The University of New South Wales

Sciences
Board of Studies in Science and Mathematics
Faculty of Biological and Behavioural Sciences
Faculty of Science

1991
Faculty Handbook
The University of New South Wales

Sciences

Board of Studies in Science and Mathematics
Faculty of Biological and Behavioural Sciences
Faculty of Science

1991
Faculty Handbook
The address of The University of New South Wales is:

P.O. Box 1, Kensington 2033
New South Wales Australia

Telephone: (02) 697 2222

Telegraph: UNITECH, SYDNEY

Telex: AA26054
Subjects, courses and any arrangements for courses including staff allocated, as stated in the Calendar or any Handbook or any other publication, announcement or advice of the University, are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such subjects, courses, arrangements or staff allocations at any time without notice.

Information in this Handbook has been brought up to date as at 8 October 1990, but may be amended without notice by the University Council.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar of Dates</td>
<td>1</td>
</tr>
<tr>
<td>Staff</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to the Sciences Handbook</td>
<td>11</td>
</tr>
<tr>
<td>Faculty Information</td>
<td></td>
</tr>
<tr>
<td>Some People Who Can Help You</td>
<td>12</td>
</tr>
<tr>
<td>Enrolment Procedures</td>
<td>12</td>
</tr>
<tr>
<td>Faculty of Biological and Behavioural Sciences</td>
<td>12</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>12</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>12</td>
</tr>
<tr>
<td>Sciences Library Facilities</td>
<td>12</td>
</tr>
<tr>
<td>Student Clubs and Societies</td>
<td>13</td>
</tr>
<tr>
<td>Statistical Society of Australia: New South Wales Branch</td>
<td>13</td>
</tr>
<tr>
<td>General Education Program</td>
<td>14</td>
</tr>
<tr>
<td>Undergraduate Study: Board of Studies In Science and Mathematics</td>
<td>15</td>
</tr>
<tr>
<td>Introduction</td>
<td>16</td>
</tr>
<tr>
<td>3970 Science and Mathematics Course</td>
<td>18</td>
</tr>
<tr>
<td>Aims</td>
<td>18</td>
</tr>
<tr>
<td>Objectives</td>
<td>18</td>
</tr>
<tr>
<td>The Structure</td>
<td>19</td>
</tr>
<tr>
<td>The three year program</td>
<td>19</td>
</tr>
<tr>
<td>The four year program</td>
<td>19</td>
</tr>
<tr>
<td>Workload</td>
<td>20</td>
</tr>
<tr>
<td>Rules governing admission to the course with advanced standing</td>
<td>20</td>
</tr>
<tr>
<td>Programs</td>
<td>20</td>
</tr>
<tr>
<td>Physics</td>
<td>21</td>
</tr>
<tr>
<td>Chemistry</td>
<td>22</td>
</tr>
<tr>
<td>Computer Science</td>
<td>24</td>
</tr>
<tr>
<td>Mathematics</td>
<td>25</td>
</tr>
<tr>
<td>Psychology</td>
<td>28</td>
</tr>
<tr>
<td>Information Systems</td>
<td>30</td>
</tr>
<tr>
<td>Biological Science</td>
<td>30</td>
</tr>
</tbody>
</table>
Undergraduate Study: Subject Descriptions

<table>
<thead>
<tr>
<th>Subject Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of Subjects by Number</td>
<td>85</td>
</tr>
<tr>
<td>Accounting</td>
<td>88</td>
</tr>
<tr>
<td>Anatomy</td>
<td>88</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>89</td>
</tr>
<tr>
<td>Biological Science</td>
<td>91</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>93</td>
</tr>
<tr>
<td>Board of Studies in Science and Mathematics</td>
<td>94</td>
</tr>
<tr>
<td>Chemistry</td>
<td>94</td>
</tr>
<tr>
<td>Community Medicine</td>
<td>99</td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science</td>
<td>100</td>
</tr>
<tr>
<td>Economics</td>
<td>102</td>
</tr>
<tr>
<td>Banking and Finance</td>
<td>103</td>
</tr>
<tr>
<td>Geography</td>
<td>104</td>
</tr>
<tr>
<td>Applied Geology</td>
<td>107</td>
</tr>
<tr>
<td>Information Systems</td>
<td>111</td>
</tr>
<tr>
<td>Japanese</td>
<td>112</td>
</tr>
<tr>
<td>Legal Studies and Taxation</td>
<td>112</td>
</tr>
<tr>
<td>Mathematics</td>
<td>113</td>
</tr>
<tr>
<td>Pure Mathematics</td>
<td>114</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>117</td>
</tr>
<tr>
<td>Statistics</td>
<td>119</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>121</td>
</tr>
<tr>
<td>Medicine</td>
<td>123</td>
</tr>
<tr>
<td>Mechanical and Manufacturing Engineering</td>
<td>123</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>124</td>
</tr>
<tr>
<td>Optometry</td>
<td>126</td>
</tr>
<tr>
<td>Pathology</td>
<td>127</td>
</tr>
<tr>
<td>Philosophy</td>
<td>128</td>
</tr>
<tr>
<td>Physiology</td>
<td>131</td>
</tr>
<tr>
<td>Physiology and Pharmacology</td>
<td>132</td>
</tr>
<tr>
<td>Physics</td>
<td>133</td>
</tr>
<tr>
<td>Chemical Engineering and Industrial Chemistry</td>
<td>137</td>
</tr>
<tr>
<td>Psychiatry</td>
<td>137</td>
</tr>
<tr>
<td>Psychology</td>
<td>137</td>
</tr>
<tr>
<td>Science and Technology Studies</td>
<td>140</td>
</tr>
<tr>
<td>Wool and Animal Science</td>
<td>144</td>
</tr>
</tbody>
</table>

Graduate Study: Faculty of Biological and Behavioural Sciences/Faculty of Science

Faculty of Biological and Behavioural Sciences and Faculty of Science

<table>
<thead>
<tr>
<th>Subject Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>146</td>
</tr>
<tr>
<td>Enrolment Procedures</td>
<td>147</td>
</tr>
<tr>
<td>Faculty of Biological and Behavioural Sciences</td>
<td>147</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>149</td>
</tr>
<tr>
<td>5015 Biotechnology Graduate Diploma Course (GradDip)</td>
<td>149</td>
</tr>
<tr>
<td>8042 Master of Applied Science (Biotechnology) (MAppliedSc(Biotech))</td>
<td>149</td>
</tr>
<tr>
<td>Psychology</td>
<td>150</td>
</tr>
<tr>
<td>8250 Master of Psychology (Applied) (MPsycho(App) Full-time)</td>
<td>150</td>
</tr>
<tr>
<td>8251 Master of Psychology (Clinical) (MPsycho(Clinical))</td>
<td>151</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>151</td>
</tr>
<tr>
<td>5530 Physical Oceanography Graduate Diploma Course (GradDip)</td>
<td>152</td>
</tr>
<tr>
<td>Chemistry</td>
<td>152</td>
</tr>
<tr>
<td>8770 Master of Chemistry (MChem)</td>
<td>152</td>
</tr>
<tr>
<td>5610 Food and Drug Analysis Graduate Diploma Course (DipFDA)</td>
<td>153</td>
</tr>
<tr>
<td>Mathematics</td>
<td>154</td>
</tr>
<tr>
<td>8740 Master of Mathematics (MMath)</td>
<td>154</td>
</tr>
<tr>
<td>8750 Master of Statistics (MState)</td>
<td>154</td>
</tr>
<tr>
<td>Optometry</td>
<td>154</td>
</tr>
<tr>
<td>8760 Master of Optometry (MOptom)</td>
<td>155</td>
</tr>
<tr>
<td>Physics</td>
<td>155</td>
</tr>
<tr>
<td>8730 Master of Physics (MPhysics)</td>
<td>155</td>
</tr>
</tbody>
</table>
Graduate Study: Subject Descriptions

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>160</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>160</td>
</tr>
<tr>
<td>Biological Science</td>
<td>160</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>160</td>
</tr>
<tr>
<td>Chemistry</td>
<td>161</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>161</td>
</tr>
<tr>
<td>Faculty of Medicine</td>
<td>162</td>
</tr>
<tr>
<td>Economics</td>
<td>162</td>
</tr>
<tr>
<td>Geography</td>
<td>162</td>
</tr>
<tr>
<td>Faculty of Engineering</td>
<td>162</td>
</tr>
<tr>
<td>Mathematics</td>
<td>163</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>164</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td>164</td>
</tr>
<tr>
<td>Optometry</td>
<td>164</td>
</tr>
<tr>
<td>Physics</td>
<td>165</td>
</tr>
<tr>
<td>Psychology</td>
<td>166</td>
</tr>
<tr>
<td>Safety Science</td>
<td>168</td>
</tr>
</tbody>
</table>

Graduate Study: Conditions for the Award of Higher Degrees

<table>
<thead>
<tr>
<th>Degree</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Philosophy</td>
<td>171</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>173</td>
</tr>
<tr>
<td>Master of Engineering, Master of Science</td>
<td>174</td>
</tr>
<tr>
<td>Master of Engineering, Master of Science and Master of Surveying, without supervision</td>
<td>175</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>176</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>176</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>176</td>
</tr>
<tr>
<td>Master of Psychology (Applied) and (Clinical)</td>
<td>176</td>
</tr>
<tr>
<td>Master of Science</td>
<td>177</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>177</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>177</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>178</td>
</tr>
</tbody>
</table>

Scholarships and Prizes

<table>
<thead>
<tr>
<th>Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships</td>
<td>179</td>
</tr>
<tr>
<td>Undergraduate Scholarships</td>
<td>179</td>
</tr>
<tr>
<td>Graduate Scholarships</td>
<td>181</td>
</tr>
<tr>
<td>Prizes</td>
<td>184</td>
</tr>
<tr>
<td>Undergraduate Prizes</td>
<td>184</td>
</tr>
<tr>
<td>Graduate Prizes</td>
<td>187</td>
</tr>
</tbody>
</table>
The academic year is divided into two sessions, each containing 67 days for teaching. There is a recess of approximately six weeks between the two sessions and there are short recesses of one week within each of the sessions.

Session 1 commences on the Monday nearest 1 March.

<table>
<thead>
<tr>
<th>Session 1 (67 teaching days)</th>
<th>1991</th>
<th>1992</th>
<th>Faculties other than Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recess:</td>
<td>4 March to 28 March</td>
<td>2 March to 16 April</td>
<td>17 April to 26 April</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>29 March to 7 April</td>
<td>8 April to 14 June</td>
<td>27 April to 10 June</td>
</tr>
<tr>
<td></td>
<td>8 April to 14 June</td>
<td></td>
<td>11 June to 16 June</td>
</tr>
<tr>
<td>Examinations</td>
<td>15 June to 20 June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midyear Recess:</td>
<td>21 June to 9 July</td>
<td>17 June to 3 July</td>
<td>4 July to 26 July</td>
</tr>
<tr>
<td>Session 2 (67 teaching days)</td>
<td>29 July to 27 September</td>
<td>27 July to 25 September</td>
<td></td>
</tr>
<tr>
<td>Recess:</td>
<td>26 September to 7 October</td>
<td>26 September to 5 October</td>
<td>6 October to 4 November</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>8 October to 6 November</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations</td>
<td>7 November to 12 November</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 November to 29 November</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important Dates for 1991

January
- **T** 1 New Year's Day - Public Holiday
- **Th** 3 Last day for acceptance of applications by Office of the Admissions Section for transfer to another undergraduate course within the University.
- **W** 9 Last day for applications for review of assessment
- **M** 14 Term 1 begins - Medicine IV
- **M** 21 Term 1 begins - Medicine V
- **S** 26 Australia Day - Public Holiday

February
- **T** 5 Enrolment period begins for new undergraduate students and undergraduate students repeating first year
- **M** 11 Re-enrolment period begins for second and later year undergraduate and graduate students enrolled in formal courses. Students should consult the "Re-enrolling 1991" leaflet for their course for details.
March
F 1 Last day for acceptance of enrolment by new and re-enrolling students. (Late fee payable thereafter if enrolment approved).
M 4 Session 1 begins - all courses except Medicine IV and V
F 15 Last day applications are accepted from students to enrol in Session 1 or whole year subjects.
F 29 Good Friday - Public Holiday
 Mid-session Recess begins
S 30 Easter Saturday - Public Holiday
Su 31 HECS Census Date for Session 1

April
M 1 Easter Monday - Public Holiday
Th 25 Anzac Day - Public Holiday

May
T 14 Publication of Provisional Timetable for June examinations
W 22 Last day for students to advise of examination clashes

June
T 4 Publication of Timetable for June Examination
M 10 Queen's Birthday - Public Holiday
F 14 Session 1 ends
S 15 Study Recess begins
Th 20 Study Recess ends
F 21 Examinations begin

July
T 9 Examinations end
Su 28 Midyear Recess ends
M 29 Session 2 begins

August
F 9 Last day applications are accepted from students to enrol in Session 2 subjects
S 31 HECS census date for Session 2

September
F 27 Closing date for applications to the Universities Admissions Centre
S 28 Mid-session Recess begins

October
M 7 Labour Day - Public Holiday
 Mid-session Recess ends
T 8 Publication of provisional timetable for November Examinations
W 16 Last day for students to advise of examination clashes
T 29 Publication of timetable for November examinations

November
W 6 Session 2 ends
Th 7 Study Recess begins
T 12 Study Recess ends
W 13 Examinations begin
F 29 Examinations end

December
W 25 Christmas Day - Public Holiday
Th 26 Boxing Day - Public Holiday
Faculty of Biological and Behavioural Sciences

Staff

Comprises Schools of Biochemistry, Biological Science, Microbiology and Immunology, and Psychology.

Dean
Professor W.J. O'Sullivan

Presiding Member
Professor L.B. Brown

Senior Administrative Officer
Michael Dwyer, BSc N.S.W.

School of Biochemistry

Professor of Medical Biochemistry and Head of School
William James O'Sullivan, BSc W.A., PhD A.N.U.

Professor of Biochemistry
Barry Vaughan Milborrow, BSc PhD DSc Lond., FLS, FIBiol

Professor of Genetics
Ian William Dawes, BSc N.S.W., DPhil Oxf.

Associate Professors
Kevin David Barrow, BSc PhD Adel.
Antony George Mackinlay, MSc PhD Lond.
Raymond Stanley Norton, BSc Melb., PhD A.N.U.
Philip John Schofield, BSc PhD N.S.W.

Senior Lecturers
Aldo Sebastian Bagnara, BSc PhD Melb.
Michael Richard Edwards, MA PhD Camb.
Kenneth Edward Moon, BSc PhD N.S.W.
Thomas Stanley Stewart, BSc Syd., PhD N.S.W.
George Zalitis, BSc PhD W.A.

Lecturers
Ian James McFarlane, BSc PhD Syd.
Vincent Murray, BSc Glas., PhD CNNA

Senior Research Fellow
Annette Marie Gero, BSc Syd., MSc Macq., PhD N.S.W.

Tutor
Halim Shoory, BSc N.S.W.

Professional Officers
Antonio Luiz d'Assumpcao, BSc Syd.
Brian McAllister Croll, BSc N.S.W.
Wendy Glenn, MSc PhD N.S.W.
Walter Samuel Golder, BPharm MSc PhD DipMedTech Syd., ASTC, MPS
George Grossman, BSc N.S.W.
Geoffrey Kornfeld, BSc N.S.W.
Choy Soong Daniel Lee, MSc PhD N.S.W.
Andrew George Netting, BSc PhD N.S.W.
Heather Mary Weir, BSc Rhodes, MSc N.S.W.

Honorary Visiting Professor
Keith Guenther Rienits, MSc Syd., PhD Birm.

Honorary Associate
David Ernest Forester Harrison, BTech Brunei, PhD Lond.

School of Biological Science

Professor of Zoology and Head of School
Terence John Dawson, BRurSc PhD N.E.

Professor of Botany
Derek John Anderson, BSc Nott., PhD Wales, FLS
Professors of Zoology
Michael Archer, BA Prin., PhD W.A.
Terence John Dawson, BScHSc PhD N.E.
David Carter Sandeman, MSc Natal, PhD St.And.

Associate Professors
Paul Adam, MA PhD Camb.
Anne Elizabeth Ashford, BA Camb., PhD Leeds
Barry James Fox, BSc N.S.W., DipEd N'cle.(N.S.W.), MSc Windsor, PhD Macq.
Peter Greenaway, BSc PhD N'cle(UK)
Robert John King, BSc DipEd PhD Melb.

Senior Lecturers
Michael Land Augee, BSc Williamette, PhD Monash
Alan Michel Beal, DipAH Qld.Agr.Coll., BSc PhD Qld.
David Benjamin Croft, BSc Flinn., PhD Camb.
Patricia Irene Dixon, BSc PhD N.S.W., DipEd Syd.
Christopher John Quinn, BSc Tas., PhD Auck.
Aola Mary Richards, MSc PhD N.Z., FRES
Robert Stanley Vickery, BScAgr PhD Syd.
Alec Edward Wood, BScAgr Syd., PhD N.S.W.

Lecturers
Ross Edward McMurtrie, BSc PhD Syd.
William Bruce Sherwin, BSc PhD Melb.
Peter Steinberg, BSc Maryland, PhD Calif.
Ian Suthers, BSc Syd., MSc Manitoba, PhD Dalhousie

Professional Officers
Suzanne Bullock, MSc N.S.W.
Paul Gadek, BSc, PhD, N.S.W., MAI Biol
Lionel Winston Filewood, BSc Syd.
Gillian Frederika Hallam, BSc N.S.W.
Renate Sandeman, StsEx2Biol T.H.Darmstadt
Anthony Ross Smith-White, BSc Syd., MSc PhD N.S.W.
Peter Stricker, BSc Syd.
Kenneth John Voges, BSc Syd.

Administrative Officer
Louise Ann Mazzaroli, BA PhD N.S.W.

Honorary Visiting Professors
Thomas Carrick Chambers, MSc Auck., MSc Melb., PhD Syd.
Frank Verdun Mercer, BSc Adel., PhD Camb.
John Henry Palmer, BSc PhD Sheff., FA I Biol.
Haydn John Willetts, BSc Bristol, PhD N.S.W.

Honorary Associates
Kenneth Radway Allen, MA ScD Camb.
Manju Lata Gang, MSc PhD Delhi
Mary Maclean Hindmarsh, BSc PhD Syd.
Ronald Strahan, MSc W.A., FSIH

Honorary Visiting Fellows
Lindsay Barton Browne, BSc PhD Syd.
Thomas Ritchie Grant, BSc Cant., PhD N.S.W.
John Hamlyn Harris, BVSy Sc., PhD N.S.W.
Bruce Roderick Hodgson, BSc PhD N.S.W.
Helene Alice Martin, MSc Adel., PhD N.S.W.
Charles Pregenzer, BS N.Y. State, MA Hofstra, PhD N.S.W.
David George Read, BTrur Sc N.E., PhD N.S.W.
Erik Shipp, BSc Syd., PhD N.S.W.
Grahame John Wardon Webb, BSc PhD N.E.
Arthur William White, BSc PhD N.S.W.

Senior Project Scientist
Christopher John Orton, BSc PhD N.S.W.
Project Scientists
Jennifer Mercia Elizabeth Anderson, MScAgr Syd., PhD N.S.W.
Martin Alexander Shivas, MSc Qld.

Honorary Visiting Fellows
Erik Shipp, BSc Syd., PhD N.S.W.
Lindsay Barton Browne, BSc PhD Syd.

Centre for Entomological Research and Insecticide Technology (CERIT)

In association with Unisearch Ltd.

Director
Christopher John Orton, BSc PhD N.S.W.

Project Scientists
Jennifer Mercia Elizabeth Anderson, MScAgr Syd., PhD N.S.W.
Martin Alexander Shivas, MSc Qld.

Honorary Visiting Fellows
Erik Shipp, BSc Syd., PhD N.S.W.
Lindsay Barton Browne, BSc PhD Syd.
Christopher Terence Frances Virgona, BSc N.S.W.

School of Microbiology and Immunology

Professor of Medical Microbiology and Head of School
Adrian Lee, BSc PhD Melb., MASM

Professor of Microbiology
Kevin Charles Marshall, BScAgr Syd., MS PhD C'neil., FASM

Professor of Microbiology
Anthony John Wicken, BSc PhD Cape T., MA Camb., FASM, FIBiol.

Senior Lecturers
Yvonne Marie Barnet, BScAgr Syd., PhD N.S.W.
Iain Cooperwhite, BSc PhD Strath., MASM
Brian James Wallace, BSc PhD Melb.

Tutor
Vivian Sweelan Shanker, BSc N.E., DipEd Syd.

Professional Officers
Barbara Lillian Blainey, BSc Melb., MSc Syd.
Nerissa Glenda Lee, BSc Adel.
Marshall Henry Maxwell Wilson, MSc N.S.W.

Medical Microbiology

Associate Professors
Royle Anthony Hawkes, BScAgr Syd., PhD A.N.U., MASM
Graham Douglas Fischer Jackson, BSc PhD Adel.

Honorary Associate (School)
Phyllis Margaret Rountree, DSc Melb., Hon DSc Syd., DipBact Lond.
School of Psychology

Professor of Psychology and Head of School
Barbara Jean Gillam, BA Syd., PhD A.N.U.

Professor of Psychology
Laurence Binet Brown, MA DipEd N.Z., PhD Lond.

Associate Professors
Stephen Bochner, BA Syd., MA Hawaii, PhD N.S.W.
Joseph Paul Forgas, BA Macq., DPhil Oxf.
Edward James Kehoe, BA Lawrence, MA PhD Iowa
George Paxinos, BA Calif., MA PhD McG.
Reginald Frederick Westbrook, MA Glas., DPhil Sus.

Senior Lecturers
Austin Sorby Adams, BA Adel., MA PhD Mich.
Sally Margaret Andrews, BA PhD N.S.W.
Kevin Douglas Bird, BSc PhD N.S.W.
Peter Charles Birrell, BA Syd., PhD N.S.W.
Dennis Kingsley Burnham, BA N.E., PhD Monash.
James Christopher Clarke, MA N.Z., PhD N.Y. State
Jacquelyn Cranney, MA Qld., PhD BrynMawr
Beryl Hesketh, BScSc BA CapeT., MA Well., PhD Massey
Keith Raymond Llewellyn, BA PhD Syd.
Peter Frank Lovibond, BSc MSc(Psychol) PhD N.S.W.
Marcus Taft, BSc PhD Monash
John Eaton Taplin, BSc PhD Adel.

Lecturers
Gail Florence Huon, BSc PhD N.S.W.
Michael Kenneth Nicholas, MSc Otago, MPsych N.S.W., PhD Syd.
Harold Walter Karl Stanislaw, BA Yale, MA Calif. Riverside, MA PhD Calif. Los Angeles

Tutors
Rena Friswell, BA Macq.
Melanie Gleitzman, BA N.S.W.
Sara Helen Murray, BA A.N.U.
Elizabeth Rita Murrell, BSc MPsychol N.S.W.
Nicholas Dram, MA Auck., PhD Qu.

Administrative Officer
Trevor John Clulow, BA N.S.W., MA Syd.

Professional Officers
Tissa Abayaratna, BScEng Sri Lanka, MEng NUFFIC
Angus John Fowler, BSc N.S.W.

Honorary Visiting Fellows
William Hopes, BA Syd.
Thomas Angus McKinnon, MA PhD Syd.
Robert George Leslie Pryor, BA Syd., PhD N.S.W.

Honorary Visiting Fellow
James Arthur Jackson, MB ChB Liv., DObstRCOG Lond., FRACGP
Faculty of Science

Staff

Comprises Schools of Chemistry, Mathematics, Optometry and Physics.

Dean
Professor G. Brown

Chairman
Professor D. B. Hibbert

Senior Administrative Officer
Bissera Dikova, BA Sofia

School of Chemistry

Professor†
Peter Steele Clezy, BSc PhD Tas., DSc N.S.W., FRACI
Professor of Organic Chemistry, and Head of
Department of Organic Chemistry
David St Clair Black, MSc Syd., PhD Camb., AMusA, FRACI
Professor of Inorganic Chemistry, and Head of School
Ian Gordon Dance, MSc Syd., PhD Manc., MRACI
Professor of Analytical Chemistry and Head of Department of
Analytical Chemistry
David Brynn Hibbert, BSc PhD Lond., CChem, MRSC, FRACI
†in the field of organic chemistry.

Professor of Physical Chemistry and Head of Department of
Physical Chemistry
Russell Francis Howe, BSc PhD Cant. MNZIC, MACS, MRSC
Executive Assistant to Head of School
Dr D. S. Alderdice
Administrative Officer
Dorothy Wilmshurst
Honorary Associates
Edward Ritchie Cole, MSc Syd., PhD N.S.W., FRACI
Douglas Peter Graddon, MSc PhD Manc., DSc N.S.W.,
CChem, FRSC, MRACI
Prosper David Larl^, BEc Syd., MSc PhD N.S.W., ASTC,
CChem, FRSC, FRACI
Honorary Visiting Fellow
Brian Raymond Craven, MSc PhD N.S.W., ASTC
Sergio Dilli, BSc PhD N.S.W., ASTC, MRACI
John Herbert James Dawson, BSc Sheff., PhD Warw.
William John Dunstan, MSc Syd., MRACI
Mark Horsham, BSc PhD Nott.
Ewan Cameron Martin, MSc PhD N.S.W., FRACI
Joseph Fratus Martins, BSc M.I.T., PhD Harv.
Phyllis Lorraine Robertson, MSc N.Z., PhD Cant.
Visiting Fellow
Michael Amos Wilson, MSc PhD DSc Auck.
Project Scientist
Keith Cross, BSc W.Aust., PhD W. Ont.
Professional Officers
Joseph John Brophy, BSc PhD N.S.W., DipEd Monash, FRACI
Leonard Alexander Cherkson, BE PhD Kiev, MIEAust
Donald Chadwick Craig, BSc Syd., MSc N.S.W.
Richard James Finlayson, MSc N.S.W., MRACI
Lynette June Fitzpatrick, BSc Syd., MSc Macq.
James Malcolm Hook, BSc N.S.W., PhD A.N.U., MRACI
Naresh Kumar, MSc Punj., PhD W'gong
John Thomas Morgan, BSc N.S.W.
Huu-Phung Pham, BSc Saigon, PhD N.S.W.
Sigurds Andris Rakuns, MSc N.S.W.
Richard Szczepanski, BSc N.S.W.
Nguyen Than Trong, MSc N.S.W.
Michael Keys Withers, MSc N.S.W.

Department of Analytical Chemistry
Associate Professors
Peter William Alexander, MSc PhD Syd., FRACI
Ian Kelvin Gregor, BSc N.E., MSc PhD N.S.W.
Paul Raymond Haddad, BSc PhD N.S.W., DipMSciStud, MRACI
Jaroslav Petr Matousek, IngChemC.Sc. T.U.Prague, PhD N.S.W., FRACI
Senior Lecturer
Michael Guilhaus, BSc PhD N.S.W.
Lecturer
Graeme Mary Moran, BSc PhD N.U.I.

Department of Inorganic and Nuclear Chemistry
Associate Professor and Head of Department of Inorganic and Nuclear Chemistry
Mervin Allan Long, MSc PhD Auckland, MNZIC
Associate Professor
Harold Andrew Goodwin, BSc PhD Syd., FRACI
Senior Lecturer
David John Phillips, BSc PhD London, MRACI
Lecturers
Stephen Boyd Colbran, BSc PhD Otago
Douglas Neil Duffy, MSc DPhipil Waik.
Nicholas Kenneth Roberts, BSc PhD W.A., MRACI
Tutor
Robert Berthon, BSc N.S.W.
Maram Mary Kassis, BSc N.S.W.

Department of Physical Chemistry
Associate Professor
Alan David Rae, MSc PhD Auckland, ANZIC

Department of Chemistry

Senior Lecturers
David Scott Alderdice, MSc Syd., PhD London.
Martin Peter Bogaard, BSc PhD Syd.
Ruby Foon, MSc PhD Melbourne.
William David Johnson, BSc Syd., MSc N.E., PhD N.S.W.
Robert Norman Lamb, BSc PhD Melbourne, PhD Camb., MRACI
Gary David Willett, BSc PhD LaT., ARACI
Lecturers
Derek Richard Smith, BSc PhD Wales
Principal Tutor
Ronald Stanley Haines, BSc PhD N.S.W.
Tutor
Hanna Jirjis El-Nakat, BSc Lebanon

First Year Chemistry
Director of First Year Classes in Chemistry
Tristan John Victor Findlay, BSc PhD St.And., CChem, FRSC, FRACI
Lecturer
Peter See Kien Chia, MSc PhD N.S.W.
Principal Tutor
Joan Pauline Ross, BSc Syd.
Senior Tutors
Jeffrey John Gibson, MSc PhD Syd.
Ruth Martha Shaw, BA Hunter PhD C'neill.
Tutors
Alexander Durie, BA BAptSc R.M.I.T., MA MAptSc Chisholm I.T.
Jognandan Prashar, BSc G.N.D. Amritsar, MSc Meerut

Centre for Chemical Analysis
Director
Associate Professor P. Haddad
Manager
Terence Michael Flynn, BSc N.S.W., CChem, MRACI

School of Mathematics

Professor and Head of School
Michael George Cowling, BSc A.N.U., PhD Flin.

Professors of Applied Mathematics
Roger Hamilton James Grimshaw, MSc Auckland, PhD Camb., FAA
Ian Hugh Sloan, BA BSc Melbourne, MSc Adel., PhD London, FAIP

Professors of Pure Mathematics
Gavin Brown, MA St.And., PhD N'cle.(U.K.), FAA

Professor of Statistics
Abraham Michael Hasofer, BEE Faruk, BSc PhD Tas., MIE Aust

Senior Lecturer and Director of First Year Studies
David Christopher Hunt, BSc Sydney., MSc PhD Warwick.

Senior Tutors
David Donald Angell, BSc Monash, PhD N.S.W.
Peter Geoff Brown, BA DipEd N'cle.(N.S.W.), MA Sydney.
Geoffrey John Coombs, MSc Monash, PhD Edin.
Donald Sidney Craig, BSc Old.
David John Crocker, BSc N.S.W.
Milan Pahor, BSc W'gang.
Derek Noel Ward, BSc DipEd N.S.W.

Tutors
Thivvianesan Chelliah, BSc S.Lanka MSc Lond., MPhil C.U.Lond., PhD Col.
Peter Francis Coutis, BSc N.S.W.
Ian David Hoffman, BSc N.S.W.
Kenan M. Matawie, BSc Baghdad, MStats N.S.W.
Sue Middleton, BSc Monash, MSc Dalhousie
Claud Petr, BAppSc N.S.W.I.T. MSc N.S.W.
Jennifer Judith Randall, MSc Witw.
Robert Sing Yan Wong, BSc PhD N.S.W.

Computing Centre Manager
Veronica Paul, BSc Wales, DipEd N.E.

Computing Systems Officers
Ellen Margaret Burnett, BSc Macq.
Michael Gerberg, BScHons N.S.W.

Administrative Officer
Jennifer Lyn Todd

Department of Pure Mathematics

Associate Professors
Ezzat Sami Nouross, BEng BSc Cairo, PhD Br. Col.
Colin Eric Sutherland, BSc Cant., PhD Calif.

Senior Lecturers
Shaun Anthony Requa Disney, BA BSc Adel., DPhil Oxf.
Peter Windeyer Donovan, BA Syd., DPhil Oxf.
Anthony Haynes Dooley, BSc PhD A.N.U.
Mary Ruth Freistlich, BA Witw., MA MED N.S.W.
Michael David Hirschhorn, BSc Syd., MSc Edin., PhD N.S.W.
Werner Joseph Heinz Ricker, BSc DipEd PhD Flinders
David Graham Tacon, BSc N'cle.(N.S. W.), PhD A.N.U.
Dennis William Treenery, BSc PhD Adel.

Lecturers
Charles Dixon Cox, BSc DipEd Qld.
Ian Raymond Doust, BSc W.A., MSc Toronto PhD Edin.
James William Franklin, MA Syd., PhD Warw.
Hendrik Benjamin Grundling, MSc Pret. PhD Adel.
Rodney Kelvin James, BSc PhD Syd.
Brian Raymond Frederick Jefferies, BSc Qld., PhD Flin.
Norman John Wildberger, BSc Tor., PhD Yale
David Charles Wilson, MA PhD Syd.

Emeritus Professor
George Szekeres, DiplChemEng Bud., Hon.DSc N.S.W., FAA, MHAS

Research Fellows
Kevin Graham Mansfield, BSc Auck., PhD N.S.W.
Andrew Harcourt Norton, BSc Syd., PhD N.S.W.

Research Associates
David Alan Pask, MSc Warw.
Kun-Yang Wang, MA PhD Beijing

Honorary Associates
John Harold Loxton, MSc Melb., PhD Camb.
Ali van der Poorten, BA BSc PhD MBA N.S.W.

Department of Applied Mathematics

Associate Professors
Michael Leslie Banner, BE MEngSc Syd., PhD Johns H.
Jason Harry Falla Middleton, BSc PhD Monash
William Eric Smith, MSc Syd., and Oxf., PhD N.S.W., MInstP, MAIP

Senior Lecturers
Peter JamesBiennerhassett, BE W.A., PhD Lond.
Brian James Burn, MSc Otago, PhD Camb
William Dennis McKee, BSc Adel., MSc Flin., PhD Camb
Elvin James Moore, MSc W.A., PhD Harv.
David Alan Mustard, BSc Syd., MSc N.S.W.
Richard Wyndham O'Brien, BE N.S.W., PhD Camb
Alexander Hugh Opie, BSc DipEd Melb., PhD Monash, FAIP

Lecturers
Dave Broutman, BA Calif., PhD Scripps
Albert Tatar Daoud, BSc R'dg., PhD N.S.W., FinstP
David Charles Guiney, BSc PhD Adel.
Vaitilingam Jeyakumar, BSc Jaffna, PhD Melb.
Nalini Joshi, BSc Syd., MA PhD Princeton
Douglas Edward Mackenzie, BSc Tas., FIMA, MACE
William McLean, BSc Qld., PhD A.N.U.
John Francis Falla Middleton, BSc PhD Monash
John Michael Murray, MSc N.S.W., PhD, Wash.

Emeritus Professor
William Teodor Buchwald, BSc Man., MSc PhD Lond., FIMA

Research Associates
Janet Becker, BA U.C. San Diego
David Griffin, BSc PhD N.S.W.
Xinyu He, BSc Jilin, MSc Ocean U. Qingdao, PhD Louisiana State
Stephen Joe, MSc Massey PhD N.S.W.
Mark Merrifield, PhD U.C.S.D.
Fernando Veira, BE MEngSc PhD N.S.W.

Professional Officer (Oceanography Group)
Gregory John Nippard, BSc Syd.

Honorary Associate
Simon Jacques Prokhovnik, BA MSc Melb.

Department of Statistics

Associate Professor
Clyde Arnold McGilchrist, BSc BEd Qld., MSc PhD N.S.W.

Senior Lecturers
Peter John Cooke, BSc MSc N.E., MS PhD Stan.
Marek Musiela, MMath Wroclaw, PhD Polish Acad. Sc., DSc Grenoble
Deborah Jane Street, BSc Qld, PhD Syd.
Manohar Khanderao Vaghulkar, MSc Bom., DIC PhD Lond.

Lecturers
David Byron, BSc BE PhD N.S.W.
Geoffrey Kennedy Eagleson, BSc PhD Syd.
Yer Van Hui, BSc Chinese H.K., M.S.I.E. Texas Tech., PhD Virginia

Professional Officer
Peter Allen Wright, BA Macq., MStatsEng N.S.W.

Honorary Associate
James Bartram Douglas, BSc MA DipEd Melb.
School of Optometry

Professor of Optometry and Head of School
Hermann Barry Collin, BSc MAppSc PhD Melb., LOSc V.C.O., FAAO
Associate Professor
David Philip Crewther, MSc Melb., PhD Cal. Tech.
Stephen John Dain, BSc PhD City Lond., FBCO, FAAO, FVCO
Brien Anthony Holden, BAppSc Melb., PhD City Lond., LOSc V.C.O. FAAO, DCLP, FVCO, FBCO
Senior Lecturers
John Andrew Alexander, MSc PhD N.S.W., ASTC, FIO, FAAO
Philip James Anderton, BOptom BSc PhD N.S.W., MScOptom Melb.
Daniel James O'Leary, BSc City Lond., MSc PhD Wales, FBOA, FSMC
Lecturers
Graham Leslie Dick, MSc N.S.W., ASTC, FIO
Barbara Maria Junghans, BOptom PhD N.S.W.
Jil Klein, BA City N.Y., OD Suny
Angela Kathleen McCarthy, MSc N.S.W., ASTC, FIO
David Cecil Pye, MOptom N.S.W.
Part-time Tutor
Lisa Jean Asper, OD, SCCO
Instructor
Ian William Robinson
Senior Technical Officers
Trevor Dawson
Illia Rogerson
Technical Officers
Paul Gravitis
Deborah A. Milne
Brian L. Rie
Administrative Assistant
Maureen Therese Valentine

Cornea and Contact Lens Research Unit
Director
Associate Professor Brien Anthony Holden
Senior Research Manager
Deborah Sweeney, BOptom N.S.W., FAAO
Senior Research Officers/Research Managers
Arthur Back, BOptom N.S.W.
Ruth Cornish, BScOptom Melb.
Timothy Grant, BOptom N.S.W.
Donna LaHood, BOptom N.S.W.
Robert Terry, BOptom N.S.W.
Senior Research Assistants
Julia Newton-Howes, BSc(Hons) PhD Lond.
Pao Cheong Wong-Chung-Lung, FIS Bristol College of Commerce
Senior Research Optometrists
Narelle Hine, DipOpt Q.I.T., DCLP
Maki Shiobara, BOptom N.S.W.
Research Associate
Christina Balieriola-Lucas, MScAgr Syd., PhD Complutense Univ. Madrid

Honorary Associates
Christine Craigie, BOptom N.S.W.
Emmanual Calligeros BOptom N.S.W.
Anthony Chapman-Davies, MOptom N.S.W.
Charles McMonnies, ASTC BSc N.S.W., FAAO MSc FAAO(CL)
Les Donovan, BOptom N.S.W.
Research Optometrist
Claire Fleming, BOptom N.S.W.
Research Assistants
Mee Sing Chong, BOptom N.S.W.
Sylvie Sulaiman, BOptom N.S.W.
Senior Technical Officer
Sue Donahue
Technical Officers
Ian Brett, BSc, DIPAudEng N.S.W.
Angela Ivancic, BSc N’cle(N.S.W.)
Denise Lawler
Paul Pavlou, BA(Via Arts) S.C.A.
Ami Tan, BSc Monash
Administrative Assistant
Janette Button

School of Physics

Professor of Physics and Head of School
John William Vanstan Storey, BSc LaT., PhD Monash
Professors of Experimental Physics
Kenneth Norman Robert Taylor, BSc PhD Birm.
Robert Graham Clark, BSc PhD N.S.W., MA Oxf.
Professor of Theoretical Physics and Head of Department of Theoretical Physics
Heinrich Hora, DiplPhys Halle, DrRerNat Jena, DSc N.S.W., FInstP, FAIP
Professor
Hans Gerard Leonard Coster, MSc PhD Syd., MinstP, MAIP
Dan Haneman, DSc Syd., PhD R’dg., FAA, FAIP, FRACI
Senior Lecturer and Executive Assistant to Head of School
Kenneth Reid Vost, BSc Glas., MSc PhD N.S.W., DipEd N’cle C.A.E. MAIP
Associate Professor and Director of First Year Studies
Graeme John Russell, BSc PhD N.S.W., MinstP., MAIP
Administrative Officer
Stephen Kwai Hung Lo
Principal Tutor
Philip George Spark, MSc DipEd Melb., GradAIP
Krystyna Wilk, MSc Cracow
Senior Tutors
Jaan Ferdinand Jouke Boersma, MSc Tas.
Gail Patricia Box, BSc PhD N’cle(N.S.W.)
Gabriel Chircu, MSc Buch.
Ian Richard Dunn, BSc BA Melb., MIEE
Edward Peter Eyland, BSc MPhysics N.S.W., BD Lond.
Tutors
Paul Westley Brooks, BSc Adel.
Kevin Michael Fleming, BSc N.E.
Mansour Khoury, BSc N.S.W.
Darren John Pearce, BSc DipEd N.E., Grad AIP
Mark James Prandolini, BSc, BE N.S.W.
Kenneth George White, BSc PhD Tas.

Professional Officers
Meral Aydin, BS MS PhD M.E.Tech., Ankara
Bradley Darren Carter, BSc PhD Qld
Terence Calvin Chilcott, BE Qld., MEngSc N.S.W.
Jack William Cochrane, BAppSc Canberra C.A.E., MPhysics N.S.W.
David Ronald Jonas, BSc BE N.S.W.
Patrick Thomas McMillan, BSc DipEd Syd.
Barry Perczuk, BSc PhD Monash
John McLarem Tann, BAppSc Melb.
Jeremy Karl Walter, BSc Lond.

Honorary Visiting Fellows
Zdenek Kviz, DipPhys Brno, CScRerNatDr Charles, PhD Prague
David Henry Morton, MA Oxf., FInstP, FAIP
Roderick Ian Sutherland, BSc LaT., DipEd PhD N.S.W.

Honorary Visiting Professor
John Charles Kelly, BSc Syd., PhD R’dg, DSc N.S.W., CPhys, FInstP, FAIP, MAIP

Visiting Professor
Jack Foster McConnell, MSc Syd., PhD N.S.W.

Department of Applied Physics
Senior Lecturer and Head of Department of Applied Physics
John Ian Dunlop, BSc PhD N.S.W., MAIP, MAAS

Department of Astrophysics and Optics
Senior Lecturer and Head of Department of Astrophysics and Optics
Peter Mitchell, BSc PhD Adel., MAIP

Lecturers
Michael Charles Brewster Ashley, MSc Cal.Tech., BSc, PhD A.N.U.
Warrick Couch, BSc, MSc Well. PhD A.N.U.

Department of Biophysics
Senior Lecturer and Head of Department of Biophysics
John Robert Smith, BSc Syd., PhD N.S.W., MAIP

Associate Professors
Veronica Jean James, BA BSc Qld., PhD N.S.W., MAIP
James Martin Pope, MSc Brist., DPhil Sus., AInstrP
Joseph Albert Wolfe, BSc Qld., BA N.S.W., PhD A.N.U.

Senior Lecturers
Raymond Gary Simons, BSc Syd., MSc Tel Aviv, PhD N.S.W.

Lecturer
Paul Marie Gerard Curmi, BSc PhD Syd.

Department of Condensed Matter Physics
Associate Professor and Head of Department of Condensed Matter Physics
Graham James Bowden, BSc DipAdvStudSc PhD Manc., FAIP

Associate Professor
David John Miller, BSc PhD N.S.W., DipEd Syd., MAIP, MAmPS, MAAPT

Senior Lecturers
Robert Louis Dalglish, BSc PhD N.S.W.
Peter Russell Elliston, BSc Melb., PhD Monash
Michael Gal, MSc PhD E.L.Bud.
George Lange Paul, MSc Syd., PhD Edin., FAIP

Lecturer
John Michael Cadogan, BSc Monash, PhD N.S.W., MAIP

Department of Theoretical Physics
Associate Professors
David Neilson, BSc Melb., MS PhD N.Y. State
Jaan Oitmaa, BSc PhD DSc N.S.W., FAIP, MAmPS

Senior Lecturers
Michael Allister Box, BSc Monash, PhD Syd., MAIP
Christopher John Hamer, MSc Melb., PhD Calif. Inst. Tech., DipCompSc Canberra C.A.E., FAIP
Robert John Stening, MSc Syd., PhD Qld., DipTertEd N.E., MAIP, MAMOS

Lecturers
Gary Phillip Morris, BMath N’cle(N.S.W.), PhD Melb.
Mariene Noella Read, BSc PhD N.S.W., MAIP, MAmPS, MACS

Department of Astrophysics and Optics
Senior Lecturer and Head of Department of Astrophysics and Optics
Peter Mitchell, BSc PhD Adel., MAIP

Lecturers
Michael Charles Brewster Ashley, MSc Cal.Tech., BSc, PhD A.N.U.
Warrick Couch, BSc, MSc Well. PhD A.N.U.
Message to New Students

Welcome to the University of New South Wales!

The Sciences Handbook sets out information about the Faculty of Science, the Faculty of Biological and Behavioural Sciences and the Board of Studies in Science and Mathematics. The Board is responsible for the undergraduate studies of students specialising in disciplines associated with the two faculties and several schools from other faculties.

The Science program is amongst the most varied and flexible available in our University. Some of you have already decided on a professional career in a clinical discipline, while others have a clear preference for some field of experimental science. Some of you may choose theoretical scientific studies, while a great many will opt to maintain a broad program of varied subjects throughout your course. But all of you will have the opportunity to be taught by active scientists who are engaging in research of international significance and all of you will acquire skills of great importance to the future of the community.

While this handbook sets out the possibilities, we hope that you will feel free to take personal advice over your subject and career choices. General course advice is always available from the BSSM office and every science-based School will be happy to discuss course options with interested students.

Not all new students are new to universities, of course, and many of the new students this year will have chosen to pursue higher degree work in science at the University of New South Wales. For postgraduate students the link with an individual school and discipline is even closer but all of you should feel that the general faculty resources are very much at your disposal.

And please do not forget that science should be fun! We wish you every success and sincerely hope that your student years as valued members of our community will be stimulating, happy and rewarding.

Gavin Brown
Dean
Faculty of Science
Board of Studies in Science and Mathematics
Faculty Information

Some People Who Can Help You

For information regarding particular courses advice may be obtained from staff members listed in the Introduction to each of the sections related to the Board, the Faculty of Biological and Behavioural Sciences and the Faculty of Science, later in this handbook.

It is University policy to promote equal opportunity in education (refer to EOE Policy Statement, The University of New South Wales Calendar and Guide for Students 1991).

Enrolment Procedures

- Faculty of Biological and Behavioural Sciences
- Faculty of Science
- Board of Studies in Science and Mathematics

All students re-enrolling in 1991 should obtain a copy of the leaflet Re-Enrolling 1991: Procedures and Fees for Science Courses, available from Course Administration Offices and the Admissions Office. Students enrolling in graduate courses should contact the Postgraduate Section.

The subject timetable for the Science and Mathematics Course (Course 3970) is available in late October/early November from the Science and Mathematics Course Office, Room L-G06G, Biological Sciences Building. All re-enrolling students should collect one of these timetables along with a preliminary enrolment form (SM91). The preliminary enrolment form is to be completed and returned to the Science and Mathematics Office by late December.

Sciences Library Facilities

Although any of the University Libraries may meet specific needs, staff and students of the Faculty of Biological and Behavioural Sciences are served mainly by the Biomedical...
Library and the undergraduate collection while those of the Faculty of Science are served mainly by the Physical Sciences Library. The undergraduate collection and services are useful to students from both faculties.

The Biomedical Library
The Biomedical Library provides library services for staff and students from the Faculties of Medicine and Biological and Behavioural Sciences, and from the Schools of Biological Technologies, Health Services Management and Fibre Science and Technology. It is closely associated with the libraries of the teaching hospitals of the University.

The Biomedical Library is located on Levels 2, 3 and 4 of the Mathews Building Annexe and is connected to the other Special Libraries via a link through the undergraduate collection.

Professional staff are available at the Reader Assistance Unit on Level 2 to provide reference services and to assist in the use of the online catalogues. Instructional classes in the use of the library and in specific subject material can be arranged through the Reader Assistance Unit.

Serials in the Biomedical Library are now shelved in alphabetical order by title and carry the prefix MB.

Details about Biomedical Library books, serials and audiovisual material can be found in the Library Catalogue, (OPAC).

The Biomedical Library offers the following facilities:
- Computerised Literature Searches; a wide range of Database on CD-ROM; remote access to databases on CD-ROM throughout the campus; access to the Family Medicine Program (MCQ self assessment); Interlibrary loans.

Biomedical Librarian Monica Davis

The Physical Sciences Library
The library, located on Levels 6 and 7 of the Library tower, caters for the information needs of staff, postgraduate and undergraduate students in the pure and applied sciences, engineering and architecture.

Physical Sciences Library materials are listed in the Library's online catalogues, microfiche book finding list or microfiche serials catalogue.

The Library provides reference, reader assistance and reader education services, including interlibrary loan, online search and CD-ROM facilities. Photocopying facilities are also available.

Trained Library staff are always available on Level 7 to assist readers with their enquiries.

Physical Sciences Librarian Rhonda Langford

Undergraduate Services
- The Open Reserve Section houses books and other materials which are required reading. Level 2.
- The Audio Visual Section contains multimedia, videos and cassette tapes of lectures. The section has wired study carrels and cassette players for student use. The Map Collection is also housed here. Level 3.

- The Reader Education program provides orientation tours and introductory library research method lectures to students.

Students Clubs and Societies

Students have the opportunity of joining a wide range of clubs and societies. Many of these are affiliated with the Students' Union. There are numerous religious, social and cultural clubs and also many sporting clubs which are affiliated with the Sports Association.

Clubs and societies seeking to use the name of the University in their title, or seeking University recognition, must submit their constitutions either to the Students' Union or the Sports Association if they wish to be affiliated with either of these bodies, or to the Academic Registrar for approval by the University Council.

- The Psychological Society

The Psychological Society aims to provide activities both educational and social for students of psychology, and, more generally, to act as an intermediary body between students of different years, and staff.

The Society organizes a variety of activities including staff-student functions, informal discussions, film showings, and occasional talks and seminars. An activities fee enables the Society to meet any of the finances needed to support its functions.

Statistical Society of Australia:
New South Wales Branch

The Branch offers student membership to undergraduates who are following a recognized course of study which includes Statistics. The subscription for a student member is $21 per annum with a $6 rebate if paid before 31 December of the previous year.

The Branch holds about four general meetings each year at the end of which two talks, one theoretical and the other applied, are given on the one topic. The Branch conducts a Research Section, and membership of this group is open to members of the Branch free of charge. Each year the Branch also conducts a symposium for the study and discussion of particular statistical techniques or of statistical methods in a specialized field; symposia are open to members at reduced rates.

Members of the Branch receive The Australian Journal of Statistics, which is published three times a year by the Statistical Society of Australia, together with the Society's Newsletter.

Applications and requests for further information should be sent to the Hon. Secretary, Dr S. H. Huxham, School of
General Education Requirement

The University requires that all undergraduate students undertake a structured program in General Education as an integral part of studies for their degree.

Among its objectives, the General Education program provides the opportunity for students to address some of the key questions they will face as individuals, citizens and professionals.

The program requires students to undertake studies in three categories of the program:

CATEGORY A. An Introduction in non-specialist terms to an understanding of the environments in which humans function.

CATEGORY B. An introduction to, and a critical reflection upon, the cultural bases of knowledge, belief, language, identity and purpose.

CATEGORY C. An Introduction to the development, design and responsible management of the systems over which human beings exercise some influence and control. This category is required only of students in four-year professional and honours programs.

The key questions addressed by the Program are:

CATEGORY A: The External Context
Course requirement: 2x28 hr subjects
1. How do we, can we, generate wealth? (Australia and the Development of the World Economy)
2. How can we, ought we, distribute wealth, status and power? (Human Inequality)
3. What steps should we take, and what policies should we adopt, in science and technology? (Science and Civilization)
4. What effects do our wealth generating and techno-scientific activities have on the environment? (Ecosystems, Technology and Human Habitation)
5. What are the effects of the new mass media of communication? (Mass Media and Communication)
6. What are the key social and cultural influences on Australia today? (Australian Society and Culture)

CATEGORY B: The Internal Context of Assumptions And Values
Course requirement: 2x28 hr subjects.
1. How do we define ourselves in relation to the larger human community? (The Self and Society)
2. How do our conceptions of human nature and well being influence both individual and social behaviour? (Changing Conceptions of Human Nature and Well-Being)
3. What are the prevailing conceptions of and challenges to human rationality? (The Pursuit of Human Rationality)
4. How do language, images and symbols function as means and media of communication (The Use of Language, Images and Symbols)
5. What is the impact of the computer on human society and culture? (The Computer: Its Impact, Significance and Uses)
6. Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth? (Beliefs, Values and the Search for Meaning)

CATEGORY C: An Introduction To The Design And Responsible Management Of The Human And Planetary Future
The central question to be addressed by students in a systematic and formal way is:

For what purpose or purposes will I use my intellectual skills, my expertise, or my technological prowess?

Will these abilities be used, for example:
(i) in a creative and innovative way?
(ii) to widen the circle of human participation in the benefits they bring?
(iii) to break down the barriers of exclusion and discrimination?
(iv) to enhance the prospects for survival of the human species?
(v) to enhance the capacity of the planet earth to sustain life?

The exact form in which Category C will be satisfied is still being decided and should be finalized during 1991. This could involve, however, a slight change to the later years of each of the courses. There are differing requirements for students commencing before, in, and after 1988. Students must complete a program of general education in accordance with the requirements in effect when they commenced their degree program. Students Should Consult The Appropriate Course Authority or The Centre for Liberal and General Studies in Morven Brown Building, Room G58.
Undergraduate Study:
Board of Studies in
Science and Mathematics
Board of Studies in Science and Mathematics

Introduction

The Science and Mathematics Course (3970) leads to the Bachelor of Science Degree on the completion of a three year program or a four year program chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The Board of Studies in Science and Mathematics offers a wide choice of programs each designed to meet specific aims and objectives. Most programs are identified with a particular School or discipline but some are multi-disciplinary.

All students in the Science and Mathematics Course must enrol in two units of first year Mathematics; either Mathematics I or Higher Mathematics I or General Mathematics. Care must be taken in making the choice as, in general, General Mathematics considerably limits the choice of units in following years.

The Board of Studies also supervises the undergraduate courses in Optometry (3950) and Psychology (3431).

Students seeking general advice should contact the Board of Studies in Science and Mathematics Office (Room L-G06G, Biological Sciences Building, map reference D25) and for advice in specific disciplines should contact the representative of the relevant School as listed below:

First Year Biology Dr R. S. Vickery
School of Anatomy Dr K. W. S. Ashwell
Department of Applied Geology Ms L. A. Bruce
Department of Biotechnology Dr P. G. Lennox
School of Biochemistry Associate Professor N. W. Dunn
School of Biological Science Dr. P. I. Dixon
School of Chemistry Dr. R. G. Vickery
School of Chemistry Dr D. S. Alderdice
School of Community Medicine Dr T. J. V. Findlay Year 1
School of Community Medicine Dr D. N. Duffy Year 4
School of Electrical Engineering and Computer Science Ms V. Joubert
School of Geography Dr M. D. Melville
School of Information Systems Associate Professor R. Edmundson
Undergraduate Study: Board of Studies in Science and Mathematics

School of Mathematics ... Dr D.C. Hunt (Year 1)
Miss J. Todd
Marine Science ... Dr P.I. Dixon
School of Mechanical and Manufacturing Engineering Associate Professor E. J. Hahn
School of Microbiology and Immunology Mrs N. Lee
School of Optometry .. Mr G.L. Dick
School of Philosophy .. Mr P. Staines
School of Physics .. Associate Professor G. J. Russell (Year 1)
Dr K. R. Vost
School of Physiology and Pharmacology Dr B. S. Nail or Dr I. Neering or Professor M. J. Rowe
School of Psychology .. Professor B. J. Gillam
Mr T. J. Clulow
School of Science and Technology Studies Professor W.R. Albury
... Dr D. P. Miller

The Board of Studies in Science and Mathematics includes all members of the Faculty of Biological and Behavioural Sciences* and the Faculty of Science* and some members of specific Schools in other faculties contributing to the Science and Mathematics Course; Chemical Engineering and Industrial Chemistry, Geography, Mines (Applied Science); Science and Technology Studies, Philosophy (Arts); Accountancy, Economics, Information Systems, (Commerce); Electrical Engineering and Computer Science, Mechanical and Industrial Engineering, Surveying (Engineering); Anatomy, Community Medicine, Physiology and Pharmacology (Medicine); Education (Professional Studies); and the Centre for Liberal and General Studies.

The Dean is the Dean of the Faculty of Science, Professor Gavin Brown.
The Chairman is Associate Professor G. Russell.
The Co-ordinator of Studies in Science and Mathematics is Associate Professor R. J. King. The Administrative Officer is Mr P. Buist.

*See Staff, listed earlier in this handbook.
3970
Science and Mathematics Course

The Science and Mathematics Course, which leads to the Bachelor of Science degree, is administered by the Board of Studies in Science and Mathematics and offers a wide choice of programs, each designed to meet specific aims and objectives. Most programs are identified with a particular school or discipline but some are multi-disciplinary.

Aims of the Science and Mathematics Course

The main aims of the Science and Mathematics Course, diverse and not necessarily exclusive, may be summarized as providing opportunities to students to prepare themselves for careers in:

- research
- technology
- science and mathematics education
- areas of management or public policy involving the use of science or mathematics.

Objectives of the Science and Mathematics Course

The important general objectives of most programs in the Science and Mathematics Course are:

1. To develop and sustain an interest in and knowledge of Science and Mathematics.
2. To develop a working knowledge of scientific methods of investigation and a favourable attitude towards them.
3. To encourage curiosity and creative imagination and an appreciation of the role of speculation in the selection and solution of problems, the construction of hypotheses, and the design of experiments.
4. To develop an appreciation of scientific criteria and a concern for objectivity and precision.
5. To develop confidence and skill in formulating problems and in treating both qualitative and quantitative data.
6. To develop the ability and disposition to think logically, to communicate clearly by written and oral means, and to read critically and with understanding.
7. To develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.
8. To promote understanding of the significance of science, technology, economics and social factors in modern society, and of the contributions they can make in improving humans’ material conditions and in widening their imaginative horizons and their understanding of the universe.
9. To provide opportunities for the development of students' motivations and social maturity, and an awareness of their capabilities in relation to a choice of career which will be fruitful to themselves and to society.

There is a wide range of programs in single and multi-disciplinary areas leading to a three year degree or a four year (honours) degree.

The Structure of the Science and Mathematics Course

The Science and Mathematics Course consists of a number of individual programs, based on subjects ranked as Level I, Level II, Level II III, Level III and Level IV.

The terms Levels I, II, III do not necessarily refer to the years in which the subject must be studied. Subjects at the various levels may be taken in other years provided the prerequisites are met. Level II/III units have only Level I prerequisites.

The Bachelor of Science degree is awarded on completion of

- a three year program

or

- a four year program

chosen from specific programs approved by the Board of Studies in Science and Mathematics.

The time specified is a minimum time required for completion of the degree. It may be taken over a longer period of time.

- A student must select and be enrolled in one of the prescribed programs.

- A student may not undertake more than 8 Science units in any one year unless approval is given by the Co-ordinator or the Dean of the Board of Studies in Science and Mathematics.

- With the exception of quota restricted programs and with approval of the Co-ordinator of Studies, a student may change from one selected program to another. A written application to make the change, together with details of any optional units selected in the new program, must be lodged at the office of the Board of Studies in Science and Mathematics, Room L-G06Q (Biological Sciences Building, map reference D25).

- The programs listed are made up of a sequence of subjects. Where a choice of subjects is indicated within a program care must be taken to satisfy all requirements, such as prerequisites and co-requisites.

- A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed.

- A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed.

- An excluded unit is one which cannot be counted towards the degree qualification together with the unit which excludes it. In exceptional circumstances, on the recommendation of the head of the appropriate school, the Board of Studies in Science and Mathematics may waive or vary a particular prerequisite, co-requisite or exclusion.

- A single specialization is a program specifying only 4 Level III units in a discipline.

- A double specialization is a program specifying 4 Level III units of each of 2 disciplines or 8 Level III units in a single discipline.

- Upon sufficient cause being shown in a particular case or cases, the Board of Studies in Science and Mathematics may vary any of these rules.

The three year program

The three year program leading to the award of the pass degree consists of:

1. 23 units at Level I, II, II III, III as specified in an individual program with the following requirements:
 (1) not less than eight nor more than ten units may be from Level I;
 (2) two of the Level I units must be MATH1032 Mathematics I or MATH1042 Higher Mathematics, or MATH1011 and MATH1021;
 (3) not less than four units from Level III in a single discipline or as specified in individual programs.

2. General Education electives as specified in an individual program.

- In order to graduate a student must pass all the subjects specified in the program of his/her choice.

The four year program

The four year program, leading to an Honours Class I, II/1, II/2, III or pass degree consists of:

1. all requirements of the three year program see above;
2. (1) an approved honours program offered by one or more schools;
 or
 (2) at least 10 units at Level IV as specified in an individual program.

For Entry to Year 4 students are required:

1. to have completed Years 1, 2 and 3 of the specific program and to have satisfied prerequisite requirements as specified in Table 3;
2. to seek the guidance of the appropriate head of school at an early stage of study to ensure that the program being followed is best suited to lead to the Year 4 honours program;
3. to have completed relevant subjects normally with better than passing grades;
4. to have the approval of the appropriate Head of School at the end of Year 3.
A person on whom the pass degree of Bachelor of Science of the University has been conferred may be admitted by the Board of Studies in Science and Mathematics, on the recommendation of the relevant Heads of Schools, to candidacy for an honours degree conversion program with credit for all subjects completed, if during his or her studies for the pass degree, he or she has satisfied the prerequisites for proceeding to honours level laid down by the School or Schools concerned.

Workload

The expected maximum workload for students devoting most of their time to this course is four science units per session. This can only be exceeded in exceptional circumstances by students with a good academic record and requires the permission of the Co-ordinator of Studies.

Students with external commitments, such as part-time employment, in excess of ten hours per week, should take fewer units. External commitments are not to be taken into consideration in relation to such matters as extensions of time for written work or failure to attend examinations, which may, for some subjects, be scheduled on Saturday mornings.

Re-enrolment

Students not lodging a completed enrolment form before the first day of Session 1 have no guarantee that a place will be available in the subjects offered in that year. This is particularly important for subjects where laboratory space is limited or for subjects where quota restrictions may apply.

Rules governing admission to the Science and Mathematics Course with advanced standing

Any person who makes application to enrol in the Science and Mathematics Course (Course 3970) or in a combined degree course which includes the Science degree course administered by the Board of Studies in Science and Mathematics may be admitted to the course of study leading to such degree with such standing on the basis of previous attainment as may be determined by the Board of Studies in Science and Mathematics provided that:

1. Where students transfer from another tertiary institution, such students shall not in general be granted standing in the course which is superior to that which they have enjoyed at the institution from which they transferred.

2. The standing granted by the Board of Studies in Science and Mathematics in the case of any application based upon any degree or other award held by applicants, should not be such as will permit the applicants to qualify for the science degree, without completing the course of instruction and passing examinations in at least those subjects comprising the latter half of the Science and Mathematics course, so that where such a program of study would involve the applicants in repeating courses of instruction in which the Board of Studies in Science and Mathematics deems the applicants to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof.

3. The standing granted by the Board of Studies in Science and Mathematics in the case of applications based on partial completion of the requirement for any degree or other award of another Institution shall not be such that it will permit the applicants to qualify for the award of the science and mathematics degree by satisfactory completion of the program of study deemed by the Board to be less than that required for students in full time attendance in the final year of the Science and Mathematics Course (Course 3970).

4. The standing granted by the Board of Studies in Science and Mathematics in the case of applications based upon the partial completion of the requirements for any degree or award of the University may be such as to give full credit in the Science and Mathematics Course (Course 3970) for work done in the course from which the students transfer.

Programs

Students are advised that it is not possible to complete their studies by attendance at evening classes alone. Each program has a four-digit identifying number. Most programs have been set out as Years 1, 2, 3 and 4 for the four year program and in these cases Years 1, 2 and 3 comprise a three year program. A few programs are set out as Years 1, 2 and 3 and lead to the pass degree only.

Students wishing to take a double specialization are warned that due to timetabling difficulties it may take longer than three years to complete degree requirements, and any additional units above the minimum 23 required for the pass degree will attract an additional fee as voluntary subjects. To progress through a program a student must meet all the prerequisites and co-requisites as detailed in Tables 1, 2 and CEIC.

The range of programs has been designed to cover a wide variety of needs in the various areas of science and mathematics:

- Anatomy: see program 7000
- Biological Science: see program 1700
- Biochemistry: see program 4100
- Biotechnology: see program 4200
- Botany: see program 1743
- Business Information Technology: see course 3971
- Chemistry: see programs 0200, 0205
- Community Medicine: subjects available in some programs
- Computer Science: see program 0600
- Ecology: see programs 6851, 6852, 6853

Earth and Environmental Science see program 2527
Genetics see program 6840
Geography see program 2700
Geology see programs 2500, 2503
Information Systems see program 1400
Marine Science see programs 6831, 6832, 6833, 6834
Mathematics see programs 1000, 1006, 1060, 1061, 6810
Microbiology see program 4400
Pharmacology see program 7300
Philosophy see program 5200, 5262
Physics see programs 0100, 0161, 2503
Physiology and Pharmacology see program 7300
Psychology see also course 3431
BSc(Psychol) see program 1200, 1206
Science and Technology see program 6200
Zoology see program 1745

In addition to Course 3970 programs are also included for Courses 3611 (Science/Aeronautical Engineering), 3661 (Science/Industrial Engineering), 3681 (Science/Mechanical Engineering), 3701 (Science/Naval Architecture), 3725 (Science/Electrical Engineering), 3730 (Science/Civil Engineering), 3820 (Science/Medicine), 3951 (Science/Optometry), 3995 (Science/Commerce), 4075 (Science/Education), 4770 (Science/Law).

Physics

The study programs offered by the School reflect the importance of Physics in science and technology at both the fundamental and at the applied levels. Thus within the Board of Studies in Science and Mathematics, professional training in Physics is provided by programs 0100 and 0161 while in areas such as Engineering a number of courses are available in which Physics is combined as a major study.

