Electrical Engineering and Computer Science ... Dr T. J. V. Findlay (Year 1)
School of Geography .. Associate Professor M. A. Long (Year 2)
School of History and Philosophy of Science ... Dr P. R. Haddad (Year 4)
† School of Mathematics .. Dr A. E. Stark
School of Mathematics .. Dr P. W. Baker
School of Geography ... Dr J. Dodson
School of History and Philosophy of Science Dr D. Miller
School of Mathematics .. Associate Professor A. H. Low (Year 1)
School of Mathematics .. Miss M. Potter
The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences* and the Faculty of Science* and some members of specific Schools in other faculties contributing to the Science and Mathematics Course: Applied Geology, Chemical Engineering and Industrial Chemistry, Geography, Metallurgy (Applied Science); History and Philosophy of Science, Philosophy (Arts); Accountancy, Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Surveying (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

The Dean is the Dean of the Faculty of Biological Sciences, Professor E. O. Thompson.

The Chairman is Professor A. J. Wicken.

The Co-ordinator of Studies in Science and Mathematics is Dr B. J. Burn. The Administrative Assistant is Ms K. Irvine.

† See text of Introduction, on previous page.
* See Staff, listed later in this handbook.
The Science and Mathematics Course, which leads to the Bachelor of Science degree, is administered by the Board of Studies in Science and Mathematics and offers a wide choice of programs, each designed to meet specific aims and objectives. Most programs are identified with a particular school or discipline but some are multi-disciplinary.

Objectives of the Science and Mathematics Course

The important general objectives of most programs in the Science and Mathematics Course are:

1. To develop and sustain an interest in and knowledge of Science and Mathematics.

2. To develop a working knowledge of scientific methods of investigation and a favourable attitude towards them.

3. To encourage curiosity and creative imagination and an appreciation of the role of speculation in the selection and solution of problems, the construction of hypotheses, and the design of experiments.

4. To develop an appreciation of scientific criteria and a concern for objectivity and precision.

5. To develop confidence and skill in formulating problems and in treating both qualitative and quantitative data.

6. To develop the ability and disposition to think logically, to communicate clearly by written and oral means, and to read critically and with understanding.

7. To develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.

8. To promote understanding of the significance of science, technology, economics and social factors in modern society, and of the contributions they can make in improving humans' material conditions and in widening their imaginative horizons and their understanding of the universe.
9. To provide opportunities for the development of students' motivations and social maturity, and an awareness of their own capabilities in relation to a choice of career which will be fruitful to themselves and to society.

There is a wide range of programs in single and multi-disciplinary areas leading to a three year degree or a four year degree.

The Structure of the Science and Mathematics Course

The Science and Mathematics Course consists of a number of individual programs, based on units ranked as Level I, Level II, Level II/III, Level III and Level IV with a unit size varying from 56-84 hours.

The terms Levels I, II, III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

The Bachelor of Science degree is awarded on completion of

- a three year program
or
- a four year program

chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The time specified is a minimum time required for completion of the degree. It may be taken over a longer period of time.

- A student must select and be enrolled in one of the prescribed programs.

- A student may not undertake more than 8 Science units in any one year unless approval is given by the Co-ordinator or the Dean of the Board of Studies in Science and Mathematics.

- With the approval of the Dean, a student may change from one selected program to another. A written application to make the change, together with details of any optional units selected in the new program, must be lodged at the office of the Board of Studies in Science and Mathematics, Room 211 (Mathews Building, map reference F23).

- The programs listed are made up of a sequence of units. Where a choice of units is indicated within a program care must be taken to satisfy the requirements, such as prerequisites and co-requisites.

- A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.

- A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.

- An excluded unit is one which cannot be counted towards the degree qualification together with the unit which excludes it. In exceptional circumstances, on the recommendation of the head of the appropriate school, the Board of Studies in Science and Mathematics may waive or vary a particular prerequisite, co-requisite or exclusion.

- A single major is a program specifying only 4 Level III units in a discipline.

- A double major is a program specifying 4 Level III units of each of 2 disciplines or 8 Level III units in a single discipline.

- Upon sufficient cause being shown in a particular case or cases, the Board of Studies in Science and Mathematics may vary any of these rules.

The three year program

The three year program leading to the award of the pass degree consists of:

1. at least 23 units at Level I, II, II/III, III as specified in an individual program with the following requirements:
 (1) not less than eight nor more than ten units may be from Level I;
 (2) two of the Level I units must be 10.001 Mathematics I, 10.011 Higher Mathematics I or 10.021 B and 10.021 C;
 (3) not less than four units from Level III or as specified in an individual program.

2. General Studies electives as specified in an individual program.

- In order to graduate a student must pass all the units specified in the program of his/her choice.

The four year program

The four year program, leading to an Honours Class I, II/1, II/2, III or pass degree consists of:

1. at least 23 units at Level I, II, II/III, III as specified in an individual program, with the following requirements:
 (1) not less than eight nor more than ten units may be from Level I;
 (2) two of the Level I units must be 10.001 Mathematics I, 10.011 Higher Mathematics I or 10.021 B and 10.021 C.
 (3) not less than eight units from Level III or as specified in an individual program.
2.1. an approved honours program offered by one or more schools; or

2. at least 10 units at Level IV as specified in an individual program.

For Entry to Year 4 students are required:

1. to have completed Years 1, 2 and 3 of the specific program and to have satisfied prerequisite requirements as specified in Table 3;

2. to seek the guidance of the appropriate head of school at an early stage of study to ensure that the program being followed is best suited to lead to the Year 4 honours program;

3. to have completed relevant subjects normally with better than passing grades;

4. to have the approval of the appropriate Head of School at the end of Year 3.

In order to graduate a student must pass all the units specified in the program of his/her choice.

A person on whom the pass degree of Bachelor of Science of the University has been conferred may be admitted by the Board of Studies in Science and Mathematics, on the recommendation of the relevant Heads of Schools, to candidacy for an honours degree conversion program with credit for all units completed, if during his or her studies for the pass degree, he or she has satisfied the prerequisites for proceeding to honours level laid down by the School or Schools concerned.

Rules governing admission to the Science and Mathematics Course with advanced standing

Any person who makes application to enrol in the Science and Mathematics Course (Course 3970) or in a combined degree course which includes the Science degree course administered by the Board of Studies in Science and Mathematics may be admitted to the course of study leading to such degree with such standing on the basis of previous attainment as may be determined by the Board of Studies in Science and Mathematics provided that:

(1) Where students transfer from another tertiary institution, such students shall not in general be granted standing in the course which is superior to that which they have enjoyed at the institution from which they transferred.

(2) The standing granted by the Board of Studies in Science and Mathematics in the case of any application based upon any degree(s) or other award held by applicants, should not be such as will permit the applicants to qualify for the science degree, without completing the course of instruction and passing examinations in at least those subjects comprising the latter half of the Science and Mathematics course, so that where such a program of study would involve the applicants in repeating courses of instruction in which the Board of Studies in Science and Mathematics deems the applicants to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof.

(3) The standing granted by the Board of Studies in Science and Mathematics in the case of applications based upon partial completion of the requirement for any degree or other award of another institution shall not be such that it will permit the applicants to qualify for the award of the science and mathematics degree by satisfactory completion of the program of study deemed by the Board to be less than that required for students in full time attendance in the final year of the Science and Mathematics Course (Course 3970).

(4) The standing granted by the Board of Studies in Science and Mathematics in the case of applications based upon the partial completion of the requirements for any degree or award of the University may be such as to give full credit in the Science and Mathematics Course (Course 3970) for work done in the course from which the students transfer.

Workload

The expected maximum workload for students devoting most of their time to this course is four science units per session. This can only be exceeded in exceptional circumstances by students with a good academic record and requires the permission of the Co-ordinator of Studies.

Students with external commitments, such as part-time employment, in excess of ten hours per week, should take fewer units. External commitments are not to be taken into consideration in relation to such matters as extensions of time for written work or failure to attend examinations, which may, for some subjects, be scheduled on Saturday mornings.

Programs

Students are advised that it is not possible to complete their studies by attendance at evening classes alone.

Each program has a four-digit identifying number.

Most programs have been set out as Years 1, 2, 3 and 4 for the four year program and in these cases Years 1, 2 and 3 comprise a three year program. A few programs are set out as Years 1, 2 and 3 and lead to the pass degree only.
Students wishing to take a double major are warned that due to timetabling difficulties it may take longer than three years to complete degree requirements.

To progress through a program a student must meet all the prerequisites and co-requisites as detailed in Tables 1, 2 and 3.

The range of programs has been designed to cover a wide variety of needs in the various areas of science and mathematics:

<table>
<thead>
<tr>
<th>Program</th>
<th>Science Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>see program 7000</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>see program 4100</td>
</tr>
<tr>
<td>Biology</td>
<td>Biology is taught in Year 1 as a single discipline but in later years as specific subjects: biological technology, biochemistry, botany, entomology, genetics, immunology, microbiology and zoology.</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>see program 4200</td>
</tr>
<tr>
<td>Botany</td>
<td>see program 4300</td>
</tr>
<tr>
<td>Chemistry</td>
<td>see program 0200</td>
</tr>
<tr>
<td>Community Medicine</td>
<td>units available in some programs (the identifying number is 79)</td>
</tr>
<tr>
<td>Computer Science</td>
<td>see program 0600</td>
</tr>
<tr>
<td>Genetics</td>
<td>see program 6840</td>
</tr>
<tr>
<td>Geography</td>
<td>see program 2700</td>
</tr>
<tr>
<td>Geology</td>
<td>see programs 2500, 2503</td>
</tr>
<tr>
<td>History and Philosophy of Science</td>
<td>see program 6200</td>
</tr>
<tr>
<td>Information Systems</td>
<td>see program 1400</td>
</tr>
<tr>
<td>Marine Science</td>
<td>see programs 6831, 6832, 6833, 6834</td>
</tr>
<tr>
<td>Mathematics</td>
<td>see programs 1000, 1006, 1061, 6810</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>units available in some programs (the identifying number is 4)</td>
</tr>
<tr>
<td>Microbiology</td>
<td>see program 4400</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>see program 7300</td>
</tr>
<tr>
<td>Philosophy</td>
<td>see program 5200</td>
</tr>
<tr>
<td>Physics</td>
<td>see programs 0100, 0161, 2503</td>
</tr>
<tr>
<td>Physiology</td>
<td>see program 7300</td>
</tr>
<tr>
<td>Psychology</td>
<td>see program 1200</td>
</tr>
<tr>
<td>Zoology</td>
<td>see program 4500</td>
</tr>
</tbody>
</table>

In addition to Course 3970 programs are also included for Courses 3611 (Science/Aeronautical Engineering), 3661 (Science/Industrial Engineering), 3681 (Science/Mechanical Engineering), 3701 (Science/Naval Architecture), 3725 (Science/Electrical Engineering), 3730 (Science/Civil Engineering), 3820 (Science/Medicine), 3951 (Science/Optometry), 4070 (Mathematics/Education), 4080 (Science/Education), 4770 (Science/Law).

Physics

The study programs offered by the School of Physics reflect the importance of Physics in science and technology at both the fundamental and at the applied levels. Thus within the Board of Studies in Science and Mathematics, professional training in Physics is provided by programs 0100 and 0161 while in areas such as Engineering a number of courses are available in which Physics is combined as a major study.

These features are summarized in the following table:

<table>
<thead>
<tr>
<th>Professional Training in Physics</th>
<th>Physics in other Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>Courses</td>
</tr>
<tr>
<td>0100 Physics</td>
<td>3170 Textile Physics</td>
</tr>
<tr>
<td>Including:</td>
<td>3611 Aeronautical Engineering with Physics</td>
</tr>
<tr>
<td>Theoretical Physics</td>
<td>3661 Industrial Engineering with Physics</td>
</tr>
<tr>
<td>Applied Physics</td>
<td>3681 Mechanical Engineering with Physics</td>
</tr>
<tr>
<td>Biophysics</td>
<td>3701 Naval Architecture with Physics</td>
</tr>
<tr>
<td>Physics/Geology</td>
<td>3725 Electrical Engineering with Physics</td>
</tr>
<tr>
<td>0161 Physics/Computer Science</td>
<td>3730 Civil Engineering with Physics and Mathematics</td>
</tr>
<tr>
<td></td>
<td>4770 Law with Physics</td>
</tr>
<tr>
<td></td>
<td>5801 Education with Physics</td>
</tr>
<tr>
<td></td>
<td>5803 Physics</td>
</tr>
<tr>
<td></td>
<td>5805 Education with Physics</td>
</tr>
</tbody>
</table>

Professional Training
Program 0161 (Physics/Computer Science) has been carefully structured to include not only the basic units of Physics but also those Mathematics and Computer Science units necessary to meet the specific aims of the program. Only minor variations from this program can be considered.

On the other hand, program 0100 (Physics) offers greater flexibility in the choice of units particularly for the student who intends to take out the BSc degree at Pass level after 3 years. Also, for those students who intend to proceed further, Honours may be taken in either Physics, Theoretical Physics, Applied Physics, Physics/Geology or Biophysics.

Sample programs of study and guidance as to the choice of units can be obtained from the School. The following information relating to program 0100 should be particularly noted:
Program 0100

1. It is suggested that the units chosen in Year 1 might comprise 6.611, 1.061, 2.121, 2.131.

2. Students wishing to proceed to Year 4 (Honours) must complete at least 7 Level III units. These will normally be taken from the Physics units on offer (unless the student is specializing in Biophysics or in Geology) and include at least one of 1.0533, 1.0543, 1.133, 1.763 for students majoring in Physics or in Applied Physics.

3. For the study of Applied Physics certain Level III units are strongly recommended. These are units of a more applied nature eg 1.133 Electronics.

4. For the study of Theoretical Physics, additional mathematics units are specified. Thus in Year 2 students should include unit 10.111A (or 10.121A) and in Year 3, unit 10.412D (or 10.422D). Certain Level III units of a theoretical nature, eg 1.1133 are also strongly recommended.

5. Arrangements exist to enable a joint major in Physics/Geology. Students are expected to include 2 units of Geology in Year 2 and 4 units of Geology in Year 3. The possibility of joint majors in other subjects (eg Mathematics or Chemistry) exists.

6. For the study of Biophysics, students are required to take Chemistry and Biology units in Year 1 and Biochemistry in Year 2 in addition to Physics units.

7. In addition to the above there are other areas of study of major interest. Thus an introduction to Astrophysics and Optics is available to students choosing the elective units 1.1633, 1.713, 1.763, 1.773 and the study of Condensed Matter (Solid State) Physics may be furthered by the inclusion of elective units such as 1.3133 and 1.3143.

8. In certain circumstances unit 1.002 may be deferred to Year 3.

Subject descriptions of the units may be found in another section of this handbook. As is to be expected, several of the elective units mentioned above reflect the research interests of the various Departments of this School. These are at present five in number: Applied Physics, Astrophysics and Optics, Biophysics, Condensed Matter Physics, Theoretical Physics.

Physics in other Courses
The previous page lists those courses which have been arranged with other schools. Several of these can lead to honours in Physics (eg 3725, 5801) so it must not be thought that the only avenue to specialization in Physics is via the professional programs 0100, etc.

Students should also bear in mind that prerequisites and co-requisites can be waived in certain cases, eg when it is judged that an equivalent study has been undertaken in some other combinations of units. The possibility also exists of relaxing the requirements of programs to allow a student to select a unit in which he or she has a special interest but which is not a recommended one in the program.

0100
Physics

Year 1

1.001
10.001 or 10.011*
Choose 4 Level I units from: **††
1. Table 1 and/or
2. Table 2 for program 0100

Year 2

1.002††, 1.012, 1.022, 1.032
10.1113*, 10.1114*, 10.2111*, 10.2112*
Choose 2 units from: **
1. Table 1 and/or
2. Table 2 for program 0100
1 General Studies elective

Year 3†

1.033, 1.0143††, 1.023, 1.0333, 1.0343††, 1.043
Choose at least 3 units from: **
1. Table 1 and/or
2. Table 2 for program 0100
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)

Choose one of 1.104, 1.304, 1.504, 1.604, 68.430

*Students are encouraged to select Higher Level Mathematics units where applicable.
**Students should read carefully the above description relating to program 0100 and seek advice from the School of Physics regarding the choice of units. An incorrect choice of units could exclude a student from the study of certain areas of Physics and/or prevent the combination of Physics with other disciplines.
†See footnote to program 6200.
††Students with a special interest in Biophysics may replace unit 1.002 with unit 2.102B and units 1.0143 and 1.0343 with the Biophysics units 1.1433 and 1.1533 provided 2.121, 2.131, 17.031 and 17.041 are completed in Year 1 and 41.101 is taken in Year 2.

0161
Physics/Computer Science

Year 1††

1.001, 1.061
6.611
10.001 or 10.011*
Choose 2 Level I units from Table I**

Year 2

1.012, 1.022, 1.032
6.621, 6.641
10.1113*, 10.1114*, 10.2111*, 10.2112*
Choose 1 unit from 1.062, 6.631†, 10.111A*
1 General Studies elective

For Year 3, Year 4 and footnotes, see overleaf
Program 0161 continued

Year 3
1.002, 1.0133, 1.023, 1.0333
Choose 2 further Level III Physics units
Choose 1 Level III Computer Science unit
Choose 2 units from:**
1. 1.062, 6.631†, 10.212A*, 10.412D*, 10.612
2. Level III Physics units
3. Level III Computer Science units
† General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units.

Year 4 (Honours)**
Choose one of 1.104, 1.304, 1.504

*See footnote to program 0100.
**Students intending to proceed to Year 4 are required to choose appropriate units. This choice is determined by the requirements of program 0100. Students are required to consult the School of Physics.
†The unit 6.631 must be taken in Year 2 or Year 3, but students should bear in mind that this unit is a prerequisite for 6.632 and 6.613.
††Quota restrictions apply to most Level III Computer Science units. Students wishing to take these units should in Year 1 apply for entry to the Computing quota. Advice should be obtained from the office of the Board of Studies in Science and Mathematics.

Geophysics

See program 2503

Recommended Double Majors

Physics/Geology
Physics and Science Policy Studies (See program 6200 for further details)

Chemistry

The School is divided into four departments (Physical, Organic, Inorganic and Nuclear, and Analytical) and a First Year Teaching unit. Each department contributes to first year teaching and offers specialty courses in its own area for the Science and Mathematics programs, Pure and Applied Chemistry and servicing to other faculties.

The study program 0200 offered by the School of Chemistry provides both a basic scientific education and a professional training in chemistry. Fundamental, applied, environmental and industrial aspects of chemistry are included. The program allows the study of chemistry to be combined with the study of another discipline, for example, physics, biochemistry, mathematics or computer science, by suitable choice of units.

Suitable choice of units makes it possible to study chemistry as a co-major with another branch of science (eg geology, biochemistry, computer science, biotechnology, physics) to an advanced level. A combination of Level III chemistry and mathematics units provides a useful basis for specialization in aspects of physical or theoretical chemistry whilst a combination of Level III chemistry and geology units is suitable for those who wish to specialize later in geochemistry. Level III chemistry and physiology units could form the basis of specialized studies of body chemistry.

Students wishing to undertake the maximum number of chemistry units should follow Program 0205 Pure and Applied Chemistry. This involves 14 chemistry units and is referred to as a double major in terms of the Science and Mathematics course. It is designed for specialization in chemistry and should be selected by students who wish to devote their studies at Level III entirely to chemical topics.

The Chemistry programs are open to all students who have satisfied the requirement for entry into the Science and Mathematics course. However, those who have not studied sufficient science at school (see prerequisites under subject number) may be required to study a special introductory unit (2.111) before enrolling in the Level I Chemistry units (2.121, 2.131, 2.141) specified. The Level I subject 2.141 is designed specifically for students intending to major in Chemistry. It covers the same material, at a similar level to that in 2.121 and 2.131, but is a full year subject and the order of treatment of the topics is different.

The Chemistry programs have a first year of study which includes chemistry, physics and mathematics, in common with many other programs, and an elective. It is in the choice of this elective that special care has to be given as an incorrect choice could exclude the combination of chemistry with another selected discipline at Level II or III, (eg omission of biology units would preclude taking biochemistry at Level II). Advice from the course advisors should be sought on this point. Refer also to the course outline on Pure and Applied Chemistry later in this Handbook.

The chemistry programs lead to study at the Honours level (Level IV) and to graduate studies in chemistry. The usual introduction to research in Chemistry is in Level IV and at this level the student devotes the major part of the time to
research under the direction of a member of staff as supervisor. A proportion of the time is taken up with formal course work. The Honours year (or its equivalent in qualifying studies) may be followed by a higher research degree. Further information about graduate courses is included in this handbook and in a booklet: Postgraduate Studies and Research in the School of Chemistry.

0200 Chemistry**

Year 1
1.001
2.121 & 2.131, or 2.141
10.001 or 10.011 or both 10.021B and 10.021C
Choose 2 Level I units from Table 1

Year 2*
2.102A, 2.102B, 2.102C, 2.102D
Choose 3 units from Table 1 or Table 2 for program 0200
2 General Studies electives

Year 3†
Choose 4 Level III Chemistry units**
Choose 4 units from Table 1

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
2.004

*Students wishing to do a co-major of Chemistry with Geology or Biotechnology may apply for a variation of the specified units to the Programs Committee of the Board of Studies in Science and Mathematics.

**Students should read carefully the above descriptions relating to programs 0200 and 0205 and seek advice from the School of Chemistry regarding the choice of units.

Recommended Double Majors

Chemistry/Biochemistry
Chemistry/Biotechnology
Chemistry/Computer Science
Chemistry/Geology
Chemistry/Mathematics
Chemistry/Physics
Chemistry/Physiology
Chemistry/Science Policy Studies
(See program 6200 for further details)

0205 Pure and Applied Chemistry**

Year 1
1.001
2.121 and 2.131, or 2.141
10.001 or 10.011
or both
10.021B and 10.021C
Choose 2 Level I units from Table 1

Year 2
2.102A, 2.102B, 2.102C, 2.102D
Choose 3 units from Table 1
2 General Studies Electives

Year 3
2.013A, 2.003B, 2.003C, 2.003D
Choose 4 Level III Chemistry units

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
2.004

**Students should read carefully the above descriptions relating to programs 0200 and 0205 and seek advice from the School of Chemistry regarding the choice of units.

†See footnote to program 6200.
Undergraduate courses in metallurgy involve a general training in basic sciences and engineering. These fundamental principles are then extended to cover studies of metals and their extraction, refining, working, fabrication and use as engineering materials. Two courses in Metallurgy are offered in the Faculty of Applied Science: a four-year full-time course (3125) leading to the award of the BMetE degree and a six-year part-time course (3130) leading to the award of the BSc(Tech) degree.

Formal programs in metallurgy are not available in the Science and Mathematics course. However selected subjects from the professional metallurgy courses may be taken as units in conjunction with other majors in the Science and Mathematics course and these are listed in Table 1. These would provide, for example, a suitable background for teaching specialization in engineering science at secondary schools.

Metallurgy subjects are also offered in the Physical Metallurgy and Chemistry major in the combined course for BE/BSc in Civil Engineering (Course 3670) and in the Materials Science major in the combined courses for BE/BSc in Mechanical Engineering (Course 3681), Aeronautical Engineering (Course 3611) and Naval Architecture (Course 3701). These courses are described in the Faculty of Engineering Handbook.

Students seeking further information on metallurgy subjects or metallurgy as a career should contact the Head of the School of Metallurgy or consult the Faculty of Applied Science Handbook.

Computer Science involves the study of the design, construction and uses of computer systems. It is concerned with the representation of data and data structures in computer systems and the design of algorithms for automatic manipulation of this information by programming languages and machine systems. It is very much concerned with the design and development of hardware and software tools by which computer applications may be developed, but not so much with the applications themselves. At the University of New South Wales, particular emphasis is given to comprehension of the basic principles behind computing tools, operating systems, compilers and translators, and computer hardware.

Graduates who major in Computer Science frequently find employment where the requirement is for an expert knowledge of computer systems rather than extensive experience in a particular application area. Potential employers include the computer manufacturers, consulting companies, specialist companies marketing computer hardware and software services, and many large organizations with major computing establishments.

All Science students with the appropriate Mathematics prerequisites have entry into all Year 1 and Year 2 Computer Science units. Resources limit the number of students who may enter most Year 3 Computer Science units but other subjects are proposed which will allow computer applications majors to complete an appropriate course of study.

Entry to a Computer Science major is either by direct selection at university entry or by competitive entry at the end of Year 1 or Year 2. Students who wish to compete at the end of their first year for a place in Computer Science (program 0600 — Computer Science), enrol in their first year in program 6806. Students in program 6806 may also have the alternative of entering program 1400 (Information Systems) at the end of their first year. Acceptance into programs 0600 or 1400 is based on academic performance in Year 1 or Year 2.

Science/Law students may enrol directly into Year 1 of the Course 4770 Computer Science program. To progress into Year 2 of this program, these students must, at the end of Year 1, compete with students in Course 3970.

Students majoring in other disciplines may undertake all Level I and Level II and one of the Level III Computer Science units and thus undertake a substantial amount of Computing. Programs available are Physics/Computer Science (0161) and Mathematics with Computer Science (1061). Students with very good academic records may be able to enrol in further Computer Science units by special permission from the Head of the Department of Computer Science.

There are many ways to study Computer Science and computer applications at this University, apart from the Science and Mathematics Course. Students may major in Computer Science as part of the 5 year combined degree programs in Electrical Engineering, Aeronautical Engineering, Industrial Engineering, Mechanical Engineering and Naval Architecture which leads to the award of the two degrees of BE and BSc (see under Courses 3725, 3611, 3661, 3681 and 3701 respectively and the Faculty of Engineering Handbook).
Students may also major in Computer Science in the combined Science/Law degree course. A major sequence in Computer Science is also available in the Bachelor of Arts course (see the Faculty of Arts Handbook). Other courses and subjects which include computing and computing applications are available in other Schools, for example students may major in Computers and Information Systems in the Bachelor of Commerce degree course: see the Faculty of Commerce Handbook.

0600 Computer Science*

Year 1
6.611
10.001 or 10.011
Choose 5 Level I units from:**
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 0600

Year 2
6.621, 6.631, 6.641
Choose 5 units from:**
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 0600
1 General Studies elective

Year 3
Choose 4 Level III Computer Science units
Choose 3 units from:**
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 0600
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units including 6.613, 6.632, 6.642 & 6.643.

Year 4 (Honours)
6.606

*In Year 1 students who have not gained direct entry to this program must enrol in program 6606. Enrolment in Year 2 is based on academic performance in Year 1.

**The program may include up to 8 units other than Computer Science units that are not in Table 1. Subjects chosen from the BA degree course are restricted to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies. History and Philosophy of Science and Philosophy subjects are available in Table 1. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273. (6 BA degree credit points at Level I or 4 credit points at Upper Level are equivalent to 1 unit.)

Computer Science/Physics
See program 0161 Physics/Computer Science

See also
1400 Information Systems
Mathematics

The School of Mathematics is divided into Departments of Pure Mathematics, Applied Mathematics, Theoretical and Applied Mechanics, and Statistics. The School provides courses at the Pass and Honours levels based on the above departments and in specified interdisciplinary programs such as Mathematics of Management, Applied Mathematics (Economic Optimization). There is considerable overlap of interests and interaction between the departments; students in general will take units from more than one department.

Pure Mathematics is concerned with the whole structure of mathematics. Research focuses on the creation of new mathematical systems and the finer analysis of partially understood fields. Problems of mathematics come from many sources of science and industry but the pure mathematician is more concerned with the problems themselves than with the sources from which they arise. Courses in the Department of Pure Mathematics are designed to provide the necessary equipment for those who intend to use mathematics in any way, to give basic familiarity with the fundamental language of modern science and technology and to develop appreciation for and insight into one of our major cultural achievements.

Applied Mathematics and Theoretical Mechanics are concerned with the understanding of scientific phenomena by the construction, analysis, and interpretation of mathematical models. Problems may originate not only in the physical and engineering sciences, but also in the social, computing, biological, economic and management sciences.

The major interests of the Department of Applied Mathematics are:

1. Optimization and control theory, with special attention to social science applications (control of economic systems, resource allocation, etc)
2. Numerical analysis and computer-related mathematics
3. Modern theoretical physics

The department offers complete training to graduate research level in areas 1. and 2.; it provides some undergraduate training in area 3. in collaboration with other Schools, and accepts higher degree candidates in that area.

The Department of Theoretical and Applied Mechanics is interested in mathematical techniques and applications of mathematics to problems in classical and engineering science. There is also some emphasis on the environmental sciences, such as meteorology and oceanography.

Statistics is the science and art of using factual material for modelling and inference. Its mathematical foundations are in the theory of probability and it deals with how to estimate and make decisions using knowledge which is uncertain or observational material which is subject to error. There is a rich interplay of ideas between the theory of statistics and fields such as engineering, medicine and biological and behavioural sciences where statistical problems constantly arise.

The department has strong interest in the areas of applied statistics, stochastic processes, biometry, inference, design of experiments, sequential analysis, discrete distributions, nonparametrics and statistical computing.

Programs of study

Program 1000 (Mathematics)
Within this program it is possible to major in Pure Mathematics, Applied Mathematics or to undertake a General Mathematics major with a mixture of Pure and Applied Mathematics and possibly some Statistics; it is also possible by extending the program to four years to undertake Honours in Pure Mathematics or Applied Mathematics. Students wishing to major or undertake Honours in Statistics should consult program 1006.

Pure Mathematics major
Any completed 1000 program will be deemed to be a major in Pure Mathematics if it has included four units (total value) of units and half units listed in Table 1 as Pure Mathematics Level III or Higher Pure Mathematics Level III.

Pure Mathematics Honours
Honours in Pure Mathematics are obtained by completing 10.123, the prerequisites for which are 10.122B and the six Higher Pure Mathematics Level III half units offered in the previous year. Since the twelve Higher Pure Mathematics Level III half units are offered in alternate years (six each year) and included as part of 10.123 it is essential that all six should be taken in one year immediately before preceding to 10.123. As the normal prerequisites for third year higher units are first and second year higher units students intending to do Honours in Pure Mathematics should take all the Year 1 and Year 2 units specified in program 1000 at higher level.

Applied Mathematics major
Any completed 1000 program will be deemed to be a major in Applied Mathematics if it has included four units (total value) of units and half units listed in Table 1 as Level III Applied Mathematics or Theoretical Mechanics (or their higher equivalent). When selecting optional units in program 1000, the following choice of mathematics courses (or their higher equivalent) are strongly recommended.

Year 2: At least two of 10.2113, 10.2115, 10.4111, 10.4112.
Year 3: At least three of 10.212A, 10.212L, 10.212M, 10.222C, 10.412A, 10.412B, 10.412D.

In addition, Applied Mathematics students are expected to select relevant units from other disciplines according to the particular applications of mathematics in which they are interested. The following choices are recommended in first year.

1. Applied mathematics for physical and engineering sciences or for theoretical oceanography and fluid mechanics: either 1.001 or 5.006 or both 5.010 and 5.020. Note that these are the prerequisites for 10.4111 and 10.4112.
2. Applied mathematics for economic or management sciences: 14.501, 14.511, 15.001, 15.011. Note that if 14.501 and 14.511 are chosen then all four must be taken in first year and permission must be obtained through the Board of Studies office as there is a quota. For further details see program 6810.
3. Applied mathematics for social or biological sciences, choose at least two of the following groups:
a. 17.031 and 17.041,
b. 12.100,
c. 1.001,
d. 2.141 or both 2.121 and 2.131.

Applied Mathematics Honours
A student interested in taking an Honours degree in Applied Mathematics is expected to enrol in 10.011 in first year and is required to complete at least one Level II and at least three Level III Higher Applied Mathematics or Theoretical Mechanics units (total value) and to complete, at Level IV, either 10.223 or 10.423.

Students are advised to attempt the Level II Mathematics units in program 1000 at the Higher level, and to select optional units according to the recommendations above for an Applied Mathematics major. Students should obtain a copy of recommended programs for Applied Mathematics from the School of Mathematics office before enrolling Year 2, and they are strongly encouraged to consult a staff member in Applied Mathematics regarding appropriate courses of study.

Program 1006 (Statistics)

Statistics Major
The completed 3 year program 1006 (Statistics) will be deemed to be a major in Statistics.

Statistics Honours
Honours in Statistics are obtained by completing 10.323, the prerequisite for which is the completion of 3 years of program 1006 (Statistics) with all corresponding Higher Statistics Level II and Level III units and preferably all Higher Mathematics Level I, II and III units.

Program 1061 (Mathematics or Statistics/Computer Science) will be of particular interest to students who wish to combine a Mathematics (or Statistics) major with a substantial amount of computing.

Program 6810 (Mathematics of Management) includes subjects given by the Schools of Accountancy and of Economics. There has been an increasing trend towards more use of mathematics, and the use of more advanced mathematics, in scientific management. This program is intended to train mathematicians with an interest in the application of mathematics to management science. The mathematics content is very solid indeed, amounting to a full mathematics degree. A student completing this course with a good record is eligible for entry to the Master of Commerce graduate degree program in the School of Accountancy. If appropriate subjects are selected, then this degree (MCom), which may be awarded by part-time study, qualifies the graduate for provisional membership of the Australian Society of Accountants; full membership is then granted after appropriate experience.

Mathematics/Computer Science
See Computer Science/Mathematics

1000 Mathematics***

Students intending to proceed to the Honours year should take Higher Mathematics subjects throughout.

Year 1
10.001 or 10.011
Choose 6 Level I units from:*
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000

Year 2
10.111A, 10.1113, 10.1114, 10.2111, 10.2112
Choose 1 further Level II or III Mathematics unit
Choose 4 units from:*
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000
4. General Studies elective

Year 3
Choose 4 Level III Mathematics units (not 10.312F or 10.612)
Choose 3 units from:*
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000
4. General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units.**

Year 4 (Honours)
10.123 or 10.223*

*Not more than 8 units of this program may be from subjects not in Table 1. The BA degree subjects are limited to those offered by the following schools; Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies, History and Philosophy of Science and Philosophy subjects are available in Table 1. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273. (6 BA credit points at Level I or 4 credit points at Upper Level are equivalent to 1 unit.)

**Students proposing to take Honours in Pure Mathematics must have 4 Higher Level III Pure Mathematics units and students proposing to take Honours in Applied Mathematics must have 4 Higher Level III Applied Mathematics or Theoretical Mechanics units.

***Students should read carefully the above description relating to program 1000 and seek advice from the School of Mathematics regarding the choice of units.
1006
Statistics

Students intending to proceed to the Honours year should take Higher Mathematics subjects throughout.

Year 1††
10.001 or 10.011
Choose 6 units from:*
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000

Year 2
10.111A, 10.1113, 10.1114, 10.2112, 10.311A, 10.311B, 10.3111, 10.3112
Choose 2½ units from:*
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000
1 General Studies elective

Year 3
Choose 4 units from 10.312A, 10.312C, 10.322D, 10.312F, 10.3121, 10.3122, 10.3123, 10.3124
Choose 3 Level III Mathematics and/or Computer Science units
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 4 Higher Level III Statistics units.

Year 4 (Honours)
10.323

*Mathematics/Geology

1061
Mathematics or Statistics/Computer Science

Students intending to proceed to the Honours year should take Higher Mathematics subjects throughout.

Year 1††
6.611
10.001 or 10.011
Choose 5 Level I units from:
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000

Year 2
10.111A, 10.1113, 10.1114, 10.2112
6.621, 6.641

Either
a. 10.2111, 10.211E, 10.331 (or 10.311A and 10.311B)
If required choose 1 further unit from:
1. 6.631 or
2. Mathematics or
3. 14.602

or
b. 10.311A, 10.311B, 10.3111, 10.3112,
½ unit from Table 1
1 General Studies elective

Year 3
Continue the strand chosen in Year 2:
Either
a. 6.646
10.612
3 Level III Mathematics units
2 units from Table 1
or
b. 5 Level III Statistics units including 10.312F
1 Computer Science unit
1 unit from Table 1
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
10.123* or 10.223* or 10.323*

*The requirements for entry to the Honours year are as for programs 1000 and 1006.
††See footnote to program 0161.

Mathematics/Marine Science
(Physical Oceanography)

See program 6831

Recommended Double Majors

Mathematics or Statistics/Computer Science
Mathematics/Geology
Psychology

Modern psychology is both a basic discipline and a field of professional practice. As a science, psychology is concerned with the study of both the more complex forms of behaviour, and associated mental processes. It seeks to understand the basic psychological processes such as learning, memory, perception and motivation; the biological basis of behaviour; the development and decline of behavioural capacities from infancy to old age; individual differences in behaviour; social influences on behaviour; and the collective behaviour of social groups. In addition, disorders of behaviour form an important part of the subject matter of psychology.

Program 1200 in the Science and Mathematics course leads to a major in Psychology after 3 years and to Honours after 4 years. Choice of support subjects will depend upon which facet of Psychology is of interest to the student. Suitable supporting subjects range from Anatomy, Physiology, Genetics of Behaviour to History and Philosophy of Science and Philosophy. If necessary students may contact the School for advice.

There is also a four year full-time professional science degree course (Course 3430) which is described in detail later in this handbook (see Faculty of Biological Sciences).

Students who wish to obtain qualifications that will allow them to practise psychology need to complete one of the above four year honours programs. The present minimum qualifications for membership of the Australian Psychological Society (the professorial body of Australian psychologists) require a degree (with a major in psychology) and a fourth year of study of psychology, followed either by further graduate study or two years of supervised experience in some practical field of psychology. A professional qualification in psychology may lead to careers in research, teaching and applied fields such as personnel selection and management, vocational guidance, advertising and clinical practice.

1200
Psychology

Year 1
10.001 or 10.011 or both 10.021B & 10.021C
12.100
Choose 4 Level I units from:
1. Table 1 and/or
2. Table 2 for program 1200

Year 2*
12.200
Choose 2 units from:
12.201, 12.202, 12.204, 12.205
Choose 5 units from Table 1 (no more than 1 from Level II Psychology)
1 General Studies elective

Year 3*
Choose 4 Level III Psychology units
Choose 3 units from Table 1
1 General Studies elective

Year 4 (Honours)
12.403 or 12.404
*Students intending to proceed to honours in Psychology must take 12.200, 12.201 and 12.202 in Year 2, together with 4 other units from Table 1 (a total of 7 units in Year 2). In Year 3 students must take 8 Level III Psychology units including 12.300 and 12.305 from Group A for 12.404 in Year 4. Additionally, students intending to take 12.403 in Year 4 are required to also include 12.301 from Group B.

Recommended Double Majors
Psychology/Anatomy
Psychology/Physiology
Information Systems

The Information Systems program is intended to develop students' conceptual and disciplinary skills in the application of computing technology to the business and government environment. After an introductory first year students study systems design, database, communications and commercial programming in parallel with computer science, mathematics and management accounting units. An honours year is available for well qualified students — this specializes in advanced information systems and data management topics.

1400 Information Systems

Year 1*
6.611
10.001 or 10.011
Choose 5 Level I units from:
1. Table 1 and/or
2. Table 2 for program 1400

Year 2
6.621, 6.641
10.331 or 10.311A
Choose 1 unit from:
1. Table 1 or
2. Table 2 for program 1400
1 General Studies elective

Year 3
14.522, 14.605, 14.607, 14.608
Choose 3 units including at least one at Level III from:
1. Table 1 and/or
2. Table 2 for program 1400 and/or
3. 14.611
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units.

Year 4 (Honours)
If 14.611 has not previously been taken this unit should replace 14.857.

*In Year 1 students must enrol in program 6806. Enrolment in Year 2 is based on academic performance in Year 1.

Geology and Geophysics

Programs in Geology and Geophysics are offered to the Board of Studies in Science and Mathematics by the School of Applied Geology. The School is part of the Faculty of Applied Science and is dedicated to teaching and research in resource geology as well as in the fundamentals of the science.

Geology is the study of the nature and evolution of the earth. It is concerned with the composition and modes of formation and deformation of the igneous, sedimentary and metamorphosed rocks and concentrations of minerals that comprise the earth's crust and interior. Geology enquires into the essential controls on the development and distribution of such rocks and minerals in space and geologic time. Likewise it is concerned with the nature, distribution, and evolution of life forms through time. Resource geology is concerned with the application of all geological knowledge to the location and extraction of mineral and energy deposits, and to engineering and environmental tasks, ie activities that are fundamental to the well-being of modern society. Thus geology has an applied, professional function as well as being a scientific discipline.

Geophysics employs sophisticated instrumentation in order to construct physical earth models and is a companion discipline to Geology.

Program for Professional Geology

After June 1986, the Australasian Institute of Mining and Metallurgy requires that its corporate members, including professional geologists, shall have completed a four year course. Students wishing to enter the geology profession should preferably undertake the four year Course 3000 Applied Geology in the Faculty of Applied Science that is specifically designed to meet the needs of a professional geologist. However, an identical course of study is available in the Science Faculty program 2500 by taking the three year program with a double major in Applied Geology and by achieving a standard that enables progression to the Year 4 program and graduation with Honours. Training of a professional geologist demands a thorough understanding of basic geological principles; accordingly, in the early part of the course students receive instruction in fundamental geological subjects. As with other science based disciplines, appropriate standards in Physics, Chemistry and Mathematics are also required. As the course progresses, increasing emphasis is placed on practical applications of geological principles to mineral and energy exploration and development and to engineering and environmental geology. Mineral and energy exploration techniques including geochemical and geophysical methods are also studied. Year 4 is divided between a core of advanced geological topics, and one strand chosen from mineral resources, sedimentary basin resources, engineering and environmental geology, or geophysics. Session 2 of Year 4 is devoted to a specialized research project.

Geophysics

Professional geophysicists work closely with geologists and, appropriately, studies of both disciplines are undertaken in the one school. Fundamental and applied geophysics are taught to geology students in program 2500 (and Course
3000), but students who intend to become professional geophysicists should take program 2503.

Single Major in Geology
Because Geology is a natural companion to other sciences, such as Chemistry (in Geochemistry), Botany and Zoology (in Palaeontology) and Geography, and of widespread interest to science in general, program 2500 is organized so that a single major in Geology may be acquired. Selected students who have completed such studies may undertake an honours degree that includes geological topics. Students interested in a combination of geology with another science should consult the School of Applied Geology about recommended programs. Those who are specifically interested in combining Geology with Zoology and/or Botany should carefully read the following section.

Geology with Zoology and Botany
Geology and the Biological Sciences meet in a common field of study (Palaeontology) concerned with the evolution and environmental controls on the growth of ancient life forms. Palaeontologists may have an applied function, providing geologists with essential information about the relative ages and depositional environments of sedimentary rocks, particularly the strata with a potential to yield fossil fuels. Students intending to pursue this combination should take the subjects designated in footnote (*) to program 2500.

Geology In Marine Science
Students interested in marine sciences should consider program 6833 which is concerned with geological aspects of the marine environment.

Programs in Geology are also offered in the Combined Science/Civil Engineering course 3730, the Science Education course 4080 and the Combined Science/Law Course 4770.

2500 Geology

Year 1
1.001*
2.141 or both 2.121 and 2.131
10.001 or 10.011 or both 10.021B & 10.021C
25.110, 25.120

Year 2
25.211, 25.212, 25.221
Choose at least 4½ units from:
1. 25.223, 25.2261 (compulsory for Double Major) and
2. Table 1 other than units offered by Applied Geology
1 General Studies elective

Year 3
25.311, 25.312
Choose at least 2 Applied Geology units from:
25.333 (Double Majors in Applied Geology must take all of these subjects)

Choose further units from Table 1 to give a total of 23 for the complete program*
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
Either
a. 25.434
or
b. for Double Major:
25.410, 25.4101, 25.420
Choose one of the following sub-strands
25.412, 25.414, 25.415, 25.931

*Carefully read the description of program 2500 and seek advice from the School of Applied Geology about the choice of units. Students following a combination of Applied Geology with Zoology and/or Botany are permitted in Year 1 to substitute the two Biology units, 17.031 & 17.041, for 1.001. In Year 2 they should take 43.111, 45.101, 45.201, 45.301 and 1 unit chosen from 17.012, 43.131 and either 43.112t or 43.162t; in Year 3 25.324, either 25.321 or 25.325, 45.302 and 2 units chosen from 43.152, either 43.162t or 43.112t, 43.172, 45.112, 45.121, 45.402.
†These subjects are offered in alternate years. 43.112 requires the waiving of co-requisite 43.101.

2503 Geophysics

Year 1
1.001
2.141 or both 2.121 and 2.131
10.001 or 10.011
25.110, 25.120

Year 2
1.002, 1.012, 1.022, 1.032
10.2111, 10.2112
25.5212, 25.223, 25.2261
2 General Studies electives

Year 3
25.3162, 25.333, 25.9311, 25.9312,
25.9313, 25.9314, 25.9321
Choose 2 units from Level III Physics
Choose 2 units from:
1. Table 1 and/or
2. Table 2 for program 2503

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
25.434
Recommended Double Majors
Geology/Botany and Zoology
Geology/Chemistry
Geology/Geography
Geology/Mathematics
Geology/Physics

Geography

Geography is the scientific study of variations from place to place on the earth's surface. It provides an analytical framework for understanding and investigating many of society's pressing problems such as the use and management of scarce resources, the impact of environmental hazards on human activities, soil erosion and conservation, land use conflicts, and the spatial organization of human affairs.

Program 2700 comprises a three-year structured sequence of substantive subjects in physical and human Geography, with particular emphasis on studies of the natural environment, as well as a grounding in basic analytical skills and techniques (eg statistical methods and computing, remote sensing and air photo interpretation, field and laboratory techniques) required for problem-solving and application. Because of its essentially interdisciplinary nature, a training in Geography is increasingly recognized as a relevant qualification for employment in a wide range of planning and conservation-related fields.

Considerable flexibility exists in program 2700 for students to combine subjects in Geography with those from cognate disciplines to suit individual interests and career aspirations. Studies in Geography with a co-major in other sciences, especially Geology and Botany, are encouraged. Details of particular courses of study and subject combinations offered within the program are available from the School Office.

2700
Geography

Year 1
10.001 or 10.011 or both 10.021B and 10.021C
27.819 and either 27.111 or 27.818
Choose further Level I units from Table 1 to make a total of 8

Year 2
Choose 3 Level II Geography units
Choose 5 units from Table 1
1 General Studies elective

Year 3
Choose 4 Level III Geography units
Choose 3 units from Table 1
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
27.844
Biochemistry

Biochemistry is the study of the chemistry of living organisms and is a key subject in biological studies. Initially the approaches of chemistry were applied to biological systems but now Biochemistry has achieved its own techniques, approaches and body of knowledge and its ideas pervade the whole of biology. It, however, retains a molecular basis and is an ideal study for those interested in understanding and appreciating biological processes at the molecular rather than descriptive level. Biochemistry also represents a fundamental component of medical science and has an important role in many aspects of modern medicine.

Study of Biochemistry begins at Level II (41.101 Biochemistry) building on a base of Level I Chemistry and Biology. The material in this double unit introduces the basic concepts of the subject, describes biological molecules, and their interconversions in cells and tissues. It is followed by the single unit 41.111 Biochemical Control that illustrates and amplifies the molecular control of cellular processes with particular emphasis on enzymes, hormones and nucleic acids.

At Level III further double units (41.102A Biochemistry of Macromolecules and 41.102B Physiological Biochemistry) and single units (41.102C Plant Biochemistry and 41.102E Molecular Biology of Higher Organisms) are offered at a more advanced level.

In Year 4, the Honours Course in Biochemistry (41.103 Biochemistry Honours) offers the opportunity for those students who have obtained above average results to carry out a research project under supervision and to receive training in the latest research techniques.

Program 4100 Biochemistry

The program outlined below leads to a single major in Biochemistry and also provides for a considerable choice of units offered by other Schools. It can be used as a framework to lead to co-majors with other disciplines, for example, microbiology, chemistry, physiology, biotechnology, zoology, botany or anatomy; other co-majors are possible. In arranging co-majors, the programs of the two relevant Schools should be consulted, especially if there is a possibility of proceeding to Year 4 (Honours). Program 4100 also can be followed to achieve a single major in biochemistry supported by one or two minor sequences — for example biochemistry with some chemistry and some microbiology or biochemistry with some physiology and some anatomy. The program also permits 6 Level III units of biochemistry to be taken rather than the minimum of 4 units. All of these combinations can serve as prerequisites for an Honours Year in biochemistry provided that passes are obtained in a total of 8 Level III units including above average results in Biochemistry.
4100 Biochemistry

Year 1
2.141 or both 2.121 and 2.131
10.001 or 10.011 or both 10.021B and 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
2.002B
41.101, 41.111
Choose 3 or 4 units from Table 1
1 General Studies elective

Year 3†
41.102A
Choose at least 2 units from: 41.102B, 41.102C, 41.102E
Choose further units from Table 1 to give a total of 23 for the complete program
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
41.103

*Recommended are units offered by the School of Physics and the Department of Computer Science. Also recommended is 68.451.
†See footnote to program 6200.

Recommended Double Majors
Biochemistry/Biotechnology
Biochemistry/Botany
Biochemistry/Chemistry
Biochemistry/Microbiology
Biochemistry/Science Policy Studies
(for further details see program 6200)
Biochemistry/Zoology

Biotechnology

Biotechnology employs a body of multidisciplinary expertise directed towards the utilization and recycling of natural resources by controlled biological action, usually in a reactor. Its study provides an appreciation of the capabilities of biological systems and the skills required to maximize these capabilities on the industrial scale. Particular attention is given to: the selection of the appropriate systems and their maximization by genetic and/or enzyme tailoring; the design of biological reactors and their ancillary equipment; optimization and control of the processes. It is by these means that products are manufactured at ensured standards of quality. The products include certain foods and beverages, baker's yeast, antibiotics, steroids, vaccines, enzymes, amino acids, nucleotides, vitamins, organic acids, alcohols, metals, plant growth regulators and insecticides. Specific mammalian proteins, such as insulin and growth hormone, are also produced by microorganisms which have been genetically engineered to contain the appropriate mammalian gene.

Students wishing to undertake training in biotechnology may do so by combining such training with a major in another relevant discipline, preferably biochemistry, microbiology or chemistry. The fourth (Honours) year includes further formal training as well as research in biotechnology.

Alternatively, students with no previous training in biotechnology may undertake the biotechnology honours year, provided they have the necessary background training in biochemistry and microbiology; in such cases the Level III biotechnology units constitute the formal component.

4200 Biotechnology

Year 1
2.141 or both 2.121 and 2.131
10.001 or 10.011 or both 10.021B and 10.021C
17.031, 17.041
Choose 2 Level 1 units from Table 1

Year 2
41.101
Choose at least one of: 42.101, 44.101
Choose additional units from Table 1 to make a total of 7
2 General Studies electives

Year 3
42.102A, 42.102B
Choose 4 Level III units from a single discipline* in Table 1
Choose 2 units from Table 1

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
42.103

*Recommended disciplines are Biochemistry, Chemistry, Microbiology.
Recommended Double Majors
Biotechnology/Biochemistry
Biotechnology/Chemistry
Biotechnology/Microbiology

Botany

Botany is concerned with all aspects of the structure and function of both green and non-green plants and the relation of plants to their environments. The major aspects of the subject range from plant anatomy and morphology through physiology, ecology, taxonomy and palynology to mycology and plant pathology. The applications of these studies are particularly relevant in the fields of agriculture, horticulture, forestry, conservation and related environmental sciences.

Botany may be taken as a major or a minor study in the Science and Mathematics Course (3970).

4300
Botany

Year 1
2.141 or both 2.121 and 2.131
10.001 or 10.011 or both 10.021B and 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2
43.111
Choose at least one of the following: 17.012, 43.131, 43.121
Choose additional units from Table 1 to make a total of 8
1 General Studies elective

Year 3
Choose 4 Level III Botany units
Choose 3 units from Table 1
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
43.103

Recommended Double Majors
Botany/Biochemistry
Botany/Geography
Botany and Zoology/Geology
Botany/Microbiology
Botany/Zoology
Microbiology

The discipline of microbiology encompasses the scientific study of the smallest forms of life, namely bacteria, viruses, algae, fungi and protozoa. Microorganisms are probably best known as agents of disease in man, in other animals and in plants. Other microorganisms cause food spoilage, as well as serious deterioration in textiles and structural materials. Not all microorganisms are harmful. We depend on microorganisms for the recycling of organic wastes, for the maintenance of soil fertility, and for the production of foods, beverages, pharmaceuticals (especially antibiotics), and other industrially important materials.

The program in Microbiology requires students to take basic courses in Chemistry, Mathematics and Biology in Year 1, as well as 41.101 Biochemistry in Year 2.

4400 Microbiology*

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.141 or both 2.121 and 2.131</td>
<td></td>
</tr>
<tr>
<td>10.001 or 10.011 or both 10.021B and 10.021C</td>
<td></td>
</tr>
<tr>
<td>17.031, 17.041</td>
<td></td>
</tr>
<tr>
<td>Choose 2 Level I units from Table 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>41.101</td>
<td></td>
</tr>
<tr>
<td>44.101, 44.121</td>
<td></td>
</tr>
<tr>
<td>Choose 4 units from Table 1</td>
<td></td>
</tr>
<tr>
<td>1 General Studies elective</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>44.102, 44.112</td>
<td></td>
</tr>
<tr>
<td>Choose 3 units from Table 1</td>
<td></td>
</tr>
<tr>
<td>1 General Studies elective</td>
<td></td>
</tr>
</tbody>
</table>

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)

44.103

*1. Those students interested in a specialist career in Microbiology should also choose 44.122 and 44.132 in Year 3. Students wishing to include 44.122 Immunology in their program are strongly advised to take 70.011A Histology in Year 2. 2. Many students combine a major in Microbiology with a major in Biochemistry or Biotechnology. 3. Students should note that Mycology is an aspect of Microbiology which is taught in the School of Botany in units 43.131 and 43.132. 4. The subject 45.101 Biometry is recommended as a useful elective. In particular, students interested in environmental microbiology or in a research career in any area are strongly advised to take this subject.

Zoology

Zoology is built on the foundation of the first year units Biology A and B, Mathematics and Chemistry.

In their second year all Zoology students study Biometry, Invertebrate Zoology, Vertebrate Zoology and either General Ecology or Introductory Genetics or both. Students must also complete two Level II units of either Biochemistry or Chemistry or Mathematics or Physics. Other units are then chosen to make a total of seven or eight for the year. The areas from which these units are chosen will depend mainly on the student's interests. Examples of some of the units which are often chosen are Flowering Plants, Introductory Microbiology, Control Mechanisms, Organic Chemistry, Analytical Chemistry, Physiology and Mathematics. The choice of optional units is important because it determines which units may be included in the third year. Students are urged to seek advice from the school's student advisors at the end of Year 1 and Year 2.

A major in Zoology requires the study of at least 4 Level III Zoology units, three of which must be selected from Evolutionary Theory, Insects, Comparative Physiology and Animal Behaviour. The choice of other units in third year depends on students' interests. For instance those interested in Entomology would probably include Economic Zoology amongst their units; those interested in Ecology might include Population & Community Ecology, Marine Zoology and Vertebrate Zoogeography & Evolution; those interested in Animal Physiology would probably include Ecological Physiology. The additional units may be either chosen from those offered by the School of Zoology or by other schools. In all, seven or eight units are studied in third year to make a total of at least 23 units, as required by the regulations of the Science and Mathematics Course.

It is possible to study other disciplines as a co-major with Zoology eg Botany, Biochemistry, Mathematics, Marine Science, Anatomy, Physiology, Geography, Geology. In general, students completing a co-major with Zoology must satisfy the requirements of the Zoology program but some minor variations may be permitted when students include 4 Level III units from both Zoology and the co-major discipline. Students should consult the School about these prior to enrolment in Year 2.

For students who achieve above average results in their studies a fourth year (Honours) is available. The Honours year is made up of formal course work on Concepts in Biology plus a research project.

Recommended Double Majors

Microbiology/Biochemistry
Microbiology/Biotechnology
Microbiology/Botany
Philosophy

Philosophy is a wide-ranging discipline, catering for a great diversity of interests, for instance, in science, reasoning, persons, and social issues, and encouraging critical and imaginative thought about the foundations of other subjects. Apart from providing considerable choices for students majoring in Philosophy, the diversity of Upper Level subjects makes it possible for students majoring in other disciplines to select subjects complementing their main interest.

First Enrolment in Philosophy

There are two Level I subjects:

- 52.103 Introductory Philosophy A (Session 1)
- 52.104 Introductory Philosophy B (Session 2).

Each of these has one unit value. They can be taken separately, and a student can gain Upper Level status in Philosophy (ie qualify to enrol in Upper Level subjects) by passing in only one. However, students enrolling in one normally enrol in both, and students wishing to major in Philosophy must do so.

Value of Upper Level Subjects in Philosophy

With the exception of two subjects which each count as one science unit, all Upper Level subjects in Philosophy are half units, of which three together can be counted as two science units.

Major in Philosophy

Students majoring in Philosophy must take the equivalent of two Upper Level (II/III) units in Year 2, and the equivalent of four Upper Level (II/III) units in Year 3.

Level III/III

Some Upper Level subjects deal with particular philosophical topics; others can be taken in sequence to give more sustained treatments of larger areas. Students may select freely among these, subject to stipulations regarding prerequisites. They are welcome to seek advice and further information from the School.

In certain circumstances the prerequisite specified for units or half-units may be waived; for example, in the case of students who have already studied similar material, or who wish to take isolated units or half-units relevant to another discipline. Students who feel they have a case for a concession of this kind should consult the School.
\underline{5200}
\underline{Philosophy}

Year 1
10.001 or 10.011 or both 10.021B and 10.021C
52.103, 52.104
Choose 4 Level I units from Table 1

Year 2
Choose 2 Philosophy units*
Choose 6 units from Table 1
1 General Studies elective

Year 3
Choose 4 Philosophy units*
Choose 3 units from Table 1
1 General Studies elective

*Due to the extra library work required in the preparation of essays, a combination of 3 half unit Philosophy subjects count as the equivalent of 2 Science units.

History and Philosophy of Science

Students may take units within the School of History and Philosophy of Science leading to the award of pass or honours degrees in History and Philosophy of Science, or to the award of an honours degree in Science Studies.

Units in HPS are quite different from ordinary science subjects. They involve thinking about science, from historical, philosophical and sociological perspectives. They consider the historical development of the various sciences, but not merely as the series of intellectual steps leading to the present state of scientific knowledge. Rather, the history of science is seen in relation to cultural history and to forces of social change, and to the parallel development of philosophical thought.

Philosophical problems engendered by science are also discussed, and considerable attention is given to the social structure of science and the ways in which science and technology fit into modern society, both in industrial and developing countries.

Units in the sequence leading to honours in Science Studies are intended for students wishing to qualify themselves as science policy advisers. Training is provided therefore in both social studies of science and science policy theory and practice.

Broadly speaking, students wishing to make their careers in areas related to HPS or Science Policy (for example, museum work, science journalism, tertiary teaching, government administration, etc) will need to pursue their studies at graduate level, but there are some career opportunities for those who have bachelor degrees only.

Some students may wish to take a small number of HPS subjects, where their programs allow sufficient flexibility, as complements to their usual experimentally-based science subjects.

The School of History and Philosophy of Science offers a course-work program leading to the degree of Master of Science and Society, and research degrees at the Master and Doctoral level may also be undertaken. Interested students should enquire at the School.

The Pass Degree

The program offered by the School of History and Philosophy of Science gives students a wide range of options from which to choose in studying the historical, philosophical and social aspects of science and technology. Students intending to complete the pass degree are required to take eight HPS units, of which three are prescribed and five are elective. The remaining units in this program may be chosen from those listed in Table I, which allows sufficient flexibility for the completion of a second major in a scientific discipline, if this is desired. Students wishing to enquire about such a double major within program 6200 are invited to contact the School of HPS and the relevant second School for further information. It should be noted that students who undertake a double major combining program 6200 with one of the programs 0100 (Physics), 0200 (Chemistry) or 4100 (Biochemistry), and who include the Science Studies sequence
The Honours Degree

Students intending to proceed to an honours degree in HPS may choose from two alternative fourth year programs: 62.014 History and Philosophy of Science Honours, focusing on the intellectual history of science and the philosophy of science, or 62.024 Science Studies Honours, focusing on the social history of science and science policy studies. For entry to 62.014 a student must complete the first three years of program 6200 with marks that result in an average of Credit or better in the eight HPS units included. For entry to 62.024 a student must complete a more specialized sequence within program 6200, as prescribed in the footnote to that program, again with an average result of Credit or better in the eight HPS units included. In either case, the three-year program leading to honours entry offers sufficient scope for the completion of a second major in a scientific field, if this is desired. Such a double major is particularly appropriate for a program leading to honours-level work in science policy studies; however, all students intending to complete an honours degree within program 6200 are invited to contact the School of HPS and the relevant second School for further information regarding combined major sequences.

Recommended Double Majors

- History and Philosophy of Science/Anatomy
- History and Philosophy of Science/Botany
- History and Philosophy of Science/Geology
- History and Philosophy of Science/Zoology
- Science Policy Studies/Biochemistry*
- Science Policy Studies/Chemistry*
- Science Policy Studies/Physics*

*See footnote to program 6200.

6200
History and Philosophy of Science/Science Studies

Year 1
10.001 or 10.011 or both 10.021B and 10.021C
62.110 or 62.111 or 62.211
Choose 5 Level I units from Table 1

Year 2
62.022, 62.032
Choose 1 additional HPS unit*
Choose 5 units from Table 1
1 General Studies elective**

Year 3†
Choose 4 HPS units*
Choose 3 units from Table 1
1 General Studies elective**
Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
Either 62.014 or 62.024*

*Students intending to proceed to 62.034 (Science Studies Honours) must complete 62.052, 62.062, 62.072 and 62.082 by the end of Year 3.
**26.251 and 26.2506 may not be included in this program.
†Students who undertake a double major combining this program with one of the programs 0100 (Physics), 0200 (Chemistry) or 4100 (Biochemistry), and who include the Science Studies sequence (62.052, 62.062, 62.072, 62.082) may replace 1 General Studies elective with a Science unit.
Board of Studies in Science and Mathematics

6801
For Anatomy Programs

Year 1
10.001 or 10.011 or both 10.021B and 10.021C
17.031, 17.041
Choose 4 appropriate Level I units from Table 1

Enrolment in Year 2 of program 7000 is based on academic performance in Year 1. Students should select the units specified in the program they wish to pursue in Year 2.

Students may obtain advice from the Office of the Board of Studies in Science and Mathematics in the Mathews Building.

6806
For Computer Science Programs

Year 1
10.001 or 10.011
6.611
Choose 5 units from:
1. Table 1 &/or
2. The BA course** &/or
3. Table 2 for program 6806**

**In Year 1 students must enrol in program 6806. Enrolment in Year 2 of program 6600 and 1400 is based on academic performance in Year 1. Students may obtain advice from the office of the Board of Studies in Science and Mathematics in the Mathews Building.

6810
Mathematics of Management*†

Year 1
10.001 or 10.011**
14.501, 14.511
15.001, 15.011
Choose 2 Level I units from:
1. Table 1 or
2. Table 2 for program 6810

Year 2
10.111A, 10.111B, 10.2111, 10.2112
10.2113, 10.2115, 10.311A
14.522, 14.602
Choose 1 unit from: 14.542, 14.603, 14.613, 15.042
1 General Studies elective

Year 3
14.583
Choose 2 units from: 10.212A, 10.412D, 10.212L, 10.212M, 10.311B, 10.312A
Choose 2 further Level III Mathematics units

Choose 1 unit from:
1. Table 1 or
2. Table 2 for program 6810

1 General Studies elective

*Enrolment in this program requires the approval of the Chairman of the Board of Studies in Science and Mathematics and the head of the School of Accountancy.
**Throughout this program Mathematics subjects can be replaced by the corresponding Higher Mathematics subject.
†For details see preamble to Mathematics programs.
The Marine Science programs are designed to provide opportunities for students to specialize in selected areas of marine science, yet ensure that they receive an adequate exposure to other pertinent disciplines within this broad field. The programs have been constructed from subjects currently available in the faculties of Science, Biological Sciences and Applied Science. Introductory Marine Science is a subject common to all these programs, and unique to them, having been designed for and offered only in Marine Science programs.