The features are summarized in the following table:

<table>
<thead>
<tr>
<th>Program</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 Physics</td>
<td>3170 Textile Physics</td>
</tr>
<tr>
<td>Including:</td>
<td>3611 Aeronautical Engineering with Physics</td>
</tr>
<tr>
<td>Theoretical</td>
<td>3661 Industrial Engineering with Physics</td>
</tr>
<tr>
<td>Physics;</td>
<td>3681 Mechanical Engineering with Physics</td>
</tr>
<tr>
<td>Applied Physics;</td>
<td>3701 Naval Architecture with Physics</td>
</tr>
<tr>
<td>Biophysics;</td>
<td>3725 Electrical Engineering with Physics</td>
</tr>
<tr>
<td>Physics/Geology;</td>
<td>3730 Civil Engineering with Physics and</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td>0161 Physics/Computer Science</td>
<td>4770 Law with Physics</td>
</tr>
<tr>
<td></td>
<td>4075 Education with Physics</td>
</tr>
</tbody>
</table>

Professional Training

Program 0161 (Physics/Computer Science) has been carefully structured to include not only the basic areas of Physics but also those Mathematics and Computer Science subjects necessary to meet the specific aims of the program. Only minor variations from this program can be considered. On the other hand, Program 0100 Physics offers greater flexibility in the choice of subjects particularly for the student who intends to take out the BSc degree at Pass level after 3 years. Also, for those students who intend to proceed further, Honours may be taken in either Physics, Theoretical Physics, Applied Physics, Physics/Geology or Biophysics.

Sample programs of study, and guidance as to the choice of subjects can be obtained from the School. The following information relating to Program 0100 should be particularly noted:

Program 0100

1. It is suggested that the subjects chosen in Year 1 might comprise COMP1811, PHYS1061, CHEM1002.

2. Students wishing to proceed to Year 4 (Honours) must complete at least 7 Level III units. These will normally be taken from the Physics subjects on offer (unless the student is specializing in Biophysics or in Geology) and include at least one subject from PHYS3110, PHYS3120, PHYS3631, PHYS3760 for students specializing in Physics or in Applied Physics.

3. For the study of Applied Physics certain Level III subjects are strongly recommended. These are subjects of a more applied nature eg PHYS3631 Electronics.

4. For the study of Theoretical Physics, additional mathematics subjects are specified. Thus in Year 2 students should include subject MATH2501 (or MATH2601) and in Year 3, subject MATH3121. Certain Level III Physics subjects of a theoretical nature are also strongly recommended.

5. Arrangements exist to enable a joint specialization in Physics/ Geology. Students are expected to include 2 units of Geology in Year 2 and 4 units of Geology in Year 3. The possibility of joint specializations in other subjects (eg Mathematics or Chemistry exists).

6. For the study of Biophysics, students are required to take Chemistry and Biology subjects in Year 1 and Biochemistry in Year 2 in addition to Physics subjects.

7. In addition to the above there are other areas of study of major interest. Thus an introduction to Astrophysics and Optics is available to students choosing the elective subjects PHYS3160, PHYS3710, PHYS3720, PHYS3760 and the study of Condensed Matter (Solid State) Physics may be furthered by the inclusion of elective subjects such as PHYS3310 and PHYS3320.

8. Subject descriptions of the subjects may be found in another section of this handbook. Elective subjects reflect the research interests of the various Departments of this School. These are at present five in number: Applied Physics, Astrophysics and Optics, Biophysics, Condensed Matter Physics, Theoretical Physics.

9. Students are encouraged to select Higher Level Mathematics subjects where applicable.
Physics in other Courses

The previous page lists courses other than the BSc which have been arranged with other schools. Several of these can lead to honours in Physics (e.g. 3725) so it must not be thought that the only avenue to specialization in Physics is via the professional programs 0100 and 0161 etc.

Students should also bear in mind that prerequisites and corequisites can be waived in certain cases, e.g. when it is judged that an equivalent study has been undertaken in some other combinations of subjects. The possibility also exists of relaxing the requirements of programs to allow a student to select a subject in which he or she has a special interest but which is not a recommended one in the program.

0100 Physics**

Year 1

PHYS1002
MATH1032 or MATH1042
Choose 4 Level I units from: **
1. Table 1 and/or
2. Table 2 for program 0100

Year 2

PHYS2001, PHYS2011, PHYS2021, PHYS2031
MATH2100, MATH2120, MATH2510, MATH2520
Choose 2 units from: **
1. Table 1 and/or
2. Table 2 for program 0100
1 General Education subject

Year 3

PHYS3010, PHYS3021, PHYS3030, PHYS3041, PHYS3050, PHYS3060
Choose at least 3 units from: **
1. Table 1 and/or
2. Table 2 for program 0100
1 General Education subject

Students proposing to proceed to Year 4 Honours must complete 7 Level III units.

Year 4 (Honours)

Choose one of PHYS4103, PHYS4303, PHYS4403, PHYS4503, BSSM4013

0161 Physics/Computer Science

Physics Computer Science Mathematics

Year 1††

PHYS1002, PHYS1601
COMP1811
MATH1032 or MATH1042
Choose 2 Level I units from Table 1**

Year 2

PHYS2011, PHYS2021, PHYS2031
COMP1821
MATH2100, MATH2120, MATH2510, MATH2520
Choose 1 Level II Computer Science unit
Choose 1 further unit from PHYS2601, MATH2501, MATH2301
or Level II Computer Science
1 General Education subject

Year 3

PHYS2001, PHYS3010, PHYS3021, PHYS3030
Choose 2 further Level III Physics units**
Choose 1 Level III Computer Science unit
Choose 1 unit from: **
1. PHYS2601, MATH3101, MATH3121, MATH2301, MATH3301
2. Level III Physics
3. Computer Science
1 General Education subject

Students proposing to proceed to Year 4 Honours must complete 6 Level III units.

Year 4 (Honours)**

PHYS4103 or PHYS4303 or PHYS4503

*Students intending to proceed to Year 4 are required to choose appropriate subjects. See program 0100. Students are required to consult the School of Physics.††Quota restrictions apply to most Level III Computer Science subjects. Students wishing to take these subjects should in Year 1 apply for entry to the Computer Science quota. Advice should be obtained from the office of the Board of Studies in Science and Mathematics.

Geophysics

See program 2503

Recommended Elective Subjects

Geology

Chemistry

The School has four departments (Physical, Organic, Inorganic and Nuclear and Analytical) and a First Year Teaching unit. Each department contributes to first year teaching and offers specialty courses in its own area for the
Science and Mathematics programs, and servicing to other faculties.

The study program 0200 offered by the School of Chemistry provides both a basic scientific education and a professional training in chemistry. Fundamental, applied, environmental and industrial aspects of chemistry are included. The program allows the study of chemistry to be combined with the study of another discipline, for example, physics, biochemistry, mathematics or computer sciences, by suitable choice of subjects.

Suitable choice of subjects makes it possible to study chemistry as a co-major with another branch of science (e.g., geology, biochemistry, computer science, biotechnology, physiology) to an advanced level. A combination of Level III chemistry and mathematics subjects provides a useful basis for specialization in aspects of physical or theoretical chemistry whilst a combination of Level III chemistry, biochemistry and geology subjects is suitable for those who wish to specialize later in geochemistry. Level III chemistry and physiology subjects could form the basis of specialized studies of body chemistry.

Students wishing to undertake the maximum number of chemistry subjects should follow Program 0205 Pure and Applied Chemistry. This involves 14 chemistry subjects and is referred to as a double major in terms of the Science and Mathematics course. It is designed for specialization in chemistry and should be selected by students who wish to devote their studies at Level III entirely to chemical topics.

The Chemistry programs are open to all students who have satisfied the requirement for entry into the Science and Mathematics course. Students who are taking a full year of first year chemistry are advised to enrol in CHEM1002 if they meet the prerequisites, otherwise in CHEM1302. Although each subject is also available in two parts (CHEM1101 plus CHEM1201 are equivalent to CHEM1002; CHEM1401 plus CHEM1501 are equivalent to CHEM1302), the two parts are intended primarily for those students who intend to take only one unit of chemistry. Students should choose their subjects carefully as transfer from a full-year subject to a single-session subject will not be possible after the end of week 12 of first session. The Chemistry programs have a first year of study which includes chemistry, physics and mathematics, and two elective units. It is in the choice of this elective that special care has to be given as an incorrect choice could exclude the combination of chemistry with another selected discipline at Level II or III. (eg omission of biology units would preclude taking biochemistry at Level II).

Advice from the course advisors should be sought on this point.

The Chemistry programs lead to study at the Honours level (Level IV) and to graduate studies in Chemistry. The usual introduction to research in Chemistry is in Level IV and at this level the student devotes the major part of the time to research under the direction of a member of staff as supervisor. A proportion of the time is taken up with formal course work. The Honours year or its equivalent in qualifying studies may be followed by a higher research degree. Further information about graduate courses is included in this handbook and in a booklet: School of Chemistry Research Activities.

0200 Chemistry*

Year 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1002 or PHYS1022</td>
<td>3</td>
</tr>
<tr>
<td>CHEM1002</td>
<td>3</td>
</tr>
<tr>
<td>MATH1032 or MATH1042 or both MATH1011 and MATH1021</td>
<td>6</td>
</tr>
</tbody>
</table>

Choose 2 Level I units from Table 1

Year 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2011, CHEM2021, CHEM2031, CHEM2041</td>
<td>12</td>
</tr>
</tbody>
</table>

Choose 3 units from Table 1

2 General Education subjects

Year 3

Choose 4 Level III Chemistry units of which at least 3 are from:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3011, CHEM3021, CHEM3031, CHEM3041</td>
<td>12</td>
</tr>
</tbody>
</table>

Choose 4 units from Table 1

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4003</td>
<td>12</td>
</tr>
</tbody>
</table>

*Students should read carefully the above description relating to program 0200 and seek advice from the School of Chemistry regarding the choice of subjects.

0205 Pure and Applied Chemistry*

Year 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1002</td>
<td>3</td>
</tr>
<tr>
<td>CHEM1002</td>
<td>3</td>
</tr>
<tr>
<td>MATH1032 or MATH1042 or both MATH1011 and MATH1021</td>
<td>6</td>
</tr>
</tbody>
</table>

Choose 2 Level I units from Table 1

Year 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2011, CHEM2021, CHEM2031, CHEM2041</td>
<td>12</td>
</tr>
</tbody>
</table>

Choose 3 units from Table 1

2 General Education subjects

Year 3

Choose 4 Level III Chemistry units

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3011, CHEM3021, CHEM3031, CHEM3041</td>
<td>12</td>
</tr>
</tbody>
</table>

Choose 4 units from Table 1

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4003</td>
<td>12</td>
</tr>
</tbody>
</table>

Students should read carefully the above description relating to program 0205 and seek advice from the School of Chemistry regarding the choice of units.
Recommended Elective Subjects

Biochemistry
Biotechnology
Computer Science
Geology
Mathematics
Physics
Physiology

Computer Science

Computer Science involves the study of the design, construction and uses of computer systems. It is concerned with the representation of data and data structures in computer systems and the design of algorithms for automatic manipulation of this information by programming languages and machine systems. It is very much concerned with the design and development of hardware and software tools by which computer applications may be developed, but not so much with the applications themselves. It is, however, noted that non-computing elements (such as human interface or psychological aspects) can often dictate the level of success of computing systems. At the University of New South Wales, particular emphasis is given to comprehension of the basic principles behind computing tools, operating systems, compilers and translators, and computer hardware.

Graduates who major in Computer Science frequently find employment where the requirement is for an expert knowledge of computer systems rather than extensive experience in a particular application area. Potential employers include computer manufacturers, consulting companies, specialist companies marketing computer hardware and software services, and many large organizations with major computing establishments.

All Science students with the appropriate Mathematics prerequisites have entry to all Year 1 and Year 2 Computer Science subjects. Resources limit the number of students who may enter most Year 3 Computer Science subjects but other subjects are proposed which will allow computer applications majors to complete an appropriate course of study.

Entry to a Computer Science major is normally by direct selection at university entry.

Science/Law students may enrol directly into Year 1 of the Course 4770 Computer Science program. To progress into Year 2 of this program, these students must, at the end of Year 1, compete with students in Course 3970.

Students majoring in other disciplines may undertake all Level I and Level II Computer Science subjects and thus undertake a substantial amount of Computing. Programs available are Physics/Computer Science (0161) and Mathematics/Computer Science (1061). Students with very good academic records may be permitted to enrol in further Computer Science units with the agreement of the Head of the Department of Computer Science.

There are many ways to study Computer Science and computer applications at this University, apart from the Science and Mathematics Course. A new 4-year professional Computer Engineering degree course was launched in 1989. This course combines subjects from Computer Science, Electrical Engineering and Mathematics. Students may also major in Computer Science as part of the 5 year combined degree programs in Electrical Engineering, Aeronautical Engineering, Industrial Engineering, Mechanical Engineering and Naval Architecture which leads to the award of the two degrees of BE and BSc (see under Courses 3725, 3611, 3661, 3681 and 3701) respectively and the Faculty of Engineering Handbook.

Students may also major in Computer Science in the combined Science/Law degree course. A major sequence in Computer Science is also available in the Bachelor of Arts course (see the Faculty of Arts Handbook). Other courses and subjects which include computing and computing applications are available in other Schools, for example students may major in Information Systems in the Bachelor of Commerce degree course: see the Faculty of Commerce Handbook.

0600

Computer Science*

Year 1

COMP1011, COMP1021
MATH1032 OR MATH1042, MATH1081
Choose 3 Level I units from:**

1. Table 1 and/or
2. Table 2 for program 0600 and/or
3. The BA course

Year 2

COMP2011, COMP2021, COMP2031
Choose 5 units from:**

1. Table 1 and/or
2. Table 2 for program 0600 and/or
3. The BA course
4. 1 General Education subject

Year 3

Choose 4 Level III Computer Science units including at least
1 unit from COMP3111, COMP3121, COMP3131 and at least
1 unit from COMP3211, COMP3221, COMP3231, COMP3331.

1. Table 1 and/or
2. Table 2 for program 0600 and/or
3. The BA course
4. 1 General Education subject

Students may not include more than 6 Level 111 Computer Science units.

Students proposing to proceed to Year 4 (Honours) must complete 7 Level 111 Units.

Year 4 (Honours)

COMP4914

* Entry to Year 1 of this program is restricted to students who have been offered a place directly (UAC code NCS). Entry to later years will be considered only in exceptional circumstances.

**The program may include up to 8 units other than Computer Science units that are not in Table 1. Subjects chosen from the BA degree course are restricted to those offered by the following schools: Economics, English, French, German Studies, History, Music, Political Science, Russian Studies, Sociology, Spanish and Latin American Studies and Theatre Studies. Science and Technology Studies subjects are available in Table 1. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus ECON2103, ECON2104 (6 BA degree credit points at Level I or 4 credit points at Upper Level are equivalent to 1 science unit).
The School is divided into Departments of Pure Mathematics, Applied Mathematics and Statistics. The School provides courses at the Pass and Honours levels based on the above departments and in specified interdisciplinary programs such as Mathematics of Management. There is considerable overlap of interests and interaction between the departments; students in general will take units from more than one department.

Pure Mathematics is concerned with the whole structure of mathematics. Research focuses on the creation of new mathematical systems and the finer analysis of partially understood fields. Problems of mathematics come from many sources of science and industry but the pure mathematician is more concerned with the problems themselves than with the sources from which they arise. Courses in the Department of Pure Mathematics are designed to provide the necessary equipment for those who intend to use mathematics in any way, to give basic familiarity with the fundamental language of modern science and technology and to develop appreciation for and insight into one of our major cultural achievements. The Pure Mathematics Department offers undergraduate courses across the mathematical spectrum.

Applied Mathematics is concerned with the development of mathematics and mathematical models for understanding scientific phenomena, for the solution of technical and industrial problems, and for use in the social, economic and management sciences. Problems originate not only from the physical and engineering sciences, but also from such diverse areas as the biological sciences, computer science, the communication industry and commerce. Courses in Applied Mathematics are designed to provide basic mathematical and computational skills needed for a wide range of applications, to develop the capability to construct, analyse, and interpret mathematical models, and to encourage enthusiasm for the role of the mathematician in a variety of contexts.

The major research interests of the Department of Applied Mathematics are:
1. Optimization, control theory and operations research, with applications in a wide range of areas.
2. Numerical analysis and mathematical computing.
3. Nonlinear dynamical systems.
4. Fluid dynamics, with a special interest in oceanographic and environmental applications.

The Department of Applied Mathematics offers training to graduate research level in each of these areas.

Statistics is the science and art of using factual material for modelling and inference. Its mathematical foundations are in the theory of probability and it deals with how to estimate and make decisions using knowledge which is uncertain or observational material which is subject to error. There is a rich interplay of ideas between the theory of statistics and fields such as engineering, medicine and biological and behavioural sciences where statistical problems constantly arise. The department has strong interest in the areas of applied statistics, stochastic processes, biometry, Inference, design of experiments, sequential analysis, discrete distributions, nonparametrics and statistical computing.

Programs of study

Program 1000 (Mathematics)
Within this program it is possible to major in Pure Mathematics, Applied Mathematics or to undertake a General Mathematics program to four years to undertake (Honours) In Pure Mathematics or Applied Mathematics. Students wishing to major or undertake (Honours) in Statistics should consult program 1006.

Pure Mathematics major
Any completed 1000 program will be deemed to be a major in Pure Mathematics if it has included the equivalent of four units madeup of units and half units listed in Table 1 as Pure Mathematics Level III or Higher Pure Mathematics Level III. It is strongly recommended that students choose, among the many optional mathematics units, those which are appropriate to their interest. In particular, MATH1081 in Year 1 is highly recommended.

Furthermore:
1. Pure Mathematics subjects relevant to the mathematical aspects of Computer Science are MATH2400 and MATH2410 in Year 2, and MATH3400, MATH3410 and MATH3420 in Year 3.
2. Pure Mathematics subjects relevant to mathematics teaching are MATH3500, MATH3510, MATH3520, MATH3530, MATH3560 and MATH3570 in Year 3, or their higher equivalents.
3. Pure Mathematics subjects relevant to the applications of mathematics in physics or engineering are MATH3540, MATH3550, MATH3570 and MATH3580 in Year 3.

Pure Mathematics Department staff will be happy to advise students on choices of subjects appropriate to their study goals.

Pure Mathematics (Honours)
Honours in Pure Mathematics is obtained by completing MATH4633, for which the normal prerequisites are at least three Pure Mathematics III subjects (total value) at the Higher Level. However, students with a credit average in at least four Level
III Mathematics units may also be considered for entry into Pure Mathematics. Usually, students doing Honours in Pure Mathematics do Higher level courses from Year 1 onwards.

Students considering an honours year in Pure Mathematics should consult Pure Mathematics Department staff to arrange courses to suit their interests.

Applied Mathematics major

Any completed 1000 program will be deemed to be a major in Applied Mathematics if it has included four units (total value) of subjects listed in Table 1 as Level III Applied Mathematics (or their higher equivalent). When selecting optional subjects in program 1000, the following choice of mathematics subjects or their higher equivalent are strongly recommended.

Year 2: At least two of MATH1160, MATH1180, MATH2200, MATH2301.

Year 3: At least three of MATH3101, MATH3121, MATH3161, MATH3181, MATH3201, MATH3241, MATH3261, MATH3301.

In addition, Applied Mathematics students are expected to select relevant subjects from other disciplines according to the particular applications of mathematics in which they are interested. The following choices are recommended in first year:

1. Applied mathematics for physical and engineering sciences, or for theoretical oceanography and fluid mechanics: either PHYS1002 or appropriate level Engineering subjects.

2. Applied mathematics for economic or management sciences: ACCT1501, ACCT1511, ECON1101, ECON1102. Note that if ACCT1501 and ACCT1511 are chosen then all four must be taken in first year and permission must be obtained through the Board of Studies office as there is a quota. For further details see program 6810.

3. Applied mathematics for social or biological sciences, choose at least two of the following groups:
 a. BIOS1011 and BIOS1021,
 b. PSYC1002,
 c. PHYS1002,
 d. CHEM1002 or both CHEM1101 and CHEM1201.

4. Applied mathematics for computational methods or computer science: COMP1821, MATH1081.

Applied Mathematics Department staff will be happy to advise students on choices of subjects appropriate to their study goals.

Applied Mathematics (Honours)

A student interested in taking an Honours degree in Applied Mathematics must enrol in MATH1032 in first year and complete at least one Level II and three Level III Applied Mathematics units (total value). Students who have obtained a credit average in at least four Level III Mathematics units (total value) may be considered for entry into MATH4103 Applied Mathematics MATS.

Students are advised to select optional subjects according to the recommendations above for an Applied Mathematics major. Students should obtain a copy of recommended programs for Applied Mathematics from the School of Mathematics office before entering Year 2, and they are strongly encouraged to consult a staff member in Applied Mathematics regarding appropriate courses of study.

Program 1006 (Statistics)

Statistics Major

The completed 3 year program 1006 (Statistics) will be deemed to be a major in Statistics.

Statistics (Honours)

Honours in Statistics are obtained by completing MATH4903, the prerequisite for which is the completion of 3 years of program 1006 (Statistics) with all corresponding Higher Statistics Level II and Level III units preferably all Higher Mathematics Level I, II and III units.

Program 1061 (Mathematics or Statistics/Computer Science) will be of particular interest to students who wish to combine a Mathematics (or Statistics) major with a substantial amount of computing.

Program 6810 (Mathematics of Management) includes subjects given by the Schools of Accountancy and of Economics. There has been an increasing trend towards more use of mathematics, and the use of more advanced mathematics, in scientific management. This program is intended to train mathematicians with an interest in the application of mathematics to management science. The mathematics content is very solid indeed, amounting to a full mathematics degree. A student completing this course with a good record is eligible for entry to the Master of Commerce graduate degree program in the School of Accountancy. If appropriate subjects are selected, then this degree (MCom), which may be awarded by part-time study, qualifies the graduate for provisional membership of the Australian Society of Accountants; full membership is then granted after appropriate experience.

Mathematics/Computer Science

See Computer Science/Mathematics

1000

Mathematics***

Students Intending to proceed to the (Honours) year should take Higher Mathematics subjects throughout.

Year 1

MATH1032 or MATH1042
Choose 6 Level I units from:*
1. Table 1 and/or
2. The BA course and/or
3 Table 2 for program 1000

Year 2

MATH2100, MATH2120, MATH2501, MATH2510, MATH2520
Choose 1 further Level II or III Mathematics unit
Choose 4 units from:*
1. Table 1 and/or
2. The BA course and/or
Undergraduate Study: 3970 Science and Mathematics Course

3. Table 2 for program 1000
 1 General Education subject

Year 3
Choose 4 Level III Mathematics units
Choose 3 units from:
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000
 1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units**

Year 4 (Honours)
MATH4003 or MATH4103 or MATH4603

*Not more than 8 units of this program may be from subjects not in Table 1. The BA degree subjects are limited to those offered by the following schools: Economics, English, French, German, History, Music, Political Science, Russian, Sociology, Spanish and Latin American Studies and Theatre Studies, Science and Technology Studies and Philosophy subjects are available in Table 1. Upper Level subjects from the School of Economics are restricted to all those in Economic History plus ECON2103, ECON2104. (6 BA credit points at Level I or 4 credit points at Upper Level are equivalent to 1 science unit).

**Students proposing to take Honours in Pure Mathematics are advised to include at least three units of Level III Higher Pure Mathematics units (total value). However, students who have obtained a credit average in at least four Level III Mathematics units may also be considered for entry into Pure Mathematics Honours.

***Students should read carefully the above description relating to program 1000 and seek advice from the School of Mathematics regarding the choice of subjects.

1006
Statistics

Students intending to proceed to the Honours year should take Higher Mathematics subjects throughout.

Year 1††
MATH1032 or MATH1042
Choose 6 units from:
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000

Mathematics

Year 2
MATH2120, MATH2501, MATH2510, MATH2520, MATH2801, MATH2810, MATH2821, MATH2830
Choose 25 units from:
1. Table 1 and/or
2. The BA course and/or
3. Table 2 for program 1000
 1 General Education subject

*See footnote to program 1000.
††See footnote to program 0161.

Program 1060 - Mathematics with Computing†
It is suggested that Higher Level equivalents should be taken where available.

Year 1
COMP1811 Computing 1 (Procedural)
COMP1821 Computing 2
MATH1042 Higher Mathematics 1
MATH1081 Discrete Mathematics

Choose 3 further Level 1 units from:
1. Table 1 and/or
2. Table 2 for program 1000 and/or
3. The BA course
 1 General Education Subject

Year 2
COMP2011 Data Organisation
COMP2031 Concurrent Computing
MATH2501 Linear Algebra
MATH2301 Mathematical Computing A
MATH2510 Real Analysis or Vector analysis*/MATH2100
MATH2400 Finite Mathematics
MATH2801 Probability and Random Variables or Statistics SS*/MATH2841

Choose 2 further Level II units from:
1. Table 1, including the Level II units from one of the strands below, and/or
2. Table 2 for Program 1000 and/or
3. The BA course
 1 General Education Subject

Year 3
Choose 2 Computer Science Level III units, from a schedule of 4 to be advised (Databases, Algorithms, Software Engineering, A.I.)
MATH3301 Mathematical Computing B
MATH3400 Logic and Computability

Choose 3.5 further units from:
1. Table 1, including the Level III unit from the strand below chosen in Year 2, and/or
2. Table 2 for Program 1000 and/or
3. The BA Course
 1 General Education Subject
Students proposing to proceed to Year 4 (Honours) must complete at least 6 level III units.

Year 4 (Honours)
MATH4603 or MATH4103 or MATH4903 or MATH4003

Strand 1. Statistics
Level II
MATH2821 Basic Inference
MATH2810 Statistical Computing and Simulation

Level III
MATH3811 Linear Models
MATH3861 Statistical Computation

Strand 2. Pure Maths
Level II
MATH2410 Automata and Algorithms

Level III
MATH3520 Number Theory
MATH3410 Combinatorial Structure and Applications
MATH3410 Communication, Codes and Ciphers

Strand 3. Applied Maths
Level II
MATH2120 Mathematical Methods

Level III
MATH3101 Numerical Analysis
and at least one of the following three units:
MATH3161 Optimization Methods
MATH3181 Optimal Control
MATH3201 Dynamical Systems

*In Year 1, students who wish to but cannot enter this program should enrol in program 1000 or another science program and apply for entry to this program at the end of Session 2. Enrolment in Year 2 is based on academic performance in Year 1.

*for those planning to take the Statistics strand, MATH2510 Real Analysis and MATH2801 Probability and Random Variables must be taken.

††Potential honours students should consult the head of the appropriate department by the beginning of their third year.

1061 Mathematics or Statistics/Computer Science

Students intending to proceed to the Honours year should take Higher Mathematics subjects throughout.

Year 1††
COMP1821
MATH1032 or MATH1042, MATH1081
Choose 4 Level I units from:
1. Table 1 and/or
2. Table 2 for program 1000 and/or
3. The BA course

Computer Science

Mathematics

Recommended Elective Subjects

Computer Science
Geology

Psychology

Modern psychology is both a basic discipline and a field of professional practice. As a science, psychology is concerned with the study of both the more complex forms of behaviour, and associated mental processes. It seeks to understand the basic psychological processes such as learning, memory, perception and motivation; the biological basis of behaviour; the development and decline of behavioural capacities from infancy to old age; individual differences in behaviour; social influences on behaviour; and the collective behaviour of social groups. In addition, disorders of behaviour form an important part of the subject matter of psychology.
Program 1200 leads to a specialization in Psychology after 3 years and to Honours after 4 years. Choice of support subjects will depend upon which facet of Psychology is of interest to the student. Suitable supporting subjects include Anatomy, Physiology, Genetics of Behaviour, Science and Technology Studies, and Philosophy. Students may contact the School for advice.

Program 1206 is intended for students with interests in computational modelling and artificial intelligence, on the one hand, and human information processing, cognition, and group decision making, on the other. The program should be particularly useful for those who will work in a commercial environment that requires both 'people skills' and an application oriented knowledge of computing. It would also serve as a good basis for interdisciplinary research in areas that include both Psychology and Computer Science.

There is also a four year full-time professional science degree course (Course 3431) described later in this handbook. Students who wish to obtain qualifications that will allow them to practise psychology need to complete one of the above four year honours programs. The present minimum qualifications for registration in New South Wales as a psychologist and for membership of the Australian Psychological Society (the professorial body of Australian psychologists) are a degree (with a major in psychology) and a fourth year of study of psychology, followed either by further graduate study or two years of supervised experience in some practical field of psychology. A professional qualification in psychology may lead to careers in research, teaching and applied fields such as personnel selection and management, vocational guidance, advertising and clinical practice.

1200 Psychology

Year 1
MATH1032 or MATH1042 or both
MATH1011 & MATH1021
PSYC1002
Choose 4 Level I units from:
1. Table 1 and/or
2. Table 2 for program 1200

Year 2*
PSYC2001
Choose 2 units from:
PSYC2011, PSYC2021, PSYC2031, PSYC2051
Choose 5 units from Table 1 (no more than 1 additional unit from Level II Psychology)
1 General Education subject

Year 3*
Choose 4 Level III Psychology units
Choose 3 units from Table 1
1 General Education subject

Year 4 (Honours)*
PSYC4023 or PSYC4033
*Students intending to proceed to honours in Psychology must take PSYC2001, PSYC2011, PSYC2021 and PSYC2031 in Year 2, together with 3 other units from Table 1 (a total of 7 units in Year 2). In Year 3 students must take 8 Level III Psychology units including PSYC3001, PSYC3021 and PSYC3031 for PSYC4033 in Year 4. Additionally, students intending to take PSYC4023 in Year 4 are required to also include PSYC3011.

1206+ Computer Science/Psychology

Year 1
COMP1011 & COMP1021
MATH1032 or MATH1042
MATH1081
PSYC1002
Choose 1 unit from Table 1.

Year 2
COMP2011 & COMP2031
PSYC2001, PSYC2011 & PSYC2021
Choose 3 units from Table 1, including
2 from the list below
1 General Education subject

Year 3
COMP3111, COMP3411 & COMP3511
PSYC3001 & PSYC3191
Choose 3 units from the list below including at least 2 Level III Psychology units
1 General Education subject

Year 4 (Honours)
COMP4913 or PSYC4023 or PSYC4043

* Students proposing to proceed to honours in Psychology must take 4 Level II and 4 Level III Psychology units, including PSYC2031, PSYC3021 and PSYC3031, in Years 2 and 3.

** Students proposing to proceed to honours in Computer Science must take 4 Level III Computer Science units.

*** Progression to Year 4 (Honours) is subject to the approval of the relevant Head of School.

Elective List

COMP2021
PSYC2031, PSYC3011, PSYC3021, PSYC3031, PSYC3041, PSYC3061, PSYC3141, PSYC3151, PSYC3161

Other subjects from Level III Computer Science.

+ Entry to this program is via the NCS direct-entry Computer Science intake.
Recommended Elective Subjects

Anatomy
Physiology

Information Systems

Information Systems is concerned with information systems analysis and design, data management, computer processing, EDP audit, management information systems and applied expert systems within business and government organisations. There is a growing maturity in the discipline as the underlying theory and associated principles become better understood and as advanced information processing techniques emerge. In many respects the development of the knowledge base which forms the discipline parallels developments in computing technology as new opportunities become apparent for the solution of information processing problems. Hence, information systems is concerned with the way in which computer systems are used within organisations - mainly business and government. There is a high degree of complementarity between the roles of Computer Science and the discipline of Information Systems. The program is intended to develop students' conceptual and practical skills in the discipline. After an introductory first year students study systems design, database, communications and commercial programming in parallel with computer science, mathematics and management accounting units. In the honours year well qualified students are offered to specialize in advanced information systems and data management topics.

See also Course 3971

1400 Information Systems

Year 1

- COMP1811
- MATH1032 or MATH1042
- ACCT1501, ACCT1511
- INFS1602
- ECON1101, ECON1102

Year 2 (Year 1 Entrants)

- COMP1821
- INFS2603, INFS2609
- MATH2841 or MATH2801
Choose 1 unit from:
1. Table 1 or
2. Table 2 for program 1400
1 General Education subject

Year 2 (Direct Year 2 Entrants)

- COMP1821 or COMP1021
- ACCT1051, ACCT1511, INFS1602, INFS2603, INFS2609
- MATH2801 or MATH2841
1 General Education Subject
Choose 1 unit from Table 1 or Table 2 for Program 1400

Year 3

- ACCT2522, INFS3605, INFS3607, INFS3608
Choose 3 units including at least one at Level III from:
1. Table 1 and/or
2. Table 2 for program 1400 and/or
3. INFS3611
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units.

Year 4 (Honours)

- INFS4794

1700 Biological Science

Biological Science encompasses all aspects of plants and animals including their relationship to each other and to the environment. The courses leading to the award of a science degree in Biological Science include cell biology, plant and animal physiology, ecology, genetics, taxonomy, marine biology, entomology and evolutionary studies. These studies are particularly relevant in the fields of agriculture, forestry, wild-life management, conservation and related environmental sciences. Specializations are available in both Botany and Zoology as well as Ecology (Program 6853) and Marine Science-Biological Oceanography (6832).

Biological Science may be taken as a major or a minor study in the Science and Mathematics course (3970).
Year 3
Choose 5 units from BIOS3021, BIOS3031, BIOS3041, BIOS3051, BIOS3061, BIOS3071, BIOS3081, BIOS3091, BIOS3101, BIOS3111, BIOS3121, BIOS3131, BIOS3141, MICR3031
Choose 2 units from Table 1
1 General Education subject

Students proposing to proceed to year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
BIOS4013

1743
Botany

Year 1
CHEM1002 or both CHEM1101 and CHEM1201 Chemistry
MATH1032 or MATH1042 or both MATH1011 Mathematics
and MATH1021
BIOS1011, BIOS1021 Biology
Choose 2 Level I units from Table 1

Year 2
BIOS2011, BIOS2021
BIOC2312
BIOS2041, BIOS2051
Choose additional units from Table 1 to make a total of 8 for the year
1 General Education subject

Year 3
Choose 4 units from BIOS3041, BIOS3061, BIOS3091, BIOS3101, BIOS3121, BIOS3141, MICR3031
Choose 3 units from Table 1*
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
BIOS4023

*Students with an interest in molecular aspects of plant science should choose at least two of BIOC3131, BIOC3271 or BIOC3281.

1745
Zoology

Year 1
CHEM1002 or both CHEM1101 and CHEM1201 Chemistry
MATH1032 or MATH1042 or both MATH1011 Mathematics
and MATH1021
BIOS1011, BIOS1021 Biology
Choose 2 Level I units from Table 1

Year 2
BIOS2011, BIOS2021
BIOC2031
BIOS2041, BIOS2061, BIOS2031
Choose 1 unit from Table 1
1 General Education subject

Year 3
Choose 4 units from BIOS3011, BIOS3021, BIOS3031, BIOS3051, BIOS3071, BIOS3081, BIOS3111, BIOS3131, BIOS3141
Choose 3 units from Table 1
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
BIOS4033

Recommended Elective Subjects
Anatomy
Biochemistry
Geography
Geology
Mathematics
Microbiology
Physiology

Geology and Geophysics

Programs in Geology and Geophysics are offered to the Board of Studies in Science and Mathematics by the Department of Applied Geology in the School of Mines. The School is part of the Faculty of Applied Science and the Department of Applied Geology is dedicated to teaching and research in resource geology as well as in the fundamentals of the science.

Geology is the study of the nature and evolution of our planet. It is concerned with the composition and modes of formation and deformation of the igneous, sedimentary and metamorphosed rocks and concentrations of minerals that comprise the earth's crust and interior. Geology enquires into the essential controls on the development and distribution of such rocks and minerals in space and geologic time. Likewise it is concerned with the nature, distribution, and evolution of life forms through time. Resource geology is concerned with the application of all geological knowledge to the location and extraction of mineral and energy deposits, and to engineering and environmental tasks, ie activities that are fundamental to the well-being of modern society. Thus geology has an applied, professional function as well as being a scientific discipline.

Geophysics employs sophisticated instrumentation in order to construct physical earth models and is a companion discipline to Geology.
Program for Professional Geology
Since June 1986, the Australasian Institute of Mining and Metallurgy has required that its corporate members, including professional geologists, shall have completed a four year course. Students wishing to enter the geology profession should preferably undertake the four year Course 3000 Applied Geology in the Faculty of Applied Science that is specifically designed to meet the needs of a professional geologist. However, an identical course of study is available in the Science Faculty program 2500 by taking the three year program with a double specialization in Applied Geology and by achieving a standard that enables progression to the Year 4 program and graduation with Honours. Training of a professional geologist demands a thorough understanding of basic geological principles; accordingly, In the early part of the course students receive instruction in fundamental geological subjects. As with other science based disciplines, appropriate standards in Physics, Chemistry and Mathematics are also required. As the course progresses, increasing emphasis is placed on practical applications of geological principles to mineral and energy exploration and development, and to engineering and environmental geology. Mineral and energy exploration techniques including geochemical and geophysical methods are also studied. Year 4 is divided between a core of advanced geological topics, and one strand chosen from mineral resources, sedimentary basin resources, engineering and environmental geology, or geophysics. Session 2 of Year 4 is devoted to a specialized research project.

Geophysics
Professional geophysicists work closely with geologists and, appropriately, studies of both disciplines are undertaken in the one school. Fundamental and applied geophysics are taught to geology students in program 2500 (and Course 3000), but students who intend to become professional geophysicists should take program 2503.

Single Specialization in Geology
Because Geology is a natural companion to other sciences, such as Chemistry (in Geochemistry), Botany and Zoology (in Palaeontology) and Geography, and of widespread interest to science in general, program 2500 is organized so that a single specialization in Geology may be acquired. Students who have completed such studies may undertake an honours degree that includes geology with another science and should consult the Department of Applied Geology about recommended programs. Those who are specifically interested in combining Geology with Zoology and/or Botany should carefully read the following section.

Geology with Biological Science
Geology and the Biological Sciences meet in a common field of study (Palaeontology) concerned with the evolution and environmental controls on the growth of ancient life forms. Palaeontologists may have an applied function, providing geologists with essential information about the relative ages and depositional environments of sedimentary rocks, particularly the strata with a potential to yield fossil fuels. Students intending to pursue this combination should take the subjects designated in footnote (*) to program 2500.

Geology in Marine Science
Students interested in marine sciences should consider program 6833 which is concerned with geological aspects of the marine environment.

Programs in Geology are also offered in the Combined Science Civil Engineering Course 3730, and the Combined Science/Law Course 4770.

2500
Geology

Year 1
PHYS1002 or PHYS1022
CHEM1002 or both CHEM1101 and CHEM1201
PHYS1002 or PHYS1022
CHEM1002 or both CHEM1101 and CHEM1201
or CHEM1401 and CHEM1501
MATH1032 or MATH1042 or both MATH1011 and MATH1021
GEOL1101, GEOL1201

MATH1032 or MATH1042

Geography

Year 2
GEOL2111, GEOL2121, GEOL2211
Choose at least 4.5 units from:
1. GEOL2230, GEOL2231 and
2. Table 1 other than units offered by Applied Geology

1 General Education subject

Year 3
GEOL3111, GEOL3121
Choose at least 2 Applied Geology units from:
GEOL3130, GEOL3141, GEOL3211, GEOL3241, GEOL3251,
GEOL3271, GEOL3281, GEOL3331
Choose further units from Table 1 to give a total of 23 for the complete program*.
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
GEOL4303

2503
Geophysics

Year 1
PHYS1002
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042
GEOL1101, GEOL1201

PHYS1002
CHEM1002
MATH1032

Mathematics

Science

Geology

*Carefully read the description of program 2500 and seek advice from the Department of Applied Geology about the choice of subjects. Students following a combination of Applied Geology with Botany and/or Zoology are permitted in Year 1 to substitute the two Biology subjects, BIOS1011, BIOS1021, for PHYS1002. In Year 2 they should take BIOS2051, BIOS2041, BIOS2051, BIOS2061. In Year 3 GEOL3241, either GEOL3211 or GEOL3251, BIOS3131 and 2 units chosen from BIOS3101, either BIOS316, BIOS3071, BIOS3081, BIOS3091, BIOS3121.
Year 2
PHYS2001, PHYS2011, PHYS2021, PHYS2031
MATH2100, MATH2120
GEOL8220, GEOL2231, GEOL2230
2 General Education subjects

Year 3
GEOL3130, GEOL3331, GEOL8320, GEOL8330, GEOL8340, GEOL8350, GEOL8360
Choose 2 units from Level III Physics and Mathematics
Choose 2 units from:
1. Table 1 and/or
2. Table 2 for program 2503
Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
GEOL4303

Recommended Elective Subjects

Biological Science
Chemistry
Geography
Mathematics
Physics

Earth and Environmental Science

This program is a combined course in Geology and Geography. It is designed to enable the graduate to understand and evaluate present geological processes and their relationships with the land surface. The effects on the natural processes of the various human activities, from industrial pressures to urban developments, are considered in detail and form an integral part of the course. The community's needs for future developments in a variety of environments and the vital role of environmental interdisciplinary safeguards have been among the main guidelines in the selection of subjects within the course.

2527 Earth and Environmental Science

Year 1
CHEM1002 or both CHEM1101 and CHEM1201 Chemistry
or CHEM1401 and CHEM1501
MATH1032 or MATH1042 or both MATH1011 Mathematics
and MATH1021
GEOL1101, GEOL1201 Geology
GEOG1012, GEOG1031, GEOG1043 Geography

Year 2
BIOS1011, BIOS1021
GEOL2111, GEOL2121, GEOL7221
GEOG2021, GEOG2032, GEOG3232
1 General Education subject

Year 3
GEOL3121, GEOL6231
GEOG3011, GEOG3021
Choose at least 3 units from:
GEOL2130, GEOL3111, GEOL3251 GEOL3281, GEOL6321
GEOG3032, GEOG3062, GEOG3071, GEOG3122
BIOS2031, BIOS2051, BIOS2061, BIOS3061, BIOS3101
1 General Education subject
Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
GEOL4303 or GEOG4050/GEOG4100

Geography

Geography is the scientific study of variations from place to place on the earth's surface. It provides an analytical framework for understanding and investigating many of society's pressing problems such as the use and management of scarce resources, the impact of environmental hazards on human activities, soil erosion and conservation, land use conflicts, and the spatial organization of human affairs.

Program 2700 is a three-year structured sequence of substantive subjects in physical and human Geography, with particular emphasis on studies of the natural environment, as well as a grounding in basic analytical skills and techniques (e.g. statistical methods and computing, remote sensing and air-photo interpretation, field and laboratory techniques) required for problem-solving and application. Because of its essentially interdisciplinary nature, a training in Geography is increasingly recognized as a relevant qualification for employment in a wide range of planning and conservation related fields.

Considerable flexibility exists in Program 2700 for students to combine subjects in Geography with those from cognate disciplines to suit individual interests and career aspirations. Studies in Geography with other sciences, especially Geology and Biological Science, are encouraged. Geography may also be studied together with Geology in the Earth and Environmental Science Program 2527, or in conjunction with Biological Science in the Ecology Program 6851. Details of particular courses of study and subject combinations offered within these programs are available from the School Office.
Biochemistry

Biochemistry is at the foundation of the biological sciences and is concerned with an understanding of life processes, especially with regard to molecular aspects of living organisms. Historically, the diverse approaches of chemistry and physiology were applied to biological systems but now Biochemistry has achieved its own techniques, approaches and body of knowledge and its ideas pervade the whole of biology. It, however, retains a molecular basis and is an ideal study for those students who are interested in understanding and appreciating biological processes at the molecular rather than descriptive level. Integration of this molecular approach at the cellular, tissue, organ and whole organism level is an important part of Biochemistry. Biochemistry also represents a fundamental component of medical science and has an important role in many aspects of modern medicine.

Study of Biochemistry begins at Level II (BIOC2312 Principles of Biochemistry and Molecular Biology) building on a base of Level I Chemistry and Biology. The material in this double unit introduces the basic concepts of the subject, describes biological molecules, their interconversions in cells and tissues and the relationship between the structures and functions of enzymes, other proteins, hormones and biological membranes.

At Level III, further subjects are offered which cover various aspects of Biochemistry. These include BIOC3111 Molecular Biology of Proteins, BIOC3121 Molecular Biology of Nucleic Acids, BIOC3261 Human Biochemistry, BIOC3271 Cellular Biochemistry and Control, BIOC3281 Recombinant DNA Techniques and Eukaryotic Molecular Biology and BIOC3131 Biochemistry and Genetic Engineering of Plants.

In Year 4, the Honours Course in Biochemistry (BIOC4318 Biochemistry Honours) offers the opportunity for those students who have obtained above average results to carry out a research project under supervision and to receive training in the latest research techniques.

Program 4100 Biochemistry

The program outlined below describes a major study in Biochemistry with provision for a considerable choice of subjects offered by other Schools and Departments. It can be used as a framework to combine Biochemistry with major studies in other disciplines, for example Microbiology, Chemistry, Physiology, Biotechnology, Biological Science, Genetics or Anatomy; other combinations are also possible. In arranging the combination of these major studies, the programs of the two relevant Schools or Departments should be consulted, especially if there is a possibility of proceeding to Year 4 (Honours). Program 4100 can also be followed for a major study in Biochemistry that is supported by one or two minor sequences - for example, Biochemistry with some Chemistry and some Microbiology, or Biochemistry with some Physiology and some Anatomy. The program also permits up to 6 Level III Biochemistry units to be taken rather than the usual minimum of 4. The structure of the usual program (with 4 Level III Biochemistry units) can be modified to replace one of the 4 Level III Biochemistry units with one of a small number of approved Level III units offered by other Schools and Departments. The approved Level III replacement units include any of those offered by the Department of Biotechnology, the Immunology units offered by the School of Microbiology and BIOS3141 Structure and Function of Cells offered by the School of Biological Science. Other replacements may be approved by the Head of the School of Biochemistry. All of these combinations can serve as prerequisites for an Honours Year in Biochemistry provided that passes are obtained in a total of 8 Level III units including above average results in Biochemistry.

4100 Biochemistry

Year 1

CHEM1002 or both CHEM1101 and CHEM1201 Chemistry
MATH1032 or MATH1042 or both MATH1011 and MATH1021 Mathematics
BIOS1011, BIOS1021 Biology
Choose 2 Level I units from Table 1*
Undergraduate Study: 3970 Science and Mathematics Course

Year 2
CHEM2021 or CHEM2041
BIOS2011, BIOS2021
BIOC2312
Choose 2 or 3 units from Table 1
1 General Education subject

Year 3
BIOC3111 or BIOC3121 or both BIOC3111 and BIOC3121
Choose 2 or more units from Level III Biochemistry to make a total of at least 4 Level III Biochemistry units. (Note: One of these units may be replaced by a Level III unit from the Department of Biotechnology or by another approved Level III unit from those offered by the Schools of Microbiology or Biological Science - see the description above for Program 4100 Biochemistry)

Choose further units from Table 1 to give a total of 23 for the complete Program.
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
BIOC4318

* Recommended are units offered by the School of Physics and the Department of Computer Science.

Recommended Elective Subjects

Biological Science
Biotechnology
Chemistry
Microbiology
Physiology

Biotechnology

Biotechnology employs a body of multidisciplinary expertise directed towards the utilization and recycling of natural resources by controlled biological action, usually in a reactor. Its study provides an appreciation of the capabilities of biological systems and the skills required to maximize these capabilities on the industrial scale. Particular attention is given to: the selection of the appropriate systems and their maximization by genetic and or enzyme tailoring; the design of biological reactors and their ancillary equipment; optimization and control of the processes. It is by these means that products are manufactured at ensured standards of quality. The products include certain foods and beverages, baker's yeast, antibiotics, steroids, vaccines, enzymes, amino acids, nucleotides, vitamins, organic acids, alcohols, metals, plant growth regulators and insecticides. Specific mammalian proteins, such as insulin and growth hormone, are also produced by micro-organisms which have been genetically engineered to contain the appropriate mammalian gene.

Students wishing to undertake training in biotechnology may do so by combining such training with a major in another relevant discipline, preferably biochemistry, microbiology or chemistry. The fourth (Honours) year includes further formal training as well as research in biotechnology.

Alternatively, students with no previous training in biotechnology may undertake the biotechnology honours year, provided they have the necessary background training in biochemistry and microbiology; in such cases the Level III biotechnology units constitute the formal component.

4200

Biotechnology

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
BIOS1011, BIOS1021
Choose 2 Level 1 units from Table 1

Year 2
BIOS2011, BIOS2021
BIOC2312, MICR2011
Choose 2 additional units from Table 1 to make a total of 7 for the year
2 General Education subjects

Year 3
BIOT3011, BIOT3021, BIOT3031, BIOT3061
Choose additional units from Table 1 to give a total of 23 for the complete program

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
BIOT4073 (F/T) BIOT4083 (P/T)

Recommended Elective Subjects

Biochemistry
Chemistry
Microbiology

Microbiology and Immunology

The discipline of microbiology encompasses the scientific study of the smallest forms of life, namely bacteria, viruses, algae, fungi and protozoa. Microorganisms are probably best known as agents of disease in people, in other animals and in
plants. Other microorganisms cause food spoilage, as well as serious deterioration in textiles and structural materials. Not all microorganisms are harmful. We depend on microorganisms for the recycling of organic wastes, for the biodegradation of pollutants, for the maintenance of soil fertility, and for the production of foods, beverages, pharmaceuticals (especially antibiotics), and other industrially important materials.

Immunology, the study of the immune system, has contributed significantly to modern medicine in areas such as: blood transfusion, organ transplantation, allergic reaction and immunity to disease. In the field of cell biology, Immunology has advanced our understanding of differentiation, cell-cell co-operation and the triggering of proliferation and differentiation by cell surface receptors.

The program in Microbiology and Immunology requires students to take basic courses in Chemistry, Mathematics and Biology in Year 1.

4400 Microbiology*

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
BIOS1011, BIOS1021
Choose 2 Level I units from Table 1

Year 2
BIOS2011, BIOL2021
BIOC2312
MICR2011
Choose 2 or 3 units from Table 1
1 General Education subject

Year 3
MICR3011, MICR3021
Choose at least 2 units from BIOS3041, MICR3031, MICR3041, MICR3051, MICR3061, MICR3071, MICR3081
Choose other units from Table 1 to give a total of 23 for the complete program
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
MICR4013, MICR4023

*Students wishing to include MICR3041 Immunology 1 in their program are strongly advised to take ANAT2211 Histology I in Year 2. The subject BIOS2041 Biometry is recommended as a useful elective. In particular, students interested in MICR3071 Environmental Microbiology or in a research career in any area are strongly advised to take this subject.

Recommended Elective Subjects
Biochemistry
Biotechnology
Biological Science

Philosophy

Philosophy is a wide-ranging discipline, catering for a great diversity of interests, for instance, in science, reasoning, persons, and social issues, and encouraging critical and imaginative thought about the foundations of other subjects. Apart from providing considerable choices for students majoring in Philosophy, the diversity of Upper Level subjects makes it possible for students majoring in other disciplines to select subjects complementing their main interest.

First Enrolment in Philosophy
There are two Level I subjects:
PHIL1006 Introductory Philosophy A (Session 1).
PHIL1007 Introductory Philosophy B (Session 2).

Each of these has one unit value. They can be taken separately, and a student can gain Level II status in Philosophy (ie qualify to enrol in Upper Level subjects) by passing in only one. However, students enrolling in one normally enrol in both, and students wishing to major in Philosophy must do so.

Value of Upper Level Subjects in Philosophy
All Level II/III subjects in Philosophy have one unit value.

Specialization in Philosophy
Students specializing in Philosophy must complete, in addition to PHIL1006 and PHIL1007 (Introductory Philosophy A and Introductory Philosophy B), the equivalent of six full-point Upper Level (II/III) units. Of these, at least four units must be chosen from List A, which includes subjects in Logic, Philosophy of Mind, Philosophy of Science, and areas of History of Philosophy relevant to those subject areas. Students normally take the equivalent of two Level II/III units in Year 2, and the equivalent of four Level II/III units in Year 3.

List A
PHIL2106 Logic
PHIL2216 Human Nature and Human Understanding: the Empiricist Approach
PHIL2806 Contemporary Philosophy of Mind
PHIL2207 Issues in the Philosophy of Psychology
PHIL2108 Ways of Reasoning
PHIL2308 Reason and the Passions: Descartes, Spinoza and Hume
PHIL2218 Philosophical Foundations of Artificial Intelligence
PHIL2217 Personal Identity
PHIL2107 Advanced Philosophy of Science
PHIL3106 Pre-Honours Seminar
PHIL2109 Metaphysics (Realisms)
PHIL2208 Epistemology (Skepticisms)
PHIL2209 Epistemology (Beliefs and Knowledge)

The remaining two units are to be chosen from other Upper-Level Philosophy subjects in Table 1 or EUR02400 in Table 2.
Level II/III
Some Level II/III subjects deal with particular philosophical topics; others can be taken in sequence to give more sustained treatments of larger areas. Students may select freely among these, subject to stipulations regarding prerequisites. They are welcome to seek advice and further information from the School.

In certain circumstances the prerequisite specified for subjects may be waived; for example, in the case of students who have already studied similar material, or who wish to take isolated subjects relevant to another discipline. Students who feel they have a case for a concession of this kind should consult the School.

Honours Entry Requirements
Students intending to proceed to an Honours degree in Philosophy, complete Years 1 - 3 of Programs 5200 or 5262 with an overall credit record and some indications of Distinction ability in the Philosophy units included in those programs; plus PHIL3106 Pre-Honours Seminar.

5200
Philosophy

Year 1
MATH1032 or MATH1042 or both MATH1011
and MATH1021
PHIL1006, PHIL1007
Choose 4 Level I Units from Table 1

Year 2
Choose 2 Philosophy units*
Choose 6 units from Table 1
1 General Education subject

Year 3
Choose 4 Philosophy units*
Choose 3 units from Table 1
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units including PHIL3106.

Year 4 (Honours)
PHIL4000

* A combination of 3 half unit Philosophy subjects count as the equivalent of 2 Science units. Refer to List A for compulsory subjects on previous page.

5262
Philosophy of Science

Year 1
MATH1032 or MATH1042 or both MATH1011
and MATH1021
Choose 1 unit from:
PHIL1006 PHIL1007 or
HPST1106, HPST1108, HPST1107
Choose 5 Level I units from Table 1

Year 2
PHIL2106
PHIL2116 or HPST2106
HPST2116
Choose further units from Table 1 to make a total of 8 for the year.
1 General Education subject

Year 3
PHIL2107
Choose 3 units from:
PHIL2207, PHIL2116, HPST3106, HPST3117, SCTS301U
Choose 3 units from Table 1
1 General Education subject

Year 4 (Honours)
PHIL4000 or SCTS4106
The School of Science and Technology Studies offers BSc students an integrated program (6200) combining subjects in the History and Philosophy of Science and Technology (HPST) and in Science, Technology and Society (SCTS). Students may also take units in either or both areas as elective subjects in other BSc programs.

Subjects in the History and Philosophy of Science and Technology (HPST) examine the history of scientific and technological development, the nature and philosophical implications of the knowledge and methods involved in this development, and the historical dynamics of scientific and technological change. Subjects in Science, Technology and Society (SCTS) examine the social, economic and political dimensions of scientific and technological change, especially in the twentieth century.

The Pass Degree
The program offered by the School gives students a wide range of options from which to choose in studying the historical, philosophical and social aspects of science and technology. Students intending to complete the pass degree are required to take eight HPST and/or SCTS units. The remaining units in this program may be chosen from those listed in Table 1, which allows sufficient flexibility for the completion of a second specialization in a scientific discipline, if this is desired. Students wishing to enquire about such a second specialization within program 6200 are invited to contact the School and the relevant second School for further Information.

HPST and SCTS subjects with numbers in the 1000 range are Level 1 units. Those in the 2000 and 3000 range are all Level II/III units and may be taken in any order provided that the prerequisites for each individual unit are met.

The Honours Degree
Students intending to proceed to an honours degree in Science and Technology Studies must complete the first three years of program 6200 with marks that result in an average of Credit or better in the eight HPST and/or SCTS units included. The three-year program leading to honours entry offers sufficient scope for the completion of a second specialization in a scientific field, if this is desired. All students intending to complete an honours degree within program 6200 are invited to contact the School for further Information.

6200
Science and Technology Studies

Year 1
MATH1032 or MATH1042 or both
MATH1011 and MATH1021
Choose any Level I HPST or
SCTS unit
Choose 5 Level I units from Table 1

Year 2
HPST2106
SCTS2106 or SCTS 2107
Choose 1 additional HPST or SCTS unit
Choose 5 units from Table 1
1 General Education subject

Year 3
Choose 4 HPST or SCTS units
Choose 3 units from Table 1
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
SCTS4106

Board of Studies in Science and Mathematics

6801
For Anatomy Programs

Year 1
MATH1032 or MATH1042 or both MATH1011 and MATH1021
BIOS1011, BIOS1021
Choose 4 appropriate Level I units from Table 1

Enrolment in Year 2 of program 7000 is based on academic performance in Year 1. Students should select the subjects specified in the program they wish to pursue in Year 2. Students may obtain advice from the Office of the Board of Studies in Science and Mathematics in the Biological Sciences Building.

6810
Mathematics of Management*†

Year 1
MATH1032 or MATH1042
ACCT1501, ACCT1511
ECON1101, ECON1102E
Choose 2 Level I units from:
1. Table 1 or
2. Table 2 for program 6810

Year 2
MATH2100, MATH2120, MATH2160, MATH2180, MATH2501
MATH2510, MATH2520, MATH2801 or MATH2841
ACCT2522, INFS1602
Choose 1 unit from: ACCT2542, INFS2603, FINS2613.
1 General Education elective
The Marine Science programs are designed to provide opportunities for students to specialize in selected areas of marine science, yet ensure that they receive an adequate exposure to other pertinent disciplines within this broad field.
Sciences

Continue the strand chosen in Year 1:
1. CHEM2011 or
2. CHEM2041 at least 1 unit from: BIOS2011, BIOS2051, BIOS3111 or
3. GEOL6201

Choose 2 additional units from Table 1 to give a total of 8
1 General Education subject

Year 3
MATH2280
MATH3121
MATH3201
MATH3241
MATH3261
MSCI3001

Choose 25 units from: PHYS2021, PHYS2031, PHYS2601, PHYS3150, PHYS3631, MATH3101, MATH3301, GEOL6330, BIOS3081 or GEOL6311 or GEOL6231 or BIOS3091

1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete at least 6 Level III units.

Year 4 (Honours)
MSCI4003

6832
Marine Science (Biological Oceanography)

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1101
and MATH1021
BIOS1011, BIOS1021

Choose 2 units from 1 of the strands:
1. PHYS1002 or PHYS1022 or
2. GEOL1101, GEOL1201

Year 2
CHEM2011
CHEM2041
MICR2201
BIOS2031
MSCI2001

Choose 1 unit from the subjects related to the strand chosen in Year 1:
1. MATH2021 or MATH2801 or
2. MATH2841 or
2. GEOL6231

Choose units from: BIOS2011, BIOS2021, BIOS2041, BIOS2061, BIOC2312 to give a total of 8 for the year
1 General Education subject

Year 3
BIOS3081, BIOS3091
MICR3021

Choose 2 Level III units from Table 1 which may include the subjects corresponding to the strand chosen in Years 1 and 2:
1. MATH3021, MSCI3001 or
2. GEOL6321

Choose 2 units from Table 1
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete at least 6 Level III units.

Year 4 (Honours)
MSCI4003 (F/T) MSCI4009 (P/T)

6833
Marine Science (Earth Science Oceanography)

Year 1
MATH1032 or MATH1042 or both MATH1011 Mathematics
and MATH1021
GEOL1101, GEOL1201 Geology
Choose 4 units from 2 of the strands:
1. PHYS1002 or PHYS1022 and/or Physics
2. BIOS1011, BIOS1021 and/or Biology
3. CHEM1002 or both CHEM1101 and

Chemistry

Year 2
MSCI2001
GEOL6201, GEOL6231

Continue both of the strands chosen in Year 1:
1. MATH2021 or MATH2841 or MATH2801 and/or
2. At least 1 unit from: BIOS2011, BIOS2031, BIOS2051 and/or
3. CHEM2011 or CHEM2081

Choose additional units from Table 1 to give a total of 8
1 General Education subject

Year 3
GEOL6310, GEOL6330, GEOL6311, GEOL6321

Choose 3 Level III units from Table 1 which may include the subjects corresponding to the strands chosen in Years 1 and 2:
1. MSCI3001, MATH3021 and/or
2. BIOS3081, BIOS3091 and/or
3. CHEM3311

Choose 1 unit from Table 1
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units.

Year 4 (Honours)
MSCI4003 (F/T) MSCI4009 (P/T)
Marine Science (Environmental Chemistry)

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042
Choose 4 units from 2 of the strands:
1. PHYS1002 and/or
2. BIOS1011, BIOS1021 and/or
3. GEOL1101, GEOL1201

Year 2
CHEM2011, CHEM2041
MSCI2001
Continue both of the strands chosen in Year 1:
1. MATH2021 or MATH2841 and/or
2. At least 1 unit from: BIOS2011, BIOS2051, BIOS2031 and/or
3. GEOL6231
Choose additional units from Table 1 to give a total of 8
1 General Education subject

Year 3
CHEM3041, CHEM3311
Choose 2 Level III units from Table 1 which may include the subjects corresponding to the strands chosen in Years 1 and 2:
1. MSCI3001, MATH3021 and/or
2. BIOS3081, BIOS3091 and/or
3. None
Choose 3 units from Table 1
1 General Education subject

Year 4 (Honours)
MSCI.4003 (F/T) MSCI4009 (P/T)

Genetics

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042
Choose 2 Level I units from Table 1

Year 2
BIOS2011, BIOS2021
BIOC312
MATH2841 or BIOS2041
Choose 1 unit from: BIOS2031, BIOS2051, BIOS2061, MIRC2011
Choose 2 further units from one of the following groups:
1. CHEM2021, MIRC2011
2. COMP1011 and either WOOL3803 or BSSM2101
3. BIOS2051, BIOS2031 or BIOS2061, WOOL3803, HPST2107 or BSSM2101
1 General Education subject

Year 3
Choose at least 4 units from:
WOOL4813, BIOT3281, BIOT3301 or MIRC3021, BIOS3071 or CMED8201, BSSM3101, CMED8202 or CMED8302, CMED8303 and other units from Table 1 to give a total of 23 for the complete program. The following are recommended: COMP1021, WOOL3901, BIOT3111, BIOT3131, BIOT3011, MIRC3011, MIRC3041, BIOS3141.
1 General Education subject

Year 4 (Honours)
BSSM4103 (F/T) BSSM4109 (P/T)

Ecology

The ecology programs are designed to allow students to obtain a specialization in selected areas of Ecology while at the same time providing the opportunity to obtain experience in a wide range of cross disciplinary subjects that reflect the related disciplines contributing to the science of Ecology. Three programs have been devised from subjects currently available in the Faculties of Science, Biological & Behavioural Sciences and Applied Science. Program 6851 Geographical Ecology provides for a concentration of subjects in Botany, Zoology, and Geography; Program 6852 Mathematical Ecology provides for a concentration of subjects in Botany, Zoology and Statistics and Program 6853 Biological Ecology provides for its major concentration within the Biological
Sciences but includes contributions from other faculties. Some optional subjects are available in each program to allow students to choose subjects which match their own interests and career aspirations. The selection of these subjects must be discussed with a program adviser. A fourth (Honours) year in Ecology is available in all programs.

6852
Mathematical Ecology

Year 1
MATH1081, COMP1181
MATH1032 or MATH1042
BIOS1011, BIOS1021
Choose 1 of the strands:
1. PHYS1002 or PHYS1022
2. CHEM1002 or both CHEM1101 and CHEM1201
3. GEOG1012, GEOG1031

Year 2*
MATH2501, MATH2510, MATH2801, MATH2821, BIOS2031 and
BIOS2051 and BIOS2061 or BIOS2031
Choose at least 2 units from:
MATH2810, MATH2830, BIOS2011, BIOS2021, BIOS2031,
BIOS2061, GEOG2011, GEOG2032, GEOG3032,
GEOG3042, GEOG3062, MICR2201 or MICR2011
1 General Education subject

Year 3
BIOS3101, BIOL3111, GEOG3021
Choose at least 3 units from:
MATH2810, MATH2830, MATH3801, MATH3811, MATH3820,
MATH3830, MATH3840, MATH3850, MATH3861
Choose at least 1 unit from:
BIOS3121, BIOS3011, BIOS3201, BIOS3051, BIOS3061,
BIOS3071, BIOS3081, BIOS3141, BIOS3131,
GEOG2013, GEOG3011, GEOG3051, GEOG3062,
MICR3071
Choose further units from Table 1 to give a total of 23 for the complete program
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete at least 6 Level III units

Year 4 (Honours)
BSSM4023

*Students should make sure they are able to satisfy prerequisites and must consult with advisers from the Ecology Program.

6853
Biological Ecology

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011
BIOS1011, BIOS1021
GEOG1012, GEOG1031

Year 2*
BIOS2011, BIOS2021, BIOC2312, BIOS2041, BIOS2051,
Choose at least 2 units from:
BIOS2031, BIOS2061, MICR2201 or MICR2011
1 General Education subject

*Students should make sure they are able to satisfy prerequisites and must consult with advisers from the Ecology Program.
Undergraduate Study: 3970 Science and Mathematics Course

Year 3
BIOS3101, BIOS3111, GEOG3021
Choose 2 further units including at least 1 at Level III from:
BIOS3011, BIOS3021, BIOS3031, BIOS3041, BIOS3051 and
BIOS3061, BIOS3071, BIOS3081, BIOS3121, BIOS3131,
BIOS3141, GEOG2013, GEOG3011, GEOG3051,
GEOG3062, MICR3031, MICR3071
Choose further units from Table 1 to give a total of 23 for the
complete program
1 General Education subject
Students proposing to proceed to Year 4 (Honours) must
complete at least 6 Level III units.

Year 4 (Honours)
BSSM4023 (F/T), BSSM4029 (P/T)

*Students should make sure they are able to satisfy prerequisites and must consult
with advisers from the Ecology Program.

Anatomy

Entry to Anatomy programs is limited to a quota of
approximately 80. Students in Year 1 must enrol in Program
6801, and apply in October for entry to Anatomy the following
year. Selection is determined by academic merit, based on a
weighted aggregate of marks obtained in Year 1. Allowance
is made for the relative difficulty of first year subjects in
Mathematics and Physics, the more difficult subjects being
given a greater weight. The quota does not apply to the
Science Medicine course (course 3820).

Anatomy subjects are, in general, only available to students
who have been admitted to the Anatomy quota. However, students in programs 4400 (Microbiology-Immunology strand)
and 6840 (Genetics) may apply to take ANAT2211, ANAT2111, ANAT3211 and ANAT3220.

Students enrolled in programs for which Anatomy or Histology
is relevant (eg Biochemistry, Physiology, Psychology) and
who wish to study one or more Anatomy units should consult
the Head of School.

A major in Anatomy may suitably be combined with elective
subjects from Biochemistry (ANAT3211 or ANAT3220
recommended), Physiology or Psychology.

PATH3201 Basic and Applied Pathology may be counted as
a Level III Anatomy unit.

7000
Anatomy

Year 1*
MATH1032 or MATH1042 or both MATH1011 Mathematics
and MATH1021
BIOS1011, BIOS1021 Biology
Choose 4 Level I units from Table 1
Apply for entry to the Anatomy quota for following year

Year 2
ANAT2111, ANAT2211
Choose 5 or 6 units from:
1. Table 1 and/or
2. Anatomy units in Table 2 (ANAT3311 is recommended)
1 General Education subject

Year 3
Choose at least 4 Level III Anatomy units (may include
PATH3201)
Choose further units from Table 1 to give a total of 23 for the
complete program
1 General Education subject
Students proposing to proceed to Year 4 (Honours) must
complete 6 Level III units.

Year 4 (Honours)
ANAT4508

*In Year 1 students must enrol in program 6801. Enrolment in Year 2 is based on
academic performance in Year 1.

Recommended Elective Subjects

Biology
Biochemistry
Physiology
Psychology

Physiology and Pharmacology

Physiology, the study of the processes and mechanisms
which serve and control the various functions of the body,
begins at the second year level with the full year subject
Physiology 1 (the core subject for students who intend to
proceed to the study of Physiology at a higher level).

Prior to commencing these subjects, students are required to
have satisfactorily completed Level I courses in Mathematics,
Biology and Chemistry, as a background. In these subjects is
considered essential to an understanding of how the body
functions. Students intending to major in Physiology should
note Physiology 2 prerequisites.

Physiology 2 is a major (third year level) subject in Physiology
and in this subject various systems of the body are treated in
considerable detail. Progression to this full year subject
normally requires the satisfactory completion of Physiology 1
and the Level II Biochemistry subject. Physiology 2 provides
the 4 units at third year level required for a degree with a single
specialization in Physiology. Alternatively it may be
undertaken concurrently with a Level III subject offered by
other schools in allied disciplines, such as Chemistry.
Psychology, Zoology, Biochemistry or Anatomy, to form a program leading to the award of a degree with a double specialization. Students who wish to take Physiology as a major subject should follow Strand 1 of the program 7300.

The School also offers the third year level subject Pharmacology, which includes a study of the uptake, distribution and excretion of drugs within the body, and of mechanisms by which drugs, and various endogenous chemicals, alter body function. This 2 unit subject is normally taken concurrently with Physiology 2, or with Level III Biochemistry or Chemistry subjects. Pharmacology is also a full year subject. Students who wish to form a major with Pharmacology should follow Strand 2.

Physiology 2 and Pharmacology are the most advanced undergraduate courses offered by the School which are conducted by way of formal lectures, tutorials and laboratory practical classes. Selected students who have satisfactorily completed one of these subjects may be permitted to enrol in a further year of study of either Physiology or Pharmacology which normally leads to an award of the degree with Honours.

The Honours year program, as presently conducted in this School, requires the student to complete a full year research project on a specific topic under the supervision of a member of staff, and to submit a thesis based on this work. The level of honours awarded is determined chiefly on the basis of the thesis, and on course work activities such as the preparation of literature reviews, and participation in seminar programs, but also takes account of the student's overall academic record.

Year 3
Continue the strand chosen in Year 2:
Either
1. PHPH3114
or
2. PHPH3152
and either
2 Level III Chemistry units
or
BIOC3111 and BIOC3121, BIOC3271 or PHPH3114

Choose further units from Table 1 to give a total of 23 for the complete program.
1 General Education subject

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units.

Year 4 (Honours)
PHPH4218 or PHPH4258

*For an explanation of the division into strands 1 and 2 refer to the preamble.

Recommended Elective Subjects
- Anatomy
- Biological Science
- Biochemistry
- Chemistry
- Psychology
Board of Studies in Science and Mathematics

Course Outline 3431

3431
Psychology Degree Course
–Full-time Course

Bachelor of Science (Psychology)
BSc(Psychol)

The four year course in Psychology, which leads to the award of the degree of Bachelor of Science (Psychology), is designed to meet the requirements of students who intend to become professional psychologists, as either practitioners or research workers.

The course requirements have been so designed that they allow for:

1. a solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques;
2. supporting studies in mathematics and or biology a minimum of one such course is compulsory;
3. supporting studies in the social sciences a minimum of one such course is compulsory; and
4. the special needs, interests and academic or vocational background of individual students.

For these reasons, no course patterns are prescribed. The patterns to be completed by students who are admitted with advanced standing will take into account the subjects credited.

Students commencing university studies for the first time will arrange their pattern of supporting subjects in consultation with the Head of the School or her representative before completing enrolment.

The course is available on a full-time basis only. Entry into the course is subject to a quota which is determined from time to time.

In the fourth year, students undertake a program of study which includes courses in the major areas of general psychology and in a number of applied fields. In addition, each student must complete either a research thesis or a group research project.

Details of the qualifications required for admission to the Psychology Course leading to the award of BSc(Psychol), the course requirements for Pass and Honours at graduation and rules governing admission with advanced standing are given below.

Rules governing the Psychology Course

1. Applicants for admission to the Course must be matriculated to this University; and also have satisfied either the entrance requirements for MATH1032 Mathematics 1 or MATH1011 General Mathematics 1B and MATH1021 General Mathematics 1C or for BIOS1011 Biology A and BIOS1021 Biology B.

2. (1) In order to qualify for admission to the award of degree of BSc(Psychol) under these regulations a candidate must attend classes and satisfy the examiners in the following program:

Year 1
BIOS1011 and BIOS1021 or
MATH1032 or both MATH1011 and MATH1021 or
PSYC1002
ECON1101 and ECON1002 or PHIL1006 and PHIL1007 or 12 Arts credit points of Level I Sociology or Political Science or other approved discipline
Choose 1 elective Year 1 subject from Arts or Science

Year 2
PSYC2001, PSYC2011, PSYC2021, PSYC2031, PSYC2042
Choose one Year 2 subject following on from one of the Year 1 non-psychology subjects – this constitutes a recognized sequence (one Year 2 subject is equivalent to 2 Science Level II units or 12 Arts Upper Level credit points)
1 Category A General Education elective (56 hours)
1 Category B General Education elective (56 hours)

Note: If one of the Year 1 non-psychology subjects is divided into 2 single session subjects students may be able to replace the Session 2 subject by the Category A General Education elective and in Year 2 take the other non-psychology subject and the Category B General Education elective.

Year 3
PSYC3001, PSYC3021, PSYC3031
Choose 5 further Level III Psychology units

Note: Students intending to take PSYC4003 in Year 4 must take PSYC3011

Year 4
PSYC4003 or PSYC4013

Examples of recognized sequences are:
Mathematics or Statistics
Year 1
MATH1032
Year 2
Choose either 2 Level II units of Pure or Applied Maths or MATH2801 and MATH2810 for Statistics

Biochemistry
Year 1
BIOS1011, BIOS1021
CHEM1002,
Year 2
BIOC2312

Physiology*
Year 1
BIOS1011, BIOS1021
CHEM1002,
Year 2
PHPH2112

Zoology
Year 1
BIOS1011, BIOS1021
Year 2
Choose 2 units from BIOS2011, BIOS2031, BIOS2061, BIOS3011

Genetics
Year 1
BIOS1011, BIOS1021
CHEM1002 (for BIOS2021 only)
Year 2
Choose 2 units from BIOS2021 and BIOC2312, BIOS3071
BSSM2101, BSSM3101

Arts
Year 1
12 Level I credit points of Economics, Philosophy, Political Science, Sociology or other approved discipline,

Year 2
12 Upper Level credit points following on from the Year 1 choice

*For students in Course 3431 the additional prerequisite of either MATH1032 or MATH1011 and MATH1021 for PHPH2112 has been waived by the School of Physiology and Pharmacology

NOTES
1. For details of Psychology and Science subjects, including pre- and co-requisites, refer to Table 1 of Course 3970 Science and Mathematics set out earlier in this handbook.
2. For details of Arts subjects, including pre- and co-requisites, refer to the Faculty of Arts handbook.
3. Progression in the Course shall be by subjects, and the subjects in the Course may be completed in any order consistent with the requirements concerning prerequisites and co-requisites for the subjects chosen.

3. Prerequisites and Co-requisites
Before enrolling in any course (or equivalent units of a subject) the student shall have attended the classes and shall have satisfied the examiners in all relevant prerequisite subjects. The student should refer to the appropriate Faculty Handbook for a statement of subject prerequisites and/or co-requisites

4. The degree of BSc(Psyhol) will be awarded at either Pass level or with Honours, after a minimum of four years of full-time study.

Rules governing admission to the Psychology Course with advanced standing

1. Graduates of the University of New South Wales may be admitted to the Psychology Course leading to the award of the degree of BSc(Psyhol) with exemption from no more than five subjects or their unit equivalents that they have completed. No more than two Psychology subjects may be included in these exemptions.

2. Undergraduates of the University of New South Wales who transfer from another course to the Psychology Course may be admitted to the Psychology Course with exemption in no more than seven Psychology Course subjects or their unit equivalents.

3. Graduates or undergraduates of other universities may be admitted to the Psychology Course with advanced standing.

4. Students admitted under Rule 3 who have satisfied the examiners in subjects of the same title or subject matter as those permissible in the Psychology Course may, subject to the approval of the appropriate Heads of School, be granted exemption in no more than five subjects, of which no more than two may be Psychology subjects.
Board of Studies in Science and Mathematics

Course Outline 3971

3971
Business Information Technology

Bachelor of Science
BSc

This is an industry linked education course leading to the award of the qualification BSc. The course draws on three core disciplinary areas: Information Systems, Accounting, and Computer Science.

The course has been designed in conjunction with the Information Systems Industry to provide for the needs of Australian Business. The course combines the normal requirements for the award of the degree with co-ordinated industrial experience in the sponsoring organisations. A scholarship is payable from a fund donated by the sponsoring organisations. Entry to the course is limited to students awarded a scholarship through the BIT selection Procedure.

Consideration for entry to the course may proceed only on the basis of an application directly to the Office of Industry Linked Education at the University of New South Wales and application through UAC.

Students who are academically acceptable for the 3971 program but who are not offered a scholarship should consider registering for first year entry into the 1400 program. If scholarships become available at the end of year 1, students undertaking the 1400 program may be offered transfer to the 3971 program.

An Honours option is also available within the four year BIT program. This option is available to students who perform well in years 1 and 2 and require additional courses in years 3 and 4; although it may also be possible to finalise the Honours program within the first semester of a fifth year (possibly part-time).

Objectives of the Course

This four year program teaches Information Systems (see Program 1400 in Course 3970 for a description) and provides industrial training linked to that teaching. The three industrial training periods in the program are each of approximately six months duration, running from January of Years 2 and 4, and July of Year 3 of the program.

3971
Business Information Technology

Year 1

COMP1811, MATH1032 or MATH1042
ACCT1501 ACCT1511
INFS1602
ECON1101, ECON1102

Computer Science
Mathematics
Accounting
Information Systems
Economics

Year 2

INFS2603, INFS2609
INFS2691
COMP1621
Choose 2 units from:
1. Table 1 and/or
2. Table 2 for program 1400
1 General Education subject
Sciences

Year 3
MATH2841
ACCT2522, INFS3605, INFS3608, INFS3616
INFS3692
Choose 1 unit from:
1. Table 1
2. Table 2 for program 1400
Honours students additionally take INFS3607 and a second unit from Table 1 or Table 2

Year 4 (Pass Degree)
INFS3607, INFS3611
INFS4695
Choose 2 units including at least one at Level III from:
1. Table 1 and/or
2. Table 2 for program 1400
1 General Education subject

Year 4 (Honours Degree)
INFS3611
INFS4866, INFS4887
INFS4693, INFS4893
INFS4794, INFS4898
One option must be chosen from INFS4805, INFS4810, INFS4811, INFS4812, INFS4825, INFS4853, INFS4857, INFS4891
Choose 1 unit at Level 111 from Table 1 and/or Table 2 for Program 1400.
1 General Education subject (which alternatively could be taken in year 3).
3611
Combined Science/
Aeronautical Engineering Course

3661
Combined Science/
Industrial Engineering Course

3681
Combined Science/
Mechanical Engineering Course

3701
Combined Science/
Naval Architecture Course

3725
Combined Science/
Electrical Engineering Course

3730
Programs in the
Combined Science/
Civil Engineering Course

For details of the Combined Science/Aeronautical Engineering, Industrial Engineering, Mechanical Engineering, Electrical Engineering, Civil Engineering and Naval Architecture Courses refer to the Faculty of Engineering Handbook.
Undergraduate Study
Board of Studies in Science and Mathematics
and the Faculty of Medicine

3820
Combined Science and Medicine Course
(BSc MB BS)

For details of the Combined Science/Medicine Course refer to the Faculty of Medicine Handbook.
Board of Studies in Science and Mathematics

Course Outlines

Optometry

3950 Optometry Course

The School provides a four year full-time course in Optometry leading to the award of the degree of Bachelor of Optometry, at either the Pass or Honours level. A new course structure has been implemented from 1991. Professional training including clinical optometry will be interwoven with basic studies of visual and ocular science over the four years of the course. As distinct from past practice the only entry point into Optometry will be at the first year level.

3950 Optometry - Full-time Course

Bachelor of Optometry
BOptom
OLD COURSE

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1022 Introductory Physics 1 (For Health and Life Scientists)</td>
<td>6</td>
</tr>
<tr>
<td>CHEM1011 Chemistry 1A and 1B</td>
<td>6</td>
</tr>
<tr>
<td>CHEM1002 Chemistry 1M</td>
<td>6</td>
</tr>
<tr>
<td>MATH1032 Mathematics 1 or 2</td>
<td>6</td>
</tr>
<tr>
<td>MATH1042 Higher Mathematics 1 or 2</td>
<td>6</td>
</tr>
<tr>
<td>MATH1011 General Mathematics 1A and 1B</td>
<td>6</td>
</tr>
<tr>
<td>MATH1021 General Mathematics 1C</td>
<td>6</td>
</tr>
<tr>
<td>BIOS1011 Biology A and 1B</td>
<td>6</td>
</tr>
<tr>
<td>BIOS1021 Biology B</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTM9022 Optics</td>
<td>8</td>
</tr>
<tr>
<td>OPTM9023 Visual Optics</td>
<td>2</td>
</tr>
<tr>
<td>OPTM9024 Measurement of Light and Colour</td>
<td>2</td>
</tr>
<tr>
<td>OPTM9021 Anatomy and Physiology of the Eye and Visual System</td>
<td>6</td>
</tr>
<tr>
<td>PHPH2011 Principles of Physiology</td>
<td>6</td>
</tr>
<tr>
<td>General Education subject (A)</td>
<td>2</td>
</tr>
</tbody>
</table>

Undergraduate Study: Course Outline: 3950
3951

Combined Science/ Optometry Course –

Conditions for the combined course leading to the award of the degrees of BSc BOptom

1. Undergraduates* of The University of New South Wales who have satisfied the examiners in at least the first two years of the Optometry degree course may be admitted to the Science degree course with advanced standing for the purpose of qualifying for the award of the two degrees of BSc BOptom. Such undergraduates’ performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. In order to qualify for the award of the degree of BSc, students so admitted shall be required to complete the appropriate general studies subjects and no less than four units of either Level II or Level III and four other Level III units, in accordance with the Science and Mathematics Course regulations. The units submitted for the award of the Bachelor’s degree under these regulations must include at least four Level III units chosen from related disciplines in accordance with the Science Course regulations.

3. In order to qualify for the award of the degree of BOptom, students so admitted shall complete the requirements of the Optometry degree course.

*In Rule 1, the word ‘undergraduates’ includes graduands, i.e. a person may be admitted under these rules if he or she has met all requirements for a first degree which has not yet been conferred and admission under these rules shall be no bar to the subsequent award of the first degree.
Undergraduate Study
Board of Studies in Science and Mathematics and the Faculty of Commerce

3995
Combined Science/Commerce Course

Finance and Mathematics
For details of the Combined Science/Commerce Course refer to the Faculty of Commerce and Economics Handbook.

Undergraduate Study
Board of Studies in Science and Mathematics and the Faculty of Professional Studies

4075
Combined Science/Education Course

For details of the Combined Science/BEd Course refer to the Faculty of Professional Studies Handbook.

Undergraduate Study
Board of Studies in Science and Mathematics and the Faculty of Law

4770
Combined Science/Law Course

For details of the Combined Science/law course refer to the Faculty of Law Handbook.
Units offered by the Board of Studies in Science and Mathematics

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC3281</td>
<td>Recombinant DNA Techniques and Eukarytic Molecular Biology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOC3121</td>
<td></td>
<td>41.132, 41.102E</td>
</tr>
<tr>
<td>BIOC3261</td>
<td>Human Biochemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOC3212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC3271</td>
<td>Cellular Biochemistry and Control</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOC3212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC3111</td>
<td>Molecular Biology of Proteins</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOC3121, CHEM2021</td>
<td>CHEM1101, CHEM1201</td>
<td>41.102, 41.102A</td>
</tr>
<tr>
<td>BIOC3121</td>
<td>Molecular Biology of Nucleic Acids</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOC3121, CHEM2021</td>
<td>CHEM2041</td>
<td>41.102, 41.102A</td>
</tr>
<tr>
<td>BIOC3131</td>
<td>Biochemistry and Genetic Engineering of Plants</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOC3121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC2312</td>
<td>Principles of Biochemistry and Molecular Biology</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>BIOS1011, BIOS1021, CHEM1101, CHEM1201</td>
<td>CHEM1002</td>
<td></td>
</tr>
</tbody>
</table>

Information Key

The following is the key to the information supplied about each subject in the table below: F (Full year, i.e., both sessions); S1 (Session 1); S2 (Session 2); SS (single session, i.e., one only); I, II, III (Levels, I, II, III); Hpw (Hours per week); C (Credit).
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>How</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS1011</td>
<td>Biology A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS1021</td>
<td>Biology B*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS2011</td>
<td>Evolutionary and Physiological Ecology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS2021</td>
<td>Introductory Genetics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td>BIOS2132</td>
<td></td>
</tr>
<tr>
<td>BIOS2031</td>
<td>Biology of Invertebrates</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS2041</td>
<td>Biometry</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS2051</td>
<td>Flowering Plants</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS2061</td>
<td>Vertebrate Zoology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3011</td>
<td>Animal Behaviour</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS2041 (and (BIOS2031 or BIOS2061))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3021</td>
<td>Comparative Animal Physiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2031 or BIOS2061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3031</td>
<td>Ecological Physiology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS2031 or BIOS2061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3041</td>
<td>Plant Microbe Interactions</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS2011 and BIOS2051</td>
<td>or MICR2210</td>
<td></td>
</tr>
<tr>
<td>BIOS3051</td>
<td>Entomology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011, BIOS1021, BIOS2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3061</td>
<td>Environmental Botany</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3071</td>
<td>Evolution and Population Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3081</td>
<td>Marine Ecology**</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1011 and BIOS1021</td>
<td>BIOS2031 or GEOL6201 or CHEM2041</td>
<td></td>
</tr>
<tr>
<td>BIOS3091</td>
<td>Phycology and Marine Botany</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS2051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3101</td>
<td>Plant Community Ecology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS2051 or GEOG1012</td>
<td>and GEOG1031 or BIOS2011</td>
<td></td>
</tr>
<tr>
<td>BIOS3111</td>
<td>Population and Community Ecology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS1021 and MATH1032</td>
<td>or MATH1042 or MATH1021</td>
<td></td>
</tr>
<tr>
<td>BIOS3121</td>
<td>Taxonomy and Systematics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3131</td>
<td>Vertebrate Zoogeography and Evolution</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS2061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS3141</td>
<td>Ultrastructure and Function of Cells</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2051 or BIOS2031</td>
<td>or BIOS2061 or BIO2312</td>
<td>or MICR2201</td>
</tr>
</tbody>
</table>

Note: A student will not be admitted to Level III Biological Science subjects without special permission of Head of School, unless Chemistry CHEM1101 and CHEM1201, or CHEM1002, have been completed.

*Students with percentile range 65-100 in HSC Examination 4 unit Science with Biology, or 2 unit Biology may apply to enrol in level 2 Biological Science units in lieu of BIOS1021 after completion of BIOS1011. Students are selected by the Director of Biology for enrolment in these units. If successful, students will have met the prerequisite requirement of BIOS1021 Biology B for all units.

**Students intending to enrol in this unit should register with the School of Biological Science for the February field trip by 13 January.
Biotechnology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT3011</td>
<td>Biotechnology A</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>BIOC2132</td>
<td></td>
</tr>
<tr>
<td>BIOT3021</td>
<td>Biotechnology B</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>BIOC2132</td>
<td></td>
</tr>
<tr>
<td>BIOT3031</td>
<td>Microbial Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2011, BIOS2021</td>
<td>BIOC2312, MICR2011</td>
<td>MICR3021</td>
</tr>
<tr>
<td>BIOT3061</td>
<td>Modern Techniques in Biotechnology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>BIOC2312</td>
<td></td>
</tr>
</tbody>
</table>

Board of Studies in Science and Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSSM2101</td>
<td>Genetics of Behaviour 1</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td>BIOS1011</td>
<td></td>
</tr>
<tr>
<td>BSSM3101</td>
<td>Genetics of Behaviour 2</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td>BSSM2101</td>
<td></td>
</tr>
<tr>
<td>MSCI2001</td>
<td>Introductory Marine Science</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td></td>
</tr>
<tr>
<td>MSCI3001</td>
<td>Physical Oceanography</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td></td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1002</td>
<td>Chemistry 1</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
</tr>
<tr>
<td>CHEM1101</td>
<td>Chemistry 1A</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
</tr>
<tr>
<td>CHEM1201</td>
<td>Chemistry 1B</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
</tr>
<tr>
<td>CHEM1302</td>
<td>Introductory Chemistry</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
</tr>
<tr>
<td>CHEM1401</td>
<td>Introductory Chemistry A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
</tr>
<tr>
<td>CHEM1501</td>
<td>Introductory Chemistry B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td></td>
</tr>
<tr>
<td>CHEM2011</td>
<td>Physical Chemistry</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>CHEM1002, MATH1032 or MATH1042</td>
<td>MATH1011 and MATH1021</td>
<td>2.002A</td>
</tr>
<tr>
<td>CHEM2021</td>
<td>Organic Chemistry</td>
<td>II</td>
<td>1</td>
<td>F or S2</td>
<td>6</td>
<td>CHEM1002</td>
<td></td>
<td>2.002B</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>CHEM2031 Inorganic Chemistry and Structure</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>CHEM1002</td>
<td></td>
<td>2.042C</td>
</tr>
<tr>
<td></td>
<td>CHEM2041 Chemical and Spectroscopic Analysis</td>
<td>II</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>CHEM1002, MATH1032</td>
<td>or MATH1042</td>
<td>2.002D, 2.003H</td>
</tr>
<tr>
<td></td>
<td>CHEM3011 Physical Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>PHYS1002, CHEM2011, CHEM2031</td>
<td>CHEM2041</td>
<td>2.013A</td>
</tr>
<tr>
<td></td>
<td>CHEM3021 Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>CHEM2021</td>
<td></td>
<td>2.003B</td>
</tr>
<tr>
<td></td>
<td>CHEM3031 Inorganic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>CHEM2031</td>
<td></td>
<td>2.003C</td>
</tr>
<tr>
<td></td>
<td>CHEM3041 Analytical Chemistry</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>CHEM2041</td>
<td></td>
<td>2.003D</td>
</tr>
<tr>
<td></td>
<td>CHEM3111 Kinetics and Mechanism III of Chemical Change</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM3011</td>
<td></td>
<td>2.053A</td>
</tr>
<tr>
<td></td>
<td>CHEM3121 Synthetic Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM3021</td>
<td></td>
<td>2.013B</td>
</tr>
<tr>
<td></td>
<td>CHEM3131 Advanced Inorganic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM3031</td>
<td></td>
<td>2.013C</td>
</tr>
<tr>
<td></td>
<td>CHEM3141 Advanced Instrumental Analysis</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM3041</td>
<td></td>
<td>2.013D</td>
</tr>
<tr>
<td></td>
<td>CHEM3211 Biophysical and Interfacial Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM2011</td>
<td></td>
<td>2.033A</td>
</tr>
<tr>
<td></td>
<td>CHEM3221 Biological Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM3021</td>
<td></td>
<td>2.023B</td>
</tr>
<tr>
<td></td>
<td>CHEM3231 Nuclear and Radiation Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM2011 or CHEM2021 or CHEM2031 or CHEM2041</td>
<td></td>
<td>2.003E</td>
</tr>
<tr>
<td></td>
<td>CHEM3311 Environmental Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM2011, CHEM2041</td>
<td></td>
<td>2.043A</td>
</tr>
<tr>
<td></td>
<td>CHEM3321 Applied Organic Chemistry</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>CHEM3021</td>
<td></td>
<td>2.003L</td>
</tr>
<tr>
<td></td>
<td>CHEM3510 Quantum Chemistry and Symmetry</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td>CHEM2031</td>
<td></td>
<td>2.023A</td>
</tr>
<tr>
<td></td>
<td>CHEM3530 Molecular Structure Determination</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td>CHEM2031, CHEM2041</td>
<td></td>
<td>2.003M</td>
</tr>
<tr>
<td></td>
<td>CHEM3630 Organometallic Chemistry</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td>CHEM2021, CHEM2031</td>
<td></td>
<td>2.003M</td>
</tr>
<tr>
<td></td>
<td>CHEM3640 Computers in Chemistry</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td>CHEM2011, CHEM2041</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Community Medicine

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMED8201</td>
<td>Population Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMED8202</td>
<td>Human Genetics Analysis</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMED8302</td>
<td>Biochemical Genetics of Man</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOC2312 and BIOS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMED8303</td>
<td>Human Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*One unit of statistical methods, or theory, as approved by the Head of School.
*A unit of genetics and a unit of statistical methods, or theory, as approved by the Head of School.

Electrical Engineering and Computer Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1021*</td>
<td>Computing 1B</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>COMP1011</td>
<td>COMP1821, 6.620, 6.621, 6.021D</td>
<td></td>
</tr>
<tr>
<td>COMP1811</td>
<td>Computing 1 (Procedural)</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>As for MATH1032</td>
<td>MATH1032, COMP1011, 6.611, 6.600</td>
<td></td>
</tr>
<tr>
<td>COMP1821**</td>
<td>Computing 2</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>COMP1811</td>
<td>COMP1021, 6.621, 6.021D</td>
<td></td>
</tr>
<tr>
<td>COMP2011</td>
<td>Data Organisation</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP1021 or COMP1821</td>
<td>ELEC2012</td>
<td></td>
</tr>
<tr>
<td>COMP2021</td>
<td>Digital Systems Structures</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP1021 or COMP1821</td>
<td>ELEC2012</td>
<td></td>
</tr>
<tr>
<td>COMP2031</td>
<td>Concurrent Computing</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP1021 or COMP1821</td>
<td>ELEC2012</td>
<td></td>
</tr>
</tbody>
</table>

* COMP1021 Computing 1B will count as a Level 1 subject for students in Program 0600.
** Not available in Year 1 of any program except 1060 (Mathematics with Computing)

Geography

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG1012</td>
<td>Land Studies</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td></td>
<td></td>
<td>GEOG1051</td>
</tr>
<tr>
<td>GEOG1031</td>
<td>Environmental Processes</td>
<td>I</td>
<td>2</td>
<td>S2</td>
<td>4</td>
<td></td>
<td>GEOG1031, 26.424</td>
<td></td>
</tr>
<tr>
<td>GEOG1051</td>
<td>Global Environmental Problems and Processes*</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG1051, 26.424</td>
<td>GEOG1051, 26.424</td>
<td></td>
</tr>
<tr>
<td>GEOG1062</td>
<td>Australia and Global Development*</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>GEOG1051, 26.424</td>
<td>GEOG3232</td>
<td></td>
</tr>
<tr>
<td>GEOG2013</td>
<td>Geographical Data Analysis</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>4</td>
<td>Both GEOG1012 and GEOG2031 or both GEOG1051 and GEOG1062</td>
<td>GEOG3221</td>
<td></td>
</tr>
<tr>
<td>GEOG2021</td>
<td>Introduction to Remote Sensing</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>GEOG1031 or GEOG1051</td>
<td></td>
</tr>
<tr>
<td>GEOG2032</td>
<td>Geomorphology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>GEOL1201</td>
<td></td>
<td>GEOG3221</td>
</tr>
</tbody>
</table>

59
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG2081</td>
<td>Australian Environmental Problems**</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>GEOG1031 or GEOG1051</td>
<td></td>
<td>26.425</td>
</tr>
<tr>
<td>GEOG2092</td>
<td>Australian Social and Economic Landscapes**</td>
<td>II</td>
<td>1</td>
<td>Not offered</td>
<td>4</td>
<td>GEOG1021 or GEOG1062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG2102</td>
<td>Environmental Issues in Australia</td>
<td>II</td>
<td>1</td>
<td>Not offered</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG3000</td>
<td>Field Project 3</td>
<td>III</td>
<td>0</td>
<td>S2</td>
<td>3</td>
<td>GEOG3011 or GEOG2032 or GEOG3021 or GEOG2081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG3011</td>
<td>Pedology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>GEOG1031 or GEOG1051 and any one of CHEM1101 or CHEM1002, or both GEOL1101 and GEOL1201, or both BIOS1011 and BIOS1021</td>
<td>GEOG2021</td>
<td></td>
</tr>
<tr>
<td>GEOG3021</td>
<td>Biogeography</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>GEOG1031 or GEOG1051, or both BIOS1011 and BIOS1021</td>
<td>GEOG2021</td>
<td></td>
</tr>
<tr>
<td>GEOG3032</td>
<td>Remote Sensing Applications</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>GEOG2021</td>
<td>GEOG1031 or GEOG1051</td>
<td></td>
</tr>
<tr>
<td>GEOG3042</td>
<td>Environmental Impact Assessment</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG1031 or GEOG1051</td>
<td>GEOG2021</td>
<td></td>
</tr>
<tr>
<td>GEOG3051</td>
<td>Soils and Landforms</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG3011 or GEOG2032 or GEOG2081; or by permission of Head of School</td>
<td>GEOG2021</td>
<td></td>
</tr>
<tr>
<td>GEOG3062</td>
<td>Environmental Change</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>GEOG2092 or GEOG1012</td>
<td></td>
</tr>
<tr>
<td>GEOG3122</td>
<td>Geographic Information Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>GEOG2092 or GEOG1012</td>
<td></td>
</tr>
<tr>
<td>GEOG3152</td>
<td>Social Welfare and Urban Development</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG2092 or GEOG1012</td>
<td>GEOG2092 or GEOG1012</td>
<td></td>
</tr>
<tr>
<td>GEOG3161</td>
<td>Computer Mapping and Display</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>GEOG2092 or GEOG1012</td>
<td></td>
</tr>
<tr>
<td>GEOG3172</td>
<td>Spatial Population Analysis</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>GEOG2092 or GEOG1012</td>
<td>GEOG2092 or GEOG1012</td>
<td></td>
</tr>
<tr>
<td>GEOG3181</td>
<td>Urban Activity Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG2092 or GEOG1012</td>
<td>GEOG2092 or GEOG1012</td>
<td></td>
</tr>
<tr>
<td>GEOG3192</td>
<td>Urban and Regional Development</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>GEOG2092 or GEOG1012</td>
<td>GEOG2092 or GEOG1012</td>
<td></td>
</tr>
<tr>
<td>GEOG3202</td>
<td>Australian Social Environments</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG1012 or GEOG1051</td>
<td>GEOG2081 or GEOG2032</td>
<td></td>
</tr>
<tr>
<td>GEOG3211</td>
<td>Australian Environment and Natural Resources</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG2081 or GEOG2032</td>
<td>GEOG2081 or GEOG2032</td>
<td></td>
</tr>
<tr>
<td>GEOG3221</td>
<td>Advanced Geographic Methods</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>GEOG3232</td>
<td>GEOG2013</td>
<td></td>
</tr>
<tr>
<td>GEOG3232</td>
<td>Geographic Methods**</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>Both GEOG1012 and GEOG1031 or both GEOG1051 and GEOG1062</td>
<td>GEOG2013</td>
<td></td>
</tr>
<tr>
<td>GEOG3333</td>
<td>Special Topic</td>
<td>III</td>
<td>1</td>
<td>S1 or S2</td>
<td>4</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>GEOG2013</td>
<td></td>
</tr>
</tbody>
</table>

*A field excursion, equivalent to 8 tutorial hours, is a compulsory part of the subject.

**Three days fieldwork, equivalent to 24 tutorial hours, is compulsory.
Applied Geology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL1101</td>
<td>Geological Processes**</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL1201</td>
<td>Geological Environments ****</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>GEOL1101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL2111</td>
<td>Earth Materials 1**</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>GEOL1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL2121</td>
<td>Earth Environments 1</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>GEOL1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL2211</td>
<td>Earth Materials 2****</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>GEOL2111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL2230</td>
<td>Mathematical Geology 1</td>
<td>II</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td>GEOL1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL2231</td>
<td>Earth Physics**</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>GEOL1101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3111</td>
<td>Earth Materials 3</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>GEOL2211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3121</td>
<td>Earth Environments 2</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>GEOL2211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3130</td>
<td>Mathematical Geology 2</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>3</td>
<td>GEOL2230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3141</td>
<td>Mineral and Energy Resources 1***</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>GEOL2211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3211</td>
<td>Earth Materials 4****</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>GEOL2211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3241</td>
<td>Mineral and Energy Resources 2****</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>GEOL2121 or GEOL8220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3251</td>
<td>Engineering and Environmental Geology***</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3271</td>
<td>Advanced Structural Geology****</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>GEOL2211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL3281</td>
<td>Exploration Geochemistry</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>GEOL3111</td>
<td>GEOL3141</td>
<td></td>
</tr>
<tr>
<td>GEOL3331</td>
<td>Exploration Geophysics***</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>GEOL1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL6201</td>
<td>Marine Geology 1**</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>GEOL1101 and GEOL1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL6231</td>
<td>Coastal Monitoring Techniques</td>
<td>II/III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL6330</td>
<td>Exploration and Seismic Methods*</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL8320</td>
<td>Gravity and Magnetic Methods*</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>3</td>
<td>PHYS1002</td>
<td>MATH1032</td>
<td></td>
</tr>
<tr>
<td>GEOL8330</td>
<td>Seismic Methods*</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>3</td>
<td>PHYS1002</td>
<td>MATH1032</td>
<td></td>
</tr>
<tr>
<td>GEOL8340</td>
<td>Electrical Methods*</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>3</td>
<td>PHYS1002</td>
<td>MATH1032</td>
<td></td>
</tr>
</tbody>
</table>

Field tutorials are an essential part of the subject, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

*Field work of up to 1 day.
**Field work of up to 2 days.
***Field work of up to 3 days.
****Field work of up to 4 days.
Field work of up to 5 days.
††Field work of up to 8 days.

††Not available for programs 2500, 2503 nor in Geology program of Course 4770, nor in Geology with some Mathematics program of Course 3730.
†††It is desirable that students taking GEOL 3121 should also have taken GEOL 2231.
Mathematics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1011</td>
<td>General Mathematics I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions</td>
<td></td>
<td>MATH1032</td>
</tr>
<tr>
<td>MATH1021</td>
<td>General Mathematics I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>MATH1011</td>
<td>MATH1042</td>
<td></td>
</tr>
<tr>
<td>MATH1032</td>
<td>Mathematics I</td>
<td>I</td>
<td>F</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions</td>
<td>MATH1042</td>
<td></td>
</tr>
<tr>
<td>MATH1011</td>
<td>Higher Mathematics II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td></td>
<td>See Subject Descriptions</td>
<td>MATH1042</td>
<td></td>
</tr>
<tr>
<td>MATH1021</td>
<td>Introductory Applied Computing</td>
<td>I</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>As for MATH1011</td>
<td>MATH1021</td>
<td>Any subject offered by</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Computer Science</td>
</tr>
<tr>
<td>MATH1032</td>
<td>Discrete Mathematics I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td></td>
<td>As for MATH1032</td>
<td>MATH1032</td>
<td></td>
</tr>
<tr>
<td>MATH2021</td>
<td>Mathematics</td>
<td>II</td>
<td>F</td>
<td>2</td>
<td></td>
<td>MATH1032 or MATH1021CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3021</td>
<td>Mathematics</td>
<td>III</td>
<td>F</td>
<td>2</td>
<td></td>
<td>MATH2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mathematics MATH2021 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics, Applied Mathematics are taken, MATH2021 Mathematics will not be counted. Mathematics MATH3021 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics or Applied Mathematics are taken, MATH3021 Mathematics will not be counted except that MATH3281 may be taken with MATH3021.

Pure Mathematics

Pure Mathematics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2400</td>
<td>Finite Mathematics</td>
<td>II</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH1032 or MATH1042**</td>
<td></td>
<td>MATH2601</td>
</tr>
<tr>
<td>MATH2410</td>
<td>Automata and Algorithms</td>
<td>II</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH1032 or MATH1042**</td>
<td></td>
<td>MATH2610</td>
</tr>
<tr>
<td>MATH2501</td>
<td>Linear Algebra</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2.5</td>
<td>MATH1032 or MATH1042</td>
<td></td>
<td>MATH2620</td>
</tr>
<tr>
<td>MATH2510</td>
<td>Real Analysis</td>
<td>II</td>
<td>.5</td>
<td>S1 or S2</td>
<td>2.5</td>
<td>MATH1032 or MATH1042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2520</td>
<td>Complex Analysis</td>
<td>II</td>
<td>.5</td>
<td>S1 or S2</td>
<td>2.5</td>
<td>MATH1032 or MATH1042</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** MATH1081 Discrete Mathematics is advised.

Higher Pure Mathematics Level II’’

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2601</td>
<td>Algebra</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4.5</td>
<td>MATH1042 or MATH1032CR</td>
<td></td>
<td>MATH2501</td>
</tr>
<tr>
<td>MATH2610</td>
<td>Real Analysis</td>
<td>II</td>
<td>.5</td>
<td>S1</td>
<td>2.5</td>
<td>MATH1042 or MATH1032CR</td>
<td></td>
<td>MATH2510</td>
</tr>
</tbody>
</table>

62
Pure Mathematics Level III***

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3400</td>
<td>Logic and Computability</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3410</td>
<td>Combinatorial Structures and Applications</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3420</td>
<td>Communication, Codes and Ciphers</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3500</td>
<td>Group Theory</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3510</td>
<td>Geometry</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3520</td>
<td>Number Theory</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3530</td>
<td>Combinatorial Topology</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3540</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH2501, MATH2510, MATH2520, MATH2601, MATH2610</td>
<td>MATH3650</td>
<td></td>
</tr>
<tr>
<td>MATH3550</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2510, MATH2520, MATH2601, MATH2610</td>
<td>MATH3660</td>
<td></td>
</tr>
<tr>
<td>MATH3560</td>
<td>History of Mathematics</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3570</td>
<td>Foundations of Calculus</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3580</td>
<td>Differential Geometry</td>
<td>III</td>
<td>.5</td>
<td>SS</td>
<td>2</td>
<td>MATH2510</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Pure Mathematics Level III **

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3601</td>
<td>Real Analysis and Functional Analysis</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>MATH2601 or MATH2501 CR</td>
<td>MATH3570 or MATH2501 CR</td>
<td>10.1523</td>
</tr>
<tr>
<td>MATH3610</td>
<td>Number Theory</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH2601 or both MATH2501 CR and MATH3500 CR</td>
<td>MATH3520</td>
<td></td>
</tr>
<tr>
<td>MATH3620</td>
<td>Groups and Representations</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2601 or both MATH2501 CR and MATH3500 CR</td>
<td>MATH3510</td>
<td></td>
</tr>
<tr>
<td>MATH3630</td>
<td>Complex Analysis</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH2620 or MATH2520 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3640</td>
<td>Geometry</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2601 or both MATH2501 CR and MATH3500 CR</td>
<td>MATH3510</td>
<td></td>
</tr>
<tr>
<td>MATH3650</td>
<td>Ordinary Differential Equations</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH2601 or MATH2501 CR</td>
<td>MATH3540</td>
<td></td>
</tr>
<tr>
<td>MATH3660</td>
<td>Partial Differential Equations</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2601 or MATH2501 CR</td>
<td>MATH3550</td>
<td></td>
</tr>
</tbody>
</table>
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3710</td>
<td>Rings and Fields</td>
<td>.5</td>
<td>III</td>
<td></td>
<td>S1‡</td>
<td>2</td>
<td></td>
<td>MATH2610 or MATH2510 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3720</td>
<td>Galois Theory</td>
<td>.5</td>
<td>III</td>
<td></td>
<td>S2‡</td>
<td>2</td>
<td></td>
<td>MATH2610 or MATH2510 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3730</td>
<td>Topology</td>
<td>.5</td>
<td>III</td>
<td></td>
<td>S1‡</td>
<td>2</td>
<td></td>
<td>MATH2610 or MATH2510 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3740</td>
<td>Integration and Fourier Analysis</td>
<td>.5</td>
<td>III</td>
<td></td>
<td>S2‡‡</td>
<td>2</td>
<td></td>
<td>MATH2601 or MATH2501 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3750</td>
<td>Differential Geometry</td>
<td>.5</td>
<td>III</td>
<td></td>
<td>S1‡</td>
<td>2</td>
<td></td>
<td>MATH2601 or MATH2501 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3760</td>
<td>Calculus on Manifolds</td>
<td>.5</td>
<td>III</td>
<td></td>
<td>S2‡</td>
<td>2</td>
<td></td>
<td>MATH2601 or MATH2501 CR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applied Mathematics Level II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2100</td>
<td>Vector Calculus</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S1 or S2</td>
<td>2.5</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td>MATH2110</td>
<td></td>
</tr>
<tr>
<td>MATH2120</td>
<td>Mathematical Methods II for Differential Equations</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S1 or S2</td>
<td>2.5</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td>MATH2130</td>
<td></td>
</tr>
<tr>
<td>MATH2160</td>
<td>Linear Programming</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S1</td>
<td>2</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td>MATH2501 or MATH2601</td>
<td>10.2213</td>
</tr>
<tr>
<td>MATH2180</td>
<td>Operations Research</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S2</td>
<td>2</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td>MATH2160</td>
<td></td>
</tr>
<tr>
<td>MATH2200</td>
<td>Discrete-Time Systems I</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S2</td>
<td>2</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td>MATH2501 or MATH2601</td>
<td>10.2215</td>
</tr>
<tr>
<td>MATH2220</td>
<td>Continuous-Time Systems I</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S2</td>
<td>2</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td>MATH1032 or MATH1042</td>
<td>10.2216</td>
</tr>
<tr>
<td>MATH2301</td>
<td>Mathematical Computing A</td>
<td>1</td>
<td>II</td>
<td></td>
<td>S1</td>
<td>4</td>
<td></td>
<td>MATH1032 or MATH1042</td>
<td>MATH1042</td>
<td></td>
</tr>
</tbody>
</table>

Higher Applied Mathematics Level II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2110</td>
<td>Vector Calculus</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S1</td>
<td>2.5</td>
<td></td>
<td>MATH1042 or MATH1032 CR</td>
<td>MATH2100</td>
<td></td>
</tr>
<tr>
<td>MATH2130</td>
<td>Mathematical Methods II for Differential Equations</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>S2</td>
<td>2.5</td>
<td></td>
<td>MATH1042 or MATH1032 CR</td>
<td>MATH2120</td>
<td></td>
</tr>
</tbody>
</table>

† MATH2601 is highly recommended.

‡‡‡ Students wishing to enrol in Level III Higher Pure Mathematics subjects should consult with the Department before enrolling. Normal prerequisites for attempting Level III Higher Pure Mathematics subjects are at least two Level II Mathematics units, including any course prerequisites. For any listed prerequisite or co-requisite subject, an appropriate higher degree subject may be substituted.

† Students who gain good grades in Year 1 may be allowed to take Higher Pure Mathematics 2 units subject to the approval of the Head of Department. MATH1081 Discrete Mathematics is highly recommended.

1. Students majoring in Physics who wish to take Higher Pure Mathematics 2 should attempt MATH2601, MATH2610, MATH2620, either MATH2110 or MATH2120, and either MATH2130 or MATH2140.

2. Students considering doing Higher Pure Mathematics in years III or IV should take MATH2601, MATH2610, MATH2620 and MATH2110 or MATH2120, and MATH2130 or MATH2140; MATH2400 and MATH2410 are also advised.

*** Subject to the approval of the Head of Department, these may be relaxed.

‡‡‡ Students wishing to enrol in Level III Higher Pure Mathematics subjects should consult with the Department before enrolling. Normal prerequisites for attempting Level III Higher Pure Mathematics subjects are at least two Level II Mathematics units, including any course prerequisites, at an average of distinction level, or their higher equivalents. Subject to the approval of the Head of Department, these may be relaxed.

‡ These subjects are offered in odd numbered years.

‡‡ These subjects are offered in even numbered years.
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit Level</th>
<th>Value</th>
<th>When</th>
<th>Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applied Mathematics Level III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH3150 Transform Methods</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td></td>
<td></td>
<td>MATH2520, MATH2100</td>
<td>10.033, 10.2921</td>
</tr>
<tr>
<td></td>
<td>MATH3101 Numerical Analysis</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
<td>MATH2100, MATH2501, MATH2510,</td>
<td>10.033, 10.222D</td>
</tr>
<tr>
<td></td>
<td>MATH3121 Mathematical Methods</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
<td>MATH2501, MATH2510, MATH2520</td>
<td>10.412D, 10.422D</td>
</tr>
<tr>
<td></td>
<td>MATH3161 Optimization Methods</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
<td>MATH2501, and MATH2100 or MATH2510</td>
<td>10.222L</td>
</tr>
<tr>
<td></td>
<td>MATH3181 Optimal Control</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td></td>
<td></td>
<td>MATH2100, MATH2120</td>
<td>10.222M</td>
</tr>
<tr>
<td></td>
<td>MATH3201 Dynamical Systems and</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td></td>
<td></td>
<td>MATH2501 and either MATH2100 or MATH2510</td>
<td>10.222N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH2100 or MATH2540</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH3241 Fluid Dynamics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
<td>MATH2100, MATH2120</td>
<td>10.412A</td>
</tr>
<tr>
<td></td>
<td>MATH3261 Oceanography</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td></td>
<td></td>
<td>MATH2100, and MATH2120 or MATH2021, PHYS1002</td>
<td>10.612</td>
</tr>
<tr>
<td></td>
<td>MATH3301 Mathematical Computing</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td></td>
<td></td>
<td>MATH2120, MATH2501, and MATH2301</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory of Statistics Level II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH2801 Probability and Random Variables</td>
<td>II</td>
<td>1</td>
<td>S1‡</td>
<td></td>
<td></td>
<td>MATH1032 or MATH1042 or MATH1021 CR</td>
<td>MATH2901, MATH2841, MATH2819, BIOS2041</td>
</tr>
<tr>
<td></td>
<td>MATH2810 Statistical Computing and Simulation</td>
<td>II</td>
<td>.5</td>
<td>S1</td>
<td></td>
<td></td>
<td>MATH1032 or MATH1042 or MATH1021 CR</td>
<td>MATH2910</td>
</tr>
<tr>
<td></td>
<td>MATH2821 Basic Inference</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td></td>
<td></td>
<td>MATH2801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH2830 Nonparametric Statistical Inference</td>
<td>II</td>
<td>.5</td>
<td>S2</td>
<td></td>
<td></td>
<td>MATH2801</td>
<td>MATH2930</td>
</tr>
<tr>
<td></td>
<td>MATH2841 Statistics SS</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
<td>MATH1032 or MATH1021 CR</td>
<td></td>
</tr>
</tbody>
</table>

‡ S1 indicates courses typically offered in the first semester.
Higher Theory of Statistics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>When</th>
<th>Value</th>
<th>Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2901</td>
<td>Probability and Random Variables</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>MATH1032 or MATH1042</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH2910</td>
<td>Statistical Computing and Simulation</td>
<td>II</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH1032 or MATH1042</td>
<td>MATH2901</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH2921</td>
<td>Basic Inference</td>
<td>I/II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>MATH2901</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH2930</td>
<td>Nonparametric Statistical Inference</td>
<td>II</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2901</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
</tbody>
</table>

Theory of Statistics Level III**

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>When</th>
<th>Value</th>
<th>Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3801</td>
<td>Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3811</td>
<td>Linear Models</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3820</td>
<td>Sample Survey Theory</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3830</td>
<td>Design and Analysis of Experiments</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3840</td>
<td>Statistical Inference</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3850</td>
<td>Nonparametric Methods</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3861</td>
<td>Statistical Computation</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3870</td>
<td>Regression Analysis and Experimental Design</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3880</td>
<td>Applied Stochastic Processes</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
</tbody>
</table>

Higher Theory of Statistics Level III

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>When</th>
<th>Value</th>
<th>Offered</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3901</td>
<td>Stochastic Processes</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3911</td>
<td>Linear Models</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3920</td>
<td>Sample Survey Theory</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
<tr>
<td>MATH3930</td>
<td>Design and Analysis of Experiments</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2801, MATH2501, MATH2510</td>
<td>MATH2801, MATH2819</td>
<td>MATH2810</td>
<td></td>
</tr>
</tbody>
</table>
Mathematics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2921</td>
<td></td>
<td>MATH3840</td>
</tr>
<tr>
<td></td>
<td>Statistical Inference</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td>MATH2921</td>
<td></td>
<td>MATH3850</td>
</tr>
<tr>
<td></td>
<td>Nonparametric Methods</td>
<td>III</td>
<td>1</td>
<td>Not offered</td>
<td>4</td>
<td>MATH2901, MATH2501, MATH2510</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probability Theory</td>
<td>III</td>
<td>.5</td>
<td>F</td>
<td></td>
<td>MATH2901</td>
<td></td>
<td>MATH2921</td>
</tr>
<tr>
<td></td>
<td>Statistics Project</td>
<td>III</td>
<td>.5</td>
<td>F</td>
<td></td>
<td>MATH2901</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical and Manufacturing Engineering

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introductory Engineering Design & Drawing Practice</td>
<td>I</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>See Subject Descriptions later in this Handbook</td>
<td>MECH0360</td>
<td>50012</td>
</tr>
<tr>
<td></td>
<td>Engineering Mechanics</td>
<td>I</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>MAEH0160</td>
<td>5.030</td>
<td>MECH0130</td>
</tr>
<tr>
<td></td>
<td>Graphical Analysis and Communications</td>
<td>I</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>5.0016</td>
<td>5.010</td>
<td>MECH1300</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Technology</td>
<td>I</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>5.030</td>
<td></td>
<td>MECH0130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(These subjects must be studied in pairs as indicated by the parenthesis)

Microbiology and Immunology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microbiology 1</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>BIOS2011</td>
<td>BIODC2312 and BIOS2021</td>
<td>MICR2201</td>
</tr>
<tr>
<td></td>
<td>Introductory Microbiology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2011, BIOS2021</td>
<td>BIODC2312 and MICR2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microbiology 2</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2011, BIOS2021</td>
<td>BIODC2312 and MICR2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microbial Genetics</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2011, BIOS2021</td>
<td>BIODC2312 and MICR2011</td>
<td>BIOT3031</td>
</tr>
<tr>
<td></td>
<td>Immunology 1</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>BIOS2011</td>
<td>BIODC2312</td>
<td></td>
</tr>
</tbody>
</table>
Microbiology (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICR3031</td>
<td>Applied Mycology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>MICR2201 or MICR2011</td>
<td>or MICR2218</td>
<td></td>
</tr>
<tr>
<td>MICR3051</td>
<td>Immunology 2</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>MICR3041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3061</td>
<td>Animal Virology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>MICR2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3071</td>
<td>Environmental Microbiology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>MICR2201 or MICR2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3081</td>
<td>Medical Bacteriology</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>MICR2011 and MICR3011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pathology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH3201</td>
<td>Basic and Applied Pathology</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>ANAT2211, ANAT2111</td>
<td>PHIPH2112 or equivalent</td>
<td></td>
</tr>
</tbody>
</table>

Philosophy

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL1006</td>
<td>Introductory Philosophy A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL1007</td>
<td>Introductory Philosophy B</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2106</td>
<td>Logic</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>Any Level I Subject</td>
<td></td>
<td>52.2030, 52.2031</td>
</tr>
<tr>
<td>PHIL2107</td>
<td>Advanced Philosophy of Science</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>PHIL2106 and PHIL2116</td>
<td>or HPST2106</td>
<td></td>
</tr>
<tr>
<td>PHIL2108</td>
<td>Ways of Reasoning</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>Any Level I Subject</td>
<td></td>
<td>52.233</td>
</tr>
<tr>
<td>PHIL2109</td>
<td>Metaphysics</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2206</td>
<td>Contemporary Philosophy of Mind</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>Level II status in Philosophy**</td>
<td></td>
<td>52.2002</td>
</tr>
<tr>
<td>PHIL2207</td>
<td>Issues in the Philosophy of Psychology</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>Either PHIL2206 or 52.2001 or 52.250 or PSYC1002</td>
<td></td>
<td>52.2003</td>
</tr>
<tr>
<td>PHIL2208</td>
<td>Epistemology (Skepticisms)</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2209</td>
<td>Epistemology (Belief and Knowledge)</td>
<td>II/III</td>
<td>1</td>
<td>Not offered in 1991</td>
<td></td>
<td>Level II Status in Philosophy**</td>
<td></td>
<td>52.2130, 52.2170</td>
</tr>
<tr>
<td>PHIL2216</td>
<td>Human Nature and Human Understanding</td>
<td>II/III</td>
<td>1</td>
<td>Not offered in 1991</td>
<td></td>
<td></td>
<td>Level II Status in Philosophy</td>
<td>52.2180, 52.232</td>
</tr>
<tr>
<td>PHIL2217</td>
<td>Personal Identity</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>PHIL2208</td>
<td>Philosophical Foundations of Artificial Intelligence</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>52.2026</td>
<td></td>
</tr>
<tr>
<td>PHIL2308</td>
<td>Reason and the Passions: Descartes, Spinoza and Hume</td>
<td>II/III</td>
<td>1</td>
<td>Not offered</td>
<td>3</td>
<td></td>
<td>52.2021</td>
<td></td>
</tr>
<tr>
<td>PHIL2309</td>
<td>The Heritage of Hegel</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>52.2024</td>
<td></td>
</tr>
<tr>
<td>PHIL2407</td>
<td>Culture and Critique</td>
<td>II/III</td>
<td>1</td>
<td>Not offered</td>
<td>3</td>
<td></td>
<td>52.2121</td>
<td></td>
</tr>
<tr>
<td>PHIL2409</td>
<td>Speaking through the Body: Feminism Psychoanalysis and Literature</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>52.2023</td>
<td></td>
</tr>
<tr>
<td>PHIL2506</td>
<td>Classical Political Philosophy</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>52.203, 52.213, 52.2050</td>
<td></td>
</tr>
<tr>
<td>PHIL2507</td>
<td>The Ethics of Plato and Aristotle</td>
<td>II/III</td>
<td>1</td>
<td>Not offered</td>
<td>3</td>
<td>Level II Status in Philosophy**</td>
<td>52.523, 52.2221, 52.5231</td>
<td></td>
</tr>
<tr>
<td>PHIL2508</td>
<td>Theories in Moral Philosophy</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>52.523, 52.5232, 52.2230</td>
<td></td>
</tr>
<tr>
<td>PHIL2509</td>
<td>Philosophy of Law</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>52.105, 52.2150</td>
<td></td>
</tr>
<tr>
<td>PHIL2516</td>
<td>Philosophical Foundations of Marx's Thought</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>52.373</td>
<td></td>
</tr>
<tr>
<td>PHIL2517</td>
<td>Philosophy and Gender</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>52.216</td>
<td></td>
</tr>
<tr>
<td>PHIL2606</td>
<td>Aesthetics</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>52.237</td>
<td></td>
</tr>
<tr>
<td>PHIL2607</td>
<td>Philosophy and Literature</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>52.237</td>
<td></td>
</tr>
<tr>
<td>PHIL2706</td>
<td>Seminar A</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td>52.237</td>
<td></td>
</tr>
<tr>
<td>PHIL2707</td>
<td>Seminar B</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>52.237</td>
<td></td>
</tr>
<tr>
<td>PHIL2708</td>
<td>Reading Option</td>
<td>II/III</td>
<td>1</td>
<td>S1 or S2</td>
<td>3</td>
<td></td>
<td>52.237</td>
<td></td>
</tr>
<tr>
<td>PHIL3106</td>
<td>Pre-Honours Seminar</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>5 units in Philosophy</td>
<td>52.237</td>
<td></td>
</tr>
</tbody>
</table>

*Level II status in Philosophy consists of having an overall standard of credit or higher in 8 Philosophy units.

**Due to the extra library work required in the preparation of essays a combination of three half-unit Philosophy subjects count as the equivalent of two Science units.
Physiology and Pharmacology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPH2112</td>
<td>Physiology 1*</td>
<td>II</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>CHEM1002 or CHEM1101 and CHEM1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH1032 or MATH1042 or MATH1011 and MATH1021, BIOS1021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPH3114</td>
<td>Physiology 2</td>
<td>III</td>
<td>4</td>
<td>F</td>
<td>12</td>
<td>PHPH2112, BIOC2312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPH3121</td>
<td>Membrane Biology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>Normally as for PHPH3114,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPH3131</td>
<td>Neurophysiology</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>but may be studied only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPH3142</td>
<td>Organ Physiology</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>12</td>
<td>with permission of the Head of School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPH3152</td>
<td>Pharmacology</td>
<td>III</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>PHPH2112</td>
<td>PHPH3114 or BIOC3111, BIOC3121 and BIOC3261 or 2 Level III Chemistry units</td>
<td></td>
</tr>
</tbody>
</table>

Note: The above represent the normal prerequisites for the courses in Physiology, but the Head of School may recommend that students with a good academic record be granted exemption from them.

*Students intending to major in Physiology and/or Pharmacology should note Physiology 2 prerequisites.

Physics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1002</td>
<td>Physics 1</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>MATH1021 or MATH1032*</td>
<td></td>
</tr>
<tr>
<td>PHYS1022</td>
<td>Introductory Physics 1 (For Health and Life Scientists)</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>MATH1011 and MATH1021 or MATH1032*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS1601</td>
<td>Computer Applications in Experimental Science 1</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>6</td>
<td>PHYS1002 or PHYS1022</td>
<td>PHYS1611</td>
<td></td>
</tr>
<tr>
<td>PHYS1611</td>
<td>Laboratory Computers in Physical Science</td>
<td>I</td>
<td>1</td>
<td>Not offered in 1991</td>
<td>6</td>
<td>MATH1011 and MATH1021 or MATH1032* and PHYS1002 or PHYS1022</td>
<td>Programs 0600</td>
<td></td>
</tr>
</tbody>
</table>

Physics Level II

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS2001</td>
<td>Mechanics and Computational Physics</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4</td>
<td>PHYS1002, MATH1032</td>
<td>MATH2100</td>
<td>PHYS2999</td>
</tr>
<tr>
<td>PHYS2011</td>
<td>Electromagnetism and Thermal Physics</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>4</td>
<td>PHYS1002, MATH1032</td>
<td>MATH2100</td>
<td>ELEC2013, PHYS2999</td>
</tr>
<tr>
<td>PHYS2021</td>
<td>Quantum Physics and Relativity</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>2</td>
<td>PHYS1002, MATH1032</td>
<td>PHYS2989</td>
<td></td>
</tr>
<tr>
<td>PHYS2031</td>
<td>Laboratory</td>
<td>II</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>PHYS1002, MATH1032</td>
<td>PHYS2920</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Unit</td>
<td>Level</td>
<td>Value</td>
<td>When Offered</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>PHYS2500</td>
<td>Methods in Mathematical Physics</td>
<td>.5</td>
<td>II</td>
<td></td>
<td>Not offered in 1991</td>
<td>PHYS1002, MATH1032</td>
<td>MATH2100, MATH2120, MATH2510</td>
<td></td>
</tr>
<tr>
<td>PHYS2601</td>
<td>Computer Applications in Experimental Science 2</td>
<td>1</td>
<td>II</td>
<td>5</td>
<td>S1</td>
<td>PHYS1601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS2630</td>
<td>Electronics</td>
<td>.5</td>
<td>II</td>
<td>3</td>
<td>S2</td>
<td>PHYS1002 or PHYS1022</td>
<td></td>
<td>PHYS2920</td>
</tr>
<tr>
<td>PHYS2920</td>
<td>Electronics</td>
<td>.5</td>
<td>II</td>
<td>3</td>
<td>S1</td>
<td>PHYS1022 or PHYS1002</td>
<td></td>
<td>PHYS2031, PHYS2603</td>
</tr>
<tr>
<td>PHYS2940</td>
<td>Introduction to Physics of Measurement</td>
<td>.5</td>
<td>II</td>
<td>3</td>
<td>S1</td>
<td>PHYS1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3021</td>
<td>Statistical Mechanics and Solid State Physics</td>
<td>1</td>
<td>III</td>
<td>4</td>
<td>S1</td>
<td>MATH210, PHYS2011, PHYS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3010</td>
<td>Quantum Mechanics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>PHYS2021, MATH2120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3030</td>
<td>Electromagnetism</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>PHYS2011, MATH2100, MATH2120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3060</td>
<td>Advanced Optics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3041</td>
<td>Experimental Physics A</td>
<td>1</td>
<td>III</td>
<td>4</td>
<td>F</td>
<td>PHYS2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3050</td>
<td>Nuclear Physics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3110</td>
<td>Experimental Physics B1</td>
<td>.5</td>
<td>III</td>
<td>4</td>
<td>S1</td>
<td>PHYS2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3120</td>
<td>Experimental Physics B2</td>
<td>.5</td>
<td>III</td>
<td>4</td>
<td>S2</td>
<td>PHYS2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3150</td>
<td>Marine Acoustics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3160</td>
<td>Astrophysics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3631</td>
<td>Electronics</td>
<td>1</td>
<td>III</td>
<td>6</td>
<td>S1</td>
<td>PHYS2031 or PHYS2920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3180</td>
<td>Atmospheric Physics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS1002, PHYS2011 or CHEM2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3310</td>
<td>Physics of Solid State Devices</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3320</td>
<td>Topics in Condensed Matter Physics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3410</td>
<td>Biophysics</td>
<td>.5</td>
<td>III</td>
<td>3</td>
<td>S2</td>
<td>PHYS2011, PHYS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3510</td>
<td>Advanced Mechanics, Fields and Chaos</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S1</td>
<td>PHYS2001, MATH2100, MATH2510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3520</td>
<td>Relativistic Electrodynamics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2021, MATH2510</td>
<td></td>
<td>PHYS3030</td>
</tr>
<tr>
<td>PHYS3530</td>
<td>Advanced Quantum Mechanics</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2021, MATH2100, MATH2120</td>
<td></td>
<td>PHYS3010</td>
</tr>
<tr>
<td>PHYS3540</td>
<td>Plasmas and Laser Fusion</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>Not offered in 1991</td>
<td>PHYS2011, PHYS2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3550</td>
<td>General Relativity</td>
<td>.5</td>
<td>III</td>
<td>2</td>
<td>S2</td>
<td>PHYS2021, MATH2510, MATH2100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3601</td>
<td>Computer Applications in Instrumentation</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td>5</td>
<td>PHYS2601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3620</td>
<td>Computer Based Signal Processing</td>
<td>.5</td>
<td>III</td>
<td>S2</td>
<td>3</td>
<td>PHYS2031, MATH2120</td>
<td></td>
<td>6.042</td>
</tr>
<tr>
<td>PHYS3710</td>
<td>Lasers and Applications</td>
<td>.5</td>
<td>III</td>
<td>S1†</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3720</td>
<td>Optoelectronics</td>
<td>.5</td>
<td>III</td>
<td>S1‡‡</td>
<td>2</td>
<td>PHYS2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3760</td>
<td>Laser and Optoelectronics Laboratory</td>
<td>.5</td>
<td>III</td>
<td>S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† For students who enrol in and successfully complete the subjects PHYS1022 Introductory Physics 1 (2 units) and PHYS1002 Physics 1 (2 units) the total unit value of the combined subjects will be counted as 3 units.

‡ Where mathematics subjects are specified as prerequisites or as co-requisites, the higher level of such subjects are acceptable and preferable. Similarly, Physics PHYS1002 is acceptable in place of PHYS1022. Students are also advised that other subjects may be acceptable equivalent prerequisites or co-requisites to those listed, e.g. Unit PHYS2049 of course 3640 may be acceptable in place of PHYS2021. Enquiry should be made to the School of Physics.

‡‡ Offered in odd-numbered years only.