All students in the Marine Science programs must select one major sequence from the following options: 6831 Physical Oceanography; 6832 Biological Oceanography, 6833 Earth Science Oceanography and 6834 Environmental Chemistry. In addition, all students must select two minor sequences from the Physical, Biological, Earth Science, and Chemical minor sequences offered. A minor sequence in the same area as that selected for the major sequence is excluded.

Physical Oceanography includes units of basic and advanced Mathematics and Physics, as well as units in 10.412A Dynamical and Physical Oceanography and 10.4112 Hydrodynamics.

Biological Oceanography includes basic Mathematics, Chemistry and Biology as well as advanced courses in 43.111 Flowering Plants, 45.201 Invertebrate Zoology, 43.172 Phycology and Marine Botany, 45.112 Marine Ecology and 44.101 Introductory Microbiology. Further options include 17.012 General Ecology, 10.331 Statistics and 41.101 Biochemistry.

Environmental Chemistry includes basic Chemistry and Mathematics, and 2.002A Physical Chemistry, 2.002D Analytical Chemistry, 2.043A Environmental Chemistry and 2.003D Instrumental Analysis.

All programs offer some optional units to allow students a degree of freedom of choice of subjects. A fourth (Honours) year in Marine Science is available in all programs.
1. 10.031 or 10.331 or 10.301 or
2. 25.622
Choose units from: 17.012, 41.101, 44.121, 45.101, 45.201, 45.301 to give a total of 8
1 General Studies elective

Year 3
43.172
45.112
Choose 2 Level III units from Table 1 which may include the subjects corresponding to the strand chosen in Years 1 and 2:
1. 68.313, 10.032 or
2. 25.632
Choose 3 units from Table 1
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
68.304

6833
Marine Science (Earth Science Oceanography)

Year 1
10.001 or 10.011 or both 10.021B and 10.021C
25.110, 25.120
Choose 4 units from 2 of the strands:
1. 1.001 or 1.021 and/or
2. 17.031, 17.041 and/or
3. 2.141 or both 2.121 and 2.131

Year 2
68.302
25.621, 25.622
Continue both of the strands chosen in Year 1:
1. 10.031 or 10.331 or 10.301 and/or
2. At least 1 unit from: 17.012, 43.111, 45.201 and/or
3. 2.002A
Choose additional units from Table 1 to give a total of 8
1 General Studies elective

Year 3
25.631, 25.632, 25.6341, 25.6342, 25.635*
Choose 2 Level III units from Table 1 which may include the subjects corresponding to the strands chosen in Years 1 and 2:
1. 68.313, 10.032 and/or
2. 43.172, 45.112 and/or
3. None
Choose 3 units from Table 1
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
68.304

6834
Marine Science (Environmental Chemistry)

Year 1
2.141 or both 2.121 and 2.131
10.001 or 10.011
Choose 4 units from 2 of the strands:
1. 1.001 and/or
2. 17.031, 17.041 and/or
3. 25.110, 25.120

Year 2
2.102A, 2.002D
68.302
Continue both of the strands chosen in Year 1:
1. 10.031 or 10.331 and/or
2. At least 1 unit from: 17.012, 43.111, 45.201 and/or
3. 25.622
Choose additional units from Table 1 to give a total of 8
1 General Studies elective

Year 3
2.043A, 2.003D
Choose 2 Level III units from Table 1 which may include the subjects corresponding to the strands chosen in Years 1 and 2:
1. 68.313, 10.032 and/or
2. 43.172, 45.112 and/or
3. None
Choose 3 units from Table 1
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
68.304

*If 25.635 is not available, choose some other appropriate unit in consultation with the Course Authority.
Genetics

The Genetics program is designed to provide students with a firm foundation of genetical knowledge and also to give them experience in pertinent related areas.

Because the subject matter of Genetics ranges from the structure of viruses to the co-evolution of populations, students are encouraged to choose between three sequences: molecular and microbial, population and ecological, and classical and organismal. The three groups of subjects in second year correspond to these sequences; the combination of subjects chosen then will determine the choices available in Year 3.

The choice of Year 1 subjects available include Physics, Psychology, Geography, and units in the laboratory applications of computers. Experience with laboratory computers is an asset in many areas of genetics, and 68.451 is therefore strongly recommended as a Year 1 subject.

Entry into a fourth (Honours) year is available, for above-average students, upon application to the Genetics Program Committee.

Hydrographic Studies

Hydrographic studies includes units of basic Surveying, basic and advanced Mathematics, as well as units in Geology and Geography. The program has been constructed to provide an opportunity for students to specialize in those areas of marine science applicable to coastal and hydrological surveying and yet still provide an adequate exposure to other pertinent disciplines. This program is of particular relevance to students wishing to proceed to the Hydrographic Branch of the RAN.

6840
Genetics

Year 1
- 2.141 or both 2.121 and 2.131
- 10.001 or 10.011 or both 10.021B and 10.021C
- 17.031, 17.041

Choose 2 Level I units from Table 1

Year 2
- 9.801 or 45.601
- 41.101
- 44.101

Choose 1 unit from: 43.111, 43.131, 44.121, 45.201, 45.301, 45.402

Choose 1 unit from: 10.331, 45.101

Choose 2 further units from one of the following groups:
- 1. 2.102B, 41.111
- 2. 6.611, 17.012, 68.601
- 3. 43.111 or 43.131; 45.201 or 45.402; 45.301 or 9.801; 62.104; 68.601

2 General Studies electives

Year 3

Choose 8 units from: 6.621, 6.646, 9.802, 9.811, 41.102A, 41.102E, 42.102A, 42.102C, 43.112, 44.102, 44.122, 45.121, 68.602, 79.201, 79.202, 79.302

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)

68.404
Anatomy

Entry to Anatomy programs is limited to a quota of approximately 60. Students in Year 1 must enrol in Program 6801, and apply in October for entry to Anatomy the following year. Selection is determined by academic merit, based on a weighted aggregate of marks obtained in Year 1. Allowance is made for the relative difficulty of first year units in Mathematics and Physics, the more difficult subjects being given a greater weight. Introductory Chemistry is included in the aggregate even though not counting for a degree. The quota does not apply to the Science/Medicine course (course 3820).

Anatomy subjects are, in general, only available to students who have been admitted to the Anatomy quota. However, students in programs 4400 (Microbiology-Immunology strand) and 6840 (Genetics) may take 70.011A, 70.304, and 70.3041.

Students enrolled in programs for which Anatomy or Histology is relevant (eg Biochemistry, Physiology, Psychology) and who wish to study one or more Anatomy units should consult the Head of School.

A major in Anatomy may suitably be combined with a major in Biochemistry (70.304 or 70.3041 recommended), Physiology (note relevance of Neuroanatomy 1 and 2 to Neurophysiology), or Psychology (take Neuroanatomy 1 and 2). Owing to timetabling difficulties, the double major with Biochemistry may be impossible to complete in the minimum time.

72.301 Basic and Applied Pathology may be counted as a Level III Anatomy unit.

Recommended Double Majors

- Anatomy/Biochemistry
- Anatomy/Physiology
- Anatomy/Psychology
- Anatomy/Zoology

7000

Anatomy

Year 1*
10.001 or 10.011 or both 10.021B and 10.021C
17.031, 17.041
Choose 4 Level I units from Table 1
Apply for entry to the Anatomy quota for following year

Year 2
70.011A, 70.011C
Choose 5 or 6 units from:
1. Table 1 and/or
2. Anatomy units in Table 2 (70.011B is recommended)
1 General Studies elective

Year 3
Choose at least 4 Level III Anatomy units (may include 72.301)
Choose further units from Table 1 to give a total of 23 for the complete program
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units.

Year 4 (Honours)
70.013

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 is based on academic performance in Year 1.
Physiology and Pharmacology

Physiology, the study of the processes and mechanisms which serve and control the various functions of the body, begins at the second year level with the full year subject Physiology 1A (the core subject for students who intend to proceed to the study of Physiology at a higher level), or Physiology 1B.

Prior to commencing these subjects, students are required to have satisfactorily completed Level I courses in Mathematics, Cell Biology and Chemistry, as a background in these subjects is considered essential to an understanding of how the body functions. In addition, Physiology 1A students are normally required to enrol concurrently in the Level II, Session 1 subject, Biochemistry.

Physiology 2 is a major (third year level) subject in Physiology and in this subject various systems of the body are treated in considerable detail. Progression to this full year subject normally requires the satisfactory completion of Physiology 1A (rather than 1B), and of both of the Level II Biochemistry subjects. Physiology 2 provides the 4 units at third year level required for a degree with a single major in Physiology. Alternatively it may be undertaken concurrently with a Level III subject offered by other schools in allied disciplines, such as Chemistry, Psychology, Zoology, Biochemistry or Anatomy, to form a program leading to the award of a degree with a double major. Students who wish to take Physiology as a major subject should follow Strand 1.

The School also offers the third year level subject Pharmacology, which includes a study of the uptake, distribution and excretion of drugs within the body, and of mechanisms by which drugs, and various endogenous chemicals, alter body function. This 2 unit subject is normally taken concurrently with Physiology 2, or with Level III Biochemistry or Chemistry subjects. Pharmacology is also a full year subject. Students who wish to form a major subject with Pharmacology should follow Strand 2.

Physiology 2 and Pharmacology are the most advanced undergraduate courses offered by the School which are conducted by way of formal lectures, tutorials and laboratory practical classes. Selected students who have satisfactorily completed one of these subjects may be permitted to enrol in a further year of study of either Physiology or Pharmacology which normally leads to their being awarded their degree with Honours.

The Honours year program, as presently conducted in this School, requires the student to complete a full year research project on a specific topic under the supervision of a member of staff, and to submit a thesis based on this work. The level of honours awarded is determined on the basis of the thesis, and on course work activities such as the preparation of literature reviews, and participation in seminar programs.

7300
Physiology and Pharmacology

Year 1
2.141 or both 2.121 and 2.131
10.001 or 10.011 or both 10.021B and 10.021C
17.031, 17.041
Choose 2 Level I units from Table 1

Year 2*
Either
1. 41.101, 41.111, 73.111
or
2. 73.111 or 73.121; and choose 3 Level II units (should normally include prerequisite subjects for one of the Pharmacology co-requisite subjects shown for year 3)
Choose 3 units from Table 1
1 General Studies elective

Year 3
Continue the strand chosen in Year 2:
Either
1. 73.012
or
2. 73.022

and either
2 Level III Chemistry units
or
41.102A and 41.102B
or
73.012

Choose further units from Table 1 to give a total of 23 for the complete program.
1 General Studies elective

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
73.013 or 73.023

*For an explanation of the division into strands 1. and 2. refer to the preamble.

Recommended Double Majors

Physiology/Anatomy
Physiology/Biochemistry
Physiology/Chemistry
Physiology/Psychology
Physiology/Zoology
These combined courses of five years full time study enable a student in the School of Mechanical and Industrial Engineering to qualify for the award of the two degrees of Bachelor of Engineering and Bachelor of Science (BE BSc). The courses enable such combined degree students to major in the areas of computer science, materials science, mathematics, physics or statistics in addition to studying their chosen engineering speciality. The course is administered by the Faculty of Engineering.

All students who are accepted into the first year 'science/arts compatible' course in the School of Mechanical and Industrial Engineering may enrol directly into these combined degree courses. Continued enrolment in Year 2 requires a pass at first attempt in all subjects of Year 1 and students who fail to achieve this will automatically be disenrolled from these courses and be enrolled in their respective engineering programs (3610, 3660, 3680 or 3700). Alternatively, students may transfer into Year 2 of these courses, provided they have obtained a clear pass in the Year 1 'science/arts compatible' course.

Normally, students enrolled in these BE BSc courses will be awarded their degrees at the conclusion of five years study. However, it is possible for students to take out the Science degree prior to the Engineering degree provided they have:
1. completed the requirements for Years 1, 2 and 3,
2. completed the General Studies requirements for the Science degree, and
3. obtained approval from the Board of Studies in Science and Mathematics.

Students may also undertake an additional honours year in Science and Mathematics and automatically re-enter the combined Science/Engineering course without having to re-apply for admission. To undertake such an honours year in Science and Mathematics, permission is to be obtained, at the end of Year 3, both from the Head of the School in which the honours year is to be undertaken and from the Head of the School of Mechanical and Industrial Engineering.

Students who commence the course and do not complete the Engineering component may take out a BSc degree on completion of one of the approved programs in the Science and Mathematics course. Similarly, students not wishing to complete the BSc degree course may revert to their respective Engineering programs (3610, 3660, 3680 or 3700) with appropriate credit for subjects satisfactorily completed.

Having completed the first three years as outlined below, students in Years 4 and 5 do Year 3 and Year 4 of their respective Engineering programs (3610, 3660, 3680 or 3700), except that significant repetition of subject material is not allowed. Instead, students are required to substitute either an appropriate Technical Elective or an appropriate Level II or III subject from Table 1 or Table 2, or in exceptional circumstances, some other equivalent subject with the permission of the School of Mechanical and Industrial Engineering. For more details of these combined courses, refer to the Faculty of Engineering Handbook.

Year 1
1.001
2.951 (or 2.121)
5.010, 5.020 (5.0201 1. and 5.421), 5.030, 5.0303, 5.061, 5.0721
10.001 (or 10.011)

Year 2
5.300 1., 5.422 5.
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214)
10.211 (or 10.221), 10.2112 (or 10.2212)
Choose 4 units from Table 1 or Table 2 for course 3681 2.

For later Years, see overleaf
Courses 3611/3661/3681/3701 continued

Year 3
5.043, 5.122, 5.622
Choose 5 units from Table 1 or Table 2 for course 3681.
1 General Studies elective.

Years 4 and 5
Years 3 and 4 of respective Engineering programs 3610, 3660, 3680, 3700
Subject selections which satisfy the specific requirements for the various majors are summarized below. Provided co- and prerequisites are satisfied, there is scope for some subjects to be taken either in Year 2 or Year 3.

Computer Science Majors

Year 2
5.0201, 5.300, 5.422
6.621, 6.631, 6.641
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.331 (or 10.351)

Year 3
1.002 or 1.012 or 1.022 or 2.002A
5.043, 5.122, 5.622
4 Level III units from Table 1 and Table 2 offerings of School of Electrical Engineering and Computer Science for course 3681.
1 General Studies elective.

Materials Science Majors

Year 2
2.102A
4.402, 4.522
5.300, 5.4221
and either Option 1.:
2.102B, 2.131
4.512 or 4.802 (recommended)
10.022
or Option 2.:
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
1 unit from 10.1115, 10.1116, 2.131, 4.512, 4.802, 10.1114 (or 10.1214)

Year 3
4.703
5.043, 5.122, 5.622
10.331 or 10.351
1 General Studies elective.
and either Option 1.:
4.433
48.403
or Option 2.:
3½ appropriate Level II or III units from Schools of Physics, Chemistry or Metallurgy offerings in Table 1 or in Table 2 for course 3681.

Mathematics Majors

Year 2
Same Year 2 as for Computer Science or Materials Science (3 units of Level II mathematics option) or Physics or Statistics majors or

1.002 or 1.012 or 1.022 or 2.002A
5.300, 5.422
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)
3 units from 10.1115, 10.1116, 10.2113 (or 10.2213), 10.2115 (or 10.2215), 10.4112 (or 10.4212), 10.4111 (or 10.4211) or from any other appropriate Level II units from Table 1 or Table 2 for course 3681.

Year 3
5.043, 5.122, 5.622
10.331 or 10.351
4 Level III units from School of Mathematics offerings in Table 1
1 General Studies elective.

Physics Majors

Year 2
1.002, 1.012, 1.022, 1.032
5.300, 5.422
10.111A, (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212)

Year 3
1.013, 1.023, 1.033, 1.043
1 Level III unit from School of Physics offerings in Table 1
5.043, 5.122, 5.622
10.331 or 10.351
1 General Studies elective.

Statistics Majors

Year 2
1.002 or 1.012 or 1.022 or 2.002A
5.300, 5.422
10.111A (or 10.121A), 10.1113 (or 10.1213), 10.1114 (or 10.1214), 10.2111 (or 10.2211), 10.2112 (or 10.2212), 10.311A (or 10.321A), 10.311B (or 10.321B), 10.3111 (or 10.3211), 10.3112 (or 10.3212)

Year 3
5.043, 5.122, 5.622
4 Level III units from Statistics offerings in Table 1
1 Level II or III unit from School of Mathematics or School of Physics offerings in Table 1
1 General Studies elective.
Notes

1. Students planning to take higher level Computer Science subjects should take 6.611 Computing I or 8.1120 Computing instead of 5.0201 Engineering Dynamics IA in Year 1; they must then take 5.0201 prior to taking 5.300.

2. The following considerations pertain to the choice of optional units in Years 2 and 3:
 (1) They include no more than 1 Level I unit.
 (2) They include at least 4 Level III units which satisfy the relevant major requirements.
 (3) They include no more than 1 unit from Schools other than Chemistry, Electrical Engineering and Computer Science, Mathematics, Metallurgy and Physics.
 (4) They include at least 1 Level II unit from the Schools of Chemistry or Physics.
 (5) They include 10.331 Statistics SS, 10.351 Statistics SM or 10.311B Basic Inference.
 (6) 4.502 Mechanical Metallurgy and 4.512 Mechanical Properties of Solids are deemed to have reduced unit values of 1 and 1/2 respectively.

3. Students are recommended to choose 2.951 unless they wish to pursue studies requiring 2.121. The prerequisites of 2.121 and 2.131 for 2.102A Physical Chemistry may be waived on application to the Head of the School of Chemistry. Materials Science Option 1 majors must choose 2.121.

4. Materials Science majors may omit 10.1114 Complex Analysis or substitute 10.022 Engineering Mathematics 2 for the mathematics subjects. The balance of the units must then be made up from units from the Schools of Chemistry, Metallurgy or Physics offerings in Table 1 or Table 2 for course 3681.

5. If 4.402 Physical Metallurgy I or 4.422 Metallurgical Phases II is taken, students should take 5.4221 instead of 5.422.

6. Anticipated Actual General Studies requirements correspond to whatever is required in Year 2 of the normal Mechanical and Industrial Engineering degree course.

8. 6.646 Computer Applications is excluded for students in course 3661 who should substitute a Level III unit from Table 2 offerings of School of Electrical Engineering and Computer Science.

9. Provided 5.4221 is taken concurrently with 4.522, the prerequisite requirement of 4.512 for 4.522 and the corequisite requirement of 4.502 for 4.402 are assumed to be satisfied.

10. Materials Science majors who took 2.121 Chemistry 1A in Year 1 must take 2.131 Chemistry 1B. Those who took 2.951 Chemistry 1ME and wish to keep open the option of majoring in mathematics should include 10.1114 (or 10.1214) Complex Analysis in their selection; otherwise they are advised to select 1.022 Modern Physics or 1.982 Solid State Physics.

11. Under special circumstances, and with permission of the School of Physics, a student may substitute alternative Physics Level III offerings of equivalent unit value.

12. Students who followed the Year 2 for Computer Science majors should substitute 1.002 or 1.012 or 1.022 or 2.102A, those that followed the Year 2 for Statistics majors should substitute 1 Level II or III unit from the Schools of Physics or Mathematics offerings in Table 1.

13. Quota restrictions apply to certain Computer Science Level III units and application must be made in writing to the Head of the School of Electrical Engineering and Computer Science before the end of Session 2 in the preceding year. Prospective Computer Science majors should aim for a creditable academic attainment (65%) over Years 1 and 2.

14. These must include either 4.403 Physical Metallurgy 2 or 4.433 Physical Metallurgy 2C. The latter is recommended together with either 2.003A Physical Chemistry or 1.033 Statistical Mechanics (for which the prerequisite of 1.012 is waived provided students have passed 2.002A).
Students in Electrical Engineering who maintain a creditable performance may qualify for the award of two degrees in five years of combined full-time study in which the requirements of the degrees have been merged. Students wishing to enrol in a combined course may do so only on the recommendation of the Head of School of Electrical Engineering and Computer Science and with the approval of the Faculty of Engineering and the Board of Studies in Science and Mathematics. Students wishing to enrol in, transfer into, or continue in a combined course shall have complied with all the requirements for prerequisite study, sequencing and academic attainment (a creditable performance, ie 65%).

Students who commence a course but subsequently do not wish to proceed with both areas of study, or who fail to maintain a creditable performance, revert to a single degree program with appropriate credit for subjects completed. Tertiary Education Assistance Scheme (TEAS) support is available for the five years of the combined degree programs.

Students may transfer into a combined course after partially completing the requirements for either degree provided suitable subjects have been studied. However, the choice of subjects and the time taken to complete the program can be seriously affected by this. Thus, students considering course 3725 should contact the Electrical Engineering School before completing their Year 2 enrolment. Application for transfer to a combined course must be made in writing to the Head of School by 8 January 1986.

Having completed Years 1 and 2 of course 3640 students in their third year complete a specific course of study consisting of four Level III Science units chosen from related disciplines, the appropriate General Studies electives and no less than four other Level II or Level III units, and otherwise accord with the rules of course 3970 leading to a major in Computer Science, Mathematics or Physics.

Students wishing to gain a degree at honours level in Science as part of their combined degree program shall meet all the relevant requirements of the Board of Studies in Science and Mathematics and of the School concerned. Such students may enrol for the honours year only on the recommendation of the Head of the School of Electrical Engineering and Computer Science and with the approval of the Head of the appropriate Science School, the Faculty of Engineering and the Board of Studies in Science and Mathematics.

In Years 4 and 5 the students do Year 3 and Year 4 of course 3640. Depending on the program followed in their year of Science they may have already completed parts of the normal third and fourth year programs of the Electrical Engineering course, and they will be required to omit these from their program and to include an equivalent amount of other subjects chosen with the approval of the Head of the School.

Year 1

1. 1.961
2. 2.121
3. 5.006
4. 6.010
5. 6.611
6. 10.001
7. 1 General Studies elective

Year 2

1. 1.972, 1.982
2. 6.021A, 6.021B, 6.021C, 6.021D, 6.021E
3. 10.111A, 10.1113, 10.1114, 10.2111, 10.2112
4. 1 General Studies elective
Year 3†*

Either
Computer Science
1 General Studies elective
Choose at least 8 Level II or Level III units including at least 4 Computer Science units at Level III, the balance to be chosen from Level III Computer Science units and other Level II or Level III units in Table 1 or Table 2 for program 0600**
or
Mathematics
1 General Studies elective
Choose at least 5 Mathematics units, 4 of which are Level III
Choose at least 3 Level II or Level III units from Table 1 or Table 2 for program 1000
or
Physics
1 General Studies elective
Choose 7 Level II or Level III units from Table 1 of which four must be Level III Physics units, chosen to include 1.0133, 1.0143, 1.023 and 1.0333

Year 4
From Electrical Engineering course, modified as required by Head of School

Year 5
From Electrical Engineering course

†Students intending to major in Computer Science should include 6.641 in their Year 2 enrolment. Students intending to major in Physics are required to take unit 1.992 in Year 2.
*For Year 3 refer to course 3970 and to this Handbook.
**For this strand only the Level I unit, 14.501 Accounting and Financial Management 1A may be taken in place of one of the other Level II or Level III units. Students should note that this subject is a prerequisite for the Level III unit, 6.647 Business Information Systems.
For details of the combined Science/Civil Engineering Course refer to the Faculty of Engineering Handbook.

Approval may be given to change the programs listed below to allow for timetabling and the student's academic interests. For any changes to subjects in italic print you should consult the Science and Mathematics Course Office, Room 211, Mathews Building.

Geography and Environmental Chemistry

Year 1
1.981*
2.121
8.1110, 8.1120, 8.1130, 8.1140
8.1210, 8.1410, 8.1610
10.001***
25.5112

Year 2
2.102A, 2.102C, 2.102D, 2.131
8.2110, 8.2210, 8.2320, 8.2410, 8.2420, 8.2430
10.022
27.111
1 General Studies elective

Year 3
2.043A
8.2220, 8.2610, 8.3110, 8.3410, 8.3420, 8.3430, 8.3440
27.172
29.441, 29.491
2 General Studies electives

Physics with Mathematics

Year 1
1.001
2.991**
8.1110, 8.1120, 8.1130, 8.1140
8.1210, 8.1410, 8.1610
10.001***
25.5112

Year 2
1.012, 1.022, 1.032
8.2110, 8.2220, 8.2320, 8.2410, 8.2420, 8.2430
10.1113, 10.1114, 10.2111, 10.2112
10.381
1½ General Studies electives

Note: All material not in italic typeface relates to the BE degree component of this combined course.

*I See footnotes at end of Course outline.
Year 3
1.002, 1.023, 1.043
8.2220, 8.2310, 8.2610, 8.3110, 8.3410, 8.3420, 8.3430, 8.3440
10.111Af
29.441, 29.491

Year 4
1.0333
8.2120, 8.3210, 8.3220, 8.3310, 8.3320, 8.3510, 8.3610, 8.3620, 8.3630, 8.3640
1 General Studies elective
Choose 2 Level II or Level III Mathematics units from Table 1 in the Combined Sciences Handbook
Choose 1 unit from:
1.133, 1.0533, 1.0133, 1.0143

Year 5
8.4110, 8.4220, 8.4320, 8.4330, 8.4420, 8.4430, 8.4440, 8.4520, 8.4620
Choose two of the following subjects:
8.4210, 8.4310, 8.4410, 8.4510, 8.4610
½ General Studies elective
Choose 1 unit from Table 1 in the Combined Sciences Handbook at Level II or higher

Note: All material not in italic typeface refers to the BE degree component of this combined course.
** ***See footnotes at end of Course outline.

Computing with some Mathematics

Year 1
1.981*
2.991**
8.1110, 8.1120, 8.1130, 8.1140
8.1210, 8.1410, 8.1610
10.001***
25.5112

Year 2
6.621, 6.631, 6.641
8.2110, 8.2210, 8.2320, 8.2410, 8.2420, 8.2430
10.111Af
10.1113†
10.1114†
10.331
1 General Studies elective

Year 3
6.642, 6.643
8.2120, 8.2220, 8.2310, 8.2610, 8.3110, 8.3410, 8.3420, 8.3430, 8.3440, 8.3640
10.2111†
10.2112†
29.441, 29.491
Choose 1 Level II or Level III Mathematics unit from Table 1 of the Combined Sciences Handbook

Footnotes to Course 3730 Programs
Note: All material not in italics typeface refers to the BE degree component of this combined course.
* Students are advised to attempt 1.981 Physics 1CE but if timetabling difficulties arise or other exceptional circumstances prevail permission will be given to attempt 1.001 Physics I.
** Students who have not satisfied the chemistry prerequisite for 2.991 Chemistry 1CE are required to take 2.111 Introductory Chemistry in Session 1 and 2.991 in Session 2.
*** Students who have achieved a certain standard may attempt 10.011 Higher Mathematics 1.
† Students are encouraged to select higher level mathematics units where applicable.
Undergraduate Study
Board of Studies in Science and Mathematics
and the Faculty of Medicine

3820
Combined Science and Medicine Course
(BSc MB BS)

A limited number of places (up to 16) are available in this course, and these are open only to students who have been accepted into the Faculty of Medicine.

For further details refer to the Faculty of Medicine Handbook. Below are programs for Years 1, 2 and 3 and the optional honours Year only; subsequent years (3, 4 and 5 of the Medical Course) are detailed in the Faculty of Medicine Handbook. Students must major in either Anatomy, Biochemistry, Physiology, Psychology, or any two of these, as well as satisfactorily completing a core course. Students majoring in Biochemistry must decide accordingly before enrolment in Year 2; other majors can be decided before enrolment in Year 3. Subjects chosen each year must be approved by the Course Controller prior to enrolment.

Year 1
1.001 or 1.021
2.121 & 2.131 or 2.141
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
1 General Studies elective††

Year 2
41.101
41.111†
70.011A, 70.011C
73.111
80.014**
1 General Studies elective††

Note: Students not majoring in Anatomy commonly take an additional Anatomy unit in Session 2. This may be either 70.012B, 70.011A, or 70.034 (listed in approximate order of likely usefulness).

Year 3
There are 10 options, as set forth immediately below. The columns represent the primary choice (major in Anatomy, Biochemistry or Physiology); the rows represent the secondary choices (single or double major). Elective units may be selected from Table 1 and/or from the Anatomy units in Table 2.

<table>
<thead>
<tr>
<th>Anatomy Major</th>
<th>Biochemistry Major</th>
<th>Physiology Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Studies elective</td>
<td>General Studies elective</td>
<td>General Studies elective</td>
</tr>
<tr>
<td>80.014**</td>
<td>80.014**</td>
<td>80.014**</td>
</tr>
<tr>
<td>4 Level III Anatomy units††</td>
<td>41.102A</td>
<td>73.012</td>
</tr>
<tr>
<td>together with:</td>
<td>together with:</td>
<td>together with:</td>
</tr>
<tr>
<td>2 Level III Anatomy units†</td>
<td>73.012F</td>
<td>2 Level III Anatomy units†</td>
</tr>
<tr>
<td>Single Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012F</td>
<td>1 Elective unit</td>
<td>2 Elective units</td>
</tr>
<tr>
<td>3 Elective units</td>
<td>4 Level III</td>
<td>4 Level III</td>
</tr>
<tr>
<td>Double Major with Anatomy</td>
<td>Anatomy units††</td>
<td>Anatomy units††</td>
</tr>
<tr>
<td>41.102A</td>
<td>(double major total of 7)</td>
<td>41.102A</td>
</tr>
<tr>
<td>Double Major with Biochemistry</td>
<td>41.102B</td>
<td>41.102B</td>
</tr>
<tr>
<td>Double Major with Physiology</td>
<td>73.012</td>
<td>73.012</td>
</tr>
</tbody>
</table>

Year 4
Students may join Year 3 of the Medical Course, or apply to take Honours and proceed to the Medical Course the following year. For honours courses, see Table 3.

*Students majoring in Biochemistry should take 2.002B Organic Chemistry instead of 41.111 Biochemical Control. For students majoring in Biochemistry, 2.002B is accepted in lieu of 41.111 as a prerequisite for 73.012 Physiology 2.
**80.014 Human Behaviour is offered in even numbered years only and is taken in either Years 2 or 3.
††Enrolment in General Studies may be deferred until later years but two electives must be satisfactorily completed for a BSc degree, and three electives for the MB BS degrees. Students are strongly advised to complete these requirements during the first three years, before entering the Medical Course, otherwise there will be timetabling difficulties.
University Study
Board of Studies in Science and Mathematics
and the Faculty of Professional Studies

4070 Mathematics Education Course
4080 Science Education Course

4070 Mathematics Education Course
Bachelor of Science Diploma in Education BSc DipEd

The Mathematics Education Course is a concurrent course leading to the award of the qualification BSc DipEd and is designed primarily to prepare students for entry into the teaching profession as teachers of mathematics in secondary schools.

An important feature of the course is that students take education subjects along with mathematics subjects in second, third and fourth years. The Mathematics component is based on programs offered in the Science and Mathematics course. Students may proceed to honours level in either mathematics or in education.

Objectives of the Course

The objectives of the Mathematics components broadly aim: to develop a comprehensive knowledge and interest in mathematical techniques and problem solving, to develop an ability to reason mathematically and to present mathematical reasoning clearly and persuasively, and to ensure the student's understanding of the applications of mathematics.

Objectives related to the education component seek: to develop skills in teaching mathematics, to provide an understanding of the major disciplines which contribute to educational theory, to develop a knowledge of the latest innovations in educational practice and theory and to clarify the methodologies and curriculum materials relevant to secondary mathematics teaching.

Students enrolling in this course must seek advice from the Director of Science Teachers' Courses, Room 41, Building G2, Western Campus or at the enrolment centre.

Honours and Pass Degree Requirements

The course is offered at both pass and honours levels.

1. The pass course requires successful completion of a four-year program.

2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following options: Pure Mathematics, Applied Mathematics, Mathematical Statistics, Theoretical Mechanics, or Education*.

The grades in this program are Honours Class I, II/1, II/2 and III.

Students who wish to proceed to the honours year should apply in writing to the Head of the School of Education. A letter of acceptance from the Head of the School in which they wish to study during the honours year should be included with this application.

*Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.
Components of the Course

The Mathematics Education Course consists of Mathematics, Education and General Studies components.

1. Mathematics Component

Two alternative programs are available. The programs consist of units ranked as Level I, Level II, Level II/III, Level III and Level IV. These units vary from 56 to 84 hours in duration. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

Students must select one of the two following programs:

5811 The Mathematics and Science Program

The pass course requires at least 23 units in addition to Education and General Studies subjects.

or

5812 The Mathematics and Liberal Studies Program

The pass course requires at least 24 units in addition to Education subjects.

For both programs the selection of units is subject to the requirements listed below:

(1) Not less than 8 units, nor more than 10 units selected from Level I. Except with the approval of the Head of the School of Mathematics and the Director of Science Teacher Courses, not more than 2 Level I units may be taken in any one discipline other than Mathematics.

(2) The following subjects or their higher equivalents shall be included:

10.001, 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

(3) Courses amounting to at least 2 full units chosen from:

10.1111, 10.1112, 10.1113, 10.1123, 10.1127, 10.1128, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by a professor of Pure Mathematics.

(4) Not less than 2 units from the following:

10.1127, 10.2113, 10.2115, 10.212L, 10.212M, 10.331, 10.311A, 10.311B, 10.3111, 10.3112, 10.312A, 10.312B, 10.312C, 10.312D, 10.312E, 10.4111, 10.4112, 10.412A, provided that a student may substitute for any of the above units such higher units as are deemed equivalent (for the purposes of satisfying this rule) by the Head of the School of Mathematics.

(5) Not less than 8 Level II or Level III Mathematics units from Table 1 (see below) and of these not less than four shall be Level III units of which only one may be Level II/III.

(6) For the award of honours the student must complete 10 units as specified in an individual program and must meet prerequisite requirements set out in Table 3 (see below).

(7) In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component

The Education component is one of the major sequences in the course. It consists of subjects grouped as follows:

- Theory of Education: 58.702, 58.703, 58.704
- Mathematics Curriculum and Instruction: 58.742, 58.743, 58.744
- School Experience: 58.712, 58.713, 58.714
- Honours: 58.793, 58.794, 58.795, 58.799

3. General Studies Component

(1) The General Studies component involves 56 hours in the pass course, which is made up of two half electives or their equivalent. The distribution of the two half electives may be varied to suit the programs of individual students.

(2) In the Mathematics and Liberal Studies Program the Liberal Studies subjects provide the General Studies component.

Enrolment Requirements

1. A student in first year must be enrolled in a Mathematics program in either the Science and Mathematics Course (3970) or the Mathematics Education Course (4070). In the second, third and fourth years a student must be enrolled in one of the Mathematics programs for the Course 4070, the Education program and, in the case of Mathematics and Science program, General Studies.

2. A student may with the approval of the Director of Science Teachers' Courses, and in consultation with the Head of the School of Mathematics, change from one selected Mathematics program to another. A written application to make the change must be lodged, including details of optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. A student must take care to satisfy the requirements of sequences of units such as prerequisites and co-requisites. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-requisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. In exceptional circumstances, on the recommendation of the Head of the School of Mathematics, the particular prerequisite or co-requisite may be waived by the Director of Science Teachers' Courses.
Programs

The course taken by each student has three component programs:

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.702</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>58.712</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.742</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>58.703</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>58.713</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>58.743</td>
<td>2½</td>
</tr>
<tr>
<td>4</td>
<td>58.704</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>58.714</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>58.744</td>
<td>2½</td>
</tr>
</tbody>
</table>

Honours in Education
<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>58.793</td>
</tr>
<tr>
<td></td>
<td>58.794</td>
</tr>
<tr>
<td>5</td>
<td>58.795</td>
</tr>
</tbody>
</table>

*Average for 28 weeks.

2. General Studies Program
(1) For students electing the Mathematics and Science Program:
Two half electives (or equivalent) taken during Years 2, 3 and/or 4 for the pass degree.

(2) For students electing the Mathematics and Liberal Studies Program:
No specific General Studies subjects are required.

3. Mathematics Program

5811
Mathematics and Science

Year 1
10.011 or 10.011
Choose 6 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811 except 14.501

Year 2
10.111A or 10.121A, 10.111 or 10.121, 10.1114 or 10.1214, 10.2111 or 10.2211, 10.2112 or 10.2212
Choose 4 or 5 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose a further Level II or III Mathematics unit if needed to make up the required 8
Choose 1 or 2 units from:
Table 1 &/or
The BA course* &/or
Table 2† for program 5811

Year 5
10.123 or 10.223 or 10.323 or 10.423.

*Up to 5 units of this program may be replaced by subjects offered in the BA degree course (6 credit points at Level I, or 4 credit points at Upper Level are equivalent to 1 unit). The BA degree subjects are limited to those offered by the following schools: Drama, Economics, English, French, German, History, Political Science, Russian, Sociology, Spanish and Latin American Studies. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus 15.062, 15.072, 15.263 and 15.273.

†Not more than 8 units that are not in Table 1 may be taken without the approval of the Director of Science Teacher Courses.

5812
Mathematics and Liberal Studies

Year 1
10.011 or 10.001
Choose 4-6 units from:
Table 1† &/or
The BA course*

Year 2
10.111A or 10.121A, 10.111 or 10.121, 10.1114 or 10.1214, 10.2111 or 10.2211, 10.2112 or 10.2212
Choose 4 or 5 units from:
Table 1† &/or
The BA course*

Year 3
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1 &/or
The BA course*

Year 4
Choose 2 Level III Mathematics units from Table 1
Choose 2 or 3 units from:
Table 1† &/or
The BA course*
4080
Science Education Degree Course
Bachelor of Science Diploma in Education
BSc DipEd

The Science Education Course is a concurrent course leading to the award of the qualifications BSc DipEd and is designed primarily to prepare students for entry into the teaching profession as teachers of science in secondary schools.

An important feature of the course is that students take education subjects along with science subjects in second, third and fourth years. The science component is based on programs offered in the Science and Mathematics Course. Students may proceed to honours in a science or in education. One of the science units is a history and philosophy of science subject. This is included to give students an understanding of the nature of science and of its relationship to society, which is especially important to prospective teachers of science.

Students enrolling in this course must seek advice from the Director of Science Teachers’ Courses, Room 41, Building G2, Western Campus or at the enrolment centre.

Objectives of the Course

The objectives of the course are those of the Science and Mathematics Course (3970) together with others which are essential for a course which is designed to prepare science teachers.

In summary, the objectives of the Science and Mathematics course broadly aim to develop a working knowledge of scientific methods of investigation and to promote an understanding of the significance of science, technology, economics and sociological factors in modern society. The objectives seek to develop in the student the ability and disposition to think logically, to communicate clearly by written and oral means and to read critically. Students are encouraged to develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.

The education component of the course seeks to provide a knowledge of theories of education and the latest innovations in educational practice and theory, and the development of skills in teaching science.

Honours and Pass Degree Requirements

There are both pass and honours programs available in the course leading to the award of the qualifications Bachelor of Science and Diploma in Education (BSc DipEd).

1. The pass course requires successful completion of a four-year program.

2. The honours course requires successful completion of a five-year program in which the fifth year is devoted to an approved honours program in one of the following disciplines:

 Physics, Chemistry, Geology, Biochemistry, Biotechnology, Botany, Microbiology, Zoology, Education*, Physiology.

 The grades in this program shall be Honours Class I, II/1, II/2 and III.

 Students who wish to proceed to the honours year should apply in writing to the Head of School of Education. A letter of acceptance from the Head of the School in which they wish to study during the honours year should be included with this application.

 *Students proceeding to the honours year in Education must have completed the Advanced Education subjects in Years 3 and 4 in addition to those Education subjects prescribed for the degree at pass level.
Components of the Course

The Science Education Course consists of Science, Education and General Studies components.

1. Science Component
The Science component is based on the prescribed programs from the Science and Mathematics Course (3970) rearranged to spread over one additional year. These programs are composed of units ranked as Level I, Level II, Level II/III, Level III, and Level IV, such units varying from 56 to 84 hours. The terms Levels I, II and III do not necessarily refer to the years in which the unit must be studied. Units at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites. For the pass course the science component requires at least 23 units with the following requirements:

(1) There shall be ten units from Level I and these must come from the following subjects: 1.001, 2.121, 2.131, 10.001 or 10.011 or 10.021B and 10.021C, 17.031, 17.041, 25.110, 25.120.

(2) Not less than four units from Level III. For purposes of this clause Level II/III units are counted as Level III units.

(3) Not less than two units beyond Level I in science disciplines in any of the teaching areas physics, chemistry (including biochemistry), biology and geology other than that of the student’s major. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers’ Courses or as specified in individual programs.

(4) One unit shall be a History and Philosophy of Science subject selected from a list of subjects approved by the Director of Science Teachers’ Courses. In special circumstances this requirement may be waived with the permission of the Director of Science Teachers’ Courses or as specified in individual programs.

(5) For the honours program with honours in a science discipline there shall be at least six Level III units and students must meet prerequisite requirements set out in Table 3.

(6) For the award of honours in a science discipline the student must complete at least ten Level IV units as specified in an individual program.

(7) In order to graduate a student must pass all the units specified in the program of his/her choice.

2. Education Component
The Education Component is one of the major sequences in the course. It consists of subjects grouped as follows:

3. General Studies Component
The General Studies component involves 56 hours in the pass course, which is made up of two half electives or their equivalent. The distribution of the two half electives may be varied to suit the programs of individual students.

Enrolment Requirements

1. In all years of the course a student must be enrolled in one of the prescribed Science programs.

In years two, three and four a student must be also enrolled in the Education program and the General Studies program.

2. A student may, with approval of the Director of Science Teachers’ Courses, change from one selected Science program to another. A written application to make the change must be lodged, including details of any optional units selected in the new program, at the Science Education Office, Room 41, Building G2, Western Campus.

3. The allowed specific programs, listed in Programs below, are made up of sequences of units. Where a choice is indicated care must be taken to satisfy the requirements such as prerequisites and co-requisites.

4. A prerequisite subject is one which must be completed prior to enrolment in the subject for which it is prescribed. A co-requisite subject is one which must either be completed successfully before or be studied concurrently with the subject for which it is prescribed. An excluded subject is one which cannot be counted together with the subject which excludes it towards the degree or qualification. In exceptional circumstances, on the recommendation of the head of the appropriate school, the particular prerequisite or co-requisite may be waived by the Director of Science Teachers’ Courses.

5. Students lacking the HSC prerequisites for 1.001 Physics 1 and/or 2.121 Chemistry 1A may satisfy prerequisites by completing the respective introductory subjects 1.021 Introductory Physics for Health and Life Scientists or 2.111 Introductory Chemistry. Students requiring 10.001 Mathematics 1 for Physics programs may satisfy prerequisites by completing 10.021B where appropriate. Under these circumstances these introductory subjects are not counted among the units required for the degree course.
Programs

The Course followed by a particular student has three component programs.

1. Education Program
This program is the same for each student though there are electives built in to some of the subjects. The program is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours per week*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58.702</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.712</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.732</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>58.703</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>58.713</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>58.733</td>
<td>4½</td>
</tr>
<tr>
<td>4</td>
<td>58.704</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>58.714</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>58.734</td>
<td>4</td>
</tr>
</tbody>
</table>

Honours in Education

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>58.793</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.794</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>58.795</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.799</td>
<td></td>
</tr>
</tbody>
</table>

*Average for 28 weeks.

2. General Studies Program
Two half electives (or equivalent) taken during second, third and/or fourth years for the pass degree.

3. Science Program
Each Science program is based on a program in the Science and Mathematics Course. Each one has an identifying number. The Science Education programs have 58 as the first two digits of the identifying number.

5801†† Physics

<table>
<thead>
<tr>
<th>Year</th>
<th>Subject</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>2.121 or both 2.131, or 2.141</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.001 or 10.011†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.031, 17.041</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>25.110, 25.120</td>
<td></td>
</tr>
<tr>
<td>2.002</td>
<td>2.102A, 2.102B, 2.102C, 2.102D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.031, 17.041</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>25.110, 25.120</td>
<td></td>
</tr>
</tbody>
</table>

††Students should read carefully the notes accompanying program 0100 Physics and seek advice from the School of Physics regarding choice of units. For students proceeding to Year 5 consideration is given in Year 4 to students wishing to include further units of Mathematics.

5820 Chemistry

Year 1
1.001
2.141 or both 2.121 and 2.131
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
or
25.110, 25.120

Year 2
2.102A, 2.102B, 2.102C, 2.102D
17.031, 17.041
or
25.110, 25.120
Choose 1 unit from: Table 1*

Year 3
Choose 2 Level III Chemistry units
Choose 1 HPS unit
Choose 1 unit from Table 1*

Year 4
Choose 2 Level III Chemistry units
Choose 2 units from Table 1*

Students proposing to proceed to Year 5 (Honours) must take 7 Level III units

Year 5
2.004

*See this footnote to program 5801.
5825 Geology

Year 1
1.001
2.121 and 2.131, or 2.141.
10.001 or 10.011 or both 10.021B & 10.021C
25.110, 25.120

Year 2
17.031, 17.041
25.211, 25.212, 25.221
Choose 2 units from Table 1*

Year 3
25.311, 25.312
Choose 1 unit from Table 1*

Year 4
Choose 2 Level III Geology units
Choose 2 units from Table 1*

Students proposing to proceed to Year 5 (Honours) must take 7 Level III units

Year 5 (Honours)
25.434

*See this footnote to program 5801.

5843 Botany

Year 1
1.001
2.121 and 2.131, or 2.141.
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
43.111
Choose 4 units from Table 1*

Year 3
Choose 2 Level III Botany units
Choose 1 HPS unit
Choose 1 unit from Table 1*

Year 4
Choose 2 Level III Botany units
Choose 2 units from Table 1*

Students proposing to proceed to Year 5 (Honours) must take 7 Level III units

Year 5 (Honours)
43.103

*See this footnote to program 5801.

5841 Biochemistry

Year 1
1.001
2.121 and 2.131, or 2.141.
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041

Year 2
2.102B
25.110, 25.120
41.101, 41.111
Choose 1 unit from Table 1*

Year 3
41.102A
Choose 1 HPS unit
Choose 1 unit from Table 1*

Year 4
Choose at least 2 units from:
41.102B, 41.102C, 41.102E
Choose 2 units from Table 1*

Students proposing to proceed to Year 5 (Honours) must complete 7 Level III units.

Year 5 (Honours)
41.103

*See this footnote to program 5801.

5844 Microbiology

Year 1
1.001
2.121 and 2.131, or 2.141.
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
41.101
44.101, 44.121
Choose 1 unit from Table 1*

Year 3
44.102
Choose 1 HPS unit
Choose 1 unit from Table 1*

Year 4
44.112
Choose 2 units from Table 1*

Students proposing to proceed to Year 5 (Honours) must take 7 Level III units

Year 5 (Honours)
44.103

*See this footnote to program 5801.
5845
Zoology

Year 1
1.001
2.121 and 2.131, or 2.141
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
45.101, 45.201, 45.301
Choose 2 Level II units of Biochemistry, Chemistry, Physics or Mathematics

Year 3
Choose 2 units from 45.121, 45.122, 45.142, 45.402
Choose 1 HPS unit
Choose 1 unit from Table 1*

Year 4
17.012
Choose 1 unit from 45.121, 45.122, 45.142, 45.402
Choose 1 Level III Zoology unit
Choose 1 unit from Table 1*

Students proposing to proceed to Year 5 (Honours) must take 6 Level III units

Year 5 (Honours)
45.103

*See this footnote to program 5801.

5873
Physiology

Year 1
1.001
2.121 and 2.131, or 2.141
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041

Year 2
25.110, 25.120
41.101, 41.111
73.111

Year 3
73.012

Year 4
Choose 1 HPS unit
Choose 3 units from Table 1*

Students proposing to proceed to Year 5 (Honours) must take 7 Level III units

Year 5 (Honours)
73.013

*See this footnote to program 5801.
4770 Programs in the Combined Science/Law Course

For details of the combined Science/Law Course refer to the Faculty of Law Handbook.

Below are approved programs for Years 1, 2 and 3 only. Years 4 and 5 are detailed in the Faculty of Law Handbook.

Note that where the levels of elective units are not specified they must be chosen so that the maximum number of Level I units, viz 8, is not exceeded.

Chemistry

Year 1
- 1.001
- 2.141 or both 2.121 & 2.131
- 10.001 or 10.011 or both 10.021B & 10.021C
- 90.112, 90.741

Year 2
- 2.102A, 2.102B, 2.102C, 2.102D
- 90.141, 90.161

Choose 2 Level I or Level II units from Table 1

Year 3
- 90.216, 90.301, 90.621

Choose 4 Level III Chemistry units from Table 1

Choose 2 other units of appropriate levels from Table 1

Physics

Year 1
- 1.001
- 10.001 or 10.011
- 90.112, 90.741

Choose 2 Level I units from Table 1

Year 2
- 1.002, 1.012, 1.022, 1.032
- 10.211, 10.2111
- 90.141, 90.161

Choose 1 Level I or Level II unit from Table 1

Year 3
- 1.0133, 1.0143, 1.023, 1.0333, 1.0343, 1.043
- 90.216, 90.301, 90.621

Choose 2 units of appropriate levels from Table 1

Computer Science

Year 1
- 6.611
- 10.001 or 10.011
- 90.112, 90.741

Choose 3 Level I units from Table 1

Year 2
- 6.621, 6.631, 6.641
- 90.141, 90.161

Choose 1 Level II unit from Table 1

Choose 2 Level I or Level II units from Table 1
Mathematics

Year 1
- 10.001 or 10.011
- 90.112, 90.741
- Choose 4 Level I units from Table 1

Year 2
- 10.111A*, 10.1113*, 10.1114*, 10.2111*, 10.2112*
- 90.141, 90.161
- Choose 1 Level II unit from Table 1
- Choose 2 Level I or Level II units from Table 1

Year 3
- 90.216, 90.301, 90.621
- Choose 4 Level III Mathematics units from Table 1
- Choose 2 other units of appropriate levels from Table 1

*Students are encouraged to select Higher Level Mathematics units where applicable.

Geology

Year 1
- 2.141 or both 2.121 & 2.131
- 10.001 or 10.011 or both 10.021B & 10.021C
- 25.110, 25.120
- 90.112, 90.741

Year 2
- 1.001
- 25.211, 25.221, 25.212, 25.223
- 90.141, 90.161

Year 3
- Choose four units from the following:
- 90.216, 90.301, 90.621
- Choose 2 Level II or Level III units from Table 1

Psychology

Year 1
- 10.001 or 10.011 or both 10.021B & 10.021C
- 12.100
- 90.112, 90.741
- Choose 2 Level I units from Table 1

Year 2
- 12.200
- Choose 2 units from:
 - 12.201, 12.202, 12.204, 12.205
- 90.141, 90.161
- Choose 1 Level II unit from Table 1
- Choose 2 Level I or Level II units from Table 1

Year 3
- 90.216, 90.301, 90.621
- Choose 4 Level III Psychology units from Table 1
- Choose 2 other units of appropriate levels from Table 1

Geography

Year 1
- 10.001 or 10.011 or both 10.021B & 10.021C
- 27.111 or 27.818
- 27.819
- Choose further Level I Science units from Table 1 to make a total of 6.
- 90.112, 90.741

Year 2
- Choose 3 Level II Geography units
- 90.141, 90.161
- Choose 1 Level II unit from Table 1
- Choose 2 Level I or Level II units from Table 1

Year 3
- 90.216, 90.301, 90.621
- Choose 4 units from:
 - 27.133, 27.143, 27.153, 27.183, 27.862, 27.863
- Choose 2 units of appropriate levels from Table 1
Biochemistry

Year 1
2.141 or both 2.121 & 2.131
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
90.112, 90.741

Year 2
2.102B
41.101
90.141, 90.161
Choose 1 Level II unit from Table 1 (preferably 41.111)
Choose 2 Level I or Level II units from Table 1

Year 3
41.101A
41.102A
41.102B or 41.102C & 41.102E
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1

Botany

Year 1
2.141 or both 2.121 & 2.131
10.001 or 10.011 or 10.021B & 10.021C
17.031, 17.041
90.112, 90.741

Year 2
43.111
90.141, 90.161
Choose 3 Level II units from Table 1
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Botany units from Table 1
Choose 2 other units of appropriate levels from Table 1

Microbiology

Year 1
2.141 or both 2.121 & 2.131
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
90.112, 90.741

Year 2
41.101
44.101, 44.121
90.141, 90.161
Choose 2 Level I or Level II units from Table 1

Year 3
44.101, 44.112
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1

Zoology

Year 1
2.141 or both 2.121 & 2.131
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
90.112, 90.741

Year 2
45.101, 45.201, 45.301
90.141, 90.161
Choose 41.101 or 2 Level II Chemistry units or 2 Level II Mathematics units
Choose 1 other Level I or Level II unit from Table 1
Year 3
90.216, 90.301, 90.621
Choose 4 Level III Zoology units from Table 1
Choose 2 other units of appropriate levels from Table 1

2. 10.032, 10.412A
2 other units of appropriate levels from Table 1
3. 2 other Level III units and 2 other units of appropriate levels from Table 1

Ecology

Year 1
2.141 or both 2.121 & 2.131
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
90.112, 90.741

Year 2
17.012
43.111
44.101
45.101, 45.201, 45.301
90.141, 90.161

Year 3
90.216, 90.301, 90.621
Choose 4 units from:
43.152, 43.172
45.112, 45.122, 45.302
Choose 2 other units of appropriate levels from Table 1

Anatomy†

Year 1
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
90.112, 90.741
Choose 2 Level I units from Table 1

Year 2
70.011A, 70.011C
90.141, 90.611
Choose 2 Level II units from Table 1*
Choose 2 Level I or Level II units from Table 1

Year 3
90.216, 90.301, 90.621
Choose 4 Level III Anatomy units from Table 2
Choose 2 other units of appropriate levels from Table 1*
*Anatomy units from Table 2 may be taken in lieu.
†Progress into Year 2 of this program is by competitive entry at the end of Year 1.
See entry under Course 3970 Anatomy

Marine Science

Year 1
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
90.112, 90.741
Choose one of the following:
1.001
2.141 or both 2.121 & 2.131
25.110, 25.120

Year 2
43.111
44.101
45.201 or 41.101
68.302
90.141, 90.161
Choose one or two of the following as appropriate:
2.102A
10.031,
10.331 or 10.301
17.012
25.622
44.121

Year 3
43.172
45.112
90.216, 90.301, 90.621
Choose one of the following groups:
1. 2.043A
1 other Level III and 2 other units of appropriate levels from Table 1

Physiology and Pharmacology

Year 1
2.141 or both 2.121 & 2.131
10.001 or 10.011 or both 10.021B & 10.021C
17.031, 17.041
90.112, 90.741

Year 2
41.101, 41.111
73.111
90.141, 90.161
Choose 1 Level I or Level II unit from Table 1

Year 3
73.012
90.216, 90.301, 90.621
Choose 2 units of appropriate levels from Table 1

79
Units offered by the
Board of Studies in Science and Mathematics

Table 1

Information Key
The following is the key to the information supplied about each subject in the table below: F (Full year, ie both sessions); S1 (Session 1); S2 (Session 2); SS (single session, ie one only); I, II, III (Levels, I, II, III); Hpw (Hours per week); C (Credit).

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>Physics 1</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>10.021C, or 10.001, or 10.011</td>
<td></td>
</tr>
<tr>
<td>1.021</td>
<td>Introductory Physics 1† (For Health and Life Scientists)</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>10.021B and 10.021C or 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.041</td>
<td>Laboratory Computers in Physical Science</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>As for 1.001</td>
<td>10.001 and 1.021 or 1.001</td>
<td>Programs 0600, 6806</td>
</tr>
<tr>
<td>1.061</td>
<td>Computer Applications in Experimental Science 1</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>6.611</td>
<td>1.001</td>
<td>1.041</td>
</tr>
</tbody>
</table>

80
Physics Level II*

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.002</td>
<td>Mechanics, Waves and Optics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.001, 10.001</td>
<td>10.2111</td>
<td>10.4111, 10.4211, 1.992</td>
<td></td>
</tr>
<tr>
<td>1.012</td>
<td>Electromagnetism and Thermal Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>1.001, 10.001</td>
<td>10.2111</td>
<td>1.972, 1.992</td>
<td></td>
</tr>
<tr>
<td>1.022</td>
<td>Modern Physics</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.001, 10.001</td>
<td>10.2112</td>
<td>1.9322, 1.982</td>
<td></td>
</tr>
<tr>
<td>1.032</td>
<td>Laboratory</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>1.001, 10.001</td>
<td>10.2111, 1.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0522</td>
<td>Methods in Mathematical Physics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.001, 10.001</td>
<td>10.2111, 10.2112, 10.1113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.062</td>
<td>Computer Applications in Experimental Science 2</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>1.041 or 10.061</td>
<td>1.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9222</td>
<td>Electronics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.021</td>
<td>1.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9322</td>
<td>Introduction to Solids</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.021</td>
<td>1.022, 4.402, 4.412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9422</td>
<td>Introduction to Physics of Measurement</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001</td>
<td>1.042</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physics Level III*

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0133</td>
<td>Quantum Mechanics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.022, 10.2112</td>
<td>2.023A, 10.222F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0143</td>
<td>Nuclear Physics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.022, 10.2112</td>
<td>1.0133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.023</td>
<td>Statistical Mechanics and Solid State Physics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>1.012, 1.022, 10.2112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0333</td>
<td>Electromagnetism and Solid State Physics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.012, 10.2111, 10.2112</td>
<td>10.222C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0343</td>
<td>Advanced Optics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.022, 1.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.043</td>
<td>Experimental Physics A</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>1.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0533</td>
<td>Experimental Physics B1</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td>1.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0543</td>
<td>Experimental Physics B2</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>4</td>
<td>1.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1133</td>
<td>Advanced Quantum Mechanics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.0133</td>
<td>2.023A, 10.222F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.133</td>
<td>Electronics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>1.032 or 1.9222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1433</td>
<td>Biophysics</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.012, 1.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1533</td>
<td>Biophysical Techniques</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.012, 1.022, 1.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1633</td>
<td>Astrophysics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3033</td>
<td>Mechanical Properties of Materials</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>1.023</td>
<td>4.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3133</td>
<td>Physics of Solid State Devices</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3143</td>
<td>Topics in Condensed Matter Physics</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.023</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
Physics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3533</td>
<td>Marine Acoustics</td>
<td>III</td>
<td>$\frac{1}{2}$</td>
<td>S1††</td>
<td>2</td>
<td>1.002 (or 10.4111)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5133</td>
<td>Classical Mechanics and Field Theory</td>
<td>III</td>
<td>$\frac{1}{2}$</td>
<td>S1</td>
<td>2</td>
<td>1.022</td>
<td>10.1113, 10.2111, 10.2112</td>
<td></td>
</tr>
<tr>
<td>1.5233</td>
<td>Electrodynamics</td>
<td>III</td>
<td>$\frac{1}{2}$</td>
<td>S2</td>
<td>2</td>
<td>1.012, 1.022</td>
<td>1.0333, 10.2112</td>
<td>10.222C</td>
</tr>
<tr>
<td>1.5333</td>
<td>Radiation and Matter</td>
<td>III</td>
<td>$\frac{1}{2}$</td>
<td>S2</td>
<td>2</td>
<td>1.012, 1.022</td>
<td>10.2111, 10.2112</td>
<td>10.2112, 10.212</td>
</tr>
<tr>
<td>1.5433</td>
<td>Plasmas and Laser Fusion</td>
<td>III</td>
<td>$\frac{1}{2}$</td>
<td>S2</td>
<td>2</td>
<td>1.012, 1.022</td>
<td>1.0133 or 10.222F or 2.023A</td>
<td></td>
</tr>
<tr>
<td>1.5533</td>
<td>General Relativity</td>
<td>III</td>
<td>$\frac{1}{2}$</td>
<td>S2</td>
<td>2</td>
<td>1.012, 1.022</td>
<td>10.1113, 10.2111</td>
<td>10.2112</td>
</tr>
<tr>
<td>1.713**</td>
<td>Advanced Laser and Optical Applications</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td></td>
<td>1.002</td>
<td></td>
</tr>
<tr>
<td>1.763**</td>
<td>Laser and Optical Technology Laboratory 1</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td></td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>1.773**</td>
<td>Laser and Optical Technology Laboratory 2</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td></td>
<td>1.763</td>
<td></td>
</tr>
</tbody>
</table>

1For students who enrol in and successfully complete the subjects 1.021 Introductory Physics (2 units) and 1.001 Physics (2 units) the total unit value of the combined subjects will be counted as 3 units.

*Where mathematics units are specified as prerequisites or as co-requisites, the higher levels of such units are acceptable and preferable. Similarly Physics 1.001 is acceptable in place of 1.021. Students are also advised that other units may be acceptable equivalent prerequisites or co-requisites to those listed, eg Unit 1.982 of course 3640 may be acceptable in place of 1.022. Enquiry should be made to the School of Physics.

**Students wishing to enrol in units 1.713, 1.763 or 1.773 without the stated prerequisites or corequisites should enquire from the School of Physics as to the suitability of their previous studies.

††To be offered in odd numbered years only.

Chemistry

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.121</td>
<td>Chemistry 1A</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>2.141</td>
</tr>
<tr>
<td>2.131</td>
<td>Chemistry 1B</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>2.141</td>
</tr>
<tr>
<td>2.141</td>
<td>Chemistry 1M‡</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>2.121, 2.131</td>
</tr>
<tr>
<td>2.102A</td>
<td>Physical Chemistry</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.121 and 2.131, or 2.141, 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td>2.002A</td>
</tr>
</tbody>
</table>
Chemistry (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.102B</td>
<td>Organic Chemistry</td>
<td>II</td>
<td>1</td>
<td>F or S2</td>
<td>6</td>
<td>2.131 or 2.141</td>
<td></td>
<td>2.002B</td>
</tr>
<tr>
<td>2.102C</td>
<td>Inorganic Chemistry and Structure</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td>2.042C</td>
</tr>
<tr>
<td>2.102D</td>
<td>Chemical and Spectroscopic Analysis</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141, 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td>2.002D, 2.003H</td>
</tr>
<tr>
<td>2.003A</td>
<td>Physical Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>2.002A</td>
<td></td>
</tr>
<tr>
<td>2.003B</td>
<td>Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003C</td>
<td>Inorganic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.042C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003D</td>
<td>Instrumental Analysis</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.002D, 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1 or S2 or F</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141, 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003H</td>
<td>Molecular Spectroscopy and Structure</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003K</td>
<td>Solid State Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141, 10.001 or 10.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003L</td>
<td>Applied Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>2.002B</td>
<td>2.003B</td>
<td>2.033L</td>
</tr>
<tr>
<td>2.003M</td>
<td>Organometallic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013A</td>
<td>Introductory Quantum Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>1.001 or 1.011, 2.121 & 2.131, or 2.141, 10.001 or 10.011 or 10.021B & 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013B</td>
<td>Synthetic Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013C</td>
<td>Advanced Inorganic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>2.042C</td>
<td>2.003C</td>
<td></td>
</tr>
<tr>
<td>2.013D</td>
<td>Advanced Analytical Chemistry</td>
<td>III</td>
<td>1</td>
<td>F or S2</td>
<td>6</td>
<td>2.002D</td>
<td>2.003D</td>
<td></td>
</tr>
<tr>
<td>2.023A</td>
<td>Quantum Theory of Atoms and Molecules</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>2.002A, 10.2111 & 10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.023B</td>
<td>Biological Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.033A</td>
<td>Physical Chemistry of Macromolecules</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003J or 2.002B, 1.012 or 2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.043A</td>
<td>Environmental Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.002A, 2.002D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.053A</td>
<td>Chemical Kinetics and Reaction Mechanisms</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.063A</td>
<td>Advanced Molecular Spectroscopy</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.013A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students majoring in Chemistry may take 2.14 in lieu of 2.121 and 2.131.
Metallurgy

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.302</td>
<td>Chemical and II Extraction Metallurgy</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>2.002A*</td>
<td></td>
</tr>
<tr>
<td>4.402</td>
<td>Physical Metallurgy</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>2.002A*, 4.502</td>
<td></td>
</tr>
<tr>
<td>4.412</td>
<td>Metallurgical Phases — Structure and Equilibrium Part 1</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>2.002A, 4.302</td>
<td></td>
</tr>
<tr>
<td>4.502</td>
<td>Mechanical Metallurgy</td>
<td>II</td>
<td>1½</td>
<td>F</td>
<td>4S1</td>
<td></td>
<td>4.402</td>
<td>4.512,</td>
</tr>
<tr>
<td>4.522</td>
<td>Mechanical Metallurgy</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>4.512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.512</td>
<td>Mechanical Properties of Solids</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>4.402</td>
<td></td>
</tr>
<tr>
<td>4.522</td>
<td>Mechanical Metallurgy</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td>4.512</td>
<td></td>
<td>4.502</td>
</tr>
<tr>
<td>4.602</td>
<td>Metallurgical Engineering I</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>4.302</td>
<td></td>
</tr>
<tr>
<td>4.303</td>
<td>Chemical and II Extraction Metallurgy 2</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td>4.302, 4.602 and</td>
<td>4.422</td>
<td></td>
</tr>
<tr>
<td>4.403</td>
<td>Physical Metallurgy</td>
<td>III</td>
<td>3</td>
<td>F</td>
<td>9</td>
<td>4.402</td>
<td></td>
<td>1.3033</td>
</tr>
<tr>
<td>4.502</td>
<td>Mechanical Metallurgy</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>4.602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.522</td>
<td>Mechanical Metallurgy</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>4.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.703</td>
<td>Materials Science†</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>4.403</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This unit must be taken in Session 1.
†Not offered in 1986.