Psychology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC1002</td>
<td>Psychology 1</td>
<td>2</td>
<td>I</td>
<td>F</td>
<td>5</td>
<td>PHYS2001</td>
<td></td>
<td>GENS4620</td>
</tr>
<tr>
<td>PSYC2001</td>
<td>Research Methods 2</td>
<td>1</td>
<td>II</td>
<td>S1</td>
<td>4</td>
<td>PSYC1002</td>
<td></td>
<td>GENS5050</td>
</tr>
<tr>
<td>PSYC2011</td>
<td>Psychological Assessment</td>
<td>1</td>
<td>II</td>
<td>S2</td>
<td>3</td>
<td>PSYC2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC2021</td>
<td>Attention, Memory and Thought</td>
<td>1</td>
<td>II</td>
<td>S1</td>
<td>4</td>
<td>PSYC1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC2031</td>
<td>Personality and Social Psychology</td>
<td>1</td>
<td>II</td>
<td>S2</td>
<td>4</td>
<td>PSYC1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC2051</td>
<td>Human Development</td>
<td>1</td>
<td>II</td>
<td>S1</td>
<td>4</td>
<td>PSYC1002</td>
<td></td>
<td>PSYC3111</td>
</tr>
</tbody>
</table>

Psychology Level III See Notes

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>When</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC3001</td>
<td>Research Methods 3A</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td>4</td>
<td>PSYC2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3011</td>
<td>Research Methods 3B</td>
<td>1</td>
<td>III</td>
<td>S2</td>
<td>4</td>
<td>PSYC3001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3021</td>
<td>Perception</td>
<td>1</td>
<td>III</td>
<td>S2</td>
<td>4</td>
<td>PSYC2001 and either</td>
<td>PSYC2021 or PSYC2031</td>
<td></td>
</tr>
<tr>
<td>PSYC3031</td>
<td>Behavioural Neuroscience</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td>4</td>
<td>PSYC2001 and either</td>
<td>PSYC2021 or PSYC2031</td>
<td></td>
</tr>
<tr>
<td>PSYC3041</td>
<td>Learning</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td>4</td>
<td>PSYC3031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3051</td>
<td>Physiological Psychology</td>
<td>1</td>
<td>III</td>
<td>S2</td>
<td>4</td>
<td>PSYC3031</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Psychology

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC3061</td>
<td>Perceptual Theory</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td>Not offered</td>
<td>4</td>
<td>PSYC3021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3071</td>
<td>Abnormal Psychology</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3081</td>
<td>Experimental Psychopathology</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC3071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3091</td>
<td>Counselling and Evaluation</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2011</td>
<td></td>
<td>PSYC2042</td>
</tr>
<tr>
<td>PSYC3101</td>
<td>Individual Differences</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2011 and PSYC2031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3111</td>
<td>Developmental Psychology</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001 and either PSYC2021 or PSYC2031</td>
<td>PSYC2051</td>
<td></td>
</tr>
<tr>
<td>PSYC3121</td>
<td>Social Psychology</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2031</td>
<td></td>
<td>PSYC3131 and PSYC3141</td>
</tr>
<tr>
<td>PSYC3131</td>
<td>Cross-Cultural Social</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2031</td>
<td></td>
<td>PSYC3121 and PSYC3141</td>
</tr>
<tr>
<td>PSYC3141</td>
<td>Behaviour in Organizations</td>
<td>1</td>
<td>III</td>
<td>S2</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2031</td>
<td></td>
<td>PSYC3121 and PSYC3131</td>
</tr>
<tr>
<td>PSYC3151</td>
<td>Cognition and Skill</td>
<td>1</td>
<td>III</td>
<td>S2</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2021</td>
<td></td>
<td>PSYC3051</td>
</tr>
<tr>
<td>PSYC3161</td>
<td>Language and Its Development</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3171</td>
<td>Recent Developments in</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3181</td>
<td>Issues in Applied Psychology</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>4</td>
<td>PSYC2001 and PSYC2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3191</td>
<td>Computer Science and</td>
<td>1</td>
<td>III</td>
<td>S1</td>
<td></td>
<td>5</td>
<td>PSYC2001 and PSYC2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. A student may not enrol in more than four Level II Psychology units.
2. A student may not enrol in more than three Level III Psychology units unless either PSYC2001 Research Methods 2 has been passed.
3. A student may not enrol in more than six Level III Psychology units unless PSYC3001 Research Methods 3A has been passed.
4. A student may not enrol in more than eight Level III Psychology units in course 3970.
5. Not all Level III Psychology units will necessarily be offered in each year.

Science and Technology Studies

Students undertaking subjects in Science and Technology Studies are required to supplement the class contact hours by study in the Library.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Unit</th>
<th>Level</th>
<th>Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPST1106</td>
<td>Myth, Megalith and Cosmos</td>
<td>1</td>
<td>I</td>
<td>S1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>62.111</td>
</tr>
<tr>
<td>HPST1107</td>
<td>From the Closed World to the Infinite Universe</td>
<td>1</td>
<td>I</td>
<td>S2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>62.211</td>
</tr>
<tr>
<td>HPST1108</td>
<td>Science: Good, Bad and Bogus — An Introduction to the Philosophy of Science</td>
<td>1</td>
<td>I</td>
<td>S2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Unit Level</td>
<td>Value</td>
<td>Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>-----</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>SCTS1106</td>
<td>Science, Technology and Social Change'</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td></td>
<td></td>
<td>62.110</td>
<td></td>
</tr>
<tr>
<td>SCTS1107</td>
<td>Understanding Technological Controversy'</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>SCTS1106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPST2106</td>
<td>The Scientific Theory</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>Completion of at least 4 Level 1 units from Table 1</td>
<td></td>
<td>62.032</td>
<td></td>
</tr>
<tr>
<td>HPST2107</td>
<td>The Darwinian Revolution</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>2</td>
<td>As for HPST2106</td>
<td></td>
<td>62.104</td>
<td></td>
</tr>
<tr>
<td>HPST2108</td>
<td>History of Medicine</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.043, 26.558, 26.2506, 62.109</td>
<td></td>
</tr>
<tr>
<td>HPST2109</td>
<td>Computers, Brains and Minds: Foundations of Cognitive Science</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.554</td>
<td></td>
</tr>
<tr>
<td>HPST2117</td>
<td>Technology and Society</td>
<td>II/III</td>
<td>1</td>
<td>Not offered in 1991</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>26.251, 62.022</td>
<td></td>
</tr>
<tr>
<td>HPST2118</td>
<td>Body, Mind and Soul: The History and Philosophy of Psychology</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.106</td>
<td></td>
</tr>
<tr>
<td>HPST3106</td>
<td>The Discovery of Time</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.103</td>
<td></td>
</tr>
<tr>
<td>HPST3107</td>
<td>Relations Between Science and the Arts</td>
<td>II/III</td>
<td>1</td>
<td>Not offered in 1991</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.285</td>
<td></td>
</tr>
<tr>
<td>HPST3108</td>
<td>Man, Woman and Deity</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.3005</td>
<td></td>
</tr>
<tr>
<td>HPST3109</td>
<td>Issues in the Philosophy of Science</td>
<td>II/III</td>
<td>1</td>
<td>Not offered in 1991</td>
<td>3</td>
<td>Completion of at least 2 HPST units.</td>
<td></td>
<td>62.570</td>
<td></td>
</tr>
<tr>
<td>HPST3116</td>
<td>Language and Minds: The Impact of Chomsky's Revolution in Linguistics and Philosophy</td>
<td>II/III</td>
<td>1</td>
<td>Not offered in 1991</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.052</td>
<td></td>
</tr>
<tr>
<td>SCTS2106</td>
<td>Scientific Knowledge and Political Power</td>
<td>II/III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>As for HPST2106</td>
<td></td>
<td>62.110</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Unit Level</td>
<td>Value</td>
<td>Offered Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------</td>
<td>-------</td>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS2107</td>
<td>The Sociology of Science and Technology</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for HPST2106</td>
<td>62.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS2108</td>
<td>Information, Technology, Politics and Policies</td>
<td>II/III</td>
<td>1</td>
<td>Not</td>
<td>3</td>
<td>SCTS1106 or completion of at least 4 Level 1 science units.</td>
<td>62.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS2109</td>
<td>The New Biotechnologies and their Social Context</td>
<td>II/III</td>
<td>1</td>
<td>Not</td>
<td>3</td>
<td>SCTS1106, or by permission of the Head of School for 3rd and 4th Year students in the biological sciences</td>
<td>62.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS3106</td>
<td>Science, Technology and Developing Countries</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for HPST2106</td>
<td>62.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS3108</td>
<td>Technological Development in Twentieth Century Australia</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>SCTS1106</td>
<td>62.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS3109</td>
<td>Technology, Environment and Risk</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>2</td>
<td>SCTS1106 or completion of at least 4 Level 1 science units.</td>
<td>62.3003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS3116</td>
<td>The Politics of Energy</td>
<td>II/III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>As for SCTS3109</td>
<td>62.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTS3117</td>
<td>Technology, Globalization and the Role of the State</td>
<td>II/III</td>
<td>1</td>
<td>Not</td>
<td>2</td>
<td>Completion of at least 2 SCTS units.</td>
<td>62.3003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: only two Level 1 units may be counted towards Course 3970.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT1501</td>
<td>Accounting and Financial I Management 1A***</td>
<td>1</td>
<td>S1</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
</tr>
<tr>
<td>ACCT1511</td>
<td>Accounting and Financial I Management 1B</td>
<td>1</td>
<td>S2</td>
<td>4.5</td>
<td></td>
<td>ACCT1501</td>
<td></td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
</tr>
<tr>
<td>ACCT2522</td>
<td>Accounting and Financial II Management 2A</td>
<td>1</td>
<td>S2</td>
<td>4.5</td>
<td></td>
<td>ACCT1511</td>
<td></td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
</tr>
<tr>
<td>ACCT2542</td>
<td>Accounting and Financial II Management 2B</td>
<td>1</td>
<td>S2</td>
<td>4.5</td>
<td></td>
<td>ACCT1511</td>
<td></td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
</tr>
<tr>
<td>ACCT3563</td>
<td>Accounting and Financial III Management 3A</td>
<td>1</td>
<td>S1</td>
<td>4.5</td>
<td></td>
<td>ACCT2542</td>
<td></td>
<td></td>
<td>1400, 6810</td>
</tr>
<tr>
<td>ACCT3573</td>
<td>Accounting and Financial III Management 3A (Honours)</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>ACCT2522</td>
<td></td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>ACCT3583</td>
<td>Accounting and Financial III Management 3B</td>
<td>1</td>
<td>S2</td>
<td>4.5</td>
<td></td>
<td>ACCT2522</td>
<td></td>
<td></td>
<td>1400, 6810</td>
</tr>
<tr>
<td>ACCT3593</td>
<td>Accounting and Financial III Management 3B (Honours)</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>ACCT2522</td>
<td></td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>ANAT2111</td>
<td>Introductory Anatomy</td>
<td>II</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>BIOS1011 BIOS1021</td>
<td></td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
</tr>
<tr>
<td>ANAT2211</td>
<td>Histology 1</td>
<td>II</td>
<td>F</td>
<td>3</td>
<td></td>
<td>BIOS1011 BIOS1021</td>
<td></td>
<td></td>
<td>ANAT2111</td>
</tr>
<tr>
<td>ANAT3121</td>
<td>Visceral Anatomy</td>
<td>III</td>
<td>S2</td>
<td>6</td>
<td></td>
<td>ANAT2111</td>
<td></td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
</tr>
<tr>
<td>ANAT3131</td>
<td>Functional Anatomy 1</td>
<td>III</td>
<td>S1</td>
<td>6</td>
<td></td>
<td>ANAT2111</td>
<td></td>
<td></td>
<td>4770</td>
</tr>
</tbody>
</table>

Table 2: Board of Studies in Science and Mathematics (Units offered)

Course 3970
Units available in specific programs and double degree courses
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-requisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT3141</td>
<td>Functional Anatomy 2</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>ANAT3131</td>
<td></td>
<td></td>
<td>(Anatomy)</td>
</tr>
<tr>
<td>ANAT3211</td>
<td>Histology 2</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>ANAT2211</td>
<td></td>
<td>ANAT3225</td>
<td>Quota.</td>
</tr>
<tr>
<td>ANAT3220</td>
<td>Histological and Histochmical Techniques</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>3</td>
<td>BIOS1011, BIOS1021 and any 1 of BIOL2312, BIOS2061 or ANAT2211</td>
<td></td>
<td>ANAT3211</td>
<td>3820</td>
</tr>
<tr>
<td>ANAT3311</td>
<td>Mammalian Embryology</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>ANAT2211, ANAT2111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAT3411</td>
<td>Neuroanatomy 1</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>ANAT2211, ANAT2111</td>
<td></td>
<td></td>
<td>7000 or in the Anatomy Courses</td>
</tr>
<tr>
<td>ANAT3421</td>
<td>Neuroanatomy 2</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>ANAT3411</td>
<td></td>
<td></td>
<td>Course 3681</td>
</tr>
<tr>
<td>CHEM1807</td>
<td>Chemistry 1 ME</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>As for CHEM1806</td>
<td></td>
<td></td>
<td>Course 3640, Course 3725, Course 3730</td>
</tr>
<tr>
<td>CHEM1806</td>
<td>Chemistry 1EE</td>
<td>I</td>
<td>.5</td>
<td>S1</td>
<td>3</td>
<td>See Subject Descriptions</td>
<td></td>
<td></td>
<td>Course 3950</td>
</tr>
<tr>
<td>CHEM1808</td>
<td>Chemistry for Civil Engineers</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>6</td>
<td>As for CHEM1806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1809</td>
<td>Biological Chemistry for Optometry Students</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td>6</td>
<td>See Subject Descriptions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP1011</td>
<td>Computing 1A</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>6</td>
<td>As for MATH1032</td>
<td>COMP1811</td>
<td></td>
<td>0600 and Courses: 3611, 3661, 3681, 3701</td>
</tr>
<tr>
<td>COMP3111</td>
<td>Software Engineering</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>COMP2011, COMP2031</td>
<td>6.642, 6.660G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3121</td>
<td>Algorithms and Programming Techniques</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP2011</td>
<td>6.642, 6.660G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3131</td>
<td>Parsing and Translation</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP2011</td>
<td>6.643, 6.664G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3211</td>
<td>Computer Organisation and Design</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>COMP2021, ELEC3020</td>
<td>6.654G, 6.613, ELEC3020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3221</td>
<td>Microprocessors and Interfacing</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP2021</td>
<td>6.0318, 6.060G, 6.613, ELEC3020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3231</td>
<td>Operating Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>COMP2031</td>
<td>6.632, 6.663G, 6.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3311</td>
<td>Database Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>COMP2011</td>
<td>6.663, 6.005G, 6.659G, INFS3608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3321</td>
<td>Business Systems Organisation</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP2011</td>
<td>6.647, 6.661G</td>
<td></td>
<td>3725, 3730, 4770</td>
</tr>
<tr>
<td>COMP3331</td>
<td>Computer Networks and Applications</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP2011, COMP2031</td>
<td>6.633, 6.659G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3411</td>
<td>Artificial Intelligence</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>COMP2011</td>
<td>6.666G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3421</td>
<td>Computer Graphics</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>COMP2011</td>
<td>6.668G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3511</td>
<td>Human Computer Interaction</td>
<td>III</td>
<td>1</td>
<td>SS</td>
<td>5</td>
<td>COMP2011</td>
<td>6.006G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON1101</td>
<td>Microeconomics 1</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td>3.5</td>
<td>See Subject Descriptions</td>
<td>15.001</td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
<td>Specific Programs</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>---------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ECON1102</td>
<td>Macroeconomics 1</td>
<td>I</td>
<td>S1 or S2</td>
<td>1</td>
<td>3.5</td>
<td>ECON1101</td>
<td>15.011</td>
<td>0600, 1000</td>
<td>1400, 6810</td>
</tr>
<tr>
<td>ECONH1301</td>
<td>Australia in the International Economy in the Twentieth Century</td>
<td>I</td>
<td>S1</td>
<td>1</td>
<td>3.5</td>
<td>See Subject Descriptions later in this handbook</td>
<td>15.901</td>
<td></td>
<td>6810</td>
</tr>
<tr>
<td>ECON2101</td>
<td>Microeconomics 2</td>
<td>II</td>
<td>S1</td>
<td>1</td>
<td>4</td>
<td>ECON1102, ECON1203</td>
<td>15.002, 15.072, ECON2103, ECON2101, ECON2121</td>
<td></td>
<td>0600, 1000, 6810</td>
</tr>
<tr>
<td>ECON2102</td>
<td>Macroeconomics 2</td>
<td>II</td>
<td>S2</td>
<td>1</td>
<td>4</td>
<td>ECON1102, ECON1203</td>
<td>15.042, 15.062, ECON2104, ECON2122, ECON2121</td>
<td>15.052</td>
<td>6810</td>
</tr>
<tr>
<td>ECON2103</td>
<td>Applied Microeconomics</td>
<td>II</td>
<td>S2</td>
<td>1</td>
<td>3.5</td>
<td>ECON1102 and ECON1203 or ECON2200</td>
<td>15.002, 15.072, ECON2101, ECON2121, ECON2122</td>
<td>15.052</td>
<td>6810</td>
</tr>
<tr>
<td>ECON2104</td>
<td>Applied Macroeconomics</td>
<td>II</td>
<td>S1 or S2</td>
<td>1</td>
<td>3.5</td>
<td>ECON1102 and ECON1203 or ECON2200</td>
<td>15.042, 15.062, ECON2101, ECON2122, ECON2121</td>
<td>15.052</td>
<td>6810</td>
</tr>
<tr>
<td>ECON3101</td>
<td>Microeconomics 3</td>
<td>III</td>
<td>S1</td>
<td>1</td>
<td>4</td>
<td>ECON2101, ECON2102, ECON2206</td>
<td>15.143, 15.321E, 15.153</td>
<td>0600, 1000</td>
<td></td>
</tr>
<tr>
<td>ECON3102</td>
<td>Macroeconomics 3</td>
<td>III</td>
<td>S2</td>
<td>1</td>
<td>4</td>
<td>ECON2101, ECON2102, ECON2206</td>
<td>15.003, 15.013, 15.322E</td>
<td>0600</td>
<td></td>
</tr>
<tr>
<td>ELEC1011</td>
<td>Electrical Engineering</td>
<td>I</td>
<td>S2</td>
<td>1</td>
<td>6</td>
<td>PHYS1002</td>
<td>0100, 0600, 1000</td>
<td>0600</td>
<td></td>
</tr>
<tr>
<td>ELEC2010</td>
<td>Circuit Theory</td>
<td>II</td>
<td>S1</td>
<td>.5</td>
<td>4</td>
<td>ELEC1011, PHYS1002, MATH1032</td>
<td>6.021A, 6.021C</td>
<td>0600</td>
<td></td>
</tr>
<tr>
<td>ELEC2020</td>
<td>Analog Electronics</td>
<td>II</td>
<td>S2</td>
<td>.5</td>
<td>4</td>
<td>PHYS2989, ELEC2010</td>
<td>6.021C</td>
<td>0600</td>
<td></td>
</tr>
<tr>
<td>FINS2612</td>
<td>Australian Capital Markets</td>
<td>II/III</td>
<td>S1 or S2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>14.864, 1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINS2613</td>
<td>Business Finance 2A</td>
<td>II</td>
<td>S1 or S2</td>
<td>1</td>
<td>3</td>
<td>ACCT1511, ECON1102, ECON1202, and MATH1032</td>
<td>14.613, 1400, 6810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINS2614</td>
<td>Business Finance 2B</td>
<td>III</td>
<td>S1 or S2</td>
<td>1</td>
<td>3</td>
<td>FINS2613</td>
<td>14.614, 1400, 6810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINS3615</td>
<td>Business Finance 3</td>
<td>III</td>
<td>S1</td>
<td>1</td>
<td>3</td>
<td>FINS2614</td>
<td>14.615, 6810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>Value</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>GEOL6321</td>
<td>Coastal Environmental Assessment</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>GEOL2111</td>
<td>6832, 6833, 6870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL6310</td>
<td>Marine Mineral Deposits</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>3</td>
<td>GEOL6201</td>
<td>GEOL6311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL6311</td>
<td>Marine Geology 2</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>GEOL6201</td>
<td>6833, 6870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL7221</td>
<td>Surficial Materials and Processes</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>GEOL2111</td>
<td>2527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL8220</td>
<td>Sedimentology</td>
<td>II</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>GEOL1201</td>
<td>GEOL2121</td>
<td>2503</td>
<td></td>
</tr>
<tr>
<td>GEOL8310</td>
<td>Stratigraphy</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>2</td>
<td>GEOL8220</td>
<td>GEOL3121</td>
<td>2503</td>
<td></td>
</tr>
<tr>
<td>GEOL8350</td>
<td>Geological Applications</td>
<td>III</td>
<td>.5</td>
<td>S1</td>
<td>4</td>
<td>GEOL1201</td>
<td>GEOL3121</td>
<td>2503</td>
<td></td>
</tr>
<tr>
<td>GEOL8360</td>
<td>Geophysical and Geological Applications</td>
<td>III</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td>GEOL1201</td>
<td>GEOL6330</td>
<td>2503</td>
<td></td>
</tr>
<tr>
<td>GEOG1043</td>
<td>Data Processing Systems</td>
<td>I</td>
<td>0</td>
<td>F</td>
<td>2</td>
<td></td>
<td>6851, 6852, 6853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFS1602</td>
<td>Computer Information Systems 1</td>
<td>II</td>
<td>1</td>
<td>S1 or</td>
<td>14.602</td>
<td></td>
<td>0600, 1000, 1400, 6810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFS2603</td>
<td>Computer Information Systems 2</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>INFS1602</td>
<td>14.603</td>
<td>0600, 1000, 1400, 6810</td>
<td></td>
</tr>
<tr>
<td>INFS2609</td>
<td>Computer Information Systems Technology</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>COMP1811 or INFS1602</td>
<td>14.605</td>
<td>1400, 6810, 1000, 0600</td>
<td></td>
</tr>
<tr>
<td>INFS2691</td>
<td>Industrial Training 1</td>
<td>II/III</td>
<td>0</td>
<td>S1</td>
<td>1</td>
<td>INFS1602</td>
<td>Course 3971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFS3605</td>
<td>Computer Systems Implementation</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>INFS2603 or INFS2609</td>
<td>14.605</td>
<td>0600, 1400, 6810</td>
<td></td>
</tr>
<tr>
<td>INFS3607</td>
<td>Distributed Computer Systems</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>INFS2603 and INFS2609</td>
<td>6.633, 14.607</td>
<td>0600, 1400, 6810</td>
<td></td>
</tr>
<tr>
<td>INFS3608</td>
<td>Database Systems</td>
<td>III</td>
<td>1</td>
<td>S1</td>
<td>3</td>
<td>INFS2603 or INFS3606 or INFS2609</td>
<td>14.608</td>
<td>0600, 1400, 6810</td>
<td></td>
</tr>
<tr>
<td>INFS3611</td>
<td>Information Systems Development</td>
<td>III</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>INFS2603 and approval from Head of School</td>
<td>14.611</td>
<td>0600, 6810, 1400</td>
<td></td>
</tr>
<tr>
<td>INFS3616</td>
<td>Commercial Programming Principles</td>
<td>II</td>
<td>1</td>
<td>S2</td>
<td>3</td>
<td>INFS3605</td>
<td>INFS3692</td>
<td>Course 3971</td>
<td></td>
</tr>
<tr>
<td>INFS3692</td>
<td>Industrial Training 2</td>
<td>III</td>
<td>0</td>
<td>S2</td>
<td>1</td>
<td>INFS1602</td>
<td>INFS3616</td>
<td>Course 3971</td>
<td></td>
</tr>
<tr>
<td>INFS4693</td>
<td>Industrial Training 3</td>
<td>III</td>
<td>0</td>
<td>S1</td>
<td>1</td>
<td>INFS1602</td>
<td>INFS3611</td>
<td>Course 3971</td>
<td></td>
</tr>
<tr>
<td>JAPN1000</td>
<td>Japanese 1A (Core) or</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>Nil</td>
<td>28.809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPN1001</td>
<td>Japanese 1B (core) or</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>JAPN1000 or equivalent</td>
<td>28.810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPN1100</td>
<td>Japanese 1A (Intermediate) or</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>JAPN1100 or equivalent</td>
<td>28.810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPN1200</td>
<td>Japanese 1A (Advanced)</td>
<td>I</td>
<td>1</td>
<td>S1</td>
<td>5</td>
<td>JAPN1200 or equivalent</td>
<td>28.810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPN1201</td>
<td>Japanese 1B (Advanced)</td>
<td>I</td>
<td>1</td>
<td>S2</td>
<td>5</td>
<td>JAPN1200 or equivalent</td>
<td>28.810</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JAPN1000, JAPN1001, JAPN1100, JAPN1200, JAPN1201: Nil or equivalent. JAPN1100: 70% in 2-unit NSW HSC Japanese; 80%+ in 2-unit Z NSW HSC Japanese. JAPN1200: 35/50+ in 3-unit NSW HSC Japanese. Those students who have acquired competence in Japanese by being exchange students in Japan or by some other means (both subject to placement test).
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Hpw</th>
<th>Prerequisites</th>
<th>Co-Prerequisites</th>
<th>Excluded</th>
<th>Specific Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAWS2160</td>
<td>Administrative Law</td>
<td>S1 or S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.774</td>
<td>Course 4770</td>
</tr>
<tr>
<td>LAWS1120</td>
<td>Legal System of Torts</td>
<td>F</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.775</td>
<td>Course 4770</td>
</tr>
<tr>
<td>LAWS1410</td>
<td>Contracts</td>
<td>F</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.776</td>
<td>Course 4770</td>
</tr>
<tr>
<td>LAWS1610</td>
<td>Criminal Law</td>
<td>F</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.777</td>
<td>Course 4770</td>
</tr>
<tr>
<td>LAWS3010</td>
<td>Property and Equity</td>
<td>F</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.783</td>
<td>Course 4770</td>
</tr>
<tr>
<td>LAWS6210</td>
<td>Law, Lawyers and Society</td>
<td>S1 or S2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.795</td>
<td>MATH1011, MATH1021, MATH1032, MATH1042</td>
</tr>
<tr>
<td>LAWS7410</td>
<td>Legal Research and Writing 1</td>
<td>F</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.800</td>
<td>Courses 3681, 3730, 6832, 6833</td>
</tr>
<tr>
<td>LEGT7711</td>
<td>Legal Environment of Commerce I</td>
<td>S1 or S2</td>
<td>3</td>
<td>See Subject Descriptions later in this handbook</td>
<td>14.774</td>
<td>1400, 6810</td>
<td></td>
<td>3950</td>
<td></td>
</tr>
<tr>
<td>LEGT7721</td>
<td>Legal Transactions in Commerce II</td>
<td>S1 or S2</td>
<td>3</td>
<td>See Subject Descriptions later in this handbook</td>
<td>14.775</td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGT7731</td>
<td>Legal Regulations of Commerce III</td>
<td>S1 or S2</td>
<td>3</td>
<td>LEGT7711</td>
<td>14.776</td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGT7741</td>
<td>Legal Organisation of Commerce III</td>
<td>S2</td>
<td>3</td>
<td>LEGT7721 or</td>
<td>14.777</td>
<td>1400, 3971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGT7751</td>
<td>Taxation Law</td>
<td>S1</td>
<td>4</td>
<td>LEGT7721 or</td>
<td>14.783</td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1051</td>
<td>Mathematics 1F</td>
<td>S1</td>
<td>6</td>
<td>See Subject Descriptions later in this Handbook</td>
<td>14.811</td>
<td>MATH1032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2009</td>
<td>Engineering Mathematics 2</td>
<td>F</td>
<td>4</td>
<td>MATH1032</td>
<td>14.812</td>
<td>MATH2841, MATH2801, MATH2821, MATH2901, MATH2921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2819</td>
<td>Statistics SA</td>
<td>F</td>
<td>2</td>
<td>MATH1032 or MATH1021</td>
<td>14.813</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2839</td>
<td>Statistics SM</td>
<td>F</td>
<td>2</td>
<td>MATH1032</td>
<td>14.814</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS1042</td>
<td>X-ray Diffraction and Electron Microscopy</td>
<td>S2</td>
<td>4</td>
<td>MATS8193</td>
<td>14.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS1072</td>
<td>Physics of Materials</td>
<td>S2</td>
<td>4</td>
<td>PHYS1002</td>
<td>14.816</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS1083</td>
<td>Non-ferrous Alloys</td>
<td>S2</td>
<td>3</td>
<td>MATS8193</td>
<td>14.817</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS1253</td>
<td>Ferrous Alloys</td>
<td>S2</td>
<td>3</td>
<td>MATS1253</td>
<td>14.818</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS1263</td>
<td>Alloy Steels</td>
<td>S2</td>
<td>2</td>
<td>MATS1253</td>
<td>14.819</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS4053</td>
<td>Metallographic Techniques</td>
<td>S1</td>
<td>2</td>
<td>MATS1253</td>
<td>14.820</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS9323</td>
<td>Mechanical Behaviour of Materials (Units 1-3)</td>
<td>S1/S2</td>
<td>2/4</td>
<td>MATS8193 and MATS1062 or MECH2400</td>
<td>14.821</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS8193</td>
<td>Origins of Microstructure (Units 1 and 3)</td>
<td>S1</td>
<td>5</td>
<td>CHEM1011, Course 3681 and MATS1062 or MECH2400</td>
<td>14.822</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS9193</td>
<td>Origins of Microstructure (Units 2 and 4)</td>
<td>S1/S2</td>
<td>2/3</td>
<td>MATS1253</td>
<td>14.823</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS9520</td>
<td>Engineering Materials</td>
<td>S1</td>
<td>3</td>
<td>PHYS1002 CHEM1807</td>
<td>5.4222</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit</td>
<td>When Offered</td>
<td>Hpw</td>
<td>Prerequisites</td>
<td>Co-requisites</td>
<td>Excluded</td>
<td>Specific Programs</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>-----</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>MECH1100</td>
<td>Mechanical Engineering Design</td>
<td>I</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>MECH1000</td>
<td>5.0012</td>
<td>Course 3681</td>
</tr>
<tr>
<td>MECH1300</td>
<td>Engineering Mechanics 1</td>
<td>I</td>
<td>1</td>
<td>S1 or S2</td>
<td></td>
<td></td>
<td>MECH0360</td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>MECH1400</td>
<td>Mechanics of Solids 1</td>
<td>I</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>MECH1300</td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>MECH1500</td>
<td>Computing 1M</td>
<td>I</td>
<td>.5</td>
<td>S2</td>
<td>3</td>
<td></td>
<td>MATH1032</td>
<td>10.211E</td>
<td>Course 3681</td>
</tr>
<tr>
<td>MECH2300</td>
<td>Engineering Mechanics 2A</td>
<td>II</td>
<td>.5</td>
<td>S1 or S2</td>
<td>3</td>
<td>PHYS1002,</td>
<td>MECH2300</td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>MECH2310</td>
<td>Engineering Mechanics 2B</td>
<td>II</td>
<td>.5</td>
<td>S2</td>
<td>2</td>
<td></td>
<td></td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>MECH2400</td>
<td>Mechanics of Solids 2 Materials</td>
<td>II</td>
<td>1.5</td>
<td>F</td>
<td>3.5</td>
<td>MECH1400,</td>
<td>5.4220</td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>MECH2600</td>
<td>Fluid Mechanics 1</td>
<td>II</td>
<td>1.5</td>
<td>F</td>
<td>2</td>
<td>PHYS1002,</td>
<td></td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>MECH2700</td>
<td>Thermodynamics 1</td>
<td>II</td>
<td>1.5</td>
<td>F</td>
<td>2</td>
<td>MATH1032</td>
<td></td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>PHYS2989</td>
<td>Solid State Physics (Electrical Engineering)</td>
<td>II</td>
<td>1</td>
<td>S1</td>
<td>4.5</td>
<td>PHYS1002,</td>
<td>MATH2100 PHYS2021</td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td>POLY3010</td>
<td>Polymer Science</td>
<td>III</td>
<td>1</td>
<td>F</td>
<td>3</td>
<td>CHEM2011,</td>
<td>MATH2841</td>
<td>Course 3681</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH2021,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH2819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH2819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH2819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS2041</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not available in Year 1 of programs 0600, 1000, 1400.

May be counted in Courses 3611, 3661, 3681 and 3701 in special circumstances only.

ANAT3211 and ANAT3225 are mutually exclusive (see Subject Descriptions later in this handbook).

Anatomy units may be counted as Table 1 units in any program on obtaining special permission of the Head of the School of Anatomy.
Course 3970
Level IV units offered by the Board of Studies in Science and Mathematics

Table 3

A student planning to complete a program involving any subject from this table must seek the approval of the Head of the School in which the subject is taught.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Level</th>
<th>Unit Value</th>
<th>When Offered</th>
<th>Prerequisites in Years 1, 2, 3 or 4</th>
<th>Number of Level III Units Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT4508/ANAT4504</td>
<td>Anatomy 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Anatomy units</td>
<td>6</td>
</tr>
<tr>
<td>BIOC4318/BIOC4618</td>
<td>Biochemistry 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Biochemistry units</td>
<td>8</td>
</tr>
<tr>
<td>BIOS4013/BIOS4019</td>
<td>Biological Science 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 1700</td>
<td>7</td>
</tr>
<tr>
<td>BIOS4023/BIOS4029</td>
<td>Botany 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Botany units or a closely related discipline,</td>
<td>7</td>
</tr>
<tr>
<td>BIOS4033/BIOS4039</td>
<td>Zoology 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Zoology units</td>
<td>7</td>
</tr>
<tr>
<td>BIOT4073/BIOT4083</td>
<td>Biotechnology 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III units in Biotechnology or related discipline,</td>
<td>8</td>
</tr>
<tr>
<td>BSSM4013/BSSM4019</td>
<td>Geology and Physics 4 (Honours)</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 0100</td>
<td>8</td>
</tr>
<tr>
<td>BSSM4023/BSSM4029</td>
<td>Ecology 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Programs 6851, 6852, 6853</td>
<td>6</td>
</tr>
<tr>
<td>BSSM4103/BSSM4109</td>
<td>Genetics 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>Program 6840</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4003/CHEM4103</td>
<td>Chemistry 4</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>4 Level III Chemistry units</td>
<td>8</td>
</tr>
<tr>
<td>CMED8001</td>
<td>Human Genetics</td>
<td>IV</td>
<td>10</td>
<td>F</td>
<td>At least 3 of the following: BIOC3111 and BIOC3121, BIOT3031, MICR3041, BIOS3071, CMED8201, CMED8202, CMED8302, CMED8303 BSSM3101</td>
<td>8</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Level</td>
<td>Unit Value</td>
<td>When Offered</td>
<td>Prerequisites In Years 1, 2, 3 or 4</td>
<td>Number of Level III Units Required</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>COMP4914/</td>
<td>Computer Science 4</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0600</td>
<td>7</td>
</tr>
<tr>
<td>COMP4913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG4100/</td>
<td>Geography 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 2700, 2527, 6851 GEOG2013, GEOG3221</td>
<td>8</td>
</tr>
<tr>
<td>GEOG4050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL4303</td>
<td>Geology 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Programs 2500, 2503, 2527</td>
<td>8</td>
</tr>
<tr>
<td>INFS4003/</td>
<td>Information Systems (Honours) Thesis</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 1400</td>
<td>6</td>
</tr>
<tr>
<td>INFS4004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH4003/</td>
<td>Mathematics and Computer Science (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0600</td>
<td>7</td>
</tr>
<tr>
<td>MATH4004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH4103/</td>
<td>Applied Mathematics 4</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 1000</td>
<td>6</td>
</tr>
<tr>
<td>MATH4104</td>
<td>(Honours)</td>
<td></td>
<td></td>
<td></td>
<td>Program 1061</td>
<td>7</td>
</tr>
<tr>
<td>MATH4603/</td>
<td>Pure Mathematics 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 1000</td>
<td>6</td>
</tr>
<tr>
<td>MATH4604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH4903/</td>
<td>Theory of Statistics 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 1006</td>
<td>6</td>
</tr>
<tr>
<td>MATH4904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIRC4013/</td>
<td>Microbiology and Immunology</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III Microbiology and Immunology units</td>
<td>8</td>
</tr>
<tr>
<td>MIRC4023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC14003/</td>
<td>Marine Science 4</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 6831, 6832-6833 or 6834</td>
<td>6</td>
</tr>
<tr>
<td>MSC14009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATH0005/</td>
<td>Pathology (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>PATH3201</td>
<td>6</td>
</tr>
<tr>
<td>PATH0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL4050</td>
<td>Philosophy (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Programs 5200, 5262, 52.395</td>
<td>7</td>
</tr>
<tr>
<td>PHPH4218/</td>
<td>Physiology 4</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>4 Level III Physiology units</td>
<td>7</td>
</tr>
<tr>
<td>PHPH4224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPH4258/</td>
<td>Pharmacology</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 7300 (Strand 2 I see Program 7300)</td>
<td>7</td>
</tr>
<tr>
<td>PHPH4264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS4403/</td>
<td>Physics 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0100</td>
<td>7</td>
</tr>
<tr>
<td>PHYS4413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 0161</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4303/</td>
<td>Applied Physics 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0100</td>
<td>7</td>
</tr>
<tr>
<td>PHYS4313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 0161</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4503/</td>
<td>Theoretical Physics 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0100</td>
<td>7</td>
</tr>
<tr>
<td>PHYS4513</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program 0161</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4503/</td>
<td>Biophysics 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 0100</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4513</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC4023</td>
<td>Psychology 4 Thesis (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 1200</td>
<td>8</td>
</tr>
<tr>
<td>PSYC4033</td>
<td>Psychology 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 1200</td>
<td>8</td>
</tr>
<tr>
<td>PSYC4043</td>
<td>Computer Science and Psychology 4 (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 1206</td>
<td>8</td>
</tr>
<tr>
<td>SCTS4106</td>
<td>Science and Technology Studies (Honours)</td>
<td>IV</td>
<td>10 F</td>
<td></td>
<td>Program 6200</td>
<td>7</td>
</tr>
</tbody>
</table>

*Some Higher Mathematics subjects should normally be included at Levels II and III in order to enter Level IV Mathematics. Students should discuss their Year 3 program in Department concerned.

Students entering PHYS4503 PHYS4513 from the 0100 program should have demonstrated adequate mathematical ability.*
Identification of Subjects

A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

In 1991 a new system of subject identification is introduced. Each approved subject of the University is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subject Identifiers are approved by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the four character alphabetical prefix.
2. Each subject identifier is unique and is not used for more than one subject title.
3. Subject numbers which have previously been used are not used for new subject titles.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Appropriate subjects for each school appear at the end of each school section.

The identifying alphabetical prefixes for each organizational unit are set out on the following pages.

Servicing Subjects are those taught by a school or department outside its own faculty. Their subject descriptions are published in the handbook of the faculty which originates the subject and are also published in the handbook of the faculty in which the subject is taught. The following pages contain descriptions for most of the subjects offered for the courses described in this book, the exception being General Education subjects. For General Education subjects see the General Education Handbook which is available free of charge.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information which may be supplied about each subject:

- **S1** Session 1, **S2** Session 2
- **F** Session 1 *plus* Session 2, ie full year
- **S1** or **S2** Session 1 or Session 2, ie choice of either session
- **SS** single session, but which session taught is not known at time of publication
- **CCH** class contact hours
- **L** Lecture, followed by hours per week
- **T** Laboratory/Tutorial, followed by hours per week
- **P/T** part-time
- **h pw** hours per week
- **wks** weeks of duration
- **C** Credit point value
- **CR** Credit
- **DN** Distinction
- **HD** High Distinction
- **X** External
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIO</td>
<td>School of Applied Bioscience</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ACHM</td>
<td>Department of Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>ACMA</td>
<td>Department of Civil Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ACSC</td>
<td>Department of Computer Science</td>
<td>University College</td>
</tr>
<tr>
<td>AECM</td>
<td>Department of Economics & Management</td>
<td>University College</td>
</tr>
<tr>
<td>AELE</td>
<td>Department of Electrical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AENG</td>
<td>Department of English</td>
<td>University College</td>
</tr>
<tr>
<td>AERO</td>
<td>Aeronautical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>AGOC</td>
<td>Department of Geography & Oceanography</td>
<td>University College</td>
</tr>
<tr>
<td>AHIS</td>
<td>Department of History</td>
<td>University College</td>
</tr>
<tr>
<td>AINT</td>
<td>University College (Interdisciplinary)</td>
<td>University College</td>
</tr>
<tr>
<td>AMAT</td>
<td>Department of Mathematics</td>
<td>University College</td>
</tr>
<tr>
<td>AMEC</td>
<td>Department of Mechanical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>APHY</td>
<td>Department of Physics</td>
<td>University College</td>
</tr>
<tr>
<td>APOL</td>
<td>Department of Politics</td>
<td>University College</td>
</tr>
<tr>
<td>APSE</td>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ARCH</td>
<td>School of Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>ARTS</td>
<td>Faculty of Arts</td>
<td>Arts</td>
</tr>
<tr>
<td>ASIA</td>
<td>Asian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>AUST</td>
<td>Australian Studies</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BLOT</td>
<td>Department of Biotechnology</td>
<td>Architecture</td>
</tr>
<tr>
<td>BLDG</td>
<td>School of Building</td>
<td></td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science & Mathematics</td>
<td></td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese</td>
<td>Arts</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>COFA</td>
<td>College of Fine Arts</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>COMM</td>
<td>Faculty of Commerce</td>
<td>Engineering</td>
</tr>
<tr>
<td>COMP</td>
<td>Computer Science</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, and Departments of Econometrics and Economics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>EDST</td>
<td>School of Education Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering & Computer Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>ENGL</td>
<td>School of English Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>EURO</td>
<td>European Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>EXPA</td>
<td>School of Arts and Music Education</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>FIBR</td>
<td>School of Fibre Science & Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking & Finance</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>FOOD</td>
<td>Department of Food Science and Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FREN</td>
<td>School of French</td>
<td>Arts</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal & General Studies</td>
<td></td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GERS</td>
<td>School of German Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>GREEK</td>
<td>Modern Greek</td>
<td>Arts</td>
</tr>
<tr>
<td>GSBE</td>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
</tr>
<tr>
<td>HEAL</td>
<td>School of Health Services Management</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>HIST</td>
<td>School of History</td>
<td>Arts</td>
</tr>
<tr>
<td>HOSP</td>
<td>Asian Studies Unit</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>IDES</td>
<td>Department of Industrial Design</td>
<td>Architecture</td>
</tr>
<tr>
<td>INDC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDO</td>
<td>Indonesian</td>
<td>Arts</td>
</tr>
<tr>
<td>INFS</td>
<td>School of Information Systems</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>INTD</td>
<td>Interdisciplinary Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organ. Behaviour</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>JAPN</td>
<td>Asian Studies Unit</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>KCMF</td>
<td>Key Centre for Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LAND</td>
<td>School of Landscape Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Law</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies & Taxation</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Librarianship</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Engineering</td>
</tr>
<tr>
<td>MARK</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science and Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MDCN</td>
<td>School of Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>MDGS</td>
<td>Med/Surg.Clinical Studies</td>
<td>Medicine</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical Eng. & Manufacturing Eng.</td>
<td>Medicine</td>
</tr>
<tr>
<td>MEED</td>
<td>School of Medical Education</td>
<td>Medicine</td>
</tr>
<tr>
<td>MFAC</td>
<td>Medical Faculty (Admin)</td>
<td>Medicine</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational unit</td>
<td>Faculty</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology and Immunology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MNGT</td>
<td>Australian Graduate School of Management</td>
<td></td>
</tr>
<tr>
<td>MSCI</td>
<td>Centre for Marine Sciences</td>
<td></td>
</tr>
<tr>
<td>MUSI</td>
<td>Department of Music</td>
<td>Arts</td>
</tr>
<tr>
<td>HAVL</td>
<td>Naval Architecture</td>
<td>Engineering</td>
</tr>
<tr>
<td>OBST</td>
<td>School of Obstetrics & Gynaecology</td>
<td>Medicine</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Science</td>
</tr>
<tr>
<td>PAED</td>
<td>School of Paediatrics</td>
<td>Medicine</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts</td>
</tr>
<tr>
<td>PHMC</td>
<td>School of Physiology & Pharmacology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Medicine</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>PTRL</td>
<td>Department of Petroleum Engineering Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>RUSS</td>
<td>Department of Russian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SAFE</td>
<td>Centre for Safety Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>SCTS</td>
<td>School of Science & Technology Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>HPST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLSF</td>
<td>Department of Social Science & Policy</td>
<td>Arts</td>
</tr>
<tr>
<td>SLST</td>
<td>School of Sport & Leisure Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SOCI</td>
<td>School of Sociology</td>
<td>Arts</td>
</tr>
<tr>
<td>SOCW</td>
<td>School of Social Work</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish & Latin American Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SURG</td>
<td>School of Surgery</td>
<td>Medicine</td>
</tr>
<tr>
<td>SURV</td>
<td>School of Surveying</td>
<td>Engineering</td>
</tr>
<tr>
<td>TEDG</td>
<td>School of Teacher Education (grad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TEED</td>
<td>School of Teacher Education (undergrad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TESL</td>
<td></td>
<td>Arts</td>
</tr>
<tr>
<td>TEXT</td>
<td>Department of Textile Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>THST</td>
<td>Department of Theatre Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>USOM</td>
<td>School of Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>WOMS</td>
<td>Women Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool & Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Accounting

ACCT1501 Accounting and Financial Management 1A
Prerequisite: Nil.
This is the first unit in a sequence of subjects dealing with aspects of the practice of financial reporting, and reviewing the analytical and investigative tools and processes used within the discipline of accounting. The basic accounting process, whereby financial data from source documents are recorded, processed, summarised and adjusted (in terms of a given set of accounting concepts) culminating in the preparation of financial reports. Design of accounting systems and incorporation of internal controls. Accounting for cash, debtors, inventories and property, plant and equipment. Uses and limitations of traditional financial reports. (Old No. 14.501)

ACCT1511 Accounting and Financial Management 1B
Prerequisite: ACCT1501.

ACCT2522 Accounting and Financial Management 2A
Prerequisites: ACCT1511. Excluded: ACCT2532.
The design and operation of management accounting systems, including product costing systems and budgeting planning and control systems. In particular, attention is focused on the theoretical and practical implications of management accounting system design on organisational functioning, with emphasis on both manufacturing and service organisations. Involves the use of spreadsheet modelling and the use of personal computers. (Old No. 14.522)

ACCT2542 Accounting and Financial Management 2B
Prerequisites: ACCT1511. Excluded: ACCT2552.
The third financial reporting unit after ACCT1501 and ACCT1511 with a consideration of more complicated transactions and events as well as the accounting problems in certain specific industries. The contracting cost and other frameworks for the analysis of financial reporting. More advanced aspects of accounting for shareholders' equity, liabilities and assets including interperiod company tax allocation and lease accounting. Accounts of a company. Profit and Loss account, balance sheet, and summary of sources and applications of funds. Application of computer technology to financial accounting problems. (Old No. 14.542)

ACCT3563 Accounting and Financial Management 3A
Prerequisite: ACCT2542.
The practices and problems associated with reporting on the affairs of complex organisations and structures including the technique of consolidation accounting; reporting on relationships with subsidiaries, associated companies, joint ventures, trusts, etc; segment reporting, reporting where the affairs of subsidiaries or associates are stated in foreign currencies, and other foreign currency translation issues. Overall view of developments in financial accounting and perspectives on the process whereby regulations governing the practice of external reporting are produced and compliance with those rules is administered. (Old No. 14.563)

ACCT3573 Accounting and Financial Management 3A (Honours)
Prerequisite: ACCT2542. Excluded: ACCT3563.
Includes ACCT3563 Accounting and Financial Management 3A as well as additional and more advanced work in both accounting theory and in the financial management and accountability of corporate enterprises. (Old No. 14.573)

ACCT3583 Accounting and Financial Management 3B
Prerequisite: ACCT2522. Excluded: ACCT3593.
Management Accounting for decision making: development of skills in financial analysis, and analytical skills and techniques for modelling and solving a variety of typical managerial decision problems with regard to organisational content. Involves the use of the mainframe computer financial modelling package IFPS. (Old No. 14.583)

ACCT3593 Accounting and Financial Management 3B (Honours)
Prerequisite: ACCT2522. Excluded: ACCT3583.
Includes ACCT3583 Accounting and Financial Management 3B, as well as more advanced work dealing with theoretical and research issues in management accounting. (Old No. 14.593)

Anatomy

ANAT2111 Introductory Anatomy
Prerequisites: BIOS1011, BIOS1021.
Introduction to gross anatomy, based on a study of prosected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy. (Old No. 70.011C)
ANAT2211 Histology 1 F L1 T2
Prerequisites: BIOS1011, BIOS1021. Co-requisite: ANAT2111.

Elementary theory of light and electron microscopy. Mammalian cell morphology and ultrastructure. Introduction to simple histological techniques. Basic histology, including the morphological and functional properties of epithelial, connective, muscle and nervous tissues. Systematic histology, including a histological examination of the major systems of the body; cardiovascular, respiratory, lymphatic, integumentary, digestive, endocrine, urinary, reproductive and nervous including eye and ear. Emphasis on the ability to interpret histological sections and selected electron micrographs of mammalian tissues and organs and to relate morphology to tissue and organ function. One lecture per week and a 2-hour practical-tutorial class. (Old No. 70.011A)

ANAT3121 Visceral Anatomy S2 L2 T4
Prerequisite: ANAT2111.

A detailed study of the visceral system, including autonomic nervous system, head and neck regions and the cardiovascular, respiratory, gastrointestinal and genitourinary systems. In addition, tutorials include clinical cases and surface and radiological anatomy. (Old No. 70.012B)

ANAT3131 Functional Anatomy 1 S1 L2 T4
Prerequisite: ANAT2111.

Introduction to fundamental issues in the morphology and dynamics of human movement systems. Includes: physical properties of bone, muscle and connective tissue; biomechanics, movement analysis and neuromuscular control. These basic principles are applied to a study of musculoskeletal components of head and neck and upper limb. Emphasis on modern analytical techniques and findings. Tutorials include limb and joint dissections plus study of surface and radiological anatomy. (Old No. 70.306)

ANAT3141 Functional Anatomy 2 S2 L2 T4
Prerequisite: ANAT3131.

A continuation of ANAT3131. Includes: a detailed study of the musculoskeletal components of trunk and lower limb, functional morphology of muscle, biomechanics and energetics of walking and running. (Old No. 70.307)

ANAT3211 Histology 2 F L1 T2
Prerequisite: ANAT2211. Excluded ANAT3220. (If ANAT3211 is taken after ANAT3220 total counts only 1 unit).

ANAT3220 Histological and Histochemical Techniques S1 L1 T2
Prerequisites: BIOS1011, BIOS1021 and either BIOC2312 or BIOS2061 or ANAT2211. Excluded: ANAT3211.

Practical histological procedures: fixation, section preparation, staining. Microscopy. Theoretical, practical and applied histochemistry. (Old No. 70.3041)

ANAT3311 Mammalian Embryology F L1 T2
Co-requisites: ANAT2111, ANAT2211.

ANAT3411 Neuroanatomy 1 S1 L2 T4
Prerequisites: ANAT2111, ANAT2211.

Nerve cells and glial cells, cytoarchitecture of brain and spinal cord. Functional anatomy of sensory and motor processing, and higher cerebral functions such as language and emotions. Blood supply of the central nervous system, cerebrospinal fluid and membranous coverings. Comparative anatomy of the brain. (Old No. 70.012C)

ANAT3421 Neuroanatomy 2 S2 L1 T2
Prerequisite: ANAT3411.

Topics of contemporary neuroanatomy and neuroscience. Includes: sensory, motor and association areas of the cerebral cortex, cerebral asymmetry, hippocampus, regulatory centres of the brainstem, organization of cerebellum, sensory organs. Recent advances in chemical neuroanatomy and neuroendocrinology. Neuroanatomy of major neurological diseases, scientific basis of novel approaches to treatment. Recent work on the development of the brain. The course is organized in seminar format, and is based primarily on original publications. Students are required to undertake a substantial amount of private study. (Old No. 70.305)

ANAT4508 Anatomy 4 F
Prerequisite: Completion of the first three years of any Science program with a major in Anatomy (see Table 3 of Combined Sciences Handbook).

An honours program consisting of the preparation of an undergraduate thesis and participation in School seminars. (Old No. 70.013)

Biochemistry

BIOC2312 Principles of Biochemistry and Molecular Biology F L2 T4
Prerequisites: BIOS1011 and BIOS1021, CHEM1101 and CHEM1201 or CHEM1002. Excluded: 2.003J.

The chemical properties of amino acids, peptides and proteins, carbohydrates, nucleic acids and lipids and the biological roles of these compounds. The nature and function of enzymes. The intermediary metabolism of carbohydrates, lipids and nitrogenous compounds. The relationship between structure and function of enzymes, other proteins, hormones and biological membranes, metabolic networks and control
mechanisms. The molecular mechanism of gene expression and protein synthesis. Regulation of gene expression. Recombinant DNA technology and protein engineering. Introduction to biotechnology. Photosynthesis. Practical work to complement the lectures. (Old No. 41.101)

BIOC3111 Molecular Biology of Proteins S1 L2 T4
Prerequisites: BIOC2321, CHEM2021 or CHEM2041. Excluded: 41.102A, 41.102.

Modern aspects of the structure-function relationships of proteins including discussion of the latest techniques of protein characterization. Topics will include: separation and analytical procedures; determination of amino acid sequence data; the nature of protein-protein and protein-ligand interactions including aspects of substrate binding, enzyme kinetics and enzyme mechanisms; the molecular architecture of proteins from the standpoint of the relationships among primary, secondary, tertiary and quaternary structures; aspects of protein engineering. Practical work to illustrate and complement the lectures and to provide experience with modern techniques of protein molecular biology.

BIOC3121 Molecular Biology of Nucleic Acids S1 L2 T4
Prerequisites: BIOC2321, CHEM2021 or CHEM2041. Excluded: 41.102A, 41.102.

Detailed analysis of gene structure and function including: structure and properties of polynucleotides such as DNA and RNA; structure of chromatin; mechanisms and regulation of gene replication, transcription and translation; recombinant DNA technology, nucleic acid sequencing, DNA-DNA and DNA-RNA hybridization as important tools of modern molecular biology; protein production using recombinant DNA systems. Practical work to illustrate and complement the lectures and to provide experience with contemporary biochemical techniques.

BIOC3131 Biochemistry and Genetic Engineering of Plants
Prerequisite: BIOC2321

The techniques of recombinant DNA technology and plant tissue culture with their application to the modification and improvement of plant productivity.

Plant organ, tissue and cell culture, organogenesis, embryogenesis and clonal plant propagation. The long term preservation of germplasm and plant genetic resources. Products from cultures, plant cells and the technology of plant cell culture. Structure and expression of plant genes. Plant molecular biology including cloning plant genes and vectors for gene cloning. Genetic manipulation of plants to improve their natural resistance to pests, disease and environmental stress. Practical work provides training in the basic techniques of plant tissue culture with application of selected techniques to plant genetic engineering. (Old No. 41.142)

BIOC3261 Human Biochemistry S2 L2 T4
Prerequisite: BIOC2321.

Aspects of metabolism that are of particular relevance to the human: nutrition, exercise, neurochemistry, xenobiotics and genetic diseases. The role of triglyceride, cholesterol and lipoprotein metabolism in human health, and other selected areas of human nutrition. Exercise, the metabolic fuels utilized and the use of in vivo NMR to monitor changes in energy metabolism. Specialized aspects of endocrinology and neurochemistry including prostaglandins, leukotrienes, enkephalins and endorphines. The interrelation of purines, pyrimidines, folicate and cobalamine metabolism in humans. Xenobiotics: the metabolism of foreign compounds by humans. Biochemical aspects of genetic disease including the use of recombinant DNA techniques for prenatal diagnosis and carrier detection. Practical work to amplify the lectures. (Old No. 41.112)

BIOC3271 Cellular Biochemistry and Control S2 L2 T4
Prerequisites: BIOC2321.

Cell biology from a molecular physicochemical viewpoint. Biochemical aspects of cellular organization and how they are integrated and controlled. The arrangement of the component molecules of organelles, their function in integrated cellular metabolism to molecular interactions between the cells of multicellular organisms. The biochemistry of the cytoskeleton, carriers and intracellular transport systems. The regulation of cellular processes at the molecular endocrine level. Growth and differentiation. Aspects of cancer metabolism, the biochemistry of cell to cell communication and the structure and function of the extracellular matrix. This subject is complementary to BIOS3141 Ultrastructure and Function of Cells and students with a special interest in cell biology are encouraged to take both subjects. Practical work to amplify the lectures. (Old No. 41.122)

BIOC3281 Recombinant DNA Techniques S2 L2 T4 and Eukaryotic Molecular Biology
Prerequisites: BIOC3121. Excluded: 41.102E, 41.132.

The organization of the genomes of higher organisms derived mainly from the application of recombinant DNA technology and related techniques. Methods used for the isolation, identification and characterization of eukaryotic genomes in terms of the organization of single-copy and repeated sequences and of coding and non-coding sequences and of several gene clusters, eg the alpha and beta globin gene cluster. Mechanisms known to operate in the control of eukaryotic gene expression, both at the DNA level and at the level of RNA processing. Review of several specialized genetic systems in plants and animals such as mitochondria, chloroplasts and RNA and DNA tumour viruses. Practical work provides training in the use of sterile techniques and in working with polynucleotides under nuclelease-free conditions, using basic techniques such as hybridization and DNA sequencing. (Old No. 41.132)

BIOC4318/BIOC4618 Biochemistry 4 (Honours)

Advanced training in selected areas of biochemistry including a supervised research program that places emphasis on the use of specialized techniques relevant to the research area. A written thesis on the research is required. (Old No. 41.103)

Servicing Subjects

These subjects taught within courses offered by other faculties.

For further information regarding the following subjects see the Faculty of Medicine Handbook.
Undergraduate Study: Subject Descriptions

BIOSC1319 Biochemistry for Medical Students (Old No. 41.001)

BIOSC2329 Medical Biochemistry and Genetics (Old No. 41.002)

Biological Science

BIOS1011 Biology A
Prerequisite:

- HSC Exam

Score Range

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>53-100</td>
<td>2 unit Science (Physics) or 2 unit Science (Chemistry) or 2 unit Science (Geology) or 2 unit Science (Biology) or 3 unit Science or 4 unit Science</td>
</tr>
<tr>
<td>90-150</td>
<td>1-60</td>
</tr>
</tbody>
</table>

Basic cell structure; membranes, organelles, prokaryotic and eukaryotic cells; cellular locomotion; basic biological molecules; enzymes; structure and metabolic roles, cellular compartmentalization and enzyme function; diffusion, osmosis and active transport; theory of inheritance, linkage, mutation, information transfer and protein synthesis. (Old No. 17.031)

Requirements for Practical Work

Equipment required for practical work is set out in the Course Guide, available during enrolment time at the First Year Registration Centre (Physics Building). Students must purchase this prior to the first week of session.

BIOS1021 Biology B
Prerequisite: BIOS1011 (however, students without this prerequisite may seek the permission of the Co-ordinator of First Year Biology to enrol).

Excluded BIOS.021.

The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes. (Old No. 17.041)

BIOS2011 Evolutionary and Physiological Ecology
Prerequisite: BIOS1011 and BIOS1021.

An introduction to functional relationships between living organisms and the environments in which they live. Illustration of structural, physiological, ecological and behavioural characteristics at both cellular and organismic level as examples of adaptations or neutral traits, and the evaluation of these attributes as the outcome of ecological and evolutionary selection. Selected areas of the course will also serve as an introduction to the process of scientific enquiry. (Old No. 17.050)

BIOS2021 Introductory Genetics
Prerequisite: CHEM1001 or CHEM1002, BIOS1011, BIOS1021, Co-requisite: BIOS2312. Excluded WOOL3803, 45.601

Structure, function and organization of DNA in prokaryotes and eukaryotes. Genetic bases of life cycles in prokaryotes and eukaryotes. Genetic aspects of development, Gene control. Genetic engineering. Mutation, gene interaction and linkage analysis in prokaryotes and eukaryotes. Binomial Square Law and extensions. Effects of population size on levels of genetic variation. Selection in natural populations. Molecular evolution and levels of selection. Cytogenetics, gene mapping, levels of variation and selection in human populations. Recombination in prokaryotes and eukaryotes. Students are not admitted to Level III Biological Science units without special permission of the Head of School unless Chemistry CHEM1002 or both CHEM1101 and CHEM1201 have been completed. (Old No. 17.601)

BIOS2031 Biology of Invertebrates
Prerequisite: BIOS1011, and BIOS.1021. Excluded: 45.201

A comparative study of morphology, taxonomy and functional biology of Invertebrate animals. Emphasis is placed on the major groups (Anthropods and Molluscs) and on marine forms. Practical classes and a compulsory field camp illustrate the lecture material. (Old No. 17.722)

BIOS2041 Biometry
Prerequisite: BIOS1011, BIOS1021. Excluded MATH2001, MATH2801, MATH2841, 45.101.

Statistical methods and their application to biological data, including introduction to probability; the binomial, Poisson, normal distributions; student's t, 2 and variance ratio tests of significance based on the above distributions, the analysis of variance of orthogonal and some non-orthogonal designs; linear regression and correlation. Non-linear and multiple regression. Introductory factorial analysis. Introduction to experimental design. Non-parametric statistics, including tests based on 2, the Kruskal-Wallis test, Fisher's exact probability test and rank correlation methods. Introduction to programming in BASIC. (Old No. 17.712)

BIOS2051 Flowering Plants
Prerequisite: BIOS1011 and BIOS1021. Excluded 43.111, 45.111.

This covers basic aspects of plant biology and provides practical skills required in level III units. It is essential for students intending to specialise in the plant sciences. The course follows the development of plants from seedling stage to maturity, examining the structural and environmental controls, and the close relationship between structure and function in major plant systems. The following topics are dealt with in detail: the properties of plant cells and their walls in relation to growth; differentiation and how cells are organised into different tissues; transport systems and the movement of water and photosynthetic products; seed structure, the physiology of germination and its regulation by internal and external factors; primary and secondary growth and its regulation by plant hormones; shoot systems; leaf development; abscissence; adaptation to particular environments; root systems; mineral acquisition and water uptake; root growth and development; interactions of roots with microorganisms and the impact of symbiotic associations.

91
such as mycorrhizas on root structure and physiology; evolution of the land plants; the significance of having an enclosed carpel and the evolution of the gynoeicum. Practical work provides: basic skills in plant anatomy and light microscopy; an introduction to the character states of flowering plant families in the Sydney region; how to use a key to identify a plant; growth and mineral nutrition, including collection of numerical data and a statistical approach to data handling; inoculation of plants with microorganisms; an integrated approach to salt secretion in mangroves (Old No. 17.702)

BIOS2061 Vertebrate Zoology S1 L3 T3
Prerequisite: BIOS1011, BIOS1021. Excluded: 45.301.
A comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement the lecture course. Field excursions as arranged. (Old No. 17.732)

BIOS3011 Animal Behaviour S2 L2 T4
Prerequisites: BIOS2041 and BIOS2031 or BIOS2061. Excluded: 45.122.
An introduction to ethology, the biological study of behaviour. Physiological, ecological, developmental and evolutionary aspects of behaviour are examined as important elements in the analysis of behaviour, particularly social behaviour. Both field and laboratory work are included. (Old No. 17.803)

BIOS3021 Comparative Animal Physiology S1 L2 T4
Prerequisite: BIOS2031 or BIOS2061. Excluded: 45.142
A study of the physiology of invertebrates and vertebrates including the special features of Australian mammals. The systems and functions examined include reproduction, hormones, nerves, blood, circulation, respiration and kidneys with emphasis on the control and integration of organ systems and body functions. (Old No. 17.783)

BIOS3031 Ecological Physiology S2 L2 T4
Prerequisites: BIOS2031 or BIOS2061. Excluded: 45.132.
A study of physiological adaptation to habitat in animals. The problems imposed by the basic physiological characteristics of major animal groups under different environmental conditions are examined, especially osmotic and ionic regulation, oxygen availability, metabolism and temperature regulation accimation. Particular attention is given to Australian fauna and conditions. (Old No. 17.793)

BIOS3041 Plant-Microbe Interactions S2 L2 T4
Prerequisites: BIOS2011 and BIOS2051 or MCR2201.
The relationship between microbes and plant surfaces particularly in the soil environment, rhizosphere organisms, role of microorganisms in mineral acquisition by plants, mutualistic symbioses between roots and microorganisms, dynamics of infection and host invasion, plant pathogen interactions. Examination of fungi in culture and basic fungal taxonomy. Inoculation of plant material to produce symbioses and examination of infection processes, histochemistry and light microscopy. (Old No. 17.833)

BIOS3051 Entomology S1 L2 T4
Prerequisites: BIOS1011, BIOS1021, BIOS2031. Excluded: 45.402, 45.422, 17.8231, 17B232.
Classification, external morphology and internal anatomy of insects, studies on environmental sensory physiology and behaviour i especially reproductive behaviour, social organization and pheromones. Ecology, Chemical, Biological and Physical control of insect pests which attack man, crops or livestock and side effects of pest control methods. Practical work to illustrate the lectures. (Old No. 17.8231/17.8232)

BIOS3061 Environmental Botany S1 L2 T4
Prerequisites: BIOS1011 and BIOS1021. Excluded: 43.142.
The soil and atmospheric environments in which plants live and a study of the interaction of plants with their environment. Energy and mass transfer. (Old No. 17.713)

BIOS3071 Evolution and Population Genetics S1 L3 T3
Prerequisites: BIOS1011 and BIOS1021. Excluded: 45.121.
Current evolutionary theory, emphasizing the population level. Ecological genetics, speciation, evolution of social behaviour, molecular evolution and general evolutionary genetics. Some background in genetics is desirable. (Old No. 17.773)

BIOS3081 Marine Ecology S1 L2 T4
Prerequisites: BIOS2031 or MSCI2001. Excluded: 45.112.
A study of the ocean environment and its effect on the life of marine organisms, together with the effects of human intervention. Emphasis is placed on the biology of fishes, fisheries and aquaculture. Estuarine field studies are an essential component of the course.

Students intending to enrol in this unit should register with the School of Biological Science by 11th January so that field work can be arranged. (Old No. 17.763)

BIOS3091 Phycology and Marine Botany S2 L2 T4
Prerequisite: BIOS2051. Excluded: 43.172, 45.172.
The biology and taxonomy of algae with particular emphasis on marine algae, both macroalgae (seaweeds) and phytoplankton. The biology of marine angiosperms (seagrasses). The ecology of coastal plant communities, rocky coasts and estuarine shores. The commercial uses of algae and their products; algae mariculture. Fieldwork is part of the subject. (Old No. 17.743)

BIOS3101 Plant Community Ecology S2 L2 T4
Prerequisites: BIOS2051 and GEOG1012 and GEOG1031 or BIOS2011. Excluded 43.152.
Recognition and delimitation of plant communities. Ecology of selected Australian vegetation types. Use of numerical methods and application of community concepts to palaeoecology. Field work is an integral part of this course. (Old No. 17.723)
Theoretical and mathematical analysis of the dynamics and stability of ecosystems. Topics in the optimal management of populations. Systems analysis and simulation in ecology. Examination of the dynamics of one, two or more interacting species and the history of the Australian continent, vertebrate and types of vertebrate species in the Australian region. A geographic approach to the current distribution, abundance and types of vertebrate species in the Australian region. Particular emphasis is placed on the basic principles of speciation, the history of the Australian continent, vertebrate adaptations and changes in the distribution and abundance of the Australian vertebrate fauna under the influence of humans. Field excursions as arranged. (Old No. 17.813)

BIOS3111 Population and Community Ecology S1 L2 T4
Prerequisite: BIOS1021 and MATH1032 or both MATH1011 and MATH1021.
Excluded: 45.152.
Excluded: 45.102C.

BIOS3121 Taxonomy and Systematics S1 L2 T4
Prerequisite: BIOS2051. Excluded: 43.112.

BIOS3131 Vertebrate Zoogeography and Evolution S2 L2 T4
Prerequisite: BIOS2061. Excluded: 45.302.

BIOS3141 Ultrastructure and Function of Cells S1 L2 T4
Prerequisite: At least 1 core level II Biological Science subject.
Excluded 43.192, 45.192.

BIOT3011 Biotechnology A S1 L3 T3
Prerequisite: BIOC2312 and MICR2011.

BIOT3021 Biotechnology B S2 L2 T4
Prerequisite: BIOT3011

BIOT3031 Microbial Genetics S1 L2 T4
Prerequisite: BIOS2011, BIOS2021, BIOC2312 and MICR2011.
Excluded: MICR3021.

Level 1V Subjects

BIOS4013/BIOS4019 Biological Science 4 (Honours)
BIOS4023/BIOS4029 Botany 4 (Honours)
BIOS4033/BIOS4039 Zoology 4 (Honours)
Recent developments in biotechnology have resulted in techniques which are widely applied in industrial, clinical, veterinary, agricultural and research laboratories. Many of these techniques have resulted from the development of monoclonal antibodies and the development of gene probes. The course includes: antibody structure; production of monoclonal antibodies, cell fusion, hybridoma selection, culture techniques, purification; analytical techniques employing monoclonal antibodies (RIA, ELISA); therapeutic applications of antibodies, immunotoxins; gene probes; restriction fragment length polymorphisms (RFLP); gene probes for disease detection, identification of bacteria and viruses; forensic application of DNA fingerprinting. Tutorial and practical work to complement the lectures. (Old No. 42.102H)

BIOT4073/BIOT4083 Biotechnology (Honours)
Advanced formal training in selected areas of biotechnology and participation in one of the school's research projects. (Old No. 42.103)

Chemistry Level I Subjects

CHEM1002 Chemistry 1

Prerequisites

<table>
<thead>
<tr>
<th>HSC Exam Score</th>
<th>Range required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 unit Mathematics or 3 unit Mathematics or 4 unit Mathematics and 2 unit Chemistry or 3 unit Science or 4 unit Science or 2 unit Physics</td>
<td>55-100 1-50 1-100 53-100 90-150 1-50 53-100</td>
</tr>
</tbody>
</table>

Note: CHEM1002 is the normal prerequisite for Level II Chemistry.
Undergraduate Study: Subject Descriptions

CHEM1101 Chemistry 1A S1 L3T3
Prerequisites
2 unit Mathematics or
3 unit Mathematics or
4 unit Mathematics

HSC Exam Score
55-100
1-50
1-100

CHEM1201 Chemistry 1B S2 L3T3
Prerequisites CHEM1101 Chemistry 1A

Molecular structure, valence bond theory, hybridization of orbitals, common geometries. Periodicity of physical and chemical properties of common representative elements and compounds. Chemistry of carbon compounds, stereoisomerism; alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, aldehydes, ketones, carboxylic acids and derivatives, amines. Polymers.

Note: The two subjects CHEM1101 and CHEM1201, taken sequentially, are equivalent to CHEM1002.

CHEM1302 Introductory Chemistry F L3T3
Prerequisites
2 unit Mathematics or
3 unit Mathematics or
4 unit Mathematics

HSC Exam Score
55-100
1-50
1-100

Chemistry Level II Subjects

CHEM2011 Physical Chemistry S1 or S2 L3 T3
Prerequisites: CHEM1002 and MATH1042 or MATH1032 or MATH1011 and MATH1021. Excluded 2.002A

Thermodynamics: first, second and third laws of thermodynamics; statistical mechanical treatment of thermodynamic properties; applications of thermodynamics: chemical equilibria, phase equilibria, solutions of nonelectrolytes and electrolytes, electrochemical cells. Kinetics: order and molecularity; effect of temperature on reaction rates: elementary reaction rate theory. Surface chemistry and colloids: adsorption, properties of dispersions; macromolecules and association colloids. (Old No. 2.102A)

CHEM2021 Organic Chemistry F or S2 L3 T3
Prerequisite: CHEM1002. Excluded 2.002B

Discussion of the major types of organic reaction mechanisms eg addition, substitution, elimination, free-radical, molecular
rearrangement within context of important functional groups eg aliphatic hydrocarbons, monocyclic aromatic hydrocarbons, halides, organometallic compounds, alcohols, phenols, aldehydes, ketones, ethers, carboxylic acids and their derivatives, nitro compounds, amines and sulfonic acids. Introduction to application of spectroscopic methods to structure determination. (Old No. 2.102B)

CHEM2031 Inorganic Chemistry and Structure

Prerequisites: CHEM1002. Excluded 2.042C

CHEM2041 Chemical and Spectroscopic Analysis

Prerequisites: CHEM1002 and MATH1042 or MATH1032 or MATH1011 and MATH1021. Excluded 2.002D and 2.003H

General procedures in analytical science, accuracy, propagation of errors, precision. Analytical reaction chemistry, titrimetric and gravimetric analysis. Solvent extraction. Electroanalytical methods. Chromatography. Instrumental aspects of all major spectroscopic methods. Optical spectroscopy, nuclear magnetic and electron spin resonances, mass spectrometry. Sample handling. (Old No. 2.102D)

Chemistry Level III Core Subjects

CHEM3011 Physical Chemistry

Prerequisites: PHYS1002, CHEM2011, CHEM2031 and CHEM2041. Excluded 2.013A

CHEM3021 Organic Chemistry

Prerequisite: CHEM2021. Excluded 2.003B

Heterocyclic Chemistry: synthesis and reactions of the following heteroaromatic systems; pyridine, quinoline, isoquinoline, pyrimidine, pyrrole, furan, thiophen, indole, imidazole; examples of naturally occurring alkaloids where relevant. Alicyclic Chemistry: stereochemistry of acyclic systems; classical and nonclassical strain in cyclic systems; stereochemistry and conformation of monocyclic and polycyclic compounds; synthesis, reactions and rearrangement of monocyclic compounds including stereochemical selectivity; transannular reactions in medium rings; synthesis and reactions of fused and bridged polycyclic systems; examples of steroids and terpenes where relevant. Structure Determination: application of spectroscopic methods (eg nuclear magnetic resonance, mass spectrometry) to determination of organic structures. (Old No. 2.103B)

CHEM3031 Inorganic Chemistry

Prerequisite: CHEM2031. Excluded 2.003D

Transition metal chemistry: bonding theory; energies and population of d-orbitals and their correlations with stereochemistry, thermodynamic properties, spin states; theory and applications of magnetism; theory and applications of electronic spectra; stabilities of metal complexes; stabilisation of oxidation states; metal carbynols; descriptive chemistry of transition metals; special characteristics of second and third transition series metals; Lanthanide elements: lanthanide contraction and its consequences: electronic configurations and oxidation states; spectral and magnetic properties; stabilities of complexes; separation. p-block elements: the inert pair effect; bonding, structure, and reactivity of representative compounds; halogen chemistry. (Old No. 2.103C)

CHEM3041 Analytical Chemistry

Prerequisite: CHEM2041. Excluded 2.003D

Instrument design, theory and operating principles for the following instrumental areas: electrochemical, atomic and molecular spectroscopy, chromatography, mass spectrometry, automated analysis, thermal analysis. (Old No. 2.103D)

Chemistry Level III Elective Subjects

CHEM3111 Kinetics and Mechanism of Chemical Change

Prerequisite: CHEM3011. Excluded 2.053A

Molecular collision dynamics, reactions in molecular beams, energy disposal and equilibration in chemical reactions gas phase energy transfer. Mechanisms and kinetic applications of lasers. Theories of bimolecular and unimolecular gas reactions, potential energy surfaces. Free radical reactions, chain reactions, explosions, mechanisms in pyrolysis and oxidation of hydrocarbons, polymerisation reactions, catalytic mechanisms. Experimental methods for studying fast reactions. Reactions in solution: structure I reactivity relationships. (Old No. 2.113A)

CHEM3121 Synthetic Organic Chemistry

Prerequisite: CHEM3021. Excluded 2.013B

96
Synthetic strategy: Principles of planning or organic synthesis; disconnection approach to representative syntheses of compounds of theoretical and biological interest; use of protecting groups. (Old No. 2.113B)

CHEM3131 Advanced Inorganic Chemistry S2 L2 T4
Prerequisite: CHEM3041. Excluded 2.013C.
Spectroscopy and magnetism of transition metal compounds; applications of infrared, electronic and Moessbauer spectra; magnetic properties of polynuclear complexes; Inorganic reactivity; rates and mechanisms of ligand substitution and electron transfer; molecular rearrangements; reactions of co-ordinated ligands and activation of co-ordinated molecules; excited state reactivity. Bio-inorganic chemistry: the occurrence and co-ordination of metals in biology; heme proteins and dioxygen coordination redox and protelytic metalloenzymes; metal storage and transport proteins; Innovations and technological developments; accounts of current advances, including topics such as inorganic polymers, inclusion compounds, zeolites, electronically delocalised compounds, and metal clusters. (Old No. 2.113C)

CHEM3141 Advanced Instrument Analysis S2 L2 T4
Prerequisite: CHEM3041. Excluded 2.013D.
Advanced approaches to problem solving in analytical science using modern instrumental techniques and microcomputers for the analysis of complex organic, biological, inorganic and environmental materials. Sample selection procedures; extraction and recovery of major, minor, trace and ultra-trace constituents; origins, identification and elimination of interference effects. Selection and optimisation of instrumental parameters; theory of separation strategies for identification and quantitative determinations. Networking of computer-controlled workstations for laboratory automation and management. (Old No. 2.113D)

CHEM3211 Biophysical and Interfacial Chemistry S2 L3 T3
Prerequisite: CHEM2011. Excluded 2.033A.
Interplay of interfacial, colloidal and macromolecular science. Physical properties of macromolecules. Determination of molecular size from gel permeation chromatography, diffusion, sedimentation, viscometry, osmometry and light scattering. Spectroscopic properties: circular dichroism, optical rotary dispersion and X-ray diffraction; conformation of macromolecules; Helix random coil transitions. The use of modern spectroscopic techniques in surface chemistry including low energy electron diffraction, Auger electron, UV and X-ray photo-electron spectroscopy; electron energy loss, ion scattering and secondary ion emission at the gas solid interface. Surface free energy and related thermodynamic concepts applied to the study of solutes at interfaces; wetting behaviour, capillarity, detergency, mineral flotation, micelles and bio-physical membranes. Adsorption and its significance in resulting biological and synthetic catalytic processes. (Old No. 2.123A)

CHEM3221 Biological Organic Chemistry S2 L2 T4
Prerequisite: CHEM3021. Excluded 2.023B.
Interdisciplinary aspects of selected classes of organic compounds of biological significance. Natural polymers: Synthesis and properties of proteins, poly-saccharides, nucleic acids. Pharmacological chemistry: Discussion of structural and synthetic aspects of several selected drugs; structure-activity relationships, metabolism, methods of analysis. Herbicides, fungicides, pesticides. Synthesis, degradation and mode of action of selected compounds. (Old No. 2.123B)

CHEM3231 Nuclear and Radiation Chemistry S2 L2 T4
Prerequisite: CHEM2011 or CHEM2021 or CHEM2031 or CHEM2041. Excluded 2.033E.
Radioactivity, isotopes, fundamental atomic particles, nuclear structure and properties. Properties of nuclear radiations, their interaction with matter and their detection and measurement. Nuclear instrumentation. Factors to be considered when making radioactive measurements. Radioactive decay equation, halflife and radioactive equilibrium situations. Nuclear reactions initiated by neutrons. Effect of nuclear radiation on matter, ionisation, free radical formation, effect on living cells, contamination and radiation hazards, factors affecting radiotoxicity, shielding and inverse square law calculations. Applications of isotopes as tracers and radiation sources factors associated with selection and application. Radioactive dating methods. The chemistry of the reactor fuel cycle. (Old No. 2.113E)

CHEM3311 Environmental Chemistry S2 L3 T3
Prerequisites: CHEM2011 and CHEM2041. Excluded 2.043A.
Physico-chemical aspects of the environment. Factors affecting the chemistry of rivers, estuaries, oceans, surface and sub-surface water. Photolysis reactions in the atmosphere, primary and secondary pollutants. Distribution of elements, nutrient elements, carbon and oxygen in ecological systems (chemical models of these cycles). Analysis of naturally occurring species and pollutants. Requirements, validation and performance monitoring of standard analytical procedures. (Old No. 2.123E)

CHEM3321 Applied Organic Chemistry S2 L2 T4
Prerequisite: CHEM3021. Excluded 2.003L.
Discussion at advanced level of the chemistry of selected commercially important groups of organic materials with emphasis on reaction mechanisms and model systems. Polymerization processes and synthetic polymers: Thermal and oxidative polymerization, treatment of initiators, chain transfer agents, retarders; sulfur-clefin reactions. Pigments and dyes: Basis of colour in organic compounds, azo, carbonyl, cationic dyes, colour photography; synthetic and natural pigments, eg phthalocyanines, carotenes, flavones, anthocyanins; fluorescent whiteners. Oxidation and reduction processes: Oxidation of allylic compounds, phenols, sulfur compounds etc; catalytic dehydrogenation and hydrogenation; hydrde and dissolving metal reductions. (Old No. 2.133B)

CHEM3510 Quantum Chemistry and Symmetry S2 L1 T1
Prerequisites: CHEM2031. Excluded 2.023A.
Molecular orbital theories (eg Hückel, ab initio; SCF) and properties derivable therefrom; choice of basis functions. Group theory. Symmetry operations. Reducible and irreducible representations; applications of character tables eg direct products, selection rules. Correlation diagrams for chemical reactions, and for bonding. Applications to vibrational spectroscopy. (Old No. 2.1813)

CHEM3530 Molecular Structure S2 L1.5 T1.5

Determination

Prerequisites: CHEM2031 and CHEM2041.

The theory and practice of 1. crystal structure determination by x-ray diffraction, 2. multinuclear NMR spectroscopy, and 3. mass spectrometry, in the determination of molecular structure. Experimental requirements and procedures; instrumentation. Interpretation of results; applications to contemporary chemical systems; examples from current research problems. Databases and computing. Evaluation of complementary information from these techniques about molecular structure, chemical bonding, and chemical reactivity. (Old No. 2.1833)

CHEM3630 Organometallic Chemistry S2 L1 T2

Prerequisites: CHEM2021 and CHEM2031. Excluded 2.003M.

Preparation, structure and reactions of transition metal and main group organometallic compounds; metal vapour syntheses. Structure and bonding of ligands; ligand stabilisation and activation; novel effects of ligand bulk and geometry. Catalytic applications of organometallic compounds. (Old No. 2.1843)

CHEM3640 Computers in Chemistry S2 L1 T2

Prerequisites: CHEM2011 and CHEM2041.

Computing techniques introduced through specific chemical applications; simple and complex equilibria, rate equations, analysis of multicomponent mixtures, instrumental calibration curves. Treatment of transient signals. Specific case studies selected from spectroscopy, chromatography, and electrochemistry. Chemical databases and the literature, spectroscopic databases. (Old No. 2.1823)

Level IV Subject

CHEM4003/CHEM4103 Chemistry 4 (Honours)

An honours program consisting of selected series of lectures on advanced topics in Chemistry and a research project. Students intending to seek admission to this program should consult the School for reselection of units in the earlier years and apply to the Head of the School for consideration for admission at the end of Year 3 (or completion of requirements for the pass degree). (Old No. 2.004)

Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further information regarding the following subjects see the Faculty of Applied Science and Engineering Handbooks.

CHEM1806 Chemistry 1EE

Prerequisites:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-100</td>
<td>2 unit Mathematics or</td>
</tr>
<tr>
<td>1-50</td>
<td>3 unit Mathematics or</td>
</tr>
<tr>
<td>1-100</td>
<td>4 unit Mathematics</td>
</tr>
</tbody>
</table>

CHEM1807 Chemistry 1ME

Prerequisite: As for CHEM1806.

A treatment of chemistry which illustrates the application of the principles of chemistry to problems of concern to mechanical engineers. Topics: chemistry of materials, thermochemistry, chemical kinetics and equilibrium, radioactivity and nuclear power, electrochemistry and corrosion of metals. Introduction to organic chemistry, structure and properties of polymers, fuels and lubricants. Surface chemistry. (Old No. 2.951)

CHEM1808 Chemistry 1CE

Prerequisites: As for CHEM1806.

CHEM1809 Biological Chemistry

for Optometry Students

Prerequisites:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-100</td>
<td>2 unit Mathematics or</td>
</tr>
<tr>
<td>1-50</td>
<td>3 unit Mathematics or</td>
</tr>
<tr>
<td>1-100</td>
<td>4 unit Mathematics</td>
</tr>
</tbody>
</table>

CHEM2828 Organic and Inorganic Chemistry for Chemical Engineers

Prerequisites: CHEM1002.

Discussion of selected types of organic reactions (e.g., addition, substitution, elimination, free radical, rearrangement) to provide a broad cover of the chemistry of aliphatic hydrocarbons, halides, alcohols, ethers and amines. Addition reactions of aldehydes and ketones. Substitution reactions of acid derivatives. Chemistry of benzene and its derivatives with a brief extension to include napthalene chemistry. Survey of geometrical structures, energetics, bonding, reactions and reactivity, spectroscopic and magnetic properties of representative inorganic compounds, including selected main group compounds, compounds of selected transition metals and rare earth elements, and coordination complexes. Applications of inorganic chemistry. (Old No. 2.002E)

CHEM2929 Fundamentals of Biological and Agricultural Chemistry

Prerequisites: CHEM1002. Excluded 2.013L BI0C2312.

Aspects of the chemical and physical properties of materials important in biological systems. Methods of separation, of purification and estimation, and correlations of structure with reactivity. Methods of separation and identification, such as gel permeation, discussed as appropriate to each topic. Significance of isomerism in biological systems, optical and geometrical, absolute configuration. Amino acids, peptides and introduction to protein structure. Relevant properties, acid base properties, pK values, zwitterion, isoelectric points. Simple peptide synthesis. Treatment of carbohydrates, establishment of structures, reactivity. Chemistry of monosaccharides, disaccharides and polysaccharides. Methods of analysis, chemical and physicochemical. Fats, correlation of properties with saturated and unsaturated fatty acid composition. Structural chemistry of fatty acids. Reaction of unsaturated fatty acids, urea complexes. Detergents. Trace elements in biological systems. Chemistry of common heterocyclic systems with emphasis on molecules of biological importance. (Old No. 2.003J)

CHEM3229 Organic Chemistry

Prerequisite: CHEM2021.

The spectroscopic identification of organic compounds, free radical chemistry and electro-organic processes, various aspects of the organic industrial processes such as industrial synthesis based on petrochemicals, and organometallic reactions of industrial interest. Selected topics from the dye stuff, pharmaceutical and agricultural industries discussing syntheses and reactions including degradation. (Old No. 2.030)

CHEM3926 Instrumental Methods of Food Analysis

Other techniques Gas liquid chromatography. High pressure liquid chromatography. Electrophoresis. Selective ion electrodes. Differential scanning calorimetry. Surface colour measurements. (Old No. 2.0433)

CHEM3929 Food Chemistry

Treatment of the following aspects of food chemistry.

Water

The concept of free and bound water, mechanisms of water binding in foods, measurement of free, bound and total water. Proteins

Chemical properties of different protein types in foods, rheological properties, chemical and thermal coagulation, chemical modification of proteins, methods of analysis: kjeldahl, chlorimetric, NIR.

Carbohydrates

Minerals in foods

Presence and chemical importance of minerals in foods. Effects of minerals on food properties (Ca++, Fe++, Mg+1 Inter alia), electrochemistry.

Vitamins

Food flavour chemistry

Chemistry of essential oils and volatile food flavour components. Techniques of food flavour research.

Pigments

Chemical structure of natural and synthetic pigments in plant and animal foods. Mechanisms of pigment breakdown, effects of oxidation and pH. (Old No. 2.043B)

Community Medicine

CMED8201 Population Genetics

Prerequisite: one unit of statistical methods, or theory, as approved by the Head of School.

The genetic structure of populations: demographic structure, genetic relationships, mating systems random and assortative mating, inbreeding, sexual selection, finite populations, systematic forces selection, mutation, migration, genetic distance between populations, genetic load, stable populations, molecular population genetics, evolutionary trees; observed human population structures; computer methods. (Old No. 79.201)
Communications.

COMP1011 Computing 1A S1 or S2 L3 T3

Expansion of the functional approach to computing in COMP1011. Introduction to procedural and logic programming styles. Data structure implementation. Control structures: recursion and iteration. The software development process. Program efficiency and complexity - time and space analysis. Practical experience in using a procedural language. The basic structure of a computer, the layered model of a computer, instruction execution, assembly language, computer building blocks, the function of the operating system. (Old No. 6.712)

COMP1021 Computing 1B S1 or S2 L3 T3

COMP2011 Data Organisation S1 or S2 L3 T2
Prerequisite: COMP1021. Excluded: 6.641.

Data types and data structures: abstractions and implementations. Data representation: logical and physical. Files and file organisation, database structures Knowledge representation. Concepts of state, scope and binding within programs. Storage policies (VM, caching), addressing and accessing methods. Analysis of performance. (Old No. 6.721)

COMP2021 Digital System Structures S1 or S2 L3 T2
Prerequisites: COMP1021 or COMP1821. Excluded: ELEC2012.

Analysis, design, and realisation of modest digital subsystems, and the organisation and design of major subsystems in a model computer: data path, instruction decode, address generation, arithmetic algorithms, and the fetch-execute cycle of a typical computer. Timing, minimisation techniques, switch and gate logic, combinational and sequential circuits, flip-flops, hardware description techniques, circuit schematics and simulation tools.

The translation of higher level programming abstractions and data structures to a real computer using a macro assembler as the target; study of the relationships between a hardware model, a programming model, and the I/O subsystem of a computer. An understanding of the inter-relationships between the fundamental layers of a modern digital computer system. (Old No.6722).

Electrical Engineering and Computer Science

CMED8202 Human Genetic Analysis S2 L2 T3
Prerequisites: one unit of genetics and one unit of statistical methods, or theory, as approved by the Head of School.

Principles and methods of human genetics: design of surveys, including twin and family studies; estimation and applications of genic and genotypic frequencies, selective values, mutation and migration rates, coefficients of kinship, inbreeding and assortative mating, effective population sizes, recombination fractions and heritabilities; segregation analysis; risks of recurrence of disease; genetical consequences of human intervention; computer methods. (Old No. 79.202)

CMED8302 Biochemical Genetics of Man S2 L2 T4
Prerequisite: BIOC2312.

Inherited variation of blood group antigens, serum proteins and red-cell enzymes, their possible selective roles, and their application to the study of differences between and within populations. Inherited DNA variation or restriction fragment length polymorphism, its application to studies of genetic diseases and of human populations. Application of statistical techniques to analyzing population data. Laboratory techniques to illustrate principles and uses of selected polymorphic systems. (Old No. 79.302)

CMED8303 Human Genetics S1 L2 T4
Prerequisites: BIOC2312.

The principles and concepts of human genetics, appreciation of the methods used to study the nature and extent of genetic differences, present and future applications, of human genetics; mechanisms of inheritance and gene expression, gene linkage and patterns of inheritance; population genetics with examples of genes of importance in human disease and the immune system; principles and applications of cytogenetics; modern molecular techniques for human gene mapping with discussion of the implications for gene expression, disease and the prospects of gene therapy; genetic fingerprinting and current ethical issues in human genetics.

COMP3111 Software Engineering

Informal specification: Data flow diagram methodology, analysis, design, testing, management and documentation of software. Formal specification: set theory, logic, schema calculus, case studies. The Z specification notation. Managing the project lifecycle. CASE tools. A major group project will be undertaken. (Old No.6.731)

COMP3121 Algorithms and Programming Techniques

COMP3131 Parsing and Translation

This subject covers some of the common theories and techniques used for syntax-directed parsing and translation. These techniques are adequate for parsing many well-structured objects encountered in computing, but are not intended for natural language parsing. Grammars: terminal symbols, non-terminal symbols, productions, phrase structure grammars, Chomsky classification, context-free grammars, logic grammars. Parsing: LL(k) grammars, top-down parsing; LR(k) grammars, bottom-up parsing; parser generators. Translation: action symbols, translation grammars, syntax-directed translation, attributed-grammars, abstract syntax, un parsing. Lexical analysis: finite-state grammars, finite-state machines, regular expressions, lexical analyzer generators. (Old No.6.735)

COMP3211 Computer Organisation and Design

Topics will be chosen from: Advanced Design Strategies: combinational and sequential circuit design and realisation; synchronisation, communication and arbitration; register transfer specification (Modal). Arithmetic Design Strategies. Memory Organisation: physical and virtual address space; memory hierarchy; operating system and compiler support; memory mapping and caching. Communications Organisation: shared memory, memory mapping; network systems. Processor Design: the instruction pipeline; hardwired and micro-programmed control" instruction sets; RISC and object-based processor organisation. Error Detection/Correction and Fault Tolerance: testing and testability; faults, errors, and failures; coding theory; diagnosing and correcting errors. (Old No.6.812)

COMP3221 Microprocessors and Interfacing

The concept of a microprocessor system, busses, address spaces, memory devices, bus timing, bus standards, the VME bus, I/O device interfacing, polling, interrupts, DMA interfaces, the 68000 processor family, the C programming language, device drivers, the device driver software environment, other microprocessors, advanced topics. Laboratory work involves interfacing to and programming MC68000-series microprocessor-based systems. (Old No.6.732)

COMP3231 Operating Systems

Services provided by operating systems. System calls and user commands (command languages, menus, etc.) Virtual machines. Efficient techniques and methods of process management, memory management, input/output and communication handling. Performance evaluation and tuning. Protection and security. (Old No.6.734)

COMP3311 Database Systems

The relational database model, object data bases, 4GL query languages, database design and implementation, deductive databases. Concurrency, optimisation, distribution. A major project involving both design and realisation is included. (Old No.6.730)

COMP3321 Business Systems Organisation

Review of the organisation of accounting systems - journals, accruals, merchandising. The structure, design, development, and integration of various business systems selected from the following: general ledger; financial reporting; debtors; creditors; stock control; invoicing; purchasing and receiving; fixed assets; payroll. Systems for generating application systems and packages. User interfaces. File specifications and B-tree index files. Distributed commercial systems. The partial implementation of a business system is undertaken as a group project. (Old No.6.7310)

COMP3331 Computer Networks and Applications

privacy, integrity, synchronisation, recovery from failures. Studies of network applications, e.g. file transfer, electronic mail, remote procedure calls, remote program execution, distributed file systems, distributed computing, electronic funds transfer, windowing systems. (Old No.6.7311)

COMP3411 Artificial Intelligence S1 L2T3
Prerequisites: COMP2011. Excluded: 6.666G.

COMP3421 Computer Graphics S2 L3T2
Prerequisites: COMP2011. Excluded: 6.666G.

Graphics hardware: raster, random scan, and storage tube displays, graphical input devices. Scan conversion of lines and polygons. Basic 2D transformations, windowing, clipping, viewports, display segmentation. The user interface for graphics. Basic 3D transformations, perspective transformation, 3D clipping, hidden line and surface removal, shading, texture maps and lighting. Hierarchical modelling of objects, modelling curves and surfaces with splines and fractals. Existing graphics standards: X, GKS, PostScript, CGM, PHIGS, RenderMan. (Old No.6.737)

COMP3511 Human-Computer Interaction S2 L3T2
Prerequisites: COMP2011. Excluded: 6.006G.

Not offered in 1991.

Communication between computing systems and their users, with an emphasis on applications related to high-level query languages and searching techniques. Cognitive issues will figure prominently in the treatment. Topics include: theories and principles of interface design, interaction styles, interactive devices, interface and language testing, the null value problem natural language systems. (Old No.6.739)

ELEC1011 Electrical Engineering 1 S2 L3 T3
Co-requisite: PHYS1961 or equivalent.

ELEC2010 Circuit Theory S1 L2 T.5
Prerequisites: ELEC1011, MATH1032. Co-requisite: MATH2620 or MATH2520.

Dynamic response of linear circuits: 1st and 2nd order circuits with DC sources, introduction to higher order circuits. Sinusoidal steady state operation: phasors, Impedance and admittance; dynamic response of circuits driven by sinusoidal sources, concepts of power electronics; linearity, network theorems; resonance, bandwidth, and quality factor. Two-port networks: parameters, circuits as filters. Power in steady-state circuits; average and reactive power, power factor, power factor correction. Three-phase circuits: balanced and unbalanced steady-state operation; real and reactive power in balanced circuits, transient analysis. (Old No. 6.821)

ELEC2020 Analog Electronics S2 L2 T.5
Prerequisites: ELEC2010, PHYS2981.

Operating principles and terminal characteristics of PN diodes, bipolar and field effect transistors, and thyristors. Small signal models of devices, including h-parameter model. Analysis and design of low-frequency Class-A amplifiers, including choice of biasing method. (Old No. 6.823)

Economics

ECOH1301 Australia in the International Economy In the 20th Century S1 or S2 L2 T1.5

HSC minimum mark required

Contemporary English 60
2 unit English (General) 60
2 unit English 53
3 unit English 1

The international economy at the end of the 19th century: trade, factor flows, and payments arrangements. Problems of the international economy between the wars. The impact of World War II and the international economy in the post-war era. Australian economic development and its relationship with the international economy; economic fluctuations; problems of the inter-war period; growth of manufacturing; government policy and action; the importance of the mining industry; economic development and the distribution of income and wealth. (Old No. 15.101H)

ECON1101 Microeconomics 1 S1 or S2 L2 T1.5 or L2 T2

HSC minimum mark required

Contemporary English or 60
2 unit English (General) or 60
2 unit English 53
3 unit English 1

Economics as a social science: scarcity, resource allocation and opportunity cost. An introductory analysis of consumer behaviour. The economics of firms and markets: production and costs; the classification and analysis of markets. Efficiency
concepts and market failure. The gains from international trade and the impact of trade restrictions. Economic growth and structural change. (Old No. 15.101E)

ECON1102 Macroeconomics 1 S1 or S2 L2 T1.5 or L2 T2
Prerequisite: ECON1101.
Introduction to the analysis of aggregate output, employment and economic growth and their relationship to the policy issues of unemployment, inflation and the balance of payments. Social accounting and aggregate income and expenditure analysis. Introduction to macroeconomic models of income determination; consumption and investment functions. The role of money and financial institutions; Interactions between goods and money markets in equilibrium and disequilibrium situations. Analysis of recent Australian macroeconomic experience. (Old No. 15.102E)

ECON2101 Microeconomics 2 S1 L2 T2
Prerequisite: ECON1102, ECON1203. Excluded: ECON2121, ECON2103.
Choice theory, including Intertemporal choice, labour supply. Extensions of price theory. The theory of production, costs and supply. Market structures including oligopoly models. Introduction to general equilibrium and welfare analysis. Externalities. (Old No. 15.201E)

ECON2102 Macroeconomics 2 S2 L2 T2
Prerequisite: ECON1102, ECON1203. Excluded: ECON2104, ECON2122.
Models of aggregate income determination in open economies. Theories of aggregate economic behaviour with respect to consumption and Investment expenditures and financial transactions. Balance of payments and exchange rate analysis. Theories of Inflation and unemployment. Introduction to dynamic analysis. Theories of growth and cycles. (Old No. 15.202E)

ECON2103 Applied Microeconomics S1 or S2 L2 T1.5
Prerequisite: ECON1102. Excluded: ECON2101, ECON2201.
Structural change in the Australian economy. The effect of different market structures on firms and consumer welfare. The consequences of market failure and the effects of government regulation. Investment decisions in the public and private sectors, including the estimation of future benefits, revenues and costs, the measurement of consumer and producer surplus. The economics of non-renewable and other resources. Australia's international trade and Investment and the effects of restrictions on international trade and investment. (Old No. 15.203E)

ECON2104 Applied Macroeconomics S1 or S2 L2 T1.5
Prerequisite: ECON1102. Excluded: 2101, ECON2102.
Economic growth and fluctuations in Australia. Inflation, unemployment and balance of payments issues. Fiscal, monetary, exchange rate and Incomes policies. Changes in the structure of the Australian financial system and its links with the international monetary system. Effects of restrictions on capital markets. (Old No. 15.204E)

ECON3101 Microeconomics 3 S1 L2 T2
Prerequisite: ECON2101, ECON2102 and ECON2206. Excluded: ECON3122.
Extensions of microeconomic theory; general equilibrium approaches to economic analysis; International trade including analysis of trade restrictions and distortions. Limitations of the general competitive model; uncertainty and risk with applications to modern theories of corporate behaviour. (Old No. 15.301E)

ECON3102 Macroeconomics 3 S2 L2 T2
Prerequisite: ECON2101, ECON2102 and ECON2206. Excluded: ECON3122.

Banking and Finance

FINS2612 Australian Capital Markets S1 or S2 L2 T1
Prerequisite: Nil.
As for FINS5512. See Graduate Study Subject Descriptions. (Old No. 98.864)

FINS2613 Business Finance 2A S1 or S2 LT3
Prerequisite: ACCT1 S11. ECON1102 and MATH1032.
The essential aspects of financial decision-making in business including: factors influencing capital expenditure decisions; alternative approaches to valuation; factors affecting the formulation of the capital structure; Influence of the capital market environment. (Old No. 98.613)

FINS2614 Business Finance 2B S1 or S2 LT1
Prerequisite: FINS2613. Excluded: FINS2714.
Financial decision making within the framework of capital market theory. Includes diversification, risk and return, determinants of risk, efficient market hypothesis with emphasis on Australian evidence, capitalization changes and performance measures, takeovers and mergers. (Old No. 98.614)

FINS3615 Business Finance 3 S1 L3
Prerequisite: FINS2614. Excluded: FINS3715.
Theory and analytical techniques relevant to investment analysis and management. Includes analysis and valuation of securities, properties of accounting numbers, portfolio theory and asset pricing models, capital asset returns and Information, bond ratings and yields and financial distress predictions. (Old No. 98.615)
GEOG1012 Land Studies
Concepts, significance and problems of land. Land as territory and land as resource in Australia. Constraints imposed by the physical environment on human occupancy and settlement patterns, the variety of conflicts that result and management strategies. Practical work involves study of the ways in which the attributes and characteristics of land are displayed on maps, air-photos and satellite imagery, and introduces these as basic Information sources and research tools in applied geography. (Old No. 27.010)

GEOG1031 Environmental Processes
Excluded: GEOG1051, 26.424.
Essential and continuing links between components of the physical environment. Movement of energy and matter in the physical environment, including consideration of Earth's energy balance, the hydrological cycle, nutrient cycles in vegetation and soil, imbalances leading to land degradation and instability, alterations to and movement of materials. (Old No. 27.030)

GEOG1043 Data Processing Systems
Measurement, processing and display of spatial data. Basic knowledge and skills for using the University's computing system effectively; the use of computer software packages in geographic enquiry; exploratory data analysis and graphic information processing; and the presentation of data in tables, graphs and diagrams. (Old No. 27.040)

GEOG1051 Global Environmental Problems and Processes
Prerequisite: Nil
The subject outlines the principles and processes necessary to appreciate the physical background behind major global-scale environment problems. Principles and processes include the linkages between the lithosphere, hydrosphere and biosphere, atmospheric circulation, energy and radiation balance and ecosystem function. Problems covered are the issues of desertification, deforestation, 'greenhouse', ozone depletion, energy conservation and pollution. (Old No. 27.818)

GEOG1062 Australia and Global Development
Prerequisite: Nil
The main concern is the progressive integration of Australia into global capitalism and developmental and environmental consequences of this process in Australia and Pacific Rim countries and adjacent territories. Topics covered include colonial and dependent development in Australia and resource use; applications of development theory as applied to core-periphery relationships between world financial centres and Australia, and between Australia and Pacific Island territories; transnational organisations and technology transfer and investment in Australia and Pacific countries; the relationship between changing trade patterns, production and development in Australia and Pacific Rim countries; Australia in a future world. (Old No. 27.819)

GEOG2013 Geographical Data Analysis
Prerequisites: Both GEOG1012 and GEOG1031 or both GEOG1051 and GEOG1062. Excluded: GEOG2093, GEOG3221.
Inferential statistics and hypothesis testing in the analysis of spatial data. Methods of analysing categorical data, identifying spatial correlation and associations, and multivariate methods applicable to topics in physical and economic geography. (Old No. 27.050)

GEOG2021 Introduction to Remote Sensing
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts or equivalent as approved by the Head of School.
Principles and technical aspects of remote sensing. Forms of available imagery, their utility and facilities for interpretation. Basic airphoto interpretation techniques relevant to environmental assessment. Introduction to principles of the electro-magnetic spectrum, photometry and radiometry. Sensor types, image formation and end products associated with selected satellite programs, including Landsat. Land-cover and land-use interpretation procedures in visual image analysis. Basic procedures in machine-assisted image enhancement. (Old No. 27.175)

GEOG2032 Geomorphology
Hillslope materials, processes and form; models of slope and landscape evolution. Fluvial geomorphology including water movement and sediment transport in river channels, hydraulic geometry, channel patterns, river types, flood plain formation, alluvial fans, river channel changes. Erosional and depositional landforms in coastal, arid, humid and glacial environments. Field work in fluvial and hillslope geomorphology, and laboratories on field measurements of geomorphic processes, sediment analyses and airphotograph interpretation. (Old No. 27.183)

GEOG2081 Australian Environmental Problems
Prerequisite: GEOG1031 or GEOG1051 or GEOL1201.
The nature of the Australian environment is outlined and selected major environmental problems are considered. The nation's landforms, soils and vegetation are described and considered in relation to the patterns of climate and land-use to appreciate how the problems of drought, bushfires, salinisation, soil acidification, loss in species diversity and land degradation arise. Options for abatement and tolerance are discussed as appropriate. (Old No. 27.828)

GEOG2091 Australian Social and Economic Landscapes
Not offered in 1991.
Prerequisite: GEOG1012 or GEOG1062.
Analysis of the principal factors and forces shaping the contemporary social and economic landscapes of Australia and the problems arising. Themes include Australia's changing population profile and distribution, the changing face of Australian cities, regional disparities in social and economic well-being, changing patterns of employment and industrial location, and the declining fortunes of rural Australia. Planning and policy responses to the problems of spatial
change and reorganisation are emphasised and future scenarios addressed.

GEOG2093 Geographic Methods
Prerequisites: Both GEOG1012 and GEOG1031 or both GEOG1051 and GEOG2082. Excluded GEOG2013.

Statistical procedures and field methods used in both human and physical geography. Includes: measures of dispersion; measures of spatial distribution; samples and estimates; correlation and regression; tests for distribution in space; data collection and analysis; field observations. Three days field work is a compulsory part of the subject and students will incur some personal expenses with this. (Old No. 27.813)

GEOG2102 Environmental Issues In Australia
Prerequisite: GEOG1051 or GEOG1062.

Not offered in 1991.

Selected issues in Australia demonstrating the impacts of economic growth and development on the natural environment including a consideration of the ways in which economic forces and political factors affect the exploitation and carrying capacity of natural systems. Case studies taken from tourist developments, forestry, agriculture and land degradation, suburbanization, water quality and use, and power generation. Emphasis is placed on the philosophical and factual arguments for environmentally sound planning and resource management practices.

GEOG3000 Field Project 3
Prerequisites: One of GEOG3011, GEOG3021, GEOG2032. This prerequisite does not apply to students in Course 3010.

A five days field project normally undertaken during a recess, designed to support teaching in Year 3 (Level III) subjects in physical and economic geography and to demonstrate the application of field methods in problem solving and research projects. Students will incur some personal expenses in connection with this subject, which is a compulsory part of the course. (Old No. 27.300)

GEOG3011 Pedology
Prerequisites: GEOG1031 or GEOG1051 and any one of CHEM1292 or CHEM1492, or both GEO1101 and GEO1201 or both BIOS1011 and BIOS1021.

Methodology of pedogenic studies and the application of these studies to the understanding of soil-landform relationships. Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and behaviour, soil solution chemistry, soil water movement and the application of these properties to elements of soil mechanics. Soil properties in natural, rural and urban landscapes, including assessment of soil fertility, swelling characteristics, dispersibility, erodibility and aggregate stability. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment. Statistical analysis of soil data and its application to mapping. The use of soil micromorphological and mineralogical studies in pedology. (Old No. 27.133)

GEOG3021 Biogeography
Prerequisites: GEOG1031 or GEOG1051 or both BIOS1011 and BIOS1021.

GEOG3032 Remote Sensing Applications
Prerequisites: GEOG2021 or SURV8711.

Spectral characteristics of natural phenomena and image formation. Ground truthing, collection and calibration. Introduction to computer classification procedures. Multitemporal sampling procedures, image to image registration and map to image registration. Major applications of remote sensing in the investigation of renewable and non-renewable resources to include: soils, geology, hydrology, vegetation, agriculture, rangelands, urban analysis, regional planning, transportation and route location and hazard monitoring. (Old No. 27.176)

GEOG3042 Environmental Impact Assessment
Prerequisites: GEOG1031 or GEOG1051 or by Permission from Head of School.

Rationale and basic objectives: standardized types of environmental impact assessment (EIA), including matrix approach, adopted methods of EIA in Australia. Frequently used assessment and predictive techniques for meteorological, hydrological, biological, socio-economic impacts. Techniques of impact evaluation in terms of socio-economic criteria. Environmental decision making and planning under conditions of uncertainty. Case studies exemplifying procedures, techniques and issues. Trends, changes and possible future developments in EIA. Practical exercises representing components of typical EIAs. (Old No. 27.192)

GEOG3051 Soils and Landforms
Prerequisite: GEOG3011 or GEOG2032 or GEOG2081 or by permission of Head of School.

GEOG3062 Environmental Change S2 L2 T2
Prerequisite: Successful completion of a Year 2 Programme in Applied Science, Science, or Arts or equivalent as approved by the Head of School.

The nature of environmental change on the land, oceans, biosphere and atmosphere. Evolution of the continents, oceans, life and atmosphere. Techniques for environmental reconstruction and chronology building. Quaternary climatic change and modelling. Human impact on the atmosphere and climatic consequences. (Old No. 27.223)

GEOG3122 Geographic Information Systems S1 L2 T2
Prerequisite: GEOG3161 or by permission of Head of School. This prerequisite does not apply to students in Course 3010.

An introduction to information systems of particular relevance for geographers with special reference to computer-based systems for resource evaluation. Case study evaluation, application of the MAP and other GIS software. (Old No. 27.652)

GEOG3152 Social Welfare and Urban Development S1 L2 T3
Prerequisite: GEOG1012 or GEOG3202 Note: This prerequisite does not apply to students enrolled in course 3010.

A consideration of welfare aspects of urban development, including social policies and urban structure; social costs and benefits of urban renewal especially in the Inner city; growth centres and new towns; distributional aspects of social services; and spatial disparities in social well-being. (Old No. 27.753)

GEOG3161 Computer Mapping and Data Display S1 L1 T3
Prerequisite: Successful completion of a Year 1 program in Applied Science, Science or Arts or equivalent as approved by Head of School.

Introduction to theoretical and practical problems in displaying data graphically and constructing thematic maps by computer using the GIMMS mapping package. The emphasis is on developing skills in automated cartography through hands-on experience culminating in the preparation of a folio of maps of selected census data. No previous computing expertise is required. (Old No. 27.432)

GEOG3172 Spatial Population Analysis S2 L2 T2
Prerequisite: GEOG3202 or GEOG1012.

Population growth and structure in an international urban and regional context. The components and processes of population change; fertility, mortality and migration set within the framework of demographic transition and development theory. Theories of migration and mobility and of optimal populations. Demographic and social indicators for urban and regional analysis and their implications for disparities in living conditions at local, regional, and international scales. The adjustment of immigrant and migrant populations to the urban environment. (Old No. 27.824)

GEOG3181 Urban Activity Systems S1 L2 T2
Prerequisites: GEOG3202 or GEOG1012.

Focus is on trip making, movement, and activity patterns in urban areas. Topics include: the activity concept, travel behaviour and urban spatial structure; constraints to individual travel behaviour and activity pattern linkages; the urban transport disadvantaged; public transport problems and issues in Australian capital cities; travel and activity consequences of transport infrastructure developments. (Old No. 27.825)

GEOG3192 Urban and Regional Development S2 L2 T2
Prerequisite: GEOG3202 or GEOG1012.

Theories of urban and regional change leading to assessment of the role of planning. Emphasis on resource allocation, conflict resolution and evaluation techniques including cost-benefit analysis and environmental impact assessment. Examples are taken principally from the fields of recreation and tourism. (Old No. 27.826)

GEOG3202 Australian Social Environments S1 L2 T2
Prerequisite: GEOG1012 or GEOG1062.

Focus is on the interaction between human communities and the built environment in Australia: the effects of the natural environment on the evolution of settlement patterns; detailed analysis of rural and metropolitan social environments. Emphasis on inner city, suburban, behavioural and social area approaches, and to managerialist and structural theories of social change on areas and their communities. (Old No. 27.829)

GEOG3211 Australian Environment and Natural Resources S1 L2 T2
Prerequisites: GEOG2032 or GEOG2081.

Continental and regional patterns of land, water and energy resources in Australia and its territorial waters, and natural factors affecting their development, including climate, soils and terrain; problems of limited surface and underground water resources and of conflicting demands, exemplified through particular basin studies; comparable reviews of energy, minerals and forest resources, human resources and development. (Old No. 27.862)

GEOG3221 Advanced Geographic Methods S1 L2 T2
Prerequisites: GEOG2093. Excluded GEOG2013.

Additional quantitative research techniques normally taken by Honours students in their third year. Research organization; computer analysis; collection and organization of data; statistical description; hypothesis testing and sampling; simple and multiple association analysis; nonparametric methods. (Old No. 27.884)

GEOG3333 Special Topic S1 or S2 L4
Prerequisite: Nil.

Admission by permission to suitable students with good passes in at least four subjects at Level III. Course of individually supervised reading and assignments as an approved topic in Geography not otherwise offered. (Old No. 27.883)
GEOG4032 Honours Geography

Prerequisites: Arts students must satisfy Faculty requirements for entry to the Honours Level program and must have obtained at least 54 credit points in Geography subjects, including 12 Level 1 credit points. A minimum cumulative average at Credit level is required for all Upper Level subjects taken which must include GEOG3221.

Details of Honours Geography for science students are available from the School of Geography office.

Students are required: 1. To undertake an original piece of work extending throughout the year and to submit a thesis based upon it. 2. To participate in seminars and fieldwork as notified by the School of Geography. (Old No. 27.844)

Applied Geology

Field tutorials are an essential part of these subjects, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

GEOL1101 Geological Processes

Stream 1

OR

Stream 2

Available only with permission of the Head of School.

A program of projects and independent study of selected aspects of geology. Assessment includes practical and theory examinations. (Old No. 25.110)

GEOL1201 Geological Environments

Prerequisites:

HSC Exam Score

Range Required

2 unit Mathematics* or
3 unit Mathematics or
4 unit Mathematics and
2 unit Science (Physics) or
2 unit Science (Chemistry) or
2 unit Science (Geology) or
2 unit Science (Biology) or
4 unit Science and
3 unit Science

55-100
1-50
1-100
53-100
53-100
53-100
53-100
1-50
90-150

*This refers to the 2 Unit Mathematics subject. It does not refer to the subject 2 Unit Mathematics (Mathematics In Society).

GEOL2111 Earth Materials 1

Prerequisite: GEOL1101.

Mineralogy: Principles of optical crystallography and the use of the polarizing microscope. Chemical and physical properties of rock forming minerals. Mineral identification. Igneous Petrology: Occurrence, classification and origin of igneous rocks. Fractional crystallization and differentiation. Partial melting. Simple binary melting diagrams. Igneous petrology relating to plate tectonics. Practical: Macroscopic and microscopic examination of rock forming and ore minerals and igneous rocks in the field and the laboratory. Field work of five days is a compulsory part of the subject. (Old No. 25.211)

GEOL2121 Earth Environments 1

Prerequisite: GEOL1101.

GEOL2211 Earth Materials 2

Prerequisite: GEOL2111.

Sedimentary Petrology: The influence of transportation, deposition and diagenesis on the composition, texture and structure of detrital sedimentary rocks. The non-clastic sedimentary rocks including phosphates, evaporites, ferruginous and siliceous deposits. Metamorphic Petrology: Origin and classification of metamorphic rocks as an aid in understanding common mineral assemblages. Petrographic studies of common metamorphic rocks. Field studies. Structural Geology: Origin, classification and description of structures in rocks. Techniques of stereographic projection of structural elements and analysis of simple fracture systems. Tectonics and tectonic analysis. Field work of up to four days is a compulsory part of the subject. (Old No. 25.221)
GEOL2230 Mathematical Geology 1 S2 L2 T1
Prerequisite: GEOL2121.

Geological Statistics: Measurement scales in geology. Probability distributions and their properties; sampling and test of significance. Application of these techniques using geological data. Numerical Computing: FORTRAN programming; text editing; control language for VAX and CYBER. (Old No. 25.2251)

GEOL2231 Earth Physics S2 L2 T4
Prerequisite: GEOL1101.

GEOL3111 Earth Materials 3 S1 L2 T4
Prerequisite: GEOL2211.

GEOL3121 Earth Environments 2 S1 L3 T3
Prerequisite: GEOL2121 note: It is desirable that students taking this unit have also taken GEOL2231.

Field Mapping: Geological mapping in a complicated geological terrain. Geological report writing and cartography. Field work of up to seven days is a compulsory part of the subject. (Old No. 25.312)

GEOL3130 Mathematical Geology 2 S1 L2 T1
Prerequisite: GEOL2230.

Application of the mathematical techniques listed below to geological data processing and analysis. Analysis of variance. Introduction to matrix algebra. Regression analysis; trend surface analysis; time series analysis; Markov chain analysis. Introduction to nonparametric statistics. Introduction to multivariate statistics. Practical work based on the use of SPSS, BMDP and other library programs. (Old No. 25.3162)

GEOL3141 Mineral and Energy Resources 1 S1 L3 T3
Co-requisite: GEOL2211 or GEOL3111.

Metallic Resources: Classification and origin of the ore deposits, geochemical processes, research methods. Orthomagnatic, hydrothermal, porphyry, volcanic-sedimentary, Mississippi Valley type, chromium, iron, manganese ores, residual and mechanical ores. Introduction to mineral exploration. Laboratory study of hand specimens, thin sections and polished sections of various ore types; study of selected mining areas representing various genetic types of ore. Economic Mineralogy: Nature of reflected light. Ore textures and their interpretation. Phase relations and paragenesis of ore minerals. Practical work in optical properties of ore minerals, hardness and reflectivity measurements: study of selected ores and ore minerals under the microscope including textural studies. Field work of up to three days is a compulsory part of the subject. (Old No. 25.314)

GEOL3211 Earth Materials 4 S2 L3 T3
Prerequisite: GEOL2211.

GEOL3241 Mineral and Energy Resources 2 S2 L3 T3
Prerequisite: GEOL2121 or GEOL8220.

GEOL3251 Engineering and Environmental Geology S2 L4 T2
Prerequisite: Nil.

GEOL3271 Structural Geology S2 L1 T1
Prerequisite: GEOL221.
Advanced Structural Geology: Analysis of structural elements at the microscopic, mesoscopic and macroscopic scales. Detailed studies of the analysis of metamorphic terrains, eg Cooma Complex, Broken Hill. Field work of up to four days is a compulsory part of the subject. (Old No. 25.3271)

GEOL3281 Exploration Geochemistry S2 L1 T1
Prerequisites: GEOL3111 and GEOL3141.
Principles and techniques of soil, drainage and rock geochemistry as applied to mineral exploration. (Old No. 25.3281)

GEOL3331 Exploration Geophysics S1 L3 and S2 L1 T1
Prerequisite: GEOL1201.
Physical properties of rocks and soils. Introduction to seismic, gravity, magnetic, electrical, electromagnetic and radiometric methods of geophysical exploration. Application of these methods in the search for mineral deposits, petroleum, coal and groundwater and in civil and mining engineering projects. Interpretation of geophysical data. Field work of up to three days is a compulsory part of the subject. (Old No. 25.333)

GEOL4303 Geology Honours
Students with a double major in geology will follow the program set for Year 4 students in the Faculty of Applied Science Course 3000 Applied Geology, which involves in Session 1 a core of advanced geological topics and one strand chosen from mineral resources, sedimentary basin resources, engineering and environmental geology, or geophysics. Session 2 is devoted to a specialized research project.
Students with a single major will follow a course of advanced study that includes geological topics subject to approval of the Head of School. (Old No. 25.435)

GEOL6201 Marine Geology 1 F L1 T2
Prerequisites: GEOL1101 and GEOL1201.
Field work of five days is a compulsory part of the subject. (Old No. 25.621)

GEOL6231 Coastal Monitoring Techniques FL1T2
Prerequisite: Nil.
General principles of surveying. Optical and electronic methods of distance and elevation measuring. Coastal position fixing. Co-ordinates systems and their application to coastal mapping. Map projections. Long and short term monitoring of coastal changes. Tides, their measurement and determination of tidal planes. Soundings and bathymetric surveys. Shallow water investigations for seabed and bedrock morphologies. Through its intensive practical approach, the course is designed to give each student an understanding of coastal surveying applicable to a large variety of small scale investigations, from beach to esturine monitoring. (Old No. 25.622)

GEOL6310 Marine Mineral Deposits and Oceanic Minerals S1 L1 T1
Oceanic minerals and mineral deposits: Resources important to human civilization of a biological, fluid and mineral nature. Mining of ocean resources. Geological aspects of waste
disposal and engineering works in the ocean. Tidal energy.
(Old No. 25.6341)

GEOL6311 Marine Geology 2
F L1 T2
Prerequisite: GEOL6201.

GEOL6321 Coastal Environmental Assessment
FL1T2
Prerequisite: Nil
The physical nature of the various coastal environments: their morphology and the relationship between water masses and the sedimentary and benthic characteristics of the bottom. Sampling techniques, analytical methodology and statistical data evaluation. Environmental assessment of Australia and overseas areas. An important aspect of the course is its practical approach: from data gathering, data evaluation and environmental assessment report writing. Practical work in the course involves each student as an active member of a project team. (Old No. 25.630)

GEOL6330 Exploration and Seismic Methods
S2 L2 T1
Geophysics of ocean basins and off-shore areas and the techniques of their study. Seismic refraction, reflection and computational methods, instrumentation of seismic and acoustic sources, recording systems and signal processing. Geological and physical interpretation of results. Practical work on instrumentation, recording and interpretation of field data. (Old No. 25.6342)

GEOL7221 Surficial Materials and Processes
S2 L3 T3
Prerequisite: GEOL2111.

GEOL8220 Sedimentology
S1 L1 T1
Prerequisite: GEOL3121. Excluded GEOL1201.
As for Sedimentology in GEOL3121 Earth Environments 1. (Old No. 25.5212)

GEOL8310 Stratigraphy
S1 L2
Prerequisite: GEOL8220. Excluded GEOL1201.
As for Stratigraphy, in GEOL3121 Earth Environments 2. (Old No. 25.5313)

GEOL8320 Gravity and Magnetic Methods
S1 L2 T1
Prerequisites: PHYS1002 and MATH1032. It is desirable that students taking this unit have a background in geology.

Fundamental principles. Field procedures and instruments. Reduction of field data. Regionals and residuals. Effects of sources of simple geometrical shapes and generalized two and three-dimensional distributions. Applications. Field work of one day is a compulsory part of the subject. (Old No. 25.9311)

GEOL8330 Seismic Methods
S1 L2 T1
Prerequisites: PHYS1002 and MATH1032. It is desirable that students taking this unit have a background in geology.

Seismic waves. Physical/engineering properties of geological materials. Ray theory is seismic refraction and reflection methods. Instrumentation. Data acquisition and processing. Depth and velocity analysis. Geophysical and geological interpretation. Case history studies. Field work of one day is a compulsory part of the subject. (Old No. 25.9312)

GEOL8340 Electrical Methods
S1 L2 T1
Prerequisites: PHYS1002 and MATH1032. It is desirable that students taking this unit have a background in geology.

Introductory theory and field practice of resistivity, self-potential, induced polarization and airborne and ground electromagnetic methods. Geological interpretation of field data. Geophysical logging. Field work of one day is a compulsory part of the subject. (Old No. 25.9313)

GEOL8350 Geological Applications
S1 L1 T1
Prerequisite: GEOL1201.

A subject of ten weeks' duration. Structural Geology: Elements of structural geology, stereographic projection and fracture analysis. Geology of Fuels: Origin of coal, oil and natural gas; stratigraphic and structural consideration of oil and coalfields. Hydrogeology: Principles of hydrogeology; transmission of groundwater in rocks and soils. Field work of one day is a compulsory part of the subject. (Old No. 25.9314)
GEOL8360 Geophysical and Geological Applications
Prerequisite: GEOL1201. Excluded GEOL6330.
Geological Interpretation of Geophysical data: Seismic stratigraphy. Coal-seam geometry from high resolution seismic and in-seam data. Geology of Ore Deposits: Mineralogy of industrially important metallic and non-metallic minerals. Theories of ore formation including secondary enrichment processes. Available only in program 2503. (Old No. 25.9321)

Information Systems

INFS1602 Computer Information Systems 1
Prerequisite: Nil
An understanding of the content of Information Systems, the types of Information Systems and the position of Information Systems in Society; Information Systems at an organisational level, typical commercial applications, the systems lifecycle, design concepts, data analysis and models and an introduction to data communications. (Old No. 19.602)

INFS2603 Computer Information Systems 2
Prerequisite: INFS1602. Excluded INFS3606.
System analysis and design; requirements analysis and specification, logical and physical design of business systems, specification and updating of files, man-machine dialogue procedures. Comparison of design methodologies. (Old No. 19.603)

INFS2609 Computer Information Systems Technology
Prerequisites: INFS1602 or approved studies in Computer Science.
Programming in the commercial environment; COBOL; Hardware and operating systems concepts and their impact on the commercial computing environment. Introduction to computer networks and distributed systems. Introduction to object-oriented programming. (Old No. 19.609)

INFS2691 Industrial Training 1
Prerequisite: INFS1602
Available only to students enrolled in Course 3971.
A practical treatment of the characteristics of commercial information systems. The topics covered include: analysis of an existing information system; development of overview documentation of the system; evaluation of the interface design; consideration of the role of security and control mechanisms. (Old No. 19.691)

INFS3605 Computer Systems Implementation
Prerequisite: INFS2609
For students who first enrolled before 1989
Prerequisite: INFS2603
Supervised implementation of an Information Systems project in a commercial programming language. Advanced programming techniques: sub-programs, interactive programming, interactive file access. Life cycle physical design, debugging, maintenance, version control, testing, user documentation, management of human resources in an implementation environment, project estimating and control, CASE Technologies, comparison of a range of programming languages. (Old No. 19.605)

INFS3607 Distributed Computer Systems
Prerequisite: INFS2603 and INFS2609.
Advanced data communication concepts, computer networks, reference to international standards and common industry communication software packages; transaction processing software and interface with data management systems; local networks; interaction between text processing and data processing; a case involving the design of a telecommunications-based commercial system. (Old No. 19.607)

INFS3608 Database Systems
Prerequisite: INFS2603 or INFS2606
Advanced data analysis and modelling techniques; database management system architectures including hierarchical, network and relational approaches; database reliability, security and integrity issues; data description and manipulation languages. (Old No. 19.608)

INFS3611 Information Systems Development
Prerequisite: INFS2603 and approval by the Head of the School of Information Systems.
A systems analysis design case study where students are required to produce: Statement of requirements, feasibility/evaluation study, logical design, physical design, presentation of proposals to users.
User requirements elicitation techniques and approaches, project management, alternative design methodologies, information systems life cycle, practical use of CASE tools. (Old No. 19.611)

INFS3616 Commercial Programming Principles
Prerequisite: INFS3605. Corequisite: INFS3692.
Available only to students enrolled in Course 3971.
An advanced treatment of the practice of implementing commercial systems. Topics include: the use of library code, program design for performance, the use of code generators, project control and reporting practice. (Old No. 19.618)

INFS3692 Industrial Training 2
Prerequisite: INFS3605. Corequisite: INFS3616.
Available only to students enrolled in Course 3971.
An in-depth practical exposure to Information Systems Development. The topics covered include: the structure and management of the implementation teams; the roles of users and information staff in implementation; scheduling and control during implementation. (Old No. 19.692)
INFS3693 Industrial Training 3 S1 1CCH

Co-requisite: INFS3611. Available only to students enrolled in Course 3971.

In-depth practical work in Information Systems Analysis and Design. The topics covered include: the structure and management of analysis and design teams; the roles of users and 1 S staff in analysis and design; scheduling and control during analysis and design. (Old No. 19.693)

INFS4853 Advanced Systems Management L3

Prerequisite: Admission to BCom degree course at Honours level. As for INFS5953. See Graduate Study: Subject Descriptions. (Old No. 19.853)

INFS4857 Operations Research for Management 1 L3

Entry approval by Head of Department of Information Systems. As for INFS5957. See Graduate Study: Subject Descriptions. (Old No. 19.857)

INFS4886 Research Topics in Information Systems 1 L3

Entry approval by Head of Department of Information Systems. As for INFS5986. See Graduate Study: Subject Descriptions. (Old No. 19.886)

INFS4887 Research Topics in Information Systems 2 L3

Entry approval by Head of Department of Information Systems. As for INFS5987. See Graduate Study: Subject Descriptions. (Old No. 19.887)

INFS4891 Decision Support Systems L3

Prerequisite: INFS2603. As for INFS5991. See Graduate Study: Subject Descriptions. (Old No. 19.891)

JAPN100 Japanese 1A (Intermediate) S1 L1 T4

Prerequisite: 70% + 2-unit NSW HSC Japanese; 80% + in 2-unit Z NSW HSC Japanese, or equivalent (subject to placement test). Excluded: 28.809.

This course develops students' fundamental knowledge of spoken/written Japanese. Students are introduced to authentic Japanese through tapes and readings in order to refine communication skills. 150 Kanji are progressively introduced.

JAPN101 Japanese 1B (Intermediate) S2 L1 T4

Prerequisite: JAPN1100 or equivalent. Excluded: 28.810.

This course further develops students' communication skills in modern Japanese. Students use Japanese in a wider context, thereby increasing vocabulary and grammatical structures. A further 150 Kanji are progressively introduced.

JAPN1200 Japanese 1A (Advanced) S1 L1 T4

Prerequisite: 35150 + in 3-unit NSW HSC Japanese. Those students who have acquired competence in Japanese by being exchange students in Japan or by some other means (both subject to placement test). Excluded: 28.809.

This course builds upon students' knowledge of Japanese language. Skills are improved through communicative (both written and spoken) activities. 150 Kanji are introduced progressively.

JAPN1201 Japanese 1B (Advanced) S2 L1 T4

Prerequisite: JAPN1200 or equivalent (subject to a placement test). Excluded: 28.810.

This course looks at Japanese usage, both written and spoken, for those who have acquired a high level of competency in Japanese. A further 200 Kanji are introduced.

Legal Studies and Taxation

LEGT7711 Legal Environment of Commerce S1 or S2 L2 T1

Prerequisite: HSC minimum mark required

2 unit English (General) or
2 unit English or
3 unit English

60
53
1

The Australian legal system and areas of substantive law relevant to commerce including contract, business organization, employment, commercial arbitration, advertising, trade regulation, civil compensation, discrimination. (Old No. 99.774)

LEGT7721 Legal Transactions in Commerce S1 or S2 L2 T1

Prerequisite: LEGT7711.

General principles of law of contract and specialized commercial transactions including banking and negotiable instruments, insurance, agency, sale of goods, bailment, suretyship. (Old No. 99.775)
LEG7731 Legal Regulations of Commerce S1 or S2 L2 T1

Prerequisite: LEGT7711.

The regulation of restrictive trade practices and sales promotion. The legal framework of marketing strategy with special reference to anti-competitive practices (including collusive activity, exclusive dealing, price discrimination, resale price maintenance, mergers and monopolization) and consumer protection law (including misleading and deceptive advertising and other unfair practices). Consumer credit; product liability; protection of intellectual property. (Old No. 99.776)

LEG7741 Legal Organization of Commerce S2 L3 T1

Prerequisites: LEGT7721 or LEGT7731.

The law relating to corporations including company takeovers and the securities industry, partnerships, joint ventures and trusts, with special reference to their comparative utility. (Old No. 99.777)

LEG7751 Taxation Law S1 L3 T1

Prerequisite: LEGT7721 or LEGT7731.

The law and practice of the taxation of income under the Income Tax Assessment Act 1936 (Commonwealth) including the concepts of income and allowable deductions; alienation of income; taxation of partnership, trusts and corporation; tax avoidance and evasion. Taxes. Introduction to stamp duties, payroll tax, land tax and sales tax. Tax policy. (Old No. 99.783)

Mathematics

Note: When a subject is listed as a prerequisite or co-requisite, the appropriate higher subject may be substituted.

Many subjects in the School of Mathematics are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered grades higher than Distinction are only awarded in the ordinary level in exceptional circumstances.

Students should note that some of the Mathematics honours programs require them to take some of their Mathematics subjects at higher level. However, students should not think that the higher level subjects are intended only for those in honours programs. Any student with the ability to undertake higher subjects benefits from so doing.

First Year Mathematics

MATH1032 Mathematics 1. This is the standard subject and is generally selected by the majority of students in the Faculties of Science, Biological and Behavioural Sciences, Engineering and Applied Science who intend to pursue further studies in mathematics, computer science, physics, chemistry or engineering.