Mechanical and Industrial Engineering

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.006</td>
<td>Engineering E</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>5.010,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.020,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.030</td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C†</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td>5.006</td>
</tr>
<tr>
<td>5.030</td>
<td>Engineering C†</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also offered over the full year at 3 hours per week, for the 'Production Technology' option only.
Electrical Engineering and Computer Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.611</td>
<td>Computing 1</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>HSC Mathematics as for 10.001</td>
<td>10.001 or 10.011</td>
<td>1.041*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.600</td>
<td>6.620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.021D</td>
<td></td>
</tr>
<tr>
<td>6.621</td>
<td>Computing 2A</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td></td>
<td>6.611**</td>
<td>10.001 or 10.011</td>
<td>6.620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.021D</td>
</tr>
<tr>
<td>6.631</td>
<td>Computing 2B</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td></td>
<td>6.621** or 6.620** or 6.021D**</td>
<td>6.021E</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6.641</td>
<td>Computing 2C</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>5</td>
<td></td>
<td>6.621** or 6.620** or 6.021D**</td>
<td>6.622</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6.646</td>
<td>Computer Applications</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>6.620** or 6.621** or 6.021D**</td>
<td>10.331 or both 10.311A and 10.311B or equivalent.</td>
<td></td>
</tr>
</tbody>
</table>

"Excluded for students in programs 0600, 6806.
**Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.

Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.001</td>
<td>Mathematics 1</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td>10.011</td>
<td>10.021B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.021C</td>
<td></td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics 1</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td>10.001</td>
<td>10.021B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.021C</td>
<td></td>
</tr>
<tr>
<td>10.021B</td>
<td>General Mathematics 1B</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td>10.001</td>
<td>10.011</td>
</tr>
<tr>
<td>10.021C</td>
<td>General Mathematics 1C</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>10.021B</td>
<td></td>
<td>10.001</td>
</tr>
<tr>
<td>10.081</td>
<td>Mathematics 1X</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>As for 10.001</td>
<td>10.001 or 10.011</td>
<td></td>
</tr>
</tbody>
</table>

85
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.031‡</td>
<td>Mathematics II</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.001 or 10.021C (CR)</td>
<td></td>
<td>§</td>
</tr>
<tr>
<td>10.032§</td>
<td>Mathematics III</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.031</td>
<td></td>
<td>§</td>
</tr>
<tr>
<td>10.612</td>
<td>Mathematical Software IV</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.111A</td>
<td>10.211E*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.2112</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.621 or 10.211E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

††For any listed unit an appropriate higher unit may be substituted.
*For highly qualified students this co-requisite may be waived.
‡‡Mathematics 10.031 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics, Applied Mathematics are taken, 10.031 Mathematics will not be counted.
§§Mathematics 10.032 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics, Applied Mathematics or Theoretical Mechanics are taken, 10.032 Mathematics will not be counted except that 10.412A may be taken with 10.032.

Pure Mathematics Level II

Pure Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.111A</td>
<td>Linear Algebra</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.121A</td>
</tr>
<tr>
<td>10.1113</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.1213</td>
</tr>
<tr>
<td>10.1114</td>
<td>Complex Analysis</td>
<td>II</td>
<td>½</td>
<td>S1 or S2</td>
<td>2½</td>
<td>10.001</td>
<td></td>
<td>10.1214</td>
</tr>
<tr>
<td>10.1115</td>
<td>Finite Mathematics A</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1116</td>
<td>Finite Mathematics B</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.1115 (or any other level II Mathematics half unit)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level II‡

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.121A</td>
<td>Algebra</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td></td>
<td>10.111A</td>
</tr>
<tr>
<td>10.1213</td>
<td>Multivariable Calculus</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2½</td>
<td>10.011 or 10.001 DN</td>
<td></td>
<td>10.1113</td>
</tr>
<tr>
<td>10.1214</td>
<td>Complex Analysis</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2½</td>
<td>10.1213</td>
<td></td>
<td>10.1114</td>
</tr>
</tbody>
</table>

Pure Mathematics Level III***

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1111</td>
<td>Group Theory</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>***</td>
<td>10.121A</td>
<td></td>
</tr>
<tr>
<td>10.1112</td>
<td>Geometry</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>***</td>
<td>10.121C</td>
<td></td>
</tr>
<tr>
<td>10.1121</td>
<td>Number Theory</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td>10.1421</td>
<td></td>
</tr>
<tr>
<td>10.1123</td>
<td>Logic and Computability</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td>10.122C</td>
<td></td>
</tr>
<tr>
<td>10.1124</td>
<td>Combinatorial Topology</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1125</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.111A</td>
<td>10.122E, 10.1425</td>
<td></td>
</tr>
<tr>
<td>10.1126</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.1113, 10.1125</td>
<td>10.1426</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When</td>
<td>Offered</td>
<td>HpW</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>10.1127</td>
<td>History of Mathematics</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.111A, 10.1113, 10.1114, 10.2111, 10.2112</td>
<td></td>
</tr>
<tr>
<td>10.1128</td>
<td>Foundations of Calculus</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>10.1521</td>
<td>Combinatorics and its Applications</td>
<td>III</td>
<td></td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>10.1522</td>
<td>Differential Geometry</td>
<td>III</td>
<td></td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>10.1113</td>
<td>***</td>
</tr>
<tr>
<td>10.1523</td>
<td>Functional Analysis and Applications</td>
<td>III</td>
<td></td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>10.111A</td>
<td>***</td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>HpW</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.122B</td>
<td>Real Analysis and Functional Analysis</td>
<td>III</td>
<td></td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.112B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1321</td>
<td>Rings and fields</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S1+</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.123 or 10.1113 DN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1322</td>
<td>Galois Theory</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S2+</td>
<td>2</td>
<td>10.1214 or 10.1114 DN</td>
<td>10.1321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1323</td>
<td>Complex Analysis</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S1++</td>
<td>2</td>
<td>10.1214 or 10.1114 DN</td>
<td>10.122B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1324</td>
<td>Integration and Fourier Analysis</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S2++</td>
<td>2</td>
<td>10.1214 or 10.1114 DN</td>
<td>10.122B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1325</td>
<td>Differential Geometry</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S1+</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1326</td>
<td>Calculus on Manifolds</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S2+</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1421</td>
<td>Number theory</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S1++</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1422</td>
<td>Groups and Representations</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S2++</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1423</td>
<td>Topology</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S1+</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1424</td>
<td>Geometry</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S2++</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1425</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S1++</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1426</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td></td>
<td>½</td>
<td>S2++</td>
<td>2</td>
<td>10.121A or 10.111A DN</td>
<td>10.1126</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

††For any listed unit an appropriate higher unit may be substituted.

†1. Admission to Higher Pure Mathematics 2 normally requires completion of 10.011 Higher Mathematics 1; students who gain a superior pass in 10.001 Mathematics 1 may subject to the approval of the Head of the School of Mathematics, be permitted to proceed to Higher Pure Mathematics 2 units.

2. Students majoring in Physics who wish to take Higher Pure Mathematics 2 should attempt 10.121A, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

3. Students aiming at Honours in Pure Mathematics must take 10.121A, 10.121C, 10.1213, 10.1214, either 10.2211 or 10.2111 and either 10.2212 or 10.2112.

**Students wishing to attempt Level III Higher Pure Mathematics units should consult the School of Mathematics prior to enrolment. Students will not normally be permitted to attempt a Level III Higher Pure Mathematics unit unless they have completed at least 2 Level II units from 10.121A, 10.1213, 10.1214, 10.2211 and 10.2212, or obtained sufficiently good gradings in the corresponding ordinary Level II units.

Pre- and co-requisites may be varied in special circumstances with the permission of the Head of the School of Mathematics.

***Students will not normally be permitted to attempt a Level III Pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.

†††The unit 10.122B is strongly recommended.

†††These subjects are to be offered in odd numbered years.

‡‡‡These subjects are to be offered in even numbered years.
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.211</td>
<td>Vector Calculus</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S1 or 2½</td>
<td>10.001</td>
<td></td>
<td>10.2211</td>
</tr>
<tr>
<td>10.2112</td>
<td>Mathematical Methods for Differential Equations</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S1 or 2½</td>
<td>10.001</td>
<td></td>
<td>10.2212</td>
</tr>
<tr>
<td>10.2113</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S1 or 2</td>
<td>10.001</td>
<td></td>
<td>10.2213</td>
</tr>
<tr>
<td>10.2115</td>
<td>Discrete-Time Systems</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S2 or 2</td>
<td>10.001</td>
<td></td>
<td>10.2215</td>
</tr>
<tr>
<td>10.211E</td>
<td>Mathematical Computing</td>
<td>II</td>
<td>1</td>
<td>F or 2</td>
<td>10.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Applied Mathematics (Level II)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2211</td>
<td>Vector Analysis</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S1 or 2½</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2111</td>
</tr>
<tr>
<td>10.2212</td>
<td>Mathematical Methods for Differential Equations</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S2 or 2½</td>
<td>10.02211</td>
<td></td>
<td>10.2112</td>
</tr>
<tr>
<td>10.2213</td>
<td>Introduction to Linear Programming</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S1 or 2</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2213</td>
</tr>
<tr>
<td>10.2215</td>
<td>Discrete-Time Systems</td>
<td>II</td>
<td>$\frac{1}{2}$</td>
<td>S2 or 2</td>
<td>10.011 or 10.001 DN**</td>
<td></td>
<td>10.2215</td>
</tr>
</tbody>
</table>

Applied Mathematics (Level III)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.212A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>F or 2</td>
<td>10.2112, 10.111A</td>
<td></td>
<td>10.222A</td>
</tr>
<tr>
<td>10.212L</td>
<td>Optimization Methods</td>
<td>III</td>
<td>1</td>
<td>F or 2</td>
<td>10.1113***</td>
<td></td>
<td>10.222L</td>
</tr>
<tr>
<td>10.212M</td>
<td>Optimal Control Theory</td>
<td>III</td>
<td>1</td>
<td>F or 2</td>
<td>10.1113 and 10.1114</td>
<td>10.111A</td>
<td>10.222M</td>
</tr>
</tbody>
</table>

Higher Applied Mathematics (Level III)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.222A</td>
<td>Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>F or 2</td>
<td>10.2212 or 10.2112 DN**, 10.121A or 10.111A DN**, 10.2212 or 10.2112 DN**, 10.121A or 10.111A DN**</td>
<td></td>
<td>10.212A</td>
</tr>
<tr>
<td>10.222C</td>
<td>Maxwell's Equations and Special Relativity</td>
<td>III</td>
<td>1</td>
<td>F or 2</td>
<td>10.2211 or 10.2111 DN**, 10.2212 or 10.2112 DN**, 10.1214 or 10.1114 DN**, 1.001</td>
<td></td>
<td>1.033</td>
</tr>
<tr>
<td>10.222F</td>
<td>Quantum Mechanics</td>
<td>III</td>
<td>1</td>
<td>F or 2</td>
<td>10.2211 or 10.2111 DN**, 10.1213 or 10.1113 DN**, 10.1213 or 10.1113 DN**</td>
<td></td>
<td>1.013</td>
</tr>
<tr>
<td>10.222L</td>
<td>Optimization Methods</td>
<td>III</td>
<td>1</td>
<td>F or 2</td>
<td>10.1113 DN** ****</td>
<td></td>
<td>10.2212L</td>
</tr>
</tbody>
</table>

†For any listed unit an appropriate higher unit may be substituted.

**With the permission of the Head of the Department a sufficiently good grading may be substituted.

***At least one further unit chosen from the following: 10.111A, 10.1114, 10.2111, 10.2112, 10.2113.

****At least 1½ further units chosen from the following: 10.121A or 10.111A, 10.1214 or 10.1114, 10.2211 or 10.2111, 10.2212 or 10.2112, 10.2213 or 10.2113, 10.2215 or 10.2113.
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.311A</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1</td>
<td>S1‡</td>
<td>4</td>
<td>10.001 or 10.011 or 10.021C (CR)</td>
<td>10.31A</td>
<td>10.321A</td>
</tr>
<tr>
<td>10.311B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.311A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3111</td>
<td>Statistical Computing and Simulation</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.001 or 10.011 or 10.021C (CR)</td>
<td>10.311A</td>
<td>10.311A</td>
</tr>
<tr>
<td>10.3112</td>
<td>Nonparametric Statistical Inference</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.311A</td>
<td>10.311B</td>
<td></td>
</tr>
<tr>
<td>10.331</td>
<td>Statistics SS</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>10.001 or 10.021C (CR)</td>
<td></td>
<td>10.311A</td>
</tr>
</tbody>
</table>

Higher Theory of Statistics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.321A</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.001 or 10.011</td>
<td></td>
<td>10.311A</td>
</tr>
<tr>
<td>10.321B</td>
<td>Basic Inference</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.321A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3211</td>
<td>Statistical Computing and Simulation</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.001 or 10.011</td>
<td>10.321A</td>
<td>10.321A</td>
</tr>
<tr>
<td>10.3212</td>
<td>Nonparametric Statistical Inference</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.321A</td>
<td>10.321B</td>
<td></td>
</tr>
</tbody>
</table>

Theory of Statistics Level III**

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.312A</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311A, 10.111A, 10.1113</td>
<td>10.322A</td>
<td></td>
</tr>
<tr>
<td>10.312C</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>10.311B, 10.111A, 10.1113</td>
<td>10.322C</td>
<td>10.322C</td>
</tr>
<tr>
<td>10.312F</td>
<td>Statistical Computation</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>4</td>
<td>10.311B (or 10.312B or 10.3321)</td>
<td>6.641</td>
<td>10.3211</td>
</tr>
<tr>
<td>10.3121</td>
<td>Sample Survey Theory</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.311B</td>
<td></td>
<td>10.3221</td>
</tr>
<tr>
<td>10.3122</td>
<td>Design and Analysis of Experiments</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.311B</td>
<td>10.3222</td>
<td></td>
</tr>
<tr>
<td>10.3123</td>
<td>Statistical Inference</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>10.311B</td>
<td></td>
<td>10.3223</td>
</tr>
<tr>
<td>10.3124</td>
<td>Non-parametric Methods</td>
<td>III</td>
<td>½</td>
<td>SS</td>
<td>2</td>
<td>10.311B</td>
<td></td>
<td>10.3224</td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3321</td>
<td>Regression Analysis and Experimental Design</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.331 or 10.312B or 10.321A</td>
<td>10.312B</td>
<td>10.322A</td>
<td></td>
</tr>
<tr>
<td>10.3322</td>
<td>Applied Stochastic Processes</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.331 or 10.312A or 10.321A</td>
<td>10.312A</td>
<td>10.322A</td>
<td></td>
</tr>
</tbody>
</table>

Higher Theory of Statistics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3221</td>
<td>Probability and Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.111A, 10.1113</td>
<td>10.312B</td>
<td>10.312C</td>
<td></td>
</tr>
<tr>
<td>10.3222</td>
<td>Experimental Design (Theory)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113</td>
<td>10.312D</td>
<td>10.312E</td>
<td></td>
</tr>
<tr>
<td>10.322E</td>
<td>Statistical Inference</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>10.321B, 10.111A, 10.1113</td>
<td>10.312E</td>
<td>10.312C</td>
<td></td>
</tr>
<tr>
<td>10.3222</td>
<td>Sample Survey Theory</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.321B</td>
<td>10.3121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3223</td>
<td>Design and Analysis</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.321B</td>
<td>10.3122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3224</td>
<td>Non-parametric Methods</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.321B</td>
<td>10.3124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For any listed unit an appropriate higher unit may be substituted.

† Plus any two Level III Pure Mathematics, Applied Mathematics, Theoretical Mechanics or Computer Science units. It is sufficient to take 10.312B (10.322B) in the same year.

** For a student taking four of the units 10.312A, 10.312B, 10.312C, 10.312D, 10.312E (or the corresponding higher units) a project is required as part of either 10.312C (10.322C) or 10.312E (10.322E).

‡ The evening course 10.311A will, subject to a sufficient enrolment, run at 3½ hours per week throughout the year.

Theoretical and Applied Mechanics

Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4111</td>
<td>Introduction to Theoretical Mechanics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.001, 1.001 or 5.006</td>
<td>10.2111, 10.2112, 10.411B, 10.421B, 10.4111, 10.411A, 10.421A, 10.4122</td>
<td>10.4113</td>
<td></td>
</tr>
<tr>
<td>10.4112</td>
<td>Introduction to Hydrodynamics</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.001 or 1.002</td>
<td>10.4111 or 1.002</td>
<td>10.4112</td>
<td></td>
</tr>
</tbody>
</table>

Higher Theoretical Mechanics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4211</td>
<td>Introduction to Theoretical Mechanics</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>10.011 or 10.001 (DN**)</td>
<td>10.2211, 10.2212, 10.411B, 10.421B, 10.4111, 1.002, 1.992</td>
<td>10.411A</td>
<td></td>
</tr>
<tr>
<td>10.4212</td>
<td>Introduction to Hydrodynamics</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>10.011 or 10.001 (DN**)</td>
<td>10.421A, 10.411A, 10.4112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Mechanics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.412A</td>
<td>Dynamical and Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>1.001, 10.2111 and 10.2121, 10.031</td>
<td>10.2112 or 10.031</td>
<td>10.4112</td>
<td></td>
</tr>
</tbody>
</table>
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.412B</td>
<td>Continuum Mechanics</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td></td>
<td>10.2111, 10.2112, 10.1113, 10.1114, 10.111A</td>
<td>10.4112 or 1.012, 1.913</td>
<td>10.422B</td>
</tr>
<tr>
<td>10.412D</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td></td>
<td>10.2112, 10.1113, 10.1114, 10.111A</td>
<td></td>
<td>10.422D, 10.4331</td>
</tr>
<tr>
<td>10.4129</td>
<td>Applied Time Series Analysis</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>10.2112 or 10.031 or 10.022</td>
<td>10.331 or equivalent or 10.412D or equivalent</td>
<td></td>
</tr>
<tr>
<td>10.4331</td>
<td>Transform Methods</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>10.1113, 10.1114, 10.2112 or equivalent</td>
<td></td>
<td>10.412D, 10.422D, 10.0331, 10.033</td>
</tr>
</tbody>
</table>

Higher Theoretical Mechanics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.422A</td>
<td>Fluid Dynamics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>10.421A or 10.411A DN**</td>
<td></td>
<td>10.422B</td>
</tr>
<tr>
<td>10.422B</td>
<td>Mechanics of Solids</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>10.2111, 10.2112, 10.1113, 10.1114, 10.111A, 10.421B or 10.411B DN** or 1.012</td>
<td></td>
<td>10.412B</td>
</tr>
</tbody>
</table>

10.612 Mathematical Software See page 88

With the permission of the Head of the Department a sufficiently good grading may be substituted.

It is recommended that one of the following be taken concurrently: 10.4112 or 1.3533.

For any listed unit an appropriate higher unit may be substituted.

Psychology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
</table>

Psychology Level I

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.100</td>
<td>Psychology 1</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Psychology Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.200</td>
<td>Research Methods 2</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>12.100*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.201</td>
<td>Biological Basis of Psychology 2</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>12.100*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.202</td>
<td>Social and Cognitive Psychology 2</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>12.100*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.204</td>
<td>Human Relations 2</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>12.100*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.205</td>
<td>Individual Differences 2</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>12.100*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.300</td>
<td>Research Methods 3A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.305</td>
<td>Learning and Behaviour 3</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Psychology Level III: Group B
See Notes

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.301</td>
<td>Research Methods 3B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200 and 12.300</td>
<td></td>
</tr>
<tr>
<td>12.304</td>
<td>Personality and Individual Differences 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
</tr>
<tr>
<td>12.310</td>
<td>Psychophysical Psychology 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
</tr>
<tr>
<td>12.311</td>
<td>Perception 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
</tr>
<tr>
<td>12.312</td>
<td>Language and Cognition 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200 and 12.202</td>
<td></td>
</tr>
<tr>
<td>12.314</td>
<td>Motivation and Emotion 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
</tr>
<tr>
<td>12.315</td>
<td>Theories of Associative Learning 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.305</td>
<td></td>
</tr>
<tr>
<td>12.316</td>
<td>Psychophysiology 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
</tr>
<tr>
<td>12.320</td>
<td>Social Psychology 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.202</td>
<td></td>
</tr>
<tr>
<td>12.321</td>
<td>Developmental Psychology 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200 and 12.202</td>
<td></td>
</tr>
<tr>
<td>12.322</td>
<td>Abnormal Psychology 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
</tr>
<tr>
<td>12.324</td>
<td>Experimental Psychopathology 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.322</td>
<td></td>
</tr>
<tr>
<td>12.325</td>
<td>Social Behaviour 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200 and 12.202</td>
<td></td>
</tr>
<tr>
<td>12.330</td>
<td>Psychological Assessment 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>12.200, and 1 other Psychology Level II subject</td>
<td>12.203</td>
</tr>
<tr>
<td>12.331</td>
<td>Counselling Psychology 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
</tr>
<tr>
<td>12.332</td>
<td>Behavioural Change 3</td>
<td>III</td>
<td>1</td>
<td>Not offered</td>
<td>4</td>
<td>12.200 and 12.201</td>
<td></td>
</tr>
<tr>
<td>12.333</td>
<td>Ergonomics 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200</td>
<td></td>
</tr>
<tr>
<td>12.334</td>
<td>Behaviour in Organizations 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>2 Psychology Level II subjects</td>
<td></td>
</tr>
<tr>
<td>12.335</td>
<td>Behavioural Evaluation and Assessment 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.200</td>
<td></td>
</tr>
<tr>
<td>12.340</td>
<td>Special Topic 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>12.300 and 12.305</td>
<td></td>
</tr>
</tbody>
</table>

*Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.

Notes:

1. A student may not enrol in more than four Level II Psychology units.
2. A student may not enrol in more than three Level III Psychology units unless 12.200 Research Methods 2 has been passed.
3. A student may not enrol in more than six Level III Psychology units unless 12.300 Research Methods 3A has been passed.
4. A major in Psychology is 12.100, two Psychology Level II units, including 12.200 and four Psychology Level III units.
5. A student may not enrol in more than three Psychology Level III units selected from 12.304 Personality and Individual Differences 3, 12.322 Abnormal Psychology 3, 12.324 Experimental Psychopathology 3, 12.331 Counselling Psychology 3, and 12.335 Behavioural Evaluation and Assessment 3.
6. A student may not enrol in more than two Psychology Level III units selected from 12.320 Social Psychology 3, 12.325 Social Behaviour 3 and 12.334 Behaviour in Organizations 3.
7. A student may not enrol in more than eight Level III Psychology units in course 3970.
Biological Sciences

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.031</td>
<td>Biology A</td>
<td>I</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td>17.021</td>
</tr>
<tr>
<td>17.041</td>
<td>Biology B*</td>
<td>I</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Students with percentile range 61-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in 45.201 or 45.301 in lieu of 17.041 after completion of 17.031. Students are selected by the Head of School for enrolment in these units. If successful, students will have met the prerequisite requirement of 17.041 Biology B for all units.

Applied Geology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.110</td>
<td>Earth Materials and Processes**</td>
<td>I</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.120</td>
<td>Earth Environments and Dynamics****</td>
<td>I</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>25.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.211</td>
<td>Earth Materials 1**</td>
<td>II</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.221</td>
<td>Earth Materials 2****</td>
<td>II</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>25.211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.212</td>
<td>Earth Environments 1‡</td>
<td>II</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>25.212‡‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.223</td>
<td>Earth Physics**</td>
<td>II</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>25.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.2261</td>
<td>Mathematical Geology 1</td>
<td>II</td>
<td>½ S2</td>
<td>3</td>
<td></td>
<td>25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.621</td>
<td>Marine Geology 1**</td>
<td>II</td>
<td>F</td>
<td>3</td>
<td></td>
<td>25.601 or 25.110 and 25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.622</td>
<td>Hydrological and Coastal Surveying‡</td>
<td>II/III</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.311</td>
<td>Earth Materials 3</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>25.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.321</td>
<td>Earth Materials 4****</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>25.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.312</td>
<td>Earth Environments 2‡‡</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>25.212‡‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.314</td>
<td>Mineral and Energy Resources 1***</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>25.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3162</td>
<td>Mathematical Geology 2</td>
<td>III</td>
<td>½ S1</td>
<td>3</td>
<td></td>
<td>25.2261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.324</td>
<td>Mineral and Energy Resources 2****</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>25.212 or 25.5212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.325</td>
<td>Engineering and Environmental Geology***</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3261</td>
<td>Geochemical Analytical Techniques</td>
<td>III</td>
<td>½ S1</td>
<td>2</td>
<td></td>
<td>25.311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3271</td>
<td>Advanced Structural Geology****</td>
<td>III</td>
<td>½ S2</td>
<td>2</td>
<td></td>
<td>25.221</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applied Geology (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.333</td>
<td>Exploration Geophysics***</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3S1</td>
<td>25.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.6342</td>
<td>Exploration and Seismic Methods</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>2S2</td>
<td></td>
<td></td>
<td>25.634, 25.9321</td>
</tr>
<tr>
<td>25.9311</td>
<td>Gravity and Magnetic Methods*</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.9312</td>
<td>Seismic Methods*</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.9313</td>
<td>Electrical Methods*</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>1.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Field work of up to 1 day.
**Field work of up to 2 days.
***Field work of up to 3 days.
****Field work of up to 4 days.
†Field work of up to 5 days.
‡‡Field work of up to 8 days.

Field tutorials are an essential part of the subject, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

††Not available for programs 2500, 2503 nor in Geology program of Course 4770, nor in Geology with some Mathematics program of Course 3730.
†††It is desirable that students taking 25.312 should also have taken 25.223.

Geography

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.111</td>
<td>Applied Physical Geography 1†</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.818</td>
<td>Australian Environment and Human Response**</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td>27.801, 27.301, 27.818, 27.811, 27.828, 27.295, 27.311, 27.802, 27.302</td>
</tr>
<tr>
<td>27.819</td>
<td>Technology and Regional Change*</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td></td>
<td>27.1711</td>
</tr>
<tr>
<td>27.175</td>
<td>Introduction to Remote Sensing</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>27.111 or 27.818 and 27.819 or 27.801 and 27.802 or 27.301 and 27.302</td>
<td></td>
</tr>
<tr>
<td>27.172</td>
<td>Environmental Measurements†</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.813</td>
<td>Geographic Methods***</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.828</td>
<td>Australian Natural Environments***</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.818 or 27.801/301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>How</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>27.829</td>
<td>Australian Social Environments***</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.819 or 27.802/302</td>
<td></td>
<td>27.812, 27.312</td>
</tr>
<tr>
<td>27.133</td>
<td>Pedology†</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>27.111 or any 2 units from: 2.111, 2.121, 2.131, 2.141 or 27.828 or 27.311 or 27.811 (or 25.012 or 25.022) or 27.172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.143</td>
<td>Biogeography†</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>27.311, or 27.111, or 17.031 and 17.041, or 27.811, or 27.172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.153</td>
<td>Climatology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>1.001, or 27.814, or 27.828, or 25.110 and 25.120, or 17.031 and 17.041†, or 27.111, or 27.172, or 27.311, or 27.811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.176</td>
<td>Remote Sensing Applications</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.1711 or 27.175</td>
<td></td>
<td>27.1712</td>
</tr>
<tr>
<td>27.183</td>
<td>Geomorphology†</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>25.110 and 25.120, or 27.828, or 27.811, or 27.172, or 27.311</td>
<td></td>
<td>27.860</td>
</tr>
<tr>
<td>27.432</td>
<td>Computer Mapping and Display</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.813, or 27.813 and 27.2813 and 27.2814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.652</td>
<td>Geographic Information Systems</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.753</td>
<td>Social Welfare and Urban Development</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.829 or 27.812 or 27.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.824</td>
<td>Spatial Population Analysis</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.829 or 27.812/312</td>
<td></td>
<td>27.324, 27.634</td>
</tr>
<tr>
<td>27.825</td>
<td>Urban Activity Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.829 or 27.812 or 27.312</td>
<td></td>
<td>27.325, 27.835</td>
</tr>
<tr>
<td>27.826</td>
<td>Urban and Regional Development</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>27.829 or 27.812 or 27.312</td>
<td></td>
<td>27.326, 27.836</td>
</tr>
<tr>
<td>27.862</td>
<td>Australian Environment and Natural Resources**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4**</td>
<td>27.828 or 27.829 or 27.811 or 27.812</td>
<td></td>
<td>27.872</td>
</tr>
<tr>
<td>27.863</td>
<td>Ecosystems and Man**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4**</td>
<td>27.828 or 27.829 or 27.811 or 27.812</td>
<td></td>
<td>27.363, 27.873</td>
</tr>
<tr>
<td>27.884</td>
<td>Advanced Geographic Methods</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>27.813, or 27.2813 and 27.2814</td>
<td></td>
<td>27.880</td>
</tr>
<tr>
<td>27.883</td>
<td>Special Topic</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A field excursion, equivalent to 8 tutorial hours, is a compulsory part of the subject.

**Two field tutorials, equivalent to 16 tutorial hours, are compulsory.

***Three days fieldwork, equivalent to 24 tutorial hours, is compulsory.

†Up to 5 days fieldwork, equivalent to 40 tutorial hours, is compulsory.
Surveying

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1010</td>
<td>Surveying 1*</td>
<td>I</td>
<td>1½</td>
<td>S1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.2010</td>
<td>Surveying 2*</td>
<td>I</td>
<td>S2</td>
<td>4</td>
<td>29.1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*These two subjects must be taken together in the one year.

Biochemistry‡

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.101</td>
<td>Biochemistry</td>
<td>II</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>17.041†, 2.121† & 2.131†, or 2.141†</td>
<td></td>
<td>2.003J</td>
</tr>
<tr>
<td>41.111</td>
<td>Biochemical Control</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102A</td>
<td>Biochemistry of Macromolecules</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102B</td>
<td>Physiological Biochemistry</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102C</td>
<td>Plant Biochemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.101** or 41.111**, 2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.102E</td>
<td>Molecular Biology of Higher Organisms</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>41.102A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‡Level III units available only during the daytime.
*In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
†Terminating pass not acceptable.
**Students must obtain a clear pass (PS) in either 41.101 or 41.111.

Biotechnology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.101</td>
<td>Introduction to Biotechnology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.121 & 2.131, or 2.141, 17.041, 10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102A</td>
<td>Biotechnology A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>41.101†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102B</td>
<td>Biotechnology B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>42.102A†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.102C</td>
<td>Microbial Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>41.101 or 44.101</td>
<td></td>
<td>43.102</td>
</tr>
</tbody>
</table>

*In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.
†Pass Conceded (PC) or Terminating Pass (PT) awarded prior to Session 2, 1983 is not acceptable.
Botany

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>See under Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.111</td>
<td>Flowering Plants</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.121</td>
<td>Environmental Physiology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031, 17.041, 2.141 or 2.121 and 2.131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.131</td>
<td>Fungi and Man</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.132</td>
<td>Mycology-Plant Pathology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>43.131***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.142</td>
<td>Environmental Botany</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.152</td>
<td>Plant Community Ecology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>43.111 & 17.012 or 27.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.172</td>
<td>Phycology and Marine Botany</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>43.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.192</td>
<td>Ultrastructure</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>43.111 or 43.121 or 41.101 or 44.101 or 45.201 or 45.301</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***A student may apply to the School for variation of the prerequisite.

Microbiology†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.101</td>
<td>Introductory Microbiology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.121</td>
<td>Microbiology 1</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>44.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.102</td>
<td>General Microbiology</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>12</td>
<td></td>
<td>44.101, 44.121†, 41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.112</td>
<td>Applied Microbiology</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td></td>
<td>44.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.122</td>
<td>Immunology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041, 41.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.132</td>
<td>Virology**</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>44.102</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†All units available only during the daytime.

*In exceptional circumstances a student may apply to the Head of School for variation of the prerequisite.

†Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.

**Not offered in 1986.

Zoology†

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.012</td>
<td>General Ecology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>See under Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.101</td>
<td>Biometry</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td>10.311A, 10.321A, 10.331</td>
<td></td>
</tr>
<tr>
<td>45.201</td>
<td>Invertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
Zoology (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.301</td>
<td>Vertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.601</td>
<td>Introductory Genetics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041, 2.131 or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.112</td>
<td>Marine Ecology§</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041, 45.201 or 25.621 or 2.002D</td>
<td></td>
<td>9.801</td>
</tr>
<tr>
<td>45.121</td>
<td>Evolutionary Theory</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031 and 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.122</td>
<td>Animal Behaviour</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>45.101† and (45.201 or 45.301)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.132</td>
<td>Ecological Physiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>45.201 or 45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.142</td>
<td>Comparative Physiology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>45.201 or 45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.152</td>
<td>Population and Community Ecology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.041 and 10.001 or 10.011 or 10.021C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.302</td>
<td>Vertebrate Zoogeography and Evolution*</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>45.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.402</td>
<td>Insects§</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>17.031, 17.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.422</td>
<td>Economic Zoology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>45.201 or 45.402</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A student will not be admitted to Level III Zoology units without special permission of the Head of School, unless Chemistry 2.001 or 2.121 and 2.131, or 2.141, has been completed.

Students who wish to complete a major in the School of Zoology must take Biometry 45.101 and at least two Level II units from one of the following Schools: Biochemistry, Chemistry, or Mathematics, except as detailed in an approved program.

†Level III courses conducted by the School of Zoology are available only during the daytime.

§Students intending to enrol in this unit should register with the School of Zoology for the February field trip by 14 January.

†One of: 10.311A; 10.321A; 10.331 may be substituted for 45.101 with special permission of the Head of School.

*Not offered in 1986.

Philosophy‡

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.103</td>
<td>Introductory Philosophy A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.104</td>
<td>Introductory Philosophy B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2001</td>
<td>The Nature of Mind</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2002</td>
<td>Contemporary Philosophy of Mind</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2003</td>
<td>Issues in the Philosophy of Psychology</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>52.2001 or 52.2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.2010</td>
<td>Reasoning Skills</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Any Level I Subject</td>
<td></td>
<td>52.233</td>
</tr>
<tr>
<td>52.2020</td>
<td>Descartes</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.163</td>
</tr>
<tr>
<td>52.2021</td>
<td>Spinoza and Leibniz</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td></td>
<td>52.2020 or 52.163</td>
<td></td>
<td>52.303</td>
</tr>
<tr>
<td>52.2030</td>
<td>Predicate Logic A</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td></td>
<td>Any Level I Subject</td>
<td></td>
<td>52.153, 52.162, 52.1531</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------------------------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>52.2031</td>
<td>Predicate Logic B</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>52.2030 or 52.1531</td>
<td></td>
<td>52.153,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.162,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.1532</td>
</tr>
<tr>
<td>52.2040</td>
<td>Greek Philosophy: Thales to Plato</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.183</td>
</tr>
<tr>
<td>52.2050</td>
<td>Classical Political Philosophy</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.182,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.203</td>
</tr>
<tr>
<td>52.2060</td>
<td>Sartre</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.213</td>
</tr>
<tr>
<td>52.2130</td>
<td>British Empiricism</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.173</td>
</tr>
<tr>
<td>52.2140</td>
<td>Scientific Method</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.193</td>
</tr>
<tr>
<td>52.2150</td>
<td>Philosophy of Law</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.105</td>
</tr>
<tr>
<td>52.219</td>
<td>Philosophical Foundations of Marx’s Thought</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.373</td>
</tr>
<tr>
<td>52.2170</td>
<td>Hume</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.563,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.152</td>
</tr>
<tr>
<td>52.2220</td>
<td>The Ethics of Plato and Aristotle</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.5231</td>
</tr>
<tr>
<td>52.2230</td>
<td>Theories in Moral Philosophy</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.5232</td>
</tr>
<tr>
<td>52.2240</td>
<td>Philosophical Study of Woman</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.283</td>
</tr>
<tr>
<td>52.2250</td>
<td>Plato’s Theory of Forms</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.483</td>
</tr>
<tr>
<td>52.2260</td>
<td>Aesthetics</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.273</td>
</tr>
<tr>
<td>52.2270</td>
<td>Social and Political Philosophy</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.513</td>
</tr>
<tr>
<td>52.2330</td>
<td>Psychoanalysis — Freud and Lacan</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.573</td>
</tr>
<tr>
<td>52.2360</td>
<td>Theories, Values and Education</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.583</td>
</tr>
<tr>
<td>52.2371</td>
<td>Plato’s Later Dialogues</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>52.2250 or 52.483*</td>
<td></td>
<td>52.293</td>
</tr>
<tr>
<td>52.2980</td>
<td>Seminar A</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.423</td>
</tr>
<tr>
<td>52.2990</td>
<td>Reading Option A</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.413</td>
</tr>
<tr>
<td>52.3010</td>
<td>Seminar B</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.433</td>
</tr>
<tr>
<td>52.3020</td>
<td>Seminar C</td>
<td>II/III</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.443</td>
</tr>
<tr>
<td>52.3030</td>
<td>Reading Option B</td>
<td>II/III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.453</td>
</tr>
</tbody>
</table>

*In exceptional circumstances a student may apply to the School for variation of the prerequisite or co-requisite.

**Level II status in Philosophy consists in 1. being in second or later year of university study, and 2. having taken and passed at least one Level I Philosophy unit. If the unit is composed of two half-units, these must have been passed in the same session. The prerequisite may be waived in certain cases by the School.

†Not offered in 1996.

$Due to the extra library work required in the preparation of essays a combination of three half-unit Philosophy subjects count as the equivalent of two Science units.
History and Philosophy of Science

Students undertaking subjects in History and Philosophy of Science are required to supplement the class contact hours by study in the Library.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>HpW</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.110</td>
<td>Science, Technology and Social Change†</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.111</td>
<td>Man, Megalith and Cosmos†</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.211</td>
<td>The Seventeenth Century Intellectual Revolution†</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>62.012</td>
<td></td>
</tr>
<tr>
<td>62.022</td>
<td>Materials Machines and Men</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td>26.564, 26.251</td>
</tr>
<tr>
<td>62.032</td>
<td>The Scientific Theory</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.052</td>
<td>Scientific Knowledge and Political Power</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.062</td>
<td>The Social System of Science</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.072</td>
<td>Historical Origins of the American Scientific Estate</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.082</td>
<td>Science, Technology and Developing Countries</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.103</td>
<td>The Discovery of Time</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.104</td>
<td>The Darwinian Revolution</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.106</td>
<td>Mind, Mechanism and Life</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>62.043</td>
</tr>
<tr>
<td>62.109</td>
<td>The History of Medical Theory and Practice*</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>62.043, 26.568, 26.2506</td>
</tr>
<tr>
<td>62.241</td>
<td>Relations Between Science and the Arts</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.242</td>
<td>Introduction to the History of Ideas</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.244</td>
<td>Science and Belief from Newton to Einstein</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>62.212</td>
</tr>
<tr>
<td>62.245</td>
<td>The New Biotechnologies and their Social Context</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>62.110, or by permission of the Head of School for 3rd and 4th Year students in the Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.246</td>
<td>Technological Development in Twentieth Century Australia</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>62.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.285</td>
<td>Man, Woman and Deity</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>A pass in four Level I units from Table 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Note: only two Level 1 units may be counted towards Course 3970.
History and Philosophy of Science (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.551</td>
<td>The Arch of Knowledge: History of the Philosophy and Methodology of Science to 1800</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>2</td>
<td>A pass in four Level I units from Table 1</td>
<td></td>
<td>62.013</td>
</tr>
<tr>
<td>62.552</td>
<td>Modern History of the Philosophy and Methodology of Science</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td>62.551 or by permission of Head of School</td>
<td></td>
<td>62.013</td>
</tr>
<tr>
<td>62.554</td>
<td>Computers, Brains and Minds: Foundations of the Cognitive Sciences</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for 62.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.105</td>
<td>Research Methods in History and Philosophy of Science</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>1½</td>
<td>Completion of 3 HPS units with an average of Credit or better, or by permission of Head of School</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not offered in 1986.

Board of Studies in Science and Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.313</td>
<td>Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>10.001 or 10.011 and 1.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.601</td>
<td>Genetics of Behaviour 1</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>17.031</td>
<td></td>
<td>79.402</td>
</tr>
<tr>
<td>68.602</td>
<td>Genetics of Behaviour 2*</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>79.402 or 68.601</td>
<td></td>
<td>79.403</td>
</tr>
<tr>
<td>68.451</td>
<td>Biological Laboratory Computing</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>As for 10.021B</td>
<td></td>
<td>1.041 and Programs 0600, 6806</td>
</tr>
</tbody>
</table>

*Not offered in 1986.

Pathology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.301</td>
<td>Basic and Applied Pathology</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>70.011A 70.011C 73.111 or equivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

101
Physiology and Pharmacology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.111</td>
<td>Physiology 1A</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>2.121 and 2.131, or 2.141, 10.001, or 10.011 or 10.021B and 10.021C, 17.041</td>
<td>41.101</td>
<td>73.121</td>
</tr>
<tr>
<td>73.121</td>
<td>Physiology 1B</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>2.121 or 2.141, 10.001 or 10.011 or 10.021B and 10.021C, 17.041</td>
<td>2.131*</td>
<td>73.111</td>
</tr>
<tr>
<td>73.012</td>
<td>Physiology 2</td>
<td>III</td>
<td>4</td>
<td>F</td>
<td>12</td>
<td></td>
<td>73.111, 41.101, 41.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012A</td>
<td>Membrane Biology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>Normally as for 73.012, but may be studied only with permission of Head of School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012B</td>
<td>Neurophysiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.012C</td>
<td>Organ Physiology</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.022</td>
<td>Pharmacology</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>73.111 or 73.121 or 41.102A and 41.102B or 2 Level III Chemistry units</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The above represent the normal prerequisites for the courses in Physiology, but the Head of School may recommend that students with a good academic record be granted exemption from them.

*Not if 2.141 has been completed.

Community Medicine

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.201</td>
<td>Population Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>See † below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.202</td>
<td>Quantitative Methods in Human Genetics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>See * below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.302</td>
<td>Biochemical Genetics of Man</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>43.101, 41.101 (or their equivalents)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†One unit of statistical methods, or theory, as approved by the Head of School.
*A unit of genetics and a unit of statistical methods, or theory, as approved by the Head of School.
Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When</th>
<th>Value</th>
<th>Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.982</td>
<td>Solid State Physics (Electrical Engineering)</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>1.001, 10.001</td>
<td>10.2111, 1.022</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.111</td>
<td>Introductory Chemistry*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td>0100, 1200, 2700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.013E</td>
<td>Advanced Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>2.003E</td>
<td></td>
<td>Any appropriate program except 0200 and 0205 and Course 3910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.951</td>
<td>Chemistry 1 ME</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>As for 1.001</td>
<td>2.121, 2.131, 2.141</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.991</td>
<td>Chemistry for Civil Engineers</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>As for 2.121</td>
<td>2.121, 2.131, 2.141</td>
<td>Course 3730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.433</td>
<td>Physical Metallurgy 2C</td>
<td>III</td>
<td>2½</td>
<td>S1</td>
<td>9</td>
<td>4.402</td>
<td>4.403</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.802</td>
<td>Metallurgical Physics</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>1.001</td>
<td></td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.813</td>
<td>Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>10.001 or 10.011</td>
<td>10.2111, 10.2112</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0201</td>
<td>Engineering Dynamics 1A</td>
<td>I</td>
<td>½</td>
<td>S1 or S2</td>
<td>3</td>
<td>5.010</td>
<td>5.020</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0721</td>
<td>Computing 1</td>
<td>I</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>10.001</td>
<td>10.211E</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.300</td>
<td>Engineering Dynamics 1B</td>
<td>II</td>
<td>½</td>
<td>S2</td>
<td>2</td>
<td>1.001, 5.020 or 5.0201, 10.001</td>
<td>Course 3681</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.421</td>
<td>Mechanics of Solids 1</td>
<td>I</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>5.010</td>
<td>5.020</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.422</td>
<td>Mechanics of Solids 2/ Materials</td>
<td>II</td>
<td>1½</td>
<td>F</td>
<td>4½</td>
<td>5.020</td>
<td>4.402, 4.442, 5.4221</td>
<td>Course 3681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4221</td>
<td>Mechanics of Solids 2/ Materials</td>
<td>II</td>
<td>1½ F</td>
<td>3½</td>
<td></td>
<td>5.020</td>
<td>4.402 or 5.422</td>
<td>5.422</td>
<td>Course 3681</td>
</tr>
<tr>
<td>5.622</td>
<td>Fluid Mechanics/ Thermodynamics</td>
<td>II</td>
<td>1½ F</td>
<td>4</td>
<td></td>
<td>1.001, 5.010,</td>
<td>5.020 or 5.0201</td>
<td></td>
<td>Course 3681</td>
</tr>
<tr>
<td>6.010</td>
<td>Electrical Engineering</td>
<td>I</td>
<td>1 S2</td>
<td>6</td>
<td></td>
<td>Electrical and magnetism section of 1.001</td>
<td></td>
<td>0100, 0600, 6806</td>
<td></td>
</tr>
<tr>
<td>6.021A</td>
<td>Basic Circuit Theory</td>
<td>II</td>
<td>½ S1 or S2</td>
<td>4</td>
<td></td>
<td>6.010, 1.001,</td>
<td>6.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.021C</td>
<td>Electronics</td>
<td>II</td>
<td>½ S1 or S2</td>
<td>4</td>
<td></td>
<td>6.021A, 1.982</td>
<td>6.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.613</td>
<td>Computer Organization and Design**</td>
<td>III</td>
<td>1 S2</td>
<td>5</td>
<td></td>
<td>6.631*** or 6.621***</td>
<td>6.0318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.632</td>
<td>Operating Systems**</td>
<td>III</td>
<td>1 S1</td>
<td>5</td>
<td></td>
<td>6.631*** or 6.021E***</td>
<td>6.672</td>
<td>0600 or in the Computer Science Quota. Courses 3611, 3661, 3681, 3701, 3725, 3730, 4770</td>
<td></td>
</tr>
<tr>
<td>6.642</td>
<td>Design and Analysis of Algorithms**</td>
<td>III</td>
<td>1 S1</td>
<td>5</td>
<td></td>
<td>6.641***</td>
<td>14.602, 14.603, 14.605, 4770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.643</td>
<td>Compiling Techniques and Programming Languages**</td>
<td>III</td>
<td>1 S1</td>
<td>5</td>
<td></td>
<td>6.641***</td>
<td>14.501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2410</td>
<td>Mechanics of Solids 1</td>
<td>I</td>
<td>½ SS</td>
<td>3</td>
<td></td>
<td>5.010</td>
<td>5.020, 5.421</td>
<td>6.611</td>
<td>Course 3681</td>
</tr>
<tr>
<td>8.1120</td>
<td>Computing</td>
<td>I</td>
<td>½ SS</td>
<td>3</td>
<td></td>
<td>6.611</td>
<td>6.640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.801</td>
<td>Genetics 1</td>
<td>II</td>
<td>1 F</td>
<td>2S1 S2</td>
<td></td>
<td>10.301 or 45.101</td>
<td>10.31, 10.31A, 10.31B, 10.321A, 10.321B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.811</td>
<td>Biostatistics 1</td>
<td>III</td>
<td>1 S1</td>
<td>4</td>
<td></td>
<td>10.301 or 45.101</td>
<td>10.331, 10.311A, 10.311B, 10.321A, 10.321B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.802</td>
<td>Genetics 2</td>
<td>III</td>
<td>1 F</td>
<td>4</td>
<td></td>
<td>9.801</td>
<td>6.640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.022</td>
<td>Engineering Mathematics 2</td>
<td>II</td>
<td>1 F</td>
<td>4</td>
<td></td>
<td>10.001</td>
<td>6.640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.301</td>
<td>Statistics SA</td>
<td>II</td>
<td>1 F</td>
<td>2</td>
<td></td>
<td>10.001</td>
<td>10.311, 10.311A, 10.311B, 10.321A, 10.321B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.351</td>
<td>Statistics SM</td>
<td>II</td>
<td>1 F</td>
<td>2</td>
<td></td>
<td>10.001</td>
<td>10.311, 10.311A, 10.311B, 10.321A, 10.321B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.501</td>
<td>Accounting and Financial Management</td>
<td>I</td>
<td>1 S1</td>
<td>4½</td>
<td></td>
<td></td>
<td>0600, 1000, 5811, 1400, 6810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.601</td>
<td>Elements of Economic Analysis</td>
<td>I</td>
<td>1 S1</td>
<td>4½</td>
<td></td>
<td></td>
<td>Course 3681</td>
<td>5811, 1400, 6810</td>
<td></td>
</tr>
<tr>
<td>14.602</td>
<td>Marketing Management</td>
<td>I</td>
<td>1 S1</td>
<td>4½</td>
<td></td>
<td></td>
<td>Course 3681</td>
<td>5811, 1400, 6810</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
<td>Specific Programs</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>14.511</td>
<td>Accounting and Financial Management 1B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>14.501</td>
<td></td>
<td></td>
<td>0600, 1000, 5811, 1400, 6810</td>
</tr>
<tr>
<td>14.522</td>
<td>Accounting and Financial Management 2A</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>14.511</td>
<td></td>
<td></td>
<td>0600, 1000, 5811, 1400, 6810</td>
</tr>
<tr>
<td>14.542</td>
<td>Accounting and Financial Management 2B</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>14.511</td>
<td></td>
<td></td>
<td>0600, 1000, 5811, 6810</td>
</tr>
<tr>
<td>14.563</td>
<td>Accounting and Financial Management 3A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4½</td>
<td>14.542</td>
<td></td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>14.573</td>
<td>Accounting and Financial Management 3A (Honours)</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>14.542</td>
<td></td>
<td></td>
<td>1400, 6810</td>
</tr>
<tr>
<td>14.583</td>
<td>Accounting and Financial Management 3B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4½</td>
<td>14.522</td>
<td></td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>14.593</td>
<td>Accounting and Financial Management 3B (Honours)</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>14.522</td>
<td></td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>14.602</td>
<td>Computer Information Systems 1</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.602</td>
<td></td>
<td></td>
<td>6.647</td>
</tr>
<tr>
<td>14.603</td>
<td>Computer Information Systems 2</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.602</td>
<td></td>
<td></td>
<td>6.647</td>
</tr>
<tr>
<td>14.605</td>
<td>Information Systems Implementation</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td></td>
<td>6.647</td>
</tr>
<tr>
<td>14.607</td>
<td>Distributed Computer Systems</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td></td>
<td>6.633</td>
</tr>
<tr>
<td>14.608</td>
<td>Database Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td></td>
<td>6.633</td>
</tr>
<tr>
<td>14.611</td>
<td>Information Systems Development</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td></td>
<td>6.647</td>
</tr>
<tr>
<td>14.613</td>
<td>Business Finance 2</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td></td>
<td>6.647</td>
</tr>
<tr>
<td>14.614</td>
<td>Business Finance 3A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>14.613</td>
<td></td>
<td></td>
<td>6.647</td>
</tr>
<tr>
<td>14.774</td>
<td>Legal Environment of Commerce</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>14.603</td>
<td></td>
<td></td>
<td>6.647</td>
</tr>
</tbody>
</table>

For footnotes, see overleaf
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.042</td>
<td>Macroeconomics 2</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>15.062</td>
<td>0600, 1000, 6810, 5811</td>
</tr>
<tr>
<td>15.062</td>
<td>Applied Macroeconomics 2</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>15.042</td>
<td>6810</td>
</tr>
<tr>
<td>15.072</td>
<td>Applied Microeconomics 2</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>15.011</td>
<td></td>
<td>15.002</td>
<td>6810</td>
</tr>
<tr>
<td>15.143</td>
<td>Microeconomics 3</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>15.002 or 15.012</td>
<td></td>
<td>15.412</td>
<td>0600, 1000</td>
</tr>
<tr>
<td>15.901</td>
<td>Australia in the International Economy in the Twentieth Century</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>3½</td>
<td></td>
<td></td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>15.902</td>
<td>Management Strategy and Business Development</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3½</td>
<td>15.901</td>
<td></td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>25.5212</td>
<td>Sedimentology</td>
<td>II</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>25.120</td>
<td></td>
<td>25.212</td>
<td>2503</td>
</tr>
<tr>
<td>25.5313</td>
<td>Stratigraphy</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>2</td>
<td>25.5212</td>
<td></td>
<td>25.312</td>
<td>2503</td>
</tr>
<tr>
<td>25.631</td>
<td>Marine Geology 2</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td></td>
<td>6833, 6870</td>
</tr>
<tr>
<td>25.632</td>
<td>Estuarine Geology‡</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>6832, 6833, 6870</td>
</tr>
<tr>
<td>25.6341</td>
<td>Marine Mineral Deposits</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td>25.631</td>
<td>6833, 6870</td>
</tr>
<tr>
<td>25.635</td>
<td>Marine Resources</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>25.621</td>
<td></td>
<td>25.631</td>
<td>6833, 6870</td>
</tr>
<tr>
<td>25.9314</td>
<td>Geological Applications</td>
<td>III</td>
<td>½</td>
<td>S1</td>
<td>4</td>
<td>25.120</td>
<td></td>
<td></td>
<td>2503</td>
</tr>
<tr>
<td>25.9321</td>
<td>Geophysical and Geological Applications</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>25.120</td>
<td></td>
<td>25.6342</td>
<td>2503</td>
</tr>
<tr>
<td>29.2050</td>
<td>Survey Camp</td>
<td>I</td>
<td>½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.1010 and 29.2010</td>
<td>6870</td>
</tr>
<tr>
<td>48.023</td>
<td>Chemical Engineering Science 1</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6S1</td>
<td></td>
<td>1.001, 10.001</td>
<td></td>
<td>0200</td>
</tr>
<tr>
<td>48.024</td>
<td>Chemical Engineering Principles 1</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3S1</td>
<td></td>
<td>1.001, 10.001</td>
<td></td>
<td>1000, 5811</td>
</tr>
<tr>
<td>48.037</td>
<td>Chemical Engineering Science 2</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>7S1</td>
<td></td>
<td>2.002A, 48.023</td>
<td></td>
<td>0200</td>
</tr>
<tr>
<td>48.038</td>
<td>Chemical Engineering Principles 2</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>4S1</td>
<td></td>
<td>48.024</td>
<td></td>
<td>1000, 5811</td>
</tr>
<tr>
<td>48.403</td>
<td>Polymer Science</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td>2.002A, 10.331</td>
<td></td>
<td>Course 3681</td>
</tr>
<tr>
<td>68.302</td>
<td>Introductory Marine Science</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>25.601</td>
</tr>
<tr>
<td>70.011A</td>
<td>Histology 1</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>17.041, 17.031***</td>
<td></td>
<td></td>
<td>6831, 6832, 6833, 6834, 6870</td>
</tr>
<tr>
<td>70.011B</td>
<td>Mammalian Embryology</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td>70.011A***</td>
<td>7000 or in the Anatomy Quota. Courses 4770 (Anatomy) 3820</td>
</tr>
<tr>
<td>70.011C</td>
<td>Introductory Anatomy</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>17.041, 17.031***</td>
<td></td>
<td>70.011C***</td>
<td>70.011C***</td>
</tr>
<tr>
<td>70.012B</td>
<td>Visceral Anatomy</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>70.011C***</td>
<td>70.011C***</td>
<td>70.011C***</td>
</tr>
<tr>
<td>70.012C</td>
<td>Neuroanatomy 1</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>70.011A**, 70.011C***</td>
<td>70.011A***</td>
<td></td>
</tr>
<tr>
<td>70.0304</td>
<td>Histology 2†</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>§§ 70.3041$</td>
<td></td>
<td>70.304$</td>
</tr>
<tr>
<td>70.0305</td>
<td>Neuroanatomy 2</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>70.012C (CR)</td>
<td></td>
<td></td>
<td>70.306***</td>
</tr>
<tr>
<td>70.0306</td>
<td>Functional Anatomy 1</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>70.011C***</td>
<td>70.011C***</td>
<td>70.011C***</td>
</tr>
<tr>
<td>70.0307</td>
<td>Functional Anatomy 2</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>70.306***</td>
<td></td>
<td>70.306***</td>
</tr>
<tr>
<td>70.3041</td>
<td>Histological and Histochemical Techniques†††‡‡‡</td>
<td>III</td>
<td>½</td>
<td>S2</td>
<td>3</td>
<td>17.031***, 17.041***</td>
<td>and any 1 of 41.101, 45.301 or 70.011A***</td>
<td>70.304$</td>
<td>70.304$</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
<td>Specific Programs</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>--</td>
<td>---------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>73.012F</td>
<td>Clinical Physiology</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>73.111, 41.101, 41.111 or 2.002B, 70.011A, 70.011C, 80.014</td>
<td></td>
<td></td>
<td>Course 3820</td>
</tr>
<tr>
<td>80.014</td>
<td>Human Behaviour</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Course 3820</td>
</tr>
</tbody>
</table>

Students who have passed 2.121 may not subsequently enrol in 2.111. Students meeting the 2.121 prerequisite are not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Once students enrol in 2.111 they must pass 2.111 before they can proceed to 2.121 or 2.131. Students may not count more than two Level I Chemistry units towards BSc degree requirements.

In exceptional circumstances the Head of School may give permission for students outside the specified programs to undertake one of these subjects.

Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable.

****Not available in Year 1 of programs 0600, 1000, 5811, 1400.****

*****Can only be counted with at least 3 other Level III Computer Science units.****

†Not offered in 1986.

+++May be counted in Courses 3611, 3661, 3681 and 3701 in special circumstances only.

+tExcluded by 25.211.

+++May not be offered in 1986 if insufficient enrolments.

§70 304 and 70 3041 are mutually exclusive (see Subject Descriptions later in this handbook).

§§Anatomy units may be counted as Table 1 units in any program on obtaining special permission of the Head of the School of Anatomy.
A student planning to complete a program involving any unit/units from this table must seek the approval of the Head of the School in which the unit is taught.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Prerequisites in Years 1, 2, 3 or 4</th>
<th>Number of Level III Units Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.104</td>
<td>Physics 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0100</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 0161</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5801</td>
<td>6</td>
</tr>
<tr>
<td>1.304</td>
<td>Applied Physics 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0100</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 0161</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5803</td>
<td>6</td>
</tr>
<tr>
<td>1.504</td>
<td>Theoretical Physics 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0100§</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 0161</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5805</td>
<td>6</td>
</tr>
<tr>
<td>1.604</td>
<td>Biophysics 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0100</td>
<td>6</td>
</tr>
<tr>
<td>2.004</td>
<td>Chemistry 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Chemistry units</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5821</td>
<td>7</td>
</tr>
<tr>
<td>4.004</td>
<td>Metallurgy 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td>7-8</td>
</tr>
<tr>
<td>6.606</td>
<td>Computer Science 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>6.613, 6.632, 6.642, 6.643</td>
<td>8</td>
</tr>
<tr>
<td>10.123</td>
<td>Pure Mathematics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1000</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>*</td>
</tr>
<tr>
<td>10.223</td>
<td>Applied Mathematics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1000</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>10.323</td>
<td>Theory of Statistics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1006</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>10.423</td>
<td>Theoretical Mechanics Honours</td>
<td>IV</td>
<td>F</td>
<td></td>
<td>Program 1006</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Program 5811 or 5812</td>
<td>7</td>
</tr>
<tr>
<td>12.403</td>
<td>Psychology 4 (Thesis)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1200</td>
<td>8</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Prerequisites in Years 1, 2, 3 or 4</td>
<td>Number of Level III Units Required</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>12.404</td>
<td>Psychology 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1200</td>
<td>8</td>
</tr>
<tr>
<td>14.794</td>
<td>Honours Thesis</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.853</td>
<td>Advanced Systems Management</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.857</td>
<td>Operations Research for Management 1</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.886</td>
<td>Research Topics in Information Systems 1</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1400</td>
<td>6</td>
</tr>
<tr>
<td>14.887</td>
<td>Research Topics in Information Systems 2</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.891</td>
<td>Decision Support Systems</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.410</td>
<td>Resource Geology†</td>
<td>IV</td>
<td>2</td>
<td>S1</td>
<td>Programs 2500 and 5831</td>
<td>8</td>
</tr>
<tr>
<td>25.411</td>
<td>Topics in Advanced Geology†</td>
<td>IV</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.420</td>
<td>Field Project†</td>
<td>IV</td>
<td>5</td>
<td>S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.412</td>
<td>Sedimentary Basin Resources†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td>Programs 2500, 2503</td>
<td>8</td>
</tr>
<tr>
<td>25.414</td>
<td>Mineral Resources†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td>Program 2700</td>
<td>8</td>
</tr>
<tr>
<td>25.415</td>
<td>Engineering and Environmental Geology†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td>Program 5832</td>
<td>7</td>
</tr>
<tr>
<td>25.931</td>
<td>Geophysics†</td>
<td>IV</td>
<td>2</td>
<td></td>
<td>Program 6200</td>
<td>7</td>
</tr>
<tr>
<td>25.434</td>
<td>Geology 4 Honours (Single Major)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 6831, 6832, 6833 or 6834</td>
<td>8</td>
</tr>
<tr>
<td>27.844</td>
<td>Geography 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.103</td>
<td>Biochemistry 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 5841 or 5842</td>
<td>7</td>
</tr>
<tr>
<td>42.103</td>
<td>Biotechnology 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III units in a discipline, or disciplines, related to Biotechnology</td>
<td>8</td>
</tr>
<tr>
<td>43.103</td>
<td>Botany</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Botany units or a closely related discipline Program 5854 or 5855</td>
<td>7</td>
</tr>
<tr>
<td>44.103</td>
<td>Microbiology Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>44.102, 44.112 Program 5861, 5862 and 5842</td>
<td>8</td>
</tr>
<tr>
<td>45.103</td>
<td>Zoology 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Zoology units Program 5866 or 5867</td>
<td>7</td>
</tr>
<tr>
<td>62.014</td>
<td>History and Philosophy of Science Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 6200</td>
<td>7</td>
</tr>
<tr>
<td>62.024</td>
<td>Science Studies Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 6200</td>
<td>7</td>
</tr>
<tr>
<td>68.304</td>
<td>Marine Science 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 6831, 6832, 6833 or 6834</td>
<td>8</td>
</tr>
<tr>
<td>68.404</td>
<td>Genetics 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 6840</td>
<td>7</td>
</tr>
<tr>
<td>68.430</td>
<td>Combined Geology Physics Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0100</td>
<td>8</td>
</tr>
<tr>
<td>70.013</td>
<td>Anatomy 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 72.301</td>
<td>6</td>
</tr>
<tr>
<td>72.304</td>
<td>Pathology Honours</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Prerequisites in Years 1, 2, 3 or 4</td>
<td>Number of Level III Units Required</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>72.402G</td>
<td>Principles of Disease Processes</td>
<td>IV</td>
<td>1</td>
<td>F</td>
<td>73.111 or equivalent 70.011C or equivalent</td>
<td></td>
</tr>
<tr>
<td>73.013</td>
<td>Physiology 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Physiology units 7 Program 5871</td>
<td></td>
</tr>
<tr>
<td>73.023</td>
<td>Pharmacology</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 7300(b)</td>
<td></td>
</tr>
<tr>
<td>79.014</td>
<td>Human Genetics</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>At least 3 of the following: 41.102A, 43.102, 44.122, 45.121, 79.201, 79.202, 79.302, 68.403</td>
<td></td>
</tr>
</tbody>
</table>

*Higher level units of Mathematics must be included at Levels I, II and III in order to comply with the prerequisites for admission to Level IV Mathematics. Since entry to Level IV is only with approval of the Head of School, students should discuss their Year 3 program with a Professor of the Department concerned. In special circumstances additional prerequisites may be required, or some of those listed may be waived.

§Students entering 1.504 from the 0100 program should have demonstrated adequate mathematical ability.

@Field work of up to 7 days duration is a compulsory part of the subject.

†Students undertaking Geology IV Honours in program 2500 or 5831 must enrol in 25.410, 25.4101, 25.420 and one of the subjects 25.412, 25.414, 25.415, or 25.931.
Undergraduate Study:
Faculty of Biological Sciences
Faculty of Biological Sciences

Introduction

The Schools of the Faculty of Biological Sciences contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises the undergraduate course in Psychology (3430). The Schools of the Faculty also offer facilities for students to proceed to the award of a Graduate Diploma in Biochemical Engineering (5320); Graduate Diploma in Biotechnology (5340); to masters degrees in Biological Technology (8260) and in Psychology (8250 and 8255); and to the award of masters degrees by research and the award of the degree of Doctor of Philosophy.

Students requiring advice about the undergraduate course should contact School of Psychology .. Dr K. R. Llewellyn
................................. Mr T. J. Clulow

Students requiring advice about graduate studies should check details later in this handbook and also enquire from the Head of the appropriate School.
3430
Psychology Degree Course
— Full-time Course
Bachelor of Science (Psychology)
BSc(Psychol)

The four year course in Psychology, which leads to the award
of the degree of Bachelor of Science in Psychology, is
designed to meet the requirements of students who intend to
become professional psychologists, as either practitioners or
research workers. It provides extensive study of psychological
theory and practice, supported by an appropriate selection of other subjects.

The course is available on a full-time basis only. Entry into the
course is subject to a quota which is determined from time to
time.

In the fourth year, students undertake a program of study
which includes courses in the major areas of general psy-
chology and in a number of applied fields. In addition, each
student must complete either a research thesis or a group
research project.

Details of the qualifications required for admission to the
Psychology Course leading to the award of BSc(Psychol),
the course requirements for Pass and Honours at graduation
and rules governing admission with advanced standing are
given below.

Rules governing the Psychology Course

1. Applicants for admission to the Course must be matricu-
lated to this University; and also have satisfied either the
entrance requirements for 10.001 Mathematics 1 or 10.021B
General Mathematics 1B and 10.021C General Mathematics
1C or for 17.031 Biology A and 17.041 Biology B.

2. (1) In order to qualify for admission to the award of degree
of BSc(Psychol) under these regulations a candidate must
attend classes and satisfy the examiners in the following
subjects:

(a) Each of:
12.100 Psychology 1
12.200 Research Methods 2
12.201 Biological Basis of Psychology 2
12.202 Social and Cognitive Psychology 2
12.203 Psychology 2A

A total of 8 Level III units of Psychology including 12.300 and
12.305 from Group A (see Table 1). Additionally, students
intending to take the thesis alternative in Psychology Level IV
Honours are required to include 12.301 Research Methods
3B from Group B (see Table 1).

(In special cases, the Head of the School of Psychology or
his representative may approve of the substitution of some
other appropriate course or equivalent units.)

and either
12.400 Psychology 4 (Thesis — Course 3430) or 12.401
Psychology 4 (Course 3430) leading to the award of the
degree of Bachelor of Science in Psychology.

(b) Five other subjects (or their equivalent in units) selected
to meet the following requirements:

(i) that they shall include at least one of:
10.011 Higher Mathematics 1 or
10.001 Mathematics 1 or
10.021B General Mathematics 1B and 10.021C General Mathematics
1C
or
17.031 Biology A and
17.041 Biology B.
(They may include both the above alternatives.)
that they shall include at least one of:

- Introduction to Sociology or Microeconomics 1 and Macroeconomics 1 or Political Science 1 (select two of 54.1002 Power and Democracy in Australia, 54.1003 Australian Political Institutions (54.1002 and 54.1003 are mutually exclusive), 54.1004 Government in the Modern World and 54.1005 A History of Political Thought) or
- Introductory Philosophy A and Introductory Philosophy B.

or

with the approval of the Head of the School of Psychology, one other Arts I subject.

(iii) that they shall include at least one subject (two Science and Mathematics Level II units or twelve Arts Upper Level credit points are equivalent to one Level II subject) which together with the subject meeting the requirements of (i) or (ii) immediately above constitutes a recognized sequence of two courses.

Examples of recognized sequences are:

- 10.001 Mathematics 1, followed by two Mathematics Level II units (chosen from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112) or by both of 10.311A Probability and Random Variables and 10.311B Basic Inference;
- 17.031 Biology A and 17.041 Biology B followed by two Level II units chosen from the following units according to the regulations of the Board of Studies in Science and Mathematics:
 - 41.101 Biochemistry (equivalent to 2 units)
 - 41.111 Biochemical Control
 - 45.101 Biometry
 - 45.301 Vertebrate Zoology
 - 73.121 Physiology 1B (equivalent to 2 units)
 - 68.601 Genetics of Behaviour 1
 - 68.602 Genetics of Behaviour 2
- 53.001 Introduction to Sociology followed by twelve credit points value of Sociology Upper Level subjects
- 15.001 Microeconomics 1 and Macroeconomics 1 followed by twelve credit points value of Economics Upper Level subjects
- Political Science 1 followed by twelve credit points value of Political Science Upper Level subjects
- 52.103 Introductory Philosophy A and 52.104 Introductory Philosophy B followed by twelve credit points value of Philosophy Upper Level subjects

(2) The proposed course must be approved by the Head of the School of Psychology or his representative prior to or during enrolment. The courses must be chosen in such a way as to fit in with the timetable.

(3) Progression in the Course shall be by subjects, and the subjects in the Course may be completed in any order consistent with the requirements concerning prerequisites and co-requisites for the subjects chosen.

3. Prerequisites and Co-requisites

Before enrolling in any course (or equivalent units of a subject) the student shall have attended the classes and shall have satisfied the examiners in all relevant prerequisite subjects.

The student should refer to the appropriate Faculty Handbook for a statement of subject prerequisites and co-requisites.

4. The degree of BSc(Psychol) will be awarded at either Pass level or with Honours, after a minimum of four years of full-time study.

Rules governing admission to the Psychology Course with advanced standing

1. Graduates of the University of New South Wales may be admitted to the Psychology Course leading to the award of the degree of BSc(Psychol) with exemption from no more than five subjects or their unit equivalents that they have completed. No more than two Psychology subjects may be included in these exemptions.

2. Undergraduates of the University of New South Wales who transfer from another course to the Psychology Course may be admitted to the Psychology Course with exemption in no more than seven Psychology Course subjects or their unit equivalents.

3. Graduates or undergraduates of other universities may be admitted to the Psychology Course with advanced standing.

4. Students admitted under Rule 3 who have satisfied the examiners in subjects of the same title or subject matter as those permissible in the Psychology Course may, subject to the approval of the appropriate Heads of School, be granted exemption in no more than five subjects, of which no more than two may be Psychology subjects.

Recommended Psychology Course patterns

The course requirements have been so designed that they allow for:

1. a solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques;

2. supporting studies in mathematics and/or biology (a minimum of one such course is compulsory);
3. Supporting studies in the social sciences (a minimum of one such course is compulsory); and

4. The special needs, interests and academic or vocational background of individual students.

For these reasons, no course patterns are prescribed. The patterns to be completed by students who are admitted with advanced standing will take into account the subjects credited.

Students commencing university studies for the first time will arrange their pattern of supporting subjects in consultation with the Head of the School or his representative before completing enrolment.

In Year 1, students must take four subjects which include 12.100, either Biology 1 or a first-year Mathematics, one of Economics 1, Sociology 1, Philosophy 1 or Political Science 1 or one other Arts 1 subject, and a fourth subject. (It should be noted that the University has arranged these subjects so that there is no clash of timetables. If other subjects are taken, care must be taken to check that there is no timetable clash in the program that is chosen.)

In Year 2 students take 12.200, 12.201, 12.202, 12.203, a second-year follow on subject from one of the non-Psychology subjects completed in Year 1, and one other Level I, II or III non-Psychology subject. Eight Level III units of Psychology are taken in Year 3, while Year 4 consists of either 12.400 or 12.401 only.

Some examples of patterns, based on different supporting subjects are suggested below:

Compulsory Psychology Subjects

Year 1	12.100
Year 2	12.200, 12.201, 12.202, 12.203
Year 3	8 Psychology Level III units including 12.300 and 12.305 from Group A. Additionally, if intending to take the thesis alternative in Psychology 4 12.301 must be taken from Group B.
Year 4	Either 12.400 or 12.401

With Biochemistry or Physiology as the main supporting subject

| Year 1 | 2.121 Chemistry 1A and 2.131 Chemistry 1B |
| Year 2 | A Level I Social Science subject, and Either 41.101 Biochemistry, or 73.121 Physiology 1B |

With Zoology or Genetics as the main supporting subject

| Year 1 | 10.001 Mathematics 1, or 10.021B General Mathematics 1B and 10.021 General Mathematics 1C |
| Year 2 | Either 45.101 Biometry, 45.201 Invertebrate Zoology, 45.301 Vertebrate Zoology and one other unit for Zoology, or 68.601 Genetics of Behaviour 1, 68.602 Genetics of Behaviour 2 and two other units for Genetics |

With Social Sciences as the main supporting subject

| Year 1 | 10.001 Mathematics 1, or 10.021B General Mathematics 1B and 10.021C General Mathematics 1C, or 17.031 Biology A and 17.041 Biology B |
| Year 2 | An Upper Level Social Sciences subject, and One other Level I subject |

Notes: 1. For details of Psychology units, and Science and Mathematics units, including pre- and co-requisites, refer to Table 1 of the Science and Mathematics Course details set out earlier in this handbook.

2. For details of Social Science (Arts) subjects, including pre- and co-requisites, refer to the Faculty of Arts Handbook.
Undergraduate Study: Faculty of Science
Faculty of Science

Introduction

The Schools of the Faculty of Science contribute programs to the Science and Mathematics Course (3970) and the Faculty supervises the undergraduate courses in Pure and Applied Chemistry (3910) and Optometry (3950) and the graduate diploma course Food and Drug Analysis (5510). The Schools of the Faculty also offer facilities for students to proceed to masters degrees in Chemistry (8770), Mathematics (8740), Optometry (8760), Physics (8730), Statistics (8750) and Master of Science and Society (8780), to the award of masters degrees by research and to the award of the degree of Doctor of Philosophy.

Students requiring information about the undergraduate course should contact the representative of the appropriate School:
School of Chemistry .. Dr D. S. Alderdice
School of Optometry ... Dr J. Alexander

Students requiring information about the graduate studies which are available should seek advice from:
Graduate Diploma in Food and Drug Analysis Associate Professor G. Crank

In the case of masters and doctors degrees from:
School of Chemistry ... Professor P. S. Clezy
School of Mathematics ... Professor M. Cowling
School of Optometry .. Professor H. B. Collin
School of Physics ... Professor H. G. L. Coster
Faculty of Science

Course Outlines

Chemistry

3910
Pure and Applied Chemistry Course
Specialization in Chemistry

Note: No new enrolments into this course after 1985.

This course, which allows intensive specialization in chemistry according to a prescribed pattern, leads to the award of the Bachelor of Science degree, and is administered by the Faculty of Science. It may be taken at pass or honours standard. The pass course requires full-time attendance at the University for three years.

An additional year is required for the honours degree. The program may also be extended over a longer period (previously referred to as part-time).

A total of 23 units is required for graduation at the pass level. Year 1 is similar to the Science and Mathematics Course and covers 8 units. Of the remaining 15 units at least 13 must be chemistry units and must include the following:

2.102A, 2.102B, 2.102C, 2.102D, 2.003B, 2.003C, 2.003D, 2.003H, 2.013A and 4 other Chemistry units.

The remaining 2 units may be chosen from any of the Science and Mathematics units listed in Table 1.

In all cases prerequisites, co-requisites and exclusions are identical to those prescribed for the units in the Science and Mathematics course.

Electives offered by the School of Chemistry

<table>
<thead>
<tr>
<th>Level</th>
<th>No.</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>2.003A</td>
<td>Physical Chemistry</td>
<td>2.002A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003B</td>
<td>Organic Chemistry</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003C</td>
<td>Inorganic Chemistry</td>
<td>2.042C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003D</td>
<td>Instrumental Analysis</td>
<td>2.002D and</td>
<td>2.002A</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003E</td>
<td>Nuclear and Radiation Chemistry</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 10.001 or 10.011 or 10.021B and 10.021C</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003H</td>
<td>Molecular Spectroscopy and Structure</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003K</td>
<td>Solid State Chemistry</td>
<td>2.121 & 2.131, or 2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 10.001 or 10.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.003L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.003M</td>
<td>Organometallic Chemistry</td>
<td>2.002B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Level No. | Title | Prerequisites | Co-requisites | Excluded Sites
--- | --- | --- | --- | ---
III 2.013A | Introductory Quantum Chemistry | 1.001 and 2.121 & 2.131, or 2.141 and 10.001 or 10.011 or 10.021B and 10.021C | |
III 2.013B | Synthetic Organic Chemistry | 2.003B | |
III 2.013C | Advanced Inorganic Chemistry | 2.042C 2.003C | |
III 2.013D | Advanced Analytical Chemistry | 2.002D 2.003D | |
III 2.013E | Advanced Nuclear and Radiation Chemistry | 2.003E Not available in Course 3910 | |
III 2.023A | Quantum Theory of Atoms and Molecules | 2.002A and 10.2111 and 10.2112 | |
III 2.023B | Biological Organic Chemistry | 2.003B | |
III 2.033A | Physical Chemistry of Macromolecules | 2.003J or 2.002B and 1.012 or 2.002A and 2.002A | |
III 2.043A | Environmental Chemistry | 2.002A, 2.002D | |
III 2.053A | Chemical Kinetics and Reaction Mechanisms | 2.002A | |
III 2.063A | Advanced Molecular Spectroscopy | 2.013A | |

Plus 2 Level I units from Table 1

Year 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.102A Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.102B Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.102C Inorganic Chemistry and Structure</td>
<td>3</td>
</tr>
<tr>
<td>2.102D Chemical and Spectroscopic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Science Electives* (3 units)</td>
<td>9</td>
</tr>
<tr>
<td>Two General Studies Electives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

*To be chosen from units in the Science and Mathematics course in accordance with Science course requirements.

Year 3

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.003B Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003C Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>2.003D Instrumental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>2.013A Introductory Quantum Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Electives* (4 units)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

*Chosen from Level III units offered by the School of Chemistry in the Science and Mathematics course and in accordance with Science and Mathematics course regulations.

Year 4 Honours

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.004 Chemistry Honours</td>
<td>24</td>
</tr>
</tbody>
</table>

Extended Time Program

The course in Pure and Applied Chemistry may be extended over a longer period of time (previously referred to as part-time); however, evening instruction is not necessarily offered in all subjects.

This provision has been designed for students employed in the chemical industry, but employment in this industry is not obligatory for extending the time for the program of study.

A possible way in which this extended time program may be done over six years is set out below:

Stages 1 and 2

Two of the following subjects are taken in the first year and the other two in the second year (as directed).

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>Hpw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001 Physics 1</td>
<td>6</td>
</tr>
<tr>
<td>2.121 Chemistry 1A and</td>
<td>6</td>
</tr>
<tr>
<td>2.131 Chemistry 1B or</td>
<td>6</td>
</tr>
<tr>
<td>2.141 Chemistry 1M</td>
<td>6</td>
</tr>
<tr>
<td>10.001 Mathematics 1 or</td>
<td>6</td>
</tr>
<tr>
<td>10.021B General Mathematics 1B and</td>
<td>6</td>
</tr>
<tr>
<td>10.021C General Mathematics 1C</td>
<td>6</td>
</tr>
</tbody>
</table>

Plus 2 Level I units from Table 1
Optometry

3950 Optometry Course

The School of Optometry provides a four year full-time course in Optometry leading to the award of the degree of Bachelor of Optometry, at either the Pass or Honours level. The first year of the course involves a study in the fundamental sciences of physics, chemistry, mathematics and biology. Students who have completed the first year of a science course including physics, chemistry, mathematics and general and human biology or zoology at any Australian university are eligible for selection for admission to the second year of the course. Second, third and fourth years are devoted to professional training in optometry including clinical optometry in the final year.

3950 Optometry — Full-time Course

Bachelor of Optometry BOptom

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>Physics 1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2.121</td>
<td>Chemistry 1A and 1B or 1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.001</td>
<td>Mathematics 1 or 2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>10.011</td>
<td>Higher Mathematics 1 or 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.021A</td>
<td>General Mathematics 1A and 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.031</td>
<td>Biology A and 1A</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>17.041</td>
<td>Biology B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two General Studies Electives</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>

In special cases, students who do not meet the prerequisites for admission to 2.121 Chemistry 1A may be enrolled in 2.111 Introductory Chemistry in Session 1, 2.121 Chemistry 1A in Session 2 and be permitted to carry 2.131 Chemistry IB into Session 1 of Year 2.

Year 2

Full Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.851</td>
<td>Optics</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>31.852</td>
<td>Visual Optics</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>31.853</td>
<td>Measurement of Light and Colour</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>31.821</td>
<td>Anatomy and Physiology of the Eye and Visual System</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>73.011A</td>
<td>Principles of Physiology</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>General Studies Elective</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.100</td>
<td>Psychology</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>31.861</td>
<td>Optometry A</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>31.862</td>
<td>Diagnosis and Management of Ocular Disease</td>
<td></td>
<td>5½</td>
</tr>
<tr>
<td>31.863</td>
<td>Theory of Spectacle Lenses and Optical Instruments</td>
<td></td>
<td>1½</td>
</tr>
<tr>
<td>31.864</td>
<td>Clinical Methods</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Two General Studies Electives</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hpw</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.471</td>
<td>Psychology (Optometry)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>31.871</td>
<td>Optometry B</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>31.841</td>
<td>Clinical Optometry</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>71.001</td>
<td>Principles of Medicine for Optometry Students</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>
Conditions for the combined course leading to the award of the degrees of BSc BOptom in the Faculty of Science

1. Undergraduates* of the University of New South Wales who have satisfied the examiners in at least the first two years of the Optometry degree course may be admitted to the Science degree course with advanced standing for the purpose of qualifying for the award of the two degrees of BSc BOptom. Such undergraduates' performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. In order to qualify for the award of the degree of BSc, students so admitted shall be required to complete the appropriate general studies subjects and no less than four units of either Level II or Level III and four other Level III units, in accordance with the Science and Mathematics Course regulations.

The units submitted for the award of the Bachelor's degree under these regulations must include at least four Level III units chosen from related disciplines in accordance with the Science Course regulations.

3. In order to qualify for the award of the degree of BOptom, students so admitted shall complete the requirements of the Optometry degree course.

*In Rule 1, the word 'undergraduates' includes graduands, i.e., a person may be admitted under these rules if he or she has met all requirements for a first degree which has not yet been conferred and admission under these rules shall be no bar to the subsequent award of the first degree.
Undergraduate Study:

Subject Descriptions

Identification of Subjects by Number

A subject is defined by the Professorial Board as "a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University."

Each approved subject of the University is identifiable both by number and by name as this is a check against nomination of subject other than the one intended.

Subject numbers are allocated by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the number before the decimal point.

2. Each subject number is unique and is not used for more than one subject title.

3. Subject numbers which have not been used for some time are not used for new subject titles.

4. Graduate subjects are indicated by a suffix 'G' to a number with three digits after the decimal point. In other subjects three or four digits are used after the decimal point.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible to the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

The identifying numerical prefixes for each subject authority are set out below.

Servicing Subjects are those taught by a school or department outside its own faculty, and are published at the end of the entry for the relevant school. Their subject descriptions are also published in the handbook of the faculty in which the subject is taught.

HSC Exam Prerequisites
Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key
The following is the key to the information which may be supplied about each subject: S1 (Session 1); S2 (Session 2); F (Session 1 plus Session 2, ie full year); S1 or S2 (Session 1 or Session 2, ie choice of either session); SS (single session, ie which session taught is not known at time of publication); L (Lecture, followed by hours per week); T (Laboratory/Tutorial, followed by hours per week); Sem (Seminar, followed by hours per week) hpw (hours per week); C (Credit or Credit units), CR (Credit Level), DN (Distinction); R (after subject number) Broken Hill syllabus.
<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics</td>
<td>Science</td>
<td>123</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td>Science</td>
<td>128</td>
</tr>
<tr>
<td>School of Metallurgy*</td>
<td>Applied Science</td>
<td>132</td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering*</td>
<td>Engineering</td>
<td>133</td>
</tr>
<tr>
<td>School of Electrical Engineering and Computer Science*</td>
<td>Engineering</td>
<td>134</td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>Science</td>
<td>136</td>
</tr>
<tr>
<td>School of Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Psychology</td>
<td>Biological Sciences</td>
<td>146</td>
</tr>
<tr>
<td>School of Textile Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Accountancy*</td>
<td>Commerce</td>
<td>148</td>
</tr>
<tr>
<td>School of Economics*</td>
<td>Commerce</td>
<td>150</td>
</tr>
<tr>
<td>School of Health Administration</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>Biological Sciences</td>
<td>151</td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering (Industrial Engineering)</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Department of Industrial Arts</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Nuclear Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Applied Geology*</td>
<td>Applied Science</td>
<td>152</td>
</tr>
<tr>
<td>Department of General Studies</td>
<td>Board of Studies in General Education</td>
<td></td>
</tr>
<tr>
<td>School of Geography*</td>
<td>Applied Science</td>
<td>156</td>
</tr>
<tr>
<td>School of Marketing</td>
<td>Commerce</td>
<td>158</td>
</tr>
<tr>
<td>School of Surveying*</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>Organizational Behaviour</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>School of Optometry</td>
<td>Science</td>
<td>159</td>
</tr>
<tr>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Building</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Town Planning</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Landscape Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Food Science and Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Professorial Board</td>
<td>Biological Sciences</td>
<td>160</td>
</tr>
<tr>
<td>School of Biochemistry</td>
<td>Biological Sciences</td>
<td>161</td>
</tr>
<tr>
<td>School of Biotechnology</td>
<td>Biological Sciences</td>
<td>162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Microbiology</td>
<td>Biological Sciences</td>
<td>163</td>
</tr>
<tr>
<td>School of Zoology</td>
<td>Biological Sciences</td>
<td>164</td>
</tr>
<tr>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Faculty of Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry*</td>
<td>Applied Science</td>
<td>165</td>
</tr>
<tr>
<td>School of English</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of History</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Philosophy*</td>
<td>Arts</td>
<td>166</td>
</tr>
<tr>
<td>School of Sociology*</td>
<td>Arts</td>
<td>173</td>
</tr>
<tr>
<td>School of Political Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Librarianship</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>School of French</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Theatre Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Education*</td>
<td>Professional Studies</td>
<td>169</td>
</tr>
<tr>
<td>Department of Russian</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Faculty of Arts (Bachelor of Social Science)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Music</td>
<td>Arts</td>
<td>171</td>
</tr>
<tr>
<td>School of History and Philosophy of Science*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Social Work</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>School of German Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Spanish and Latin American Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects Available from Other Universities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>School of Anatomy*</td>
<td>Medicine</td>
<td>175</td>
</tr>
<tr>
<td>School of Medicine</td>
<td>Medicine</td>
<td>176</td>
</tr>
<tr>
<td>School of Pathology*</td>
<td>Medicine</td>
<td>177</td>
</tr>
<tr>
<td>School of Physiology and Pharmacology*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Surgery</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Obstetrics and Gynaecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Paediatrics</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Psychiatry</td>
<td>Medicine</td>
<td>178</td>
</tr>
<tr>
<td>School of Medical Education</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Community Medicine*</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Faculty of Medicine*</td>
<td>Medicine</td>
<td>178</td>
</tr>
<tr>
<td>Medicine/Science/Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Graduate School of Management</td>
<td>AGSM</td>
<td></td>
</tr>
<tr>
<td>Faculty of Law</td>
<td>Law</td>
<td></td>
</tr>
<tr>
<td>Division of Postgraduate Extension Studies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

122
Physics

Physics Level I Units

1.001 Physics 1
F L3T3
Prerequisites:
HSC Exam Percentile Range
Required
2 unit Mathematics* or 71-100
3 unit Mathematics or 21-100
4 unit Mathematics and 1-100
and
2 unit Science (Physics) or (for 1.001 only) 10.021B
2 unit Science (Chemistry) or 31-100
4 unit Science (Multistrand) 31-100
Co-requisite: 10.021C or 10.001 or 10.011.

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertial mass, energy, momentum, charge, potential, fields. Application of the conservation principles to solution of problems involving charge, energy and momentum. Electrical circuit theory, application of Kirchhoff's Laws to AC and DC circuits. Uniform circular motion, Kepler's Laws and rotational mechanics. Properties of matter: solids, liquids, gases. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization.

1.021 Introductory Physics 1
(For Health and Life Scientists)
F L3T3
Prerequisites: None. Co-requisites: 10.021A and 10.021B, or 10.021B and 10.001, or 10.001 or 10.011.

Principally for students majoring in the life and health sciences disciplines. Topics at an introductory level.

The methods of physics, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electrodynamics, alternating current, atomic nature of matter, X-rays, the nucleus and radioactivity, geometrical optics, optical instruments, wave optics, microscopes and their uses.

1.041 Laboratory Computers in Physical Sciences
S1 or S2 L2T4
Prerequisites: As for 1.001. Co-requisite: 10.001, and 10.01 or 10.01 or 1.011. Excluded: Programs 0601, 0610 and 0611, 6806.

Fundamentals of binary logic, binary arithmetic, arithmetical operations as logical algorithms. Electronic logic devices, principles of computer operation, microprocessors and microcomputer architecture. Machine language and BASIC programming in microcomputers. Fundamentals of real world interfacing techniques, flow of data and control across the interface. Mathematical modelling of the real world in BASIC, iteration and simulation techniques, laboratory experiments collecting real world data via an interface and analysing it in the microcomputer. The developing role of the laboratory computer in scientific research.

1.061 Computer Applications in Experimental Science 1
S2 L2T4
Prerequisites: 6.611. Co-requisite: 1.001, 10.001 or 10.011. Excluded: 1.041, 1.042.

Review of binary logic variables, arithmetic operations as logical algorithms on binary variables, computer architecture and machine language instruction sets. Microprocessor and microcomputer architecture; Apples II microcomputer architecture, disc operating system, graphics, languages. Computer modelling of real physical systems iterative techniques. Fundamentals of interfacing, data and control flow across the interface. Transducers, encoding. Data collection techniques used in Experimental Sciences. Laboratory experiments involving direct data collection via interfaces, data reduction and comparison with computer models. The developing role of the laboratory computer in experimental science.

Physics Level II Units

1.002 Mechanics, Waves and Optics
S1 L3T1
Prerequisites: 1.001 or 1.011, 10.001 or 10.011. Co-requisite: 10.2111. Excluded: 1992, 10.411, 10.4211.

Harmonic motion, systems of particles, central force problems, Lagrange's equations, coupled oscillations, travelling waves, pulses, energy and momentum transfer, polarization, birefringence, interference, thin films, gratings, lasers, holography, fibre optics, Faraday effect, photoelasticity.

1.012 Electromagnetism and Thermal Physics
S2 L3T1

Electric field strength and potential, Gauss' law, Poisson's and Laplace's equations, capacitance, dielectrics and polarization, magnetism, electro-magnetic induction, Maxwell's equations, electromagnetic waves. Laws of thermodynamics, kinetic theory, microscopic processes, entropy, solid state defects, Helmholtz and Gibbs functions, Maxwell's relations, phase diagrams, chemical and electrochemical potential.

1.022 Modern Physics
F L1½ T½

Special theory of Relativity: time dilation, length contraction, simultaneity, Lorentz transformations, energy and mass. Photon properties, de Broglie relations, Uncertainty principle, operators in quantum mechanics, postulates of quantum mechanics, potential wells, steps and barriers, harmonic oscillator, H atom, angular momentum, magnetic moment, electron spin, nuclear spin. Atomic and molecular spectra, lasers, quantum statistics, free electron model of a metal, band theory, nuclear size, density, mass; nuclear models, fission and fusion, nuclear forces.
1.032 Laboratory
Prerequisites: 1.001 or 1.011, 10.001. Excluded: 1.9222.

Alternating current circuits, complex impedance, resonance, mutual inductance, introductory electronics, diode and characteristics and circuits, power supplies, transistor characteristics, single stage and coupled amplifiers, experiments using AC circuits. Experimental investigations in a choice of areas including radioactivity, spectroscopy, properties of materials, Hall effect, nuclear magnetic resonance, photography, vacuum systems.

1.0522 Methods in Mathematical Physics
Prerequisites: 1.001 or 1.011 and 10.001 or 10.011. Co-requisites: 10.2111 or 10.2211 and 10.2112 or 10.2212. Excluded: 1.052.

1.062 Computer Applications in Experimental
Science
Prerequisites: 1.001 or 1.041. Excluded: 1.042.

Interface between computer and experiment, programmed and interrupt interaction, direct and dual port memory access concepts, hardware, software and timing restraints. Real-world variables, transducers and conversion to binary representation, converters and counters, signals and noise. Data collection, reduction and storage as digital matrices. Numerical modelling, analysis and elementary control of a system.

1.9222 Electronics
Prerequisites: 1.001 or 1.001 or 1.021. Excluded: 1.032.

The application of electronics to other disciplines. Includes: principles of circuit theory and analogue computing; amplifiers, their specification and application, transducers; electronic instrumentation; industrial data acquisition.

1.9322 Introduction to Solids
Prerequisites: 1.001 or 1.011 or 1.021. Excluded: 1.022, 4.402, 4.412.

Introductory quantum mechanics and atomic physics; crystal structure, point and line defects; introductory band theory; conductors, semi-conductor and insulators; energy level diagrams.

1.9422 Introduction to Physics of Measurement
Prerequisites: 1.001 or 1.011. Excluded: 1.042

Resolution; accuracy and sensitivity of instruments, errors of observation; experimental design; transducers; thermometry; electrical noise; servo systems; mechanical design of apparatus; optical instruments; optical fibres; photometry; calorimetry; analogue to digital conversion and digital instruments; measurement of very large and very small quantities.

Physics Level III Units

1.0133 Quantum Mechanics
Prerequisites: 1.022, 10.2112. Excluded: 2.023A, 10.222F, 1.013.

Revision of basic concepts, harmonic oscillator systems, spherically symmetric systems, angular momentum, H atom, first-order perturbation theory, identical particles, Exclusion Principle, atomic structure, spin-orbit coupling, Helium atom, introductory quantum theory of molecules.

1.0143 Nuclear Physics
Prerequisites: 1.0133. Excluded: 1.013.

Nuclear shell model; theory of beta decay; the deuteron, nucleon-nucleon scattering; theories of nuclear reactions, resonances, mesons and strange particles, elementary particle properties and interactions; symmetries and quark models; strong and weak interactions.

1.023 Statistical Mechanics and Solid State Physics
Prerequisites: 1.012, 1.022, 10.2112.

Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibrium, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations.

1.0333 Electromagnetism
Prerequisites: 1.012, 10.2111, 10.2112. Excluded: 10.222C, 1.033.

Electromagnetic fields; Maxwell's equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Fresnel equations, waveguides, radiation fields, dipoles and antenna theory.

1.0343 Advanced Optics

Fresnel and Fraunhofer diffraction, Fourier transforms, filtering, coherence length and time, stellar interferometers, laser theory, non-linear optics.

1.043 Experimental Physics A
Prerequisite: 1.032.

Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics (including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems).

1.0533 Experimental Physics B
Prerequisite: 1.032. Excluded: 1.053.

Selected experiments and projects. Advanced experimental techniques and open ended projects in the areas covered in 1.043 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and superconductivity. Fourier optics, holography.
1.0543 Experimental Physics B2
Prerequisite: 1.032. Excluded: 1.053.
As for 1.0533 Experimental Physics B1.

1.1133 Advanced Quantum Mechanics
Co-requisite: 1.0133. Excluded: 2.023A, 10.222F.
Formal structure, matrix formalism, relativistic quantum mechanics, spin, scattering theory, Born approximation, phase shifts, many particle systems, occupation number formalism.

1.133 Electronics
Prerequisites: 19222 or 1.032.

1.1433 Biophysics
Prerequisites: 1.012, 1.022.

1.1533 Biophysical Techniques
Prerequisites: 1.012, 1.022, 1.032.
Theory and application of physical techniques of relevance to the study of biological systems. Techniques considered may include optical and electron microscopy X-ray and neutron diffraction, magnetic resonance, lasers, light scattering, calorimetry, fluorescence, electrochemical techniques and electrophysiological methods and dielectric measurements.

1.1633 Astrophysics
Prerequisites: 1.022.

1.3033 Mechanical Properties of Materials
Properties of materials in relation to their structure: atomic and molecular structure of solids; elasticity, inelasticity, long-range (rubber) elasticity, viscoelasticity; plasticity; brittle fracture; viscosity and surface tension of liquids; adhesion; friction and lubrication.

1.3133 Physics of Solid State Devices
Prerequisite: 1.023.
Review of electronic structure in semiconductors; p-n junctions; bipolar and field effect transistors including formation, characteristics and electrical breakdown. Optical devices including light emitting diodes and junction lasers. Integrated circuit structures.

1.3143 Topics in Condensed Matter Physics
Prerequisite: 1.023.
Superconductivity, Meissner-Ochsenfeld effect, entropy, thermodynamics and relevant theories, Josephson junctions. Amorphous materials, preparation, magnetic properties, bandgaps, dangling bonds and ESR, mobility edge, solar cells. Polymers, structure, bonding, relaxation phenomena, electrical breakdown, liquid crystals.

1.3533 Marine Acoustics
Wave theory: general wave equation for fluids, viscoelastic media and solids. Travelling and standing wave solutions. Wave guides: fluid and solid wave guides, ray and mode theories. Sound transmission in the ocean and application of reflection and refraction theory, scattering and diffraction effects.

1.5133 Classical Mechanics and Field Theory
Prerequisites: 1.002 or 10.411B, 10.1113, 10.2111, 10.2112.
Lagrange's equations and applications, variational principles, Hamiltonian formulation, canonical transformations, Poisson brackets, Hamilton-Jacobi equation, continuous systems and fields.

1.5233 Electrodynamics
Prerequisites: 1.022, 10.1113, 10.2111, 10.2112. Co-requisite: 1.0333. Excluded: 10.222C.
Special relativity, covariant formulation of electrodynamics, stress tensor, radiation from moving charges, Lienard-Wiechert potentials, synchrotron radiation, bremsstrahlung, electro-magnetic mass, radiation damping, multipole expansion for fields, scattering.

1.5333 Radiation and Matter
Prerequisites: 1.012, 1.022, 10.2111, 10.2112. Co-requisites: 1.0133 or 10.222F or 2.023A, 1.0333 or 10.222C.

1.5433 Plasmas and Laser Fusion
Prerequisites: 1.012, 1.022. Excluded: 1.513.
Microscopic and macroscopic descriptions of plasma, electromagnetic waves in plasma, stress tensor, ponderomotive force, laser-plasma interactions, momentum transfer and instabilities, non-linear force, self-focussing mechanisms, laser induced nuclear fusion, theoretical and experimental progress and prospects.

1.5533 General Relativity

Prerequisites: 1.012, 1.022, 10.1113, 10.2111, 10.2112. Excluded: 1.523.

Relativistic kinematics and dynamics, tensors and tensor operations, Christoffel symbols, formulation of general relativity, curvature of space, geodesics, gravitational field equations, Schwarzschild solution, tests of the theory, astrophysical and cosmological implications.

1.713 Advanced Laser and Optical Applications

Co-requisite: 1.002. See also Table 1.

Laser operation, characteristics, theory, design of such types as gas, ion, molecular, excimer and dye lasers. Filter design, multiple beam interference, etalon use, dielectric mirror design. Modulators, theory and application, electro and acousto optic phenomena. Detectors, types, basic theory and design. Solid state and vacuum tube systems. Non-linear optics, theory and applications. A design study and case history of a typical optical system. Material's processing fundamentals. Laser safety.

1.763 Laser and Optical Technology Laboratory 1

Prerequisite: 1.032. See also Table 1.

Aims to make students conversant with the techniques employed in advanced laser technology and to become familiar with the various components used in such applications. Includes: a study of advanced optical techniques including the construction, operation and characterization of various types of laser; preparation and investigation of optical, electro-optical and other related devices in terms of their basic behaviour and with respect to applications in complex optical systems; a small lecture content on a variety of topics relating to laser applications and including safety aspects.

1.773 Laser and Optical Technology Laboratory 2

Co-requisite: 1.763. See also Table 1.

This laboratory unit extends the work of the 1.763 unit in providing further experience with advanced optical systems. Students visit external establishments where lasers are being used for commercial purposes and are involved with experimental tasks related to these high technology applications. Session 2: each student is required to complete a design study and assembly of an advanced optical system selected to answer a specific problem appropriate to the subject.

Physics Level IV Units

All Physics honours units consist of lecture topics and project work. Some of the lecture topics of which quantum mechanics, statistical mechanics and solid state physics are examples, are taken by all students. Other topics which are considered particularly relevant to the type of honours chosen are also prescribed. The actual list of topics in this second category varies from time to time and is partly influenced by student numbers and interest. Examples of such topics are given below under each honours subject heading. The project work forms a very significant part of each unit. Usually two projects are undertaken during the year of study.

Students whose academic records are satisfactory are invited to enrol in the honours year. Full details of lecture topics and projects are then supplied. The approval of the Head of School is required for each program of study.

1.104 Physics 4 (Honours)

Examples of specific lecture topics which may be offered include: astronomy, additional topics in solid state physics, lasers, biophysics.

1.304 Applied Physics (Honours)

Examples of specific lecture topics which may be offered include: physical principles of instrumentation, applied solid state physics, physics of materials.

1.504 Theoretical Physics 4 (Honours)

Examples of specific lecture topics which may be offered include: quantum theory of solids, plasma theory, quantum electrodynamics.

1.604 Biophysics 4 (Honours)

Biophysics, statistical mechanics and solid state physics are examples of prescribed topics. Additional lecture topics may be selected from those on offer in other Physics honours units and from Biochemistry and Physiology.

Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further information regarding the following subject see the Faculty of Arts Handbook.

1.901 Astronomy

Involves an overview of Astronomy, from the solar system to the galaxies. Includes an exploration of the solar system, to indicate the advances that have been made, particularly and most recently with space probes, in our understanding of planetary systems. The characteristics of stars discussed along with their use in establishing an understanding of stellar evolution. The treatment of galaxies includes consideration of the nature of our galaxy and its relation to other external systems, concluding with a brief discussion of aspects of observational cosmology. Discussion of such recent topics as black holes, pulsars, quasars.

For further information regarding the following subject see the Faculty of Architecture Handbook.

1.931 Physics 1 (Building)

4 credit points; compulsory. Prerequisites: nil.

For further information regarding the following subjects see the Faculty of Engineering Handbook.

1.951 Physics 1 (Mechanical Engineering) F L2T2
Prerequisites: As for 1.001 Physics 1.

For students in the School of Mechanical and Industrial Engineering.

1.961 Physics 1 (Electrical Engineering) F L3T3
Prerequisite: As for 1.001 Physics 1.

For students in the School of Electrical Engineering.

Electrostatics in vacuum, electrostatics in dielectrics, steady state current, magnetostatics in vacuum, ferromagnetism, electromagnetic induction, transient currents. Vectors, motion in one dimension, motion in a plane, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, collisions, rotational kinematics, rotational dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics, kinetic theory of gases. Waves in elastic media, sound waves, geometrical optics, interference, diffraction, gratings and spectra, polarization.

1.971 Physics 1 (Surveying) F L3T3
Prerequisite: As for 1.001 Physics 1.

For students in the School of Surveying.

Aims and nature of physics, linear and rotational mechanics, hydrostatics, elasticity, gravitation, temperature, electricity and magnetism, wave motion, optical instruments, interference and diffraction, lasers and atomic clocks. The importance in surveying of precise frequency, time, speed and distance measurements.

1.981 Physics 1 (Civil Engineering) S1 L2T2 and S2 L2T1
Prerequisite: As for 1.001 Physics 1.

For students in the School of Civil Engineering.

1.962 Physics of Measurement (Surveying) S1 L1T2
Prerequisite: 1.971.

For students in the School of Surveying.

1.972 Electromagnetism (Electrical Engineering) S1 or S2 L2T2
Prerequisite: 1.961 or 1.001 or 1.011, 10.001. Co-requisites: 10.2111, 10.2112. Excluded: 1.012.

Electrostatics in vacuum, electrostatics in dielectrics, electric currents, magnetostatics in vacuum, magnetic scalar potential, magnetostatics in magnetic media, time varying fields, Maxwell's equations.

1.982 Solid State Physics (Electrical Engineering) S1 or S2 L2½T2
Prerequisite: 1.961 or 1.001 or 1.011, 10.001. Co-requisites: 10.2111, 10.2112. Excluded: 1.022, 1.9322.

The concepts of waves and particles, introductory quantum mechanics, atomic structure, optical spectra and atomic structure, structural properties of solids, band theory and its applications, uniform electronic semiconductors in equilibrium, excess carriers in semiconductors.

1.992 Mechanics and Thermal Physics (Electrical Engineering) F L1½T½

Particle mechanics, harmonic motion, central force problems, systems of particles, Lagrange's equations with applications, coupled oscillations, wave equation. Thermodynamic laws, entropy, kinetic theory, M-B distribution, microscopic processes, Maxwell's relations, chemical potential, phase diagrams, multicomponent systems, electrochemical potential, statistics of defects in solids.
Chemistry Level I Units

2.111 Introductory Chemistry

Prerequisite: Nil.

Note: Students who have passed 2.121 or 2.131 may not enrol in 2.111 or 2.141. Students meeting the 2.121 or 2.141 prerequisite are not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Students who enrol in 2.111 must pass 2.111 before they can proceed to 2.121 or 2.131 or 2.141.

Classification of matter and the language of chemistry. The gas laws and the Ideal Gas Equation, gas mixtures and partial pressure. The structure of atoms, cations and anions, chemical bonding, properties of ionic and covalent compounds. The periodic classification of elements, oxides, hydrides, halides and selected elements. Acids, bases, salts, neutralization. Stoichiometry, the mole concept. Electron transfer reactions. Qualitative treatment of reversibility and chemical equilibrium, the pH scale. Introduction to the diversity of carbon compounds.

2.121 Chemistry 1A

Prerequisites:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics* or</td>
<td>71-100</td>
<td></td>
</tr>
<tr>
<td>3 unit Mathematics or</td>
<td>21-100</td>
<td></td>
</tr>
<tr>
<td>4 unit Mathematics and</td>
<td>1-100</td>
<td></td>
</tr>
<tr>
<td>2 unit Science (Physics) or</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>2 unit Science (Chemistry) or</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>4 unit Science (multistrand) or</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>2 unit Science (Geology) or</td>
<td>51-100</td>
<td></td>
</tr>
<tr>
<td>2 unit Science (Biology) or</td>
<td>51-100</td>
<td></td>
</tr>
<tr>
<td>2.111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Note: Students who have passed 2.121 or 2.131 may not enrol in 2.111 or 2.141. Students meeting the 2.121 or 2.141 prerequisite are not permitted to enrol in 2.111 without the permission of the Head of the School of Chemistry. Students who enrol in 2.111 must pass 2.111 before they can proceed to 2.121 or 2.131 or 2.141.

Chemistry Level II Units

2.102A Physical Chemistry

Prerequisites: 2.121 and 2.131, or 2.141; and 10.011 or 10.001 or 10.021B and 10.021C. Excluded 2.002A.

Thermodynamics: first, second and third laws of thermodynamics; statistical mechanical treatment of thermodynamic properties; applications of thermodynamics: chemical equilibria, phase equilibria, solutions of nonelectrolytes and electrolytes, electrochemical cells. Kinetics: order and molecularity; effect of temperature on reaction rates; elementary reaction rate theory. Surface chemistry and colloids: adsorption, properties of dispersions; macromolecules and association colloids.
2.102B Organic Chemistry F or S2 L3T3
Pre requisite: 2.131 or 2.141. Excluded: 2.002B
Discussion of the major types of organic reaction mechanisms (eg addition, substitution, elimination, free-radical, molecular rearrangement) within context of important functional groups (eg aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, organo-metallic compounds, alcohols, phenols, aldehydes, ketones, ethers, carboxylic acids and their derivatives, nitro compounds, amines and sulfonic acids). Introduction to application of spectroscopic methods to structure determination.

2.102C Inorganic Chemistry and Structure S1 or S2 L3T3
Pre requisite: 2.121 and 2.131, or 2.141. Excluded: 2.042C.

2.102D Chemical and Spectroscopic Analysis S1 or S2 L3T3
Pre requisite: 2.121 and 2.131, or 2.141 and 10.001 or 10.001 or 10.021B and 10.021C. Excluded: 2.002D and 2.003H.

Chemistry Level III Units

2.003A Physical Chemistry S2 L3T3
Pre requisite: 2.002A.
Thermodynamics, including non-ideal systems; advanced electrochemistry; statistical thermodynamics; applications to gases, liquids and chemical equilibria; states of matter.

2.003B Organic Chemistry S1 L3T3
Pre requisite: 2.002B.
Heterocyclic Chemistry: Synthesis and reactions of the following heteroaromatic systems: pyridine, quinoline, isoquinoline, pyrimidine, pyrrole, furan, thiophen, indole, imidazole; examples of naturally occurring alkaloids where relevant. Alicyclic Chemistry: Stereochemistry of acyclic systems; classical and non-classical strain in cyclic systems; stereochemistry and conformation of monomeric and poly-cyclic compounds; synthesis, reactions and rearrangement of monocyclic compounds including stereochemical selectivity; transannular reactions in medium rings. Synthesis and reactions of fused and bridged polycyclic systems, examples of steroids and terpenes where relevant. Structure determination: application of spectroscopic methods (eg nuclear magnetic resonance, mass spectrometry) to determination of organic structures.

2.003C Inorganic Chemistry S1 or S2 L2T4
Pre requisite: 2.042C.
Coordination chemistry: valence bond and crystal field theory and their application to magnetic and spectral properties of complexes. Factors affecting the stability of complexes; unusual oxidation states of transition metals. Chemistry of the groups 3A (the lanthanides and actinides), VIA, VIIA and VIIIA. More advanced chemistry of groups IB, IVB, VB, VIB and VIIIB and the noble gases.

2.003D Instrumental Analysis S1 or S2 L2T4
Pre requisite: 2.002A and 2.002D.

2.003E Nuclear and Radiation Chemistry F or S1 or S2 L2T4
Pre requisite: 2.121 and 2.131, or 2.141; and 10.001 or 10.011 or 10.021B and 10.021C.

2.003H Molecular Spectroscopy and Structure S2 L3T3
Pre requisite: 2.121 and 2.131, or 2.141.
Absorption and emission of radiation. Atomic spectra. Molecular spectroscopy: vibrational, including infrared and Raman; UV-visible; instrumentation and sample handling. Magnetic resonance. Mass spectrometry with particular reference to structure determination. Laboratory and tutorial work to illustrate the above, including inspection of major instruments.

2.003K Solid State Chemistry S2 L2T4
Pre requisite: 2.121 and 2.131, or 2.141 and 10.001 or 10.011.
The determination of crystal structures by single crystal diffraction: X-ray and neutron diffraction methods. Practical and automated aspects of the solution of crystal structures: applications to inorganic, molecular and macromolecular crystals. Patterns of solid state structure: the structures of crystals with unusual and valuable chemical and physical properties. Solid state reactions, surface properties and catalysis. Applications of EPR, NMR and mass spectrometry.

2.003L Applied Organic Chemistry S1 L2T4
Pre requisite: 2.002B. Co-requisite: 2.003B.
Discussion at advanced level of the chemistry of selected commercially important groups of organic materials with emphasis on reaction mechanisms and model systems. Polymerization processes and syn-
thetic polymers. Thermal and oxidative polymerization, treatment of initiators, chain transfer agents, retarders; sulfur-olefin reactions. Pigments and dyestuffs. Basis of colour in organic compounds, azo, carbonyl, cationic dyes; colour photography; synthetic and natural pigments, eg phthalocyanines, carotenes, flavones, anthocyanins; fluorescent whiteners. Oxidation and reduction processes. Oxidation of allylic compounds, phenols, sulfur compounds, etc; catalytic dehydrogenation and hydrogenation; hydride and dissolving metal reductions.

2.003M Organometallic Chemistry
Prerequisite: 2.002B.
Synthesis, structure and reactions of metal alkyls and aryls; metal carbonyls, isonitriles and acetylanides; compounds of metals with unsaturated hydrocarbons; organic chemistry of boron, silicon, phosphorus and arsenic; application of organometallic compounds in organic synthesis and homogeneous catalysis.

2.013A Introductory Quantum Chemistry
Prerequisites: 1.001; 2.121 and 2.131, or 2.141; and 10.001 or 10.011 or 10.021B and 10.021C.

2.013B Synthetic Organic Chemistry
Prerequisite: 2.003B.

2.013C Advanced Inorganic Chemistry
Prerequisite: 2.042C. Co-requisite: 2.003C.

2.013D Advanced Analytical Chemistry
Prerequisite: 2.002D. Co-requisite: 2.003D.

2.013E Advanced Nuclear and Radiation Chemistry
Prerequisite: 2.003E.
Only available to non-Chemistry majors. It may not be included in program 0200 or 0205 or Course 3910.
Advanced nuclear instrumentation and special counting methods; isotope effects and isotope separation methods; nuclear reactors, accelerators and isotope production; isotope labelling techniques; radiation sources and their uses; hot atom and recoil reactions; actinide chemistry and nuclear reactor fuel processing; environmental radioactivity; biochemical applications including radioimmunoassay techniques and the preparation of short lived radio pharmaceuticals; isotopic methods applied to chemical measurements; industrial tracer applications. Laboratory classes involve experiments associated with the above topics.

2.023A Quantum Theory of Atoms and Molecules
Prerequisites: 2.002A, 10.2111 and 10.2112.
Wave mechanics — linear operators; Schrödinger wave equation, applications, method of solution; variation principle, linear combinations, perturbation theory. Many-electron problems — central field method; electron spin; Fermi-Dirac statistics; angular momentum operators; Coulomb repulsion two-electron operator; spin-orbit coupling; Russell-Saunders and jj coupling; Zeeman effect; vector coupling and Wigner coefficients; allowed transitions. Group theory — symmetry operations; matrix representation; irreducible representation; characters of a group; non-rigid molecules; antisymmetry operators.

2.023B Biological Organic Chemistry
Prerequisite: 2.003B.

2.033A Physical Chemistry of Macromolecules
Prerequisites: 1.012 or 2.002A and 2.002B or 2.003J.
Macromolecules in solution; determination of molecular size; gel permeation chromatography, diffusion, sedimentation, viscometry, osmometry and light scattering. Spectroscopic properties: circular dichroism and optical rotary dispersion; conformation of macromolecules in solution; halix-random coil transitions. Macromolecules in the solid state; micelles; synthetic polymers, mass spectrometry of polymers.
2.043A Environmental Chemistry

Prerequisites: 2.002A, 2.002D.

Physico-chemical aspects of atmosphere chemistry: dispersion of colloids and solid matter, photochemical reactions. Hydrological cycle: reactions in the sea, rivers and estuaries; chemical characteristics of surface and sub-surface waters. Corrosion of metals. Distribution of elements and nutrient cycles in water; organic carbon cycles, oxygen balance (redox processes in aquatic systems). Chemical models of these processes (including an introduction to simple computing). Practical project (mostly field work) dealing with nutrient cycles.

2.053A Chemical Kinetics and Reaction Mechanisms

Prerequisite: 2.002A.

2.063A Advanced Molecular Spectroscopy

Prerequisite: 2.013A.

Chemistry Level IV Unit

2.004 Chemistry Honours

An honours program consisting of selected series of lectures on advanced topics in Chemistry and a research project.

Students intending to seek admission to this program should consult the School re selection of units in the earlier years and apply to the Head of the School for consideration for admission at the end of Year 3 (or completion of requirements for the pass degree).

Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further information regarding the following subjects see the Faculty of Applied Science and Engineering Handbooks.

2.003J Fundamentals of Biological and Agricultural Chemistry

Prerequisites: 2.121 and 2.131, or 2.141. Excluded: 2.013L, 41.101.

Aspects of the chemical and physical properties of materials important in biological systems. Methods of separation, of purification and estimation, and correlations of structure with reactivity. Methods of separation and identification, such as gel permeation, discussed as appropriate to each topic. Significance of isomerism in biological systems, optical and geometrical, absolute configuration. Amino acids, peptides and introduction to protein structure. Relevant properties, acid/base properties, pK values, zwitterion, isoelectric points. Simple peptide synthesis. Treatment of carbohydrates, establishment of structures, reactivity. Chemistry of monosaccharides, disaccharides and polysaccharides. Methods of analysis, chemical and physiochemical. Fats, correlation of properties with saturated and unsaturated fatty acid composition. Structural chemistry of fatty acids. Reaction of unsaturated fatty acids, urea complexes. Detergents. Trace elements in biological systems. Chemistry of common heterocyclic systems with emphasis on molecules of biological importance.

2.043L Chemistry and Enzymology of Foods

Prerequisite: 2.002B. Excluded: 2.003J, 2.043L.

The chemistry of food constituents at an advanced level and the relationship between the chemistry and enzymology associated with the origin and handling of foodstuffs. Treatment of the stability of constituents, changes in colour and texture occurring during processing and storage. Methods of assessment, chemical and physical. General classification of constituents, role of free and combined water. Fixed oils and fats, racidity of enzymic and antioxidative origin, antioxidants — natural and synthetic — theories on mechanisms of action, carbohydrates, reactivity, role in brewing processes, carbohydrate polymers, starch structure, enzymic susceptibility and mode of action, estimations, enzymic degradation and enzymic browning, reactions and stability of natural pigments, vitamins, preservatives.

2.030 Organic Chemistry

Prerequisite: 2.002B.

The spectroscopic identification of organic compounds, free radical chemistry and electro-organic processes, various aspects of the organic industrial processes such as industrial synthesis based on petrochemicals, and organometallic reactions of industrial interest. Selected topics from the dyestuff, pharmaceutical and agricultural industries discussing syntheses and reactions including degradation.

2.951 Chemistry 1ME

Prerequisite: As for 1.001.

A treatment of chemistry which illustrates the application of the principles of chemistry to problems of concern to mechanical engineers. Topics: chemistry of materials, thermochemistry, chemical kinetics and equilibrium, radioactivity and nuclear power, electrochemistry and corrosion of metals. Introduction to organic chemistry, structure and properties of polymers, fuels and lubricants. Surface chemistry.

2.991 Chemistry 1CE

Prerequisites: As for 2.121.

For further information regarding the following subject see the Faculty of Medicine Handbook.

81.002 Chemistry and Biochemistry for Medical Students

Conjoint subject with the School of Biochemistry.
Metallurgy

4.302 Chemical and Extraction Metallurgy 1 F L1T2
Co-requisite: 2.002A.
Metal extraction from ores in terms of unit operations and overall systems, illustrated by the extraction of iron, copper, aluminium and other metals. Elementary process analysis. Laboratory — analysis and solution of problems.

4.303 Chemical and Extraction Metallurgy 2 F L3T2
Prerequisites: 4.302, 4.602 and 4.402 or 4.412.

4.402 Physical Metallurgy 1 S1 L3T3 S2 L2T4

4.403 Physical Metallurgy 2 F L4T5
Prerequisite: 4.402. Excluded: 1.3033.

4.412 Metallurgical Phases — Structure and Equilibrium, Part 1 S1 L3T3
The crystal structure of metallic phases. Crystal defects. Physical properties of solids. Phase equilibrium in alloy systems. The genesis of microstructure. Metallography.

4.422 Metallurgical Phases — Structure and Equilibrium, Part 2 S2 L2T4

4.433 Physical Metallurgy 2C S1 L4T5 S2 L3T3
Prerequisite: 4.402.

4.502 Mechanical Metallurgy S1 L2T2 S2 L1T2
Co-requisite: 4.402.
Combination of 4.512 and 4.522.

4.512 Mechanical Properties of Solids S1 L2T2
Co-requisite: 4.402.

4.522 Mechanical Metallurgy S2 L1T2
Prerequisite: 4.512.

4.602 Metallurgical Engineering 1 S2 L3T2
Co-requisite: 4.302.
Mass and energy accounting in metallurgical processes. An introduction to the principles and applications of transport processes in systems with specific reference to industrial processes in primary and secondary metallurgy.

4.613 Metallurgical Engineering 2A S1 L2T1
Prerequisite: 4.602.
An extension of the principles and applications of transport processes to metallurgical systems. The principles of metallurgical heating and cooling including fuels, refractories and furnace design and operation. Solidification in moulds, continuous casting. Process Economics: As for 48.031 Chemical Engineering 2A Unit 6.

4.703 Materials Science S2 L2T1
Co-requisite: 4.403.
Not offered in 1986.
The application of the principles of physical metallurgy to the development of modern materials. Particular attention is paid to the structure/property relationships that determine the design of materials. The topics covered include materials used for structural purposes, high temperature application, corrosive environments, nuclear engineering, fuel cells, magnetic applications.
4.802 Metallurgical Physics

Prerequisite: 1.001 or 1.011.

4.813 Mathematical Methods

Prerequisite: 10.031 or 10.211 A.

5.006 Engineering E

Prerequisite: as for 5.010. Excluded: 5.010, 5.0201, 5.030.

5.010 Engineering A

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Science (Physics)</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>4 unit Science (multstrand)</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>2 unit Industrial Arts</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>3 unit Industrial Arts</td>
<td>11-100</td>
<td></td>
</tr>
</tbody>
</table>

Note: Students who wish to enrol in this subject in courses other than the full-time courses in Aeronautical Engineering, Civil Engineering, Industrial Engineering, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of the first year.

Statics: Composition and resolution of forces, laws of equilibrium. Friction. Statics of rigid bars, pin-jointed frames, and beams. Simple states of stress. Statics of fluids. Introduction to Engineering Design: Engineering method, problem identification, creative thinking, mathematical modelling, computer-aided design, materials and processes, communication of ideas, the place of engineering in society. Introduction to Materials Science: The structure and properties of the main types of engineering materials, with emphasis on the way in which properties may be controlled by controlling structure.

5.0201 Engineering Dynamics 1A

Prerequisite: 5.010.

Kinematics of a particle in the plane: rectilinear and curvilinear motion; motion relative to a translating frame of reference. Kinetics of a particle in the plane: Newton's second law; D'Alembert's principle; work, power and energy. Virtual work. Kinetics of a system of particles: Impulse and momentum; moment of momentum; equations of motion; impact. Fixed-axis rotation of a rigid body: angular momentum; equation of motion; moment of inertia; energy; centre of percussion. Steady mass flow.

5.030 Engineering C

Prerequisites: as for 5.010.

and one of the following options (determined by the course of study)

1. Production Technology

2. Introduction to Chemical Industry

3. Introduction to Metallurgical Engineering

4. Introduction to Mining Engineering
5. Introduction to Ceramic Engineering
(Ceramic Engineering students take this option.) The classification of materials. The nature of ceramics. The materials science approach. The scope of the ceramic industry. The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials. Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, pot forming and other forming procedures.

Prerequisites: 5.010.

5.5000 Introduction to Ceramic Engineering (Ceramic Engineering students take this option.) The classification of materials. The nature of ceramics. The materials science approach. The scope of the ceramic industry. The origin, classification, physical properties and uses of clay minerals and other non-clay raw materials. Principal unit operations used in the ceramic industry. Drying and firing of ceramics, melt forming, pot forming and other forming procedures.

Prerequisites: 5.010.

5.622 Fluid Mechanics/Thermodynamics F L2T2
Prerequisites: 10.001 or 10.011, 1.951 or 1.001, 5.10. Co-requisite: 5.300.

6.010 Electrical Engineering 1 S2 L2T4
Prerequisite: Electricity and magnetism section of 1.961.

Prepares students for the various areas and disciplines of Electrical Engineering. Includes field and circuit theory; electronics; logic circuits; communications; energy conversion; automatic control. Laboratory exercises and project work are major components.

6.021A Circuit Theory 1 S1 or S2 L2T2
Prerequisites: 1.961 or equivalent, 6.010, 10.001.

6.021C Electronics 1 S1 or S2 L2T2
Prerequisite: 1.982, 6.021. A pair of these to be passed, the other to be attempted at an acceptable level and to be repeated concurrently.

Principles of operation and low-frequency characteristics of PN diodes, bipolar and field effect transistors, thyristors and various optoelectronic devices. Transistor low-frequency small-signal equivalent circuits. Design and analysis of low frequency Class A transistor amplifiers. Temperature effects. Device ratings and use of data sheets.
6.606 Computing Science Honours

6.611 Computing 1
Prerequisite: As for 10.001. **Co-requisite:** 10.001 or 10.011. **Excluded:** 6.600, 6.620, 6.021D (1.041 excluded for students enrolled in Program 6806 and Computer Science programs in the Science and Mathematics course).

Introduction to programming: design and correctness of algorithms and data structures; programming in a high-level algorithmic language which provides simple, high level program control and data structuring facilities. Problem solving: basic ideas of problem solving; introduction to abstract structures used for computing solutions to problems. Introduction to propositional logic, computing machinery, computer arithmetic, artificial intelligence, and operating systems.

6.613 Computer Organization and Design
Prerequisites: 6.631 or 6.021E, 6.021D or 6.620 or 6.621 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects). **Excluded:** 6.0318.

Bussing structures (asynchronous and synchronous); input/output organization; polling, interrupt and DMA control; parallel and serial device and processor communication and interfacing. Memory organization; CPU and control unit design. Processes: synchronization and communication. Microprocessor case studies.

6.621 Computing 2A
Prerequisites: 6.611 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject), 10.001 or 10.011. Excluded: 6.620, 6.021D.

For those students who intend to take further subjects in computer science.

Expansion and development of material introduced in 6.611 Computing 1. Systematic program development: introduction to programming language semantics, reasoning about programs, program derivation, abstract programs, realization of abstract programs (conversion from abstract to concrete). Practice in programming in a high-level programming language. Data-structures: arrays, lists, sets, trees; recursive programming. Introduction to computer organization: a simple machine architecture. Introduction to operating systems.

6.631 Computing 2B
Prerequisites: 6.620 or 6.621 or 6.021D (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects), 6.600 (CR). Excluded: 6.021E.

Assembler programming: programming in a low level machine oriented language in order to illustrate the mapping of higher level language constructs onto a typical machine and the interaction between operating systems and devices. Digital Logic Design: Boolean algebra and logic gates, simplification of Boolean functions, combinational logic, medium scale integration building blocks, clocked sequential circuits, registers and memory, computer arithmetic.

6.632 Operating Systems
Prerequisites: 6.631 or 6.021E, 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects). **Excluded:** 6.672.

Introduction to operating systems via an intensive case study of a particular system, namely the UNIX Time-sharing system which runs on the PDP11 computer. Includes system initialization, memory management, process management, handling of interrupts, basic input/output and file systems. A comparison of UNIX with other operating systems. General principles for operating system design.

6.633 Data Bases and Networks
Prerequisites: 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject). Excluded: 6.622, 6.652, 14.608, 14.607.