MATH1042 Higher Mathematics 1. This subject has the same purpose as MATH1032, but is aimed at the more mathematically able students, including those who may wish to take an honours degree in mathematics. It covers all the material in MATH1032, plus other topics, at greater depth and sophistication. It is intended for students who have obtained high marks in the 3 or 4 unit mathematics courses of the Higher School Certificate.

General Mathematics

This is a combination of the single session subjects MATH1011 and MATH1021 and provides for students who do not intend studying mathematics beyond first year but whose other studies require some knowledge of basic mathematical ideas and techniques. It is particularly designed to meet the needs of such students in Biological and Behavioural Sciences. Optometry, Psychology and Wool Science. However, students who select this subject should weigh seriously the Implications of their choice because no further mathematical subjects are normally available. A student with meritorious performance in MATH1021 may be permitted to proceed to a certain limited number of second year subjects intended for biologists and chemical engineers. The single subject MATH1011 is also available to students seeking a prerequisite for MATH1032.

Mathematics as a Subsidiary Subject

The School also provides the sequence of two subjects MATH2021 and MATH3021 at the second and third levels respectively, for students in the Science and Mathematics Course and the Faculty of Science who are mainly interested in the chemical and biological sciences. These courses offer an introduction to mathematical techniques for scientists and engineers.

There is also the Level II subject in Statistics, MATH2841, which provides an introduction to statistical procedures commonly used in Science, and which also leads to the Level III subjects MATH3870 Regression Analysis and Experimental Design, and MATH3880 Applied Stochastic Processes.

For both the above Level II subjects the entry qualification is a pass in MATH1032 Mathematics 1, but in appropriate cases students who have passed in MATH1021 General Mathematics 1C at a satisfactory level may be given permission to enrol.

MATH1011 General Mathematics 1B S1 L4 T2

Prerequisite: HSC Exam

Score Range Required

2 unit Mathematics* or 60-100
2 and 3 unit Mathematics or 1-150
3 and 4 unit Mathematics 1-200

Excluded MATH1042, MATH1032

Functions (and their Inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the binomial theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra. (Old No. 10.021B)

* the required score may vary slightly from year to year
MATH1021 General Mathematics 1C
Prerequisite: MATH1011. Excluded MATH1032, MATH1042.
Techniques for integration, improper integrals; Taylor's theorem; first order differential equations and applications; introduction to multivariable calculus; conics; finite sets; probability; vectors, matrices and linear equations. (Old No. 10.021C)

MATH1032 Mathematics 1
Prerequisite: HSC Exam Score Range Required
2 unit Mathematics* or 2 and 3 unit Mathematics or 3 and 4 unit Mathematics or
100-150
100-200
Excluded MATH1042, MATH1011, MATH1021
Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing. (Old No. 10.001)

MATH1042 Higher Mathematics 1
Prerequisite: HSC Exam Score Range Required
3 unit Mathematics 145-150
or
4 unit Mathematics 166-200
Excluded MATH1032, MATH1011, MATH1021
As for MATH1032 Mathematics 1, but in greater depth. (Old No. 10.011)

MATH1061 Introductory Applied Computing
Prerequisite: As for MATH1011 Co-requisite: MATH1021 or MATH1032 Excluded: 10.061 any subjects taught by the Department of Computer Science.
The major components of a computer, software vs hardware. The role of computers, history, range of available hardware and software, computing issues and standards. The operating systems DOS and UNIX, files and text editors, networks and communications. An overview of spreadsheets, databases, graphics and other software packages. Structured programming in the high level language C, covering a variety of data types, efficiency, language standards, and libraries of functions and subprograms. Mathematical applications from a wide variety of areas. (Old No. 10.061)

MATH1081 Discrete Mathematics
Co-requisite: MATH1032 or MATH1042
Role of proof in mathematics, logical reasoning and implication, different types of proofs. Sets, algebras of sets, operations on sets. Mathematical logic, truth tables, syntax, induction. Graphs and directed graphs, basic graph algorithms. Counting, combinatorial identities, binomial and multinomial theorems. Binary operations and their properties, groups and semigroups, ordered structures. Recursion relations. Application to network theory, assignment problems and population growth. (Old No. 10.081)

MATH2021 Mathematics
Prerequisite: MATH1032 or MATH1042 or MATH1021 CR
Note A: A unit, together with MATH1021 which is available to Faculty of Science students as one of a sequence of two units constituting a terminating course in mathematics. As such it is mutually exclusive to any other Level II or Level III unit in Pure and or Applied Mathematics except that MATH3261 may be taken with MATH2021 and MATH3021.
Note B: Mathematics MATH2021 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics or Applied Mathematics are taken, MATH2021 Mathematics will not be counted.
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods. (Old No. 10.031)

MATH3021 Mathematics
Prerequisite: MATH2021.
Note A: As for Note A in MATH2021 Mathematics.
Note B: Mathematics MATH3021 is included for students desiring to attempt only one Level III Mathematics unit. If other Level III units in Pure Mathematics or Applied Mathematics are taken, MATH3021 Mathematics will not be counted.
Vector calculus; special functions; convolution theorem and applications; complex variable theory; Fourier integrals; Laplace transforms with application to ordinary and partial differential equations. (Old No. 10.032)

MATH4003 Mathematics and Computer Science Honours (Old No. 10.029)

Pure Mathematics

Level II Subjects

MATH2400 Pure Mathematics 2
Finite Mathematics
Prerequisite: MATH1032 or MATH1042
Positional number systems, floating-point arithetic, rational arithmetic, congruences. Euclid's algorithm, continued fractions, Chinese remainder theorem, Fermat's theorem, applications to computer arithmetic. Polynomial arithmetic, division algorithm, factorization, interpolation, finite field. Codes, error-correcting codes, public-key cryptography. (Old No. 10.1115)

MATH2410 Pure Mathematics 2
Automata and Algorithms
Prerequisite: MATH1032 or MATH1042
Finite automata, regular languages and Kleene's theorem. Analysis of fast algorithms for matrix, integer and polynomial manipulation, sorting, etc. Discrete and Fast Fourier Transform and applications. (Old No. 10.1116)
MATH2501 Pure Mathematics 2 F L1.5 T1 or
Linear Algebra S1 or S2 L3 T2
Prerequisite: MATH1032 or MATH1042. Excluded MATH2601.
Vector spaces, linear transformations and matrices, change of
basis. Eigenvalues and eigenvectors, generalized
eigenvectors. Functions of matrices. Linear systems of
differential equations including the use of Laplace transform.
Inner products, orthogonalization, projections. Unitary and
self-adjoint transformations. Quadratic and Hermitian forms.
(Old No. 10.111A)

MATH2510 Pure Mathematics 2 S1 or S2 L1.5 T1
Real Analysis
Prerequisite: MATH1032 or MATH1042. Excluded MATH2601.
Multiple integrals, partial differentiation. Analysis of real valued
functions of one and several variables. (Old No. 10.1113)

MATH2520 Pure Mathematics 2 S1 or S2 L1.5 T1
Complex Analysis
Prerequisite: MATH1032 or MATH1042 or Excluded MATH2620.
Analytic functions, Taylor and Laurent series, integrals.
Cauchy's theorem, residues, evaluation of certain real
integrals. (Old No. 10.1114)

MATH2601 Higher Pure Mathematics 2 S2 L4 T.5
Algebra
Prerequisite: MATH1042 or MATH1032 CR. Excluded MATH2501,
MATH3500.
Linear algebra: vector spaces, commutative rings,
polynomials, modules, linear transformations, eigenvectors,
invariant subspaces, canonical forms, linear functions,
bilinear and multi-linear algebra. Group theory; subgroups,
quotient groups, isomorphisms. Lagrange's theorem, Sylow's
theorem. (Old No. 10.121A)

MATH2610 Higher Pure Mathematics 2 S1 L2 T.5
Real Analysis
Prerequisite: MATH1042 or MATH1032 CR. Excluded MATH2510.
As for MATH2510 Pure Mathematics 2 Real Analysis but in
greater depth. (Old No. 10.1213)

MATH2620 Higher Pure Mathematics 2 S1 L2 T.5
Complex Analysis
Prerequisite: MATH1042 or MATH1032 CR. Excluded MATH2520.
As for MATH2520 Pure Mathematics 2 Complex Analysis, but
in greater depth. (Old No. 10.1214)

Level III Subjects

MATH3400 Pure Mathematics 3 SS L1.5 T.5
Logic and Computability
Prerequisites: ***.
The propositional calculus its completeness and consistency;
Turing machines; unsolvable problems; computability and
Church's thesis; Godel's incompleteness theorems. (Old No.
10.1123)

MATH3410 Pure Mathematics 3 SS L1.5 T.5
Combinatorial Structures and Applications
Prerequisites: ***.
Theory of combinatorial designs (including
Bruck-Ryser-Chowla theorem), Latin squares, projective and
affine planes, application to the design of experiments. (Old
No. 10.1521)

MATH3420 Pure Mathematics 3 SS L1.5 T.5
Communication, Codes and Clifiers
Prerequisites: ***.
Introduction to discrete information theory (including
Shannon's theorems), error-correcting codes and
cryptography. (Old No. 10.1524)

MATH3500 Pure Mathematics 3 S1 L1.5 T.5
Group Theory
Prerequisites: ***. Excluded MATH3610.
Mathematical systems, groups, determination of small groups,
homomorphisms and normal subgroups. (Old No. 10.1111)

MATH3510 Pure Mathematics 3 - Geometry S2 L1.5 T.5
Prerequisites: ***. Excluded MATH3610.
Elementary concepts of Euclidean, affine and projective
geometries. (Old No. 10.1112)

MATH3520 Pure Mathematics 3 SS L1.5 T.5
Number Theory
Prerequisites: ***. Excluded MATH3610.
Introduction to algebraic structures. Euclidean domains,
prime and irreducibles, factorization. Diophantine equations,
polynomial congruences, arithmetic functions, Primitive roots,
quadratic residues, quadratic reciprocity, sums of squares.
(Old No. 10.1121)

MATH3530 Pure Mathematics 3 SS L1.5 T.5
Combinatorial Topology
Prerequisites: ***.
Elementary combinatorial topology of surfaces. (Old No.
10.1124)

MATH3540 Pure Mathematics 3 S1 L1.5 T.5
Ordinary Differential Equations
Prerequisite: MATH2501 Excluded MATH3650.
Systems of ordinary differential equations: variations of
constants formula; stability; Poincare space; Lyapunov's direct
method. (Old No. 10.1125)

MATH3550 Pure Mathematics 3 S2 L1.5 T.5
Partial Differential Equations
Prerequisites: MATH2510, MATH2520. Co-requisite: MATH3540
Excluded: MATH3660.
System of partial differential equations characteristic surfaces;
classifications. Cauchy problem. Dirichlet and Neumann
problems; the maximum principle. Poisson's formula:
conformal mapping. (Old No. 10.1126)
MATH3560 Pure Mathematics 3
History of Mathematics
Prerequisites: **
Topics from the history of mathematics, with emphasis on the development of those ideas and techniques used in undergraduate courses. Students are expected to read widely and to present written material based on their readings. (Old No. 10.1127)

MATH3570 Pure Mathematics 3
Foundations of Calculus
Prerequisites: **. Excluded MATH3601.
Properties of the real numbers. Convergence of sequences and series. Properties of continuous and differentiable functions of a real variable. (Old No. 10.1522)

MATH3580 Pure Mathematics 3
Differential Geometry
Prerequisites: MATH2510,**. Excluded: MATH3750.
Curves and surfaces in space. Gaussian curvature, Gauss theorem. Gauss Bonnet theorem. (Old No. 10.122B)

MATH3601 Higher Pure Mathematics 3
Real Analysis and Functional Analysis
Prerequisites: MATH2601 or MATH2501 CR, MATH2610 or MATH2510 CR, Excluded MATH3570, 10.1523.
The limit processes of analysis; introduction to Lebesgue integration; introduction to metric spaces, Hilbert spaces; linear operators; Fourier series. (Old No. 10.122B)

MATH3610 Higher Pure Mathematics 3 - S1++ L.5 T.5
Number Theory
Prerequisites: ++. Excluded: MATH3520.
Prime numbers; number theoretic functions; Dirichlet series; partitions. Continued fractions, diophantine approximation; p-adic numbers. (Old No. 10.1421)

MATH3620 Higher Pure Mathematics 3 - S2++ L.5 T.5
Groups and Representations
Prerequisites: MATH2601 or MATH2501 CR, and MATH3500 CR++
Abelian groups, composition series; nilpotent groups; soluble groups. Representations and characters of finite groups; induced representations. (Old No. 10.1422)

MATH3630 Higher Pure Mathematics 3 - S1++ L.5 T.5
Complex Analysis
Prerequisites: MATH2620 or MATH2520 CR++ . Co-requisite: MATH3601 strongly recommended.
Topics in advanced complex function theory chosen from the following: Conformal mapping, Analytic continuation, Entire and meromorphic functions, Elliptic functions, Asymptotic methods, Integral formulae, Harmonic functions. (Old No. 10.1323)

MATH3640 Higher Pure Mathematics 3 - S2++ L.5 T.5
Geometry
Prerequisites: MATH2601 or both MATH2501 CR and MATH3500 CR++. Excluded: MATH3510.
Axioms for a geometry; affine geometry, Desargues’ theorem; projective geometry. (Old No. 10.1424)

MATH3650 Higher Pure Mathematics 3 - S1++ L.5 T.5
Ordinary Differential Equations
Prerequisites: MATH2601 or MATH2501 CR, MATH2610 or MATH2510 CR++. Co-requisites: MATH3601 strongly recommended. Excluded: MATH3540.
Existence and uniqueness theorems. Linearization, Qualitative theory of autonomous systems. (Old No. 10.1425)

MATH3660 Higher Pure Mathematics 3 - S2++ L.5 T.5
Partial Differential Equations
Prerequisites: ++. Co-requisite: MATH3650 Excluded: MATH3550.
Classification, characteristics. Cauchy problem; Dirichlet and Neumann problems. Distributions. (Old No. 10.1426)

MATH3670 Higher Pure Mathematics 3 - S1++ L.5 T.5
Rings and Fields
Prerequisites: MATH2601 or MATH2501 CR++.
Rings; integral domains; factorization theory; Fields; algebraic and transcendental extensions. Introduction to algebraic number theory, quadratic reciprocity. (Old No. 10.1321)

MATH3680 Higher Pure Mathematics 3 - S2++ L.5 T.5
Galois Theory
Prerequisites: ++. Co-requisite: MATH3710.
Galois fields. Galois groups. Solution of equations by radicals. Further algebraic number theory. (Old No. 10.1322)

MATH3690 Higher Pure Mathematics 3 - S1++ L.5 T.5
Topology
Prerequisites: MATH2610 or MATH2510 CR++.
Naive set theory, the axiom of choice Metric and topological spaces, compactness. (Old No. 10.1423)

MATH3710 Higher Pure Mathematics 3 - S2++ L.5 T.5
Integration and Fourier Analysis
Prerequisites: ++. Co-requisite: MATH3601.
Lebesgue integration; measure theory. Fourier transforms. (Old No. 10.1324)

MATH3720 Higher Pure Mathematics 3 - S1++ L.5 T.5
Calculus on Manifolds
Prerequisites: ++. Co-requisite: MATH3601.
Manifolds; vector fields; flows. Introduction to Morse theory. Differential forms; Stokes’ theorem; the Gauss-Bonnet theorem. (Old No. 10.1326)
Level IV Subject

MATH4603/MATH4604 Pure Mathematics 4 (Honours)

An honours program consisting of the preparation of an undergraduate thesis together with advanced lectures on topics chosen from fields of current interest in Pure Mathematics. With the permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools.

MATH1081 is strongly recommended

Applied Mathematics

Level II Subjects

MATH2100 Applied Mathematics 2 S1 or S2 L1.5 T.5 Vector Calculus

Prerequisite: MATH1032 Excluded: MATH2110.

Properties of vectors and vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss and Stokes' theorems. Curvilinear co-ordinates. (Old No. 10.2111)

MATH2110 Higher Applied Mathematics 2 S1 L2 T.5 Vector Analysis

Prerequisite: MATH1042 or MATH1032 CR. Excluded: MATH2100.

As for MATH2100 but in greater depth. (Old No. 10.2211)

MATH2120 Applied Mathematics 2 - S1 or S2 L1.5 T.5 Mathematical Methods for Differential Equations

Prerequisite: MATH1032. Excluded: MATH2130.

Mathematical methods for ordinary and partial differential equations. Series solutions, numerical methods, separation of variables. Fourier series, Bessel functions. (Old No. 10.2112)

MATH2130 Higher Applied Mathematics 2 - S2 L2 T.5 Mathematical Methods for Differential Equations

Prerequisite: MATH1042 or MATH1032 CR. Excluded: MATH2120.

As for MATH2120 but in greater depth. (Old No. 10.2212)

MATH2160 Applied Mathematics 2 - S1 L1.5 T.5 Linear Programming

Prerequisite: MATH1032. Co-requisite: MATH2501. Excluded: 10.2213

A first course in mathematical modelling and solution techniques for problems. The revised simplex and dual simplex methods, theory and application of sensitivity analysis, duality theory. Networks, transportation and assignment problems. Examples, applications and computing methods are prominent features. (Old No. 10.2113)

MATH2180 Applied Mathematics 2 - S2 L1.5 T.5 Operations Research

Prerequisite: MATH2160

Modelling and solution techniques for optimization problems of interest to business and industry. Topics will be selected from linear programming, integer programming, (discrete) dynamic programming, integer scheduling, game theory, queueing theory, inventory theory and simulation. Software packages will be used to solve realistic problems.

MATH2200 Applied Mathematics 2 - S2 L1.5 T.5 Discrete-Dynamical Systems

Prerequisite: MATH1032. Co-requisite: MATH2501. Excluded: 10.2215

The study of dynamical systems whose states change at discrete points in time. Difference equations, general properties. Nonlinear systems, critical points, periodic cycles. Chaotic behaviour. Applications selected from engineering, biological, social and economic contexts. (Old No. 10.2115)

MATH2220 Applied Mathematics 2 - S2 L1.5 T.5 Continuous-Dynamical Systems

Prerequisite: MATH1032. Excluded: 10.2216.

The study of continuous dynamical systems. One-dimensional systems, kinematic waves, applications include traffic flow and waves in fluids. An introduction to the modelling of physical, biological and ecological systems, stability, oscillations and resonance. (Old No. 10.2116)

MATH2301 Applied Mathematics 2 - S1 L3 T1 Mathematical Computing A

Prerequisite: MATH1032.

Topics covered are: structured programming in FORTRAN, errors in representing real numbers and their effect on calculations, and mathematical algorithms based on polynomial approximations. (Old No. 10.261A)

Level III Subjects

MATH3101 Applied Mathematics 3 - S1 L3 T1 Numerical Analysis

Prerequisite: At least two level II mathematics units, including any course prerequisites. Excluded: MATH3141. 10.222A

Analysis of some common numerical methods. Iterative methods for solving nonlinear equations; interpolation using polynomials, splines and trigonometric functions; least-squares approximation and orthogonal functions; numerical differentiation and integration: extrapolation; finite difference methods for initial value problems for ordinary differential equations; iterative techniques for large systems of linear equations. (Old No. 10.212A)
Sciences

MATH3121 Applied Mathematics 3 - Mathematical Methods
Prerequisites: MATH2120, MATH2501, MATH2510, MATH2520. Excluded: MATH2280, 10.033, 10.2222, 10.412D, 10.422D, 10.4331, 10.292A.
Applications to the solution of boundary value problems for ordinary and partial differential equations is given for all methods. (Old No. 10.212D)

MATH3161 Applied Mathematics 3 - Optimisation Methods
Prerequisites: MATH2501 and MATH2510 or MATH2100. Excluded: 10.222L.
Development, analysis and application of methods for optimization problems. Theory of multivariable optimization; including necessary and sufficient optimality conditions, stationary points, Lagrange multipliers, Kuhn-Tucker conditions, convexity and duality. Numerical methods for one dimensional minimization, unconstrained multivariable minimization (including steepest descent, Newton, quasi-Newton and conjugate gradient methods) and constrained multi-variable minimization (including linear programming and quadratic programming). (Old No. 10.212L)

MATH3181 Applied Mathematics 3 - Optimal Control
Prerequisites: A total of 2 level II mathematics units which must include either MATH2100 or MATH2510. Excluded: 10.222M.
Examples and applications are selected from biological, economical and physical systems. (Old No. 10.212M)

MATH3201 Applied Mathematics 3 - Dynamical Systems and Chaos
Prerequisites: MATH2501, MATH2120, MATH3540. Excluded: 10.222N.
Regular and irregular behaviour of nonlinear dynamical systems. A selection from topics developing the theory of nonlinear differential and difference equations, with applications to physical, biological and ecological systems. Topics will be selected from stability and bifurcation theory, Floquet theory, perturbation methods, Hamiltonian dynamics, resonant oscillations; chaotic systems, Lyapunov exponents, Poincaré maps, homoclinic tangles. (Old No. 10.212N)

MATH3241 Higher Applied Mathematics 3 - Fluid Dynamics
Prerequisites: MATH2100, MATH2120. Excluded: 10.222B, 10.422A.
The mathematical modelling and theory of problems arising in the flow of fluids. Cartesian tensors, kinematics, mass conservation, vorticity, Navier-Stokes equation. Topics from inviscid and viscous fluid flow, gas dynamics, sound waves, water waves. (Old No. 10.212B)

MATH3261 Applied Mathematics 3 - Oceanography
Prerequisites: MATH2120 or MATH2021, PHYS1022. Excluded: 10.412A.

MATH3301 Applied Mathematics 3 - Mathematical Computing B
Prerequisites: MATH2501, MATH2120, MATH2301. Excluded: 10.612.
The design and use of computer programs to solve practical mathematical problems. Matrix computations and use of existing mathematical software packages, plus case studies from applications involving numerical integration, differential equations, symbolic algebra, and vector and parallel computers. (Old No. 10.262A)

Level IV Subjects

MATH4103/MATH4101 Applied Mathematics 4 (Honours)
An honours program consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: advanced mathematical methods for applied mathematics, advanced optimization, numerical analysis, theory of linear and non-linear dynamical systems, optimal control, operations research, functional analysis and applications, mathematics of economic models and of economic prediction, fluid mechanics, oceanography, microhydrodynamics, and analytical and numerical solution of partial differential equations. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools. (Old No. 10.223)

MATH4123 Applied Mathematics 4 (Short Course)
6 units consisting of the preparation of an undergraduate thesis together with advanced lecture courses. Lecture topics include selections from: topics listed in MATH4103. With permission of the Head of Department, the subject may also include advanced lecture courses given by other Departments or Schools. (Old No. 10.233)
Level II Subjects

MATH2801 TS2 - Probability and Random Variables
Prerequisite: MATH1032 or MATH1042 or MATH1021 (CR). Excluded: MATH2801, MATH2819, MATH2841, BIOS2041.
Probability, random variables, standard discrete and continuous distributions, multivariate distributions, transformations, random sampling, sampling distributions, limit theorems. (Old No. 10.311A)

MATH2810 TS2 - Statistical Computing and Simulation
Prerequisite: MATH1032 or MATH1042 or MATH1021(CR). Co-requisite: MATH2801.
Introduction to APL, random variables, univariate transformation, simulation of random variables, APL programming. Integer value random variables, random walks theory and simulation, introduction to Markov chains. (Old No. 10.3111)

MATH2821 TS2 - Basic Inference
Prerequisite: MATH2801. Excluded: MATH2821, MATH2819, MATH2841, BIOS2041.
Point estimation: general theory, estimation by moments, maximum likelihood. Interval estimation with general theory and application, hypothesis testing using Neyman Pearson theory, linear regression and prediction, analysis of variance. (Old No. 10.311B)

MATH2830 TS2 - Nonparametric Statistical Inference
Prerequisite: MATH2801. Co-requisite: MATH2821.
Order statistics, exact and approximate distributions, multinomial distributions, goodness of fit, contingency tables, one-sample and two-sample estimation and inference problems. (Old No. 10.3112)

MATH2841 Statistics SS
Prerequisite: MATH1032 or MATH1021(CR). Excluded: MATH2801, MATH2821, MATH2901, MATH2821, MATH2819, BIOS2041.
An Introduction to the theory of probability, with finite, discrete and continuous spaces. The standard elementary univariate distributions: binomial, Poisson and normal, an introduction to multivariate distributions. Standard sampling distributions, including those of chi+, t and F. Estimation by moments and maximum likelihood (including sampling variance formulas, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random and mixed models, involving multiple comparisons and estimation of variance components. (Old No. 10.331)

Level III Subjects

MATH2901 HTS2 - Probability and Random Variables
Prerequisite: MATH1032 or MATH1042. Excluded: MATH2901, MATH2819, MATH2841, BIOS2041.
As for MATH2801 but in greater depth. (Old No. 10.321A)

MATH2910 HTS2 - Statistical Computing and Simulation
Prerequisite: MATH1032 or MATH1042. Co-requisite: MATH2901.
As for MATH2810 but in greater depth. (Old No. 10.3211)

MATH2921 HTS2 - Basic Inference
Prerequisite: MATH2901. Excluded: MATH2821, MATH2819, MATH2841, BIOS2041.
As for MATH2821 but in greater depth. (Old No. 10.321B)

MATH2930 HTS2 - Nonparametric Statistical Inference
Prerequisite: MATH2901. Co-requisite: MATH2921.
As for MATH2830 but in greater depth. (Old No. 10.321C)

MATH3801 TS3 - Stochastic Processes
Prerequisites: MATH2801, MATH2501, MATH2510. Excluded: MATH3901, MATH3880.

MATH3811 TS3 - Linear Models
Prerequisites: MATH2821, MATH2501, MATH2510. Excluded: MATH3911, MATH3870.

MATH3820 TS3 - Sample Survey Theory
Prerequisite: MATH2901. Excluded: MATH3920.
Finite population sampling theory illustrated by mean estimation; simple random, stratified, cluster, systematic, multistage and ratio sampling, sampling proportional to size. (Old No. 10.3121)

MATH3830 TS3 - Design and Analysis of Experiments
Prerequisites: MATH2821, MATH3811. Excluded: MATH3930, MATH3870.
Principles of good experimental design. Completely randomized experiment, randomized complete block design. Latin square design. Contrasts and multiple comparisons. Analysis of factorial experiments. Random effects models. (Old No. 10.3122)
Sciences

MATH3840 TS3 - Statistical Inference S2 L1.5 T.5
Prerequisite: MATH2821. Excluded: MATH3940.
Uniformly minimum variance unbiased estimation. Cramer-Rao inequality, Lehman-Scheffe theorem. Monotone likelihood ratio distributions and uniformly most powerful unbiased tests. Generalized likelihood ratio test, exact test and large samples tests. Bayesian point estimation, interval estimation and hypothesis testing. (Old No. 10.3123)

MATH3850 TS3 - Nonparametric Methods S2 L1.5 T.5
Prerequisite: MATH2821, MATH2830. Excluded: MATH3950.
One sample and two sample problems. Tests for association, Contingency tables. Nonparametric analysis of variance and regression. (Old No. 10.3124)

MATH3861 TS3 - Statistical Computation S2 L2 T2
Prerequisites: MATH2821 or MATH2921, MATH2810 or MATH2910.
Array and sequential processing in APL. Standard statistical operations and their efficient coding. Simulation of random variables and stochastic processes. Efficient coding of survey data. Modular package construction, and the use of packages (eg STATAPL, IDAP, INS&TAPAK, SPSS, GLIM, GENS&TAT, MINITAB, SAS, BMD). A project, to construct a small package consistent with general specifications and with safeguards against common errors. (Old No. 10.312F)

MATH3870 Regression Analysis and Experimental Design S1 L1.5 T.5
Prerequisite: MATH2841 or MATH2821 or approved equivalent. Excluded: MATH3830, MATH3930, MATH3811, MATH3911.
A revision of linear regression with extension to multiple and stepwise linear regression. Analysis of block designs, Latin squares, factorial designs, variance component and mixed model analyses. Bioassay, logit models. Contingency tables. (Old No. 10.3121)

MATH3880 Applied Stochastic Processes S2 L1.5 T.5
Prerequisite: MATH2841 or MATH2801 or MATH2901, or approved equivalent. Excluded: MATH3901, MATH3991.
An introduction to processes in discrete and continuous time Markov chains and Markov processes, branching processes, time series with moving average models. (Old No. 10.3322)

MATH3901 HTS3 - Stochastic Processes S1 L3 T1
Prerequisites: MATH2901, MATH2951, MATH2950. Excluded: MATH3801, MATH3890.
As for MATH3801 but in greater depth. (Old No. 10.322A)

MATH3911 HTS3 - Linear Models S1 L3 T1
Prerequisites: MATH2921, MATH2951, MATH2950. Excluded: MATH3811, MATH3870.
As for MATH3811 but in greater depth. (Old No. 10.322C)

MATH3920 HTS3 - Sample Survey Theory S1 L1.5 T.5
Prerequisite: MATH2921. Excluded: MATH3820.
As for MATH3820 but in greater depth. (Old No. 10.3221)

MATH3930 HTS3 - Design and Analysis of Experiments S2 L1.5 T.5
Prerequisites: MATH2921, MATH3911. Excluded: MATH3830, MATH3870.
As for MATH3830 but in greater depth. (Old No. 10.3222)

MATH3940 HTS3 - Statistical Inference S2 L1.5 T.5
Prerequisite: MATH2921. Excluded: MATH3840.
As for MATH3840 but in greater depth. (Old No. 10.3223)

MATH3950 HTS3 - Nonparametric Methods S2 L1.5 T.5
Prerequisites: MATH2921, MATH2930. Excluded: MATH3850.
As for MATH3850 but in greater depth. (Old No. 10.3224)

MATH3971 HTS3 - Probability Theory S2 L3 T.5
Prerequisites: MATH2901, MATH2951, MATH2950, MATH3890, MATH3991, MATH3990.
Not offered in 1991.
Probability spaces, generating functions. Weak convergence, convergence in probability, weak law of large numbers, central limit theorem. Extreme value distributions. Borel-Cantelli lemma, almost sure convergence, strong law of large numbers. Stable and infinitely divisible distributions. (Old No. 10.3225)

Level IV Subject

MATH4903/MATH4904 Theory of Statistics 4 (Honours)

Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further Information regarding the following subjects see the Faculty of Applied Science and Engineering Handbooks.

MATH1051 Mathematics 1F S1 L4 T2
Prerequisite: 3 unit HSC Mathematics. Excluded: MATH1011, MATH1021, MATH1032, MATH1042.
For students in Course 3950 only.
Complex numbers, vectors and vector geometry, matrices and matrix algebra. Functions, continuity and differentiability,
functions.

MATH2001 Engineering Mathematics 2 F L2 T2
Prerequisite: MATH1032.

Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; Introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory. (Old No. 10.022)

MATH2819 Statistics SA F L1.5 T.5
Prerequisite: MATH1032 or MATH1021. Excluded: MATH2841, MATH2801, MATH2821, MATH2901, MATH2921, BIOS2041.

Probability, random variables, independence, binomial, Poisson and normal distributions, transformations to normality, estimation of mean and variance, confidence intervals, tests of hypotheses, contingency tables, two sample tests of location, simple and multiple linear regression, analysis of variance for simple models. (Old No. 10.301)

MATH2829 Statistics SU S1 L2.5 T.5
Prerequisite: MATH1032 or MATH1042.

For students in the School of Surveying.

Introduction to probability theory, random variables and distribution functions, sampling distributions, including those of t, chi^2 and F. Estimation procedures, including confidence interval estimation with an emphasis on least squares and surveying problems, and computer based exercises. (Old No. 10.341)

MATH2839 Statistics SM F L1.5 T.5
Prerequisite: MATH1032 or MATH1042.

For students in Aeronautical, Industrial and Mechanical Engineering and Naval Architecture.

Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, chi^2 and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard test of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution. (Old No. 10.351)

MATH2849 Statistics SE1 S1 or S2 L1.5 T.5
Prerequisite: MATH1032 or MATH1042. Excluded: 10.361.

For students in the School of Electrical Engineering.

Introduction to probability theory, random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions including those of chi-square and t. (Old No. 10.3611)

MATH2859 Statistics SE2 S1 or S2 L1.5 T.5
Prerequisite: MATH2849. Excluded: 10.361.

For students in the School of Electrical Engineering.

Estimation by moments and maximum likelihood; confidence interval estimation. The standard tests of significance with a discussion of power where appropriate.

An introduction to linear regression, auto-regression. Probability limit, law of large numbers and central limit theorem. Multivariate normal distribution. Stochastic processes in discrete and continuous time; Poisson and Gaussian processes. (Old No. 10.3612)

MATH2869 Statistics SC S1 or S2 L1.5 T.5
For students in the School of Civil Engineering.

MATH3141 Electrical Engineering S2 L2.5 T1
Mathematics 3
Numerical and Mathematical Methods
Prerequisites: MATH2501, MATH2510, MATH2100. Excluded: MATH2120, MATH2130, MATH3101, 10.222A.

MATH3150 Electrical Engineering S2 L1.5 T.5
Mathematics 3
Transform Methods
Prerequisites: MATH2100, MATH2520. Excluded: 10.033, 10.2921

Materials Science and Engineering

MATS1042 X-Ray Diffraction and Electron Microscopy S1 L2 T2
Prerequisite: MATS8193.

X-ray diffraction, electron optics, and analysis. Production, absorption and diffraction of X-rays. Powder and single crystal X-ray methods. Stereographic projections and crystal geometry. Applications of diffraction methods to solid solutions and solubility limit, thermal analysis, stress measurement, chemical analysis. X-ray fluorescence spectroscopy and analysis, on-stream analysis. Electron
Unit 1: Phase Equilibria S1 L T

Unit 2: Diffusion S1 L T

Unit 3: Metallography and Phase Equilibrium Laboratory S1 T

Unit 4: Phase Transformations S2 L T

Unit 5: Deformation S2 L T

Classification of macroscopic and microscopic fracture mechanisms. Initiation and propagation of ductile, brittle, fatigue, creep, stress corrosion and corrosion fatigue fractures. Effect of material defects, design deficiencies and incorrect processing on the origin and cause of fracture. Analysis of various modes of fracture using fractographic techniques involving optical microscopy and scanning and transmission electron microscopy.

Unit 6: Fractographic Analysis S2 L T

Classification of macroscopic and microscopic fracture mechanisms. Initiation and propagation of ductile, brittle, fatigue, creep, stress corrosion and corrosion fatigue fractures. Effect of material defects, design deficiencies and incorrect processing on the origin and cause of fracture. Analysis of various modes of fracture using fractographic techniques involving optical microscopy and scanning and transmission electron microscopy.

Unit 7: Deformation and Strengthening Mechanisms S2 L T

Strengthening mechanisms, creep, fracture, grain size dependence of strength. Introduction to generation of deformation and recrystallization textures. Measurements of age-hardening, activation energy of strain ageing.

Unit 8: Metal Forming Processes S2 L T

Unit 9: Origins of Microstructures S1 L T

Unit 3 Metallography and phase equilibrium laboratory
Determination of equilibrium phase diagrams. Solidification processes in moulds. Metallography of non-ferrous alloys. (Old No. 4.503)

MATS9193 Origin of Microstructure

Unit 2 Diffusion
Fick's first and second laws. Solutions for short and long times be analytical and numerical methods. Boundary conditions for solid-fluid and solid-solid interfaces. Diffusion couples. Atomic level diffusion theory.

Unit 4 Phase transformations
Solidification: single phase, eutectic and near-eutectic, peritectic. Diffusional transformations: precipitation, ripening, cooperative transformations, TTT and CCT curves. Diffusionless transformations: crystallography, nucleation and growth modes. (Old No. 4.503)

MATS9323 Mechanical Behaviour of Materials
(Units 1, 2, 3)

Unit 1 Deformation
Atomic and molecular description of deformation. Introduction to dislocation theory and its application to mechanical properties. Chain dynamics under stress.

Unit 2 Fractographic analysis
Classification of macroscopic and microscopic fracture mechanisms. Initiation and propagation of ductile, brittle, fatigue, creep, stress corrosion, and corrosion fatigue fractures. Effect of material defects, design deficiencies and incorrect processing on the origin and cause of fracture. Analysis of various modes of fracture using fractographic techniques involving optical microscopy and scanning and transmission electron microscopy.

Unit 3 Deformation and strengthening mechanisms
Strengthening mechanisms, creep, fracture, grain size dependence of strength. Introduction to generation of deformation and recrystallization textures. Measurements of age-hardening, activation energy of strain ageing. (Old No. 4.523)

MATS9520 Engineering Materials
Prerequisites: PHYS1919, CHEM1807. Excluded: 5.4222.
Microstructure and structure-property relationships of the main types of engineering materials (metals, polymers, ceramics and composites). Micromechanisms of elastic and plastic deformation. Fracture mechanisms for ductile, brittle, creep, fatigue modes of failure in service; corrosion. Metal forming by casting and wrought processes. Phase equilibria of alloys; microstructural control by thermo-mechanical processing and application to commercial engineering materials. Laboratory and tutorial work includes experiments on cast and recrystallized structures, ferrous and non-ferrous microstructures and fracture and failure analysis.

Undergraduate Study: Subject Descriptions

Medicine

MDCN8001 Principles of Medicine for Optometry Students
Prerequisite: Nil. Students normally take the subject in Year 4 of course 3950.
An overview of all aspects of current clinical medical practice. Included are historical, epidemiological, pathophysiological, diagnostic, therapeutic and public health aspects of disease in man and the various clinical categories of practice. (Old No. 71.001)

Mechanical and Manufacturing Engineering

MECH1100 Mechanical Engineering Design 1
Co-requisite: MECH1000.
Introduction to hardware. Studies of a range of engineering components, considering: what they do, how they do it, how they were made, the range of possible forms for each item, why each item has its particular form. Design philosophy. Design as the formulation and implementation of practical ways of fulfilling needs, including: recognising the need, generalising the question, considering a range of solutions, selecting a short-list, analysing the selected range, making a final choice. Commercial philosophy. Impetus for design, market competition, significance of innovation, intellectual property, financing, manufacturing, marketing, etc. (Old No. 5.1010)

MECH1400 Mechanics of Solids 1
Co-requisite: MECH1300.
Stress and strain. Bars under axial loading. Stresses and deformation due to bending. Strain energy. Flexibility and stiffness. Stress and deformation due to torsion. Helical springs. (Old No. 5.421)

MECH1500 Computing 1M
Introduction: history, applications, hardware, software, a model of a computer system, editors, operating systems. Program design and development: programming objectives, data structures, algorithms, symbolic names, translation of algorithms, steps in programming, programming style, syntax charts, errors and debugging. Data: data types, declarations, input, output, file control. Programming constructs: arithmetic expressions, assignment, relational and logical expressions, selection, iteration, intrinsic functions, statement functions, subprograms, common communication. Applicants using existing programs: sorting, word processing, graphics and plotting, simultaneous linear algebraic equations. (Old No. 5.5010)
MECH2300 Engineering Mechanics 2A S1 or S2 L2 T1
Prerequisites: PHYS1002 or PHYS1919, MECH1300, MATH1032 or MATH1042.

Kinetics of systems of particles; plane steady mass flow. Plane kinematics and kinetics of rigid bodies: moment of inertia; motion relative to translating and rotating frames of reference, equations of motion; work and energy, impulse and momentum. Virtual work for static and dynamic systems. Kinematics and kinetics of simple mechanisms. (Old No. 5.3021)

MECH2310 Engineering Mechanics 2B S1 or S2 L/T2
Co-requisite: MECH2300.

Differential equations of motion. Transverse vibrations of beams. Whirling of shafts. Single degree-of-freedom systems; free, forced, undamped and damped vibrations. Transmissibility. (Old No. 5.3022)

MECH2400 Mechanics of Solids 2 F L1.5 T2
Prerequisites: MECH1400, MATH1032, MATH1042.

Mechanical properties of materials: tensile and compressive behaviour; hardness; testing machines. Analysis of stress and strain at a point (2D, 3D, Mohr's Circles); generalized Hooke’s Law; modulus of rigidity; bulk modulus; interdependence of elastic moduli; strain energy (total, volumetric and distortion); yield criteria; combined loads in beams; fatigue, stress concentrations, Miner’s Rule; membrane stresses; bending of composite beams; bending and unsymmetrical beams; direct shear stresses in beams, shear centre; elastic and inelastic buckling of columns. (Old No. 5.4221)

MECH2600 Fluid Mechanics 1 F L1 T1
Prerequisites: PHYS1002 or 1.951, MECH1300, MATH1042 or MATH1042. Co-requisite: MECH2300.

Units. Fluid properties; fluid statics. Flow fields; unsteady and compressible flow. Bernoulli’s equation. Momentum equations. Ideal flow. Flow measurement. Dimensional analysis; similitude; dimensionless numbers; methods of analysis. Steady one dimensional flow in ducts; laminar and turbulent; pressure loss; friction factor; losses in bends and fittings. Elementary boundary layer flow; skin friction and drag. Pups and turbines. (Old No. 5.620)

MECH2700 Thermodynamics 1 F L1 T1
Prerequisites: PHYS1002 or 1.951, MECH1300, MATH1032 or MATH1042.

Microbiology and Immunology

Level II Subjects

MICR2201 Introductory Microbiology S1 L2 T4
Prerequisites: Nil.

An optional unit for students enrolled in courses of the Faculties of Applied Science, Arts, Engineering, Law and Science. It is not available for those who wish to major in any of the science programs offered by the Schools of Biochemistry, Biological Science or Microbiology and Immunology; nor for students enrolled in the Food Technology courses in the Faculty of Applied Science. It is an introduction to the science of Microbiology and does not require any previous knowledge of biology; bridging instruction is given in the first week of the course for students in this category.

The general nature, occurrence and importance of microorganisms; a systematic review of the eukaryotic protista (microalgae, protozoa and fungi), prokaryotic protista (bacteria) and viruses. Relationships between microorganisms and their environment; their impact on man through medical, industrial and environmental applications. Methods for handling bacteria and other micro-organisms; initial training in scientific method through designing and reporting experiments. (Old No. 44.101)

MICR2011 Microbiology 1 S2 L2 T4

This subject is mandatory for students wishing to major in program 4400 Microbiology and Immunology, it is also offered as a single unit elective. Material presented in the prerequisite unit is taken as “assumed knowledge”. An essential component of this course is training in scientific methods, particularly designing and reporting experiments and use of the scientific literature.

The general nature, occurrence and structure of bacteria, fungi, viruses, micro-algae and protozoa; methods for laboratory study of these organisms. Principles and applications of modern bacterial taxonomic techniques, characteristics and behaviour of selected groups of bacteria. Bacterial growth in batch and continuous culture; biosynthetic and bioenergetic mechanisms of bacteria and eukaryotic protista. Interactions of micro-organisms with their environments. (Old No. 44.121)

Level III Subjects

MICR3011 Microbiology 2 S1 L2 T4
Prerequisites: BIOS2011, BIOS2021, BIOC2312, MICR2011.

This unit is suitable for students majoring in Microbiology, Biochemistry or Biotechnology; it extends material covered in the Microbiology I unit with particular emphasis on bacterial physiology and groups of medically and environmentally significant micro-organisms. Major topics include structure and function of bacterial cell envelopes, membrane transport and secretion mechanisms, bacterial motility, chemotaxis and...
undergraduate study: subject descriptions

MICR3021 Microbial Genetics S1 L2 T4
This unit is suitable for students majoring in Microbiology, Biochemistry, Biotechnology or Genetics. It is presented jointly by the School of Microbiology and Immunology and the Department of Biotechnology and covers a wide range of topics in microbial genetics including plasmids and transposable genetic elements, gene transfer, mutagenesis and DNA repair, bacterial mutants, bacteriophage genetics, gene cloning, recombinant DNA techniques (genetic engineering) and genetics of nitrogen fixation. It also includes an introduction to the genetics of eucaryotic micro-organisms. (Old No. 44.102)

MICR3031 Applied Mycology S1 L2 T4
Prerequisites: MICR2201 or MICR2011 or MICR2218.
The balanced structure of this unit makes it suitable for students majoring in Microbiology, Botany or Biotechnology. It is also suitable for students who wish to broaden their knowledge and skills in mycology beyond those obtained in second level introductory Microbiology courses or equivalent units at other institutions. The course is also appropriate as an elective for Food Technology students in third level. The course is essentially an introduction to the applications and economic importance of fungi to people and the environment. It includes details of the growth and ecology of fungi, the use of fungi as food and fodder, in food and beverage fermentations and in the production of useful chemical products. The medical uses of fungal products including drugs, antibiotics and hallucinogens are discussed. Some aspects of the poisonous and mycotoxicogenic fungi, fungal as superficial and systemic animal pathogens, fungal biodeterioration and biodegradation of organic matter and interaction of fungi with other organisms are covered. Means of controlling fungal growth by chemicals are also included in the discussions. (Old No. 44.152)

MICR3041 Immunology 1 S1 L2 T4
Prerequisites: BIOC2312.
This course covers basic immunology and immunological techniques. The interdisciplinary nature of the subject makes this unit suitable for students taking any major program in biological science who require a background training in immunology. The course includes innate and adaptive immunity, development of the immune system, induction and expression of the immune response, structure and function of antibodies, in vitro and in vivo antigen-antibody reactions, the major histocompatibility complex and aspects of immunology in disease. (Old No. 44.172)

MICR3051 Immunology 2 S2 L2 T4
Prerequisite: MICR3041.
This course considers the discipline of immunology at a more advanced level and will emphasize the mechanisms of immune reactivity. The unit is appropriate for students in all areas of biological and biomedical science who wish to gain a working knowledge of modern immunology.
The immune system is covered under the following headings: antigen epitope analysis, processing and presentation, lymphocyte biology, immunogenetics of the molecules of recognition, cytokines, immune regulation, the mucosal immune system, immunity to Infectious diseases, vaccine development and clinical immunology. Tutorial sessions will include discussions of the immunological literature and laboratory classes will involve an experimental project.

MICR3061 Animal Virology S2 L2 T4
Prerequisites: MICR2011.
This unit concerns viruses which are important to man and other animals. It is suitable for students with special interests in medical microbiology who require a grounding in human virology. It is also of value to students wishing to broaden their knowledge of the important role which viruses play in human society.
The course covers virus structure and classification and provides some experience of the biological and physical techniques employed in virology laboratories. The methods used by viruses for replication are discussed, with particular emphasis on their behaviour at the cellular level. A number of human diseases caused by viruses are discussed in the contexts of the mechanisms used to produce diseases and the associated virus-host interactions of various types, the persistence, transfer and control of virus infections in communities and aspects of laboratory diagnosis of virus diseases. The course also discusses new trends in virology with emphasis on research aspects. (Old No. 44.132)

MICR3071 Environmental Microbiology S2 L2 T4
Prerequisites: MICR2011 or MICR2011.
This unit is suitable for students majoring in Microbiology, Ecology and Marine Science (Biological Oceanography) together with other students wishing to broaden their knowledge of the important role played by micro-organisms in environmental processes.
The course covers the complexity of natural habitats and recognition of organisms in these habitats, interactions of micro-organisms with their environment at the level of individuals and populations along with evolution and adaptation. Methods for environmental monitoring in aquatic and soil habitats are discussed. Manipulation of microbial populations in natural habitats, including problems associated with the release of genetically engineered micro-organisms are considered in some detail. (Old No. 44.142)

MICR3081 Medical Bacteriology S2 L2 T4
Prerequisites: MICR2011, MICR3011.
The aim of this course is to provide an appreciation of the mechanisms whereby bacteria cause disease. Selected groups of bacteria will be studied in detail emphasizing strategies which the micro-organisms have adopted to overcome host defense mechanisms. Special emphasis will be given to the processes of research that have led to the understanding of microbial pathogenesis and the means of intervention, i.e. immunisation, treatment and epidemiology. The focus of the practical classes will be to further develop the
student’s skills in handling bacteria and in identification methods used in a routine diagnostic laboratory. (Old No. 44.162)

Level IV Subjects

MICR4013/MICR4023 Microbiology 4 (Honours)
Advanced training in selected areas of microbiology and Immunology. 1. a formal component consisting of seminars, tutorials, introductory electron microscopy and written assignments, 2. a supervised research program in a specific area of microbiology or immunology. (Old No. 44.103)

Optometry

OPTM9012 Physical and Geometrical Optics S2 L4 T2
Prerequisite: Nil.

OPTM9013 Visual Optics S2 L2 T2
Prerequisite: Nil.
Optical systems of the eye: schematic eye, reduced eye, emmetropia, spherical ametropia, astigmatic ametropia, correction of ametropia, elementary magnification effects, aphakia. Accommodation, presbyopia, correction of presbyopia. Accommodation and convergence. Aberrations of the eye, phorias, measurement of phorias. Modulation transfer function Gradient index optics.

OPTM9014 Measurement of Light and Colour S2 L1 T1
Prerequisites: Nil.

OPTM9015 Clinical Optometry 1 S2 L2 T4
Prerequisites: Nil.
Lectures and practical assignments in visual acuity, keratometry, auto-refraction, visual fields, tonometry and colour vision, frame selection, facial fitting, insertion and removal of contact lenses.

OPTM9016 Dispensing S2 T2
Prerequisite: Nil.
Mechanical optics and optical dispensing. Practical assignments in spectacle frame measurements, frame materials, basic focimetry, basic lens layout, lens glazing, frame adjustments.

OPTM9021 Anatomy and Physiology of Eye and Visual System S1 L4 T2 S2 L5 T2

OPTM9041 Clinical Optometry F L1 T1.5
Prerequisites: OPTM9031, OPTM9032, OPTM9033, OPTM9064.
Students are required to examine patients in the Optometry Clinic, to diagnose their problems and to prescribe optical aids, orthoptic treatment or other management or referral as required. They also work in special clinics, including orthoptics, colour vision, low vision, children’s vision and contact lenses, and participate in patient review clinics. (Old No. 31.841)
Undergraduate Study: Subject Descriptions

OPTM9023 Optics S1 L4 T4 S2 L1 T3
Prerequisites: PHYS1002 or PHYS1022, MATH1032 or MATH1011 and MATH1021 or MATH1042.

OPTM9023 Visual Optics S1 L1 T1 S2 L2 T1
Prerequisites: PHYS1002 or PHYS1022, MATH1032 or MATH1011 and MATH1021 or MATH1042.

Optical systems of the eye: schematic eye, reduced eye, emmetrope, spherical ametropia, astigmatic ametropia, correction of ametropia, elementary magnification effects, aphakia. Accommodation, presbyopia, correction of presbyopia. Accommodation and convergence. Aberrations of the eye phorias, measurement of phorias. Modulation transfer function. Gradient index optics. (Old No. 31.852)

OPTM9024 Measurement of Light and Colour S2 L1 T1
Prerequisite: Nil.

OPTM9031 Optometry A F L5.5 T0.5
Prerequisites: OPTM9021, OPTM9022, OPTM9023, OPTM9024.

Refraction: theory and practice of keratometry, measurement of vision and visual acuity, astology and treatment of ametropia, objective and subjective refraction, prescribing special visual aids. Binocular vision; sensory and motor fusion; retinal correspondence; the horopter; stereopsis. Orthoptics convergence/ accommodation anomalies, strabismus, ambyopia. Contact lenses: corneal anatomy and physiology, contact lens design and manufacture, fitting techniques, care and maintenance. Low vision: examination of the low vision patient, selection of aids. (Old No. 31.861)

OPTM9032 Diagnosis and Management of Ocular Disease F L5 T
Prerequisite: OPTM9021.

OPTM9033 Theory of Spectacle Lenses and Optical Instruments F L1
Prerequisite: OPTM9022, OPTM9023.

Advanced geometrical optics and spectacle lens design. Aberrations and their control. The elements of telescopes, microscopes and other optical systems used especially in clinical practice. (Old No. 31.863)

OPTM9034 Clinical Methods F T5
Prerequisites: OPTM9021, OPTM9022, OPTM9023, OPTM9024.

Co-requisites: OPTM9031, OPTM9032.

Practical assignments in ophthalmoscopy, biomicroscopy, tonometry, gonioscopy, visual fields, colour vision tests, refraction, assessment of binocular vision, strabismus, contact lens fitting. (Old No. 31.864)

OPTM9042 Optometry B F L6
Prerequisites: OPTM9031, OPTM9032, OPTM9033, OPTM9034.

Pathology

PATH3201 Basic and Applied Pathology F L2 T1
Prerequisites: ANAT2211, ANAT2111, PHPH2112 or equivalent.

Lectures and practical class demonstrations. Includes exposition of the basic classification of pathological processes, study of the processes of cell and tissue degeneration, acute and chronic inflammation, vascular disease, including thrombosis, embolism, ischaemia and infarction. Coverage of
the processes of healing and regeneration with specific reference to healing of skin wounds and the healing of fractures. Aberrations of cell growth used to introduce the subject of neoplasia and carcinogenesis. Exposure to examples of specific disease entities of general practical importance exemplifying the basic or fundamental processes such as appendicitis, pneumonia, arthritis, pulmonary and myocardial infarction as well as lung, alimentary and cerebral tumours. Correlation of pathological processes with development of specific clinical syndromes. (Old No. 72.301)

Philosophy

Philosophy is a wide-ranging discipline, catering for a great diversity of interests, for instance, in science, reasoning, persons, and social issues, and encouraging critical and imaginative thought about the foundations of other subjects. Apart from providing considerable choices for students majoring in Philosophy, the diversity of Upper Level subjects makes it possible for students majoring in other disciplines to select subjects complementing their main interest.

First Enrolment in Philosophy

There are two Level I subjects:
PHIL1006 Introductory Philosophy A (Session 1)
PHIL1007 Introductory Philosophy B (Session 2)

Each of these has 1-unit value. They can be taken separately, and a student can gain Upper Level status in Philosophy quality to enrol in Upper Level subjects by passing in only one. However, students enrolling in one will normally enrol in both, and students wishing to major in Philosophy must do so.

Value of Upper Level Subjects in Philosophy

All upper level subjects are full units.

Specialization in Philosophy

Students majoring in Philosophy must complete, in addition to PHIL1006 and PHIL1007 (Introductory Philosophy A and Introductory Philosophy B), the equivalent of six full-point Upper Level (II/III) units. Of these, at least four units must be chosen from List A, which includes subjects in Logic, Philosophy of Mind, Philosophy of Science, and areas of History of Philosophy relevant to those subject areas. Students normally take the equivalent of two Level II/III units in Year 2, and the equivalent of four Level II/III units in Year 3. (Old No. 52.403)

List A

PHIL2106 Logic
PHIL2216 Human Nature and Human Understanding: the Empiricist Approach
PHIL2206 Contemporary Philosophy of Mind
PHIL2207 Issues in the Philosophy of Psychology
PHIL2108 Ways of Reasoning
PHIL2308 Reason and the Passions: Descartes, Spinoza and Hume
PHIL2218 Philosophical Foundations of Artificial Intelligence

PHIL2217 Personal Identity
PHIL2107 Advanced Philosophy of Science
PHIL3106 Pre-Honours Seminar

The remaining two units are to be chosen from other Upper Level Philosophy subjects in Table 1 or EURO2400 in Table CHEM

Level II/III

Some Upper Level subjects deal with particular philosophical topics; others can be taken in sequence to give more sustained treatments of larger areas. Students may select freely among these, subject to stipulations regarding prerequisites. They are welcome to seek advice and further information from the School.

In certain circumstances the prerequisites specified for units or half-units may be waived; for example, in the case of students who have already studied similar material, or who wish to take isolated units or half-units relevant to another discipline. Students who feel they have a case for a concession of this kind should consult the School.

Honours Entry Requirements

Students intending to proceed to an Honours degree in Philosophy complete years 1-3 of Programs 5200 or 5262 with an overall credit record and some indication of Distinction ability in the philosophy units included in those programs; plus PHIL3106 (Pre-Honours Seminar).

Socratic Society

The Socratic Society is a student-run society associated with the School of Philosophy which meets regularly to promote discussion on topics of philosophical interest.

PHIL1006 Introductory Philosophy A S1 L2 T1 C6
Stephen Cohen, Phillip Staines, Philip Cam.
Prerequisite: Nil.

An introduction to philosophical thought and issues. Topic areas: the nature of argument; Philosophy of mind; ethics and political philosophy. (Old No. 52.103)

PHIL1007 Introductory Philosophy B S2 L2 T1 C6
Prerequisites: Nil.

A further introduction to philosophy through a study of traditional and contemporary discussions of three topic areas: epistemology; perception; science and religion; Ideas of utopia. (Old No. 52.104)

PHIL2106 Logic S1 3CCH C6
Prerequisite: Any Level 1 subject.
Excluded: 52.2030 and 52.2031.

This subject is about deductive logic (in particular, propositional logic and predicate logic). The aim will be to construct - and to understand - a precise, unam-biguous, formal language. Many important parts of English will be translatable into it, hence many arguments of English will be translated into it too. It will be a language with which we can better understand the concept of deductive proof. (Old No. 52.220)
PHIL2107 Advanced Philosophy of Science

Prerequisite: PHIL2106 either HPST2001.

A seminar subject, to which several members of staff from the schools of Philosophy and Science and Technology Studies contribute. Topics include: the role of experiment in science; the cognitive status of theories; explanation; confirmation; intertheoretical reduction; reductionism; models and metaphors; the logic of theory generation; the revival of realism; problems of classification; theories of measurement; order and entropy; current issues in the philosophy of the physical sciences. (Old No. 52.304)

PHIL2108 Ways of Reasoning

Prerequisite: Any Level 1 subject. Excluded: 52.233.

The material for this subject will be drawn from everyday sources, such as newspapers, books and advertisements, and including television. It will deal with the nature of argument, fallacies, reasoning and the role of reasoning. From studying the structure of arguments students will be able to improve their critical skills and the presentation of their own arguments. (Old No. 52.2010)

PHIL2206 Contemporary Philosophy of Mind

Philip Cam

Prerequisite: Upper Level status in Philosophy. Excluded: 52.2002.

The subject is an introduction to some major issues in the field. There are four topics with lectures and tutorials as follows: (1) On relating the Mental to the Physical: The Theory of Intentional Systems (6 lectures, 3 tutorials); (2) Alternative Approaches to the Psychology of Belief and Desire (6 lectures and 3 tutorials); (3) The Psychology of Experience and Consciousness (8 lectures, 4 tutorials); and (4) Mechanism, Freedom and Responsibility (4 lectures, 2 tutorials). (Old No. 52.250)

PHIL2207 Issues in the Philosophy of Psychology

Philip Cam

Prerequisite: Either PHIL2206, 52.250 or PSYC1002. Excluded: 52.2003.

Philosophical issues in theoretical psychology, drawn from philosophical and psychological writings on personal identity, consciousness, intentionality, perception, mental imagery, psychology and the brain sciences, psychology and artificial intelligence. (Old No. 52.251)

PHIL2208 Epistemology (Scepticism)

Stephen Hetherington

Prerequisite: Upper Level status in Philosophy.

All of us acknowledge that there are things we do not know. But such humility can turn into perplexity when we encounter epistemological sceptics. A sceptic typically denies us either vast amounts of knowledge or justification of some select, but extremely everyday, sorts of apparent knowledge or justification. In short, sceptics argue for surprising denials of knowledge or justification. This subject examines some prominent sceptical arguments - one of less, and ones of more, recent vintage. They will attack knowledge of, or justified belief in, such areas as these: the external world, the unobserved, linguistic meaning, everything.

PHIL2209 Epistemology: Belief and Knowledge

Prerequisite: Upper Level status in Philosophy.

Not offered in 1991.

PHIL2216 Human Nature and Human Understanding: The Empiricist Approach

Prerequisite: Upper Level status in Philosophy. Excluded: 52.2130, 52.2170.

Neil Harpley

Not offered in 1991.

The traditional empiricists Locke, Berkeley, and Hume developed a substantial framework for theories concerning human nature and particularly for the consideration of issues arising in the attempt to explain our perception and knowledge of the world. The empiricist approach to these matters was revivified and became dominant in the first half of this century. Notable figures in recent empiricism include Russell and Quine and the leaders of the Logical Positivist movement. The course will involve a study of the major concerns of traditional and modern empiricists.

Assessment: Exercises and essays or examination. (Old No. 52.231)

PHIL2218 Philosophical Foundations of Artificial Intelligence

Philip Staines

Prerequisite: Upper Level status in Philosophy. Excluded: 52.2026.

An examination of the assumptions, achievements and prospects for artificial intelligence through consideration of problems in understanding and designing natural and artificial minds. Some of the design requirements for building intelligent systems are discussed, as is the nature and scope of computation and its role in artificial intelligence. Some work on artificial intelligence has been described as 'philosophical explication turned into computer programs'. The idea that it can make a direct contribution to philosophy will be explored. (Old No. 52.2026)

PHIL2308 Reason and the Passions: Descartes, Spinoza and Hume

Genevieve Lloyd

Prerequisite: Upper Level status in Philosophy. Excluded: 52.2021, 52.2024.

Not offered in 1991.

Philosophical distinctions between reason and the passions, and the role that philosophers have given or denied reason in understanding and controlling the passions. The reason-passion distinction will be discussed in relation to other distinctions between mind and body, theoretical and practical reason, interests and passions, male and female; and also in relation to contemporary attitudes to rationality.
PHIL2309 The Heritage of Hegel
Lisabeth During
Prerequisite: Upper Level status in Philosophy.
Not offered in 1991.
Many of the ruling ideas of contemporary European philosophy were first given form by Hegel. These include: the constitution of subjectivity; the problem of reflection; the possibility of a dialectical reasoning; the role of negativity; and the relationship of philosophy to history. Beginning with a close reading of the Preface and Introduction to the Phenomenology of Spirit, we will examine responses to Hegel in theorists ranging from Gadamer to Derrida. (Old No. 52.221)

PHIL2407 Culture and Critique: Trends in Contemporary European Philosophy
Lisabeth During
Prerequisite: Upper Level status in Philosophy. Excluded: 52.014.
Not offered in 1991.
A study of influential texts of 20th century European philosophy, which finds its rationale in a project which is common to contemporary French and German theory: rethinking philosophy as Cultural Criticism. Authors to be discussed include Freud, Nietzsche, Benjamin, Adorno, Horkheimer, Marcuse, Blich, Mauss, Bataille, Artaud, Foucault, Deleuze, Dristeva and Derrida. (Old No. 52.014)

PHIL2409 Speaking through the Body: Feminism, Psychoanalysis, Literature
Lisabeth During
Prerequisite: Upper Level status in Philosophy.
Explores the metaphorical relation between femininity and language in recent French philosophy. Topics discussed include: femininity, transgression and jouissance; transvestitism and gender ambivalence; Woman versus Truth; and Kristeva's treatment of the 'maternal' and the 'hysterical' woman. Readings will be taken from the work of Freud, Lacan, Marguerite Duras, Irigaray, Deleuze and Guattari, Dufna, Barnes, Nietzsche, Virginia Woolf and Kristeva.

PHIL2507 The Ethics of Plato and Aristotle
Stephen Cohen
Prerequisite: Upper Level status in Philosophy. Excluded: 52.230, 52.2220, 52.231.
Not offered in 1991.
A Systematic investigation of the moral theories of Plato and Aristotle, and some discussion of the difference between the approaches, concerns, and general aims of classical Greek ethics compared with more modern moral theorising. Beginning with the apparently immoral and subsequent amoral position of Thrasymachus and his question in Book 1 of the 'The Republic', "Why should I be just?", the subject investigates the ways in which Plato and Aristotle each sets out the problems of the nature of morality and why a person should be moral, their approaches to the solutions to these problems, and their positive moral theories. (Old No. 52.242)

PHIL2508 Theories in Moral Philosophy
Stephen Cohen
Prerequisite: Upper Level status in Philosophy. Excluded: 52.2230, 52.230, 52.232.
Examination of three moral theories central in the history and development of moral philosophy. Hume, Kant, and Mill offer different kinds of moral theories, differing approaches to arriving at a moral theory, and specific theories which are markedly different from each other. Each moral theory is investigated in itself and in comparison with the other two.
Assessment: Essays and an examination. (Old No. 52.243)

PHIL2509 Philosophy of Law
Stephen Cohen
Prerequisite: Upper Level status in Philosophy. Excluded 52.2150, 52.215.
Selected conceptual and normative issues in the philosophy of law, centring around the broad areas of law eg, its nature, validity, bindingness, and relation to morality, liberty, justice, responsibility (including strict, vicarious and collective liability), and punishment.
Assessment: Essays, and an examination. (Old No. 52.241)

PHIL2516 Philosophical Foundations of Marx's Thought
Prerequisite: Upper Level status in Philosophy. Excluded 52.373.
May not be offered in 1991.
A discussion of the basics of Marx's historical materialism and dialectical materialism.
Assessment: Exercises and essays. (Old No. 52.219)

PHIL2606 Aesthetics
Prerequisite: Upper Level status in Philosophy. Excluded: 52.273.
In this subject, emphasis will be placed on the visual arts, although it will also deal with literature and film. Topics will include: subjectivity and objectivity in aesthetics; with special reference to Kant; concepts of tradition and genre; concepts of representation and 'expression'. The subject will also address issues of the modern and post-modern. It will include a case study, discussing the history of the female nude in European painting.
Assessment: Exercises or essay and examination. (Old No. 52.2260)

PHIL2607 Philosophy and Literature S2 3CCH C6
Prerequisite: Upper Level status in Philosophy.
Explores philosophical aspects of the concept of representation in relation to literature, discussing theories of the differences between philosophy and literature, and of the nature and role of the metaphor. It will study some central texts of Greek philosophy in conjunction with some contemporary philosophical discussions of literature which make use of them. Topics will include: Plato's criticism of the poets in the Republic; Iris Murdoch on 'the true' and 'the good' and the ethical significance of literature; Ricoeur on mimesis and narrative; Richard Rorty on philosophy as a 'kind of writing'.

PHIL2706 Seminar A S1 3CCH C6
Admission by permission, based on a student's performance in Upper Level subjects. Topics vary and are influenced by student requests.
Assessment: Essay. (Old No. 52.2980)

PHIL2707 Seminar B S2 3CCH C6
As for PHIL2706 Seminar A. (Old No. 52.3010)

PHIL2708 Reading Option S1 or S2 3CCH C6
Students wishing to do work in an area not covered by an existing subject or seminar may apply to the School to take a reading option. Not more than one such subject may be counted towards a degree. Approval of a program for a reading option depends on its suitability and on the availability of a member of staff to undertake supervision. (Old No. 52.2990)

PHIL3106 Pre-Honours Seminar S2 3CCH C6
Prerequisites: 30 credit points in Philosophy with overall standard of Credit or higher.
A subject for students intending to take Honours in Philosophy; designed to form skills in philosophical research and writing through seminar discussion of readings illustrating a range of philosophical approaches, styles and techniques. (Old No. 52.395)

PHIL4000 Philosophy Honours (Research) F T4
Prerequisite: In addition to general Faculty requirements, admission is subject to completion of a qualifying program containing at least 54 credit points in Philosophy, consisting of 6 or 12 credit points at Level 1 and the remaining points at Upper Level, including PHIL3106 (Pre-Honours Seminar), completed with a good overall credit record and with indication of ability at Distinction level or better. Students who will have completed only 52 credit points are encouraged to seek the approval of the School for admission.

The Honours Year consists of writing a research thesis under supervision and two seminar courses. (Old No. 52.4000)
PHPH3131 Neurophysiology S1 L2 T4
For entry consult Head of School of Physiology and Pharmacology.
A detailed study in two broad areas, neural mechanisms in sensation and the control of posture and movement. Includes the regulation of visceral and other autonomic effector structures and the neural substrates and correlates of certain higher functions such as speech, memory and consciousness. Directed towards the experimental analysis of nervous system function, to introduce the techniques and approaches used in neurophysiological research. Sensation: an integrated lecture and experimental course is given on somatic, visual and auditory sensory mechanisms. Laboratory work: students conduct psychophysical experiments to evaluate subjective sensory capabilities. The neural mechanisms underlying these subjective abilities are examined in animals in electrophysiological experiments which involve recording the impulse patterns from individual neurones within the sensory systems. Students are required to analyze the mechanisms employed by the nervous system to code information about specific parameters of sensory stimuli. Lectures and experiments on motor function are directed towards an understanding of the various reflex and voluntary mechanisms controlling posture and movement. The section dealing with nervous control of visceral function is concerned mainly with regulation of cardiorespiratory activity. (Old No. 73.012B)

PHPH3142 Organ Physiology S2 L4 T8
Prerequisite: Normally as for PHPH3114.
For entry consult Head of School of Physiology and Pharmacology.
An advanced study dealing with major physiological systems of the body and usually includes detailed sections from: the cardiovascular and respiratory systems; endocrine, kidney, fetal physiology, gastrointestinal physiology and exercise physiology. Emphasis on the functions of individual organs as well as the overall operations of particular body systems including their neural control mechanisms. Emphasis on the approaches and techniques involved in physiological research. Students are therefore required to carry out an extensive series of experiments which usually employ mammalian (including human) preparations. (Old No. 73.012C)

PHPH3152 Pharmacology F L2 T4
Prerequisite: PHPH2112 or PHPH3114. Co-requisites: PHPH3114 or BIOC3121 or BIOC3271 or two Level III Chemistry units.
Includes a study of the absorption, distribution and metabolism of drugs, as well as a study of the pharmacology of the autonomic nervous system, the cardiovascular system, the central nervous system, the kidney, the endocrine system and also a study of pharmacokinetics. A practical class program complements the lecture program by demonstrating a variety of basic pharmacological techniques. (Old No. 73.022)
The methods of physics, describing motion, the dynamics of geometrical optics, optical instruments, wave optics, and electromagnetic induction, alternating current, atomic conduction in solids. Ions and ionic conduction, magnetism properties of liquids, vibrations and waves, electricity and a particle, conservation of energy, kinetic theory of gases, disciplines. Topics at an introductory level.

Principally for students majoring in the life and health sciences disciplines. Topics at an introductory level.

The application of electronics to other disciplines. Includes: principles of circuit theory; amplifiers, their specification and application, transducers; electronic instrumentation; industrial data acquisition. (Old No. 1.9222)
Physics Level III Subjects

PHYS3010 Quantum Mechanics S1 L1.5 T.5
Prerequisite: PHYS2021, MATH2120.

Revision of basic concepts, harmonic oscillator systems, spherically symmetric systems, angular momentum, H atom, first-order perturbation theory, identical particles, Exclusion Principle, atomic structure, spin-orbit coupling, Helium atom, introductory quantum theory of molecules. (Old No. 1.0133)

PHYS3021 Statistical Mechanics and Solid State Physics S1 L3 T1
Prerequisites: PHYS2011, PHYS2021, MATH2120.

Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations. (Old No. 1.023)

PHYS3030 Electromagnetism S1 L1.5 T.5
Prerequisites: PHYS2011, MATH2100, MATH2120.

Electromagnetic fields; Maxwell's equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Fresnel equations, waveguides, radiation fields, dipoles and antenna theory. (Old No. 1.0333)

PHYS3041 Experimental Physics A F T4
Prerequisite: PHYS2031.

Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems. (Old No. 1.043)

PHYS3050 Nuclear Physics S2 L1.5 T.5
Co-requisite: PHYS3010.

Nuclear shell model; theory of beta decay; the deuteron, nucleonnucleon scattering; theories of nuclear reactions, resonances; mesons and strange particles, elementary particle properties and interactions; symmetries and quark models; strong and weak interactions. (Old No. 1.0143)

PHYS3060 Advanced Optics S2 L1.5 T.5

Fresnel and Fraunhofer diffraction, Fourier transforms, filtering, coherence length and time, stellar interferometers, laser theory, non-linear optics. (Old No. 1.0343)

PHYS3110 Experimental Physics B1 S1 T4
Prerequisite: PHYS2031.

Selected experiments and projects. Advanced experimental techniques and open ended projects in the areas covered in PHYS3041 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and super-conductivity. Fourier optics, holography. (Old No. 1.0533)

PHYS3120 Experimental Physics B2 S2 T4
Prerequisite: PHYS2031.

As for PHYS3110 Experimental Physics B1. (Old No. 1.0543)

PHYS3130 Marine Acoustics S2 L1.5 T.5
Prerequisite: PHYS2021.

Wave theory: general wave equation for fluids, viscoelastic media and solids. Travelling and standing wave solutions. Wave guides: fluid and solid wave guides, ray and mode theories. Sound transmission in the ocean and application of reflection and refraction theory, scattering and diffraction effects. (Old No. 1.3533)

PHYS3160 Astrophysics S2 L1.5 T.5
Prerequisite: PHYS2021.

Stellar radiation, spectra classification. Hertzsprung-Russell diagrams, determination of stellar masses and radii. Equations of stellar structure, energy sources in stars, nuclear reaction cycles energy transport, equations of state, degeneracy, opacity. Properties of main sequence stars, stellar evolution, structure of red giants and white dwarfs. The solar atmosphere. (Old No. 1.1633)

PHYS3180 Atmospheric Physics S2 L1.5 T.5
Prerequisites: PHYS1002, PHYS2011 or CHEM2011.

Atmospheric thermodynamics, radiation, dynamics; energy balance, greenhouse effect, climate models and climate change, upper atmosphere physics. (Old No. 1.1633)

PHYS3310 Physics of Solid State Devices S2 L1.5 T.5
Prerequisite: PHYS3021.

Review of electronic structure in semiconductors; p-n junctions; bipolar and field effect transistors including formation, characteristics and electrical breakdown. Optical devices including light emitting diodes and junction lasers. Integrated circuit structures. (Old No. 1.3133)

PHYS3320 Topics in Condensed Matter Physics S2 L1.5 T.5
Prerequisite: PHYS3021.

Superconductivity, Meissner-Ochsenfeld effect, entropy, thermodynamics and relevant theories, Josephson junctions. Amorphous materials, preparation, magnetic properties, bandgaps, dangling bonds and ESR, mobility edge, solar cells. Polymers, structure, bonding, relaxation phenomena, electrical breakdown, liquid crystals. (Old No. 1.3143)
PHYS3410 Biophysics

Prerequisites: PHYS2011, PHYS2021.

PHYS3510 Advanced Mechanics, Fields and Chaos

Prerequisites: PHYS2001, MATH2510, MATH2100.

Lagrange's equations and applications, variational principles, dissipative systems, Hamiltonian formulation, canonical transformations, Poisson brackets, Hamilton-Jacobi equation, continuous systems and fields, stability and chaos.

PHYS3520 Relativistic Electrodynamics

Prerequisites: PHYS2021, MATH2510, MATH2100, MATH2120.

Co-requisite: PHYS3303.

Special relativity, covariant formulation of electrodynamics, stress tensor, radiation from moving charges, Liénard-Wiechert potentials, synchrotron radiation, bremsstrahlung, electro-magnetic mass, radiative damping, multipole expansion for fields, scattering. (Old No. 1.5233)

PHYS3530 Advanced Quantum Mechanics

Prerequisites: PHYS2021.

Co-requisite: PHYS3010.

Formal structure, matrix formalism, relativistic quantum mechanics, spin, scattering theory, Born approximation, phase shifts, many particle systems, occupation number formalism. (Old No. 1.1133)

PHYS3550 General Relativity

Prerequisites: PHYS2021, MATH2100, MATH2510.

Relativistic kinematics and dynamics, tensors and tensor operations, Christoffel symbols, formulation of general relativity, curvature of space, geodesics, gravitational field equations, Schwarzschild solution, tests of the theory, astrophysical and cosmological implications. (Old No. 1.5533)

PHYS3601 Computer Applications in Instrumentation

Prerequisite: PHYS2601.

Review of interface/interaction schemes used between a computer and the outside world. Standard and specialised communication protocols; purpose designed peripheral structures. Special purpose bus architectures. Transducers, instruments and systems.

The procedure for the analysis, design and development of a peripheral system starting from its functional specifications. The preparation and presentation of documentation that defines a system and its operation comprehensively and efficiently.

PHYS3620 Computer Based Signal Processing

Prerequisites: PHYS2031, MATH2120. Exclusion 6.042

Measurement and Sampling; noise power spectra; signal-to-noise improvement using digital techniques: digital filters, auto and cross-correlation, methods based on Fourier transformation; system response including transfer functions, convolution, image enhancement.

PHYS3631 Electronics

Prerequisites: PHYS2920 or PHYS2031.

PHYS3710 Lasers and Applications

Interaction between light and matter, fundamental properties of laser amplifiers and oscillators, giant pulse generation, mode locking and Q switching, specific laser systems including gas lasers and semiconductor lasers, applications of lasers. (Old No. 1.7113)

PHYS3760 Laser and Optoelectronics

Prerequisites: PHYS2031.

Laboratory

Aims to make students conversant with the techniques employed in advanced laser technology and to become familiar with the various components used in such applications. Includes: a study of advanced optical techniques including the construction, operation and characterisation of various types of laser; preparation and investigation of optical, electro-optical and other related devices in terms of their basic behaviour and with respect to applications in complex optical systems; safety aspects. (Old No. 1.7613)

Physics Level IV

All Physics honours subjects consist of lecture topics and project work. Some of the lecture topics of which quantum mechanics, statistical mechanics and solid state physics are examples, are taken by all students. Other topics which are considered particularly relevant to the type of honours chosen are also prescribed. The actual list of topics in this second category varies from time to time and is partly influenced by student numbers and interest. Examples of such topics are given below under each honours subject heading. The project work forms a very significant part of each subject. Usually two projects are undertaken during the year of study.

Students whose academic records are satisfactory are invited to enrol in the honours year. Full details of lecture topics and projects are then supplied. The approval of the Head of School is required for each program of study.

Examples of specific lecture topics which may be offered include: astronomy, additional topics in solid state physics, lasers, biophysics. (Old No. 1.104)
Sciences

PHYS4303/PHYS4313 Applied Physics 4 (Honours)
Examples of specific lecture topics which may be offered include: physical principles of instrumentation, applied solid state physics, physics of materials. (Old No. 1.304)

PHYS4403/PHYS4413 Biophysics 4 (Honours)
Biophysics, statistical mechanics and solid state physics are examples of prescribed topics. Additional lecture topics may be selected from those on offer in other Physics honours subjects and from Biochemistry and Physiology. (Old No. 1.604)

PHYS4503/PHYS4513 Theoretical Physics 4 Honours
Examples of specific lecture topics which may be offered include: quantum theory of solids, plasma theory, quantum electrodynamics. (Old No. 1.504)

Servicing Subjects
These are mainly subjects taught within courses offered by other faculties.

For further Information regarding the following subjects see the relevant Faculty Handbooks.

PHYS1909 Astronomy S1 or S2 L2 T2
Involves an overview of Astronomy, from the solar system to the galaxies. Includes an exploration of the solar system, to indicate the advances that have been made, particularly and most recently with space probes, in our understanding of planetary systems. The characteristics of stars discussed along with their use in establishing an understanding of stellar evolution. The treatment of galaxies includes consideration of the nature of our galaxy and its relation to other external systems, concluding with a brief discussion of aspects of observational cosmology. Discussion of such recent topics as black holes, pulsars, quasars. (Old No. 1.901)

PHYS1919 Physics 1 (Mechanical Engineering) F L2 T2
Prerequisites: As for PHYS1002 Physics 1.

For students in the School of Mechanical and Industrial Engineering.

PHYS1929 Physics 1 (Surveying) F L2 T2
Prerequisites: As for PHYS1002 Physics 1.

PHYS1939 Physics 1 (Building) S2 LT4
Prerequisites: Nil

Energy transfer: conduction, convection, radiation, emittance, absorbance; Joules equivalent; thermometry; heat transfer through materials; thermal storage; thermal resistance; insulation; water vapour, condensation and vapour barriers. Refrigeration theory, properties and characteristics of refrigerants. Electrostatics and electromagnetism: DC circuits; Coulomb’s law; electric field; electric potential; capacitance; conductors; resistivity; Atomic view of conduction; EMF; Kirchof’s laws; magnetic induction; torque on a coil in a magnetic field; moving coil meter; Wheatstone bridge; potentiometer; Faraday’s law; transient circuits. AC power and circuit theory. Sound: longitudinal waves; overtones; intensity levels; decibels; quality of sound; assessment of noise annoyance; airborne sound transmission; sound attenuation; transmission loss; adsorption coefficients; partitions; recommended acoustic criteria; introduction to auditorium acoustics. (Old No. 1.931)

PHYS1969 Physics 1 (Electrical Engineering) F L3 T3
Prerequisites: As for PHYS1002 Physics 1.

For students in the School of Electrical Engineering.

Electrostatics in vacuum, electrostatics in dielectrics, steady state currents, magnetostatics in vacuum, ferromagnetism, electromagnetic induction, transient currents. Vectors motion in one dimension, motion in a plane, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, collisions, rotational kinematics, rotational dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics, kinetic theory of gases. Waves in elastic media, sound waves, geometrical optics, interference, diffraction, gratings and spectra, polarization. (Old No. 1.961)

PHYS1989 Physics 1 (Civil Engineering) S1 L2 T2 and S2 L2 T1
Prerequisites: As for PHYS1002 Physics 1.

For students in the School of Civil Engineering.

Aims of physics and its relation to civil engineering. Mechanical concepts, properties of matter, atomic structure, elasticity, plasticity, fracture of solids; surface tension and viscosity of fluids, electrical and magnetic forces, electromagnetism, DC and AC circuits, digital electronics. Simple harmonic motion and its relation to wave motion. Acoustic and mechanical waves, attenuation, velocity of propagation. Elastic moduli. Non-destructive testing, instrumentation, techniques and theory. Emphasis on the physics involved in non-destructive testing and the aspects of vibration important to civil engineering. (Old No. 1.981)
PHYS1999 Physics 1 (Optometry) S1 L3 T3
Prerequisites: Nil

PHYS2969 Physics of Measurement (Surveying) S1 L1 T2
Prerequisite: PHYS1929.

For students in the School of Surveying.

PHYS2989 Solid State Physics (Electrical Engineering) S1 L2.5 T2

The concepts of waves and particles, introductory quantum mechanics, atomic structure, optical spectra and atomic structure, structural properties of solids, band theory and its applications, uniform electronic semiconductors in equilibrium, excess carriers in semiconductors. (Old No. 1.982)

PHYS2999 Mechanics and Thermal Physics (Electrical Engineering) F L1.5 T.5

Particle mechanics, harmonic motion, central force problems, systems of particles, Lagrange’s equations with applications, coupled oscillations, wave equation. Thermodynamic laws, entropy, kinetic theory, M-B distribution, microscopic processes, Maxwell’s relations, chemical potential, phase diagrams, multicomponent systems, electrochemical potential, statistics of defects in solids. (Old No. 1.992)
and statistical traditions affecting design and control procedures. The implications of the use of inferential statistics for research methodology generally. (Old No. 12.206)

PSYC2011 Psychological Assessment S2 L2 T1
Prerequisite: PSYC2001.
Principles and techniques of psychological measurement. Types of tests and issues relevant to their construction, administration and interpretation in decisions about selection and classification. (Old No. 12.207)

PSYC2021 Attention, Memory and Thought S1 L2 T2
Prerequisite: PSYC1002.
Introduction to the fundamental principles of human cognition underlying pattern recognition, selective attention, memory storage and retrieval, and reasoning and problem-solving. Applications are considered. (Old No. 12.208)

PSYC2031 Personality and Social Psychology S2 L2 T2
Prerequisite: PSYC1002.
This course consists of two components. One focuses on models of personality and their method of study, personality development and links with social behaviour. The other deals with social behaviour and the processes of verbal and nonverbal communication, person perception and interpersonal relationships in particular. (Old No. 12.209)

PSYC2042 Psychology 2A F L2 T2
Available to Course 3431 students only.
Introduction to several areas of professional practice in psychology and the roles of psychologists in these areas eg Developmental Disabilities, and Psychology and the law. Principles and techniques of interviewing and counselling in a variety of contexts. (Old No. 12.203)

PSYC2051 Human Development S1 L2 T2
Prerequisite: PSYC1002. Excluded: PSYC3111.
The physical, perceptual, cognitive, and psychosocial development of the human from genetic and pre-natal influences through to old age. (Old No. 12.210)

Psychology Level III Subjects

PSYC3001 Research Methods 3A S1 L2 T2
Prerequisite: PSYC2001.
Analysis of variance for single factor and multifactor designs. Test procedures for planned and post-hoc contrasts defined on parameters of fixed and mixed models. General principles of experimental design. (Old No. 12.300)

PSYC3011 Research Methods 3B S2 L2 T2
Prerequisite: PSYC3001.
Multivariate statistics and computing. Data analysis using the SPSS and PSY computer programs; their statistical basis. (Old No. 12.301)

PSYC3021 Perception S2 L2 T2
Prerequisites: PSYC2001 and either PSYC2021 or PSYC2031.
The study of the sensory basis of perception; the study of perception as an adaptive process by which individuals are able to correctly apprehend the external environment and localise themselves within it; the study of perceptual development in infants and young children. (Old No. 12.341)

PSYC3031 Behavioural Neuroscience S1 or S2 L2 T2
Prerequisites: PSYC2001 and either PSYC2021 or PSYC2031.
An examination of brain-behaviour relationships with emphasis on contemporary models of the neural bases of learning, memory and motivation. Topics may include classical and operant conditioning, neuropharmacology, the neural basis of feeding and its disorders, invertebrate and vertebrate models of learning, amnesias and theories of normal memory. (Old No. 12.342)

PSYC3041 Learning S1 L2 T2
Prerequisite: PSYC3031.
The conditions which promote learning, the contents of learning and the mechanisms by which learning is deployed in action. The course emphasises the distinction between specialised and general-purpose learning abilities. (Old No. 12.348)

PSYC3051 Physiological Psychology S2 L2 T2
Prerequisite: PSYC3031.
An examination of the neural control of behaviour with special emphasis on cerebral localisation of function in humans. Clinical conditions will be considered to the extent that they illuminate mechanisms of brain control or they relate to theorising about brain function. (Old No. 12.349)

PSYC3061 Perceptual Theory
Prerequisite: PSYC3021.
Not offered in 1991.
Some of the major theoretical influences in perception, beginning with a historical view and then considering the different perspectives represented by Helmholtz, Gestalt psychology, and Gibson, and finally the influence of computer vision (especially Marr) and the modern revolution in knowledge of the physiology of the visual system. (Old No. 12.350)

PSYC3071 Abnormal Psychology S1 L2 T2
Prerequisite: PSYC3001.
Descriptive psychopathology; symptomatology and diagnostic features of schizophrenia, organic brain syndromes, affective disorders, neurotic disorders, psychopathy, sexual aberrations, and addictions. (Old No. 12.322)
Undergraduate Study: Subject Descriptions

PSYC3081 Experimental Psychopathology S2 L2 T2
Prerequisite: PSYC3071.
An examination of the aetiology and mechanisms of behavioural disorders in the light of experimental research and theory construction. Major topics include: aetiology and mechanisms of schizophrenia, affective disorders; psychophysiological disorders, anxiety, depression, addictive behaviours and amnesia. (Old No. 12.324)

PSYC3091 Counselling and Evaluation S1 L2 T2
Theory and practice of counselling in a variety of contexts. Emphasis will be placed on major theoretical orientations, counselling skills development and the evaluation of counselling effectiveness through behavioural and other assessments. (Old No. 12.343)

PSYC3101 Individual Differences S1 L2 T2
Prerequisites: PSYC2011 and PSYC2031.
Measurement and assessment of intelligence, psychometric assessment of personality, cognitive and affective aspects of personality, the authoritarian personality, achievement motivation, socio-biological models and critique. (Old No. 12.344)

PSYC3111 Development Psychology S2 L2 T2
Prerequisites: PSYC2001 and either PSYC2021 or PSYC2031 Excluded: PSYC2051.
Issues, methods, and theories in developmental psychology; the development of infants, toddlers, school children, and adolescents with reference to significant cognitive and social events in each of these periods. (Old No. 12.321)

PSYC3121 Social Psychology S1 L2 T2
Prerequisites: PSYC2001 and PSYC2031. Excluded: PSYC3131 and PSYC3141.
Human sociability, affiliation and attraction, the development of interpersonal relationships, social influence processes, conformity, obedience, leadership, interaction in groups, affective influences on social cognition and behaviour. (Old No. 12.320)

PSYC3131 Cross-Cultural Social Behaviour
Prerequisites: PSYC2001 and PSYC2031. Excluded: PSYC3121 and PSYC3141.
Not offered in 1991.
The social psychology of intergroup relations or contact between culturally diverse individuals and groups. Particular aspects to be covered will include intercultural communication, inter-group conflict and its resolution, culture learning and orientation program, and cross-cultural social skills training. These processes will be illustrated with studies of overseas students, migrants, international business persons, and other individuals exposed to second-culture influences. (Old No. 12.353)

PSYC3141 Behaviour in Organizations S2 L2 T2
Prerequisites: PSYC2001 and PSYC2031. Excluded: PSYC3121 and PSYC3131.
Industrial and organisational psychology, job analysis, selection, motivation, management strategies, job design and a systems analytic approach to organisations, training, selection, work satisfaction and organisational climate. (Old No. 12.334)

PSYC3151 Cognition and Skill S2 L2 T2
An examination of the cognitive processes underlying skilled behaviour. Topics include detection and discrimination, the representation of knowledge, artificial intelligence, and the basis of expertise in skilled performance. (Old No. 12.345)

PSYC3161 Language and Its Development S1 L2 T2
Prerequisites: PSYC2001 and PSYC2031. Excluded: PSYC3151.
How language is acquired and used in reading, writing, speech comprehension and speech production. Language dysfunction and bilingualism will also be considered. (Old No. 12.346)

PSYC3171 Recent Developments in Experimental Psychology
Prerequisites: PSYC2001 and PSYC2021.
Not offered in 1991.
An occasional elective dealing with recent developments in experimental psychology. (Old No. 12.351)

PSYC3171 Issues in Applied Psychology
Prerequisites: PSYC2001 and PSYC2021.
Not offered in 1991.
An occasional elective dealing with issues in applied psychology. Topics may include psychology and law, career choice and development stress, forensic psychology and field versus laboratory research. (Old No. 12.352)

PSYC3191 Computer Science and Psychology
Prerequisites: COMP2011, COMP3411, PSYC2001 and PSYC2021.
Not offered in 1991.
A course designed to investigate the burgeoning relationships between cognitive psychology and computer science. Topics to be covered include parallel distributed processing models of learning, memory and perception; processes of reasoning, logic and decision making; human expertise and expert systems.
Psychology Level IV Subjects

PSYC4003 Psychology 4 (Thesis Course 3431) F
Prerequisite: All requirements for Years 1–3 of the course.
Psychology 4 in the BSc(Psychol) degree course. A supervised research thesis and course work to be determined in consultation with the Head of School. (Old No. 12.400)

PSYC4013 Psychology 4 (Course 3431) F
Prerequisite: All requirements for Years 1–3 of the course.
Psychology 4 in the BSc(Psychol) degree course. Course work and a supervised group research project to be determined in consultation with the Head of School. (Old No. 12.401)

PSYC4023 Psychology 4 (Thesis) Honours F
Prerequisites: PSYC1002, PSYC2001, PSYC2011, PSYC2021, PSYC2031 and 8 Psychology Level III units, including PSYC3001, PSYC3011, PSYC3021 and PSYC3031, with an average of at least 68% and at the discretion of the Head of School.
Psychology 4 in the Arts, and Science and Mathematics degree courses. A supervised research thesis and course work to be determined in consultation with the Head of School. (Old No. 12.403)

PSYC4033 Psychology 4 (Honours) F
Prerequisites: PSYC1002, PSYC2001, PSYC2011, PSYC2021, PSYC2031 and 8 Psychology Level III units, including PSYC3001, PSYC3021 and PSYC3031 with an average of at least 68% and at the discretion of the Head of School.

PSYC4043 Computer Science and Psychology 4 (Honours)
Prerequisites: Refer to Program 1206.
Combined Honours in Computer Science and Psychology.

Servicing Subjects
These are subjects taught within courses offered by other faculties.
For further Information regarding the following subject see the Faculty of Commerce Handbook.

PSYC2106 Psychology (Industrial Relations)
Prerequisite: Nil.
Not offered in 1991.
Problems and limitations affecting social research in industry. Critical review of American research from Hawthorne to Herzberg and of British research from Tavistock and Trist to Emery in Australia. Conflict and organic theories of organisation and related theories of motivation and morale. The use of library resources. Practice in the skills and discipline required to obtain and evaluate empirical evidence in this field. Recent developments under the heading of 'participation' and democracy in industry. (Old No. 12.651)
For further Information regarding the following subject see the Faculty of Science section of this handbook.

PSYC4106 Psychology (Optometry) F L2
Prerequisite: PSYC1002.
Visual perception: The nature and characteristics of visual perception. Topics to be discussed include: psychophysics, the organization of visual perception, the influence of context, and the effects of learning and motivation on perception. Throughout the course emphasis will be placed on an examination of relevant experimental data. Abnormal psychology: The concepts of normality and abnormality, and an examination of the principal psychodynamic processes. Causes and symptoms of various mental disorders are introduced with some emphasis on the importance of these symptoms in optometrical practice. (Old No. 12.741)

Science and Technology Studies

Students undertaking subjects in Science and Technology Studies are required to supplement the class contact hours by study in the Library.

Level I

HPST1106 Myth, Megalith and Cosmos S1 L2 T1 C6
Prerequisite: Nil. Excluded: 62.111.
Only 2 Level I units may be counted towards Course 3970.
The first of a two part study of Humanity and the Cosmos constituting a general introduction to the history and philosophy of science. Provides a background to HPST1107 From the Closed World to the Infinite Universe but is a self-contained subject in its own right presupposing no prior knowledge of science or mathematics. Examines the evidence for scientific knowledge in prehistoric cultures (with special reference to the Western European megalithic cultures), the astronomy and cosmology of the ancient Near Eastern civilizations, and the development in earlier Greek geometry, astronomy, cosmology and method which provided the foundations for medieval and modern Western science. Topics: naked-eye astronomy; archaeoastronomy; ley lines and "fringe" archaeology; dating and the development of archaeological theory; Pacific Islands' navigation; Australian Aboriginal cosmology and astronomy; the interpretation of mythology; the astronomy and cosmology of Mesopotamia and Egypt; an assessment of astrology; Aristotle's cosmology; the origins and development of geometry to Euclid; patterns of reasoning and the foundations of scientific method; and the mystery of the Dogons and the Von Daniken phenomenon.
Assessment: 2 short essays, 2 tests, tutorials. (Old No. 62.1021)

HPST1107 From the Closed World To the Infinite Universe S2 L2 T1 C6
Prerequisite: Nil. Excluded: 62.211.
Only 2 Level I units may be counted towards Course 3970.
The second of a two part study of Humanity and the Cosmos which aims to provide a general introduction to the history and philosophy of science. Follows on from HPST1106 Myth, Megalith and Cosmos, but constitutes a self-contained subject in its own right without prerequisites. Examines the momentous transition from the ancient/medieval model of a closed world to
modern cosmological theory. Topics: the ancient tradition and the medieval conception of the cosmos; the labyrinth and the *mappa mundi*: the Ptolemaic system; cultural and cognitive change during the Renaissance; *Terra Australis* and the expansion of the known world; Copernicus and the Copernical Revolution; the development of scientific methodology; the astronomy and cosmology of Kepler, Galileo and Descartes; Newton and the clockwork universe; the Scientific Revolution and the Church; humanity as microcosm; the telescope and the microscope; the plurality of worlds; galaxies and nebulae; Relativity theory, big bangs and black holes; "fringe" and "New Age" cosmologies; science fiction and little green men.

Assessment: 2 short essays; 2 tests; tutorials. (Old No. 62.1041)

HPST1108 Science: Good, Bad and Bogus. An Introduction to the Philosophy of Science

Prerequisite: Nil.

Only 2 Level I units may be counted towards Course 3970.

What is science? What are its distinctive characteristics as a form of inquiry? Why are astrology and 'creationism' widely.

Assessment: Essay; tutorials; class tests. (Old No. 62.1151)

SCTS1106 Science, Technology and Social Change

Prerequisite: Nil. Excluded: 62.110.

Only 2 Level I units may be counted towards Course 3970.

Relations between Science, Technology and Society as they have evolved in the 20th Century. Theories on the nature of technological design and change. An examination of controversies in areas including: pollution and environmental protection; nuclear energy and alternative energy sources; information/communications technologies; genetic engineering. The control of technology, technology assessment and the nature of public involvement in decisions about scientific and technological development.

Assessment: Essay (40 percent); tutorials (30 percent); class tests (30 percent). (Old No. 62.1011)

SCTS1107 Understanding Technological Controversy

*Prerequisite: SCTS1106 or 62.101."

Only 2 Level I units may be counted towards Course 3970.

The lecture series examines themes relevant to the analysis of scientific and technical controversies in general; how they arise, how they are conducted, the nature of evidence, the uses of expert authority, how and why disputes are resolved or remain unresolved. The tutorials are devoted to intensive supervised group work on particular issues of concern to students in the general areas of environment; energy resources and technologies; reproductive technologies and genetic engineering; information and communication technologies.

Assessment: Essay; test; tutorials. (Old No. 62.1031)

Level II/III

HPST2106 The Scientific Theory

Prerequisite: Completion of at least 4 Level I units from Table 1. Excluded: 62.032, 62.505.

A critical examination of the scientific theory. Its origins, nature and nurture. With particular reference to selected historical examples chosen from both the physical and biological sciences, a number of philosophically interesting problems relating to scientific theories are subjected to analysis. Topics include: the principles of theory construction; perception and observation; the structure of scientific revolutions; scientific explanation; the status of laws and theoretical terms; the 'existence' of theoretical entities; relationships between theory and observation; the functions of models; the principles of theory establishment and rejection.

Assessment: One essay; tests; tutorials. (Old No. 62.202U)

HPST2107 The Darwinian Revolution

Prerequisite: As for HPST2106. Excluded: 62.104.

Scientific, philosophical, and social antecedents and consequences of Darwin's theory of evolution. The prevailing ideas in biology before Darwin in the context of the general climate of ideas in the 18th and early 19th centuries. Darwin's life and work in some detail, followed by a consideration of the work of Mendel and the establishment of the 'synthetic' theory of evolution. The impact of evolutionary ideas in such diverse fields of thought as religion, literature, music, political theory, epistemology, ethics, and the social and behavioural sciences.

Assessment: Examination; tutorial exercises; essay. (Old No. 62.208U)

HPST2108 History of Medicine

Development of theory and practice in Western medicine from the time of Hippocrates to the 20th century. Material covered in four sections: 1. 'bedside' medicine from antiquity to the French Revolution; 2. 'Hospital' medicine in the early 19th century; 3. 'laboratory' medicine in the late 19th century; and 4. 'technological' medicine in the 20th century, with particular emphasis on the social role of modern medicine. (Old No. 62.210U)

HPST2109 Computers, Brains and Minds

Prerequisite: As for HPST2106. Excluded: 62.554.

Introduction to contemporary discussions of the mind, thought, intelligence and consciousness. Focus on the issues which arise in connection with the so-called 'cognitive sciences' the disciplines which include such fields as computer science, the various neuro-sciences, cognitive psychology, linguistics and the philosophy of mind. Stress on the recent revolutionary developments in the computer.
simulation of thought or 'artificial intelligence' and linguistics, since both these areas shed new light on traditional questions concerning the mind. Questions are: 'Can computers think?' and 'Is the brain a machine?' Exploration of the theories, methods and philosophical issues which arise from the 'computational' or 'information processing approach' to the mind.

Assessment: Essay; tests; tutorials. (Old No. 62.217U)

HPST2116 History of the Philosophy and Methodology of Science S1 L2 T1 C6

A survey of the history of ideas about the nature and method of science, considering such issues as Aristotelianism, Galileo's mathematization of nature, rationalism and empiricism, Kantianism, positivism, pragmatism, conventionalism, logicism, falsificationism, the realist/instrumentalist debate, and 'sociologism'.

Assessment: Essays; tutorials. (Old No. 62.224U)

HPST2117 Technology and Society S2 L2 T1 C6
Prerequisite: As for HPST2106. Excluded: 26.251, 62.022.

Not offered in 1991.

The history of technology in its social and cultural context with special emphasis on the Industrial Revolution. This Revolution, which has been described as the most significant event in human history since the Agricultural Revolution of the New Stone Age, is examined in some detail, and concentrates on technology and its effects on human beings. Considers the professionalization of engineering, the spread of industrialization in Britain, in Europe and the USA, and examines the Second Industrial Revolution. Emphasis on the social and economic effects of the interactions of technology and society.

Assessment: Tutorial paper; performance in class; examination. (Old No. 62.201U)

HPST3106 The Discovery of Time S2 L2 T1 C6
Prerequisite: As for HPST2106. Excluded: 62.103.

The history of time, from the Ancient World through the Twentieth Century. The principal strands studied are: clocks and other instruments for the measurement of time, civil and religious calendars, concepts of time, philosophy and theology of time, conceptions of history and of progress, the cognition of time, the age of the Earth and the antiquity of humanity, time and the development of modern science. Throughout, attention will be paid to the historical context within which specific episodes and developments occurred and to cultural consequences of changes in the cognition of time.

Assessment: Essay; tutorials; 2 class tests. (Old No. 62.207U)

HPST3107 Relations Between Science and the Arts S1 L2 T1 C6
Prerequisite: As for HPST2106. Excluded: 62.241.

Not offered in 1991.

Assessment: Tutorial exercises; essay; examination. (Old No. 62.211U)

HPST3108 Man, Woman and Deity S2 L2 T1 C6

Conceptions of deity, from earliest times to the present, in relation to changing notions of sexuality and generation; the place of human beings in relation to their environment and the cosmos; the roles of the sexes within different cultures. Topics: archaeological evidence for early ideas concerning generation and for the relations of man to the cosmos; the Earth Mother Goddess; biology, religion and mythology; feng-shui and geomancy; the symbolism of city, temple and dwelling; religion, sexuality and generation in ancient civilizations and primitive societies, with special reference to the Australian Aborigines; the Medieval and Renaissance worldview; the tyranny of the machine; conservation and stewardship in the Middle Ages; the cultus of the Virgin Mary in relation to scientific and social change; theories of biological generation; concepts of Deity and Nature in relation to science and the environmentalist movement; the Gaia hypothesis.

Assessment: 1 essay; 2 tests; tutorials. (Old No. 62.214U)

142
HPST3109 Issues in the Philosophy of Science
S1 L2 C4
Prerequisite: Completion of at least 2 HPST subjects. Excluded: 62.3005.
Not offered in 1991.

Selected topics in contemporary philosophy of science chosen from among the following: Scientific Laws, Theories and Explanations, Observation, Evidence, Confirmation, Induction, Models and Metaphors, Realism and Instrumentalism, Verification and Falsification, Scientific Discovery and Scientific Revolutions, Theoretical Reduction, Methodological Problems of Social Sciences, Teleological and Purposive Explanation, Rationality and Scientific Method, Science and Pseudo-Science Demarcation. (Old No. 62.305U)

HPST3116 Language and Mind: The Impact of Chomsky's Revolution
S1 L2 T1 C6
Prerequisite: As for HPST2106. Excluded: 62.570.
Not offered in 1991.

Chomsky's theories of language and mind which have revolutionised linguistics, psychology and philosophy. History of linguistics and psychology, especially the Behaviourist approach of Skinner. Chomsky's impact on traditional philosophical debate between Rationalists and Empiricists concerning innate ideas. (Old No. 62.218U)

HPST3117 Philosophical Problems in Evolutionary Biology
S2 L2 C4
Co-requisite: HPST2106 or HPST2107.

Current controversies in evolutionary theory, with consideration of topics such as essentialism and population thinking, falsifiability of the principle of natural selection, the group selection controversy, sociobiology, problems in classification and cladism, the neutral theory of evolution and the role of chance, punctuated equilibrium theory, the origin of life, creation 'science'. (Old No. 62.301U)

SCTS2106 Scientific Knowledge and Political Power
S1 L2 T1 C6
Prerequisite: As for HPST2106. Excluded: 62.052.

An introduction to the political dimensions of 20th century science. Topics include: growth of expenditure on science in the 20th century; attempts to define the social function of science in the inter-war years; the radical scientists' movement of the 1930s the freedom versus planning debate; science and politics in the Second World War; government patronage and political expectations in the post-war period; science and economic growth; the science-technology relationship; the rejection of laissez-faire in the 1960s; approaches to science policy; critiques of the role of science in contemporary society; scientists as experts; the question of social responsibility in science.

Assessment: Essays; tutorials. (Old No. 62.203U)

SCTS2107 The Sociology of Science and Technology
S2 L2 T1 C6
Prerequisite: As for HPST2106. Excluded: 62.062.

An examination of the communal nature of scientific and technological activities which will include: an historical survey of the development of scientific and engineering sub-cultures and professions; theories on the internal workings of scientific communities scientific communication, norms, the reward system, fraud, disciplines and specialties in science and engineering; a critical examination of the notion of 'communities' and their relation with the wider social order; the 'constructivist' re-unification of social systems and knowledge systems and consequences for the sociology of expertise.

Assessment: Essays; tutorials. (Old No. 62.204U)

SCTS2108 Information Technology, Politics and Policies
S1 L2 T1 C6
Prerequisite: SCTS1106 or completion of at least 4 Level 1 Science units.

Not offered in 1991.

Key issues for an 'info-tech' society including: social policies and the future of work and education; mass media and telecommunications in the electronic age; commercialisation and shifting patterns of trade in the world economy; de-regulation and the role of 'info-tech' in global restructuring.

Assessment: Essay and tutorial participation. (Old No. 62.221U)

SCTS2109 The New Biotechnologies and Their Social Context
S2 L2 T1 C6
Prerequisite: SCTS1106 or by permission of the Head of school for 3rd and 4th year students in the Biological Sciences. Excluded: 62.245.

Not offered in 1991.

The social implications of the new biotechnologies, including recombinant DNA techniques, genetic manipulation of animals and test tube babies. The present achievements and likely future developments of the new genetic and reproductive technologies, together with detailed discussions of the social, ethical and political implications of these developments. Topics include: the debate on the safety of genetic engineering; in vitro fertilization and related reproductive technologies; the ethics of human genetic engineering; university-industry interactions in biotechnology; the release into the environment of engineered organisms; mechanisms for public participation in the control of biotechnology. (Old No. 62.212U)

SCTS3106 Science, Technology and Developing Countries
S2 L2 T1 C6
Prerequisite: As for HPST2106. Excluded: 62.082.

The disparities between the scientific and technical capabilities of industrialized and developing societies. The reasons for these disparities and their economic and social consequences. Aspects include: the problems of dependency; the product cycle and its impact on location of production; concepts of the 'learning curve'; aspects of technology choice; bargaining processes; transnational corporations and the 'truncation' of the industrial sector; efforts to define 'appropriate' technologies; modes of technology transfer; alternate models and policies for scientific and technological development; the role of traditional technology; the impact of modern technology on international relations. Issues: the consequences of modern science and technology for the role of the military in developing countries; food and population problems; energy use; environmental impacts; class structure, etc. The social role and function of scientific communities in less developed countries and the process of technological activities which will include: an historical survey
Sciences

diffusion of science from the centre to the periphery and the evolution of national scientific communities and institutions are addressed through the use of case studies.

Assessment: Essay; tutorials. (Old No. 62.206U)

SCTS3108 Technological Development in 20th Century Australia
Prerequisite: SCTS1106. Excluded: 62.246.

Not offered in 1991.
The historical development of technology in Australia during the 20th century, with an analytic focus on three key dimensions: linkages between scientific research, industrial development and economic growth, technological change and its impact on Australian society; the distinctive features of Australia’s geopolitical situation. Topics include: the origin, expansion and transformation of the CSIRO, the maturation and professionalization of the Australian research community; the politicization of science and the post-war legacy; the failure of Australian research to serve an industrialized economy; science policy and technological change in the 1970s and 1980s; comparison with the Canadian situation and the experience of newly industrializing countries. (Old No. 62.213U)

SCTS3109 Technology, Environment and Risk
Prerequisite: SCTS1106 or completion of at least 4 Level 1 Science units.
The growth of concern in advanced industrial societies over the risks associated with the development of resource-based and other technological and environmental degradation. The relationships between perceived risk and social trust and institutional arrangements. The basis of much of the present concern in anxieties over social control and in changing perceptions of the relationships between ethics and politics. Case studies examine nuclear energy, hazardous wastes and information technology.
Assessment: Essays and tutorial participation. (Old No. 62.220U)

SCTS3116 The Politics of Energy
Prerequisite: As for SCTS3109.
The fundamentals of energy, force, work construction of energy use; resources and reserves; the 'energy crisis'; the nuclear energy process; solar and alternative sources; political economy of energy use coal, oil, nuclear; Institutional power; market arrangements and the role of the State; energy in the 1980s and 1990s. Case studies include N.S.W. and Victorian power inquiries; coal vs oil vs gas; the nuclear industry today; the future of solar power.
Assessment: Essay, tutorial participation and class tests. (Old No. 62.222U)

SCTS3117 Technology, Globalisation and the Role of the State
Prerequisite: Completion of at least 2 SCTS subjects. Excluded: 62.3003.

Not offered in 1991.
An analysis of the interaction between technology, economic growth and the internationalism of industry; the growing pressure on the State to adopt an increasingly interventionist role. (Old No. 62.303U)

Level IV Honours Program

SCTS4106 Science and Technology Studies (Honours)
Prerequisite: Completion of Years 1-3 of Program 6200, with marks that result in an average of credit or better in eight HPST and/or SCTS units included in that program.

In the Honours Program, candidates are required to present a thesis and to complete course work as approved by the Head of School.

Wool and Animal Science

WOOL3803 Genetics 1

WOOL3901 Biostatistics 1
Design and analysis of comparative experiments, for continuous and discrete random variables. Analysis of variance for fixed, mixed and random models. Linear regression and correlation. Multiple comparison methods. (Old No. 9.811)

WOOL4813 Genetics 2
Graduate Study:
Faculty of Biological and Behavioural Sciences,
Faculty of Science
Introduction

Faculty of Biological and Behavioural Sciences

The Schools of the Faculty of Biological and Behavioural Sciences offer facilities for students to proceed to the award of a Graduate Diploma, the award of a master degree by research and the award of the degree of Doctor of Philosophy; and the award of a master degree by course work in Psychology (8251 and 8252) and in Biotechnology (8042).

Students requiring advice about graduate studies should check details later in this handbook and also enquire from the Head of the appropriate School. Schools of the Faculty also contribute to programs to the Science and Mathematics Course 3970.

Faculty of Science

The Schools of the Faculty of Science supervise the graduate diploma courses Food and Drug Analysis (5510) and Physical Oceanography (5530). The Schools of the Faculty also offer facilities for students to proceed to masters degrees in Chemistry (8770), Mathematics (8740), Optometry (8760), Physics (8730) and Statistics (8750), to the award of masters degrees by research and to the award of the degree of Doctor of Philosophy.

Students requiring information about the graduate studies which are available should seek advice from:

Graduate Diploma in Food and Drug Analysis Professor G. Crank

or

School of Chemistry Associate Professor H.A. Goodwin
School of Mathematics Associate Professor C.E. Sutherland
School of Optometry Professor H.B. Collin
School of Physics Associate Professor D. Miller

Schools of the Faculty also contribute programs to the Science and Mathematics Course 3970.
Graduate Study: Faculty of Biological and Behavioural Sciences
Faculty of Science

Facility of Biological and Behavioural Sciences and Faculty of Science Enrolment Procedures

All students re-enrolling in 1991 or enrolling in graduate courses should contact the Postgraduate Section for enrolment details.

Faculty of Biological and Behavioural Sciences

Higher Degree Qualifying Program

Students without a BSc Honours degree wishing to register as higher degree candidates must usually complete a qualifying program, admission to which is subject to the approval of the Faculty Higher Degree Committee.

Applicants must normally have a degree or diploma in an appropriate field of study from an approved university or institution, and in the case of a diploma, appropriate professional experience.

Undergraduates of this University may be admitted to the full-time or part-time Honours undergraduate course. Other applicants may be admitted to a full-time, part-time or external qualifying program. The duration of the qualifying program is a minimum of one year for full-time and two years for part-time or external students.

Content of Qualifying Program

The qualifying program consists of the whole of the usual program for the final Honours year of the undergraduate course, the following being the prescribed Level IV subjects:

- BIOC4618 Biochemistry Honours
- BIOS4013 Biological Science Honours (Full-time)
- BIOS4019 Biological Science Honours (Part-time)
- BIOT4073 Biotechnology Honours
- BIOT4083 Biotechnology Honours (Part-time)
- BIOS4023 Botany Honours
- BIOS4029 Botany Honours (Part-time)

Facilities are available in each of the Schools for research leading to the degrees of Master of Science, Doctor of Philosophy and Graduate Diploma. The Department of Biotechnology offers a Graduate Diploma in Biotechnology and a Master's course in Biotechnology by formal study, and the School of Psychology offers Master of Psychology (Clinical) and Master of Psychology (Applied) degree courses.
Schools of the Faculty are as follows:

Brief descriptions of the courses currently offered within the Schools of the Faculty are as follows:

Science

- Microbiology Honours
- Psychology 4 (Thesis)
- Zoology Honours (Part-time)

The qualifying program is graded in the usual way, and in appropriate cases the results are expressed as a grading equivalent to Honours.

Alternative Qualifying Program

Applicants who cannot attend the University regularly for the above programs may be admitted as external qualifying students to a program similar to a standard Honours year. The following are the alternative qualifying subjects:

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC6308</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIOS9917</td>
<td>Biological Science</td>
</tr>
<tr>
<td>BIOT8013</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>BIOS9943</td>
<td>Botany</td>
</tr>
<tr>
<td>MICR6043</td>
<td>Microbiology</td>
</tr>
<tr>
<td>PSYC6000</td>
<td>Psychology</td>
</tr>
<tr>
<td>BIOS9945</td>
<td>Zoology</td>
</tr>
</tbody>
</table>

The results in alternative qualifying subjects are graded Pass or Fail only.

Fees

Candidates enrolled in the Alternative Qualifying Program are exempt from student service fees.

Graduate Diploma

The Graduate Diploma is designed as a one year full-time period of study and research. It is intended primarily as an advanced training programme for graduates from overseas universities who wish to obtain specialized training in particular areas of biological and behavioural science. The structure of the course would be decided after discussions with each student, taking into account the areas of biology in which facilities and appropriate supervision are available. However, the course is also available to graduates of Australian universities who have not done an Honours course and who wish to pursue postgraduate study in a discipline other than that in which they obtained their first degree.

At the successful conclusion of the course the students would be provided with a Diploma Certificate showing their Higher Degree Qualifying status by the University and a statement of their proficiency from the relevant School.

Entrance for students for whom English is the second language would be dependent on achieving an adequate standard of written and spoken English.

The academic year for the University of New South Wales consists of two sessions, commencing in late February - early March and mid-July, respectively. It is preferred that new students arrive 2-3 weeks prior to the beginning of the Session, so that they can be orientated prior to the commencement of formal teaching.

Brief descriptions of the courses currently offered within the Schools of the Faculty are as follows:

School of Biochemistry

The course is designed to meet the needs and objectives of individual students building on that students' competence and experience. It includes a formal coursework component and a research project which is carried out under the supervision of a member of the academic staff. Students receive advanced formal training to provide them with background information relevant to their research project.

The School has a wide range of interests and training and research are offered in both plant and animal sciences. Areas of biology in which facilities and appropriate supervision are available include:-

- ecology, taxonomy, environmental physiology, marine and fisheries biology, genetics and evolution, mycology, ultrastructure, comparative physiology, mammalian studies.

School of Biological Science

The structure of the course would be decided after discussions with each student, taking into account their particular background, interest and career goals. Usually students would attend one or more of the advanced third year courses in either general microbiology, microbial genetics, environmental microbiology, immunology, mycology, plant/microbe interactions, medical bacteriology or animal virology. The rest of the year would be spent carrying out a research project supervised by a member of academic staff.

The School of Microbiology and Immunology has a number of research teams working on a range of well funded projects in microbiology, molecular biology and immunology. Specialized areas of research include microbial ecology, environmental microbiology, marine microbiology, nitrogen fixation, the pathogenesis of intestinal infection, the immunology of the intestinal tract and arbovirus research.

School of Psychology

This one year course is adapted to suit the needs and objectives of each student, taking into account the areas of psychology in which they have already demonstrated competence. The expectation is that students who achieve an appropriate standard in the course will then be admitted to a
higher degree program, provided suitable supervision and facilities are available.

The course comprises formal teaching in an approved set of subjects drawn from the following areas: research methods and statistics, perception, learning, cognitive psychology, psycholinguistics, social psychology, clinical psychology and applied psychology. Both lectures and practical work will be given.

Students will normally also carry out a research project under the supervision of a member of the academic staff of the School. Active research programs exist in experimental psychology, social psychology, clinical psychology, behavioural neuroscience and industrial/occupational psychology. Particular attention within each of these programs is paid to the inter-relationship between scientific theory and the practical application of psychological knowledge.

Biotechnology

5015
Biotechnology Graduate Diploma Course

Graduate Diploma GradDip

The graduate diploma course provides the opportunity for graduates with no previous tuition in biotechnology to undertake training in this discipline.

A degree in a science-based course is required for admission. If the degree course has not included a biology component, the candidate is required to undertake some basic biology training as a prerequisite or co-requisite.

Under normal circumstances, students whose previous training has included a substantial component of biotechnology will not be admitted to the course.

The course comprises study of undergraduate and graduate formal subjects, plus extensive laboratory training in biotechnology.

The diploma is awarded after one year's full-time study, consisting of an average of 18 hours per week, or two years part-time study, consisting of an average of 9 hours per week. The program includes the listed obligatory subjects plus sufficient of the listed elective subjects to meet the hours of study required. The electives include subjects necessary for students without previous tuition in biochemistry and microbiology, as well as alternatives for those with previous tuition in these disciplines. The choice of electives in each individual case is subject to approval by the Head of School.

Master of Applied Science (Biotechnology)

The Department also offers a formal graduate course at the master's level (Master of Applied Science (Biotechnology)). The course includes advanced treatments of all areas of biotechnology. It is open to graduates with a four-year degree in biotechnology or a related discipline, or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Intending students are referred to Conditions for the Award of Graduate Degrees set out later in this handbook.

The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The minimum period of registration before the award of the degree is two sessions for full-time students and four sessions for part-time students.

To qualify for the degree students must satisfy the examiners in the prescribed examinations, which include the submission and assessment of a report on the specified project.

8042
Master of Applied Science (Biotechnology) Graduate Course

Master of Applied Science (Biotechnology) MAppSc(Biotech)

The School offers courses leading to the award of the degrees of Master of Psychology (Clinical) and Master of Psychology (Applied).

Master of Psychology (Applied)

The Master of Psychology (Applied) degree course is aimed at providing psychology graduates with a postgraduate qualification which will equip them to make a distinctive contribution in work and other organizations. The emphasis of the program will be on developing applied research skills that integrate theory and practice. When combined with their undergraduate training and the required work experience, this program will equip psychologists with an understanding of organizational, social and cultural influences on behaviour. They will be able to apply this understanding to many problems through a critical, empirical orientation based on experimental methods, measurement and statistics. Areas of specialization include Ergonomics, Organizational and Vocational Psychology, and psychological aspects of Occupational Health.

The normal entrance requirement is completion of an honours Class 1 or Class 2 degree in Psychology from the University of New South Wales or a qualification considered equivalent.

Applicants who do not satisfy the above entrance requirements may be admitted to the program. Such admissions will be based on an assessment of the applicant's knowledge, experience and occupation. Some additional qualifying subjects may be required of those who are admitted under this provision.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students. Students with advanced standing may have the minimum period reduced by up to one half of the program (ie a reduction of one session if a student has completed a PhD in an approved area of Psychology and one session if a student has completed part of the course work program).

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

The course consists of 1. a 22 hour core program, 2. a thesis, 3. a 10 hour elective program, and 4. Professional Practice component.

Subjects from other graduate degrees, including the Master of Psychology (Clinical) degree, may be included in the elective program with the permission of the School concerned and the Head of the School of Psychology.

Head of School
Professor B. J. Gillam

Administrative Officer
Mr T. J. Clulow
Master of Psychology (Clinical)

This course is designed to provide professional training at an advanced level for honours graduates in psychology.

The normal entrance requirements are:

1. a degree of Bachelor, with Honours Class 1 or Class 2 in Psychology;
2. completion of a research thesis or research project in the Honours fourth year;

and

3. completion of approved courses in learning, perception and cognition, physiological psychology, psychological statistics, psychometrics and abnormal psychology, or in such other fields as may be prescribed by the Head of the School.

Selection of students is based on academic qualifications and suitability for the course. It may be necessary to limit the number of new enrolments in any year.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students. Students with advanced standing may have the minimum period reduced by up to one half of the program if a student has completed a PhD in an approved area of Psychology and one session if a student has completed part of the course work program.

To qualify for the degree, students must satisfy the examiners in respect of their academic attainments, and their skill and competence in relevant aspects of practical professional work.

The course consists of lectures, seminars, demonstrations and practical work, supervised clinical and community work, and a research thesis.

The major aims of the course are: 1. to acquaint students with the issues, findings and problems of contemporary clinical and community psychology; and 2. to equip them with basic clinical skills and techniques. A total of 680 hours of supervised clinical practice must be completed.

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

It should be noted that the course extends over two calendar years and not just four academic sessions with vacation breaks.

Master of Psychology (Clinical)

MPsycol(Clin)

Year 1

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC7000 Research and Evaluation Methods</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>PSYC7001 Psychological Assessment 1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>PSYC7002 Psychological Assessment 2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>PSYC7003 Graduate Colloquium</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSYC7200 Experimental Clinical Psychology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PSYC7202 Pharmacotherapy and other Physical Treatments</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>PSYC7203 Theory and Research in Psychopathology</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>PSYC7204 Child Clinical Psychology</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>PSYC7205 Professional Practice (Clinical): 380 hours</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PSYC7208 Behavoural Health Management</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PSYC7209 Developmental Disabilities and Disorders</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>PSYC7210 Human Neuropsychology</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC7003 Graduate Colloquium</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSYC7201 Family Based Therapies</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>PSYC7205 Professional Practice (Clinical): 380 hours</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*PSYC7206 Research Thesis (Clinical)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PSYC7207 Ethical Issues and Special Topics</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Select one elective subject from:

a. Neuroanatomy for Neuropsychologist
b. a subject from the Master of Psychology (Applied) degree course, or
c. with the approval of the Head of School of Psychology one other subject.

*Contributes approximately 25 per cent to the overall grading for the degree. Note: Part-time students normally are expected to take half the full-time program in any one session.
Sciences
Faculty of Science
School of Optometry
School of Chemistry
School of Mathematics
School of Physics
Graduate Diploma in Physical Oceanography
Master of Optometry
Master of Chemistry
Graduate Diploma in Food and Drug Analysis
Master of Mathematics
Master of Statistics
Master of Physics

For admission to registration for all degrees of Master (except Master of Statistics), candidates must have completed one of the following:
1. An approved degree of Bachelor with Honours.
2. An approved three year course leading to the degree of Bachelor plus an approved qualifying program. Suitable professional and or research experience may be accepted in lieu of the qualifying program.
3. An approved four year course leading to the degree of Bachelor.

Applicants for registration for the degree of Master of Statistics shall have been admitted to the degree of Bachelor with major studies in the field of statistics in the University of New South Wales or other approved university.

The manner of presentation and examination of reports of projects undertaken as part of formal courses shall be determined by the Head of the School.

The conditions governing these awards are set out later in this handbook.

5530
Physical Oceanography Graduate Diploma Course

Graduate Diploma in Physical Oceanography GradDip

This graduate diploma is intended to train graduates in the physical sciences or engineering in the basic techniques of physical oceanography.

It is intended to develop student skills in planning and execution of oceanographic experiments, in the theory of oceanographic fluid mechanics, the applications and limitations of oceanographic equipment and of commonly used data analysis techniques.

Recent rapid developments in marine science coupled with the relative scarcity of persons able to take up support positions demonstrate the need for skilled persons who will be able to assist oceanographic research with minimum training. This program is aimed at providing such skilled graduates.

Intending students are referred to the conditions for the award of graduate diplomas set out elsewhere in this handbook. Basic entry qualifications for this program are a degree in Engineering or in Science with major studies in mathematics or physics.

The program, requiring 28 credits for completion, consists of a major project OCE5115 worth 50% of the total accreditation for the program, the remaining 50 being comprised as indicated below.

1 Compulsory Subjects
OCEAS15 Experimental Project 14 credits
OCEAS125 Geophysical Fluid Dynamics 4 credits
OCEAS135 Instrumentation 1 credit
OCEAS145 Applied Data Analysis 2 credits

2 Elective Subjects
REMO9580 Image Analysis in Remote Sensing 3 credits
REMO9581 Microwave Remote Sensing 3 credits
CIVL9835 Coastal Engineering 1 3 credits
CIVL9836 Coastal Engineering 2 3 credits
CIVL9863 Estuarine Hydraulics 3 credits
GEOG9150 Remote Sensing Applications 3 credits
OCEAS155 Theoretical Project 7 credits

Appropriate existing subjects within mathematics, physics or engineering chosen on the basis of individual background

Here 1 credit is defined as being 1 hour per week for one session. The course may be taken over one year full-time or two years (part-time).

Chemistry

Head of School
Professor I. G. Dance

Chairman of Graduate Studies
Associate Professor H. A. Goodwin
(contactable via Chemistry Academic Office)

8770
Master of Chemistry Graduate Course

Master of Chemistry MChem

Three programs are available, emphasizing different areas of chemistry. Each program consists of a number of lecture courses each separately examinable, laboratory instruction and visits to laboratories. In addition each student undertakes a short research project, with a research report assessed by two examiners. The student may also be required to undergo an oral examination.

Program 2.581G Advanced Analytical Chemistry and 2.583G Analytical Science Chemistry are available only on a full-time basis.

Program 2.582G Food and Drug Chemistry may be taken either full-time or part-time.

Details of the programs are:

2.581G Advanced Analytical Chemistry
This program should be of interest to chemistry graduates who are involved in the practice or teaching of analytical chemistry.
1 Lecture Courses
Students are required to take all of the following nine core courses of lectures:

(1) Analytical flame spectroscopy;
(2) Advanced electrochemical analysis;
(3) Chromatography;
(4) Analytical chemistry of pollutants;
(5) Emission, IR, Mass and XRF spectroscopy;
(6) Calculations and statistics in analytical chemistry;
(7) Chemical analysis of organic and biological materials;
(8) Operations and applications of minicomputers in chemistry;
(9) Chemical microscopy.

The lecture time for the whole course is a minimum of 140 hours.

2 Laboratory Instruction and Visits to Laboratories
An additional minimum of 150 hours is spent by students in selected areas of laboratory practice, instruction and visits to laboratories.

3 Research Project
A short research project (with report) of approximately 4 months' duration full-time (400 hours) laboratory work is selected in relation to the combined interests of the student and the supervisor.

2.582G Food and Drug Chemistry
This program involves an advanced study of the chemistry, stability, mode of action where applicable and analysis of food constituents, food additives and selected drugs. Entry to this program is excluded in the case of applicants who have completed the Graduate Diploma in Food and Drug Analysis (course 5510).

1 Lecture/Laboratory Courses
(1) Food and Drugs 1
(2) Treatment of Analytical Data
(3) Instrumental Techniques in Food and Drug Analysis
(4) Food and Drugs 2
(5) Toxicology, Occupational and Public Health
(6) Introductory Microbiology

The lecture time for the whole course is 160 hours. An additional 392 hours is spent by students in formal laboratory work. Students who have not previously taken an approved course in microbiology are required to complete subject MICR2201 Introductory Microbiology (84 hours) in addition to the above program.

2 Research project
A short research project with report of approximately 4 months' duration full-time 400 hours laboratory work is selected in relation to the combined interests of the student and the supervisor.

2.583G Analytical Science (Chemistry)
This program provides a more broadly based training in methods of chemical analysis than 2.581G.

1 Formal course work
Students are required to complete all of the following courses of lectures and associated laboratory work.

(1) Classical methods of chemical analysis
(2) Instrumental analysis

(3) Toxicology, occupational and public health
(4) Special instrumental analysis methods

The lecture time for the whole course is 98 hours. An additional 196 hours is spent in formal laboratory sessions.

2 Project
A short project with report requiring 400 hours of laboratory work, which may be either original research work or development work. The field of work will be selected considering the combined interests of the student and the supervisor.

5510 Food and Drug Analysis Graduate Diploma Course

Diploma in Food and Drug Analysis
DipFDA

According to demand the course may be available on a full-time basis over one year or on a part-time basis over two years.

The course in food and drug analysis is designed to provide systematic training at an advanced level for chemists who wish to extend their acquaintance with analytical techniques, and thus is suitable for those who may wish to practice as public analysts. It is also suitable for those who wish to work in the food or pharmaceutical industry. The prime aim is to present discussions of the principles and design of analytical methods which are therefore presented on a comparative basis.

It is considered that the techniques involved in the handling of foods and drugs together with those discussed in the ancillary subjects of the course provide a firm basis of approach to many other fields.

Intending students are referred to the conditions for the award of graduate diplomas set out later in this handbook.

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM7125</td>
<td>Food and Drugs 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEM7115</td>
<td>Treatment of Analytical Data</td>
<td>1</td>
</tr>
<tr>
<td>CHEM7425</td>
<td>Instrumental Techniques in Food and Drug Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM7225</td>
<td>Food and Drugs 2</td>
<td>4</td>
</tr>
<tr>
<td>CHEM7325</td>
<td>Toxicology, Occupational and Public Health</td>
<td>4</td>
</tr>
<tr>
<td>MICR2201</td>
<td>Introductory Microbiology</td>
<td>3+</td>
</tr>
</tbody>
</table>

* Offered in Session 1 only, at 6 hpw.
**Full-time students take Years 1 and 2 in the one year.
Mathematics

Head of School
Professor I.H. Sloan

The School offers graduate courses leading to the award of the degrees of Master of Mathematics (MMath) and Master of Statistics (MStats). (The School also offers the pass degree of MA For further details see the Faculty of Arts Handbook).

8740
Master of Mathematics Graduate Course

Master of Mathematics
MMath

The Master of Mathematics Course is intended for honours graduates in pure or applied mathematics, but others may be admitted after completing a qualifying course. The course may be completed in one year of full-time or two years of part-time study. The course may be taken as a preliminary step towards the award of a PhD in mathematics. It also provides advanced training for persons specializing in the teaching of mathematics in tertiary institutions. In addition an appropriate program may provide training for those employed or seeking employment in the area of industrial mathematics.

The program consists of seven lecture courses from 10194G, the duration of each being two hours per week for one session. With the approval of the Head of the School of Mathematics a student may substitute for one or more of these lecture courses a reading course supervised by a member of staff. Again with this approval a student may substitute for at most two of these courses graduate courses offered either within or outside the School of Mathematics. Students are also required to participate in relevant departmental seminars. In addition, students are required to undertake a project supervised by a staff member, consisting of either a critical review of literature in a specific field of mathematics, or a short research project. It is anticipated that students will spend three hours per week for two sessions on their project. Each candidate's proposed program of study requires the approval of the Head of the School of Mathematics.

The conditions for the award of the degree are set out later in this handbook.

8750
Master of Statistics Graduate Course

Master of Statistics
MStats

The Master of Statistics Course covers a wide range of statistical theory and practice and provides advanced training for practising statisticians. The course may be completed in two years of full-time or four years of part-time study, and it is available to graduates with a pass degree in statistics or an honours degree in a related field (commonly mathematics) with supporting study in statistics. Honours graduates in statistics may be exempted from a maximum of half the course. The conditions for the award of the degree are set out later in this handbook.

The academic requirement for the degree is 24 credits.

Each candidate's program of study must be approved by the Head of the School.