Data Base Management Systems: data models; relational and network structures; data description languages; data manipulation languages; multi-schema structures. Data integrity and security; recovery; privacy. Computer Networks: economic and technological considerations; digital data transmission; error detection and recovery; network configurations; circuit switching, packet switching; communication protocols, current international standards; data compression; encryption and decryption.

6.641 Computing 2C
Prerequisites: 6.620 or 6.021D or 6.621 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects), 6.600 (CR).

Design of Data Structures: abstraction, representation, manipulation and axiomatization. Key transformations (hashing), balanced and multihop trees, introduction to graphs: Files: sequential access, random access, merging, sorting and updating. File organizations and introduction to data base systems. Programming in Logic: descriptive programming languages, symbolic manipulation, pattern matching and associative programming. Software Engineering: a survey of some current techniques in program specification and program design.

6.642 Design and Analysis of Algorithms
Prerequisite: 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject).

Techniques for the design and performance analysis of algorithms for a number of classes of problems. Analysis of algorithms: order notation, recurrence equations, worst case and expected order statistics. Design of efficient algorithms: recursion, divide and conquer, balancing; backtracking algorithms, branch and bound, dynamic programming; set manipulation problems; fast search algorithms, balanced optimal and multihop trees; graph representations and algorithms; pattern matching algorithms. NP — complete problems. Design and specification of programs: modularization, interface design, introduction to formal specification techniques.

6.643 Compiling Techniques and Programming Languages
Prerequisite: 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject). **Excluded:** 6.672.

1. Language description: phrase structure grammars, Chromsky classifications, context-free grammars, finite state grammars, Backus Naur Form, syntax graphs, LL(k), LR(k), LAL(k). 2. Lexical analysis:

6.646 Computer Applications

Prerequisites: 6.620 or 6.021D or 6.621 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for these subjects), or 6.600 (CR), one of 10.311A, 10.321A, 10.301, 10.331, 45.101 or equivalent. Excluded: 6.622.

The use of computers for solving problems with a substantial mathematical and operational research content: includes use of some standard software packages. Topics selected from: discrete event simulation; a simulation language; pseudo random number generation; simple queueing theory, applications of mathematical programming; dynamic programming; statistical calculations; critical path methods; computer graphics, artificial intelligence.

6.647 Business Information Systems

Introduction to accounting systems — general ledger, debtors and creditors; models of business information systems; integrated business systems. System specification, system analysis, system design and implementation; testing and debugging. Managing a project team, project control. The COBOL programming language. File organization and design; sequential, indexed sequential, random, inverted, B-tree file organizations; data dictionaries, program generators, automatic system generators. A major project, written in COBOL, is undertaken as a team exercise.

6.649 Computing Practice

Prerequisite: 6.641 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable for this subject). Co-requisites: 6.633 or 6.643 or 6.647.

Not offered in 1986.

Can only be counted with at least 3 other Level III Computer Science units.

For students majoring in Computer Science who seek a programming career in government or commercial industry. Topics, related to current computing practice, include: Comparative study of computer hardware in current popular use; Comparative study of the 'popular' programming languages, eg COBOL, RPG, BASIC, FORTRAN, PL/I, APL. Job control languages. Data Preparation procedures. Keyboard entry. Verification. Word processing; report preparation; documentation. Social implications of computing. Professional responsibilities and ethics. Project management; software engineering; psychology of computer programming.

Mathematics

Note: When a unit is listed as a prerequisite or co-requisite, the appropriate higher unit may be substituted.

Many units in the School of Mathematics are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered grades higher than Credit are only awarded in the ordinary level in exceptional circumstances.

Students should note that all of the Mathematics honours programs require them to take most of their Mathematics units at higher level. However, students should not think that the higher level units are intended only for those in honours programs. Any student with the ability to undertake higher units benefits from so doing.

First Year Mathematics

10.001 Mathematics 1. This is the standard subject and is generally selected by the majority of students in the Faculties of Science, Biological Sciences, Engineering and Applied Science who intend to pursue further studies in mathematics, computer science, physics, chemistry or engineering.

10.011 Higher Mathematics 1 (day course only). This subject has the same purpose as 10.001, but is aimed at the more mathematically able students, including those who may wish to take an honours degree in mathematics. It covers all the material in 10.001, plus other topics, at greater depth and sophistication. It is intended for students who have obtained high marks in the 3 unit mathematics course of the Higher School Certificate as well as for those who have taken the 4 unit course.

General Mathematics

This is a combination of the single session units 10.021B and 10.021C and provides for students who do not intend studying mathematics beyond first year but whose other studies require some knowledge of basic mathematical ideas and techniques. It is particularly designed to meet the needs of such students in Biological Sciences, Optometry, Applied Psychology and Wool and Pastoral Sciences. However, students who select this subject should weigh seriously the implications of their choice because no further mathematical units are normally available. A student with meritorious performance in 10.021C may be permitted to proceed to a certain limited number of second year subjects intended for biologists and chemical engineers. The single unit 10.021B is also available to students seeking a prerequisite for 10.001.

Mathematics as a Subsidiary Subject

The School also provides the sequence of two units 10.031 and 10.032 at the second and third levels respectively, for students in the Science and Mathematics Course and the Faculty of Science who are mainly interested in the chemical and biological sciences. These courses offer an introduction to mathematical techniques for scientists and engineers.

There is also the Level II unit in Statistics, 10.331, which provides an introduction to statistical procedures commonly used in Science, and which also leads to the Level III units 10.3321 Regression Analysis and Experimental Design, 10.3322 Applied Stochastic Processes and, with a Credit Pass, to 10.312B Experimental Design (Applications) and Sampling.

For both the above Level II units the entry qualification is a pass in 10.001 Mathematics 1, but in appropriate cases students who have passed in 10.021C General Mathematics 1C at a satisfactory level may be given permission to enrol.
10.001 Mathematics 1

Prerequisite: 10.001 Mathematics or 2 unit Mathematics or 4 unit Mathematics or 10.021B.

Excluded: 10.011, 10.021B, 10.021C.

This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.011 Higher Mathematics 1

Prerequisite: 3 unit Mathematics or 4 unit Mathematics

Excluded: 10.001, 10.021B, 10.021C.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.

10.021B General Mathematics 1B

Prerequisite: 2 unit Mathematics* or 3 unit Mathematics or 4 unit Mathematics or 10.021B.

Excluded: 10.011, 10.001.

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the Binomial Theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra.

10.021C General Mathematics 1C

Prerequisite: 10.021B. Excluded: 10.001, 10.011.

Techniques for integration, improper integrals; Taylor's Theorem; first order differential equations and applications; introduction to multivariable calculus; conics; finite sets; probability; vectors, matrices and linear equations.

10.031 Mathematics

Prerequisite: 10.001 or 10.011 or 10.021C (CR).

Note A: A unit, together with 10.032, which is available to Faculty of Science students as one of a sequence of two units constituting a terminating service course in mathematics. As such it is mutually exclusive to any other Level II or Level III unit in Pure and/or Applied Mathematics and/or Theoretical Mechanics except that 10.412A may be taken with 10.031 and 10.032.

Note B: Mathematics 10.031 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics or Applied Mathematics are taken, 10.031 Mathematics will not be counted.

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods.

10.032 Mathematics

Prerequisite: 10.031.

Note A: As for Note A in 10.031 Mathematics.

Note B: Mathematics 10.032 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics, Applied Mathematics or Theoretical Mechanics are taken, 10.032 Mathematics will not be counted.

Vector Calculus; special functions; convolution theorem and applications; complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.

10.081 Mathematics 1X

Co-requisites: 10.001 or 10.011.

Elementary logic, truth tables, finite structures, recurrence relations, combinatorics. Use of mathematics for real-world problems (mathematical modeling); practical applications of calculus to topics such as population dynamics.

10.612 Mathematical Software

Prerequisites: 6.621, 10.111A, 10.2112 (or equivalent).

10.111A Pure Mathematics 2 —
Linear Algebra F L1½T1
Prerequisite: 10.001 or 10.011. Excluded: 10.121A.

10.113 Pure Mathematics 2 —
Multivariable Calculus S1 or S2 L1½T1
Prerequisite: 10.001 or 10.011. Excluded: 10.1213.

Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

10.114 Pure Mathematics 2 —
Complex Analysis S1 or S2 L1½T1
Prerequisite: 10.001 or 10.011. Excluded: 10.1214.

Analytic functions, Taylor and Laurent series, integrals. Cauchy's Theorem, residues, evaluation of certain real integrals.

10.115 Pure Mathematics 2 —
Finite Mathematics A S1 L1½T½
Prerequisite: 10.001.

Positional number systems, floating-point arithmetic, rational arithmetic, congruences, Euclid’s algorithm, continued fractions, Chinese remainder theorem, Fermat’s theorem, applications to computer arithmetic. Polynomial arithmetic, division algorithm, factorization, interpolation, finite field. Codes, error-correcting codes, public-key cryptography.

10.116 Pure Mathematics 2 —
Finite Mathematics B S2 L1½T½
Prerequisite: 10.115 (or any other Year 2 Mathematics half-unit).

Introduction to combinatorial computing, recurrence relations, examples of divide and conquer strategies, backtrack and branch and bound algorithms. Finite Fourier transforms, roots of unity, convolutions, applications to fast multiplication and the analysis of pseudo-random numbers. Boolean algebra, switching circuits.

10.121A Higher Pure Mathematics 2 —
Algebra F L2T½
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.111A, 10.1111.

10.1213 Higher Pure Mathematics 2 —
Multivariable Calculus S1 L2T½
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.1113.

As for 10.1113 Pure Mathematics 2 — Multivariable Calculus, but in greater depth.

10.1214 Higher Pure Mathematics 2 —
Complex Analysis S2 L2T½
Prerequisite: 10.1213. Excluded: 10.1114.

As for 10.1114 Pure Mathematics 2 — Complex Analysis, but in greater depth.

10.1111 Pure Mathematics 3 —
Group Theory S1 L1½T½
Prerequisite: 10.001. Co-requisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112. Excluded: 10.121A.

Mathematical systems, groups, determination of small groups, homomorphisms and normal subgroups.

10.1112 Pure Mathematics 3 —
Geometry S2 L1½T½

Elementary concepts of Euclidean, affine and projective geometries.

10.1121 Pure Mathematics 3 —
Number Theory SS L1½T½
Prerequisites: ***. Excluded: 10.1421, 10.121C.

Euclidean algorithm, congruences, sums of squares, diophantine equations.

10.1123 Pure Mathematics 3 —
Logic and Computability SS L1½T½
Prerequisites: ***.

The propositional calculus — its completeness and consistency; Turing machines; unsolvable problems; computability and Church’s thesis; Godel’s incompleteness theorems.

10.1124 Pure Mathematics 3 —
Combinatorial Topology SS L1½T½
Prerequisites: ***.

Elementary combinatorial topology of surfaces.

10.1125 Pure Mathematics 3 —
Ordinary Differential Equations S1 L1½T½
Prerequisites: 10.111A ***. Excluded: 10.1425, 10.122E.

Systems of ordinary differential equations; variations of constants formula; stability; Poincaré space; Lyapunov’s direct method.
10.1126 Pure Mathematics 3 — Partial Differential Equations S1 L1½T½

System of partial differential equations; characteristic surfaces; classifications; Cauchy problem; Dirichlet and Neumann problems; the maximum principle; Poisson’s formula; conformal mapping.

10.1127 Pure Mathematics 3 — History of Mathematics S2 L1½T½

Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112.

Topics from the History of Mathematics, with emphasis on the development of those ideas and techniques used in undergraduate courses. Students are expected to read widely and to present written material based on their readings.

10.1128 Pure Mathematics 3 — Foundations of Calculus S1 L1½T½

Prerequisites: **. Excluded: 10.122B.

10.1521 Pure Mathematics 3 — Combinatorics and its Applications SS L1½T½

Prerequisites: **.

Generating functions, their properties and applications to partitions and recurrence relations. Branching processes, trees and the analysis of their paths, the analysis of algorithms and the Galton-Watson process. Coding theory and other design problems, Latin squares, block designs and error-correcting codes.

10.1522 Pure Mathematics 3 — Differential Geometry SS L1½T½

Prerequisites: 10.1113. Co-requisites: **. Excluded: 10.1325, 10.112C, 10.122C.

Curves and surfaces in space. Gaussian curvature, Gauss theorem, Gauss Bonnet theorem.

10.1523 Pure Mathematics 3 — Functional Analysis and Applications S1 or S2 L1½T½

Prerequisites: 10.111A, 10.2112. Excluded: 10.122B.

** Students are not normally permitted to attempt a Level III Pure Mathematics unit unless they have completed at least two Level II units from 10.111A, 10.1113, 10.1114, 10.2111 and 10.2112.

10.122B Higher Pure Mathematics 3 — Real Analysis and Functional Analysis FL1½T½

Prerequisites: 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN). Excluded: 10.1128.

The limit processes of analysis; introduction to Lebesgue integration; introduction to metric spaces. Hilbert spaces; linear operators; Fourier series.

10.1321 Higher Pure Mathematics 3 — Rings and Fields S1 L1½T½

Prerequisites: 10.121A or 10.111A (DN).

Rings; integral domains; factorization theory. Fields; algebraic and transcendental extensions. Introduction to algebraic number theory; quadratic reciprocity.

10.1322 Higher Pure Mathematics 3 — Galois Theory S2L1½T½

Co-requisite: 10.1321.

Galois fields. Galois groups. Solution of equations by radicals. Further algebraic number theory.

** See footnote in previous column.

10.1323 Higher Pure Mathematics 3 — Complex Analysis S1 L1½T½

Prerequisites: 10.1214 or 10.1114 (DN). Co-requisites: 10.122B (strongly recommended).

10.1324 Higher Pure Mathematics 3 — Integration and Fourier Analysis S2 L1½T½

Co-requisite: 10.122B.

Lebesgue integration; measure theory. Fourier transforms.

10.1325 Higher Pure Mathematics 3 — Differential Geometry S1 L1½T½

Prerequisites: 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN). Excluded: 10.1522.

Curves and surfaces in space; classification of surfaces. Curvature; geodesics.

10.1326 Higher Pure Mathematics 3 — Calculus on Manifolds S2 L1½T½

Co-requisite: 10.1325.

Manifolds; vector fields; flows. Introduction to Morse theory. Differential forms; Stokes’ theorem; the Gauss-Bonnet theorem.
10.1421 Higher Pure Mathematics 3 —
Number Theory

Excluded: 10.1121.

Prime numbers; number theoretic functions; Dirichlet series; partitions. Continued fractions; diophantine approximation; p-adic numbers.

10.1422 Higher Pure Mathematics 3 —
Groups and Representations

Prerequisites: 10.121A or 10.111A (DN) and 10.1111 (DN).

Abelian groups; composition series; nilpotent groups; soluble groups. Representations and characters of finite groups; induced representations.

10.1423 Higher Pure Mathematics 3 —
Topology

Prerequisites: 10.1213 or 10.1113 (DN).

Naive set theory; the axiom of choice. Metric and topological spaces; compactness.

10.1424 Higher Pure Mathematics 3 —
Geometry

Prerequisites: 10.121A or 10.111A (DN) and 10.1111 (DN). Excluded: 10.1125.

Axioms for a geometry; affine geometry, Desargues' theorem; projective geometry.

10.1425 Higher Pure Mathematics 3 —
Ordinary Differential Equations

Existence and uniqueness theorems. Linearization. Qualitative theory of autonomous systems.

10.1426 Higher Pure Mathematics 3 —
Partial Differential Equations

Classification, characteristics. Cauchy problem; Dirichlet and Neumann problems. Distributions.

10.123 Pure Mathematics 4

An honours program consisting of the preparation of an undergraduate thesis together with advanced lectures on topics chosen from fields of current interest in Pure Mathematics. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

Applied Mathematics

10.2111 Applied Mathematics 2 —
Vector Calculus

Prerequisite: 10.001 or 10.011. Excluded: 10.2211, 4.813.

Vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss' and Stokes' theorems. Curvilinear co-ordinates.

10.2112 Applied Mathematics 2 —
Mathematical Methods for Differential Equations

Prerequisites: 10.001 or 10.011. Excluded: 10.2212, 4.813.

Series solution or ordinary differential equations; numerical methods. Partial differential equations: separation of variables. Fourier series, Bessel functions.

10.2113 Applied Mathematics 2 —
Introduction to Linear Programming

Prerequisite: 10.001. Excluded: 10.2213.

Linear programming: the standard problem, basic solutions, fundamental theorem, simplex tableau, initial solution, unbounded and multiple solutions, degeneracy, duality; the dual simplex method, post optimal analysis.

10.2115 Applied Mathematics 2 —
Discrete-Time Systems

Prerequisite: 10.001. Excluded: 10.2215.

Applications selected from problems of importance in engineering, biological, social, management, and economic systems.

10.211E Applied Mathematics 2 —
Mathematical Computing

Prerequisite: 10.001.

The development of efficient and reliable software for mathematical applications using FORTRAN 77. Topics covered will include: data types, input/output, structured programming, communication between sub-programs, file manipulation, portability, efficiency, accuracy, documentation, de-bugging. Examples will be chosen from the following areas: non-linear equations in one and two variables, extrapolation procedures, numerical quadrature, systems of linear equations, difference equations, ordinary differential equations.
10.2211 Higher Applied Mathematics 2 —
Vector Analysis
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2111.
As for 10.2111 but in greater depth.

10.2212 Higher Applied Mathematics 2 —
Mathematical Methods for
Differential Equations
Prerequisite: 10.2211. Excluded: 10.2112.
As for 10.2112 but in greater depth.

10.2213 Higher Applied Mathematics 2 —
Introduction to Linear Programming
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2113.
As for 10.2113 but in greater depth.

10.2214 Higher Applied Mathematics 2 —
Discrete-Time Systems
Prerequisite: 10.011 or 10.001 (DN). Excluded: 10.2115.
As for 10.2115, but in greater depth and with additional material on
positive linear systems and Markov chains.

10.212A Applied Mathematics 3 —
Numerical Analysis
Prerequisites: 10.2112, 10.111A. Excluded: 10.222A.
Theory of Interpolation and approximation, using polynomials, splines,
rational functions and Fourier methods. Numerical quadrature
including Gaussian and Clenshaw-Curtis rules, adaptive methods
and methods for singular and oscillatory integrands. Sets of linear
equations and their numerical solution, matrix eigenvalue problems.
Numerical solution of ordinary and partial differential equations,
boundary value problems, introduction to finite element methods.

10.212B Applied Mathematics 3 —
Optimization Methods
Prerequisites: 10.1113 (at least 1 further unit chosen from the follow-
ing: 10.111A, 10.2114, 10.2111, 10.2212, 10.2113). Excluded: 10.222B.
Theory of unconstrained and constrained multivariable optimization;
including necessary and sufficient optimality conditions, stationary
points, Lagrange multipliers, Kuhn-Tucker conditions, convexity and
duality. Numerical methods: one dimensional minimization methods,
unconstrained multivariable methods (including steepest descent,
Newton, quasi-Newton and conjugate gradient methods) and con-
strained multi-variable methods (including line search programming,
quadratic programming and penalty methods). A selection of special
methods from branch and bound, geometric and separable program-
mng.

10.212M Applied Mathematics 3 —
Optimal Control Theory
Prerequisites: 10.1113 and 10.1114, 10.111A. Excluded: 10.222M.
Introduction to dynamical systems and their control. Open and closed
loop control systems. Mathematical description of dynamical sys-
tems. Transform methods for linear systems. Stability, feedback and
control. State space, observability and controllability. Optimal control.
Dynamic programming and the Bellman equation with applications.
The Pontryagin maximum principle. Applications. Calculus of varia-
tions.

10.222A Higher Applied Mathematics 3 —
Numerical Analysis
Prerequisites: 10.2212 or 10.2112 (DN), 10.121A or 10.111A (DN).
Theory of Interpolation and approximation, using polynomials, spli-
nes, rational functions and Fourier methods. Numerical quadrature
including Gaussian and Clenshaw-Curtis rules, adaptive methods
and methods for singular and oscillatory integrands. Sets of linear
equations and their numerical solution, matrix eigenvalue problems.
Numerical solution of ordinary and partial differential equations,
boundary value problems, introduction to finite element methods.

10.222B Higher Applied Mathematics 3 —
Numerical Analysis
Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN),
10.1214 or 10.1114 (DN), 1.001. Excluded: 1.033, 1.0333.
Electrostatics; Poisson and Laplace equations, potential theory,
boundary value problems, spherical harmonics, Green's functions,
dielectrics. Magnetic fields and forces; applications, magnetohydro-
dynamics. Electromagnetic fields, electromagnetic potentials, waves
and radiation, vector and scalar wave equations, spherical waves,
aplications. Lorentz transformation, relativistic electrodynamics.

10.222C Higher Applied Mathematics 3 —
Maxwell's Equations and Special
Relativity
Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN),
10.2114 or 10.1114 (DN). Excluded: 1.013, 1.0133.
Electrostatics; Poisson and Laplace equations, potential theory,
boundary value problems, spherical harmonics, Green's functions,
dielectrics. Magnetic fields and forces; applications, magnetohydro-
dynamics. Electromagnetic fields, electromagnetic potentials, waves
and radiation, vector and scalar wave equations, spherical waves,
aplications. Lorentz transformation, relativistic electrodynamics.

10.222D Higher Applied Mathematics 3 —
Quantum Mechanics
Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN),
10.1214 or 10.1114 (DN). Excluded: 1.013, 1.0133.
Review of physical basis for quantum mechanics, simple harmonic
oscillator, hydrogen atom. General formalism, angular momentum,
perturbation theory and other approximation methods. Scattering
problems.

10.222E Higher Applied Mathematics 3 —
Quantum Mechanics
Prerequisites: 10.1213 or 10.1113 (DN) (at least 1½ further units
chosen from the following: 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN), 10.1214 or
10.1114 (DN)). Excluded: 10.222E.
Review of physical basis for quantum mechanics, simple harmonic
oscillator, hydrogen atom. General formalism, angular momentum,
perturbation theory and other approximation methods. Scattering
problems.

10.222F Higher Applied Mathematics 3 —
Quantum Mechanics
Prerequisites: 10.1213 or 10.1113 (DN) (at least 1½ further units
chosen from the following: 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN), 10.1214 or
10.1114 (DN)). Excluded: 10.222E.
Review of physical basis for quantum mechanics, simple harmonic
oscillator, hydrogen atom. General formalism, angular momentum,
perturbation theory and other approximation methods. Scattering
problems.

10.222G Higher Applied Mathematics 3 —
Quantum Mechanics
Prerequisites: 10.1213 or 10.1113 (DN) (at least 1½ further units
chosen from the following: 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN), 10.1214 or
10.1114 (DN)). Excluded: 10.222E.
Review of physical basis for quantum mechanics, simple harmonic
oscillator, hydrogen atom. General formalism, angular momentum,
perturbation theory and other approximation methods. Scattering
problems.

10.222H Higher Applied Mathematics 3 —
Quantum Mechanics
Prerequisites: 10.1213 or 10.1113 (DN) (at least 1½ further units
chosen from the following: 10.121A or 10.111A (DN), 10.1213 or 10.1113 (DN), 10.1214 or
10.1114 (DN)). Excluded: 10.222E.
Review of physical basis for quantum mechanics, simple harmonic
oscillator, hydrogen atom. General formalism, angular momentum,
perturbation theory and other approximation methods. Scattering
problems.
10.222M Higher Applied Mathematics 3 — Optimal Control Theory
Prerequisites: 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN), 10.121A or 10.111A (DN). Excluded: 10.212M.

As for 10.212M but in greater depth and including: Liapunov functions and the stability of non-linear systems. Further optimal control theory. Stochastic and Adaptive Control.

1u.223 Applied Mathematics 4
An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced optimization and control theory, functional analysis and applications, numerical analysis, mathematics of economic models and of economic prediction, stability theory of differential and differential-difference equations, stochastic processes, statistical mechanics, quantum physics, astro-physics. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

10.233 Applied Mathematics 4 (Short Course)
6 units consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced optimization and control theory, functional analysis and applications, mathematics of economic models and of economic prediction, stability theory of differential and differential-difference equations, stochastic processes. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

Statistics

10.311A Theory of Statistics 2 — Probability and Random Variables
Prerequisite: 10.001 or 10.011 or 10.021(CR). Excluded: 10.321A, 10.301, 10.331, 45.101.
Probability, random variables, standard discrete and continuous distributions, multivariate distributions, transformations, random sampling, sampling distributions, limit theorems.

10.311B Theory of Statistics 2 — Basic Inference
Prerequisite: 10.311A. Excluded: 10.321B, 10.301, 10.331, 45.101.
Point estimation: general theory, estimation by moments, maximum likelihood, interval estimation with general theory and application, hypothesis testing using Neyman-Pearson Theory, linear regression and prediction, analysis of variance.

Prerequisite: 10.001 or 10.011. Excluded: 10.311A, 10.301, 10.331, 45.101.
As for 10.311A but in greater depth.

10.321B Higher Theory of Statistics 2 — Basic Inference
Prerequisite: 10.321A. Excluded: 10.311B, 10.301, 10.331, 45.101.
As for 10.311B but in greater depth.

10.3111 Theory of Statistics 2 — Statistical Computing and Simulation
Prerequisite: 10.001 or 10.011 or 10.021(CR). Co-requisite: 10.311A.
Introduction to APL, random variables, univariate transformation, simulation of random variables, APL programming, integer value random variables, random walks — theory and simulation, introduction to Markov chains.

10.3112 Theory of Statistics 2 — Nonparametric Statistical Inference
Prerequisite: 10.321A. Co-requisite: 10.321B.
Order statistics, exact and approximate distributions, multinomial distributions, goodness of fit, contingency tables, one-sample and two-sample estimation and inference problems.

10.3212 Higher Theory of Statistics 2 — Nonparametric Statistical Inference
Prerequisite: 10.321A. Co-requisite: 10.321B.
As for 10.3112 but in greater depth.

10.312A Theory of Statistics 3 — Stochastic Processes
Prerequisites: 10.311A, 10.111A, 10.1113. Excluded: 10.322A.

10.312C Theory of Statistics 3 — Linear Models
Prerequisites: 10.311B, 10.111A, 10.1113. Excluded: 10.322C.
10.312F Theory of Statistics 3 — Statistical Computation S2 L2T2
Prerequisites: 10.311B or 10.312B, 10.3111 or 10.3211.

Array and sequential processing in APL. Standard statistical operations and their efficient coding. Simulation of random variables and stochastic processes. Efficient coding of survey data. Modular package construction, and the use of packages (e.g., STATAPL, IDAP, INSTAPAK, SPSS, GLIM, GENSTAT, Minitab, SAS, BMD). A project, to construct a small package consistent with general specifications and with safeguards against common errors.

10.3121 Theory of Statistics 3 — Sample Survey Theory S1 L1½T½
Prerequisite: 10.311B. Excluded: 10.3221.

Finite population sampling theory illustrated by mean estimation; simple random, stratified, cluster, systematic, multistage and ratio sampling, sampling proportional to size.

10.3122 Theory of Statistics 3 — Design and Analysis of Experiments S2 L1½T½
Prerequisites: 10.311B, 10.312C. Excluded: 10.3222.

10.3123 Theory of Statistics 3 — Statistical Inference S1 or S2 L1½T½
Prerequisite: 10.311B. Excluded: 10.3223.

Uniformly minimum variance unbiased estimation, Cramer-Rao inequality, Lehman-Scheffe theorem. Monotone likelihood ratio distributions and uniformly most powerful unbiased tests. Generalized likelihood ratio test, exact test and large samples tests. Bayesian point estimation, interval estimation and hypothesis testing.

10.3124 Theory of Statistics — Nonparametric Methods S1 or S2 L1½T½

10.3321 Regression Analysis and Experimental Design S1 L1½T½
Prerequisite: 10.331 or 10.311B or approved equivalent. Excluded: 10.3128 or 10.322B.

10.3322 Applied Stochastic Processes S2 L1½T½
Prerequisite: 10.331 or 10.311A or 10.321A, or approved equivalent. Excluded: 10.312A, 10.322A.

10.322A Higher Theory of Statistics 3 — Stochastic Processes S1 L3½T1
Prerequisites: 10.321A, 10.111A, 10.1113. Excluded: 10.312A.

As for 10.312A but in greater depth.

10.322C Higher Theory of Statistics 3 — Linear Models S1 L3½T1
Prerequisites: 10.321B, 10.111A, 10.1113. Excluded: 10.312C.

As for 10.312C but in greater depth.

10.322D Higher Theory of Statistics 3 — Probability Theory S2 L3T1
Prerequisites: 10.321A, 10.111A, 10.1113.

10.3221 Higher Theory of Statistics 3 — Sample Survey Theory S1 L1½T½
Prerequisite: 10.321B. Excluded: 10.3121.

As for 10.3121 but in greater depth.

10.3222 Higher Theory of Statistics 3 — Design and Analysis of Experiments S2 L1½T½
Prerequisites: 10.321B, 10.322C. Excluded: 10.3122.

As for 10.3122 but in greater depth.

10.3223 Higher Theory of Statistics 3 — Statistical Inference S2 L1½T½
Prerequisite: 10.321B. Excluded: 10.3123.

As for 10.3123 but in greater depth.

10.3224 Higher Theory of Statistics 3 — Nonparametric Methods S1 or S2 L1½T½
Prerequisites: 10.321B, 10.322C. Excluded: 10.3122.

As for 10.3124 but in greater depth.

10.323 Theory of Statistics 4

10.301 Statistics SA
Probability, random variables, independence, binomial, Poisson and normal distributions, transformations to normality, estimation of mean and variance, confidence intervals, tests of hypotheses, contingency tables, two sample tests of location, simple and multiple linear regression, analysis of variance for simple models.

10.331 Statistics SS
An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard elementary univariate distributions: binomial, Poisson and normal; an introduction to multivariate distributions. Standard sampling distributions, including those of χ^2, t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models, involving multiple comparisons and estimation of variance components.

Theoretical and Applied Mechanics

10.4111 Theoretical Mechanics 2 — Introduction to Theoretical Mechanics
Prerequisites: 10.001, 1.001 or 5.006. Co-requisites: 10.2111, 10.2112, 10.1113. Excluded: 1.992, 1.002, 10.411B, 10.421B, 10.4111.

10.4112 Theoretical Mechanics 2 — Introduction to Hydrodynamics
Equations of continuity and motion. Bernoulli’s equation for an incompressible liquid. Kelvin’s theorem. Some irrotational flow problems in one, two and three dimensions.

10.4211 Higher Theoretical Mechanics 2 — Introduction to Theoretical Mechanics
Prerequisites: 10.011 or 10.001 (DN), 1.001 or 5.006. Co-requisites: 10.2211, 10.2212, 10.1113. Excluded: 1.992, 1.002, 10.411B, 10.421B, 10.4111.
As for 10.4111 but in greater depth.

10.4212 Higher Theoretical Mechanics 2 — Introduction to Hydrodynamics
Prerequisites: 10.011 or 10.001 (DN), 1.001 or 5.006. Co-requisites: 10.2211, 10.2212, 10.1113. Excluded: 1.992, 1.002, 10.411B, 10.421B, 10.4111.
As for 10.4112 but with additional topics chosen from aerodynamics, water waves and sound waves.

10.412A Theoretical Mechanics 3 — Dynamical and Physical Oceanography
Prerequisites: 10.2111 and 10.2112 or 10.031, 1.001. It is recommended that one of the following be taken concurrently: 10.4112 or 1.3533.

10.412B Theoretical Mechanics 3 — Continuum Mechanics
Prerequisites: 10.2111, 10.2112, 10.111A, 10.1113, 10.1114. Co-requisites: 10.411A or 1.012 or 1.913. Excluded: 10.422B.

10.412D Theoretical Mechanics 3 — Mathematical Methods
Prerequisites: 10.2111, 10.2112, 10.111A, 10.1113, 10.1114. Excluded: 10.422D, 10.4331.

10.4129 Theoretical Mechanics 3 — Applied Time Series Analysis
Prerequisites: 10.2112 or 10.031 or 10.022. Co-requisites: 10.331 or equivalent; 10.4331 or 10.412D or equivalent.
Classification of random processes, sampling for discrete analysis, Fourier analysis, spectra, filtering. Cross-spectra, estimation and hypothesis testing, confidence limits, application to experiment planning. Course emphasis is on computer analysis of actual data.

10.422A Higher Theoretical Mechanics 3 — Fluid Dynamics
Prerequisite: 10.421A or 10.411A (DN). Co-requisite: 10.422B.
Compressible flow, viscous flow, boundary layers, hydrodynamic stability, simple wave motions in fluids.
10.422B Higher Theoretical Mechanics 3 —
Mechanics of Solids S1 L3T1
Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112, 10.421B or 10.411B (DN) or 1.012. Excluded: 10.412B.

As for 10.412B Theoretical Mechanics 3 — Continuum Mechanics but in greater depth.

10.422D Higher Theoretical Mechanics 3 —
Mathematical Methods FL1/2T1/2
Prerequisites: 10.2211 or 10.2111 (DN), 10.2212 or 10.2112 (DN), 10.1213 or 10.1113 (DN), 10.1214 or 10.1114 (DN). Excluded: 10.412D.

10.4331 Theoretical Mechanics 3 —
Transform Methods S1 L11/2T1/2
Prerequisites: 10.1113, 10.1114, 10.2112 or equivalent. Excluded: 10.0331, 10.033, 10.412D and 10.422D.

10.423 Theoretical Mechanics 4
An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses on topics chosen from fluid mechanics, solid mechanics, planetary science and special mathematical and numerical techniques applied to partial differential equations. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools on topics such as optimal control theory, optimization theory, thermodynamics, numerical analysis or statistics.

Servicing Subjects
These are subjects taught within courses offered by other faculties.

For Further information regarding the following subjects see the Faculty of Applied Science and Engineering Handbooks.

10.022 Engineering Mathematics 2 F L2T2
Prerequisite: 10.001.
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.

10.331 Electrical Engineering Mathematics 3 —
Transform Methods S1 L111/2T1/2
Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112, 10.4212D, 10.422D and 10.4331.

10.032 Electrical Engineering Mathematics 3 —
Numerical Methods S2 L111/2T1/2
Prerequisites: 10.111A, 10.1113, 10.1114, 10.2111, 10.2112. Exclusions 10.212A, 10.222A.

10.341 Statistics SU FL111/2T1/2
Prerequisite: 10.001 or 10.011.
Introduction to probability theory, random variables and distribution functions, sampling distributions, including those of t, x^2 and F. Estimation procedures, including confidence interval estimation with an emphasis on least squares and surveying problems, and computer based exercises.

10.351 Statistics SM F L111/2
Prerequisite: 10.001 or 10.011.
For students in Aeronautical, Industrial and Mechanical Engineering and Naval Architecture as part of 5.071 Engineering Analysis or 5.072 Statistics/Computing.
Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, x^2 and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard test of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

10.361 Statistics SE F L111/2T1/2
Prerequisite: 10.001 or 10.011.
For students in the School of Electrical Engineering.
Introduction to probability theory, random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions, including those of x^2 and F. Estimation by moments and maximum likelihood; confidence interval estimation. The standard tests of significance based on the above distribution with a discussion of power where appropriate.
10.381 Statistics
S1 or S2 L1T1

Psychology

Psychology Level I Unit

12.100 Psychology 1
F L3T2
An introduction to the content and methods of psychology as a basic science, with emphasis on the biological and social bases of behaviour, relationship to the environment, and individual differences. Training in the methods of psychological enquiry, and in the use of elementary statistical procedures.

Psychology Level II Units

12.200 Research Methods 2
F L2T1
Prerequisite: 12.100. (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.)

General introduction to the design and analysis of experiments; hypothesis testing, estimation, power analysis; general treatment of simple univariate procedures; correlation and regression.

12.201 Biological Basis of Psychology 2
S2 L2T2
Prerequisite: 12.100. (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.)

Two strands: one emphasises basic biological structures and mechanisms, with particular emphasis on specific sensory systems (e.g. pain) and behaviour (e.g. aggression); the other strand emphasises structure and function of sensory systems, evaluates neurological concepts and models, and examines the sensory interaction of people with their environment.

12.202 Social and Cognitive Psychology 2
S1 L2T2
Prerequisite: 12.100. (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.)

Two strands: one provides a consideration of the content, methods and models of social psychology and evaluates effects of social factors on behaviour of individuals and groups; the other strand is concerned with cognitive behaviour of humans, particularly in relation to speech, pattern recognition, memory and thinking.

12.203 Psychology 2A
F L2T2

Available to Course 3430 students only.
Computing, assessment and introduction to clinical practice.

12.204 Human Relations 2
S1 L2T2
Prerequisite: 12.100. (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.)

Social and personality development of the individual; human relations in the family group. Interpersonal relationships and, in particular, the handling of anxiety, aggression and communication.

12.205 Individual Differences 2
S2 L2T2
Prerequisite: 12.100. (Pass Conceded (PC) awarded prior to Session 2, 1983 is not acceptable.)

Measurement and significance of individual differences in intellectual, motivational and personality functioning. Statistics, to cover the fundamentals of hypothesis testing.

Psychology Level III Units: Group A

12.300 Research Methods 3A
S1 L2T2
Prerequisite: 12.200.

Analysis of variance for single factor and multifactor designs. Test procedures for planned and post-hoc contrasts defined on parameters of fixed and mixed models. General principles of experimental design.

12.305 Learning and Behaviour 3
S1 or S2 L2T2
Prerequisites: 12.200 and 12.201.

The establishment and elimination of extended sequences of behaviour in complex environments. Implications of the theories and research for applied work.

Psychology Level III Units: Group B

12.301 Research Methods 3B
S2 L2T2
Prerequisites: 12.200 and 12.300.

Multivariate statistics and computing. Data analysis using the SPSS and PSY computer programs; their statistical basis.

12.304 Personality and Individual Differences 3
S1 L2T2
Prerequisites: 2 Psychology Level II subjects.

Personality dynamics and structure and differences in ability and intelligence.
12.310 Physiological Psychology 3
Prerequisites: 12.200 and 12.201.

12.311 Perception 3
Prerequisites: 12.200 and 12.201.
Studies of infant perception, conflict between vision and other senses, certain illusions, and of the perception of size and distance generally.

12.312 Language and Cognition 3
Stages involved in reception of stimulus information from environment, its analysis, storage, and transmission into responses. Stress on processing of language.

12.314 Motivation and Emotion 3
Prerequisites: 12.200 and 12.201.
An examination of contemporary research regarding 'drives,' 'incentives' and 'emotions' as determinants of animal and human action. Theoretical perspectives cover biological and social influences.

12.315 Theories of Associative Learning 3
Prerequisite: 12.305.
Contemporary theoretical approaches to instrumental and classical conditioning. Topics may include: traditional behaviour theories, information processing theory, cybernetic theory, and neurophysiological approaches.

12.316 Psychophysiology 3
Prerequisites: 12.200 and 12.201
The major theoretical, methodological, and applied issues in psychophysiology. Topics may include: arousal, attention, habituation, lie detection, clinical assessment, and biofeedback.

12.320 Social Psychology 3
Contemporary research areas in social psychology. Topics may include: the social basis of human interaction, interpersonal relationships, social perception and cognition, and interpersonal communication.

12.321 Developmental Psychology 3
The development of perception and the development of operational thought; the development of language and its relationship to the development of thought; and the development of reading.

12.322 Abnormal Psychology 3
Prerequisites: 12.200 and 12.201.
Descriptive psychopathology; symptomatology and diagnostic features of schizophrenia, organic brain syndromes, affective disorders, neurotic disorders, psychopathy, sexual aberrations, and addictions.

12.324 Experimental Psychopathology 3
Prerequisite: 12.322.
An examination of the aetiology and mechanisms of behavioural disorders in the light of experimental research and theory construction. Major topics include: aetiology and mechanisms of schizophrenia; affective disorders; psychophysiological disorders; anxiety, depression; driven behaviours.

12.325 Social Behaviour 3
Research and theory in applied social psychology. Topics may include the relation of the physical setting to behaviour, cross cultural studies, and race relations.

12.330 Psychological Assessment 3
Prerequisites: 12.200, and 1 other Psychology Level II subject. Excluded: 12.203.
Principles and techniques of psychological assessment. Types of tests and their application in selection and allocation procedures.

12.331 Counselling Psychology 3
Prerequisites: 2 Psychology Level II subjects.
Principles and techniques of counselling in a variety of contexts. Interviewing, group process and structure, and interpersonal relations.

12.332 Behavioural Change 3
Prerequisites: 12.200 and 12.201.
Not offered in 1986.

12.333 Ergonomics 3
Prerequisite: 12.200.
Aspects of human performance relevant to work design. The principles involved in designing the environment in general, and work in particular, to suit humans' capabilities.

12.334 Behaviour in Organizations 3
Prerequisites: 2 Psychology Level II subjects.
Theories and research methods for understanding behaviour in organizations and in the environment.
12.335 Behavioural Evaluation and Assessment 3 S2 L2T2
Prerequisite: 12.200.
Assessment and evaluation of individual behaviour and behavioural change. Problems of measurement and scale construction: objective versus subjective measures; self report, behavioural and psychophysiological measures. Interviewing and behavioural analysis; psychometric testing and case history taking.

12.340 Special Topic 3 S2 L2T2
Prerequisites: 12.300 and 12.305.
An occasional elective dealing with a special field of psychology.

Psychology Level IV Units

12.400 Psychology 4 (Thesis — Course 3430) F
Prerequisite: All requirements for Years 1-3 of the course.
Psychology 4 in the BSc(Psychol) degree course. A supervised research thesis and course work to be determined in consultation with the Head of School.

12.401 Psychology 4 (Course 3430) F
Prerequisite: All requirements for Years 1-3 of the course.
Psychology 4 in the BSc(Psychol) degree course. Course work and a supervised group research project to be determined in consultation with the Head of School.

12.403 Psychology 4 (Thesis — Course 3430) F
Prerequisites: 12.100, 12.200, 12.201, 12.202 and 8 Psychology Level III units, including 12.300 and 12.305 from Group A and 12.301 from Group B, with a weighted average of at least Credit, and at the discretion of the Head of School.
Psychology 4 in the Arts, and Science and Mathematics degree courses. A supervised research thesis and course work to be determined in consultation with the Head of School.

12.404 Psychology 4 F
Prerequisites: 12.100, 12.200, 12.201, 12.202 and 8 Psychology Level III units, including 12.300 and 12.305 from Group A, with a weighted average of at least Credit, and at the discretion of the Head of School.
Psychology 4 in the Arts, and Science and Mathematics degree courses. Course work and a supervised group research project to be determined in consultation with the Head of School.

Psychology Servicing Units
These are subjects taught within courses offered by other faculties.

For further information regarding the following unit see the Faculty of Commerce Handbook.

12.651 Psychology (Industrial Relations) F L2
Prerequisite: Nil.
Not offered in 1986.
Problems and limitations affecting social research in industry. Critical review of American research from Hawthorne to Herzberg and of British research from Tavistock and Trist to Emery in Australia. Conflict and organic theories of organization and related theories of motivation and morale. The use of library resources. Practice in the skills and discipline required to obtain and evaluate empirical evidence in this field. Recent developments under the headings of ‘participation’ and ‘democracy in industry’.
For further information regarding the following unit see the Faculty of Science section in this Handbook.

12.741 Psychology (Optometry) F L2
Prerequisite: 12.100.
Visual Perception: The nature and characteristics of visual perception. Topics to be discussed include: psychophysics, the organization of visual perception, the influence of context, and the effects of learning and motivation on perception. Throughout the course emphasis will be placed on an examination of relevant experimental data. Abnormal Psychology: The concepts of normality and abnormality, and an examination of the principal psychodynamic processes. Causes and symptoms of various mental disorders are introduced with some emphasis on the importance of these symptoms in optometrical practice.

Accountancy

14.501 Accounting and Financial Management 1A S1 or S2 L2T2½
Prerequisite: Nil.
The basic concepts of financial model building and information systems, including the double-entry recording system, the accounting cycle, income measurement and financial reporting, and an introduction to basic elements of auditing.

14.511 Accounting and Financial Management 1B S1 or S2 L2T2½
Prerequisite: 14.501.
Development of basic concepts introduced in 14.501 Accounting and Financial Management 1A, including corporate reporting, business finance, system design, elementary computer applications.
14.522 Accounting and Financial Management 2A

Prerequisites: 14.511 plus 2 unit Mathematics or 3 unit Mathematics or 4 unit Mathematics

HSC Exam Required

- 51-100
- 21-100
- 1-100

The design, production and use of accounting and other quantitative information in the planning and control of organizations, with particular reference to manufacturing activities.

14.542 Accounting and Financial Management 2B

Prerequisite: 14.511 plus HSC results as for 14.522.

Critical examination of concepts and problems in income measurement, asset valuation and financial reporting for various forms of business undertaking with particular reference to corporate organizations, including associated aspects of auditing and taxation and methods of accounting for changing prices.

14.563 Accounting and Financial Management 3A

Prerequisite: 14.542.

14.573 Accounting and Financial Management 3A (Honours)

Prerequisite: 14.542.

Includes 14.563 Accounting and Financial Management IIIA as well as additional and more advanced work in both accounting theory and in the financial management and accountability of corporate enterprises.

14.583 Accounting and Financial Management 3B

Prerequisite: 14.522.

Management Accounting: advanced treatment of management accounting theory and applications including statistical cost analysis, budgetary and strategic planning and decision models.

14.593 Accounting and Financial Management 3B (Honours)

Prerequisite: 14.522.

Includes 14.583 Accounting and Financial Management 3B, as well as more advanced work dealing with theoretical and research issues in management accounting.

14.602 Computer Information Systems 1

Prerequisites: 14.511 plus 15.411 or approved studies in computer science.

Information systems and the organization, architecture of typical commercial application systems, the systems lifecycle, the systems analysis/design task, tools and techniques of the systems analyst, documentation techniques, internal controls and interfacing with the edp auditor, file design concepts, logic and computer hardware, commercial computer programming.

14.603 Computer Information Systems 2

Systems design: physical design of business systems, specifications and updating of VSAM files, man-machine dialogue procedures, top-down structured design and evolutionary design methodologies. Introduction to communications networks. Operating systems concepts: processor, storage, device and process management, segmentation and paging systems. COBOL programming.

14.605 Information Systems Implementation

Prerequisite: 14.603.

Supervised implementation of an information systems project in a commercial programming language. Advanced program design and structured techniques, interface with systems software at application implementation level, comparison of a range of programming languages, test data specification, implementation procedures.

14.607 Distributed Computer Systems

Prerequisite: 14.603.

Advanced data communication concepts, computer networks, reference to international standards and common industry communications software packages; transaction processing software and interface with data management systems; local networks; interaction between text processing and data processing; a case study based on a microcomputer network.

14.608 Database Systems

Prerequisite: 14.603 or 14.606.

Advanced data storage concepts, including detailed study of alternative approaches to database management systems. Management information needs and database specification in a commercial environment. Detailed evaluation, with project work, of a microcomputer based database management system. Information retrieval concepts, relational query-systems, security, control and audit considerations.

14.611 Information Systems Development

Prerequisite: 14.603 and approval by the Head of the Department of Information Systems.

A systems analysis and design case study. Information systems project management, data processing administration, on-line systems, design techniques, internal controls.
14.613 Business Finance 2
Prerequisite: Nil.

The essential aspects of financial decision-making in business including: factors influencing capital expenditure decisions; alternative approaches to valuation; factors affecting the formulation of the capital structure; influence of the capital market environment.

14.614 Business Finance 3A
Prerequisite: 14.613.

Financial decision making within the framework of capital market theory. Includes diversification, risk and return, determinants of risk, efficient market hypothesis with emphasis on Australian evidence, capitalization changes and performance measures, takeovers and mergers.

14.615 Business Finance 3B
Prerequisite: 14.614.

Theory and analytical techniques relevant to investment analysis and management. Includes analysis and valuation of securities, properties of accounting numbers, portfolio theory and asset pricing models, capital asset returns and information, bond ratings and yields and financial distress predictions.

14.774 Legal Environment of Commerce
Prerequisite:

<table>
<thead>
<tr>
<th>Subject</th>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit English (General)</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>2 unit English</td>
<td>21-100</td>
<td></td>
</tr>
<tr>
<td>3 unit English</td>
<td>11-100</td>
<td></td>
</tr>
</tbody>
</table>

The Australian legal system and areas of substantive law relevant to commerce including contract, business organization, employment, commercial arbitration, advertising, trade regulation, civil compensation, discrimination.

14.853 Advanced Systems Management

As for 14.953G. See Graduate Study: Subject Descriptions.

14.857 Operations Research for Management 1

As for 14.957G. See Graduate Study: Subject Descriptions.

14.886 Research Topics in Information Systems 1

Entry approval by Head of Department of Information Systems.

As for 14.986G. See Graduate Study: Subject Descriptions.

14.887 Research Topics in Information Systems 2

Entry approval by Head of Department of Information Systems.

As for 14.987G. See Graduate Study: Subject Descriptions.

14.691 Decision Support Systems

Prerequisite: 14.603

As for 14.991G. See Graduate Study: Subject Descriptions.

Economics

15.001 Microeconomics 1
Prerequisites: HSC Exam Percentile Range Required

<table>
<thead>
<tr>
<th>Subject</th>
<th>HSC Exam</th>
<th>Percentile Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit English (General)</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>2 unit English</td>
<td>21-100</td>
<td></td>
</tr>
<tr>
<td>3 unit English</td>
<td>11-100</td>
<td></td>
</tr>
</tbody>
</table>

15.002 Microeconomics 2

Prerequisites: 15.011 plus 15.401 or 15.411 or equivalent.

Arts prerequisite: 15.011. Co-requisites: 15.401 or 15.411 or equivalent.

Excluded: 15.012, 15.072.

Revealed preference theory of demand, index numbers and aggregation; externalities, time preference, consumer surplus and compensation concepts. Short and long-run costs, returns to scale, producer surplus and quasi-rents. Monopolistic competition, oligopoly, cartels, public enterprise. Investment criteria, benefit-cost analysis. Efficiency and equity trade-offs, microeconomic policy in a second best framework.

15.003 Macroeconomics 3

Prerequisite: 15.042 or 15.052. Co-requisite: 15.412.

Macroeconomic theory and policy including an introduction to the theory of economic policy, the structure and dynamic characteristics of macro-models, recent developments in monetary theory and policy, theories of inflation and policy in a dynamic setting.
15.011 Macroeconomics 1

Commerce/Arts/Applied Science/Sciences prerequisite: 15.001.

The economics of output, employment and inflation, including social accounting, consumption and investment functions, the Keynesian goods market model, supply and demand for money, interactions between the goods and money markets in equilibrium and disequilibrium situations, inflation and the balance of payments.

15.042 Macroeconomics 2

Commerce/Arts/Applied Science/Sciences prerequisites: 15.011 plus 15.401 or 15.411 or equivalent. Co-requisite 15.421 or equivalent. Excluded: 15.052, 15.062.

Extensions to the Keynesian model of income determination to include the government and overseas sectors and a more detailed examination of both demand and supply functions; money and financial institutions; an introduction to dynamic economics.

15.062 Applied Macroeconomics

15.072 Applied Microeconomics

Structural change in the Australian economy. The effect of different market structures on firms and consumer welfare. The consequences of markets failure and the effects of government regulation. Investment decisions in the public and private sectors, including the estimation of future benefits, revenues and costs, the measurement of consumer and producer surplus. The economics of non-renewable and other resources. Australia’s international trade and investment and the effects of restrictions on international trade and investment.

15.143 Microeconomics 3

General equilibrium approach to micro-economic analysis, including aspects of welfare economics. The effects of various forms of government intervention on prices, output and international trade. Public sector investment and pricing. The implications of property rights and the effects of de-regulation of industries.

15.423 Econometrics B

Commerce/Sciences prerequisite: 15.413, or with permission of the Head of the Department of Econometrics, 10.312C.

Identification, specification and estimation of simultaneous equation models including forecasting, policy analysis and simulation. The estimation techniques include: two-stage least squares, three-stage least squares, limited information maximum likelihood and reduced form estimation.

Students build their own models using standard computer packages.

15.901 Australia in the International Economy in the 20th Century

Commerce/Applied Science/Arts/Sciences prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit English (General) or 2 unit English or 3 unit English</td>
<td>31-100</td>
<td>21-100</td>
</tr>
<tr>
<td>3 unit English</td>
<td>11-100</td>
<td></td>
</tr>
</tbody>
</table>

The international economy at the end of the 19th century: trade, factor flows, and payment arrangements. Problems of the international economy between the wars. The impact of World War II and the international economy in the post-war era. Australian economic development and its relationship with the international economy: economic fluctuations; problems of the inter-war period; growth of manufacturing; government policy and action; the importance of the mining industry; economic development and the distribution of income and wealth.

15.902 Management Strategy and Business Development

Commerce/Applied Science/Arts prerequisite: As for 15.901.

The strategy and structure of large scale business enterprise over the past century. An analysis of the process of growth from small family firms and partnerships to corporate enterprises and multi-national corporations. The external business environment. Case studies of managerial hierarchies, investment strategy and diversification of firms in transport, mass retailing and mass production.

Biological Sciences

17.031 Biology A

Prerequisite:

<table>
<thead>
<tr>
<th>HSC Exam</th>
<th>Percentile Range</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Science (Physics) or 2 unit Science (Chemistry) or 2 unit Science (Geology) or 2 unit Science (Biology) or 4 unit Science (multistrand)</td>
<td>31-100</td>
<td>31-100</td>
</tr>
<tr>
<td>31-100</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>31-100</td>
<td>31-100</td>
<td></td>
</tr>
<tr>
<td>31-100</td>
<td>31-100</td>
<td></td>
</tr>
</tbody>
</table>

Basic cell structure; membranes, organelles, prokaryotic and eukaryotic cells; cellular locomotion; basic biological molecules; enzymes: structure and metabolic roles, cellular compartmentalization and
enzyme function; diffusion, osmosis and active transport; theory of inheritance, linkage, mutation, information transfer and protein synthesis.

Requirements for Practical Work
Equipment required for practical work is set out in the Course Guide, available during enrolment time at the First Year Registration Centre (Physics Building). Students must purchase this prior to the first week of session.

17.041 Biology B, S2 L2T4
Prerequisite: 17.031. Excluded: 17.021.

The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes.

17.012 General Ecology, S2 L2T4
Prerequisite: 17.031 and 17.041.

Evolution and environmental selection in the Australian continent; geological, palaeoclimatological, biogeographical and historical background. Functional organization of ecosystems: energy budgets, hydrological and biogeochemical cycles. Integrated structure and function of ecosystems, including cropping and management of natural resources. Aspects of microbial ecology. Students are required to attend a field camp as an integral part of the course.

Applied Geology

25.110 Earth Materials and Processes, S1 L2T4

25.120 Earth Environments and Dynamics, S2 L2T4
Prerequisites:

2 unit Mathematics* or
3 unit Mathematics
4 unit Mathematics and
2 unit Science (Physics) or
2 unit Science (Chemistry) or
4 unit Science (multistrand) and
25.110.

*This refers to the 2 Unit Mathematics subject which is related to the 3 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics in Society).

25.211 Earth Materials 1, S1 L2T4
Prerequisite: 25.120.

25.212 Earth Environments 1, S1 L3T3
Prerequisite: 25.120.

25.221 Earth Materials 2, S2 L3T3
Prerequisite: 25.211.

Sedimentary Petrology: The influence of transportation, deposition and diagenesis on the composition, texture and structure of detrital sedimentary rocks. The chemically formed sedimentary rocks including the phosphates, zeolites, evaporites, ferruginous and siliceous

25.223 Earth Physics

Prerequisite: 25.110.

25.2261 Mathematical Geology 1

Prerequisite: 25.120.

Geological Statistics: Measurement scales in geology. Probability distributions and their properties; sampling and test of significance. Application of these techniques using geological data. Geological Computing: FORTRAN programming; text editing; control language for VAX and CYBER.

25.311 Earth Materials 3

Prerequisite: 25.221.

25.321 Earth Materials 4

Prerequisite: 25.221.

25.312 Earth Environments 2

Prerequisite: 25.212 (note: it is desirable that students taking this unit have also taken 25.223).

25.314 Mineral and Energy Resources 1

Prerequisite: 25.221.

Metallic Resources: Classification and origin of the ore deposits, geochemical processes, research methods. Orthomagmatic, hydrothermal, porphyry, volcanic-sedimentary, Mississippi Valley type, chromium, iron, manganese ores, residual and mechanical ores. Introduction to mineral exploration. Laboratory study of hand specimens, thin sections and polished sections of various ore types; study of selected mining areas representing various genetic types of ore. Economic Mineralogy: Nature of reflected light. Ore textures and their interpretation. Phase relations and paragenesis of ore minerals. Practical work in optical properties of ore minerals, hardness and reflectivity measurements, study of selected ores and ore minerals under the microscope including textural studies. Field Work of up to four days is a compulsory part of the subject.

25.3162 Mathematical Geology 2

Prerequisite: 25.2261.

Application of the mathematical techniques listed below to geological data processing and analyses. Analysis of variance. Introduction to matrix algebra. Regression analysis; trend surface analysis; time series analysis; Markov chain analysis. Introduction to nonparametric statistics. Introduction to multivariate statistics. Practical work based on the use of SPSS, BMDP and other library programs.

25.324 Mineral and Energy Resources 2

Prerequisite: 25.212 or 25.5212.

Non-metallic Resources: Geological factors critical to the occurrence of oil, natural gas, oil shale and coal. Geochemistry of hydrocarbons and formation fluids. Typical Australian and overseas occurrences of

25.325 Engineering and Environmental Geology S2 L4T2

25.3261 Geochemical Analytical Techniques S2 L1T1

Prerequisite: 25.311.

25.3271 Advanced Structural Geology S2 L1T1

Prerequisite: 25.221.

Advanced Structural Geology: Analysis of structural elements at the microscopic, mesoscopic and macroscopic scales. Detailed studies of the analysis of metamorphic terrains, eg Cooma Complex, Broken Hill. Field Work of up to three days is a compulsory part of the subject.

25.333 Exploration Geophysics S1 L3 and S2 L1T1

Prerequisite: 25.120.

Physical properties of rocks and soils. Introduction to seismic, gravity, magnetic, electrical, electromagnetic and radiometric methods of geophysical exploration. Application of these methods in the search for mineral deposits, petroleum, coal and groundwater and in civil and mining engineering projects. Interpretation of geophysical data. Field Work of up to three days is a compulsory part of the subject.

25.410 Resource Geology S1 L3T6

25.412 Sedimentary Basin Resources

See Sedimentary Basin Resources strand in Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.

25.414 Mineral Resources

See Mineral Resources strand in Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.

25.415 Engineering and Environmental Geology

See Engineering and Environmental Geology strand in Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.

25.420 Field Project

A major field-laboratory project, which generally includes geological mapping, on some aspect of mineral or sedimentary basin resources, engineering or environmental geology or resource geophysics.

25.4101 Topics in Advanced Geology S1 L3

Topics in geology selected from a list of subjects available from the Head of School.

25.434 Geology Honours (Single Major)

25.5212 Sedimentology S1 L1T1

Prerequisite: 25.120. Excluded: 25.212.

As for Sedimentology in 25.212 Earth Environments 1. Available only to Course 3145.
25.5313 Stratigraphy S1 L2
Prerequisite: 25.521. Excluded: 25.312.
As for Stratigraphy, in 25.312 Earth Environments 2.

25.621 Marine Geology 1 F L1T2
Prerequisites: 25.601 or both 25.110 and 25.120.
The form and nature of ocean basins; the origin, transport, distribution and deposition of suspended matter in ocean water. Principal groups of oceanic index fossils. Igneous and sedimentary rock types of the ocean floor and their significance. Tectonics of ocean basins. Field Work of two days is a compulsory part of the subject.

25.622 Hydrological and Coastal Surveying F L1T2
Prerequisites: Nil.
General principles of surveying, with particular reference to coastlines and off-shore techniques. Optical and electronic methods of distance measuring and position fixing. Methodology for short-term and long-term measurement of tides and flow currents. Bathymetric surveys in shallow and deep water conditions. Coastline morphologies and their relationship to the behaviour of water masses. Analysis of sedimentary systems in deltaic, estuarine and near-shore environments. Data collecting, processing and storage. Shallow-water investigations for bedrock morphologies. Field Work of five days is a compulsory part of the subject.

25.631 Marine Geology 2 F L1T2
Prerequisite: 25.621.
Sedimentary and tectonic processes of the ocean basins and continental margins; ocean basin stratigraphy and the environmental and chronological utility of the principal groups of index fossils. Stratigraphical history and correlation of sedimentary rocks in the deep ocean basins and on continental shelves. Changes of sea level. The Quaternary history of the oceans. Reefs and carbonate sedimentation. Deep sea consolidated sediments. Magnetism and palaeomagnetism. Field Work not exceeding two days is a compulsory part of the subject.

25.632 Estuarine Geology F L1T2
Prerequisite: Nil.
The physical nature of the estuarine environment; its characteristic topography, chemistry and layering of water masses; tidal behaviour: Characteristic sediments, stratigraphy of sediment bodies and distribution patterns of sediments and microfossils in estuaries. Inorganic and microbial diagenesis of estuarine sediments. Procedures for mapping, sampling and sample analysis. Mineral morphology. Statistical treatment of results. Field Work of four days is a compulsory part of the subject.

25.6341 Marine Mineral Deposits and Oceanic Minerals S1 L1T1

25.6342 Exploration and Seismic Methods S2 L2T1
Geophysics of ocean basins and off-shore areas and the techniques of their study. Seismic refraction, reflection and computational methods, instrumentation of seismic and acoustic sources, recording systems and signal processing. Geological and physical interpretation of results. Practical work on instrumentation, recording and interpretation of field data.

25.635 Marine Resources F L1T2
Prerequisite: 25.621. Co-requisite: 25.631.
Resources important to human civilization of a biological, fluid and mineral nature. Mining of ocean resources. Geological aspects of waste disposal and engineering works in the ocean. Tidal energy. Off-shore drilling.

25.931 Geophysics
See Geophysics strand of Applied Science Course 3000 Applied Geology Year 4. Available only to programs 2501, 5831.

25.9312 Seismic Methods S1 L2T1
Prerequisites: 1.001 and 10.001. It is desirable that students taking this unit have a background in geology.

25.9313 Electrical Methods S1 L2T1
Prerequisites: 1.001 and 10.001. It is desirable that students taking this unit have a background in geology.
Introductory theory and field practice of resistivity, self-potential, induced polarization and airborne and ground electromagnetic methods. Geological interpretation of field data. Geophysical logging. Field Work of one day is a compulsory part of the subject.

25.9314 Geological Applications S1 L1T1
Prerequisite: 25.120.
A subject of ten weeks' duration. Structural Geology: Elements of structural geology, stereographic projection and fracture analysis. Geology of Fuels: Origin of coal, oil and natural gas; stratigraphic and structural consideration of oil and coalfields. Hydrogeology: Principles of hydrogeology; transmission of groundwater in rocks and soils. Field Work of one day is a compulsory part of the subject.
25.9321 Geophysical and Geological Applications S2 L1T2

Prerequisite: 25.120. Excluded: 25.6342.

Geological Interpretation of Geophysical data: Seismic stratigraphy. Coal-seam geometry from high resolution seismic and in-seam data. Geology of Ore Deposits: Mineralogy of industrially important metallic and non-metallic minerals. Theories of ore formation including secondary enrichment processes. Available only in program 2503.

Geography

27.111 Applied Physical Geography 1 F L2T3

Prerequisites:

- HSC Exam
 - Required Percentile Range
 - 31-100

Field work of up to five days is a compulsory part of the subject.

27.133 Pedology S2 L2T3

Prerequisites: 27.111 or any two units from 2.111, 2.121, 2.131, 2.141, and 2.111 or 27.811 or 27.828 or 27.311 or 25.012 or 25.022 or 27.172.

Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology.

27.143 Biogeography S1 L2T3

Prerequisites: 27.311/811 or 27.828 or 17.031 or 17.041 or 27.111 or 27.172.

27.153 Climatology S1 L2T3

Prerequisites: 1.001 or 27.311/811 or 27.828 or 25.110 and 25.120 or 17.031 and 17.041 or 27.111.

27.172 Environmental Measurements F L2T4

Prerequisites: 27.111; or 27.818 and 27.819; or 27.801 and 27.802; or 27.301 and 27.302.

Sampling strategies and survey methods for the collection of environmental data. Data analyses using laboratory and statistical methods. The collection and analyses of weather and climatic data, and the maintenance of meteorological stations. Methods of field surveying and instrumentation for the study of geomorphologic and hydrologic processes. Drainage basin morphometry, dynamics and function, including controls on run-off and sediment transport. The measurement of soil physical and chemical properties in the field and laboratory with special reference to plant growth and soil water and geomorphological processes. The relationships between weathering processes and soil properties. Methods of surveying, classifying and mapping soils. Measurement and description of vegetation. Vegetation survey, sampling and species abundance measure. Monitoring energy and nutrient flow and the effects of humans on ecosystems.
27.175 Introduction to Remote Sensing

Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts (or equivalent) as approved by the Head of School.

Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airphoto interpretation techniques relevant to environmental assessment. Introduction to principles of the electromagnetic spectrum, photometry and radiometry. Sensor types, image formation and end products associated with selected satellite programs, including Landsat. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement.

27.176 Remote Sensing Applications

Prerequisite: 27.175 or 27.1711.

Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multitemporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring.

27.183 Geomorphology

Prerequisites: 25.110 and 25.120 or 27.311/811 or 27.828 or 27.111 or 27.172. Excluded: 27.860.

27.432 Computer Mapping and Data Display

Prerequisites: 27.2813 and 27.2814; or 27.813.

Principles of graphic information processing. Introduction to thematic mapping and automated cartography; theoretical and practical problems in displaying and mapping data by computer. Review and application of computer mapping packages including SYMAP, SYMVU, CALFORM, GIMMS and SURFACE II.

27.652 Geographic Information Systems

An introduction to information systems of particular relevance for economic geography with special reference to computer-based systems for resource evaluation. Problems of data structures, geocoding, and spatial identifiers. Model-based information systems. Project work: case study evaluation and the development of information systems for monitoring spatial change.

27.753 Social Welfare and Urban Development

Prerequisite: 27.829 or 27.812 or 27.312. Note: This prerequisite does not necessarily apply to students enrolled in the Faculty of Applied Science.

A consideration of welfare aspects of urban development, including social policies and urban structure; social costs and benefits of urban renewal especially in the inner city; growth centres and new towns; distributional aspects of social services; and spatial disparities in social well-being.

27.813 Geographic Methods

Prerequisites: 27.801 and 27.802, or 27.818 and 27.819, or 27.301 and 27.302, or 27.111. Excluded: 27.2813.

Statistical procedures and field methods used in both human and physical geography. Includes: measures of dispersion; measures of spatial distribution; samples and estimates; correlation and regression; tests for distribution in space; data collection and analysis; field observations.

27.818 Australian Environment and Human Response

Prerequisite: Nil. Excluded: 27.301/801, 27.295, 27.111.

Themes selected from the mechanisms of the physical environment with particular reference to Australia and the Sydney region. Landscape as an expression of dynamic response: land capability and land use problems, humans as agents of landscape change. Energy and Atmospheric Circulation over Australia: local weather patterns and weather extremes, human responses to fire, flood, and drought hazards. Development and Stability of Hillslopes: soil, vegetation and drainage relationships, problems of soil erosion. Coastal Ecosystems: problems of demand, risk and management in the coastal zone. Lectures are supplemented with tutorials, workshops, and field tutorials. Students are required to provide some materials for workshop exercises and to contribute to the cost of field tutorials.

27.819 Technology and Regional Change

Prerequisite: Nil. Excluded: 27.302/802.

The impact of technological change on the spatial organization of human activities and regional development and disparities. The implications of technological change on population distribution, resource utilization, and settlement patterns are examined at different scales emphasizing the social consequences at the community and regional level. Examples are taken from Third World and modernized countries, with particular reference to Australian case studies.

27.824 Spatial Population Analysis

Prerequisite: 27.312/812, or 27.829. Excluded: 27.324, 27.834.

Population growth and structure in an urban and regional context. The components and processes of population change; fertility, mortality and migration set within the framework of demographic transition theory. Theories of migration and mobility and of optimal populations. Demographic and social indicators for urban and regional analysis and their implications for disparities in living conditions, residential differentiation and regional growth. The adjustment of immigrant and migrant populations to the urban environment.
The understanding of problems arising from processes of change in non-metropolitan areas, with particular reference to their effects on the functional structure of country towns in NSW. Topics include: functional classification, service provision, economic base, rural mobility decentralization and settlement policies, and urban systems.

Theories of urban and regional change leading to assessment of the role of planning. Emphasis on resource allocation, conflict resolution and evaluation techniques including cost-benefit analysis and environmental impact assessment. Lectures accompanied by seminars and workshop sessions which concentrate on methodology.

Focus is on the interaction between human communities and the built environment in Australia: the effects of the natural environment on the evolution of settlement patterns; detailed analysis of rural and metropolitan social environments. Emphasis on inner city, suburbia, behavioural and social area approaches, and to managerialist and structural theories of social change on areas and their communities.

Additional quantitative research techniques normally taken by Honours students in their third year. Research organization; computer analysis; collection and organization of data; statistical description; hypothesis testing and sampling; simple and multiple association analysis; nonparametric methods.

Principles of levelling. Methods, recording. Levelling instruments; testing and adjustment. Theodolites; principles and construction. Horizontal and vertical angle measurement.
29.2050 Survey Camp

Detail Surveys using minor instruments, setting out using steel band and theodolite, levelling, compass and tape traversing between control.

29.441 Surveying for Engineers

29.491 Survey Camp
A one-week field camp for students studying 29.441 Surveying for Engineers.

Optometry

31.821 Anatomy and Physiology of Eye and Visual System
Prerequisites: 17.031, 17.041. Co-requisite: 73.011A

31.851 Optics
Prerequisites: 1.001 or 1.021, 10.001 or 10.021B and 10.021C or 10.011.

31.852 Visual Optics
Prerequisites: 1.001 or 1.021, 10.001 or 10.021B and 10.021C or 10.011.

31.853 Measurement of Light and Colour
Prerequisite: Nil.

31.821 Anatomy and Physiology of Eye and Visual System

31.841 Clinical Optometry

Prerequisites: 31.812, 31.831.

Students are required to examine patients in the Optometry Clinic, to diagnose their problems and to prescribe optical aids, orthoptic treatment or other management or referral as required. They also work in special clinics, including orthoptics, colour vision, low vision, children's vision and contact lenses, and participate in patient review clinics.

31.861 Optometry A

Refraction: Theory and practice of keratometry, objective and subjective refraction, prescribing special visual aids. Orthoptics and binocular vision: Convergence/accommodation anomalies, strabismus, ambyopia. Contact lenses: Corneal anatomy and physiology, contact lens design and manufacture, fitting techniques. Low vision: Examination of the low vision patient, selection of aids.

31.862 Diagnosis and Management of Ocular Disease

Prerequisites: 31.821.

31.863 Theory of Spectacle Lenses and Optical Instruments

Prerequisite: 31.851, 31.852.

Advanced geometrical optics and spectacle lens design. Aberrations and their control. The elements of microscopic and macroscopic systems.

31.864 Clinical Methods

Practical assignments in ophthalmoscopy, biomicroscopy, tonometry, gonioscopy, visual fields, colour vision tests, refraction, assessment of binocular vision, strabismus.

31.871 Optometry B

Biochemistry

41.101 Biochemistry

Prerequisites: 17.041, and 2.121 and 2.131, or 2.141. Excluded: 2.003J.

The chemical properties of amino acids, peptides and proteins, carbohydrates, nucleic acids and lipids and the biological roles of these compounds. The nature and function of enzymes. The intermediary metabolism of carbohydrates, lipids and nitrogenous compounds. The molecular mechanism of gene expression and protein synthesis. Photosynthesis, Practical work to amplify the lectures.

41.111 Biochemical Control

Prerequisite: 41.101.

The relationship between structure and function of enzymes, selected protein systems and hormones. Metabolic networks and control mechanisms. Practical work to amplify the lectures.

41.102A Biochemistry of Macromolecules

Prerequisites: 41.101 or 41.111 (students must obtain a clear pass (PS) in either of these subjects). 2.002B.

Polysaccharides and glycoproteins including bacterial cell walls. Chemistry and biology of polynucleotides. Methods of amino acid and nucleic acid sequence analysis. Protein structure and synthesis. Active centres of some proteins. Sub-unit organization of proteins. Enzyme kinetics, Practical work to illustrate the lectures and to provide experience in modern biochemical techniques.

41.102B Physiological Biochemistry

Prerequisites: 41.101 or 41.111 (students must obtain a clear pass (PS) in either of these subjects). 2.002B.

The biochemistry of the major pathways characteristic of plants will be studied; topics include the energetics and carbon path of photosynthesis, glyoxalate cycle, growth hormones and regulatory phenomena, nitrogen fixation and assimilation. Experimental work to illustrate and amplify the lectures utilizes radioactive isotopes and a number of the newer techniques.

The organization of the genomes of higher organisms derived mainly from the application of recombinant DNA technology and related techniques. Methods used for the isolation, identification and characterization of eukaryotic genomes in terms of the organization of single-copy and repeated sequences and of coding and non-coding sequences and of several gene clusters, eg the α- and β-globin gene cluster. Mechanisms known to operate in the control of eukaryotic gene expression, both at the DNA level and at the level of RNA processing. Review of several specialized genetic systems in plants and animals such as mitochondria, chloroplasts and RNA and DNA tumour viruses. Practical work provides training in the use of sterile techniques and in working with polynucleotides under nuclease-free conditions, using basic techniques such as hybridization and DNA sequencing.

Advanced training in selected areas of biochemistry including a supervised research program of 500 hours minimum duration that places emphasis on the use of specialized techniques relevant to the research area. A written thesis on the research is required.

These are subjects taught within courses offered by other faculties. For further information regarding the following subjects see the Faculty of Medicine Handbook.

Application of principles of biotechnology to the analysis and design of microbial processes of industrial relevance (antibiotics, microbial enzymes, single cell protein from carbohydrates and hydrocarbons, fermented foods and beverages, amino acids and vitamins, microbial polysaccharides, activated sludge and photosynthetic processes for waste treatment, microbial leaching of low-grade minerals). Emphasis on quantitative approach: mass and heat balance calculations, kinetic and thermodynamic analysis, detailed equipment design and specification, process design and layout, process simulation, plant location, application of optimization techniques. The economics of microbial processes are considered and comparison made with alternative modes of production or treatment. The economics of agro-industry in Australia using microbial processes. Marketing of fermentation products, clinical trials required, legal constraints, patent rights. Technical and economic feasibility studies, and a design project.
A detailed study of the mutational basis of microbial variation. Mutagens; mechanisms of mutagenesis; induction, enrichment, isolation and characterization of mutants; mechanisms of repair of mutational damage. Systems of gene transfer and recombination in fungi, bacteria and viral viruses; the use of these systems in constructing genetic maps, and as tools for probing aspects of microbial physiology and biochemistry. Genetic control of gene expression; the operon concept and its application to specific regulatory systems. Genetic code, collinearity between a gene and its product, genes within genes, suppression of mutations. Restriction and modification of DNA; genetic engineering — its implications and prospects. Genetics of nitrogen fixation.

42.103 Biotechnology (Honours)

Advanced formal training in selected areas of biotechnology and participation in one of the school's research projects.

42.114 Fermentation Processes

Factors governing the use of micro-organisms in industrial processes, including the selection, maintenance and improvement of micro-organisms, the control of environmental factors, batch and continuous flow operational patterns, product recovery, process optimization and waste disposal. Demonstrations of the operation and control of fermenter systems and of microbial process simulation.

42.121 Environmental Physiology

Prerequisites: 17.031, 17.041, 2.121 and 2.131, or 2.141.

How plants function in relation to the constraints imposed on them by soil and atmospheric environments. Includes: germination, growth and development, particularly photosynthesis, respiration, inorganic nutrition, water relations, transport processes and reproductive physiology. Important practical applications of various physiological mechanisms.

42.132 Mycology and Plant Pathology

Prerequisite: 43.131.

A detailed study of the fungi, including both saprophytic and plant pathogenic species. Includes: hyphal structure and ultrastructure; morphology and taxonomy of members of major taxonomic groups; spore liberation, dispersal, deposition, germination, infection and the establishment of a host-pathogen relationship; morphogenesis of vegetative and fruiting structures; cytology, genetics; ecological considerations of fungi in specialized habitats, survival mechanisms and methods of control of plant pathogens.

42.142 Environmental Botany

Prerequisites: 17.031 and 17.041.

The soil and atmospheric environments in which plants live and a study of the interaction of plants with their environment. Energy and mass transfer. Emphasis is placed on the role of environmental science in food production.

43.111 Flowering Plants

Prerequisites: 17.031 and 17.041.

Plant cell structure, structure and functions of the major organs in angiosperms (flowers, roots, stems and leaves), secondary thickening and arborescence, transport systems in plants, seeds and germination. Variation in structure and function in relation to environment. Introduction to taxonomy and identification of major Australian plant families. A short field excursion is part of the subject.

43.131 Fungi and Man

Prerequisites: 17.031 and 17.041.

An introduction to the biology and taxonomy of fungi followed by a study of their economic importance to man. Includes: fungi as pathogens of plants and animals; use of fungi as food and in the production of useful chemical products; medical uses of fungi, including drugs and hallucinogens; degradation of organic matter, particularly in soils and of timber; interaction of fungi with other organisms; chemical control of fungi.

43.132 IMycology and Plant Pathology

Prerequisite: 43.131.

A detailed study of the fungi, including both saprophytic and plant pathogenic species. Includes: hyphal structure and ultrastructure; morphology and taxonomy of members of major taxonomic groups; spore liberation, dispersal, deposition, germination, infection and the establishment of a host-pathogen relationship; morphogenesis of vegetative and fruiting structures; cytology, genetics; ecological considerations of fungi in specialized habitats, survival mechanisms and methods of control of plant pathogens.

43.142 Environmental Botany

Prerequisites: 17.031 and 17.041.

The soil and atmospheric environments in which plants live and a study of the interaction of plants with their environment. Energy and mass transfer. Emphasis is placed on the role of environmental science in food production.

43.152 Plant Community Ecology

Prerequisites: 43.111 and 17.012 or 27.111.

Recognition and delimitation of plant communities. Ecology of selected Australian vegetation types. Use of numerical methods and application of community concepts to palaeoecology. Field work an integral part of this course.

43.172 Phycology and Marine Botany

Prerequisite: 43.111.

The biology of freshwater, marine and soil algae with particular emphasis on the marine flora of SE Australia. Field work is part of the subject.

43.192 Ultrastructure

Prerequisite: 43.111 or 43.121 or 41.101 or 44.101 or 45.201 or 45.301. Excluded: 43.182.

The impact of the study of ultrastructure in biological research and teaches techniques currently used in ultrastructural research. While covering the basic ultrastructure of prokaryotes and of eukaryote cells and organelles, emphasis also on areas where ultrastructural research is at present making an important contribution to under-
standing how cells work: for example, motility, secretion, control of cell wall deposition, transport and cell communication. Practical work: students use transmission and scanning electron microscopes to investigate material they themselves prepare, using negative staining, ultra-microtomy and freeze-fracture; also includes optical systems in light microscopy, principles and practice of fixation and embedding tissues for light and electron microscopy; histochemistry and techniques of enzyme localization.

Servicing Subjects

These are subjects taught within courses offered by other faculties.

43.202 Botany for Landscape Architects S1 L2T3
Prerequisite: Nil.

How green plants function. What is known about how plants grow. Specific topics include: what happens in a plant meristem, hormone interactions and growth, transport systems in plants, water uptake and use, mineral nutrition, the role of light and leaves in photosynthesis, control of flowering process, germination and senescence. Emphasis is on the interaction between plant structure and function.

Microbiology

Level II Units

44.101 Introductory Microbiology S1 L2T4
Prerequisites: 17.031 and 17.041.

The general nature, occurrence and importance of microorganisms. A systematic review of the major groups of microorganisms: the eucaryotic protista (micro-algae, protozoa and fungi); procaryotic protista (blue-green algae, “higher” bacteria, typical unicellular bacteria and small bacteria-like forms); plant, animal and bacterial viruses. The relationship between microorganisms and their environment, ecological considerations. Interactions between microorganisms and higher organisms.

44.121 Microbiology 1 S2 L2T4
Prerequisites: 44.101 and 41.101 or 2.003J.

The balanced structure of this unit makes it suitable for students majoring in microbiology and also for students who wish to enlarge their knowledge and skills in microbiology beyond those obtained in 44.101 Introductory Microbiology or equivalent units at other institutions.

Level III Units

44.102 General Microbiology S1 L4T8
Prerequisites: 44.101, 44.121 (Pass Conceded (PC) awarded prior to Session 2, 1983, is not acceptable), 41.101.

Systems for the isolation, identification and taxonomic description of microorganisms; fine structure, cyto-chemistry, genetics of bacteria and viruses; metabolic requirements of microorganisms; microorganisms and their environment, growth, inhibition and death; energy-yielding and biosynthesizing systems; geotypic and phenotypic control systems.

44.112 Applied Microbiology S2 L4T8
Prerequisite: 44.102.

Endeavours to relate the basic facts about microorganisms to a variety of practical conditions. The occurrence, importance, activity and control of microorganisms in soil, air, water and in their relationship with higher organisms (other than humans), their industrial applications including manufacture, preservation and spoilage of food and dairy products. The nature of bacterial and fungal diseases of humans, their cultural and serological diagnosis, epidemiology, treatment and prevention will be discussed in some detail.

44.122 Immunology S2 L2T4
Prerequisite: 44.102.

Basic immunology and immunological techniques. The interdisciplinary nature of the subject makes this unit suitable for students taking any major sequence in biological science and also for higher degree students who require a background training in immunology. The course includes phylogeny and ontogeny of the immune response; antigen and antibody structure, antigen-antibody reaction; immunochmistry; immunogenetics, clinical immunology, transplantation.

44.132 Virology S2 L2T4
Prerequisite: 44.102.

Not offered in 1986.

The structure, replication and behaviour of animal, plant and bacterial viruses; applications of virological techniques; virus diseases of animals and plants, their epidemiology and control.
Level IV Units

44.103 Microbiology Honours
Advanced training in selected areas of microbiology. 1. a formal component consisting of seminars, tutorials, introductory electron microscopy and written assignments. 2. a supervised research program in a specific area of microbiology or immunology.

Servicing Subjects
These are subjects taught within courses offered by other faculties.

For further information regarding the following subject see the Faculty of Medicine Handbook.

45.121 Evolutionary Theory
Prerequisites: 17.031, 17.041.
Current evolutionary theory, emphasizing the population level. Ecological genetics, evolutionary aspects of ecological niche theory, speciation, evolution of social behaviour, molecular evolution and general evolutionary genetics. Some background in genetics is desirable.

45.122 Animal Behaviour
Prerequisites: 45.101, and 45.201 or 45.301.
An introduction to Ethology, the biological study of behaviour. Physiological, ecological, developmental and evolutionary aspects of behaviour are examined as important elements in the analysis of behaviour, particularly social behaviour. Both field and laboratory work are included.

45.132 Ecological Physiology
Prerequisites: 45.201 or 45.301.
A study of physiological adaptation to habitat in animals. The problems imposed by the basic physiological characteristics of major animal groups under different environmental conditions are examined, especially osmotic and ionic regulation, oxygen availability, metabolism and temperature regulation/acclimation. Particular attention is given to Australian fauna and conditions.

45.142 Comparative Physiology
Prerequisite: 45.201 or 45.301.
Basic physiology of nerves, muscles, sensory perception, blood circulation, respiration, gastrointestinal tract, kidneys and hormones. Physiology of reproduction. The control of organ systems and body functions.

45.152 Population and Community Ecology
Prerequisites: 17.041 and 10.001 or 10.011 or both 10.021B and 10.021C.
Examination of the dynamics of one, two or more interacting populations. Systems analysis and simulation in ecology. Theoretical and mathematical analysis of the dynamics and stability of ecosystems. Topics in the optimal management of renewable resources. Unifying concepts in ecology.

45.201 Invertebrate Zoology
Prerequisites: 17.031, 17.041.
A comparative study of the major invertebrate phyla with emphasis on morphology, systematics and phylogeny. Practical work to illustrate the lecture course. Obligatory field camp.

45.301 Vertebrate Zoology
Prerequisites: 17.031 and 17.021, or 17.041.
A comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement the lecture course. Field excursions as arranged.

80.311 Paraclinical Science
In conjunction with School of Pathology and School of Physiology and Pharmacology.

Zoology

Students are not admitted to Level III Zoology units, without special permission of the Head of School, unless Chemistry 2.001 or 2.121 and 2.131, or 2.141, has been completed.

45.101 Biometry
Statistical methods and their application to biological data, including introduction to probability; the binomial, Poisson, normal distributions; student's t, \(\chi^2 \) and variance ratio tests of significance based on the above distributions, the analysis of variance of orthogonal and some non-orthogonal designs; linear regression and correlation. Non-linear and multiple regression. Introductory factorial analysis. Introduction to experimental design. Non-parametric statistics, including tests based on \(\chi^2 \), the Kruskal-Wallis test, Fisher's exact probability test and rank correlation methods. Introduction to programming in BASIC.

45.112 Marine Ecology
Prerequisites: 17.031, 17.041, 45.201 or 25.022 or 2.002D.
A study of the ecology of marine organisms with particular reference to the physical, chemical and biological environment in which they occur. Both field and laboratory practical work are included.

Students intending to enrol in this unit should register with the School of Zoology by 14 January for the February field trip.
45.302 Vertebrate Zoogeography and Evolution

Prerequisite: 45.301.

Not offered in 1986.

A geographic approach to the current distribution, abundance and types of vertebrate species in the Australian region. Particular emphasis is placed on the basic principles of speciation, the history of the Australian continent, vertebrate adaptations and changes in the distribution and abundance of the Australian vertebrate fauna under the influence of humans. Field excursions as arranged.

45.402 Insects

A comparative study of the internal anatomy and external morphology, physiology and behaviour of insects. A collection of insects is to be made. Practical work to illustrate the lectures. Field excursions as arranged.

Students intending to enrol in this unit should register with the School of Zoology by 14 January for the February field trip.

45.422 Economic Zoology

Prerequisite: 45.201 or 45.402.

A study of the biology, ecology and control of vertebrate and invertebrate animals which harm humans and their possessions. Humans and domestic animal parasitology, pests on plants, diseases caused or spread by animals, chemical, biological and physical control, and side effects.

45.601 Introductory Genetics

Prerequisites: 2.131 or 2.141, 17.031, 17.041. Excluded: 9.601.

Chemical Engineering and Industrial Chemistry

48.023 Chemical Engineering Science 1

Prerequisites: 1.001, 10.001.

48.024 Chemical Engineering Principles 1

Prerequisites: 1.001, 10.001.

The following topics, from 48.023: Flow of Fluids. Heat Transfer 1, Dimensions.

48.037 Chemical Engineering Science 2

Prerequisites: 2.102A, 48.023.

48.038 Chemical Engineering
Principles 2

Prerequisite: 48.024.

The following topics, from 48.037: Mass Transfer (Theory), Heat Transfer 2 (Theory), Fluid-particle Systems, Surface Separation Processes.

48.403 Polymer Science

Prerequisites: 2.102A, 2.102B, 10.031, 10.301. Co- or prerequisites: 48.001, 48.113.

Philosophy

Philosophy is a wide-ranging discipline, catering for a great diversity of interests, for instance, in science, reasoning, persons, and social issues, and encouraging critical and imaginative thought about the foundations of other subjects. Apart from providing considerable choices for students majoring in Philosophy, the diversity of Upper Level subjects makes it possible for students majoring in other disciplines to select subjects complementing their main interest.

First Enrolment in Philosophy

There are two Level I subjects:
52.103 Introductory Philosophy A (Session 1)
52.104 Introductory Philosophy B (Session 2)

Each of these has 1-unit value, they can be taken separately, and a student can gain Upper Level status in Philosophy (qualify to enrol in Upper Level subjects) by passing in only one. However, students enrolling in one will normally enrol in both, and students wishing to major in Philosophy must do so.

Value of Upper Level Subjects in Philosophy

With the exception of two which count as full units, all upper level subjects in Philosophy are part units, of which three together have the value of two full units; otherwise, each one counts as a half-unit.

Major in Philosophy

Students majoring in Philosophy must take the equivalent of two full Upper Level (II/III) units in Year 2, and the equivalent of 4 full Upper Level (II/III) units in Year 3.

Level II/III

Some Upper Level subjects deal with particular philosophical topics; others can be taken in sequence to give more sustained treatments of larger areas. Students may select freely among these, subject to stipulations regarding prerequisites. They are welcome to seek advice and further information from the School.

In certain circumstances the prerequisites specified for units or half-units may be waived; for example, in the case of students who have already studied similar material, or who wish to take isolated units or half-units relevant to another discipline. Students who feel they have a case for a concession of this kind should consult the School.

52.103 Introductory Philosophy A

Prerequisites: Nil.

The general topic of Persons, with reference to some at least of the following: Freud's theory of mental processes; Sartre's account of human existence; the mind-body problem.

Assessment: Weekly exercises, tutorial work, and on each section of the work either a one-hour or a take-home examination.

52.104 Introductory Philosophy B

Prerequisites: Nil.

Topics normally include: issues in ethics and political philosophy; the nature of religion and religious belief; deduction in modern formal logic and related problems of the ambiguity of natural languages.

Assessment: Weekly exercises, tutorial work, and on each section of the work a one-hour examination.

52.219 Philosophical Foundations of Marx's Thought

Neil Harpley, Barbara Roxon

Prerequisite: Upper Level status in Philosophy. Excluded 52.373.

A discussion of the basics of Marx's historical materialism and dialectical materialism.

Assessment: Exercises and essays.
52.2001 The Nature of Mind S1 L2T0 C4
Dr Philip Cam
Prerequisite: Upper Level status in Philosophy.
Conceptions of mind and its relation to the physical from Descartes to Dennett, including: the ontological issue between dualists and materialists; the conception of the mind as a machine; the nature and function of consciousness; the general constraints on a psychological theory.

52.2002 Contemporary Philosophy of Mind S1 L2T0 C4
Dr Philip Cam
Prerequisite: Upper Level status in Philosophy.
General introduction to current issues in the Philosophy of Mind: intentionality and the theory of intentional systems; computational models and their physical basis; the nature of mental representation; theories of consciousness; philosophy and artificial intelligence; the concept of a person; mechanism, freedom and responsibility.

52.2003 Issues in the Philosophy of Psychology S2 L2T0 C4
Dr Philip Cam
Prerequisite: Either 52.2001 or 52.2002.
Investigation of some general theoretical and methodological issues in the psychological sciences: theoretical relations between neuroscience, artificial intelligence and behavioural psychology; the role and theoretical propriety of intentional idioms in psychology; the strengths and weaknesses of existing research strategies; realism and instrumentalism in everyday and computational models; conceptual coherence, explanatory and predictive adequacy, and theoretical commitment; the status of introspective reports. Discussion of more specific issues arising from the experimental literature, e.g. the nature of mental imagery, the implications of split-brain studies, and the 'frame problem' in artificial intelligence.

52.2010 Reasoning Skills S1 or S2 L2T0 C4
Prerequisite: Any Level 1 subject. Excluded: 52.233.
Reasoning skills in which practical arguments are examined in classroom exercises; lectures on practical argument in the courtroom, politics and everyday life as compared with arguments in mathematics and theoretical science.
Assessment: Exercises, essay and class examination.

52.2020 Descartes S1 L2T0 C4
Ray Walters
Prerequisite: Upper Level status in Philosophy. Excluded: 52.163.
The main issues raised in the philosophy of Descartes and their importance for the development of modern philosophy. Emphasis is on the cogito ergo sum argument, the Cartesian method and the search for rational certainty, his theory of ideas, the body-mind problem.
Assessment: Exercises or essay and examination.

52.2021 Spinoza and Leibniz S2 L2T0 C4
Ray Walters
Prerequisite: 52.163 or 52.2020. Excluded: 52.303.
The main issues raised in the philosophy of the two great 17th century rationalists, with emphasis upon the development of their metaphysical systems in response to unresolved problems in the philosophy of Descartes and to contemporary scientific thinking. Their ethical views.
Assessment: Exercises or essay and examination.

52.2030 Predicate Logic A S1 L2T0 C4
Prerequisite: Any Level 1 subject. Excluded: 52.153, 52.162, 52.1531.
A system of natural deduction is presented for the first order predicate calculus. Emphasis is upon construction of formal derivations, methods of showing the invalidity of formal arguments, and the evaluation of informal arguments by symbolization.
Assessment: Exercises.

52.2031 Predicate Logic B S2 L2T0 C4
Prerequisite: 52.153 or 52.2030. Excluded: 52.153, 52.1532.
A continuation of Predicate Logic A, including the theories of identity and of definite descriptions.
Assessment: Exercises.

52.2040 Greek Philosophy: Thales to Plato S1 L2T0 C4
Peter Gibbons
Prerequisite: Upper Level status in Philosophy. Excluded: 52.182, 52.203.
The leading ideas of the Greek philosophers from Thales to Plato with special reference to the Pre-Socratics.
Assessment: To be decided in consultation with students.

52.2050 Classical Political Philosophy S1 L2T0 C4
Prerequisite: Upper Level status in Philosophy. Excluded: 52.182, 52.203.
The basis of political society, its various functions and its relation to the individuals in it, investigated primarily through the works of Hobbes, Locke, Rousseau and Mill. Topics include the theory of a social contract, the establishment of political rights and obligations, and the relation of moral and political concerns within a political society.
Assessment: Two short essays and an examination.

52.2060 Sartre S1 L2T0 C4
Barbara Roxon
Prerequisite: Upper Level status in Philosophy. Excluded: 52.213.
An examination of Sartre's account of freedom, relations between persons and his social theory.
Assessment: Essays and exercises.
52.2130 British Empiricism S2 L2T0 C4
Neil Harpley
Prerequisite: Upper Level status in Philosophy. Excluded 52.173.
A survey of the empiricist tradition with special concentration on Locke and Berkeley.
Assessment: Exercises and essays or examination.

52.2140 Scientific Method S1 L2T0 C4
Ray Walters
Prerequisite: Upper Level status in Philosophy. Excluded: 52.193.
The nature of empirical knowledge as exemplified in the physical and social sciences, with emphasis on the concept of explanation, the nature of induction and scientific laws, and controversies over the nature of scientific knowledge.
Assessment: Exercises or essay and examination.

52.2150 Philosophy of Law S2 L2T0 C4
Dr Stephen Cohen
Prerequisite: Upper level status in Philosophy. Excluded: 52.105.
Selected conceptual and normative issues in the philosophy of law, centring around the broad areas of law (eg, its nature, validity, bindingness, and relation to morality), liberty, justice, responsibility (including strict and vicarious liability), and punishment.
Assessment: Essays, possibly an examination.

52.2170 Hume S1 L2T0 C4
Neil Harpley
Prerequisite: Upper Level status in Philosophy. Excluded: 52.152, 52.563.
A study of Hume's epistemology, his discussion of arguments for the existence of God and free will.
Assessment: Essay and exercises or examination.

52.2200 The Ethics of Plato and Aristotle S1 L2T0 C4
Dr Stephen Cohen
Prerequisite: Upper Level status in Philosophy. Excluded: 52.523, 52.523.
A systematic investigation of the moral theories of Plato and Aristotle. Beginning with the immoral and subsequent amoral position of Thrasymachus and his question in Book 1 of The Republic, "Why should I be just?", the subject investigates the ways in which Plato and Aristotle each set out the problems of the nature of morality and why a person should be moral, their approaches to the solutions of these problems, and their positive moral theories.
Assessment: Two short essays and an examination.

52.2230 Theories in Moral Philosophy S2 L2T0 C4
Dr Stephen Cohen
Prerequisite: Upper Level status in Philosophy. Excluded: 52.523, 52.523.
Three moral theories central in the history and development of moral philosophy. Hume, Kant, and Mill offer differing kinds of moral theories, differing approaches to arriving at a moral theory, and specific theories which are markedly different from each other. Each moral theory in itself and in comparison with the other two theories examined.
Assessment: Two short essays and an examination.

52.2240 Philosophical Study of Woman S1 L2T0 C4
Neil Harpley, Barbara Roxon
Prerequisite: Upper Level status in Philosophy Excluded: 52.283.
A discussion of crucial structures involved in women's situation.
Assessment: Exercises and essays.

52.2250 Plato's Theory of Forms S2 L2T0 C4
Peter Gibbons
Prerequisite: Upper Level status in Philosophy. Excluded: 52.483.
A study of some dialogues of Plato, with special attention to Socratic definition and Plato's Theory of Forms.
Assessment: To be decided in consultation with students.

52.2260 Aesthetics S2 L2T0 C4
Ray Walters
Prerequisite: Upper Level status in Philosophy. Excluded: 52.273.
An examination of the central concepts, types of judgment and theories occurring in the field of aesthetics or theory of art.
Assessment: Exercises or essay and examination.

52.2270 Social and Political Philosophy L2T0 C4
Dr Stephen Cohen
Prerequisites: Upper Level status in Philosophy. Excluded: 52.513.
Not offered in 1986.
Largely through contemporary writings, including a number of journal articles, investigation of, eg rights, freedom, law and legislation, responsibility, liability, coercion, punishment and justice.
Assessment: Essay.

52.2330 Psychoanalysis — Freud and Lacan S2 L2T0 C4
Barbara Roxon
Prerequisite: Upper Level status in Philosophy. Excluded: 52.573.
A discussion of psychoanalytic theory, particularly for what it shows about the relation between the individual and the social.
Assessment: Exercises and essays.
Sociology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Prerequisite</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.001</td>
<td>Introduction to Sociology</td>
<td>F L2T1 C12</td>
<td>An introduction to a critical and reflexive sociology by examination of contemporary Australian society. Major topics include: Thinking about Australian society; political economy of Australian society; social movements, social philosophies and State responses; and culture and resistance. Specific topics: the analysis of every day life; social class; gender; political party formation; popular culture; media moral panics. Provides a sound basis for further studies in the social sciences. Assessment: On the basis of performance in essays, written assignments, and tutorial classes.</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Prerequisite</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.702</td>
<td>Theory of Education 1</td>
<td>S2 L1½</td>
<td>Educational Psychology: includes learning, cognition, individual differences and cognitive development; detailed classroom applications; experimental demonstration of phenomena where possible. Assessment: Essay.</td>
</tr>
<tr>
<td>58.703</td>
<td>Theory of Education 2</td>
<td>F L2½</td>
<td>Educational Psychology: extension of the introductory studies of learning, cognition, individual differences and cognitive development with concentration upon child development; classroom applications emphasized and phenomena experimentally demonstrated where possible. Philosophy of Education: exploration of philosophical questions concerning teaching and learning with particular reference to the various subjects taught in schools; issues concerning the relationships between school subjects, a connection between knowledge and the development of mind, the value of school subjects in relation to other activities which could compose education and the social and ethical context of education. Focus on logical and epistemological questions which are internal to the various teaching subjects. Students are assigned to one of the following Philosophy of Education groups: Philosophical Issues in: Mathematics and Education; Literary Appreciation and Education; History and Education; Science and Education; Curriculum and Education; Language and Education; Social Sciences and Education; Industrial Arts Education. Sociology of Education: includes socialization, the family, the role of education in society, inequality of educational opportunity, multi-cultural education. Assessment: Essay.</td>
</tr>
<tr>
<td>58.704</td>
<td>Theory of Education 3</td>
<td>F L3</td>
<td>Sociology of Education: includes sociology of the school and classroom, deviance, knowledge and the curriculum, sexism, in schools, social trends and problems and their implications for education,</td>
</tr>
</tbody>
</table>

Additional Courses

- **52.2360 Theories, Values and Education**
 - Martin Bibby
 - Prerequisite: Upper Level status in Philosophy. Excluded: 52.583.
 - The nature of theories of education, and the contributions to them of philosophy, psychology and sociology; values in education and the social sciences; the justification of an ordering of educational goals. Assessment: Essay.

- **52.2371 Plato's Later Dialogues**
 - Peter Gibbons
 - Prerequisite: 52.483 or 52.2250 (or, by permission, a course covering similar material). Excluded: 52.293.
 - Centred round some of Plato's later dialogues, the Theaetetus and Sophist in particular. Assessment: To be decided in consultation with students.

- **52.2980 Seminar A**
 - Excluded: 52.423.
 - Admission by permission, based on a student's performance in Upper Level subjects. Topics vary and are influenced by student requests. Possible topics include: contemporary ethics; contemporary moral issues; logical atomism; Wittgenstein; theories of the emotions; issues in social and political philosophy. Assessment: Essay.

- **52.2990 Reading Option A**
 - Excluded: 52.413.
 - Admission by permission, to suitable students with good Passes in at least two subjects at Upper Level. A course of individually supervised reading and assignments on an approved topic not otherwise offered. Assessment: Essay.

- **52.3010 Seminar B**
 - Excluded: 52.433.
 - As for 52.2980 Seminar A.

- **52.3020 Seminar C**
 - Excluded: 52.443.
 - As for 52.2980 Seminar A.

- **52.3030 Reading Option B**
 - Excluded: 52.453.
 - As for 52.2990 Reading Option A.
technology work and lifelong learning. Selected Studies in Education: two education theory options to be selected from among a number available; some deal with the separate disciplines of philosophy, psychology, sociology, others may draw from more than one. In any given year the options offered depend on the staff available and on student demand. Topics may include the following: Computer assisted instruction, the talented child, learning disabilities, social trends and problems, sociology of the school and classroom, methodology for criticism, ethical theory and moral education, science and religion in education.

58.712 Teaching Practice 1
A gradual introduction to teaching in the school situation.

58.713 Teaching Practice 2
Prerequisites: 58.712, 58.722 or 58.732 or 58.742 or 58.752 or 58.762. Co-requisites: 58.723 or 58.733 or 58.743 or 58.753 or 58.763.

Extensive opportunities for students to develop teaching competence; each student is placed in a high school for 15 days and works in close association with a teacher.

58.714 Teaching Practice 3
Prerequisites: 58.713, 58.723 or 58.733 or 58.743 or 58.753. Co-requisites: 58.724 or 58.734 or 58.744 or 58.754 or 58.764.

Provision for further opportunities for students to develop teaching competence; each student is placed in a high school for 15 days and works in close association with a teacher.

58.732 Science Curriculum and Instruction 1
Prerequisites: 1.001 or 1.011; 2.121, 2.131. Co-requisite: 58.702.

Lesson planning, management in the science classroom, laboratory safety, legal aspects; introduction to audiovisual aids, demonstrations and practical work. Communication and Microteaching: techniques and problems of communication, development of teaching skills by peer-group microteaching. Classroom Issues and Strategies: topics include mixed ability groups, streaming, individual instruction, children with special needs (e.g., handicapped, talented, immigrant, Aboriginal children), language in learning, discipline and class control.

58.733 Science Curriculum and Instruction 2

Methods of teaching and problems in learning science, the roles of teacher demonstrations and pupil practical work, preparation and use of audiovisual aids, the teaching of selected topics in biology, chemistry, geology and physics. Further development of teaching skills by peer-group microteaching may be undertaken. Classroom Issues and Strategies: aspects relating to classroom and community including the primary school, the teacher in the school community, teachers and parents, legal responsibilities and rights, transition, unemployment, leisure, support facilities.

58.734 Science Curriculum and Instruction 3
Prerequisites: 58.703, 58.713, 58.733.

Examination of NSW secondary school science syllabuses, investigation of curriculum material suitable for use in teaching secondary school science, development of teaching resources, the professional development of the science teacher, the teaching of biology, chemistry, geology and physics. Classroom Issues and Strategies: aspects relating to assessment and measurement including test planning, standardized tests, marking and reporting, essay-type tests, scaling of test scores, uses and effects of assessment.

58.742 Mathematics Curriculum and Instruction 1
Prerequisites: 10.001 or 10.011. Co-requisite: 58.702.

Introduction to the application of educational studies to the teaching of the Mathematics curriculum in high schools, lesson planning and classroom management. Communication and Microteaching: techniques and problems of communication, development of teaching skills by peer-group microteaching. Classroom Issues and Strategies: topics include mixed ability groups, streaming, individual instruction, children with special needs (e.g., handicapped, talented, immigrant, Aboriginal children), language in learning, discipline and class control.

58.743 Mathematics Curriculum and Instruction 2
Prerequisites: 58.702, 58.742. Co-requisite: 58.703.

A continuation of the application of educational studies to the teaching of the Mathematics curriculum in secondary schools; lesson preparation and presentation, classroom organization and management, introduction to special mathematics courses being used in secondary schools, e.g., elective and slow learner courses, preparation for 58.713 Teaching Practice 2. Further development of teaching skills by peer-group microteaching may be undertaken. Classroom Issues and Strategies: aspects relating to classroom and community including the primary school, the teacher in the school community, teachers and parents, legal responsibilities and rights, transition, unemployment, leisure, support facilities.

58.744 Mathematics Curriculum and Instruction 3
Prerequisites: 58.703, 58.713, 58.743.

The teaching of senior secondary school mathematics syllabuses, curriculum development projects in mathematics and their application in NSW, critical analysis of learning problems of school students, investigation of practical remedies for such problems. The subject is designed to complement 58.714 Teaching Practice 3, taken together these subjects provide a wide set of experiences which equip potential teachers to fit successfully into the NSW teaching environment. Classroom Issues and Strategies: aspects relating to assessment and measurement including test planning, standardized tests, marking and reporting, essay-type tests, scaling of test scores, uses and effects of assessment.

58.793 Advanced Education 1
Prerequisites: 58.703, 58.713, 58.733.

Students study one of the following segments: Philosophy of Education; some connected issues in social and political philosophy, and their implications for educational theory and practice. Includes: freedom, compulsion and the aims of education; neutrality
of education systems, schools, teachers and courses; and justice and equality. Educational Psychology segment: introduction to selected aspects of on-going research activities in educational psychology. The area is selected following discussions with staff members. Sociology of Education segment: more detailed and extensive examination of central topics studied in the pass strand. Consideration of selected issues to do with social theory, the nature of the sociological enterprise and sociological methods.

58.794 Advanced Education 2
Each student engages in twenty-eight hours of supervised study appropriate to his or her proposed research, as approved by the Head of School.

58.795 Advanced Education 3
Enrolment is subject to approval by the Head of School.

In Their full-time Honours year, all students enrol in four twenty-eight-hour units of study appropriate to their research, as approved by the Head of School.

58.799 Thesis

History and Philosophy of Science

Students undertaking subjects in History and Philosophy of Science are required to supplement the class contact hours by study in the Library.

Level I

62.110 Science, Technology and Social Change S1 L2T1 C6
Dr D. P. Miller
Prerequisite: Nil.

Relations between science, technology and society which have evolved in the 20th century. 1. Topics which illustrate the effects of scientific and technological development on society — especially those, such as pollution and unemployment, which are apparently unintended; and 2. Selected theories which have been proposed to explain and evaluate the nature of technological change. Topics include: the use of pesticides; the implications of microprocessor technology; the development of nuclear energy and the debate about recombinant DNA research. Theories of Galbraith, Commoner, Dickson and others — particularly in relation to the question as to whether unintended consequences of scientific and technological development can be eliminated by 'technological fixes' or whether they are inevitable in modern industrial society.

Assessment: Essay (40 percent); tutorials (30 percent); class tests (30 percent).

62.111 Man, Megalith and Cosmos S1 L2T1 C6
Dr G. A. Freeland
Prerequisite: Nil.

The roots of scientific thinking in antiquity, and the development of the central traditions which were to form the foundations of modern science, stressing origins of geometry, astronomy, astrology and cosmology. Emphasis on the interpretation of evidence from archaeology, particularly relating to the megalithic cultures, and the assessment of the relevance of anthropological studies, particularly of Australasia and the Pacific region. Topics include: evidence for archaeoastronomical interpretations of prehistoric sites; theories of the origins of geometry; inter-relationships of science and religion; traditional Pacific navigation; patterns of reasoning in early times, and in primitive cultures today; the evolution of mythology; cosmology and astronomy in mythology; the scientific and philosophical legacy of Greek science, particularly of Aristotle, Euclid and Ptolemy; a comparative study of the astronomy and cosmology of Mesopotamia, Egypt, Greece, America, etc; the background to the Copernican Revolution; the Von Daniken phenomenon; the mystery of the Dogons; an appraisal of astrology.

Assessment: 2 short essays (33 1/3 percent); 2 tests (33 1/3 percent); tutorials (33 1/3 percent).

62.211 The Seventeenth Century Intellectual Revolution S2 L2T1 C6
Dr D. R. Oldroyd
Prerequisite: Nil.

The intellectual revolution, centred upon science of the 17th and early 18th centuries, which led on to the Enlightenment. The Mediaeval and Renaissance background. Bacon and Baconianism; empiricism; experimentation and the virtuosi; the idea of progress. The mechanization of the world picture; Descartes and Cartesianism; rationalism; the revival of atomism, materialism. The Copernican Revolution. Locke. Hobbes.

Assessment: Essay (40 percent), tutorials (30 percent); examination (30 percent).

Level II/III

62.022 Materials, Machines and Men S2 L2T1 C6
Mrs N. Allen
Prerequisite: Completion of Arts subjects carrying at least 24 credit points, or a Pass in four Level I Science units. Excluded: 26.564, 26.251, 62.253.

The rise of technology in its social and cultural context before, during and since the Industrial Revolution. This Revolution, which has been described as the most significant event in human history since the
Agricultural Revolution of the New Stone Age, is examined in some detail, and concentrates on technology and its effects on human beings. Considers the professionalization of farming, the spread of agricultural in Britain, in Europe and the USA, and examines the Second Industrial Revolution. Emphasis on the social and economic effects of the interactions of technology and society.

Assessment: Tutorial paper (30 percent); performance in class (40 percent); class test (10 percent); examination (20 percent).

62.032 The Scientific Theory

Dr G. A. Freeland

A critical examination of the scientific theory — its origins, nature and nurture. With particular reference to selected historical examples chosen from both the physical and biological sciences, a number of philosophically interesting problems relating to scientific theories are subjected to analysis. Topics include: the principles of theory construction; perception and observation; the structure of scientific revolutions; scientific explanation; the status of laws and theoretical terms; the ‘existence’ of theoretical entities; relationships between theory and observation; the functions of models; the principles of theory establishment and rejection.

Assessment: One essay (33 1/3 percent); tests (33 1/3 percent); tutorials (33 1/3 percent).

62.052 Scientific Knowledge and Political Power

Mr G. H. Bindon

Prerequisite: As for 62.022. Excluded: 62.252.

An introduction to the political dimensions of 20th century science. Topics include: growth of expenditure on science in the 20th century; attempts to define the social function of science in the inter-war years; the radical scientists' movement of the 1930s — the freedom versus planning debate; science and politics in the Second World War; government patronage and political expectations in the post-war period; science and economic growth; the science-technology relationship; the rejection of laissez-faire in the 1960s; approaches to science policy; critiques of the role of science in contemporary society; scientists as experts; the question of social responsibility in science.

Assessment: Essays (50 percent); tutorials (50 percent).

62.062 The Social System of Science

Mr G. H. Bindon

Prerequisite: As for 62.022. Excluded: 62.262.

An introduction to the social dimension of the practice of science. The production and application of scientific knowledge as an activity in constant interaction with its socio-economic, political and cultural environments. The principal features of this interaction in relation to each of the following aspects of scientific activity: the processes of research and discovery; the dissemination of research findings and their acceptance or rejection; the development or abandonment of accepted theories; and the technological applications of scientific knowledge.

Assessment: Essays and tutorial work.

62.072 Historical Origins of the American Scientific Estate

Dr D. P. Miller

Prerequisite: As for 62.022. Excluded: 62.272.

The development of American scientific institutions and research from the early years of the Republic, when that country was a scientific backwater, to its present position of global dominance in terms of research resources. Questions about the historical roots of organized research in universities, industrial corporations and government organizations. The American case illustrates well the processes whereby the rapidly emerging scientific profession and its varied specialisms forged links between these sectors of society. Topics: the place of science in a young resource-rich democracy, the uses of science in Progressive ideology, and the war-born relationship of science, government and the military.

Assessment: 2 essays (60 percent); tutorial assessment (40 percent).

62.082 Science, Technology and Developing Countries

Mr G. H. Bindon

Prerequisite: As for 62.022. Excluded: 62.282.

The disparities between the scientific and technical capabilities of industrialized and developing societies. The reasons for these disparities and their economic and social consequences. Aspects include: the problems of dependency; the product cycle and its impact on location of production; concepts of the 'learning curve', aspects of technology choice; bargaining processes; transnational corporations and the 'truncation' of the industrial sector; efforts to define 'appropriate' technologies; modes of technology transfer; alternate models and policies for scientific and technological development; the role of traditional technology; the impact of modern technology on international relations. Issues: the consequences of modern science and technology for the role of the military in developing countries; food and population problems; energy use; environmental impacts; class structure, etc. The social role and function of scientific communities in less developed countries and the process of diffusion of science from the centre to the periphery and the evolution of national scientific communities and institutions are addressed through the use of case studies.

Assessment: Essay (50 percent); tutorials (50 percent).

62.103 The Discovery of Time

Dr G. A. Freeland

Prerequisite: As for 62.022.

The evolution of ideas concerning time and history, including the age and history of the earth, devoting particular attention to the period from the 17th century to the present. Consideration is given to such questions as philosophical and scientific problems about the nature of time, historiographical ideas, the authority of the scriptures, social theories, the concept of Nature, the rise of the Romantic Movement, the growth of historical consciousness, relativity and displacement in time, the intention being to provide an understanding of the intellectual setting within which history and geological theories and philosophical, physical and speculative ideas about time developed.

Assessment: 2 essays (30 percent each); tutorials (20 percent); class tests (20 percent).
62.104 The Darwinian Revolution S2 L1 T1 C6
Dr D. R. Oldroyd

Scientific, philosophical, and social antecedents and consequences of Darwin’s theory of evolution. The prevailing ideas in biology before Darwin in the context of the general climate of ideas in the 18th and early 19th centuries. Darwin’s life and work in some detail, followed by a consideration of the work of Mendel and the establishment of the ‘synthetic’ theory of evolution. The impact of evolutionary ideas in such diverse fields of thought as religion, literature, music, political theory, epistemology, ethics, and the social and behavioural sciences.

Assessment: Examination (30 percent); tutorial exercises (40 percent); essay (30 percent).

62.106 Mind, Mechanism and Life S1 L2 T1 C6
Dr G. A. Freeland

Prerequisite: As for 62.022. Excluded: 62.302.
The development of scientific ideas concerning the nature of life, mind and behaviour. While the subject includes both a brief treatment of early ideas and reference to issues in contemporary biological and behavioural sciences, the main focus is on the period from the Proto-Scientific Revolution of the 16th century to the advent of the general purpose computer. Topics include: Vesalius and the School of Padua; the biological thought of William Harvey; machines and the mechanistic philosophy; Cartesianism and the mechanization of biology; classical theories of the relationship between mind and body; neurophysiology from the 18th to the early 20th century; the mechanist-vitalist disputes; Wundt, Fechner and the rise of experimental psychology; the Freudian revolution; Pavlov and the conditioned reflex; behaviourism and its critics; mind, brain, life and the computer.

Assessment: Essay (33½ percent); tutorial assessment (33½ percent); tests (33½ percent).

62.109 The History of Medical Theory and Practice SS L2 T1 C6

Not offered in 1986

Development of theory and practice in Western Medicine from the time of Hippocrates to the 20th century. Material covered in four sections: 1. ‘bedside’ medicine from antiquity to the French Revolution; 2. ‘hospital’ medicine in the early 19th century; 3. ‘laboratory’ medicine in the late 19th century; and 4. ‘technological’ medicine in the 20th century, with particular emphasis on the social role of modern medicine.

Assessment: Essays, tutorial work and examination.

62.241 Relations Between Science and the Arts S1 L2 T1 C6
Dr D. R. Oldroyd

Prerequisite: As for 62.022.

Assessment: Tutorial exercises (40 percent); essay (30 percent); examination (30 percent).

62.242 Introduction to the History of Ideas SS L2 T1 C6
Prerequisite: As for 62.022.

Not offered in 1986.
The discipline of the history of ideas. The relation of the History of Ideas to other disciplines such as History, Philosophy, History and Philosophy of Science, and Literature. An examination of the various kinds and roles of ideas in history. Ideas as characterizing periods and movements. Ideas as general metaphors and conceptual models. A detailed study of some examples selected from: Deism, Materialism, Nature, Platonism, Progress, Romanticism, Reason, Utilitarianism, Social Darwinism. A discussion of some recent and contemporary works dealing with current issues in the field of ideas.

Assessment: 2 essays (30 percent) each; tutorials (20 percent); class tests (20 percent).

62.244 Science and Belief from Newton to Einstein SS L2 T1 C6

Prerequisite: As for 62.022. Excluded: 62.212.

Not offered in 1986.
The impact of science on belief during the modern period. Newtonianism; the mathematization of science; the enlightenment and beyond; positivism; science and religion from the 17th to the 20th century; science and political thought; language, literature and science.

Assessment: Essay (40 percent); tutorials (30 percent); examination (30 percent).

62.245 The New Biotechnologies and Their Social Context S2 L2 T1 C6
Dr D. Bartels

Prerequisite: 62.110 or by permission of the Head of School for Biological Sciences students in Years 3 and 4.
The social implications of the new biotechnologies, including recombinant DNA techniques, genetic manipulation of animals and test tube babies. The present achievements and likely future developments of the new genetic and reproductive technologies, together with detailed discussions of the social, ethical and political implications of these developments. Topics include: the debate on the safety of genetic engineering; in vitro fertilization and related reproductive technologies; the ethics of human genetic engineering; university-industry interactions in biotechnology; the release into the environment of engineered organisms; mechanisms for public participation in the control of biotechnology.
62.246 Technological Development in 20th Century Australia
Prerequisite: 62.110.

The historical development of technology in Australia during the 20th century, with an analytic focus on three key dimensions: linkages between scientific research, industrial development and economic growth, technological change and its impact on Australian society; the distinctive features of Australia's geopolitical situation. Topics include: The origin, expansion and transformation of the CSIRO, the maturation and professionalization of the Australian research community; the politicization of science and the post-war legacy; the failure of Australian research to serve an industrialized economy; science policy and technological change in the 1970s and 1980s; comparison with the Canadian situation and the experience of newly industrializing countries.

62.285 Man, Woman and Deity
Dr G. A. Freeland
Prerequisite: As for 62.022.

Conceptions of deity, from earliest times to the present, in relation to changing notions of sexuality and generation; the place of human beings in relation to their environment and the cosmos; the roles of the sexes within different cultures. Topics: Archaeological evidence for early ideas concerning generation and for the relations of man to the cosmos; the Earth Mother Goddess; biology, religion and mythology; feng-shui and geomancy; the symbolism of city, temple and dwelling; religion, sexuality and generation in ancient civilizations and primitive societies, with special reference to the Australian Aborigines; the Medieval and Renaissance world views; the tyranny of the machine; conservation and stewardship in the Middle Ages; the cultus of the Virgin Mary in relation to scientific and social change; theories of biological generation; concepts of Deity and Nature in relation to science and the environmentalist movement; the Gaia hypothesis.

Assessment: 1 essay (33½ percent); 2 tests (33½ percent); tutorials (33½ percent).

62.551 The Arch of Knowledge: History of the Philosophy and Methodology of Science to 1800
Dr D. R. Oldroyd
Prerequisite: As for 62.022. Excluded: 62.561.

The development of ideas concerning the nature and methods of the sciences from antiquity to 1800: Platonism and Aristotelianism; scholastic philosophy; the realist/nominalist debate; the Paduan school; Galileo and the mathematization of nature; Bacon and Baconianism; Descartes and Cartesianism; Newton and Newtonianism; Locke as an under-labourer in the Newtonian garden; criticisms of Newtonian science and Lockeian empiricist epistemology; Leibniz, Berkeley and Hume; French empiricism and philosophy of language; Condillac; Kant's Copernican Revolution and principles of Kantian philosophy.

Assessment: 2 essays (50 percent); 2 seminar presentations (50 percent).

62.552 Modern History of the Philosophy and Methodology of Science: 1800 to the Present
Dr D. R. Oldroyd

The development of ideas concerning the nature and methods of the sciences from 1800 to the present: Herschel, Mill and Whewell (British empiricism in conflict with Kantian transcendental philosophy); Comte, Mach and 19th century positivism; Peirce, James and pragmatism; Poincaré and conventionalism; Duham and instrumentalism; Meyer and realism; Frege, Russell and logicism; Wittgenstein and Hanson; Einstein and the new science; Bridgman and operationism; Eddington and selective subjectivism; the Vienna Circle and logical positivism; Carnap and positivist reductionism; Hesse and modalism; Popper and falsificationism; Lakatos and 'research programs'; Feynman and methodological anarchism; sociologists of knowledge.

Assessment: 2 essays (50 percent); 2 seminar presentations (50 percent).

62.554 Computers, Brains and Minds: Foundations of the Cognitive Sciences
Dr P. Slezak
Prerequisite: As for 62.022. Excluded: 52.564.

Introduction to contemporary discussions of the mind, thought, intelligence and consciousness. Focus on the issues which arise in connection with the so-called 'cognitive sciences' — the disciplines which include such fields as computer science, the various neurosciences, cognitive psychology, linguistics and the philosophy of mind. Stress on the recent revolutionary developments in the computer simulation of thought or 'artificial intelligence' and linguistics, since both these areas shed new light on traditional questions concerning the mind. Questions are: Can computers think? and Is the brain a machine? Exploration of the theories, methods and philosophical issues which arise from the 'computational' or 'information processing approach' to the mind.

Assessment: Essay (40 percent); tests (30 percent); tutorials (30 percent).

Level III

62.105 Research Methods in History and Philosophy of Science
Dr D. Bartels
Prerequisite: Completion of Arts or other approved subjects, carrying at least 72 credit points; including at least 12 credit points gained in HPS subjects completed with an average grade of Credit or better. For approved subjects see under Summary of Subjects, History and Philosophy of Science. Excluded: 62.520.

Sciences prerequisite: 3 HPS subjects with an average of Credit or better or by permission of the Head of School. Excluded: 62.520.

A weekly seminar designed to prepare students to carry out Honours level research in HPS. The historiography of science, and its relations to philosophical and social studies of science, are analysed through discussion of texts representing predominant approaches to HPS during the last 30-40 years. In addition, bibliographical, editorial, and other research exercises are carried out.

Assessment: Essay, seminars and written exercises.
Level IV Honours Programs

62.014 History and Philosophy of Science Honours
Prerequisite: Completion of years 1-3 of program 6200, with marks that result in an average of Credit or better in the eight HPS units included in that program.

Candidates are required to undertake an advanced program of study in the intellectual history and/or philosophy of science. The program includes 62.105 (unless this unit has previously been completed), a seminar in Advanced Philosophy of Science, the presentation of a thesis, and such other course work as may be determined by the Head of School. Students wishing to undertake this program should contact the School of History and Philosophy of Science at the earliest opportunity.

62.024 Science Studies Honours
Prerequisite: Completion of years 1-3 of program 6200 (including 62.052, 62.062, 62.072 and 62.082), with marks that result in an average of Credit or better in the eight HPS units included in that program.

Candidates are required to undertake an advanced program of study in the social history of science and/or sociology of science and/or science policy. The program includes 62.105 (unless this unit has previously been completed), a seminar in Advanced Social Studies of Science, the presentation of a thesis, and such other course work as may be determined by the Head of School. Students wishing to undertake this program should contact the School of History and Philosophy of Science at the earliest opportunity.

68.451 Biological Laboratory Computing
Prerequisites: As for 10.021B. Excluded: 1.041, Programs 0600, 6806.

Concepts and problems in biology and biology-related areas amenable to the application of computers; experience in elementary BASIC programming and data analysis using large mainframes and laboratory microcomputers; use of microcomputers for collecting data from laboratory instruments, and for controlling instruments in experiments. Includes a segment taught in common with 1.041 Laboratory Computers in Physical Sciences.

68.430 Geology and Physics Honours
An honours program combining Geology and Physics in Program 0100, made by arrangement with the Heads of the two Schools.

68.601 Genetics of Behaviour 1
Prerequisite: 17.031. Excluded: 79.402.

Introductory behaviour genetics with most examples coming from human genetics. Single gene, polygene and chromosomal genetics which illuminate normal and abnormal behaviour; mathematical treatment of data; non-human mammalian behaviour. Practical classes and limited clinical contact.

68.602 Genetics of Behaviour 2
Prerequisite: 68.601 or 79.402. Excluded: 79.403.

Not offered in 1986.

The topics of 68.601 at a more advanced level. Continued emphasis on human behaviour with essential consideration of microbial and invertebrate studies. Extended mathematical treatment of data. Projects involving community contact replace some of the practical sessions.

Board of Studies in Science and Mathematics

68.302 Introductory Marine Science
Prerequisites: 25.601.

Ocean basins, sediments, properties of seawater, ocean circulation, coasts and coastal processes. Marine biology and ecology, primary and secondary productivity.

68.313 Physical Oceanography
Prerequisites: 10.001 or 10.011; 1.001.

The physical properties of the oceans, and their measurement. Oceanographic instrumentation. The design of small and large scale ocean experiments. Laboratory and field work.

Anatomy

70.011A Histology 1
Prerequisites: 17.031, 17.041.

Elementary theory of light and electron microscopy. Cell morphology and cell ultrastructure. Introduction to simple histological techniques. Basic histology, including the morphological and functional properties of epithelial, connective, muscle and nervous tissues. Systematic histology, including a histological examination of the major systems of the body: cardiovascular, respiratory, lymphatic, integumentary, digestive, endocrine, urinary, reproductive and nervous (including eye and ear). Two lectures per week, each lecture followed by a 2-hour practical-tutorial class. Emphasis on the ability to interpret histological sections and selected electron micrographs of mammalian tissues and organs and to relate morphology to tissue and organ function.
70.011B Mammalian Embryology S2 L2T4
Co-requisite: 70.011A.

70.011C Introductory Anatomy S1 L2T4
Prerequisites: 17.031, 17.041.
Introduction to gross anatomy, based on a study of prosected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy. Normal variations including those related to sex and age.

70.012B Visceral Anatomy S2 L2T4
Prerequisite: 70.011C.
The topographical anatomy of the great visceral systems — gastrointestinal, respiratory, cardiovascular, and genitourinary — and of the head and neck. Living and radiological anatomy.

70.012C Neuroanatomy S1 L2T4
Prerequisites: 70.011A, 70.011C.

70.013 Anatomy F
Prerequisite: Completion of the first three years of any Science program with a major in Anatomy (see Table 3 of Combined Sciences Handbook).
An honours program consisting of the preparation of an undergraduate thesis together with advanced tutorial courses and participation in School seminars.

70.304 Histology S2 L2T4
Prerequisite: 70.011A. Excluded: 70.3041. (If 70.304 is taken after 70.3041, total counts only 1 unit.)

70.3041 Histological and Histochemical Techniques S2 L1T2
Prerequisites: 17.031, 17.041 and either 41.101 or 45.301 or 70.011A. Excluded: 70.304.

70.305 Neuroanatomy S2 L1T2
Prerequisite: Credit or better in 70.012C.
In seminar format, topics in contemporary neuroanatomy, working from original papers. Includes: sensory and motor areas of the neocortex, hippocampus, cerebellum, and sense organs. Recent work on the development of the central nervous system. Recent advances in neurohistochemistry and neuroendocrinology. Students are required to undertake a substantial amount of private study.

70.306 Functional Anatomy S1 L2T4
Prerequisite: 70.011C.
Introduction to fundamental issues in the morphology and dynamics of human movement systems. Includes: physical properties of bone, muscle and connective tissue; biomechanics, movement analysis and neuromuscular control. These basic principles are applied to a detailed study of musculoskeletal components of head and neck and upper limb. Emphasis on modern analytical techniques and findings. Tutorials include detailed limb and joint dissections plus intensive study of surface and radiological anatomy.

70.307 Functional Anatomy S2 L2T4
Prerequisite: 70.306.
A continuation of 70.306. Includes: a detailed study of the musculoskeletal components of trunk and lower limb, functional morphology of muscle, biomechanics and energetics of walking and running.

Pathology

72.301 Basic and Applied Pathology F L2T1
Prerequisites: 70.011A, 70.011C, 73.111 or equivalent.
Lectures and practical class demonstrations. Includes exposition of the basic classification of pathological processes, study of the processes of cell and tissue degeneration, acute and chronic inflammation, vascular disease, including thrombosis, embolism, ischaemia and infarction. Coverage of the processes of healing and regeneration with specific reference to healing of skin wounds and the healing of fractures. Aberrations of cell growth used to introduce the subject of neoplasia and carcinogenesis. Exposure to examples of specific disease entities of general practical importance exemplifying the basic or fundamental processes such as appendicitis, pneumonia, arthritis, pulmonary and myocardial infarction as well as lung, alimentary and cerebral tumours. Correlation of pathological processes with development of specific clinical syndromes.

176
Introduction to fundamental physiological principles, dealing first with basic cellular function in terms of chemical and physical principles, and, second, with the operation of the various specialized systems in the body, for example, the cardiovascular system, whose function it is to transport materials to and from the tissues of the body; the respiratory system which must maintain the exchange of oxygen and carbon dioxide between the atmosphere and the blood; the gastrointestinal system which enables food materials to be modified by digestion and absorbed into the circulation; the kidney which is involved in the regulation of body fluid and electrolyte balance and with the excretion of the waste products of metabolism; the endocrine system which releases chemical messengers, called hormones, that are carried in the blood stream to regulate a great variety of body functions, eg metabolism and reproductive activity; the nervous system which by means of very rapidly propagated electrical impulses is responsible for all our movements, sensations, memories, emotions and consciousness itself. A substantial series of practical class experiments on these different areas of physiology is included in the course. This subject is taken by students enrolled in any of the Physiology programs.

73.121 Physiology 1B F L2T4

Prerequisites: As for Physiology 1A except that 2.131 may be accepted as a co-requisite. Excluded: 73.111.

Covers the same general areas of physiology as Physiology 1A but in less detail and with less intensive practical courses. Physiology 1B may be taken by students not intending to study physiology at Level III.

73.011A Principles of Physiology (Optometry) F L2T4

Prerequisites: As for Physiology 1A except that 2.131 may be accepted as a co-requisite. Excluded: 73.111.

Covers the same general areas of physiology as Physiology 1A but in less detail and with less intensive practical courses. Principles of Physiology is taken only by students in the BOptom degree course.

73.012 Physiology 2 F L4T8

Prerequisites: 73.111, 41.101, 41.111.

A major subject offered in third year, providing a more advanced course of study in Physiology. Students spend considerable time performing laboratory experiments which illustrate various physiological principles and introduce them to the techniques used in physiological investigation. The course is oriented towards the areas of physiology constituting the major research interests of the School. It is divided into several sections which may be available in special circumstances as separate 1 and 2 unit Level III courses, including Membrane Biology, Neuropathology and Organ Physiology, details of which are given below.

73.012A Membrane Biology S1 L2T4

For entry consult Head of School of Physiology and Pharmacology.

The properties of cell membranes including permeation of ions, solutes and water across membranes, generation of electrical signals in nerve and muscle cells produced by ion movements, and transmission of information between cells. Stress on modern research techniques and on a critical examination of appropriate classical papers.

73.012B Neuropathology S1 L2T4

For entry consult Head of School of Physiology and Pharmacology.

A detailed study in two broad areas, neural mechanisms in sensation and the control of posture and movement. Includes the regulation of visceral and other autonomic effector structures and the neural substrates and correlates of certain higher functions such as speech, memory and consciousness. Directed towards the experimental analysis of nervous system function, to introduce the techniques and approaches used in neuropsychological research. Sensation: an integrated lecture and experimental course is given on somatic, visual and auditory sensory mechanisms. Laboratory work: students conduct psychological experiments to evaluate subjective sensory capabilities. The neural mechanisms underlying these subjective abilities are examined in animals in electrophysiological experiments which involve recording the impulse patterns from individual neurones within the sensory systems. Students are required to analyze the mechanisms employed by the nervous system to code information about specific parameters of sensory stimuli.

Lectures and experiments on motor function are directed towards an understanding of the various reflex and voluntary mechanisms controlling posture and movement. The section dealing with nervous control of visceral function is concerned mainly with regulation of cardiorespiratory activity.

73.012C Organ Physiology S2 L4T8

Prerequisites: for 73.012A, B, C normally as for 73.012. For entry consult Head of School of Physiology and Pharmacology.

An advanced study dealing with major physiological systems of the body and usually includes detailed segments from: the cardiovascular and respiratory systems; endocrines, kidney, fetal physiology, gastrointestinal physiology and exercise physiology. Emphasis on the functions of individual organs as well as the overall operations of particular body systems including their neural control mechanisms. Emphasis on the approaches and techniques involved in physiologically research. Students are therefore required to carry out an extensive series of experiments which usually employ mammalian (including human) preparations.

73.012F Clinical Physiology FT3

Prerequisites: 73.111; 41.101; 41.111 or 2.002B; 70.011A; 70.011C; 80.014.

This Level III subject is only available in course 3820, and only to those students not undertaking Physiology 2. The subject is intended to supplement the Level II, Physiology 1A course in order to provide an adequate grounding for double degree students in applied or clinical aspects of physiology before they enter Year 3 of the Medical Course.

Covers aspects of normal and disordered physiology in the following areas: cardiovascular and cardiorespiratory mechanisms; body fluid balance and kidney function; the endocrine system; central nervous system; gastrointestinal physiology.
73.013 Honours

73.022 Pharmacology FL2T4

Prerequisite: 73.111 or 73.121. Co-requisites: 73.012 or 41.102A & 41.102B or two Level III Chemistry units.

Includes a study of the absorption, distribution and metabolism of drugs as well as a study of the pharmacology of the autonomic nervous system, the cardiovascular system, the central nervous system, the kidney, the endocrine system and also a study of pharmacokinetics. A practical class program complements the lecture program by demonstrating a variety of basic pharmacological techniques.

73.023 Honours

Honours Study

Depending on their undergraduate records students may be accepted by the Head of the School to undertake a fourth year of study towards an honours degree in Physiology or in Pharmacology. This would usually be done by students planning a career in either of these fields. During the honours year the student carries out a research project under the supervision of a staff member and submits a thesis based on the research project. The student can usually nominate the general research area in which he or she wishes to work from those being studied in the School. Within this research area the student is given a specific project by the supervisor.

79.201 Population Genetics S1 L2T3

Prerequisite: one unit of statistical methods, or theory, as approved by the Head of School.

The genetic structure of populations: demographic structure, genetic relationships, mating systems (random and assortative mating, in-breeding, sexual selection), finite populations, systematic forces (selection, mutation, migration), genetic distance between populations, genetic load, stable populations, molecular population genetics, evolutionary trees; observed human population structures; computer methods.

79.202 Quantitative Methods in Human Genetics S2 L2T3

Prerequisites: one unit of genetics and one unit of statistical methods, or theory, as approved by the Head of School.

Collection, interpretation and uses of genetical information relating to human populations: design of surveys, including twin and family studies; estimation and applications of genic and genotypic frequencies, selective values, mutation and migration rates, coefficients of kinship, inbreeding and assortative mating, effective population sizes, recombination fractions and heritabilities, segregation analysis; risks of recurrence of disease; genetical consequences of human intervention; computer methods.

79.302 Biochemical Genetics of Man S1 L2T4

Prerequisites: 41.101, 43.101.

Inherited variation of blood group antigens, serum proteins and red-cell enzymes, their possible selective roles, and their application to the study of differences between and within populations. Application of statistical techniques to analyzing population data.

Community Medicine

79.201 Population Genetics

Prerequisite: one unit of statistical methods, or theory, as approved by the Head of School.

The genetic structure of populations: demographic structure, genetic relationships, mating systems (random and assortative mating, inbreeding, sexual selection), finite populations, systematic forces (selection, mutation, migration), genetic distance between populations, genetic load, stable populations, molecular population genetics, evolutionary trees; observed human population structures; computer methods.

Faculty of Medicine

80.014 Human Behaviour FL3

Prerequisites: No formal prerequisites. Students normally take the subject in Year 2 of Course 3820.

The research techniques, theoretical concepts and basic findings of the behavioural sciences, especially as these relate to medicine. Special emphasis is placed on the development of skills for the critical evaluation of scientific data concerning human behaviour and the oral and written expression of such evaluations. Topics include: scientific methods in behavioural sciences; the influence of heredity and environment on behaviour; human motivation and emotion; thinking and language; learning and memory; the psychology of stress; the psychophysiology of sleep; the psychology of aging; addictive behaviours; altered states of consciousness; gender differences; and the psychology of interpersonal behaviour. In addition to attending seminars, students carry out experimental practical work.

For further information regarding the following subjects see the Faculty of Engineering Handbook.
Graduate Study:
Faculty of Biological Sciences
Faculty of Science
Faculty of Biological Sciences and Faculty of Science Enrolment Procedures

All students re-enrolling in 1986 or enrolling in graduate courses should obtain a copy of the free booklet *Enrolment Procedures 1986* available from School Offices and the Admissions Office. This booklet provides detailed information on enrolment procedures and fees, enrolment timetables by Faculty and course, enrolment in miscellaneous subjects, locations and hours of Cashiers and late enrolments.

Faculty of Biological Sciences

Facilities are available in each of the Schools for research leading to the degrees of Master of Science and Doctor of Philosophy. The School of Biotechnology offers a graduate diploma course in Biochemical Engineering, a graduate diploma in Biotechnology and a Master's course in Biotechnology by formal study, and the School of Psychology offers Master of Psychology and Master of Science (Psychology) degree courses.

Higher Degree Qualifying Program

Students without a BSc Honours degree wishing to register as higher degree candidates must usually complete a qualifying program, admission to which is subject to the approval of the Faculty Higher Degree Committee.

Applicants must normally have a degree or diploma in an appropriate field of study from an approved university or institution, and in the case of a diploma, appropriate professional experience.

Undergraduates of this University may be admitted to the full-time or part-time Honours undergraduate course. Other applicants may be admitted to a full-time, part-time or external qualifying program. The duration of the qualifying program is a minimum of one year for full-time and two years for part-time or external students.

Content of Qualifying Program

The qualifying program consists of the whole of the usual program for the final Honours year of the undergraduate course, the following being the prescribed Level IV subjects:

- 41.103 Biochemistry Honours
- 42.103 Biotechnology Honours
- 43.103 Botany Honours
- 44.103 Microbiology Honours
- 12.403 Psychology 4 (Thesis)
- 45.103 Zoology Honours

The qualifying program is graded in the usual way, and in appropriate cases the results are expressed as a grading equivalent to Honours.

Alternative Qualifying Program

Applicants who cannot attend the University regularly for the above programs may be admitted as external qualifying students to a program similar to a standard Honours year. The following are the alternative qualifying subjects:

- 41.999G Biochemistry
- 42.999G Biotechnology
- 43.999G Botany
- 44.999G Microbiology
- 12.999G Psychology
- 45.999G Zoology
The results in alternative qualifying subjects are graded Pass or Fail only.

Fees
Candidates enrolled in the Alternative Qualifying Program are exempt from student service fees.

Biotechnology

5320
Biochemical Engineering Graduate Diploma Course
Graduate Diploma GradDip

The School of Biotechnology, conjointly with the School of Chemical Engineering and Chemical Technology, offers a course in biochemical engineering which leads to the award of a graduate diploma (GradDip). The course is open to graduates in the biological sciences, chemistry, chemical engineering or agriculture, and can be completed in one year of full-time or over a longer period by part-time study. It contains a component of graduate level 'bridging' subjects, designed to facilitate the introduction of graduates with a variety of backgrounds to the current practice of biochemical engineering.

The normal entrance requirement is an appropriate degree or equivalent qualification in biological sciences, chemistry, chemical engineering or agriculture. Intending students are referred to the conditions for the award of Graduate Diplomas set out later in this handbook.

A degree in a science-based course is required for admission. If the degree course has not included a biology component, the candidate is required to undertake some basic biology training as a prerequisite or co-requisite.

Under normal circumstances, students whose previous training has included a substantial component of biotechnology will not be admitted to the course.

The course comprises study of undergraduate and graduate formal subjects, plus extensive laboratory training in biotechnology.

The diploma is awarded after one year's full-time study, consisting of an average of 19 hours per week, or two years part-time study, consisting of an average of 9½ hours per week. The program includes the listed obligatory subjects plus sufficient of the listed elective subjects to meet the hours of study required. The electives include subjects necessary for students without previous tuition in biochemistry and/or microbiology, as well as alternatives for those with previous tuition in these disciplines. The choice of electives in each individual case is subject to approval by the Head of School.

Obligatory Subjects

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.215G Practical Biotechnology</td>
<td>7</td>
</tr>
<tr>
<td>42.102A Biotechnology A</td>
<td>6</td>
</tr>
</tbody>
</table>

Elective Subjects

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.104G Graduate Seminars</td>
<td>2</td>
</tr>
<tr>
<td>42.111G Reading List in Biotechnology (Microbiology)</td>
<td>3</td>
</tr>
<tr>
<td>42.112G Reading List in Biotechnology (Biochemistry)</td>
<td>3</td>
</tr>
<tr>
<td>42.305G Case Studies</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.213G Biochemical Methods</td>
<td>0</td>
</tr>
<tr>
<td>42.214G Biotechnology</td>
<td>0</td>
</tr>
<tr>
<td>42.283G Process Dynamics and Biochemical Engineering Design</td>
<td>0</td>
</tr>
<tr>
<td>44.121 Microbiology 1</td>
<td>6</td>
</tr>
</tbody>
</table>

Master of Science (Biotechnology)

The School also offers a formal graduate course at the masters' level (Master of Science (Biotechnology)). The course includes advanced treatments of all areas of biotechnology. It is open to graduates with a four-year degree in biotechnology or a related discipline, or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Intending students are referred to Conditions for the Award of Graduate Degrees set out later in this handbook.
The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The minimum period of registration before the award of the degree is two sessions for full-time students and four sessions for part-time students.

To qualify for the degree students must satisfy the examiners in the prescribed examinations, which include the submission and assessment of a report on the specified project.

8260
Master of Science (Biotechnology) Graduate Course

Master of Science (Biotechnology)
MSc(Biotech)

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.306G Project</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.303G Biochemical Process Control</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>42.304G Biodeterioration and Biodegradation</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.301G Microorganism Productivity</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>42.302G Enzyme Technology</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>42.305G Case Studies</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

Psychology

Head of School
Dr K. R. Llewellyn
Administrative Officer
Mr T. J. Clulow

The School of Psychology offers courses leading to the award of the degrees of Master of Psychology and Master of Science (Psychology).

Master of Psychology

This course is designed to provide professional training at an advanced level for honours graduates in psychology.

The normal entrance requirements are:

1. a degree of Bachelor, with Honours Class I or Class II in Psychology;
2. completion of a research thesis or research project in the Honours fourth year;

and

3. completion of approved courses in learning, perception and cognition, physiological psychology, psychological statistics, psychometrics and abnormal psychology, or in such other fields as may be prescribed by the Head of the School.

A student who does not satisfy the above requirements may be permitted to undertake a qualifying course prescribed by the Head of School, satisfactory completion of which will be accepted as meeting entrance requirements.

Selection of students is based on academic qualifications and suitability for the course. It may be necessary to limit the number of new enrolments in any year. An application to register for the degree of Master of Psychology must be made on the prescribed form which shall be lodged with the Registrar at least two months before the commencement of the academic year.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students.

To qualify for the degree, students must satisfy the examiners in respect of their academic attainments, and their skill and competence in relevant aspects of practical professional work.

The course consists of lectures, seminars, demonstrations and practical work, supervised clinical and community work, and a research thesis.

The major aims of the course are: 1. to acquaint students with the issues, findings and problems of contemporary clinical and community psychology; and 2. to equip them with basic clinical skills and techniques. A total of 250 hours of supervised clinical practice must be completed in the first year, and a further 430 hours in the second year.

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

It should be noted that the course extends over two calendar years and not just four academic sessions with vacation breaks.

8250
Master of Psychology Graduate Course—Full-time

Master of Psychology
MPsy chol

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.231G Professional Practice: 250 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.235G Community Psychology</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12.237G Biological Aspects of Behavioural Disturbance</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12.239G Research and Evaluation Methods in Clinical and Community Psychology</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12.240G Graduate and Clinical Seminars</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Year 1 subjects continued overleaf
Master of Science (Psychology)

The degree is available only to students who hold the degree of Doctor of Philosophy in an approved area of psychology. In combination with the PhD, the degree is designed to train candidates for academic positions in clinical psychology and to provide the background necessary for advancement to senior posts in applied fields.

The minimum period of full-time registration for the degree is three sessions, and the minimum period of part-time registration is six sessions. Students with advanced standing may have the minimum period reduced by up to one-third of the program.

Assessment of student performance is by sessional examinations, class tests and seminar papers.

8255
Master of Science (Psychology) Graduate Course—Full-time

Master of Science (Psychology)
MSc (Psychol)

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.231G Professional Practice: 250 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.237G Biological Aspects of Behavioural Disturbance</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12.239G Research and Evaluation Methods in Clinical and Community Psychology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.241G Graduate Colloquium</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12.243G Experimental Clinical Psychology</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12.244G Psychological and Behavioural Assessment</td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.245G Behavioural Health Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.246G Behavioural Management in Institutions*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.247G Graduate Seminars in Clinical Psychology</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.230G Developmental Disabilities and Disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.231G Professional Practice: 200 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.234G Graduate Colloquium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.243G Experimental Clinical Psychology</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12.248G Community Psychology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Part-time students normally are expected to take half the full-time program in any one session.

Faculty of Science

Facilities are available in each of the schools for research leading to the award of the higher degrees of Master of Science and Doctor of Philosophy.

The following formal courses leading to graduate awards are also offered:

Faculty of Science

School of History and Philosophy of Science

School of Optometry

School of Chemistry

School of Mathematics

School of Physics

For admission to registration for all degrees of Master (except Master of Statistics), candidates must have completed one of the following:

1. An approved degree of Bachelor with Honours.
2. An approved three year course leading to the degree of Bachelor plus an approved qualifying program. Suitable professional and/or research experience may be accepted in lieu of the qualifying program.
3. An approved four year course leading to the degree of Bachelor.

Applicants for registration for the degree of Master of Statistics shall have been admitted to the degree of Bachelor with major studies in the field of statistics in the University of New South Wales or other approved university.

The manner of presentation and examination of reports of projects undertaken as part of formal courses shall be determined by the Head of the School.

The conditions governing these awards are set out later in this handbook.
5530
Physical Oceanography Graduate Diploma
Course
Graduate Diploma in Physical Oceanography
Grad Dip

This graduate diploma is intended to train graduates in the physical sciences or engineering in the basic techniques of physical oceanography.

It is intended to develop student skills in planning and execution of oceanographic experiments, in the theory of oceanographic fluid mechanics, the applications and limitations of oceanographic equipment and of commonly used data analysis techniques.

Recent rapid developments in marine science coupled with the relative scarcity of persons able to take up support positions demonstrate the need for skilled persons who will be able to assist oceanographic research with minimum training. This program is aimed at providing such skilled graduates.

Intending students are referred to the conditions for the award of graduate diplomas set out elsewhere in this handbook.

Basic entry qualifications for this program are a degree in Engineering or in Science with major studies in mathematics or physics.

The program, requiring 28 credits for completion, consists of a major project (67.001G) worth 50% of the total accreditation for the program, the remaining 50% being comprised as indicated below.

1. Compulsory Subjects
 67.001G Experimental Project 14 credits
 67.002G Geophysical Fluid Dynamics 4 credits
 67.003G Instrumentation 1 credit
 67.004G Applied Data Analysis 2 credits

2. Elective Subjects
 67.005G Theoretical Project 7 credits
 6.380G Data acquisition and analysis in Remote Sensing 1 credit
 6.387G Programming and software in Remote Sensing
 Appropriate existing subjects within mathematics, physics or engineering chosen on the basis of individual background

Here 1 credit is defined as being 1 hour per week for one session. The course may be taken over one year (full-time) or two years (part-time).

8770
Master of Chemistry Graduate Course
Master of Chemistry
MChem

Three programs are available, emphasizing different areas of chemistry. Each program consists of a number of lecture courses (each separately examinable), laboratory instruction and visits to laboratories. In addition each student undertakes a short research project, with a research report assessed by two examiners. The student may also be required to undergo an oral examination.

Program 2.581G Advanced Analytical Chemistry and 2.583G Analytical Science (Chemistry) are available only on a full-time basis; however, the qualifying program may be taken part-time.

Program 2.582G Food and Drug Chemistry may be taken either full-time or part-time.

Details of the programs are:

2.581G Advanced Analytical Chemistry

This program should be of interest to chemistry graduates who are involved in the practice or teaching of analytical chemistry.

1. 2.581G Advanced Analytical Chemistry Lecture Courses
 Students are required to take all of the following nine core courses of lectures:
 (1) Analytical flame spectroscopy;
 (2) Advanced electrochemical analysis;
 (3) Chromatography;
 (4) Analytical chemistry of pollutants;
 (5) Emission, IR, Mass and XRF spectroscopy;
 (6) Calculations and statistics in analytical chemistry;
 (7) Chemical analysis of organic and biological materials;
 (8) Operations and applications of minicomputers in chemistry;
 (9) Chemical microscopy.

 The lecture time for the whole course is a minimum of 140 hours.

2. Laboratory Instruction and Visits to Laboratories
 An additional minimum of 150 hours is spent by students in selected areas of laboratory practice, instruction and visits to laboratories.

3. Research Project
 A short research project (with report) of approximately 4 months’ duration full-time (400 hours laboratory work) is selected in relation to the combined interests of the student and the supervisor.

2.582G Food and Drug Chemistry

This program involves an advanced study of the chemistry, stability, mode of action (where applicable) and analysis of food constituents, food additives and selected drugs. Entry to this program is excluded in the case of applicants who have completed the Graduate Diploma in Food and Drug Analysis (course 5510).
1. Food and Drug Chemistry Lecture/Laboratory Courses

(1) Food and Drugs 1
(2) Treatment of Analytical Data
(3) Instrumental Techniques in Food and Drug Analysis
(4) Food and Drugs 2
(5) Toxicology, Occupational and Public Health

The lecture time for the whole course is 132 hours. An additional 308 hours is spent by students in formal laboratory work. Students who have not previously taken an approved course in microbiology are required to complete unit 44.101 Introductory Microbiology (84 hours) in addition to the above program.

2. Research project

A short research project (with report) of approximately 4 months’ duration full-time (400 hours laboratory work) is selected in relation to the combined interests of the student and the supervisor.

2.583G Analytical Science (Chemistry)

This program provides a more broadly based training in methods of chemical analysis than 2.581G.

1. Formal course work

Students are required to complete all of the following courses of lectures and associated laboratory work.

(1) Classical methods of chemical analysis
(2) Instrumental analysis
(3) Toxicology, occupational and public health
(4) Special instrumental analysis methods

The lecture time for the whole course is 98 hours. An additional 196 hours is spent in formal laboratory sessions.

2. Project

A short project (with report) requiring 400 hours of laboratory work, which may be either original research work or development work. The field of work will be selected considering the combined interests of the student and supervisor.

5510 Food and Drug Analysis Graduate Diploma Course

Diploma in Food and Drug Analysis
DipFDA

According to demand the course may be available on a full-time basis over one year or on a part-time basis over two years.

The course in food and drug analysis is designed to provide systematic training at an advanced level for chemists who wish to extend their acquaintance with analytical techniques, and thus is suitable for those who may wish to practice as public analysts. It is also suitable for those who wish to work in the food or pharmaceutical industry. The prime aim is to present discussions of the principles and design of analytical methods which are therefore presented on a comparative basis.

It is considered that the techniques involved in the handling of foods and drugs together with those discussed in the ancillary subjects of the course provide a firm basis of approach to many other fields.

Intending students are referred to the conditions for the award of graduate diplomas set out later in this handbook.

Year 1

<table>
<thead>
<tr>
<th>Part-time**</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.231G Food and Drugs 1</td>
<td>4</td>
</tr>
<tr>
<td>2.371G Treatment of Analytical Data</td>
<td>1*</td>
</tr>
<tr>
<td>2.281G Instrumental Techniques in Food and Drug Analysis</td>
<td>4</td>
</tr>
<tr>
<td>44.101 Introductory Microbiology</td>
<td>9</td>
</tr>
</tbody>
</table>

Year 2

2.242G Food and Drugs 2	4
2.251G Toxicology, Occupational and Public Health	3
44.101 Introductory Microbiology	3†

*For 20 weeks.
†Offered in Session 1 only, at 6 hpm.
**Full-time students take Years 1 and 2 in the one year.

History and Philosophy of Science

Head of School
Associate Professor W. R. Albury

The School of History and Philosophy of Science offers a graduate program of coursework and research leading to the award of the degree of Master of Science and Society. The course is designed for graduates in the natural sciences, the applied sciences, technology and the social sciences or other relevant disciplines, who have a special interest in or concern with problems in the contemporary relationships between science and society, government and politics. The conditions for the award of the degree are set out later in this handbook.

8780 Master of Science and Society Graduate Course

Master of Science and Society
MScSoc

The MScSoc pass program comprises 8 units of the course, which should normally be completed over 4 sessions of part-time (evening) study. A unit of the course requires 28 hours of seminar classwork and additional private study.

The following core units are common to the programs of all candidates:

62.716G Science and Society in the Twentieth Century*
62.713G Project*

Candidates may select 4 further units from the following list:
62.709G The Scientific Community
62.710G Science, Philosophy and Social Values
62.714G Knowledge, Power and Public Policy
62.715G Cause, Belief and Progress in the History of Science
62.718G Science in National Cultures: Comparative Historical Perspectives
62.720G Philosophy of Science and the Sociology of Knowledge
30.568G Technology and Alternative Development
53.309G Social and Technological Forecasting (2 units)
15.716G Science, Technology and Economic Development

The School of Mathematics offers graduate courses leading to the award of the degrees of Master of Mathematics (MMath) and Master of Statistics (MStats). (The School also offers the pass degree of MA. For further details see the Faculty of Arts Handbook.)

8740 Master of Mathematics Graduate Course

Master of Mathematics

MMath

The Master of Mathematics Course is intended for honours graduates in pure or applied mathematics, but others may be admitted after completing a qualifying course. The course may be completed in one year of full-time or two years of part-time study. The course may be taken as a preliminary step towards the award of a PhD in mathematics. It also provides advanced training for persons specializing in the teaching of mathematics in tertiary institutions. In addition an appropriate program may provide training for those employed or seeking employment in the area of industrial mathematics.

The program consists of seven lecture courses from 10.194G, the duration of each being two hours per week for one session. With the approval of the Head of the School of Mathematics a student may substitute for one or more of these lecture courses a reading course supervised by a member of staff. Again with this approval a student may substitute for at most two of these courses graduate courses offered either within or outside the School of Mathematics. Students are also required to participate in relevant departmental seminars. In addition, students are required to undertake a project supervised by a staff member, consisting of either a critical review of the literature in a specific field of mathematics, or a short research project. It is anticipated that students will spend three hours per week for two sessions on their project. Each candidate’s proposed program of study requires the approval of the Head of the School of Mathematics.

The conditions for the award of the degree are set out later in this handbook.

8750 Master of Statistics Graduate Course

Master of Statistics

MStats

The Master of Statistics Course covers a wide range of statistical theory and practice and provides advanced training for practising statisticians. The course may be completed in two years of full-time or four years of part-time study, and it is available to graduates with a pass degree in statistics or an honours degree in a related field (commonly mathematics) with supporting study in statistics. Honours graduates in statistics may be exempted from a maximum of half the course. The conditions for the award of the degree are set out later in this handbook.

The academic requirement for the degree is 24 credits.

Each candidate’s program of study must be approved by the Head of the School.

Compulsory Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.381G</td>
<td>Experimental Design 1</td>
<td>2</td>
</tr>
<tr>
<td>10.383G</td>
<td>Stochastic Processes</td>
<td>2</td>
</tr>
<tr>
<td>10.385G</td>
<td>Multivariate Analysis 1</td>
<td>2</td>
</tr>
<tr>
<td>10.390G</td>
<td>Statistical Inference</td>
<td>2</td>
</tr>
<tr>
<td>10.392G</td>
<td>Project</td>
<td>2</td>
</tr>
</tbody>
</table>

Elective Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.382G</td>
<td>Experimental Design 2</td>
<td>2</td>
</tr>
<tr>
<td>10.384G</td>
<td>Time Series</td>
<td>2</td>
</tr>
<tr>
<td>10.386G</td>
<td>Multivariate Analysis 2</td>
<td>2</td>
</tr>
<tr>
<td>10.387G</td>
<td>Sample Survey Design</td>
<td>2</td>
</tr>
<tr>
<td>10.388G</td>
<td>Sequential Analysis</td>
<td>2</td>
</tr>
<tr>
<td>10.389G</td>
<td>Non-Parametric Methods</td>
<td>2</td>
</tr>
<tr>
<td>10.391G</td>
<td>Special Topic* A</td>
<td>2</td>
</tr>
<tr>
<td>10.393G</td>
<td>Special Topic* B</td>
<td>2</td>
</tr>
<tr>
<td>10.394G</td>
<td>Discrete Distributions</td>
<td>2</td>
</tr>
<tr>
<td>10.212M</td>
<td>Optimal Control Theory or</td>
<td>3</td>
</tr>
<tr>
<td>10.222M</td>
<td>Higher Optimal Control Theory</td>
<td></td>
</tr>
</tbody>
</table>

Up to 6 credits may be taken in graduate subjects offered by other Departments or Schools within the University, subject to the approval of the Head of School. Such subjects include:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.403G</td>
<td>Theory of Land Use/Transport Interaction</td>
<td>2</td>
</tr>
<tr>
<td>8.405G</td>
<td>Urban Transport Planning Practice</td>
<td>2</td>
</tr>
<tr>
<td>8.417G</td>
<td>Transport and Traffic Flow Theory</td>
<td>4</td>
</tr>
<tr>
<td>10.212L</td>
<td>Optimization Methods or</td>
<td>3</td>
</tr>
<tr>
<td>10.222L</td>
<td>Higher Optimization Methods</td>
<td></td>
</tr>
<tr>
<td>15.423</td>
<td>Econometrics B</td>
<td>2</td>
</tr>
<tr>
<td>18.771G</td>
<td>Simulation in Operations Research</td>
<td>2</td>
</tr>
</tbody>
</table>

*To be arranged: eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.
Optometry

Head of School
Professor H. B. Collin

The School of Optometry offers a formal graduate course leading to the award of the degree of Master of Optometry (MOptom). This course comprises the study of three elective graduate subjects and of advanced Clinical Optometry, together with the preparation of a thesis on an assigned project. It may be completed in one year of full-time study, or (to meet the needs of practising optometrists) in two or three years of part-time study. The course provides advanced training in clinical and theoretical aspects of Optometry, with opportunities for specialization in fields such as contact lenses, occupational optometry, and orthoptics.

Conditions for admission and for the award of the degree of Master of Optometry are set out later in this handbook.

8760
Master of Optometry Graduate Course

Master of Optometry
MOptom

<table>
<thead>
<tr>
<th>Elective Graduate Subjects</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.701G Advanced Clinical Optometry</td>
<td>4</td>
</tr>
<tr>
<td>Three elective graduate subjects chosen from the list below (each 4 hours)</td>
<td>12</td>
</tr>
<tr>
<td>31.799G Project</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

The six elective graduate subjects offered are quite independent, and any three of them are suitable for a student seeking advanced professional training of a general nature. If clinical specialization is aimed at, the student would be advised to elect the graduate subjects shown below:

Specialization

Graduate Subjects

Contact Lenses
1. Advanced Contact Lens Studies
2. Advanced Contact Lens Practice
3. Clinical Photography

Occupational Optometry
1. Occupational Optometry
2. Pleothoptics and Binocular Vision
3. Advanced Physiological Optics

Orthoptics
1. Pleothoptics and Binocular Vision
2. Clinical Photography

Physics

Head of School
Associate Professor J. C. Kelly

Executive Assistant to Head of School
Dr. J. R. Hanscomb

Administrative Officer
Mrs. P. Shaw

8730
Master of Physics Graduate Course

Master of Physics
MPhysics

The School of Physics offers a graduate course leading to the award of the Master of Physics degree (MPhysics).

The Master of Physics degree course is intended for honours graduates in physics. Others may be admitted if they have submitted evidence of such academic and professional attainments as may be approved by the Faculty of Science on the recommendation of its Higher Degree Committee. Applicants with other qualifications may be admitted after completing a qualifying examination approved by the Faculty of Science.

The subject matter of the course provides an advanced training in a branch of physics, the topic of which is determined during the year preceding that in which it is offered.

Students undertaking the masters course by formal study must enrol in one of the following subjects:

1. 1.801G Energy Alternatives
2. 1.802G Astrophysics
3. 1.803G Acoustics
4. 1.804G Biophysics
5. 1.805G Applied Physics

Enrolment in any one of the above subjects normally involves at least five units of lecture material, a literature survey, and a small research project.
A subject is defined by the Professorial Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University.'

Each approved subject of the University is identifiable both by number and by name as this is a check against nomination of subject other than the one intended.

Subject numbers are allocated by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the number before the decimal point.

2. Each subject number is unique and is not used for more than one subject title.

3. Subject numbers which have not been used for some time are not used for new subject titles.

4. Graduate subjects are indicated by a suffix 'G' to a number with three digits after the decimal point. In other subjects three or four digits are used after the decimal point.

Servicing Subjects are those taught by a school or department outside its own faculty, and are published at the end of the entry for the relevant school. Their subject descriptions are also published in the handbook of the faculty in which the subject is taught.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information which may be supplied about each subject: S1 (Session 1); S2 (Session 2); F (Session 1 plus Session 2, ie full year); S1 or S2 (Session 1 or Session 2, ie choice of either session); SS (single session, ie which session taught is not known at time of publication); L (Lecture, followed by hours per week); T (Laboratory/Tutorial, followed by hours per week); Sem (Seminar, followed by hours per week) hpw (hours per week); C (Credit units), CR (Credit Level), DN (Distinction); R (after subject number) Broken Hill syllabus.

The identifying numerical prefixes for each subject authority are set out below.
<table>
<thead>
<tr>
<th>School, Department etc</th>
<th>Faculty</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics</td>
<td>Science</td>
<td>189</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td>Science</td>
<td>189</td>
</tr>
<tr>
<td>School of Metallurgy</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Electrical Engineering and Computer Science</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Mining Engineering</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Civil Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Wool and Pastoral Sciences</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>Science</td>
<td>190</td>
</tr>
<tr>
<td>School of Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Psychology</td>
<td>Biological Sciences</td>
<td>192</td>
</tr>
<tr>
<td>School of Textile Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>School of Accountancy</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>School of Economics*</td>
<td>Commerce</td>
<td>193</td>
</tr>
<tr>
<td>School of Health Administration</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>School of Mechanical and Industrial Engineering (Industrial Engineering)</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Department of Industrial Arts</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Nuclear Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Applied Geology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Department of General Studies*</td>
<td>Board of Studies in General Education</td>
<td></td>
</tr>
<tr>
<td>School of Geography</td>
<td>Applied Science*</td>
<td></td>
</tr>
<tr>
<td>School of Marketing</td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>School of Surveying</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Organizational Behaviour*</td>
<td>Commerce</td>
<td>193</td>
</tr>
<tr>
<td>School of Optometry</td>
<td>Science</td>
<td>193</td>
</tr>
<tr>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Building</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Town Planning</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Landscape Architecture</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>School of Food Science and Technology</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Professorial Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Biochemistry</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>School of Biotechnology</td>
<td>Biological Sciences</td>
<td>194</td>
</tr>
<tr>
<td>School of Botany</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>School of Microbiology</td>
<td>Biological Sciences</td>
<td>195</td>
</tr>
<tr>
<td>School of Zoology</td>
<td>Biological Sciences</td>
<td>195</td>
</tr>
<tr>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
<td></td>
</tr>
<tr>
<td>Faculty of Engineering</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry*</td>
<td>Applied Science</td>
<td>196</td>
</tr>
<tr>
<td>School of English</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of History</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Philosophy</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Sociology*</td>
<td>Arts</td>
<td>196</td>
</tr>
<tr>
<td>School of Political Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Librarianship</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>School of French</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Theatre Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Education</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>Department of Russian</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Faculty of Arts (Bachelor of Social Science)</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Department of Music</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of History and Philosophy of Science*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Social Work</td>
<td>Professional Studies</td>
<td></td>
</tr>
<tr>
<td>School of German Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>School of Spanish and Latin American Studies</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Subjects Available from Other Universities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>Science</td>
<td>197</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Anatomy</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Pathology*</td>
<td>Medicine</td>
<td>198</td>
</tr>
<tr>
<td>School of Physiology and Pharmacology*</td>
<td>Medicine</td>
<td>198</td>
</tr>
<tr>
<td>School of Surgery</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Obstetrics and Gynaecology</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Paediatrics</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Psychiatry</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Medical Education</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>School of Community Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Faculty of Medicine</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Medicine/Science/Biological Sciences</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Australian Graduate School of Management</td>
<td>AGSM</td>
<td></td>
</tr>
<tr>
<td>Faculty of Law</td>
<td>Law</td>
<td></td>
</tr>
<tr>
<td>Division of Postgraduate Extension Studies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physics

Not all graduate subjects are necessarily offered in any one year.

1.118G Methods of Theoretical Physics

For PhD degree, MSc and MPhysics degree course students.

Response functions and Green’s functions. Symmetry and group theory. Many particle systems. Tensor calculus and variational techniques.

1.128G Methods of Experimental Physics

For PhD degree, MSc and MPhysics degree course students.

1.801G Energy Alternatives

For MPhysics degree course students.

A study of energy alternatives: solar thermal and solar electric energy; energy from fossil fuels; conversions, hydrogen, nuclear fusion and fission, wind, ocean and geothermal sources of energy; political and sociological aspects of energy alternatives.

1.805G Applied Physics

For MPhysics degree course students.

A study of advanced physical instruments, data handling and control, measurement technology and materials science with special reference to physics in industry.

Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further information regarding the following subject see the Faculty of Architecture handbook.

1.927G Acoustic Theory S1 L1 ½ T ½

2 credit points.

Sources of acoustic radiation; simple, dipole, quadrupole, plane, impulsive source, random source, aerodynamic sources. Free field propagation in fluids, interference and diffraction, absorption, shock waves. Boundary effects; reflection and transmission at fluid/fluid and fluid/solid interfaces, fluid waveguides, solid waveguides. Reception and analysis; transducers. Fourier analysis, statistical methods, impulse measurement.

Chemistry

2.231G Food and Drugs 1 and 2 and 2.242G F L1T3

Regarded as a unit, and may be spread over two years.

Treatment of the food section develops from considerations of proximate analysis — gross determination of classes of food components — to detailed examinations within the groups for more important compounds. Conversely the course in drug work progresses from the examination of simple materials, including identification of unknowns by macro and micro procedures to the examination of compounded materials. A background section on food handling is included, while some attention is given to chemotherapy etc in the drug course.

Subject-matter covers treatment of the main classes of foodstuffs, such as: Foods: Origin, general introduction to analytical methods, relation to likely adulterations and impurities, groups of constituents; carbohydrates, sugars, by physical and chemical methods, jams and preserves, pectin, agar, alginates, oils and fats; protein foods, meat, gelatin, fish products; dairy products, milk, cream, cheese, etc; fermented liquids, beer, wine, spirits, minor constituents. Principles of food processing, dehydration, quick freezing, canning; cereal products; beverages and flavouring essences; nutritional aspects, vitamins in detail; preservatives and food additives; radiation chemistry of food products. Drugs: Elements of pharmacology chemotherapy and modes of action, galenicals, identification tests for alkaloids, etc. Analytical chemistry of analgesics, sedatives, hypnotics, steroid hormones, antihistamines, etc. Antibiotics, penicillin, streptomycin, aureomycin, sulphonamides. Activity of enzyme preparations; antiseptics and disinfectants; soaps and detergents.

2.251G Toxicology, Occupational and Public Health F L1T2

Important classes of toxic materials found in the environment; treatment of pesticide residues, industrial chemicals of various types, toxic gases, mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals, etc. Effects of these substances on living organisms, particularly man. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling and analysis, trace metal determination and experiments on the animal metabolism of toxic substances.

2.271G Chemistry and Analysis of Foods F L1T3

Illustrates the bases and application of analytical techniques as applied to foods. Emphasis is placed on the design of methods, on the preparation of material for instrumental analysis and on the interpretation of data. Includes: proteins and tesh foods, carbohydrates and saccharine foods, fats and oils, dairy and fermentation products, vitamins, food additives — preservatives and colouring matters, pesticide residues, metal contaminants — food microscopy.

2.281G Instrumental Techniques in Food and Drug Analysis F L1T3

Principles involved in modern instrumental techniques; detailed application and interpretation of results. UV IR, NMR, and ESR, emission and atomic adsorption spectroscopy, polarography. X-ray methods, fluorescence spectroscopy and gas chromatography. Services 2.231G, 2.242G and 2.251G but is also suitable as a single subject for those wishing to familiarize themselves with modern techniques.
2.371G Treatment of Analytical Data
F L1
Errors of measurement, the treatment, interpretation and comparison of sets of measurements, associated data and problems involving analysis of variance. Topics: Description of sets of measurements; graphical representations; calculation of measures of location and spread; probability and random errors, binomial, normal and Poisson distributions; comparisons of sets of measurements, tests of significance; associated data, linear regression analysis; analysis of variance; biological assays, bacteriological counts, sampling problems.

2.581G Advanced Analytical Chemistry

2.582G Food and Drug Chemistry

Lectures/Laboratory: 1. Food and drugs 1. 2. Treatment of analytical data. 3. Instrumental techniques in food and drug analysis. 4. Food and drugs 2. 5. Toxicology, occupational and public health. Research Project.

Note: The Lecture/Laboratory material is similar to that of 2.231G, 2.371G, 2.281G, 2.242G and 2.251G respectively, but is examined at a higher level.

2.583G Analytical Science (Chemistry)

Lectures/Laboratory 1. Classical methods of chemical analysis: solution equilibria, precipitation and complex formation, gravimetric, titrimetric and spectrophotometric methods, use of organic reagents, ion exchange and solvent extraction. 2. Instrumental analysis: advanced treatment of modern instrumental methods including molecular and atomic spectroscopy, chromatography and electrochemistry. 3. Toxicology, occupational and public health. 4. Special instrumental methods: theory, instrumentation and applications of X-ray fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectrometry. Principles of automation and data processing. Project.

Mathematics

10.194G Advanced Mathematics Lecture Courses

Each year a selection of courses is offered in the following areas:

Algebraic geometry; algebraic topology; categorical and homological algebra; commutative algebra; group theory; Lie groups and algebras; representation theory; group theory and its physical applications; advanced quantum mechanics; differential equations; optimal control theory; functional analysis; applied functional analysis; operator theory; harmonic analysis; advances in numerical analysis; theory of functions; finite mathematics; number theory; logic; theoretical Astrophysics; history of mathematics; recent advances in mathematics; mathematical economics; optimization and control.

10.302G Regression Analysis and Experimental Design
S1 L1½T½
Prerequisite: First course in Statistics.

10.303G Applied Stochastic Processes
S2 L1½T½
Prerequisite: First course in Statistics.

10.372G Statistical and Experimental Design

The concepts of random variables, means, variances, the common tests and confidence intervals based on the normal distribution, some simple analyses of variance.

Comparative Experiments: requirements of a good experiment, assumptions underlying the conventional models of standard designs and their analyses, purpose of randomization; how the physical circumstances of an experiment are related to its formal model on which its analysis is based; the internal estimate of error obtained from the variation left after accounting for all sources of systematic variation, these points illustrated by considering in some detail the fully randomized design, the randomized block design, the 2^ factorially fully randomized design, and the fully randomized design with one concomitant variable.

Survey Sampling: the distinction between a survey sample and an experiment planned to compare a set of treatments, and how it affects the inferences that may be made; simple random sampling, stratified random sampling.

10.381G Experimental Design 1

Modified designs for fixed effects models. Incomplete and balanced incomplete block designs. Contolounding and fractional replication. Randomization theory. Multiple comparisons.

10.382G Experimental Design 2

Extensive treatment of random and mixed models. Combinatorial structure of designs, cross-over and lattice designs, response surfaces.

10.383G Stochastic Processes

10.384G Time Series

10.385G Multivariate Analysis 1
Likelihood ratio tests for means, variances and structure. Discriminant, principal component, canonical and factor analysis.

10.386G Multivariate Analysis 2
The general linear hypothesis and analysis of dispersion. Tests based on roots, distribution theory.

10.387G Sample Survey Design
Simple, stratified and systematic random sampling. Estimation of proportions, ratios, and sample sizes. Multi-stage sampling.

10.388G Sequential Analysis
The sequential probability ratio test — OC and ASN functions. General theory of sequential tests. Sequential estimation.

10.389G Non-Parametric Methods

10.390G Statistical Inference
Decision theory. General theory of estimation and hypothesis testing.

10.391G Special Topic A
To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.

10.392G Project

10.393G Special Topic B
To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, and other topics.

10.394G Discrete Distributions
Discrete and lattice distributions — their general properties mostly via generating functions. The structures of contagious (clustered) distributions, with a study of specific examples such as the negative binomial, Neyman and Poisson-Pascal families, together with estimation and fitting procedures.

10.401G Seiches and Tides

Servicing Subjects
These are subjects taught within courses offered by other faculties.

For further information regarding the following subject see the Faculty of Arts Handbook.

10.062G Advanced Mathematics General
For research workers throughout the University requiring employment of advanced mathematics. Topics vary from year to year according to demand and interest.

For further information regarding the following subjects see the Faculty of Engineering Handbook.

10.061G Advanced Mathematics for Electrical Engineers
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials.

10.361G Statistics
Probability theory, a survey of random processes with engineering applications — processes in discrete and continuous time. Markov processes, ergodicity, stationarity, auto-correlation, power spectra, estimation of auto-correlation and power spectra.

10.371G Statistics
Revision of probability and distribution theory, including estimation of hypothesis testing. Extension of this to include topics such as more complex probabilistic modelling, analyses of modified data (censored, truncated and missing observations), general statistical inference (decision theory), acceptance testing, and reliability analysis (hazard functions).

32.012G Biomedical Statistics
Statistical assessment of normal and diseased states. Statistical relationships between multiple variables used to assess disease; analysis of variance, regression, factor analysis, discriminant analysis. Progression of diseases over time. Diagnosis and assessment of treatments. Experimental design and sampling. Computation methods.

32.101G Mathematical Modelling for Biomedical Engineers
Model formulation and validation of ordinary and partial differential equations by analytical and numerical techniques.
Psychology

12.230G Developmental Disabilities and Disorders
An essentially practical course focusing on childhood disorders, such as mental retardation, infantile autism, physical and sensory handicaps, specific learning difficulties, and hyperactivity. Methods of assessment to be studied include standardized tests of child development, behavioral check lists and interviews, and observation of present behavior. Behavioral change procedures that may be effective in the treatment and management of the behavioral problems in question.

12.231G Professional Practice
Supervised work with clients in the School's clinic, and in approved institutions.

12.235G Community Psychology
The history, theory, concepts and practices of what has come to be called community psychology. Systematic problem-solving approaches to the resolution of human misery; the social and institutional conditions which promote human well-being. Substantive topics include: models and perspectives in community psychology; values and community intervention; evaluation and research in community psychology; social systems; theory and ecology; coping and social competence; consultation theories; various social issues, eg alcoholism and drug dependence, mental health care.

12.237G Biological Aspects of Behavioural Disturbance
A series of lectures and seminars on biological aspects of the aetiology and treatment of behavioural disturbance. Includes: behavioural genetics; organic brain syndromes; schizophrenia; depression; psychophysiology of stress; metabolic and endocrinological aspects of behavioural disturbance; nutrition and behavioural disturbance; psychopharmacology and pharmacotherapy; somatic treatments.

12.239G Research and Evaluation Methods in Clinical and Community Psychology
Problems of experimental design in the clinical field; measurement and scaling; analysis of change, including sequential analysis, and the application of the experimental methods to the individual cases. Design and evaluation of community programs.

12.240G Graduate and Clinical Seminars
A series of seminars on topics of particular relevance to the practice of clinical psychology, eg the organization and regulation of psychology as a profession; ethical standards in relation to clients, members of other professions, and the public; legal aspects of psychological practice. Additional topics dealing with contemporary issues in clinical psychology are chosen in consultation with students undertaking the seminars.

12.241G Graduate Colloquium
Participation in the staff-graduate student colloquium.

12.242G Research Thesis
A research thesis involving an investigation into some aspect of clinical or community psychology.

12.243G Experimental Clinical Psychology
The theoretical basis of clinical practice in individual, group, institutional, and community settings. The application of the principles of experimental psychology to the analysis of both adaptive and maladaptive patterns of behavior. The study of a wide range of techniques of behavioral intervention.

12.244G Psychological and Behavioural Assessment
The application of the principles of experimental psychology to problems of behavioral assessment in a wide variety of situations, eg lifestyle change; the management of behavioral disorders; institutional behavioral programs. Assessment procedures studied include: psychological tests, behavioral analysis and case history taking, psychophysiological and other objective measures.

12.245G Behavioural Health Management
Lectures, practical classes and supervised clinical experience concerned with the theoretical and practical issues associated with the design, implementation and evaluation of behavioral programs for the promotion of positive mental and physical health.

12.246G Behavioural Management in Institutions
Application of the principle of behavioral acquisition, maintenance and change to the problems of designing appropriate social environments for dependent persons. Ethical and organizational problems facing psychologists working in institutions for dependent children and adults.

12.247G Graduate Seminars in Clinical Psychology
A series of seminars on topics of relevance to the practice of experimental clinical psychology. The distinctive features of psychology as both a basic discipline and an area of professional practice. The organization and regulation of psychology as a profession. Contemporary theoretical and social issues in the practice of psychology.

12.248G Community Psychology
Models and perspectives in community psychology; evaluation and research. Community intervention. Health care delivery systems.
15.716G Science, Technology and Economic Development
The several functions of science and technology in development, past, present and possible future. Development economics and sociology; case studies, ranging from nineteenth century Japan to China since 1950. The place of technology in contemporary development and the role of international institutions (eg, multinational corporations) in transfers of scientific and technical knowledge. The 'appropriateness' of introduced technique and the concept of alternative technology and alternative development patterns.

15.965G Science, Technology and Economic Development
The several functions of science and technology in development, past, present and possible future. Development economics and sociology; case studies, ranging from nineteenth century Japan to China since 1950. The place of technology in contemporary development and the role of international institutions (eg, multinational corporations) in transfers of scientific and technical knowledge. The 'appropriateness' of introduced technique and the concept of alternative technology and alternative development patterns.

Organizational Behaviour

30.960G Technological Change and Organizational Participation S2 L3
Prerequisite: 30.935G or other approved subject.

The complex relationships between technological change and organizational participation in societies using advanced technology with particular reference to Australia, California, Japan, Germany and the Nordic nations. Key issues include: the relationship between technological change and sociotechnical systems, skill formation, organisational learning, industrial relations, humanization of work, organizational equity, participation, and power.

31.701G Advanced Clinical Optometry F T4
Clinical work on selected patients, with special emphasis on advanced techniques and new developments. All areas of optometric examination procedures are covered, including: external and internal examination of the eyes; visual functions; tonometry; objective optometry; evaluation of binocular functions; aniseikonia; sub-normal vision; geriatric and pediatric optometry; the clinical application of electrophysiological techniques. The assessment of new instruments, methods and treatment.

31.702G Advanced Physiological Optics F L2T2

31.703G P oreoptics and Binocular Vision F L2T2
An integrated subject, in which binocular vision and pleothoroptics are studied from theoretical and clinical viewpoints. Clinical experience is provided by selected patients. Includes: The nature and control of eye movements and their role in maintaining the perception of a stable visual world. Binocular and monocular subjective visual directions. The neurophysiological substrate of binocular vision and its phenomena. Stereopsis and its measurement. Accommodation, convergence, and oculo-motor imbalance. Laboratory and clinical methods of measuring eye position and visual directions. The aetiologies, measurement, and treatment of strabismus, anomalous correspondence, eccentric fixation and amblyopia.

31.704G Advanced Contact Lens Studies F L1T3
A study of the characteristics of living systems, including a functional treatment of cytology, metabolism, bioenergetics; structure, function and characteristics of single and multicellular systems; growth; cell division; reproduction; heredity and evolution.

42.212G Principles of Biochemistry SS L3
A condensed treatment of biochemistry comprising the following aspects: the elemental and molecular composition of living organisms; the chemistry and roles of the biological elements and molecules; the thermodynamics and enzymatic catalysis of metabolism; catabolic, anabolic, amphibolic and anaerobic processes, with emphasis on hydrolysis and synthesis of polymers, glycolysis and gluconeogenesis of glucose, b-oxidation and synthesis of fatty acids, deamination and decarboxylation of amino acids, the tricarboxylic acid cycle, electron transport and oxidative phosphorylation; metabolic regulation and integration.

42.213G Biochemical Methods SS T3
A laboratory program in practical biochemistry. The basic instrumentation and methodology of the biochemist will be introduced by practical exercises and demonstrations. A comprehensive treatment of the relevance and applicability of biochemical techniques is covered in tutorials.

42.214G Biotechnology SS L2T1
The selection, maintenance and genetics of industrial organisms; metabolic control of microbial synthesis; fermentation kinetics and models of growth; batch and continuous culture; problems of scale-up and fermenter design; control of the microbial environment; computer/fermentor interactions. Industrial examples will be selected from: antibiotic and enzyme production, alcoholic beverages, single cell protein (SCP), microbial waste disposal and bacterial leaching. Tutorials/practical sessions include: problem solving, instrumentation, continuous culture techniques, and mathematical modelling and simulation of industrial processes.

42.215G Practical Biotechnology F T7
Illustration, demonstration and operation of laboratory-scale and pilot-scale equipment. Visits to appropriate industries. Experimental project or critical review.

42.301G Microorganism Productivity SS L2T3
Mechanisms of metabolic control: induction, repression and forms of activation and inhibition; microbial genetics; mutation, selection, genetic transfer and manipulation; environmental parameters; oxygen tension, pH, temperature, energy source etc. as are relevant to productivity in industrially important microorganisms.

Detailed studies: choice of substrate, screening and isolation of microorganisms, systematic application of techniques of genetic and physiological manipulation required to optimize product formation (products include amino acids, nucleotides, enzymes and other macromolecules, antibiotics and other physiologically active compounds), potential strain improvement of micro-organisms involved in other industrial processes (for example, mineral leaching, single cell protein production, detoxification and waste disposal).

Laboratory component includes current techniques of micro-organism isolation and maintenance, genetic manipulation and physiological manipulation.

42.302G Enzyme Technology SS L2T3
Enzymes in vivo; properties; roles; sources; optimization of enzyme concentration, for example by nutritional control, environmental control and by genetic manipulation. Isolation of enzymes: methods of extraction and purification; stabilizing safeguards; assay procedures; kinetics of isolated enzymes. Immobilization of enzymes: entrapment in insoluble matrices; adsorption on high molecular weight inert
carriers; ionic binding to ion-exchange materials; covalent enzyme-
enzyme linkage via a low molecular weight bifunctional reagent;
covalent linkage to a high molecular weight support; changes in
kinetic parameters and stability after immobilization; advantages and
disadvantages of immobilization. Enzyme Reactor Engineering: de-
sign of batch and continuous systems, including open and closed
plug flow and stirred reactors; comparison of kinetics in various
designs; scale-up. Enzyme application: analysis; fabric, food and
biochemical industries; medical treatment; medical diagnosis. Occu-
pational hazards: allergic responses to enzymes; infection from path-
ological samples.

Methods of isolation, immobilization and application of enzymes for
analytical, industrial and medical purposes will be illustrated by
laboratory exercises and short projects. Practical comparison of
various reactor designs will also be made.

42.303G Biochemical Process Control SS L2T3
Biochemical reactors: range of basic designs; range of biocatalysts,
from microbial conglomerates to free enzymes; heat and mass trans-
fer; design; scale-up; sterility; kinetics; economic considerations.
Techniques for efficient operation and control of batch, single-stage
continuous and multi-stage continuous processes.

Use of computers: aids to understanding the effects of operating
variables for process optimization and control. Detailed examples:
microbial processes such as production of antibiotics, organic acids,
amino acids and enzymes; enzymic processes.

Practical illustration of: sample processes such as yeast and antibiotic
production; mathematical simulation by analog computation; com-
puter control of biochemical processes.

42.304G Biodeterioration and
Biodegradation SS L2T3
Basic mechanisms of biodeterioration and biodegradation; direct and
indirect attack mechanisms; co-metabolism and mixed population
phenomena; factors controlling rates of degradation and recalcitr-
ance of materials to biological attack; biological accelerators.

Detailed treatment of: biological corrosion of metals and alloys;
biodeterioration of fuels, petrochemical products, synthetic materials,
timber and cellulose products, building materials etc.; degradation of
rocks and minerals; biological leaching of ores and mineral process-
ing residues.

The laboratory component includes assessment of biodegradability
of common industrial materials (detergents, surface coatings, fuels,
biocides etc); evaluation of protective methods; determination of
biological leachability of minerals and mineral processing residues.

42.305G Case Studies SS T2
Critical evaluation of industrial processes and research and develop-
ment procedures. Includes: study of isolated and selected areas of
biotechnology, detailed study and evaluation of all aspects of an
industrial process from the isolation of the appropriate organism or
other biological starting material to the production and use of the final
products, critical evaluation of techniques arising from current re-
search and development programs.

42.306G Project FT7
An experimental or technical investigation or design project in the
general field of biotechnology.

42.999G Alternative Higher Degree Qualifying Program
Training similar in content and standard to 42.103 Biotechnology
(Honours), but designed specifically for students who cannot regu-
larly attend the University.

Microbiology

44.999G Alternative Higher Degree Qualifying Program
Similar in standard to 44.103 Microbiology Honours, but designed for
students who cannot regularly attend the University.

Zoology

45.900G Ecological Studies in Arid
Lands Management S2 L2T4
Prerequisite: Degree with background in bioscience or equivalent.

Techniques in ecological studies of animal communities. Adaptations
to an arid environment — environmental and social determinants.
Behaviour, diet and condition of native and feral animals. Competition
between native and introduced herbivores. Strategies in the manage-
ment of arid zone wildlife. Concurrent studies in relevant units in the
School of Botany are prescribed to cover aspects of vegetation
description and plant/environment interactions.
Chemical Engineering and Industrial Chemistry

48.282G Microbial Kinetics and Energetics

Unit 1 Microbial Kinetics

Prerequisite or co-requisite: 48.281G Unit 2 or equivalent.

Unit 2 Microbial Energetics

Prerequisite or co-requisite: 48.281G Unit 2 or equivalent.

Significance of entropy and free energy changes in microbial growth. Driven reactions, group transfer potentials, driven reaction sequences and the significance of actual and standard free energy changes in open systems. Application to metabolism, energy requiring pathways, energy producing pathways. Thermodynamic efficiency of growth. Mass, heat and entropy balances in growing cultures, prediction of yield.

48.283G Bioprocess Unit Operations and Equipment Design

Prerequisite or co-requisite: 48.284G or equivalent.

Engineering design and operating characteristics of plant and processes normally used, eg sterilization and air purification, dehydration drying at reduced pressure, reduced temperature preservation, radiation, product isolation, sedimentation, filtration, centrifugation, extraction, absorption, chromatography and ion exchange, absorption with reaction, electrophoresis and dialysis, aseptic design, materials of construction, effluent disposal.

Sociology

53.309G Social and Technological Forecasting

The nature of various contemporary approaches to the forecasting of social and technological change, and the use of forecasting in particular sectors of economic, social and technological activity. The course examines a number of commonly held views about the future and their connection with theories about relations between science, technology and society.

53.571G Technology and Working Life

Technology as a social and political phenomenon. Responses to technology both in the present (eg the microprocessor, nuclear energy debates) and in the past (eg Luddism). The way particular schools of social theory have conceived of technology: Marx, Weber, Frankfurt school and other relevant theoretical perspectives. Other topics include: micro-electronic technology and the labour process; nuclear energy; technology and sexism; weapons technology; and alternative technology.

History and Philosophy of Science

62.709G The Scientific Community

A sociological analysis of the pure science community, which establishes the characteristics of this subgroup of society by examining its internal and external social relations. The internal relations refer to cognitive and behavioural factors within the community itself that promote (or retard) the advancement of science. The external relations refer to the political, ideological, economic and bureaucratic forces in society that shape and control the scientific community and the knowledge it produces.

62.710G Science, Philosophy and Social Values

Exposition and appraisal of some of the classical ethical theories. Examination of the claims of science to be able to provide a basis for moral judgements. Attempted establishment of an ethical framework which may serve as a basis for decision-making when problems of an ethical nature arise in science. Selected case studies, in which decisions as to the most appropriate form of action are evaluated in the light of the ethical framework previously established. The social responsibility in science movement and its problems.
62.713G Project

Students are required to prepare a minor research dissertation under the supervision of a member of staff and to attend introductory seminars and occasional addresses by visiting speakers.

62.714G Knowledge, Power and Public Policy

An introduction to the relationship between science and politics in the 20th century; the nature and consequences of government support for research and development; the freedom vs planning debate in science policy; decision-making frameworks and the attempts to establish criteria of choice in a no-growth situation; science and technology policy — international perspectives.

62.715G Cause, Belief and Progress in the History of Science

An historical perspective on general ideas relating to scientific knowledge in the modern period, including: the Ideal of Progress from Bacon to Social Darwinism; the relations between religion, theology and science; historiographical interpretations of revolutionary episodes in the history of science; the historical roots of contemporary issues in the philosophy of science.

62.716G Science and Society in the 20th Century

The key issues raised by the interaction between science and society in the 20th century. The subject consists of six topic modules drawn from the following list, each presented over a period of four weeks.

1. The Social and Economic Relations of Technology. Fundamental concepts concerning the imperatives of technology, the technosstructure, the political dimensions of technological change, technological determinism, the technological fix, the ideology of industrialization, alternative technology.
2. Theories of Social Change. A comparative analysis of leading theories of social change, including Marxism and theories of industrial and post-industrial society, stressing the role of science and technology.
3. Technology and Social Change. A case study of the social impact of (1) energy technologies on Australia and/or the developing world; or (2) the microelectronic revolution on commerce and industry.
4. Historical Dimensions of Scientific Change. A case study of a major conceptual advance in 20th century science (e.g., the development of relativistic physics or of genetics and molecular biology) as an introduction to problems of (1) scientific change and progress; (2) scientific community relations, and (3) science, ideology and responsibility.
5. The Philosophy of Science. Contemporary issues in the philosophical analysis of science. Stress on (1) the dynamics of conceptual change; (2) theories of progress; (3) models of scientific reasoning and method; and (4) external relations of scientific theory and practice.
6. Science as a Social Enterprise. Scientific institutions, patterns of communication, norms and values, social determinants of conformity and innovation; the internal and external politics of science.

62.718G Science in National Cultures: Comparative Historical Perspectives

Historical and contemporary aspects of the comparative development of scientific institutions and research styles in different national contexts. Other themes: the modes of interaction and mutual perceptions of scientific communities in Western industrializing nations from the 19th century, the question of convergence in systems of scientific organization in East and West.

62.720G Philosophy of Science and the Sociology of Knowledge

Recent philosophical and sociological theories concerning the nature of scientific knowledge and the role which social conditions play in its production and acceptance. Topics include: post-Kuhnian philosophies of science; neo-Marxist theories of science and ideology; the 'strong program' for the sociology of knowledge; field theories and the analysis of power relations in science; and epistemological problems raised by commercial and governmental direction of scientific research.

Faculty of Science

67.001G Experimental Project in Physical Oceanography

A report of an experimental project, including recording, preparation, analysis and interpretation of field or laboratory data.

67.002G Geophysical Fluid Dynamics

Aspects of the physical features of the oceans. Includes ocean waves (rotational and gravitational), tides, large scale wind driven ocean circulation, coastal dynamics, thermohaline circulations and mixing processes.

67.003G Instrumentation

Laboratory, moored, shipborne, airborne and space instrumentation commonly used in oceanographic experiments; their applications and limitations.

67.004G Applied Time Series Analysis

Classification of random processes, sampling for discrete analysis. Fourier analysis, spectra, filtering. Cross-spectra, estimation and hypothesis testing, confidence limits, application to experiment planning. Emphasis on computer analysis of actual data.

67.005G Theoretical Project in Physical Oceanography

A theoretical project aimed at developing the prediction of oceanographical phenomena, tailored to meet individual student background but taken only by those students with a strong theoretical background.
Pathology

72.402G Principles of Disease Processes S1 L3 C3

Prerequisites: 73.111 or equivalent, 70.011C or equivalent.

The reaction of cells to injury, the inflammatory reaction; necrosis-vascular changes and infarction; reparative processes; fracture healing; neoplasia; reaction to implants; specific processes requiring prosthetic assistance.

Physiology and Pharmacology

Honours and Graduate Study

Depending on their undergraduate records students may be accepted by the Head of the School to undertake a fourth year of study towards the award of an honours degree in Physiology or in Pharmacology. This would usually be done by students planning a career in either of these fields. During the honours year the student carries out a research project under the supervision of a staff member and submits a thesis based on the research project. The student can usually nominate the general research area in which he or she wishes to work from those being studied in the School. Within this research area the student is given a specific project by the supervisor.

Higher degree study for the award of a MSc or PhD degree may also be undertaken by selected students.
Graduate Study

Conditions for the Award of Higher Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Disciplines of the University: Faculty (Undergraduate Study) in the Calendar.

The following is the list of higher degrees and graduate diplomas of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Disciplines of the University: Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see the Calendar.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Calendar Medicine</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar and all handbooks</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchivAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td>MBEnv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Education</td>
<td>MEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEdAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science Engineering</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Military Studies</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of General Studies</td>
<td>MGenStud</td>
<td>General Studies</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Psychology</td>
<td>MPsychol</td>
<td>Sciences§</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calendar/Handbook</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Science (Biotechnology)</td>
<td>MSc(Biotech)</td>
<td>Sciences§</td>
</tr>
<tr>
<td>Master of Science (Building)</td>
<td>MSc(Building)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Psychology)</td>
<td>MSc(Psychol)</td>
<td>Sciences§</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Surveying</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying without supervision</td>
<td>MSurvSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying Science</td>
<td>MTP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Town Planning</td>
<td>MWP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Welfare Policy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graduate Diploma

<table>
<thead>
<tr>
<th>Degree</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>GradDip</td>
<td></td>
</tr>
<tr>
<td>DipFDA</td>
<td></td>
</tr>
<tr>
<td>DipEd</td>
<td></td>
</tr>
<tr>
<td>DiplM-ArchivAdmin</td>
<td></td>
</tr>
<tr>
<td>DiplM-Lib</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Diplomas

*Faculty of Science.
§Faculty of Biological Sciences.

Higher Degrees

1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

 (2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

 (3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

Doctor of Philosophy (PhD)

Qualifications

Enrolment and Progression
(2) In every case, before permitting a candidate to enrol, the head of the school* in which the
candidate intends to enrol shall be satisfied that adequate supervision and facilities are
available.

(3) An approved candidate shall be enrolled in one of the following categories:
(a) full-time attendance at the University;
(b) part-time attendance at the University.

(4) A full-time candidate shall be fully engaged in advanced study and research except that
the candidate may undertake not more than five hours per week or a total of 240 hours per year
on work which is not related to the advanced study and research.

(5) Before permitting a part-time candidate to enrol, the Committee shall be satisfied that the
candidate can devote at least 20 hours each week to advanced study and research for the
degree which (subject to (8)) shall include regular attendance at the school* on an average of
at least one day per week for 48 weeks each year.

(6) A candidate shall be required to undertake an original investigation on an approved topic.
The candidate may also be required to undergo such assessment and perform such other work
as may be prescribed by the Committee.

(7) The work shall be carried out under the direction of a supervisor appointed from the full-
time academic members of the University staff.

(8) The work, other than field work, shall be carried out in a school* of the University except
that the Committee:
(a) may permit a candidate to spend not more than one calendar year of the program in
advanced study and research at another institution provided the work can be supervised in a
manner satisfactory to the Committee;
(b) may permit a candidate to conduct the work at other places where special facilities not
possessed by the University may be available provided the direction of the work remains wholly
under the control of the supervisor;
(c) may permit a full-time candidate, who has been enrolled as a full-time candidate for at least
six academic sessions, who has completed the research work and who is writing the thesis, to
transfer to part-time candidature provided the candidate devotes at least 20 hours each week
to work for the degree and maintains adequate contact with the supervisor.

(9) The progress of a candidate shall be reviewed annually by the Committee following a report
by the candidate, the supervisor and the head of the school* in which the candidate is enrolled
and as a result of such review the Committee may cancel enrolment or take such other action
as it considers appropriate.

(10) No candidate shall be awarded the degree until the lapse of six academic sessions from
the date of enrolment in the case of a full-time candidate or eight academic sessions in the
case of a part-time candidate. In the case of a candidate who has had previous research
experience the committee may approve remission of up to two sessions for a full-time candidate
and four sessions for a part-time candidate.

(11) A full-time candidate for the degree shall present for examination not later than ten
academic sessions from the date of enrolment. A part-time candidate for the degree shall
present for examination not later than twelve academic sessions from the date of enrolment. In
special cases an extension of these times may be granted by the Committee.

4. (1) On completing the program of study a candidate shall submit a thesis embodying the
results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit
the thesis.

(3) The thesis shall comply with the following requirements:
(a) it must be an original and significant contribution to knowledge of the subject;
(b) the greater proportion of the work described must have been completed subsequent to
enrolment for the degree;
(c) it must be written in English except that a candidate in the Faculty of Arts may be required
by the Committee to write a thesis in an appropriate foreign language;
(d) it must reach a satisfactory standard of expression and presentation;

*Or department where a department is not within a school.
(e) it must consist of an account of the candidate’s own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate’s part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5. (1) There shall be not fewer than three examiners of the thesis, appointed by the Professorial Board on the recommendation of the Committee, at least two of whom shall be external to the University.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners’ reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Chemistry or Master of Mathematics or Master of Optometry or Master of Physics by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate four-year degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

*Or department where a department is not within a school.
Master of Engineering (ME) and Master of Science (MSc)

Qualifications

1. The degree of Master of Engineering or Master of Science by research may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

 (2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the degree.

 (3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work as the Committee may prescribe.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

 (2) In every case, before permitting a candidate to enrol, the head of the school* in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.

 (3) An approved candidate shall be enrolled in one of the following categories:

 (a) full-time attendance at the University;

 (b) part-time attendance at the University;

 (c) external — not in regular attendance at the University and using research facilities external to the University.

 (4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

 (5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

 (6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school* in which the candidate is enrolled.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

*Or department where a department is not within a school.
and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

(2) The candidate shall give in writing two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Professorial Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

*Or department where a department is not within a school.
1. The degree of Master of Engineering or Master of Science or Master of Surveying without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

3. An application to enrol as a candidate for the degree without supervision shall be made on the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should, in his or her own interest, seek at an early stage the advice of the appropriate head of school* with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available.

4. (1) A candidate shall submit a thesis embodying the results of the investigation.

 (2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

 (3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

 (4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

 (5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

 (6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Professorial Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

 (2) Before the thesis is submitted to the examiners the head of the school* in which the candidate is enrolled shall certify that it is prima facie worthy of examination.

 (3) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

 (a) the candidate be awarded the degree without further examination; or

 (b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

 (c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

 (d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

 (e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

 (4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

 (5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

*Or department where a department is not within a school.
6. A candidate shall pay such fees as may be determined from time to time by the Council.

See Master of Chemistry above.

See Master of Chemistry above.

See Master of Chemistry above.

1. The degree of Master of Psychology by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study. The degree shall be awarded at the Pass level or with the grade of Honours Class 1 or with the grade of Honours Class 2.

2. (1) A candidate for the degree shall have been awarded a degree of Bachelor with Honours in psychology from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution, at a level acceptable to the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the academic year.

(2) A candidate for the degree shall be required to undertake such formal subjects and, except in exceptional circumstances, pass at the first attempt such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment in the case of a full-time candidate or six sessions in the case of a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and ten sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. A candidate shall pay such fees as may be determined from time to time by the Council.
Master of Science (MSc)
See Master of Engineering above.

Master of Science (MSc)
without supervision
See Master of Engineering above.

Master of Science
(Biotechnology)
(MSc(Biotech))

Qualifications

1. The degree of Master of Science (Biotechnology) by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution, at a level acceptable to the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and/or professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Science
(Psychology)
(MSc(Psychol))

Qualifications

1. The degree of Master of Science (Psychology) by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded the degree of Doctor of Philosophy from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution, in an area of psychology acceptable to the Higher Degree Committee of the Faculty of Biological Sciences (hereinafter referred to as the Committee).
(2) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the academic year.

(2) A candidate for the degree shall be required to undertake such formal subjects and, except in exceptional circumstances, pass at the first attempt such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of three academic sessions from the date of enrolment in the case of a full-time candidate or six sessions in the case of a part-time candidate. A candidate who has been granted exemptions may have the minimum period reduced by up to one third. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Science and Society at Honours level may be awarded by the Council on the recommendation of the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation. The degree shall be awarded with the grade of Honours Class 1 or with the grade of Honours Class 2.

2. (1) A candidate for the degree shall:

(a) have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee, and

(b) have completed the requirements for the award of the degree at Pass level.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

(2) In every case, before permitting a candidate to enrol, the Head of the School of History and Philosophy of Science (hereinafter referred to as the head of the school) shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories:

(a) full-time attendance at the University;

(b) part-time attendance at the University;

(c) external — not in regular attendance at the University and using research facilities external to the University.

(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such assessment and perform such other work as may be prescribed by the Committee.
(5) The work shall be carried out under the direction of a supervisor appointed from the full-time academic members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than four academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than eight academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Professorial Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 without further examination; or

(b) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or

(c) the candidate be awarded the degree either with Honours Class 1 or with Honours Class 2 subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.
1. The degree of Master of Science and Society at Pass level may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment. The maximum period of candidature shall be eight academic sessions from the date of enrolment. In special cases an extension of time may be granted by the Committee.

4. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Statistics by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded a degree of Bachelor with major studies in statistics from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment in the case of a full-time candidate or eight sessions in the case of a part-time candidate. In the case of a candidate who has been awarded a degree of Bachelor with Honours in statistics the Committee may approve remission of up to two sessions for a full-time candidate and four sessions for a part-time candidate. The maximum period of candidature
shall be six academic sessions from the date of enrolment for a full-time candidate and ten sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Graduate Diploma

1. A Graduate Diploma may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the diploma.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and six sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.
Scholarships and Prizes

The scholarships and prizes listed below are available to students whose courses are listed in this handbook. Each faculty handbook contains in its Scholarships and Prizes section the scholarships and prizes available within that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

Listed below is an outline only of a number of scholarships available to students. Full information may be obtained from Room G20, located on the Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bursary Endowment Board*</td>
<td>$200 pa</td>
<td>Minimum period of approved degree/combined degree course</td>
<td>Merit in HSC and total family income not exceeding $6000</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa payable in fortnightly instalments</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need</td>
</tr>
</tbody>
</table>

*Apply to The Secretary, Bursary Endowment Board, PO Box 460, North Sydney 2060, immediately after sitting for HSC.
<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress and continued demonstration of need</td>
<td>Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need.</td>
</tr>
<tr>
<td>W. S. and L. B. Robinson**</td>
<td>Up to $3800 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology, electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science.</td>
</tr>
<tr>
<td>Universities Credit Union</td>
<td>$500 pa</td>
<td>1 year with the possibility of renewal</td>
<td>Prior completion of at least 1 year of any undergraduate degree course. Eligibility limited to members of the Universities Credit Union Ltd of more than one year's standing or members of the family of such members.</td>
</tr>
</tbody>
</table>

Science

<table>
<thead>
<tr>
<th>Chemistry</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>John Ragnar Anderson Memorial Bequest*</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Permanent residence in Australia and eligibility for admission to full-time degree course in Chemistry.</td>
</tr>
<tr>
<td>George Szekeres Award</td>
<td>$200 pa</td>
<td>1 year</td>
<td>Open to students entering the final year of the honours degree course in Pure Mathematics.</td>
</tr>
<tr>
<td>Olivetti Australia Pty Ltd</td>
<td>Up to $600 pa</td>
<td>2 years subject to satisfactory progress</td>
<td>Eligibility for admission to the third year of an honours program in the School of Mathematics in Pure/Applied Mathematics, Theoretical Mechanics or Statistics and leading to the award of the degree of Bachelor of Arts, Bachelor of Science, or Bachelor of Science Diploma in Education.</td>
</tr>
</tbody>
</table>

Optometry

| Gibb and Beeman | Up to $750 pa | 1 year renewable for the duration of the course, subject to satisfactory progress | Available to students under 21 years of age who are permanent residents of Australia enrolling in Year 1 of the full-time degree course in Optometry. |

Applications close 30 September each year.

Applications close 14 March each year.
Graduate Scholarships

Application forms and further information are available from the Student Enquiry Counter, located on the Ground Floor of the Chancellery. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

The following publications may also be of assistance: 1. Awards for Postgraduate Study in Australia and Awards for Postgraduate Study Overseas, published by the Graduate Careers Council of Australia, PO Box 28, Parkville, Victoria 3052; 2. Study Abroad, published by UNESCO*; 3. Scholarships Guide for Commonwealth Postgraduate Students, published by the Association of Commonwealth Universities*.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Years of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of New South Wales Postgraduate Scholarships</td>
<td>Living allowance of $6500 pa. Other allowances may also be paid.</td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates (or equivalent). Applications to Dean of relevant Faculty.</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Research Awards</td>
<td>Living allowance of $7616 pa. Other allowances may also be paid.</td>
<td>1-2 years; minimum duration of course</td>
<td>Applicants must be honours graduates (or equivalent) or scholars who will graduate with honours in current academic year, and who are domiciled in Australia. Applications to Registrar by 31 October.</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Course Awards</td>
<td></td>
<td></td>
<td>Applicants must be graduates or scholars who will graduate in current academic year, and who have not previously held a Commonwealth Post-graduate Award. Preference is given to applicants with employment experience. Applications to Registrar by 30 September.</td>
</tr>
<tr>
<td>Australian American Educational Foundation Travel Grant (Fulbright)**</td>
<td>Amount varies, depending on award</td>
<td>Up to 1 year</td>
<td>Applicants must be graduates, senior scholars or post-doctoral Fellows. Applications close 30 September.</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td></td>
<td></td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women</td>
</tr>
<tr>
<td>The Caltex Woman Graduate Scholarships</td>
<td>Six State awards of $5000 each</td>
<td>1 year</td>
<td>Applicants must be female graduates who will have completed a University degree or diploma this year and who are Australian citizens or have resided in Australia for at least seven years. Selection is based on scholastic and literary achievements, demonstrable qualities of character and accomplishments in cultural and/or sporting/recreational activities. Applications close late September.</td>
</tr>
<tr>
<td></td>
<td>One National award valued at $20,000 pa for study at an approved overseas institution.</td>
<td>2 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan</td>
<td>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</td>
<td>Usually 2 years, sometimes 3</td>
<td>Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Applications close in September or October each year.</td>
</tr>
</tbody>
</table>

*Available for reference in the University Library.

**Application forms are available from The Secretary, Department of Education, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Years of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$5000</td>
<td></td>
<td>Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships at Harvard University</td>
<td>Stipend of US$6000 pa plus tuition fees</td>
<td>1, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with Registrar mid-October.</td>
</tr>
<tr>
<td>Gowrie Scholarship Trust Fund</td>
<td>$3500 pa. Under special circumstances this may be increased.</td>
<td>2 years</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with Registrar by 31 October.</td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York*</td>
<td>Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA</td>
<td>12 to 21 months</td>
<td>Candidates must be: 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close 31 August.</td>
</tr>
<tr>
<td>The Rhodes Scholarship†</td>
<td>Approximately £3600 stg pa</td>
<td>2 years, may be extended for a third year</td>
<td>Unmarried male and female Australian citizens aged between 19 and 25 who have been domiciled in Australia at least 5 years and have completed at least 2 years of an approved university course. Applications close in mid-September each year. The field of study is unrestricted. Applicants must have at least 3 years graduate experience in research. Applications close in July.</td>
</tr>
<tr>
<td>Rothmans Fellowships Award**</td>
<td>$20000 pa</td>
<td>1 year, renewable up to 3 years</td>
<td>See above under Undergraduate Scholarships, General</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biological Sciences

<table>
<thead>
<tr>
<th>Scholaship</th>
<th>Value</th>
<th>Years</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Clark Memorial Award in Psychology</td>
<td>$1000</td>
<td>1 year</td>
<td>Applicants must be enrolled in a graduate course in psychology undertaking research in an area concerned with the ongoing problems of the community, particularly the behaviour of the 'whole person' in a social milieu</td>
</tr>
</tbody>
</table>

*Applications to the Honorary Secretary of the NSW Committee, University of Sydney, NSW 2006.

†Application forms must be obtained from the Australian representative of the Fund, Mr J. T. Larkin, Department of Trade, Edmund Barton Building, Kings Avenue, Barton, ACT 2600. These must be submitted to the Registrar by early August.

**Applications to the Secretary, Rothmans University Endowment Fund, University of Sydney, NSW 2006.
<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year(s) of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Telecommunications and Electronics Research Board</td>
<td>$11,500 pa if only scholarship held or $5000 if additional to another scholarship</td>
<td>1 year for a Masters and up to 3 years for a PhD degree</td>
<td>Applicants must be first class honours graduates (or equivalent) or scholars who will graduate with honours in the current academic year, who are Australian citizens or permanent residents and who are aged under 25 years at 1 January. Applications close late September.</td>
</tr>
<tr>
<td>Contact Lens Society of Australia</td>
<td>$2000 pa</td>
<td></td>
<td>To enable a graduate in optometry, medicine, or other appropriate discipline to undertake the degree of Master of Science or PhD in the School of Optometry. Enquiries to Associate Professor B. Holden, School of Optometry.</td>
</tr>
<tr>
<td>Gordon Godfrey Scholarship in Theoretical Physics</td>
<td>$1500 pa</td>
<td>1-3 years</td>
<td>To enable a suitable graduate to undertake a research degree in Theoretical Physics. May be held concurrently with another award.</td>
</tr>
<tr>
<td>The John Ragnar Anderson Memorial Scholarships in Chemistry</td>
<td>As determined by the Committee</td>
<td></td>
<td>To enable a graduate to undertake full-time study approved by the Head of School of Chemistry for the award of a higher degree. The scholarship may be held concurrently with another scholarship awarded for the same purpose. Applications to Registrar by 31 October.</td>
</tr>
<tr>
<td>The Rutherford Scholarship</td>
<td>Travel, fees, etc. A stipend which, if held in the UK, is approx. £3409 stg pa.</td>
<td>3 years</td>
<td>To enable graduates under 26 years of age to undertake experimental research in a branch of natural science. It is tenable at a British Commonwealth University other than the country in which the applicant graduated. Applications close mid-February.</td>
</tr>
<tr>
<td>Science Research Scholarship of the Royal Commission for the Exhibition of 1851</td>
<td>£3800 stg pa</td>
<td>Normally tenable 3 years</td>
<td>To enable graduates under 26 years of age to undertake research in some branch of pure or applied science, or engineering, at an overseas university. Applicants must be British Commonwealth citizens or citizens of the Republics of Ireland, Pakistan or South Africa. Applications close mid-February.</td>
</tr>
<tr>
<td>Shell Scholarship in Science or Engineering</td>
<td>Adequate funds for living allowance, tuition and travel expenses</td>
<td>2 years, sometimes 3 years</td>
<td>Applicants must be Australian citizens, under 25 years of age, with at least 5 years' domicile in Australia and who are completing the requirements for an honours degree in Science or Engineering. The successful candidate will attend a British university to pursue a higher degree. Applications to Registrar by 26 September.</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes

The following table summarizes the undergraduate prizes for this Faculty awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded.

Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor of the Chancellery.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sydney Technical College Union Award</td>
<td>150.00</td>
<td>Leadership in the development of student affairs, and academic proficiency throughout the course</td>
</tr>
<tr>
<td>University of New South Wales Alumni Association</td>
<td>Statuette</td>
<td>Achievement for community benefit — students in their final or graduating year</td>
</tr>
<tr>
<td>Australian Society of Accountants</td>
<td>75.00</td>
<td>14.501 Accounting and Financial Management 1A</td>
</tr>
<tr>
<td></td>
<td>75.00</td>
<td>14.522 Accounting and Financial Management 2A</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>14.563 Accounting and Financial Management 3A and 14.583 Accounting and Financial Management 3B</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>250.00</td>
<td>14.703 Advanced Auditing</td>
</tr>
<tr>
<td>Coopers and Lybrand</td>
<td>200.00</td>
<td>14.542 Accounting and Financial Management 2B</td>
</tr>
<tr>
<td>Corporate Affairs Commission</td>
<td>100.00</td>
<td>14.803/14.903G Regulation of Accounting</td>
</tr>
<tr>
<td>Datec Pty Ltd</td>
<td>200.00</td>
<td>14.605 Information Systems 3B</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>Best honours thesis related to information systems design, data management or management science techniques used for commercial applications</td>
</tr>
<tr>
<td>Greenwood, Challoner & Co</td>
<td>100.00</td>
<td>14.742 Business Law 2</td>
</tr>
<tr>
<td>Hungerford, Hancock & Offner</td>
<td>100.00</td>
<td>14.563 Accounting and Financial Management 3A</td>
</tr>
<tr>
<td>IBM</td>
<td>150.00</td>
<td>Highest aggregate mark in any two of the following subjects: 14.603 Computer Information Systems 2, 14.605 Information Systems Implementation, 14.607 Distributed Computer Systems, 14.608 Database Systems</td>
</tr>
<tr>
<td>Law Book Co Ltd</td>
<td>75.00</td>
<td>14.511 Accounting and Financial Management 1B</td>
</tr>
<tr>
<td>Peat, Marwick, Mitchell and Company</td>
<td>200.00</td>
<td>14.805/14.905G EDP Auditing</td>
</tr>
<tr>
<td>Logica Australia Pty Ltd</td>
<td>200.00</td>
<td>14.583 Accounting and Financial Management 3B</td>
</tr>
<tr>
<td>Price Waterhouse</td>
<td>250.00</td>
<td>General Proficiency in Accounting and Financial Management subjects</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Accountancy (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schroder Darling & Company Limited</td>
<td>200.00</td>
<td>14.613 Business Finance 2</td>
</tr>
<tr>
<td>Rod Sinden Memorial</td>
<td>250.00</td>
<td>14.794 Honours thesis on an accounting topic</td>
</tr>
<tr>
<td>Taxation Institute of Australia</td>
<td>100.00</td>
<td>14.783 Taxation Law</td>
</tr>
<tr>
<td>E. S. Wollenden Memorial</td>
<td>200.00</td>
<td>14.563 Accounting and Financial Management 3A</td>
</tr>
<tr>
<td>Arthur Young & Co</td>
<td>60.00</td>
<td>14.613 Business Finance 2</td>
</tr>
<tr>
<td>School of Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Gray's Point in Anatomy</td>
<td>50.00</td>
<td>Highest aggregate mark in Year 1 of Anatomy</td>
</tr>
<tr>
<td>Jane Skillen in Anatomy</td>
<td>40.00</td>
<td>Outstanding merit in all branches of Anatomy</td>
</tr>
<tr>
<td>The Prize in Practical Anatomy</td>
<td>100.00</td>
<td>Practical Anatomy (including Radiological Anatomy) – Year 2 of the medical course</td>
</tr>
<tr>
<td>The Winifred Dickes Rost</td>
<td>50.00</td>
<td>Outstanding merit in Anatomy in the final year of the Bachelor of Science degree course</td>
</tr>
<tr>
<td>School of Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauri Foods</td>
<td>175.00</td>
<td>Best result in the Level 2 Biotechnology subject</td>
</tr>
<tr>
<td></td>
<td>175.00</td>
<td>Best result in one of the Level 3 Biotechnology subjects</td>
</tr>
<tr>
<td></td>
<td>175.00</td>
<td>Best result in the Biotechnology honours degree program</td>
</tr>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbott Laboratories Pty Ltd</td>
<td>100.00</td>
<td>Bachelor of Engineering degree course in Chemical Engineering – Year 4</td>
</tr>
<tr>
<td>The Australian Gas Light Company's in Chemical Engineering</td>
<td>200.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Australian Paper Manufacturers Ltd</td>
<td>100.00</td>
<td>48.163 Instrumentation and Process Control in Industrial Chemistry</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>48.163 Instrumentation and Process Control in Chemical Engineering</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>250.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Chemical Technology Society</td>
<td>25.00</td>
<td>Best graduate in Bachelor of Science degree in Industrial Chemistry</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>Best graduate in Bachelor of Science degree course in Industrial Chemistry, Years 1 and 2 or Stages 1 to 4</td>
</tr>
<tr>
<td>CSR Limited</td>
<td>50.00</td>
<td>Subject within the discipline of Industrial Chemistry, selected by Head of School</td>
</tr>
<tr>
<td>Esso Australia Ltd</td>
<td>200.00</td>
<td>Best performance in Year 2 Chemical Engineering</td>
</tr>
<tr>
<td>Donor/Name of Prize</td>
<td>Value $</td>
<td>Awarded for</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>School of Chemical Engineering and Industrial Chemistry (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institution of Chemical Engineers</td>
<td>100.00 and medal</td>
<td>Best result for the thesis in the final year, or equivalent part time stage, of the Bachelor of Engineering degree course</td>
</tr>
<tr>
<td>Shell</td>
<td>100.00</td>
<td>General proficiency in Year 2 or its part-time equivalent in either the Chemical Engineering course or the Industrial Chemistry course</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>General proficiency in Year 3 or its part-time equivalent in either the Chemical Engineering course or the Industrial Chemistry course</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>General proficiency in Year 4 or its part-time equivalent in either the Chemical Engineering course or the Industrial Chemistry course</td>
</tr>
<tr>
<td>Simon-Carves Australia</td>
<td>21.00</td>
<td>For a student who, in the opinion of the Head of School, has performed some meritorious activity of note either inside or outside the University</td>
</tr>
<tr>
<td>Stauffer Australia Limited</td>
<td>100.00</td>
<td>48.135 Thermodynamics</td>
</tr>
<tr>
<td>Western Mining Corporation Ltd</td>
<td>150.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>48.036 Chemical Engineering Laboratory 1</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td>48.044 Chemical Engineering Laboratory 2</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACI Australia Limited</td>
<td>60.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>250.00</td>
<td>Chemistry Honours</td>
</tr>
<tr>
<td>CSR Chemicals Ltd</td>
<td>200.00</td>
<td>2.002B Organic Chemistry I</td>
</tr>
<tr>
<td>Inglis Hudson Bequest</td>
<td>15.00</td>
<td>2.043L Chemistry and Enzymology of Foods</td>
</tr>
<tr>
<td>Jeffery Bequest</td>
<td>100.00</td>
<td>Chemistry – Level II subjects in the Science and Mathematics Course</td>
</tr>
<tr>
<td>Merck Sharp & Dohme (Aust) Pty Ltd</td>
<td>52.50</td>
<td>Chemistry – Level III subjects in the Science and Mathematics Course</td>
</tr>
<tr>
<td></td>
<td>52.50</td>
<td>2.013D Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>RACI Analytical Chemistry Group</td>
<td>150.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>UNSW Chemical Society Parke-Pope</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>UNSW Chemical Society George Wright</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>School of Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Finance Conference</td>
<td>75.00</td>
<td>15.083 Public Finance</td>
</tr>
<tr>
<td>Economic Society in Economics</td>
<td>100.00 and three years' membership of the Economic Society</td>
<td>Final year in Bachelor of Arts degree course with honours in Economics, Bachelor of Commerce degree course with honours in Economics or Bachelor of Commerce degree course with honours in Economics and Econometrics</td>
</tr>
</tbody>
</table>

School of Economics Prizes continued overleaf
<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Economics (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Statistical Society of Australia (New South Wales Branch)</td>
<td>100.00</td>
<td>General proficiency throughout the Bachelor of Commerce degree course in Econometrics and one year's free membership of the Society</td>
</tr>
<tr>
<td>School of Electrical Engineering and Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austral Crane</td>
<td>37.50</td>
<td>Bachelor of Engineering degree course in Electrical Engineering, Year 3</td>
</tr>
<tr>
<td></td>
<td>37.50</td>
<td>Power or Control elective</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>250.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Electricity Supply Engineers Association of New South Wales</td>
<td>100.00</td>
<td>Overall performance including proficiency in Electric Power Distribution in Year 3 full-time or equivalent part-time degree course</td>
</tr>
<tr>
<td>IBM</td>
<td>150.00</td>
<td>6.611 Computing 1</td>
</tr>
<tr>
<td>J. Douglas MacLurcan</td>
<td>50.00</td>
<td>Control Systems</td>
</tr>
<tr>
<td></td>
<td>Book order</td>
<td></td>
</tr>
<tr>
<td>The Wilfred Holmes Memorial Award</td>
<td>150.00</td>
<td>A student eligible to enter the final year of the degree course and who is deemed to be in necessitous circumstances</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>50.00</td>
<td>Excellence in Level III Applied Mathematics subjects</td>
</tr>
<tr>
<td>Head of School's</td>
<td>50.00</td>
<td>Excellence in at least 5 Mathematics units in Year 2</td>
</tr>
<tr>
<td>IBM</td>
<td>150.00</td>
<td>Final year of an honours degree course</td>
</tr>
<tr>
<td>ICI Theory of Statistics IV</td>
<td>100.00</td>
<td>Best performance in 10.323 Theory of Statistics 4</td>
</tr>
<tr>
<td>I. P. Sharp Associates</td>
<td>75.00</td>
<td>Excellence in Higher Theory of Statistics 2</td>
</tr>
<tr>
<td>J. R. Holmes</td>
<td>50.00</td>
<td>Excellent performance in at least 4 pass-level (up to 1 pass-level unit may be replaced by a higher-level unit) Pure Mathematics Level III units taken over no more than two consecutive years</td>
</tr>
<tr>
<td>Pure Mathematics</td>
<td>50.00</td>
<td>Best performance in Level III Pure Mathematics subjects</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>30.00</td>
<td>Best performance in 10.011 Higher Mathematics 1</td>
</tr>
<tr>
<td></td>
<td>30.00</td>
<td>Best performance in basic Year 2 Higher Mathematics units</td>
</tr>
<tr>
<td></td>
<td>30.00</td>
<td>Excellence in at least 5 Mathematics units in Year 2</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>School of Mathematics (continued)</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Society of Australia (New South Wales Branch)</td>
<td>50.00 and one year's free membership of the Society</td>
<td>General proficiency – Theory of Statistics subjects</td>
</tr>
<tr>
<td>Theoretical Mechanics</td>
<td>50.00</td>
<td>Excellence in Level III Theoretical Mechanics subjects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Metallurgy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcan Australia Ltd</td>
<td>100.00</td>
</tr>
<tr>
<td>Austral Crane</td>
<td>150.00</td>
</tr>
<tr>
<td>Australian Institute of Metals</td>
<td>50.00 and one year's membership of the Institute</td>
</tr>
<tr>
<td>Australian Welding Institute</td>
<td>30.00 and one year's membership of the Institute</td>
</tr>
<tr>
<td>The Broken Hill Proprietary Co Ltd</td>
<td>150.00</td>
</tr>
<tr>
<td>Chamber of Manufactures of New South Wales</td>
<td>250.00</td>
</tr>
<tr>
<td>The Max Hatherly</td>
<td>275.00</td>
</tr>
<tr>
<td>The Hugh Muir</td>
<td>275.00</td>
</tr>
<tr>
<td>Western Mining Corporation Ltd</td>
<td>150.00</td>
</tr>
<tr>
<td></td>
<td>150.00</td>
</tr>
<tr>
<td>Zinc Corp Ltd</td>
<td>100.00</td>
</tr>
</tbody>
</table>

School of Optometry

<table>
<thead>
<tr>
<th>School of Optometry</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Optometrical Association</td>
<td>200.00</td>
<td>Best performance in Year 3 of the Optometry degree course</td>
</tr>
<tr>
<td>Bausch & Lomb Soflens</td>
<td>Diagnostic set of contact lenses valued at 700.00</td>
<td>31.841 Clinical Optometry</td>
</tr>
<tr>
<td>Bryan Powell</td>
<td>100.00</td>
<td>Colour vision section of 31.841 Clinical Optometry</td>
</tr>
</tbody>
</table>

School of Optometry Prizes continued overleaf
School of Optometry (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contavue</td>
<td>Trial fitting set of contact lenses</td>
<td>Best essay or project on contact lenses</td>
</tr>
<tr>
<td>Filmer Sceats Memorial</td>
<td>30.00</td>
<td>31.812 Optometry 2</td>
</tr>
<tr>
<td>G. Nissel & Co Aust Pty Ltd</td>
<td>Trial fitting set of contact lenses</td>
<td>31.813 Optometry 3 and 31.841 Clinical Optometry — Contact Lenses sections</td>
</tr>
<tr>
<td>Hoya Australia Pty Ltd</td>
<td>250.00</td>
<td>Highest academic record in the Optometry degree course</td>
</tr>
<tr>
<td>Hydron (Australia) Pty Ltd</td>
<td>100.00</td>
<td>31.813 Optometry 3</td>
</tr>
<tr>
<td>International Optics</td>
<td>100.00</td>
<td>Optometry Year 4</td>
</tr>
<tr>
<td>The Keith Woodland Memorial</td>
<td>75.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>L. G. Darcey Memorial</td>
<td>30.00</td>
<td>31.811 Optometry 1</td>
</tr>
<tr>
<td>Martin Wells Pty Ltd</td>
<td>200.00</td>
<td>31.821 Special Anatomy and Physiology</td>
</tr>
<tr>
<td>Optical Products Pty Ltd</td>
<td>200.00</td>
<td>31.831 Diseases of the Eye</td>
</tr>
<tr>
<td>Optometric Vision Research Foundation</td>
<td>200.00</td>
<td>Final Year Essay</td>
</tr>
<tr>
<td>Optometrists’ Association of NSW</td>
<td>200.00</td>
<td>Subject selected by Head of School</td>
</tr>
<tr>
<td>Optyl (Australia) Pty Ltd</td>
<td>100.00</td>
<td>Research project in the final year</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.812 Optometry 2 — practical work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.841 Clinical Optometry</td>
</tr>
</tbody>
</table>

School of Physics

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETP-Oxford</td>
<td>200.00</td>
<td>Student(s) who prepare the most meritorious design study of an optical system in 1.713 Advanced Laser and Optical Applications</td>
</tr>
<tr>
<td>The Gordon and Mabel Godfrey</td>
<td>100.00</td>
<td>Best performance in a selection of Theoretical Physics Level III units chosen from 1.5133, 1.5233, 1.5333, 1.5433, 1.5533</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>Excellence in 1.504 (Year 4 of the honours degree course in Theoretical Physics)</td>
</tr>
<tr>
<td></td>
<td>300.00</td>
<td>Student who has completed Year 3 and is entering the final year of the Honours degree course in Theoretical Physics</td>
</tr>
<tr>
<td>Head of School’s in Physics</td>
<td>50.00</td>
<td>Most creditable Year 4 honours thesis</td>
</tr>
<tr>
<td>Australian Institute of Physics</td>
<td>100.00 and one year’s membership of the Institute</td>
<td>Highest aggregate marks in three of the units 1.0133, 1.0143, 1.023, 1.0333, 1.0343 and 1.043</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Electronics</td>
<td>200.00</td>
<td>Excellence in the laboratory work in 1.763 Laser and Optical Technology Laboratory 1</td>
</tr>
<tr>
<td>Monaro Research</td>
<td>200.00</td>
<td>Excellence in 1.713 Advanced Laser and Optical Applications</td>
</tr>
<tr>
<td>Physics Staff for Applied Physics</td>
<td>50.00</td>
<td>Best performance in a selection of Year 3 units chosen from 1.0533, 1.0543, 1.133, 1.3033, 1.3133, 1.3233, 1.3333, 1.3533, 1.713, 1.763</td>
</tr>
<tr>
<td>Physics Staff for Physics 1</td>
<td>50.00</td>
<td>Best performance in 1.001</td>
</tr>
<tr>
<td>Physics Staff for Physics 2</td>
<td>50.00</td>
<td>Highest aggregate mark in 1.002, 1.012, 1.022 and 1.032</td>
</tr>
<tr>
<td>Physics Staff for Physics Honours</td>
<td>100.00</td>
<td>Highest mark in 1.104, 1.304, 1.504 or 1.604</td>
</tr>
<tr>
<td>Physics Staff for Theoretical Physics</td>
<td>30.00</td>
<td>Highest aggregate marks in three half-units of 1.1133, 1.5133, 1.5233, 1.5333, 1.5433 and 1.5533</td>
</tr>
<tr>
<td>Radiation Research</td>
<td>200.00</td>
<td>Excellence in the laboratory work in 1.773 Laser and Optical Technology Laboratory 2</td>
</tr>
</tbody>
</table>

School of Psychology

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Psychological Society</td>
<td>100.00</td>
<td>A Year 4 Psychology subject selected by Head of School</td>
</tr>
<tr>
<td>Milon Buneta</td>
<td>50.00</td>
<td>Best Psychology Year 2 performance by a student in the Bachelor of Science degree course in Psychology Psychology Year 2</td>
</tr>
<tr>
<td>Psychology Staff</td>
<td>80.00</td>
<td></td>
</tr>
</tbody>
</table>

Graduate University Prizes

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauri Brothers & Thomson (Aust) Pty Limited</td>
<td>175.00</td>
<td>Best overall performance in the Master of Science (Biotechnology) degree course</td>
</tr>
</tbody>
</table>

School of Chemistry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith Kline and French</td>
<td>100.00</td>
<td>Best performance in the Graduate Diploma in Food and Drug Analysis course</td>
</tr>
</tbody>
</table>

School of Optometry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydron Contact Lens</td>
<td>A trial fitting set of contact lens</td>
<td>31.705G Advanced Contact Lens Theory and Practice</td>
</tr>
<tr>
<td>Theo Kannis</td>
<td>250.00</td>
<td>31.701G Advanced Clinical Optometry</td>
</tr>
</tbody>
</table>
Faculty of Biological Sciences

Staff

Comprises First Year Biology Teaching Unit, Schools of Biochemistry, Biotechnology, Botany, Microbiology, Psychology and Zoology.

Dean
Professor E. O. P. Thompson

Chairman
Professor T. J. Dawson

Senior Administrative Officer
Robert Anthony Höhnen, BA Canberra C.A.E.

Professional Officer
Karl Ray Reddell, BSc Wis.

First Year Biology Teaching Unit

Director
Dr R. J. King

Professional Officer
Anthony Ross Smith-White, BSc Syd., MSc PhD N.S.W.

School of Biochemistry

Professor of Biochemistry and Head of School
Barry Vaughan Milborrow, BSc PhD DSc Lond., FLS, FIBiol

Professor of Medical Biochemistry
William James O'Sullivan, BSc W.Aust., PhD A.N.U.

Professor of Biochemistry
Edward Owen Paul Thompson, MSc DipEd Syd., PhD ScD Camb., FRACI

Associate Professors
John Bruce Adams, MSc Syd., PhD DSc N.S.W., ARACI
Kevin David Barrow, BSc PhD Adel.
Keith Guenther Rienits, MSc Syd., PhD Birm.
Philip John Schofield, BSc PhD N.S.W.

Senior Lecturers
Aldo Sebastian Bagnara, BSc PhD Melb.
Antony George Mackinlay, MSc PhD Syd.
Kenneth Edward Moon, BSc PhD N.S.W.
Raymond Stanley Norton, BSc Melb., PhD A.N.U.
Thomas Stanley Stewart, BSc Syd., PhD N.S.W.
George Zaitis, BSc PhD W.Aust.

Lecturers
Michael Richard Edwards, MA PhD Camb.
Ian James McFarlane, BSc PhD Syd.

*For Board of Studies in Science and Mathematics see later in this section.
Senior Tutor
Jill Lorraine Gibbons, BSc

Tutor
Heather Mary Weir, BSc Rhodes, MSc N.S.W.

Professional Officers
Antonio Luiz d’Assumpcao, BSc Syd.
Brian McAlister Croll, BSc N.S.W.
Wendy Glenn, MSc PhD N.S.W.
Walter Samuel Golder, BPharm MSc PhD DipMedTech Syd., ASTC, MPS
George Grossman, BSc N.S.W.
Choy Soong Daniel Lee, MSc N.S.W.
Andrew George Netting, BSc PhD N.S.W.
Adrian Willebrand Rys, BSc N.S.W.I.T.

School of Biotechnology

Professor of Biotechnology and Head of School
Pamela Athalie Deidre Rickard, BSc Syd., MSc N.S.W., PhD Lond.

Associate Professors
Noel William Dunn, MSc Monash, PhD Melb.
Peter Philip Gray, BSc Syd., PhD N.S.W., MIEAust
Peter Lindsay Rogers, BE Adel., DPhil Oxf.

Senior Lecturer
Stephen Francis Delaney, BSc Sheff., PhD Liv

Lecturer
John Colin Madgwick, MSc PhD N.S.W.

School of Microbiology

Professor of Medical Microbiology and Head of School
Geoffrey Norton Cooper, MSc PhD Melb., MASM

Professor of Microbiology
Kevin Charles Marshall, BSc Agr Syd., MS PhD C’nell., MASM

Professor
Anthony John Wicken, BSc PhD Cape T., MA Camb., FNZIC, MASM

Senior Lecturers
Yvonne Marie Barnet, BSc Agr Syd., PhD N.S.W.
Brian James Wallace, BSc PhD Melb.

Lecturer
Iain Couperwhite, BSc PhD Strath., MASM

School of Botany

Professor of Botany and Head of School
Derek John Anderson, BSc Nott., PhD Wales, FLS

Senior Tutor
Basil Partick McBrien, MSc N.S.W., ASTC
Professional Officers
Barbara Lillian Blainey, BSc Melb., MSc Syd.
Nerissa Gianda Hartwig, BSc Adel.
Mary Essic Johnsen, BSc Qld.
Marshall Henry Maxwell Wilson, MSc N.S.W.

Medical Microbiology
Associate Professors
Royle Anthony Hawkes, BScAgr Syd., PhD A.N.U., MASM
Graham Douglas Fischer Jackson, BSc PhD Adel.
Adrian Lee, BSc PhD Melb., MASM

Senior Lecturer
Elizabeth Hazel, MSc Qld., PhD N.S.W.

Honorary Associate (School)
Phyllis Margaret Rountree, DSc Melb., DipBact Lond.

School of Psychology
Senior Lecturer and Head of School
Keith Raymond Llewellyn, BA PhD Syd.

Professor of Psychology
Laurence Binet Brown, MA DipEd N.Z., PhD Lond.

Professor of Psychology
Vacant

Administrative Officer
Trevor John Clulow, BA N.S.W., MA Syd.

Senior Lecturers
Austin Sorby Adams, BA Adel., MA PhD Mich.
Kevin Douglas Bird, BSc PhD N.S.W.
Peter Charles Birrell, BA Syd., PhD N.S.W.
Stephen Bochner, BA Syd., MA Hawaii, PhD N.S.W.
James Christopher Clarke, MA N.Z., PhD N.Y. State
Joseph Paul Forgas, BA Macq., DPhil Oxf.
Edward James Kehoe, BA Lawrence, MA PhD Iowa
George Paxinos, BA Calif., MA PhD McG.
John Eaton Taplin, BSc PhD Adel.
Reginald Frederick Westbrook, MA Glas., DPhil Sus.

Lecturers
Sally Margaret Andrews, BA PhD N.S.W
Denis Kingsley Burnham, BA N.E., PhD Monash.
Jacquelyn Cranney, MA Qld., PhD BrynMawr
William Taylor Hardy, BA Claremont, MA PhD Calif.
William Hopes, BA Syd.
Peter Frank Lovibond, BSc PhD N.S.W
Marcus Taft, BSc PhD Monash

Tutors
Eugene Stephan Chekaluk, BA N.S.W.
Helen Margaret Christensen, BA Syd., MPsy chol N.S.W.
Gail Florence Huon, BSc N.S.W.
Robyn Jennifer Miller, BA Melb.
Ronald Michael Rapee, BSc N.S.W.

Professional Officer
Angus John Fowler, BSc N.S.W.

Honorary Associate
Thomas Angus McKinnon, MA PhD Syd.

Honorary Visiting Fellows
Alexander Edward Carey, BSc Lond.
James Arthur Jackson, MB ChB Liv., DOBSTRCOG Lond., FRACGP

School of Zoology
Professor of Zoology and Head of School
Terence John Dawson, BRurSc PhD N.E.

Professor of Zoology
David Cartner Sandeman, MSc Natal, PhD St. And.

Associate Professors
Michael Archer, BA Prin., PhD W.Aust.
Rossiter Henry Crozier, MSc Melb., PhD C‘nell.
Erik Shipp, BSc Syd., PhD N.S.W.

Senior Lecturers
Michael Land Augee, BSc Williamette, PhD Monash
Alan Michel Beal, DipAH Qld Agr.Coll., BSc PhD Qld.
David Benjamin Croft, BSc Fin., PhD Camb.
Barry James Fox, BSc N.S.W., DipEd N’cle.(N.S.W.),
MSc Windsor, PhD Macq.
Peter Greenaway, BSc PhD N’cle.(U.K.)
Robert John MacIntyre, MSc Cant., PhD McG.
Aola Mary Richards, MSc PhD N.Z., FRES
Arthur Woods, MA Oxf., FRES, MIBiol
Lecturers
Patricia Irene Dixon, BSc PhD N.S.W., DipEd Syd.
Alexander Mazanov, BSc A.N.U., PhD N.E.

Tutors
Anthony Gerald Miskiewicz, BSc James Cook
Bryson Smith, BSc PhD N.S.W.

Professional Officers
Francis Dominic Fanning, BSc N.S.W.
Lionel Winston Filewood, BSc Syd.
Renate Sandeman

Administrative Assistant
Louise Ann Mazzaroli, BA PhD N.S.W.

Honorary Associates
Ronald Strahan, MSc W.Aust., FSIH
Kenneth Radway Allen, MA ScD Camb.

Honorary Visiting Fellows
Thomas Ritchie Grant, BSc Cant., PhD N.S.W.
Bruce Roderick Hodgson, BSc PhD N.S.W.
Charles Pregenzer, BS N.Y. State, MA Hofstra, PhD N.S.W.
Grahame John Wardon Webb, BSc PhD N.E.
Faculty of Science

Staff

Comprises Schools of Chemistry, Mathematics, Optometry and Physics.

Dean
Professor V. T. Buchwald

Chairman
Associate Professor J. C. Kelly

Senior Lecturer
Jason Harry Falla Middleton, BSc PhD Monash

School of Chemistry

Professor of Physical Chemistry, Head of School and Head of Department of Physical Chemistry
Peter John Derrick, BSc PhD Lond., CChem, FRSC, FRACI

Professor of Chemistry
Peter Steele Clezy, BSc PhD Tas., DSc N.S.W., ARACI

Professor of Organic Chemistry and Head of Department of Organic Chemistry
David St Clair Black, MSc Syd., PhD Camb., AMusA, FRACI

Professor of Theoretical and Physical Chemistry
Raymund Marshall Golding, MSc Auck., PhD Camb., FNZIC, FinstP, FRACI

Professor of Inorganic Chemistry and Head of Department of Inorganic and Nuclear Chemistry
Stanley Edward Livingstone, PhD DSc N.S.W., FSTC, FRACI, FRSC, CChem

Professor of Chemistry
James Stanley Shannon, DIC PhD Lond., DSc Adel., FRACI

Professor of Analytical Chemistry and Head of Department of Analytical Chemistry
Vacant

Executive Assistant to Head of School
Dr D. S. Alderdice

Administrative Officer
Charmaine Carmel Poole, BSc N.S.W.

Administrative Assistant
Dominic Vincent Portelli, BA N.S.W.

*For Board of Studies in Science and Mathematics, see later in this section.
Honorary Associates
Edward Ritchie Cole, MSc Syd., PhD N.S.W., FRACI
Lister Waverley Ormsby Martin, BSc Syd., ARACI

Honorary Visiting Fellow
Phyllis Lorraine Robertson, MSc N.Z., PhD Cant.

Professional Officers
Joseph John Brophy, BSc PhD N.S.W., DipEd Monash, ARACI
Leonard Alexander Cherkson, BE PhD Kiev, MIEAust
Donald Chadwick Craig, BSc Syd., MSc N.S.W.
John Herbert James Dawson, BSc Sheff., PhD Warw.
Vladimir Djohadze, BSc N.S.W.
Richard James Finlayson, MSc N.S.W., ARACI
Lynette June Fitzpatrick, BSc Syd., MSc Macq.
James Malcolm Hook, BSc N.S.W., PhD A.N.U., ARACI
Peter Anthony James, BSc N.S.W., ASTC, ARACI
Derek Nelson, BSc DipEd Bell.
Huu-Phung Pham, BSc Saigon, PhD N.S.W.
Graeme Thomas See, BSc N.S.W., ASTC
Helen Shumsky, BSc Odessa I.T.
Richard Szczepanski, BSc N.S.W.
Nguyen Than Trong, MSc N.S.W.
Michael Keys Withers, MSc N.S.W.

Department of Analytical Chemistry

Associate Professors
Douglas Peter Graddon, MSc PhD Manc., DSc N.S.W., CChem, FRSC, ARACI
Ian Kelvin Gregor, BSc N.E., MSc PhD N.S.W.

Senior Lecturers
Peter William Alexander, MSc PhD Syd., FRACI
Sergio Dilli, BSc PhD N.S.W., ASTC, ARACI
Paul Raymond Haddad, BSc PhD N.S.W., DipMilstud, ARACI
Jaroslav Petr Matousek, IngChem T.U. Prague, PhD N.S.W., FRACI

Tutors
Glen William Diliow, BSc N.S.W.
Peter Edward Jackson, BSc N.S.W.

Department of Inorganic and Nuclear Chemistry

Associate Professors
Douglas John Carswell, MSc PhD DipEd Syd., CChem, FRSC, FRACI
Ian Gordon Dance, MSc Syd., PhD Manc., ARACI
Harold Andrew Goodwin, BSc PhD Syd., FRACI
Mervyn Allan Long, MSc PhD, Auck., ANZIC

Senior Lecturers
David John Phillips, BSc PhD Lond., ARACI
Lecturer
Nicholas Kenneth Roberts, BSc PhD W Aust.

Department of Organic Chemistry

Associate Professors
George Crank, MSc Qu., PhD Monash, CChem, MRSC
Michael John Gallagher, MSc Qld., PhD Camb., FRACI
John David Stevens, BSc Tas., PhD N.E., ARACI

Senior Lecturers
George Vernon Baddeley, BSc Manc., DPhil Oxf.
Roger Bishop, BSc St. And., PhD Camb., ARACI
Norman William Herbert Cheetham, BSc PhD Qld.
Peter Thomas Southwell-Keely, BSc Syd., PhD N.S.W.
Robert Francis Tola, BSc PhD W Aust., ARACI

Lecturer
Roger Wayne Read, BSc PhD Syd., DIC Lond.

Senior Tutors
Satya Narayana Murthy Durvasula, MSc And., PhD Syd., CChem, MRSC
Inno Salasoo, BSc PhD N.S.W., ASTC, ARACI

Department of Physical Chemistry

Associate Professors
John Lyndon Garnett, MSc N.S.W., PhD Chic., ASTC, FRACI
Brian John Orr, MSc Syd., PhD Brist., FRACI
Alan David Rae, MSc PhD Auck., ANZIC

Senior Lecturers
David Scott Alderdice, MSc Syd., PhD Lond.
Martin Peter Bogaard, BSc PhD Syd.
Brian Raymond Craven, MSc PhD N.S.W., ASTC
Ruby Foon, MSc PhD Melb.
William David Johnson, BSc Syd., MSc N.E., PhD N.S.W.

Lecturers
Derek Richard Smith, BSc PhD Wales
Gary David Willett, BSc PhD LaT., ARACI

Senior Tutor
Ronald Stanley Haines, BSc PhD N.S.W.
First Year Chemistry

Director of First Year Classes in Chemistry
Tristan John Victor Findlay, BSc PhD St.And., CChem, FRSC, FRACI

Lecturer
Douglas Neil Duffy, MSc DPhil Waik.

Senior Tutors
Peter See Kien Chia, MSc PhD N.S.W.
Joan Pauline Ross, BSc Syd.
Ruth Martha Shaw, BA Hunter, PhD C'nell.

Tutors
Alexander Durie, BAAppSc R.M.I.T., MAppSc Chisholm I.T.
Jeffrey John Gibson, MSc PhD Syd.
Jognandan Kumar, BSc G.N.D. Amritsar, MSc Meerut

School of Mathematics

Professor of Pure Mathematics and Head of School
Gavin Brown, MA St.And., PhD N'cle.(U.K.), FAA

Professor of Applied Mathematics
Viliam Teodor Buchwald, BSc Manc., MSc PhD Lond., FIMA

Professor of Applied Mathematics
Vacant

Professor
Ian Hugh Sloan, BA BSc Melb., MSc Adel., PhD Lond.

Professor of Pure Mathematics
Michael George Cowling, BSc A.N.U., PhD Flin.

Professor of Statistics
Abraham Michael Hasofer, BEE Faruk, BEc PhD Tas., MIEAust

Associate Professor and Director of First Year Studies
Angus Henry Low, MSc DipEd Syd., PhD N.S.W.

Senior Tutors
Donald Sidney Craig, BSc Qld.
Richard Ottmar Joza, BSc Monash, MSc DPhil Oxf
William Thomas Perrins, MA Camb., DipEd Mitchell C.A.E.

Tutors
Shahaboddin Ghahreman, MSc Lond.
Peter Thomas O'Brien, BSc DipEd N.S.W.
Milan Pahor, BSc W'gong.
Jennifer Judith Randell, MSc Witw.
Derek Noel Ward, BSc DipEd N.S.W.

Professional Officer
Veronica Paul, BSc Wales, DipEd N.E.

Administrative Officer
Margaret Alison Potter, BA DipEd Syd.

Department of Pure Mathematics

Associate Professors
John Harold Loxton, MSc Melb., PhD Camb.
John Frederick Price, MSc Melb., PhD A.N.U.

Senior Lecturers
Peter Windeyer Donovan, BA Syd., DPhil Oxf.
Mary Ruth Freischlich, BA Witw., MA N.S.W.
Jack David Gray, BA Syd., PhD N.S.W.
David Christopher Hunt, BSc Syd., MSc PhD Warw.
Ezzat Sami Noussair, BEng BSc Cairo, PhD Br.Col.
Iain Raeburn, BSc Edin., PhD Utah
John St Alban Sandiford, MSc Syd.
Colin Eric Sutherland, BSc Cant., PhD Calif.
David Graham Tacon, BSc N'cle.(N.S.W.), PhD A.N.U.
Dennis William Trenerry, BSc PhD Adel.

Lecturers
Charles Dixon Cox, BSc DipEd Qld.
Shaun Anthony Requa Disney, BA BSc Adel., DPhil Oxf.
Anthony Haynes Dooley, BSc PhD A.N.U.
Michael David Hirschhorn, BSc Syd., MSc Edin., PhD N.S.W.
Rodney Kelvin James, BSc PhD Syd.

Senior Tutor
James William Franklin, MA Syd., PhD Warw.

Emeritus Professor
George Szekeres, DiplChemEng Bud., Hon.DSc N.S.W., FAA

Research Associate
Alexander Anthony Kumjian, MA PhD Calif.

Honorary Associates
Gregory Maxwell Kelly, BSc Syd., BA PhD Camb., FAA
Alfred Jacobus van der Poorten, BSc PhD N.S.W.
Department of Applied Mathematics

Associate Professor
William Eric Smith, MSc Syd., and Oxf., PhD N.S.W., MInstP, MAIP

Senior Lecturers
Alexander Hugh Ople, BSc DipEd Melb., PhD Monash, FAIP
Kok-Lay Teo, BSc Sing., MASc PhD Ott., MIEEE, AMIEE

Lecturers
Peter James Bienenhassett, BE W.Aust., PhD Lond.
David Charles Guiney, BSc PhD Adel.
Douglas Edward Mackenzie, BSc Tas., FIMA, MACE
John Michael Murray, MSc N.S.W., PhD Wash.
David Allan Mustard, BSc Syd., MSc N.S.W.

Senior Tutor
Albert Tator Daoud, BSc R’dg., PhD N.S.W., FInstP

Honorary Associates
Captain Daniel James McKeegan, BSc Syd., MSc PhD N.S.W., RAN
Simon Jacques Prokhovnik, BA MSc Melb.

Department of Statistics

Associate Professor
Clyde Arnold McGilchrist, BSc BEd Qld., MSc PhD N.S.W.

Senior Lecturers
Peter John Cooke, MSc N.E., MS PhD Stan.
John Anthony Eccleston, BSc Syd., MSc Manc., PhD C’nell.
Anthony Gilbert Lewis Elliott, BSc W.Aust.
Manohar Khanderao Vagholkar, MSc Born., DIC PhD Lond.

Lecturers
Ronald Bruce Davis, BSc Syd., MSc N.S.W., DipEd N.E.
David Griffiths, BSc N.S.W., DPhil Oxf.

Professional Officer
Rhonda Gock, BSc MStats N.S.W.

Honorary Associate
Geoffrey Kennedy Eagleson, BSc PhD Syd.

School of Physics

Associate Professor and Head of School
Hiroshi Julian Goldsmid, BSc PhD DSc Lond., FAIP, MAmPS

Professor of Experimental Physics and Head of Department of Astrophysics and Optics
Kenneth Norman Robert Taylor, BSc PhD Birm.

Professor of Theoretical Physics and Head of Department of Theoretical Physics
Heinrich Hora, DiplPhys Halle, DrRerNat Jena, DSc N.S.W., FInstP, FAIP
Professor and Head of Department of Biophysics
Hans Gerard Leonard Coster, MSc PhD Syd., MInstP, MAIP

Professor and Head of Department of Condensed Matter Physics
Dan Haneman, DSc Syd., PhD R'dg., FAIP, ARACI

Associate Professor and Head of Department of Applied Physics
David Henry Morton, MA Oxf., FInstP, FAIP

Professor of Physics
Vacant

Professor of Applied Physics
Vacant

Senior Lecturer and Executive Assistant to Head of School
John Robert Hanscomb, BSc Qld., MSc PhD N.S.W., MAIP, GradInstP

Director of First Year Studies
Dr G. J. Russell

Administrative Officer
Patricia Shaw, BCom N.S.W.

Principal Tutor
Paul Michael O'Halloran, BA Macq., MEd N.S.W.

Senior Tutors
Ian Richard Dunn, BSc BA Melb., MIEEE
Edward Peter Eyiand, BSc MPhysics N.S.W., BD Lond.
Martin Desmond Knight, BSc N.S.W.

Tutors
John Marcus Bell, BSc Syd.
Michael Philip Goldsworthy, MSc N.S.W.
Joseph Khachan, BSc N.S.W.
Marlene Noella Read, BSc PhD N.S.W.
Sophia Sakellis, DipPhysics Patras, MSc N.S.W.
Roberta Ann Valle, BSc N'cle.(N.S.W)
Peter Charles Wall, BSc N.S.W.

Professional Officers
Peter Robert Barker, BSc PhD Monash
Jack William Cochrane, BAppSc Canberra C.A.E., MPhysics N.S.W.
Jerzy Kurianski
Susan Elizabeth Murray-Jones, BSc N.S.W.
Barry Perczuk, BSc PhD Monash
Jeremy Karl Walter, BSc Lond.

Honorary Associates
John Stuart Dryden, MSc Melb., PhD DIC Lond., FAIP
Patrick Kelly, MA PhD ScD Camb., FAIP, MInstP

Honorary Visiting Fellows
Victor Kastalsky, BSc PhD N.S.W., ASTC, MInstP, MAIP
Gerard Raoul Newman, BSc Melb., PhD DIC Lond.
Stephen George Szirmai, BSc PhD N.S.W.

Department of Applied Physics

Senior Lecturers
John Ian Dunlop, BSc PhD N.S.W., MAIP, MAAS
Erik Harting, BSc PhD N.S.W., ASTC, MAIP
Victor Raymond Howes, BSc PhD Lond.
Kenneth Reid Vost, BSc Glas., MSc PhD N.S.W., AMAusIMM

Department of Astrophysics and Optics

Senior Lecturers
Zdenek Kviz, DipPhys Brno, CScRerNatDr Charles, PhD Prague
Peter Mitchell, BSc PhD Adel., MAIP
George Lange Paul, MSc Syd., PhD Edin.
John William Vanstan Storey, BSc Lat., PhD Monash
Betty Louise Turtle, BSc Adel., PhD A.N.U.

Department of Biophysics

Senior Lecturers
Veronica Jean James, BA BSc Qld., PhD N.S.W., MAIP
James Martin Pope, MSc Brist., DPhil Sus., AlnstP
Raymond Gary Simons, BSc Syd., MSc Tel Avir, PhD N.S.W.
Joseph Albert Wolfe, BSc Qld., PhD A.N.U.

Lecturer
John Robert Smith, BSc Syd., PhD N.S.W., MAIP

Department of Condensed Matter Physics

Associate Professor
Graham James Bowden, BSc DipAdvStudSc PhD Manc.

Senior Lecturers
Robert Louis Dalglish, BSc PhD N.S.W.
Peter Russell Elliston, BSc Melb., PhD Monash
Colin Trevor Grainger, BSc DipEd Syd., MSc N.E., PhD N.S.W., MInstP, MAIP
Leslie Beven Harris, BSc Lond., BA DipEd Durh., PhD N.S.W., CEng, FIM, FInstP
Graeme John Russell, BSc PhD N.S.W., MInstP, GradAlP
Lecturer
David John Miller, BSc PhD N.S.W, DipEd Syd., MAIP, MAmPS, MAAPT

Department of Theoretical Physics

Associate Professor
Jaan Oitmaa, BSc PhD N.S.W, FAIP, MAmPS

Senior Lecturers
David Neilson, BSc Melb., MS PhD N.Y. State
Robert John Stening, MSc Syd., PhD Qld., DipTertEd N.E., FRMetS

Lecturers
Michael Allister Box, BSc Monash, PhD Syd., GradAinstP
John Richard Shepanski, MSc Syd., MAIP, MAmPS
Board of Studies in Science and Mathematics

Staff

The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological Sciences and the Faculty of Science, and some members of specific schools in other faculties contributing to the Science and Mathematics Course: Applied Geology, Chemical Engineering and Industrial Chemistry, Geography, Metallurgy (Applied Science); History and Philosophy of Science, Philosophy (Arts); Accountancy, Economics (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Surveying (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Department of General Studies (Board of Studies in General Education).

Dean
Professor E. O. P. Thompson

Chairman
Professor A. J. Wicken

Co-ordinator of Studies in Science and Mathematics
Dr B. J. Burn

Administrative Assistant
Karenne May Irvine, BA NSW
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This Handbook has been specifically designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University — its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce, Engineering, Law, Medicine, Professional Studies, Science (including Biological Sciences and the Board of Studies in Science and Mathematics), the Australian Graduate School of Management (AGSM) and the Board of Studies in General Education.

The Calendar and Handbooks are available from the Cashier's Office.

The Calendar costs $5.00 (plus postage $1.20, interstate $1.55).

The Handbooks vary in cost. Applied Science, Architecture, Arts, Commerce, Engineering, Professional Studies, and Sciences are $3.00. Postage is $1.20 in each case ($1.55 interstate). Law, Medicine and AGSM are $2.00. Postage is 80 cents in each case (90 cents interstate).

A set of books is $32.00. Postage is $2.50 ($6.00 interstate).

The General Studies Handbook is free. Postage is 80 cents (90 cents interstate).