Compulsory Subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH5815</td>
<td>Experimental Design 1</td>
<td>2</td>
</tr>
<tr>
<td>MATH5835</td>
<td>Stochastic Processes</td>
<td>2</td>
</tr>
<tr>
<td>MATH5855</td>
<td>Multivariate Analysis 1</td>
<td>2</td>
</tr>
<tr>
<td>MATH5905</td>
<td>Statistical Inference</td>
<td>2</td>
</tr>
<tr>
<td>MATH5925</td>
<td>Project</td>
<td>2</td>
</tr>
</tbody>
</table>

Elective Subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH5825</td>
<td>Experimental Design 2</td>
<td>2</td>
</tr>
<tr>
<td>MATH5845</td>
<td>Time Series</td>
<td>2</td>
</tr>
<tr>
<td>MATH5855</td>
<td>Multivariate Analysis 2</td>
<td>2</td>
</tr>
<tr>
<td>MATH5875</td>
<td>Sample Survey Design</td>
<td>2</td>
</tr>
<tr>
<td>MATH5885</td>
<td>Sequential Analysis</td>
<td>2</td>
</tr>
<tr>
<td>MATH5895</td>
<td>Non-Parametric Methods</td>
<td>2</td>
</tr>
<tr>
<td>MATH5915</td>
<td>Special Topic* A</td>
<td>2</td>
</tr>
<tr>
<td>MATH5935</td>
<td>Special Topic* B</td>
<td>2</td>
</tr>
<tr>
<td>MATH5945</td>
<td>Discrete Distributions</td>
<td>2</td>
</tr>
<tr>
<td>MATH3181</td>
<td>Optimal Control Theory</td>
<td>2</td>
</tr>
</tbody>
</table>

Elective Subjects Credits

CIVL9403 Theory of Land Use/Transport Interaction 2
CIVL9405 Urban Transport Planning Practice 2
CIVL9417 Transport and Traffic Flow Theory 4
MATH3161 Optimization Methods or 3
ECON3204 Econometrics B 2
MANF9330 Simulation in Operations Research 2

*To be arranged: eg biological statistics, further work on order statistics, population statistics, non-linear programming

Optometry

Head of School
Professor H. B. Collin

The School offers a formal graduate course leading to the award of the degree of Master of Optometry (MOptom). This course comprises the study of three elective graduate subjects and of advanced Clinical Optometry, together with the preparation of a thesis on an assigned project. It may be completed in one year of full-time study, or it is required to meet the needs of practising optometrists in two or three years of part-time study. The course provides advanced training in clinical and theoretical aspects of Optometry, with opportunities for specialization in fields such as contact lenses, occupational optometry, and orthoptics.

Conditions for admission and for the award of the degree of Master of Optometry are set out later in this handbook.
Master of Optometry Graduate Course

Master of Optometry
MOptom

Not offered in 1991.

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>Subjects</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTM8001</td>
<td>Advanced Clinical Optometry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Three elective graduate subjects chosen from</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>the list below (each 4 hours)</td>
<td></td>
</tr>
<tr>
<td>OPTM8008</td>
<td>Project</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Elective Graduate Subjects

OPTM8002 Advanced Physiological Optics 4
OPTM8003 Ptero-haptics and Binocular Vision 4
OPTM8004 Advanced Contact Lens Studies 4
OPTM8005 Advanced Contact Lens Practice 4
OPTM8006 Occupational Optometry 4
OPTM8007 Clinical Photography 4

The six elective graduate subjects offered are quite independent, and any three of them are suitable for a student seeking advanced professional training of a general nature. If clinical specialization is aimed at, the student would be advised to elect the graduate subjects shown below:

Specialization	Graduate Subjects
Contact Lenses | 1 Advanced Contact Lens Studies
 | 2 Advanced Contact Lens Practice
 | 3 Clinical Photography
Occupational Optometry | 1 Occupational Optometry
 | 2 Ptero-haptics and Binocular Vision
 | 3 Advanced Physiological Optics
Orthoptics | 1 Ptero-haptics and Binocular Vision
 | 2 Clinical Photography

The Master of Physics degree course is intended for honours graduates in physics. Others may be admitted if they have submitted evidence of such academic and professional attainments as may be approved by the Faculty of Science on the recommendation of its Higher Degree Committee. Applicants with other qualifications may be admitted after completing a qualifying examination approved by the Faculty of Science.

The subject matter of the course provides an advanced training in a branch of physics, the topic of which is determined during the year preceding that in which it is offered.

Students undertaking the masters course by formal study must enrol in one of the following subjects:

- PHYS8015 Energy Alternatives
- PHYS8025 Astrophysics
- PHYS8035 Acoustics
- PHYS8045 Biophysics
- PHYS8055 Applied Physics

Enrolment in any one of the above subjects normally involves at least five units of lecture material, a literature survey, and small research project.

Physics

Head of School
Professor J. W. V. Storey

Executive Assistant to Head of School
Dr K. R. Vost

Administrative Officer
Mr S. Lo

Master of Physics Graduate Course

Master of Physics
MPhysics

The School offers a graduate course leading to the award of the Master of Physics degree (MPhysics).
Identification of Subjects

A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

In 1991 a new system of subject identification is introduced. Each approved subject of the University is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subject identifiers are approved by the Registrar and the system of allocation is based on the following guidelines:

1. The authority offering the subject, normally a School of the University, is indicated by the four character alphabetical prefix.
2. Each subject identifier is unique and is not used for more than one subject title.
3. Subject numbers which have previously been used are not used for new subject titles.

Subjects taught are listed in full in the handbook of the faculty or board of studies responsible for the particular course within which the subjects are taken. Subject descriptions are contained in the appropriate section in the handbooks.

Appropriate subjects for each school appear at the end of each school section.

The identifying alphabetical prefixes for each organizational unit are set out on the following pages.

Servicing Subjects are those taught by a school or department outside its own faculty. Their subject descriptions are published in the handbook of the faculty which originates the subject and are also published in the handbook of the faculty in which the subject is taught. The following pages contain descriptions for most of the subjects offered for the courses described in this book, the exception being General Education subjects. For General Education subjects see the General Education Handbook which is available free of charge.

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.

Information Key

The following is the key to the information which may be supplied about each subject:

S1 Session 1, S2 Session 2
F Session 1 plus Session 2, i.e. full year
S1 or S2 Session 1 or Session 2, i.e. choice of either session
SS single session, but which session taught is not known at time of publication
CCH class contact hours
L Lecture, followed by hours per week
T Laboratory/Tutorial, followed by hours per week
P/T part-time
hpw hours per week
wks weeks of duration
C Credit point value
CR Credit
DN Distinction
HD High Distinction
X External
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIO</td>
<td>School of Applied Bioscience</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ACHM</td>
<td>Department of Chemistry</td>
<td>University College</td>
</tr>
<tr>
<td>ACMA</td>
<td>Department of Civil Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ACSC</td>
<td>Department of Computer Science</td>
<td>University College</td>
</tr>
<tr>
<td>AECM</td>
<td>Department of Economics & Management</td>
<td>University College</td>
</tr>
<tr>
<td>AELE</td>
<td>Department of Electrical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AENG</td>
<td>Department of English</td>
<td>University College</td>
</tr>
<tr>
<td>AERO</td>
<td>Aeronautical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>AGOC</td>
<td>Department of Geography & Oceanography</td>
<td>University College</td>
</tr>
<tr>
<td>AHIS</td>
<td>Department of History</td>
<td>University College</td>
</tr>
<tr>
<td>AINT</td>
<td>University College (Interdisciplinary)</td>
<td>University College</td>
</tr>
<tr>
<td>AMAT</td>
<td>Department of Mathematics</td>
<td>University College</td>
</tr>
<tr>
<td>AMEC</td>
<td>Department of Mechanical Engineering</td>
<td>University College</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>APHY</td>
<td>Department of Physics</td>
<td>University College</td>
</tr>
<tr>
<td>APOL</td>
<td>Department of Politics</td>
<td>University College</td>
</tr>
<tr>
<td>APSE</td>
<td>Faculty of Applied Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>ARCH</td>
<td>School of Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>ARTS</td>
<td>Faculty of Arts</td>
<td>Arts</td>
</tr>
<tr>
<td>ASIA</td>
<td>Australian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>AUST</td>
<td>Australian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BLDG</td>
<td>School of Building</td>
<td>Architecture</td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science & Mathematics</td>
<td>Arts</td>
</tr>
<tr>
<td>CEIC</td>
<td>School of Chemical Engineering & Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CHEN</td>
<td>Department of Chemical Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese</td>
<td>Arts</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>COFA</td>
<td>College of Fine Arts</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>COMM</td>
<td>Faculty of Commerce</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>COMP</td>
<td>Computer Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, and Departments of Econometrics and Economics</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>EDST</td>
<td>School of Education Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering & Computer Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>ENGL</td>
<td>School of English Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>EURO</td>
<td>European Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>EXPA</td>
<td>School of Arts and Music Education</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>FIBR</td>
<td>School of Fibre Science & Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking & Finance</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>FOOD</td>
<td>Department of Food Science and Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>FREN</td>
<td>School of French</td>
<td>Arts</td>
</tr>
<tr>
<td>FUEL</td>
<td>Department of Fuel Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal & General Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOI</td>
<td>Department of Applied Geology</td>
<td>Arts</td>
</tr>
<tr>
<td>GERS</td>
<td>School of German Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>GREEK</td>
<td>Modern Greek</td>
<td>Arts</td>
</tr>
<tr>
<td>GSBE</td>
<td>Graduate School of the Built Environment</td>
<td>Architecture</td>
</tr>
<tr>
<td>HEAL</td>
<td>School of Health Services Management</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>HIST</td>
<td>School of History</td>
<td>Arts</td>
</tr>
<tr>
<td>HOSP</td>
<td>Asian Studies Unit</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>IDES</td>
<td>Department of Industrial Design</td>
<td>Architecture</td>
</tr>
<tr>
<td>INDIC</td>
<td>Department of Industrial Chemistry</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INDO</td>
<td>Indonesian</td>
<td>Arts</td>
</tr>
<tr>
<td>INF5</td>
<td>School of Information Systems</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>INTD</td>
<td>Interdisciplinary Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>IROB</td>
<td>School of Industrial Relations & Organ. Behaviour</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>JAPN</td>
<td>Asian Studies Unit</td>
<td>Arts</td>
</tr>
<tr>
<td>KCME</td>
<td>Key Centre for Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>LAND</td>
<td>School of Landscape Architecture</td>
<td>Architecture</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Law</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies & Taxation</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>LIBS</td>
<td>School of Librarianship</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Engineering</td>
</tr>
<tr>
<td>MARK</td>
<td>School of Marketing</td>
<td>Commerce & Economics</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>MATS</td>
<td>School of Materials Science and Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MDCN</td>
<td>School of Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>MDSG</td>
<td>Med/Surg.Clinical Studies</td>
<td>Medicine</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical Eng. & Manufacturing Eng.</td>
<td>Medicine</td>
</tr>
<tr>
<td>MEED</td>
<td>School of Medical Education</td>
<td>Medicine</td>
</tr>
<tr>
<td>MFAC</td>
<td>Medical Faculty (Admin)</td>
<td>Medicine</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational unit</td>
<td>Faculty</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology and Immunology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>MINE</td>
<td>Department of Mining Engineering</td>
<td>Applied Science</td>
</tr>
<tr>
<td>MNGT</td>
<td>Australian Graduate School of Management</td>
<td></td>
</tr>
<tr>
<td>MSCI</td>
<td>Centre for Marine Sciences</td>
<td></td>
</tr>
<tr>
<td>MUSI</td>
<td>Department of Music</td>
<td>Arts</td>
</tr>
<tr>
<td>NAVL</td>
<td>Naval Architecture</td>
<td>Engineering</td>
</tr>
<tr>
<td>OBST</td>
<td>School of Obstetrics & Gynaecology</td>
<td>Medicine</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Science</td>
</tr>
<tr>
<td>PAED</td>
<td>School of Paediatrics</td>
<td>Medicine</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts</td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology & Pharmacology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>PLAN</td>
<td>School of Town Planning</td>
<td>Architecture</td>
</tr>
<tr>
<td>POLS</td>
<td>School of Political Science</td>
<td>Arts</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Medicine</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological & Behavioural Sciences</td>
</tr>
<tr>
<td>PTRL</td>
<td>Department of Petroleum Engineering Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>RUSS</td>
<td>Department of Russian Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SAFE</td>
<td>Centre for Safety Science</td>
<td>Engineering</td>
</tr>
<tr>
<td>SCTS</td>
<td>School of Science & Technology Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>HPST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLSR</td>
<td>Department of Social Science & Policy</td>
<td>Arts</td>
</tr>
<tr>
<td>SLST</td>
<td>School of Sport & Leisure Studies</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SOCI</td>
<td>School of Sociology</td>
<td>Arts</td>
</tr>
<tr>
<td>SOCW</td>
<td>School of Social Work</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish & Latin American Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>SURG</td>
<td>School of Surgery</td>
<td>Medicine</td>
</tr>
<tr>
<td>SURV</td>
<td>School of Surveying</td>
<td>Engineering</td>
</tr>
<tr>
<td>TEDG</td>
<td>School of Teacher Education (grad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TEED</td>
<td>School of Teacher Education (undergrad)</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>TESL</td>
<td></td>
<td>Arts</td>
</tr>
<tr>
<td>TEXT</td>
<td>Department of Textile Technology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>THST</td>
<td>Department of Theatre Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>USOM</td>
<td>School of Mines</td>
<td>Applied Science</td>
</tr>
<tr>
<td>WOMS</td>
<td>Women Studies</td>
<td>Arts</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool & Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>
Sciences

Anatomy

ANAT5151 Introductory Functional Anatomy
An overview of basic human anatomy and physiology with an emphasis on structures and systems such as the eye, ear and skin, which are most vulnerable to chemical and physical trauma under industrial conditions. Other systems studied include the musculo skeletal system, central and peripheral nervous systems, circulatory, respiratory, gastrointestinal, endocrine and urogenital systems. (Old No. 70.201G)

ANAT6411 Neuroanatomy
This subject is identical in content as ANAT3411 Neuroanatomy and is offered jointly with that subject. (Old No. 70.012G)

Biochemistry

BIOC6308 Alternative Higher Degree Qualifying Program
Similar in content and standard to BIOS4318 Biochemistry Honours but designed specifically for students who cannot regularly attend the University. (Old No. 41.999G)

BIOT5013 Practical Biotechnology
Illustration, demonstration and operation of laboratory-scale and pilot-scale equipment. Visits to appropriate industries. Experimental project or critical review. (Old No. 42.215G)

BIOT6013 Alternative Higher Degree Qualifying Program
Training similar in content and standard to BIOT4073 Biotechnology Honours, but designed specifically for students who cannot regularly attend the University. (Old No. 42.999G)

BIOT7010 Reading List in Biotechnology (Microbiology)
(Old No. 42.111G)

BIOT7020 Reading List in Biotechnology (Biochemistry)
(Old No. 42.112G)

BIOT7030 Biotechnology
The selection, maintenance and genetics of industrial organisms; metabolic control of microbial synthesis; fermentation kinetics and models of growth; batch and continuous culture; problems of scale-up and fermenter design; control of the microbial environment; computer fermentor interactions. Industrial examples will be selected from: antibiotic and enzyme production, alcoholic beverages, single cell protein SCP, microbial waste disposal and bacterial leaching. Tutorial practical sessions include: problem solving, instrumentation, continuous culture techniques, and mathematical modelling and simulation of industrial processes. (Old No. 42.214G)

BIOT7100 Biological Principles
BIOT7110 Bioengineering Principles S1 L3
Steady state and differential balances as a basis for quantification of complex real systems. Concepts in rate processes and kinetic analysis with application to biological systems. Experimental determination of rate data. Correlation of simple lumped rate processes and simultaneous distributed processes and the concepts involved in dimensionless numbers.

Lamina and turbulent flow. The structure of homogeneous and boundary layer turbulence flow in pipes and channels. Mixing theory. Process vessel (reactor) models.

Fluid viscosity, Newtonian and non-Newtonian fluids, convective and molecular transport processes. Heat and mass transport, film coefficients. Film, boundary layer, penetration and surface renewal theories (descriptive only).

Quantification of complex systems. Empirical and mechanistic models in biological systems. (Old No. 42.408G)

BIOT8010 Graduate Seminars (Old No. 42.104G)

Chemistry

CHEM7115 Treatment of Analytical Data F L1
Errors of measurement, the treatment, Interpretation and comparison of sets of measurements, associated data and problems involving analysis of variance. Topics: Description of sets of measurements, tests of significance, associated data, linear regression analysis; analysis of variance; biological assays, bacteriological counts, sampling problems. (Old No. 2.371G)

CHEM7125 Food and Drugs 1 F L1 T3
and
CHEM7225 Food and Drugs 2 F L1 T3
These two units contain common subject material but are subdivided to enable them to be taken over one or two years.

Treatment of the food section develops from considerations of proximate analysis gross determination of classes of food components to detailed examinations within the groups for more important compounds. Conversely the course in drug work progresses from the examination of simple materials, including Identification of unknowns by macro and micro procedures to the examination of compounded materials. A background section on food handling is included, while some attention is given to chemotherapy etc in the drug course.

Subject-matter covers treatment of the main classes of foodstuffs, such as: Foods: Origin, general Introduction to analytical methods, relation to likely adulterations and impurities, groups of constituents; carbohydrates, sugars, by physical and chemical methods, jams and preserves, pectin, agar, alginites, oils and fats; protein foods, meat, gelatin, fish products; dairy products, milk, cream, cheese, etc; fermented liquids, beer, wine, spirits, minor constituents. Principles of food processing, dehydration, quick freezing, canning; cereal products; beverages and flavouring essences; nutritional aspects, vitamins in detail; preservatives and food additives; radiation chemistry of food products. Drugs: Elements of pharmacology chemotherapy and modes of action, galenicals, identification tests for alkaloids, etc. Analytical chemistry of analgesics, sedatives, hypnotics, steroid hormones, antithiastamines, etc. Antibiotics, penicillin, streptomycin, aureomycin, sulphonamides. Activity of enzyme preparations; antiseptics and disinfectants; soaps and detergents. (Old No. 2.231G)

CHEM7325 Toxicology, Occupational and Public Health F L1 T3
Important classes of toxic materials found in the environment; treatment of pesticide residues, Industrial chemicals of various types, toxic gases, mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals, etc. Effects of these substances on living organisms, particularly man. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling and analysis, trace metal determination and experiments on the animal metabolism of toxic substances. (Old No. 2.251G)

CHEM7425 Instrumental Techniques in Food and Drug Analysis F L1 T3
Principles involved in modern instrumental techniques; detailed application and interpretation of results. UV, IR, NMR, and ESR, emission and atomic adsorption spectroscopy, polarography, X-ray methods, fluorescence spectroscopy and gas chromatographic data and problems involving analysis of variance. Topics: Description of sets of measurements, biological samples; calculation of measures of location and spread; probability and random errors, binomial, normal and Poisson distributions; comparisons of sets of measurements, tests of significance; associated data, linear regression analysis; analysis of variance; biological assays, bacteriological counts, sampling problems. (Old No. 2.281G)

Civil Engineering

CIVIL9403 Theory of Land Use Transport Interaction S1 C3
Theoretical aspects of land use transport planning. Basic concepts, data collection methods, systems models and equation of state function behavioural, optimizing. Introduction to land use-transport modelling land use, generation, distribution, modal assignment, network assignment, evaluation. Planning methodologies short-, medium-, long-term; action planning, strategic planning; local, urban, regional national. (Old No. 8.403G)

CIVIL9405 Urban Transport Planning Practice SS C3
Analytical techniques for urban land use transport planning practice. Planning methodology: traffic generation, trip distribution, modal-choice, traffic assignment, evaluation. Land use forecasting; calibration and verification of behavioural models, application of mathematical programming models, case studies, public transport problems. (Old No. 8.405G)
CIVL9417 Transport and Traffic Flow Theory
Analysis of deterministic and stochastic models of the traffic stream. Topics covered include the following: Definition and measurement of traffic stream parameters. Space and time distribution of speed. Overtaking models and the moving-observer method. Fundamental diagram of traffic. Car-following theory. Headway and counting distributions. Introduction to queueing theory. Simulation techniques. Signalized and unsignalized intersections. (Old No. 8.417G)

CIVL9835 Coastal Engineering 1 S1 C3
Theory of periodic waves as applied to tides and wind generated waves in water of varying depths. Wave and tide prediction. (Old No. 8.835G)

CIVL9836 Coastal Engineering 2 S1 C3
Wave forces on structures, shore processes and beach erosion. Estuarine hydraulics, wave and tide models. (Old No. 8.836G)

CIVL9863 Estuarine Hydraulics SS C3
Classification of estuary types and their characteristics. Tides, their origin, prediction and effect on estuarine circulation. Entrainment and mixing processes in estuaries. Salinity intrusion, tidal flushing, dispersion of pollutants. Sediment transport, channel stability. (Old No. 8.863G)

CIVL9417 Transport and Traffic Flow Theory
Analysis of deterministic and stochastic models of the traffic stream. Topics covered include the following: Definition and measurement of traffic stream parameters. Space and time distribution of speed. Overtaking models and the moving-observer method. Fundamental diagram of traffic. Car-following theory. Headway and counting distributions. Introduction to queueing theory. Simulation techniques. Signalized and unsignalized intersections. (Old No. 8.417G)

ECON5114 Economics A S1 L2 T1
Prerequisite: Nil.
Microeconomic theory and applications including consumer behaviour and the theory of demand; costs, production and the theory of the firm price determination under competition, monopolistic and oligopolistic markets; investment and technology; wages, and the distribution of income; welfare, economic efficiency and public policy. (Old No. 15.114G)

ECON5125 Economics B S2 L2 T1
Prerequisite: ECON5114.
Overview of the macroeconomy; determination of aggregate income, interest rate and employment in closed and open economies; theories of Inflation; inflation and unemployment policy; monetarist and Keynesian controversies. (Old No. 15.125G)

Geography

GEOG9150 Remote Sensing Applications
The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials, multitemporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in coastal zone. Use of remote sensing in environmental management and in environmental impact assessment. (Old No. 27.043G)

Engineering, Faculty of

MANF9330 Simulation In Operations Research C3
Excluded MANF3609, 6.646.

REMO9580 Image Analysis In Remote Sensing C3
Prerequisite: 10.361 or similar.
Techniques for extracting information from remotely sensed data with particular emphasis on satellite imagery. Topics taken from: nature and characteristics of earth resources and related satellites; satellite sensors and data formats; image
enforcement techniques; image classification; image classification methodologies; new horizons in remote sensing image analysis. (Old No. 97.580G)

REMO9581 Microwave Remote Sensing C3
Use of passive and active radar microwave techniques in remote sensing of earth resources. Topics include: real and synthetic aperture radar systems; passive microwave radiometry; energy-surface interactions; interpretation of microwave image data; applications in agriculture, geology, oceanography and hydrology; issues in signal and image processing; characteristics of airborne and spaceborne microwave sensors. (Old No. 97.581G)

Mathematics

MATH3161 Applied Mathematics 3 S1 L3 T1 Optimization Methods
Prerequisites: MATH2501 and MATH2510 or MATH2100. Excluded: 10.222L.

Development, analysis and application of methods for optimization problems. Theory of multivariable optimization; including necessary and sufficient optimality conditions, stationary points, Lagrange multipliers, Kuhn-Tucker conditions, convexity and duality. Numerical methods for one dimensional minimization, unconstrained multivariable minimization (including steepest descent, Newton, quasi-Newton and conjugate gradient methods) and constrained multi-variable minimization (including linear programming and quadratic programming). (Old No. 10.212L)

MATH5005 Advanced Mathematics Lecture Courses Each year a selection of courses is offered in the following areas:

Algebraic geometry; algebraic topology; categorical and homological algebra; commutative algebra: group theory; Lie groups and algebras; representation theory; group theory and its physical applications; advanced quantum mechanics; differential geometry; differential equations; optimal control theory; functional analysis; applied functional analysis; operator theory; harmonic analysis; advances numerical analysis; theory of functions; finite mathematics; number theory; logic; theoretical astrophysics; history of mathematics; recent advances in mathematics; mathematical economics; optimization and control. (Old No. 10.194G)

MATH5815 Experimental Design 1 Modified designs for fixed effects models. Incomplete and balanced incomplete block designs. Confounding and fractional replication. Randomization theory. Multiple comparisons. (Old No. 10.381G)

MATH5825 Experimental Design 2 Extensive treatment of random and mixed models. Combinatorial structure of designs, cross-over and lattice designs, response surfaces. (Old No. 10.382G)

MATH5855 Multivariate Analysis 1 Likelihood ratio tests for means, variances and structure. Discriminant, principal component, canonical and factor analysis. (Old No. 10.385G)

MATH5865 Multivariate Analysis 2 The general linear hypothesis and analysis of dispersion. Tests based on roots, distribution theory. (Old No. 10.386G)

MATH5875 Sample Survey Design Simple, stratified and systematic random sampling. Estimation of proportions, ratios, and sample sizes. Multi-stage sampling. (Old No. 10.387G)

MATH5885 Sequential Analysis The sequential probability ratio test OC and ASN functions. General theory of sequential tests. Sequential estimation. (Old No. 10.388G)

MATH5905 Statistical Inference Decision theory. General theory of estimation and hypothesis testing. (Old No. 10.390G)

MATH5915 Special Topic A To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory. (Old No. 10.391G)

MATH5925 Project (Old No. 10.392G)

MATH5935 Special Topic B To be arranged, eg biological statistics, further work on order statistics, population statistics, non-linear programming, and other topics. (Old No. 10.393G)

MATH5945 Discrete Distributions Discrete and lattice distributions their general properties mostly via generating functions. The structures of contagious clustered distributions, with a study of specific examples such as the negative binomial, Neyman and Poisson-Pascal...
families, together with estimation and fitting procedures. (Old No. 10.394G)

MATH5950 Regression Analysis and Experimental Design S1 L1.5 T.5
Prerequisite: First course in Statistics or equivalent.
A revision of linear regression with extension to multiple and stepwise linear regression. Analysis of block designs, Latin squares, factorial designs, variance component and mixed model analyses. Bioassay, logic models. Contingency tables. (Old No. 10.302G)

MATH5960 Applied Stochastic Processes S2 L1.5 T.5
Prerequisite: First course in Statistics or equivalent.
An introduction to processes in discrete and continuous time. Markov chains and Markov processes, branching processes, time series with moving average models. (Old No. 10.303G)

Servicing Subjects
These are subjects taught within courses offered by other faculties.
For further information regarding the following subjects see the Faculty of Engineering Handbook.

MATH5045 Advanced Mathematics for Electrical Engineers C3
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials. (Old No. 10.061G)

BIOM9012 Biomedical Statistics S2 L2.5 T1.5 C4
Probability and distributions. Estimation and hypothesis testing. Associations between disease and risk factors. Linear models; analysis of variance, simple and multiple regression, discriminant analysis. Distribution-free methods. Analysis of survival data. Experiment design. (Old No. 32.012G)

Microbiology and Immunology

MICR6043 Alternative Higher Degree Qualifying Program
Similar in standard to MICR4013 Microbiology Honours, but designed for students who cannot regularly attend the University. (Old No. 44.999G)

Science, Faculty of

*OCEA5115 Experimental Project in Physical Oceanography F L9
A report of an experimental project, including recording, preparation, analysis and interpretation of field or laboratory data. (Old No. 67.001G)

*OCEA5125 Geophysical Fluid Dynamics F L2
Aspects of the physical features of the oceans. Includes ocean waves rotational and gravitational, tides, large scale wind driven ocean circulation, coastal dynamics, thermohaline circulations and mixing processes. (Old No. 67.002G)

*OCEA5135 Instrumentation S1 L1
Laboratory, moored, shipborne, airborne and space instrumentation commonly used in oceanographic experiments; their applications and limitations. (Old No. 67.003G)

*OCEA5145 Applied Time Series Analysis S1 L1.5 T.5
Classification of random processes, sampling for discrete analysis, Fourier analysis, spectra, filtering. Cross-spectra, estimation and hypothesis testing, confidence limits, application to experiment planning. Emphasis on computer analysis of actual data. (Old No. 67.004G)

*OCEA5155 Theoretical Project in Physical Oceanography
A theoretical project aimed at developing the prediction of oceanographical phenomena, tailored to meet individual student background but taken only by those students with a strong theoretical background. (Old No. 67.005G)

*These subjects are administered by the School of Mathematics

Optometry

OPTM8001 Advanced Clinical Optometry F T4
Clinical work on selected patients, with special emphasis on advanced techniques and new developments. All areas of optometric examination procedures are covered, including: external and internal examination of the eyes; visual functions; tonometry; objective optometry; evaluation of binocular functions; aniseikonia; sub-normal vision; geriatric and pediatric optometry; the clinical application of electrophysiological techniques. The assessment of new instruments, methods and treatment. (Old No. 31.701G)

OPTM8002 Advanced Physiological Optics F L2 T2
Advanced studies in a number of areas of physiological optics. Refractive state of the eye; physiological basis of ocular refraction, advanced study of the schematic eye, modern concepts of ocular image formation, resolution of the ocular image. Scatter,

OPTM8003 Pleurophthalmics and Binocular Vision F L2
An integrated subject, in which binocular vision and pleurophthalmics are studied from theoretical and clinical viewpoints. Clinical experience is provided by selected patients. Includes: the nature and control of eye movements and role in maintaining the perception of a stable visual world. Binocular and monocular subjective visual directions. The neurophysiological substrate of binocular vision and its phenomena. Stereopsis and its measurement. Accommodation, convergence, and oculo-motor imbalance. Laboratory and clinical methods of measuring eye position and visual directions. The aetologies, measurements and treatment of strabismus, anomalous correspondence, eccentric fixation and amblyopia. (Old No. 31.703G)

OPTM8004 Advanced Contact Lens Studies F L1 T3

OPTM8005 Advanced Contact Lens Practice F L1 T3
The examination, evaluation and aftercare of contact lens patients. (Old No. 31.705G)

OPTM8006 Occupational Optometry F L2 T2

OPTM8007 Clinical Photography F L2 T2

OPTM8008 Project (Old No. 31.709G)

OPTM9003 Pleurophthalmics and Binocular Vision F L2 T2
An integrated subject, in which binocular vision and pleurophthalmics are studied from theoretical and clinical viewpoints. Clinical experience is provided by selected patients. Includes: the nature and control of eye movements and their role in maintaining the perception of a stable visual world. Binocular and monocular subjective visual directions. The neurophysiological substrate of binocular vision and its phenomena. Stereopsis and its measurement. Accommodation, convergence, and oculo-motor imbalance. Laboratory and clinical methods of measuring eye position and visual directions. The aetologies, measurement, and treatment of strabismus, anomalous correspondence, eccentric fixation and amblyopia. (Old No. 31.703G)

Physics

Not all graduate subjects are necessarily offered in any one year.

PHYS8015 Energy Alternatives
For MPysics degree course students. Details are determined during the year preceding that in which it is offered. (Old No. 1.801G)

PHYS8035 Acoustics
As for PHYS8015 Energy Alternatives (Old No. 1.803G)

PHYS8025 Astrophysics
As for PHYS8015 Energy Alternatives (Old No. 1.802G)

PHYS8045 Biophysics
As for PHYS8015 Energy Alternatives (Old No. 1.804G)
As for PHYS8015 Energy Alternatives
(Old No. 12.250G)

As for PHYS9183 Methods of Theoretical Physics
For PhD degree, MSc and MPhysics degree course students.
Response functions and Green’s functions. Symmetry and
group theory. Many particle systems. Tensor calculus and
variational techniques. (Old No. 1.118G)

PHYS9283 Methods of Experimental Physics
For PhD degree, MSc and MPhysics degree course students.
Signal processing and retrieval. Resonance spectroscopy
techniques. Diffraction and scattering techniques. Electron
microscopy. (Old No. 1.128G)

Servicing Subjects
These are subjects taught within courses offered by other faculties.
For further information regarding the following subject see the Faculty of Architecture handbook.

PHYS7159 Acoustic Theory L1.5 T.5
2 credit points.
Sources of acoustic radiation; simple, dipole, quadrupole,
plane, impulsive source, random source, aerodynamic
sources. Free field propagation in fluids, interference and
diffraction, absorption, shock waves. Boundary effects:
reflection and transmission at fluid fluid and fluid solid
interfaces, fluid waveguides, solid waveguides. Reception
and analysis; transducers. Fourier analysis, statistical
methods, impulse measurement. (Old No. 1.927G)

Psychology

PSYC6000 Alternative Higher Degree Qualifying Program
Refer to the School of Psychology for details. (Old No. 12.999G)

PSYC7000 Research and Evaluation Methods
Problems of experimental design in applied fields; measurement and scaling; analysis of change, including sequential analysis, and the application of the experimental methods to the individual cases. Design and evaluation of programs. (Old No. 12.239G)

PSYC7001 Psychological Assessment 1
A theoretical basis, background information and practical
skills in methods of assessment typically used in clinical and
industrial psychology. Theory and research on interviewing,
Introduction to DSM III-R, assessment interviewing,
assessment of intellectual functioning, test access and use and
computerised testing, neuropsychological and organicity
assessment, personality assessment and its use, assessment
and goal attainment scaling, and ethical, legal and
professional issues. (Old No. 12.250G)

PSYC7002 Psychological Assessment 2
Prerequisite: PSYC7001
The application of the principles of experimental psychology
to problems of behavioural assessment in a wide variety of
situations, eg organisational behaviour; lifestyle change; the
management of behavioural disorders; institutional
behavioural programs. Assessment procedures studied
include: psychological tests, behavioural analysis and case
history taking, psychophysiological and other objective
measures. (Old No. 12.244G)

PSYC7003 Graduate Colloquium
Participation in the staff-graduate student colloquium.
(Old No. 12.241G)

PSYC7100 Industrial and Organisational Psychology 1
General framework for understanding organisational settings
and how social structures and procedures affect work
motivation, job satisfaction, performance and health.
Emphasis will be placed on the particular contribution which
psychologists can make to areas such as job analysis and
design, selection, and performance appraisal, interpersonal
and intergroup relations, the socio-technical analysis of
production systems, social influence, leadership style, job
enrichment, and communication patterns.

PSYC7101 Industrial and Organisational Psychology 2
Prerequisite: PSYC7100
An advanced examination of some topics covered in
PSYC7100 Industrial and Organisational Psychology 1 with a
particular emphasis on the application of sound measurement
and research principles to selection, job evaluation and work
motivation. Special attention will be given to the application of
social psychological principles to the work setting.

PSYC7102 Psychological Principles of Training
Relevant principles from learning theory and cognitive
psychology applied to training in industry and retraining for
new technology. Training for adaptability and transfer; the
important role of automaticity and attitudes in training.
Development of work related cognitive, motor and social skills,
and the use of computerised packages. Research on the
effectiveness of different methods of training. (Old No.
12.352G)

PSYC7103 Applied Experimental Psychology
A discussion of the perceptual and attentional mechanisms
that limit our ability to obtain information, and the implications
for such practical areas as ergonomics and selection. Topics
include psychophysics and signal detection performance on
vigilance tasks.

PSYC7104 Applied Cognitive Psychology
A discussion of the cognitive factors that limit our ability to
process information, methods used to cope with these
limitations, and the implications for such practical areas as
training and artificial intelligence. Topics include memory,
reasoning and problem-solving, and performance on motor tasks.

PSYC7105 Professional Practice (Applied)
The application of theoretical aspects covered in the course to a variety of situations. There will be supervised work experience in a variety of settings together with a weekly meeting to allow systematic discussion of relevant professional, ethical and legal issues. (Old No. 12.355G)

PSYC7106 Graduate Colloquium (Applied)
Participation in the staff-graduate student colloquium.

PSYC7107 Seminars in Applied Psychology
A series of seminars on topics of particular relevance to the practice of applied psychology e.g. the organisation and regulation of psychology as a profession; ethical standards in relation to clients, members of other professions and the public; legal aspects of psychological practice. Additional topics dealing with contemporary issues in applied psychology will be chosen in consultation with students undertaking the seminars. (Old No. 12.357G)

PSYC7108 Research Thesis
A research thesis involving an investigation into some aspect of applied psychology. (Old No. 12.358G)

PSYC7109 Principles of Ergonomics
Selected topics within the area of ergonomics drawn from: anthropometrics and biomechanics; the design of display controls, including visual display units, keyboards, and workstations; work physiology and energy expenditure, fatigue and its measurement; the sources and control of stress at the workplace; social and equipment-related workplace design problems; the effects on human performance of environmental stressors such as noise, heat, cold and sleep loss (including shiftwork). (Old No. 12.354G)

PSYC7110 Advanced Ergonomics
Prerequisite: PSYC7109.
The application of ergonomic principles and methods to the design and analysis of work tasks involving a high cognitive component, such as those involving human-computer interaction. (Old No. 12.355G)

PSYC7111 Cross-cultural Perspectives in Applied Psychology
General issues in cross-cultural psychology; problems of conducting research in more than one cultural setting. Cross-cultural organisational psychology including a comparative analysis of production systems. Culture training and orientation including programs aimed at preparing managers to become culturally mediating persons will be given special attention. (Old No. 12.359G)

PSYC7112 Vocational Psychology
Individual career counselling, decision-making and work adjustment throughout life, traditional and computerised approaches to occupational information and psychological testing; staff development; relationships between work, leisure, retirement and unemployment. Vocational problems of groups such as minorities and those with disabilities. (Old No. 12.360G)

PSYC7113 Special Topic
An occasional elective dealing with applications of some special field of psychology. (Old No. 12.361G)

PSYC7114 Graduate and Applied Seminars
A weekly seminar during which academic staff, graduate students and visitors from other institutions make presentations about the work they are doing.

PSYC7200 Experimental Clinical Psychology 1
Excluded: 12.243G.
The theoretical basis of clinical practice in individual, group, institutional, and community settings. The application of the principles of experimental psychology to the analysis of both adaptive and maladaptive patterns of behaviour. The study of a wide range of techniques of behavioural intervention. (Old No. 12.252G)

PSYC7201 Family Based Therapies
Prerequisite: PSYC7200
An assessment of marital and family problems and a critical examination of the most influential and most effective intervention strategies.

PSYC7202 Pharmacotherapy and Other Physical Treatments
Major biological treatments, especially pharmacotherapy currently used in the management of psychological disorders and dysfunctional behaviour. Familiarisation with the range of physical treatments and their use in clinical practice especially in relation to clinical psychology. The light which the modes of action of these treatments throws on the biological substrates of psychological disorders will be a special focus.

PSYC7203 Theory and Research in Psychopathology
An illustration of theoretical principles and experimental strategies in research investigating the processes and mechanisms underlying psychological disturbance. Major topics include the relationship between genetic and environmental factors in aetiology, the integration of laboratory and clinical evidence, and the status of biological, behavioural and cognitive theories of dysfunction.

PSYC7204 Child Clinical Psychology

PSYC7205 Professional Practice (Clinical)
Supervised work with clients in the School's clinic, and in approved institutions. (Old No. 12.231G)
PSYC7206 Research Thesis (Clinical)
A research thesis involving an investigation into some aspect of clinical or community psychology. (Old No. 12.242G)

PSYC7207 Ethical Issues and Special Topics
An examination of the ethical codes and legal requirements that clinical psychologists are expected to adhere to, and their applications to specific problems that confront practitioners, when dealing with social or cultural "problems", making differential diagnoses, and interacting with their colleagues.

PSYC7208 Behavioural Health Management
Lectures, practical classes and supervised clinical experience concerned with the theoretical and practical issues associated with the design, implementation and evaluation of behavioural programs for the promotion of positive mental and physical health. (Old No. 12.245G)

PSYC7209 Developmental Disabilities and Disorders
An essentially practical course focusing on childhood disorders, such as mental retardation, infantile autism, physical and sensory handicaps, specific learning difficulties, and hyperactivity. Methods of assessment to be studied include standardized tests of child development, behavioural checklists and interviews, and observation of present behaviour. Behavioural change procedures that may be effective in the treatment and management of the behavioural problems in question. (Old No. 12.230G)

PSYC7210 Human Neuropsychology
Neural bases of human behaviour, with particular emphasis on clinical applications. Issues in assessment and rehabilitation, functional analysis of each cerebral lobe, and particular disorders such as the dementias and aphasias. (Old No. 12.251G)

Servicing Subjects
These are subjects taught within courses offered by other faculties.

For further Information regarding the following subjects see the Faculty of Arts Handbook.

PSYC7300 Experimental Psychology in Cognitive Science
Theory of experimental psychology pertinent to cognitive science. Learning, memory, decision making, problem solving, perception, and language comprehension. (Old No. 12.710G)

PSYC7301 Behavioural Neuroscience
The neurophysiological substrates of learning, memory, perception and cognition. Introduction to the basic structure and physiology of the nervous system. (Old No. 12.711G)

PSYC7302 Human Information Processing
Human information processing: advanced topics in cognitive psychology with particular reference to temporal dynamics of attention, organisation, integration and retrieval processes for sensory and linguistic information. (Old No. 12.712G)

PSYC7303 Neuroscience: Human Neuropsychology
Advanced topics in the neurophysiology of human cognitive functioning, including consideration of the influence of brain disease and brain damage. (Old No. 12.713G)

Safety Science

SAFE9232 Introduction to Occupational Health and Safety Law
The concept of law; the creation and interpretation of statutes; the judicial and court systems; locus stand; common law and equity; basic principles of legal liability of the Crown; the common law of employment; statutory regulation of employment; compulsory arbitration of industrial disputes. Outline of occupational health, safety and compensation legislation of the Australian States. Actions under the common law. (Old No. 47.090G)

SAFE9424 Applied Ergonomics
Prerequisite: SAFE9224 at credit level or equivalent.
Cognitive ergonomics. Decision making, vigilance, effects of workload and stress, applications to screen-based equipment. Work systems: the systems approach, practical evaluation and re-design of work systems. Experimental methodology: experimental design in ergonomics, critical evaluation of the literature. (Old No. 47.062G)
Graduate Study

Conditions for the Award of Higher Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.
For the list of undergraduate courses and degrees offered see Faculty (Undergraduate Study) in the Calendar.

The following is the list of higher degrees and graduate diplomas of the University, together with Higher Degrees the publication in which the conditions for the award appear.
For the list of graduate degrees by research and course work, arranged in faculty order, see Table of Courses (by faculty): Graduate Study in the Calendar.
For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see later in this section.

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Science</td>
<td>DSc</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
<td>Calendar</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MArchAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MBEnv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Title</td>
<td>Abbreviation</td>
<td>Calender/Handbook</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td>MBEnv</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
<td>AGSM</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Cognitive Science</td>
<td>MCogSc</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
<td>Commerce</td>
</tr>
<tr>
<td>Master of Community Health</td>
<td>MCH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Construction Management</td>
<td>MConstMgt</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Education</td>
<td>MEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEAdmin</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>Applied Science Engineering</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Applied Science Engineering</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHReq</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Planning</td>
<td>MLP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Management Economics</td>
<td>MMgTeq</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Project Management</td>
<td>MPM</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Public Health</td>
<td>MPH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychology (Applied)</td>
<td>MPychol</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Psychology (Clinical)</td>
<td>MPychol</td>
<td>Sciences §</td>
</tr>
<tr>
<td>Master of Psychotherapy</td>
<td>MPychotherapy</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Applied Science Architecture</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Architecture</td>
</tr>
</tbody>
</table>

Higher Degrees (continued)
Graduate Study: Conditions for the Award of Higher Degrees

<table>
<thead>
<tr>
<th>Title</th>
<th>Abbreviation</th>
<th>Calendar/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science without supervision (continued)</td>
<td>MSc</td>
<td>Engineering, Medicine, Sciences*§, University College</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Arts</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Sciences*</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Surveying</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying without supervision</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying Science</td>
<td>MSurvSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Town Planning</td>
<td>MTP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Welfare Policy</td>
<td>MWP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>GradDip</td>
<td>Applied Science, Architecture, Engineering, Sciences*§, Medicine</td>
</tr>
<tr>
<td>DipPaed</td>
<td></td>
<td>Professional Studies</td>
</tr>
<tr>
<td>DipEd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiplM-ArchivAdmin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiplM-Lib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DipFDA</td>
<td></td>
<td>Sciences*</td>
</tr>
</tbody>
</table>

*Faculty of Science.
§Faculty of Biological and Behavioural Sciences.

1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

3. (1) An application to enrol as a candidate for the degree shall be lodged with the Registrar at least one month prior to the date at which enrolment is to begin.

(2) In every case before making the offer of a place the Committee shall be satisfied that agreement has been reached between the School and the applicant on the topic area, supervision arrangements, provision of adequate facilities and any coursework to be prescribed and that these are in accordance with the provisions of the Bill of Rights for postgraduate research students.

(3) The candidate shall be enrolled either as a full-time or a part-time student.

(4) A full-time candidate will present the thesis for examination no earlier than three years and no later than five years from the date of enrolment and a part-time candidate will present the thesis for examination no earlier than four years and no later than six years from the date of enrolment, except with the approval of the Committee.
(5) The candidate may undertake the research as an internal student i.e. at a campus, teaching hospital, or other research facility with which the University is associated, or as an external student not in attendance at the University except for periods as may be prescribed by the Committee.

(6) An internal candidate will normally carry out the research on a campus or at a teaching or research facility of the University except that the Committee may permit a candidate to spend a period in the field, within another institution or elsewhere away from the University provided that the work can be supervised in a manner satisfactory to the Committee. In such instances the Committee shall be satisfied that the location and period of time away from the University are necessary to the research program.

(7) The research shall be supervised by a supervisor or supervisors or under other appropriate supervision arrangements approved by the Committee. Normally an external candidate within another organisation or institution will have a co-supervisor at that institution.

Progression

4. The progress of the candidate shall be considered by the Committee following report from the School in accordance with the procedures established within the School and previously noted by the Committee.

(i) The research proposal will be reviewed as soon as feasible after enrolment. For a full-time student this will normally be during the first year of study, or immediately following a period of prescribed coursework. This review will focus on the viability of the research proposal.

(ii) Progress in the course will be reviewed within twelve months of the first review. As a result of either review the Committee may cancel enrolment or take such other action as it considers appropriate. Thereafter, the progress of the candidate will be reviewed annually.

Thesis

5. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall comply with the following requirements:

(a) it must be an original and significant contribution to knowledge of the subject;
(b) the greater proportion of the work described must have been completed subsequent to enrolment for the degree;
(c) it must be written in English except that a candidate in the Faculty of Arts may be required by the Committee to write a thesis in an appropriate foreign language;
(d) it must reach a satisfactory standard of expression and presentation;
(e) it must consist of an account of the candidate's own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

6. (1) There shall be not fewer than three examiners of the thesis, appointed by the Committee, at least two of whom shall be external to the University.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

(a) The thesis merits the award of the degree.
(b) The thesis merits the award of the degree subject to minor corrections as listed being made to the satisfaction of the head of school.

Or department where a department is not within a school or schools or departments where the research is being undertaken in more than one school or department.
(c) The thesis requires further work on matters detailed in my report. Should performance in this further work be to the satisfaction of the higher degree Committee, the thesis would merit the award of the degree.

(d) The thesis does not merit the award of the degree in its present form and further work as described in my report is required. The revised thesis should be subject to re-examination.

(e) The thesis does not merit the award of the degree and does not demonstrate that resubmission would be likely to achieve that merit.

(3) If the performance at the further work recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further work, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

7. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Chemistry or Master of Mathematics or Master of Optometry or Master of Physics by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program or advanced study.

2. (1) A candidate for the degree shall have been awarded an appropriate four-year degree of Bachelor from The University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of a candidate shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of this time may be granted by the Committee.

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Fees

Master of Chemistry(MChem), Master of Mathematics (MMath), Master of Optometry(MOptom) and Master of Physics (MPhysics)

Qualifications

Enrolment and Progression

Fees

*Or department where a department is not within a school or schools or departments where the research is being undertaken in more than one school or department.
Master of Engineering (ME) and Master of Science (MSc)

Qualifications

1. The degree of Master of Engineering or Master of Science by research may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.
 (2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the degree.
 (3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work as the Committee may prescribe.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.
 (2) In every case, before permitting a candidate to enrol, the head of the school* in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.
 (3) An approved candidate shall be enrolled in one of the following categories.
 (a) full-time attendance at the University;
 (b) part-time attendance at the University;
 (c) external - not in regular attendance at the University and using research facilities external to the University.
 (4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.
 (5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.
 (6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school* in which the candidate is enrolled and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.
 (7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.
 (8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.
 (2) The candidate shall give in writing two months notice of intention to submit the thesis.
 (3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.
 (4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

*Or department where a department is not within a school or schools or departments where the research is being undertaken in more than one school or department.
(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

6. A candidate shall pay such fees as may be determined from time to time by the Council.

1. The degree of Master of Engineering or Master of Science or Master of Surveying without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

3. An application to enrol as a candidate for the degree without supervision shall be made on the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should, in his or her own interest, seek at an early stage the advice of the appropriate head of school* with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available.

4. (1) A candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall present an account on the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

*Or department where a department is not within a school or schools or departments where the research is being undertaken in more than one school or department.
Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) Before the thesis is submitted to the examiners the head of the school* in which the candidate is enrolled shall certify that it is prima facie worthy of examination.

(3) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Mathematics
(MMath)

See Master of Chemistry above.

Master of Optometry
(MOptom)

See Master of Chemistry above.

Master of Physics
(MPhysics)

See Master of Chemistry above.

Master of Psychology
(Appplied)
(MPsychol(Appplied))

1. The degree of Master of Psychology (Applied) or Master of Psychology (Clinical) by formal course work and thesis may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study. The degree shall be awarded at the Pass level or with the grade of Honours Class 1 or with the grade of Honours Class 2 (two divisions).

Master of Psychology
(Clinical)
(MPsychol(Clinical))

2. (1) A candidate for the degree shall have been awarded a degree of Bachelor with Honours in psychology from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution, at a level acceptable to the Higher Degree Committee of the Faculty of Biological and Behavioural Sciences (hereinafter referred to as the Committee).

*Or department where a department is not within a school.
(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar by 30 November of the year before the year in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and, except in exceptional circumstances, pass at the first attempt such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment in the case of a full-time candidate or six sessions in the case of a part-time candidate. A candidate who has been granted exemptions may have the minimum period reduced by up to one-half. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and ten sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. A candidate shall pay such fees as may be determined from time to time by the Council.

See Master of Engineering above

See Master of Engineering above.

1. The degree of Master of Statistics by formal course work may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the degree shall have been awarded a degree of Bachelor with major studies in statistics from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment in the case of a full-time candidate or eight sessions in the case of a part-time candidate. In the case of a candidate who has been awarded a degree of Bachelor with Honours in statistics the Committee may approve remissions of up to two sessions for a full-time candidate and four sessions for a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and ten sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. A candidate shall pay such fees as may be determined from time to time by the Council.
1. A Graduate Diploma may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

2. (1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the diploma.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

3. (1) An application to enrol as a candidate for diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and six sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

4. A candidate shall pay such fees as may be determined from time to time by the Council.
Scholarships and Prizes

The scholarships and prizes listed below are available to students whose courses are listed in this handbook. Each faculty handbook contains in its Scholarships and Prizes section the scholarships and prizes available with that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

Listed below is an outline only of a number of scholarships available to students. Full information may be obtained from the Student Centre located on the Lower Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar and Deputy Principal by 14 January each year. Please note that not all of these awards are available every year.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bursary Endowment Board*</td>
<td>$200 pa</td>
<td>Minimum period of approved degree/combined degree course</td>
<td>Merit in HSC and total family income not exceeding $6000</td>
</tr>
<tr>
<td>Sam Cracknell Memorial</td>
<td>Up to $3000 pa payable in fortnightly instalments</td>
<td>1 year</td>
<td>Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need.</td>
</tr>
<tr>
<td>Girls Realm Guild</td>
<td>Up to $1500 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress and continued demonstration of need</td>
<td>Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need.</td>
</tr>
</tbody>
</table>

*Apply to The Secretary, Bursary Endowment Board, PO Box 460, North Sydney 2060, immediately after sitting for HSC.
Sciences

Undergraduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.S. and L.B. Robinson**</td>
<td>Up to $4200 pa</td>
<td>1 year renewable for the duration of the course subject to satisfactory progress</td>
<td>Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology, electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science. Available to students enrolled in any year of a full-time course. Candidates must be the children of Alumni of the University of NSW and may be either permanent residents of Australia or overseas students. Applications close 30 September each year.</td>
</tr>
<tr>
<td>Alumni Association</td>
<td>Up to $1500 pa</td>
<td>1 year with the possibility of renewal</td>
<td></td>
</tr>
</tbody>
</table>

Science			
Faculty of Biological and Behavioural Sciences	Up to $3000 pa	1 year renewable for the duration of the course subject to satisfactory progress	Permanent residents of Australia. Available to full-time students enrolled in one of the disciplines of the Faculty of Science.
Faculty of Science	Up to $2,000 pa	1 year renewable for the duration of the course subject to satisfactory progress	Permanent residents of Australia. Available to full-time students enrolled in one of the disciplines of the Faculty of Science.
Chemistry			
John Ragnar Anderson Memorial Bequest	Up to $1500 pa	1 year renewable for the duration of the course subject to satisfactory progress	Permanent residence in Australia and eligibility for admission to a full-time degree course in Chemistry.
BSSM	$500 pa	1 year	Available only to a physically handicapped student enrolled in any year of a course in the Board of Studies in Science and Mathematics.

| Optometry | | | |
| Gibb and Beeman | Up to $1000 pa | 1 year renewable for the duration of the course subject to satisfactory progress | Available to students under 21 years of age who are permanent residents of Australia enrolling in Year 1 of the full-time degree course in Optometry. |

The UNSW Co-op Program

The University of New South Wales has industry-linked education scholarship programs to the value of $8000 per annum in the following areas: Business Information Technology, Chemical Engineering, Civil Engineering, Electrical and Computer Engineering, Industrial Chemistry, Mechanical and Industrial Engineering, Mining, Mineral Engineering and Applied Geology. Further information can be obtained by writing to The Co-ordinator, UNSW Co-op Programs Industry-Linked Education Office, C/- Vice-Chancellors Division.
Scholarships and Prizes

Graduate Scholarships

Application forms and further information are available from the Student Centre, located on the Ground Floor of the Chancellery unless an alternative contact address is provided. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

Details of overseas awards and exchanges administered by the Department of Employment, Education and Training can be obtained from: Awards and Exchanges Section, Department of Employment, Education and Training, PO Box 826, Woden, ACT 2606.

Where possible, the scholarships are listed in order of faculty.

*Available for reference in the University Library.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year/s of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Postgraduate Research Scholarships</td>
<td>Living allowance of $13,504 pa. Other allowances may also be paid. Tax free.</td>
<td>1-2 years for a Masters and 3-4 years for a PhD degree</td>
<td>Applicants must be honours graduates or equivalent. Applications to Dean of relevant Faculty.</td>
</tr>
<tr>
<td>Commonwealth Postgraduate Research Awards</td>
<td>$13,504 to $17,427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commonwealth Postgraduate Course Awards</td>
<td>Living allowance of $10,903 pa. Other allowances may also be paid. Tax free.</td>
<td>1-2 years; minimum duration of course</td>
<td>Applicants must be graduates or scholars who will graduate in current academic year, and who are domiciled in Australia. Applications to Registrar by 31 October.</td>
</tr>
<tr>
<td>Overseas Postgraduate Research Scholarships</td>
<td>Tuition fees only</td>
<td>2 years for a Masters and 3 years for a PhD</td>
<td>Eligibility is confined to postgraduate research students who are citizens of overseas countries excluding citizens of countries which are covered by the Equity and Merit Scholarship Scheme (EMSS). Application to the Registrar by 28 September.</td>
</tr>
<tr>
<td>IDP-Korea/Taiwan Research Scholarships</td>
<td>Tuition fees and a stipend</td>
<td>2 years for a Masters and 3 years for a PhD</td>
<td>Eligibility is confined to postgraduate research students who are citizens of Korea or Taiwan. Application to the Registrar by 31 July.</td>
</tr>
<tr>
<td>Australian American Educational Foundation Fulbright Award</td>
<td>Travel expenses and $A2000 as establishment allowance.</td>
<td>1 year, renewable</td>
<td>Applicants must be graduates who are domiciled in Australia and wish to undertake research or study for a higher degree in America. Applications close 30 September with The Secretary, DEET, AAEF Travel Grants, PO Box 826, Woden ACT 2606.</td>
</tr>
<tr>
<td>Australian Federation of University Women</td>
<td>Amount varies, depending on award</td>
<td>Up to 1 year</td>
<td>Applicants must be female graduates who are members of the Australian Federation of University Women.</td>
</tr>
</tbody>
</table>
Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Years of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commonwealth Scholarship and Fellowship Plan</th>
<th>Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.</th>
<th>Usually 2 years, sometimes 3</th>
<th>Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Tenable in Commonwealth countries other than Australia. Applications close with the Registrar in September or October each year.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The English-Speaking Union (NSW Branch)</td>
<td>$7000</td>
<td>1 year</td>
<td>Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April with The Secretary, Ground Floor, Sydney School of Arts, 275c Pitt Street, Sydney NSW 2000.</td>
</tr>
<tr>
<td>Frank Knox Memorial Fellowships tenable at Harvard University</td>
<td>Stipend of $US7000 pa plus tuition fees</td>
<td>1, sometimes 2 years</td>
<td>Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with the Academic Registrar mid October. Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra ACT 2601</td>
</tr>
<tr>
<td>Robert Gordon Menzies Scholarship to Harvard</td>
<td>Up to $US 15,000</td>
<td>1 year</td>
<td>Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close 31 October.</td>
</tr>
<tr>
<td>Gowrie Scholarship Trust Fund</td>
<td>$6000 pa. Under. special circumstances this may be increased</td>
<td>2 years</td>
<td></td>
</tr>
<tr>
<td>Harkness Fellowships of the Commonwealth Fund of New York</td>
<td>Living and travel allowances, tuition and research expenses, health Insurance, book and equipment and other allowances for travel and study in the USA</td>
<td>12 to 21 months</td>
<td>Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondents. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close 29 August with the Academic Registrar. Forms available from Mr J Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra ACT 2601.</td>
</tr>
<tr>
<td>The Packer, Shell and Barclays Scholarships to Cambridge University</td>
<td>Living and travel allowances, tuition expenses.</td>
<td>1-3 years</td>
<td>Applicants must be Australian citizens who are honours graduates or equivalent, and under 26 years of age. Applications close 15 October with The Secretary, Cambridge Commonwealth Trust, PO Box 252, Cambridge CB2 ITZ, England.</td>
</tr>
<tr>
<td>The Rhodes Scholarship to Oxford University</td>
<td>Approximately £4862 stg pa</td>
<td>2 years, may be extended for a third year.</td>
<td>Unmarried Australian citizens aged between 19 and 25 who have an honours degree or equivalent. Applications close in August each year with The Secretary, University of Sydney, NSW 2006.</td>
</tr>
</tbody>
</table>
Scholarships and Prizes

Graduate Scholarships (continued)

<table>
<thead>
<tr>
<th>Donor</th>
<th>Value</th>
<th>Year(s) of Tenure</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological and Behavioural Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Clark Memorial Award in Psychology</td>
<td>$1000</td>
<td>1 year</td>
<td>Applicants must be enrolled in a graduate course in psychology undertaking research in an area concerned with the ongoing problems of the community, particularly the behaviour of the ‘whole person’ in a social milieu. Applications close 1 July with the Registrar.</td>
</tr>
<tr>
<td>National Heart Foundation</td>
<td>See under Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The National Health and Medical Research Council</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Telecommunications</td>
<td>$9000 intended as a supplement to other awards</td>
<td>1 year for a Masters and up to 3 years for a PhD degree</td>
<td>Applicants must be first class honours graduates or equivalent or scholars who will graduate with honours in the current academic year, who are Australian citizens or permanent residents and who are aged under 25 years at 1 January. Applications close November 2 with ATERB, PO Box 76, Epping NSW.</td>
</tr>
<tr>
<td>Australian Institute of Nuclear Science and Engineering</td>
<td>See under Engineering.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Scholarships</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Lens Society of Australia</td>
<td>$2000 pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon Godfrey Scholarship in Theoretical Physics</td>
<td>$1500 pa</td>
<td>1-3 years</td>
<td>To enable a graduate in optometry, medicine, or other appropriate discipline to undertake the degree of Master of Science or PhD in the School of Optometry. Enquiries to Associate Professor B. Holden, School of Optometry.</td>
</tr>
<tr>
<td>Lionel Murphy Australian Postgraduate Bicentennial Scholarship</td>
<td>See under Law</td>
<td></td>
<td>To enable a suitable graduate to undertake a research degree in Theoretical Physics. May be held concurrently with another award. Enquiries to School of Physics.</td>
</tr>
<tr>
<td>Shell Scholarship in Science or Engineering</td>
<td>Adequate funds for living allowance tuition and travel expenses</td>
<td>2 years, sometimes 3</td>
<td>Applicants must be Australian citizens, under 25 years of age, with at least 5 years' domicile in Australia and who are completing the requirements for an honours degree in Science or Engineering. The successful candidate will attend a British university to pursue a higher degree. Applications close 30 September with Shell Australia, 140 Phillip Street, Sydney NSW 2000.</td>
</tr>
</tbody>
</table>
Prizes

Undergraduate University Prizes

The following table summarizes the undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded.

Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor or the Chancellery.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Sydney Technical College Union Award</td>
<td>$400.00 and Bronze Medal</td>
<td>Leadership in student affairs combined with marked academic proficiency by a graduand.</td>
</tr>
<tr>
<td>The University of New South Wales Alumni Association Prize</td>
<td>Statuette</td>
<td>Achievement for community benefit by a student in the final or graduating year.</td>
</tr>
<tr>
<td>School of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Inglis Hudson Bequest</td>
<td>$15.00</td>
<td>The best performance in CHEM2021 Organic Chemistry</td>
</tr>
<tr>
<td>The Jeffery Bequest</td>
<td>$100.00</td>
<td>The best performance in CHEM2021 Organic Chemistry</td>
</tr>
<tr>
<td>The June Griffith Memorial Prize</td>
<td>$60.00</td>
<td>The best performance in CHEM1002 Chemistry 1 in the Bachelor of Science course</td>
</tr>
<tr>
<td>The Merck Sharp & Dohme (Aust) Pty Ltd Prize</td>
<td>$52.50</td>
<td>The best performance in Level 2 Chemistry subjects in the Board of Studies in Science and Mathematics</td>
</tr>
<tr>
<td>The Merck Sharp & Dohme (Aust) Pty Ltd Prize</td>
<td>$52.50</td>
<td>The best performance in Level 3 Chemistry subjects in the Board of Studies in Science and Mathematics</td>
</tr>
<tr>
<td>The RACI Analytical Chemistry Group Prize</td>
<td>$150.00</td>
<td>The best performance in CHEM3041 Analytical Chemistry and CHEM3141 Advanced Instrumental Analysis.</td>
</tr>
<tr>
<td>The Smith Kline & French Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School.</td>
</tr>
<tr>
<td>The University of New South Wales Chemical Society Parke-Pope Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The University of New South Wales Chemical Society George Wright Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Applied Mathematics Prize</td>
<td>$50.00</td>
<td>Excellence in level 3 Applied Mathematics subjects in a Bachelor degree or Diploma course</td>
</tr>
<tr>
<td>The C.H. Peck Prize</td>
<td>$50.00</td>
<td>The best performance in Year 2 Mathematics by a student proceeding to Year 3 in the School of Mathematics</td>
</tr>
<tr>
<td>The Coca-Cola Amatil Limited Prize</td>
<td>$200.00</td>
<td>The best performance in Theory of Statistics or Higher Theory of Statistics 3 subjects in a Bachelor degree</td>
</tr>
<tr>
<td>The Head of School’s Prize</td>
<td>$50.00</td>
<td>Excellence in four or more mathematics units in Year 2 in a Bachelor degree or Diploma course.</td>
</tr>
<tr>
<td>The IBM Prize</td>
<td>$200.00</td>
<td>The best performance in the final year of an honours degree in the School of Mathematics</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Mathematics (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The ICI Theory of Statistics 4 Prize</td>
<td>$100.00</td>
<td>The best performance in MATH4903 Theory of Statistics in a Bachelor degree.</td>
</tr>
<tr>
<td>The I.P. Sharp Associates Pty Limited Prize</td>
<td>$100.00</td>
<td>Excellence in Higher Theory of Statistics 2 subjects in a Bachelor degree.</td>
</tr>
<tr>
<td>The Michael Mihailavitch Erhman Award</td>
<td>$750.00</td>
<td>The best performance by a student enrolled in a Mathematics Program, in examinations conducted by School of Mathematics in any one year.</td>
</tr>
<tr>
<td>The Pure Mathematics Prize</td>
<td>$50.00</td>
<td>The best performance in Level 3 Pure Mathematics subjects by a student in a bachelor degree or diploma course.</td>
</tr>
<tr>
<td>The School of Mathematics Prize</td>
<td>$50.00</td>
<td>The best performance in either MATH1032 Mathematics 1 or MATH1042 Higher Mathematics 1 by a student in a Bachelor degree or Diploma course.</td>
</tr>
<tr>
<td>The School of Mathematics Prize</td>
<td>$50.00</td>
<td>The best performance in basic Year 2 Higher Mathematics units by a student in a bachelor shared degree or diploma course.</td>
</tr>
<tr>
<td>The School of Mathematics Prize</td>
<td>$50.00</td>
<td>Excellence in four or more Mathematics units by a student in Year 2 of a bachelor degree or diploma course.</td>
</tr>
<tr>
<td>The Statistical Society of Australia (NSW Branch) Prize</td>
<td>$100.00</td>
<td>The best performance in Theory of Statistics subjects.</td>
</tr>
<tr>
<td>The T.P.F & C Fourth Year Prize</td>
<td>$200.00</td>
<td>The best performance in the fourth year project by a student proceeding to the degree of Bachelor of Science (Honours) within the School of Mathematics.</td>
</tr>
<tr>
<td>The T.P.F & C Third Year Prize</td>
<td>$200.00</td>
<td>The best performance in either MATH3601 Pure Mathematics 3 or MATH3181 Applied Mathematics 3.</td>
</tr>
</tbody>
</table>

School of Optometry

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ACBO/Learning Frontiers Prize</td>
<td>$150.00</td>
<td>The best performance in the Binocular Vision component of OPTM9042 Optometry B and OPTM9041 Clinical Optometry in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Australian Optometrical Association Prize</td>
<td>$200.00</td>
<td>The best performance in a subject selected by the Head of School.</td>
</tr>
<tr>
<td>The Bausch & Lomb Soflens Prize</td>
<td>Contact Lenses valued at $700.00</td>
<td>The best performance in the contact lens section of OPTM9041 Clinical Optometry in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Eycon Lens Laboratories Pty Ltd Prize</td>
<td>Trial fitting set of contact lenses</td>
<td>The best essay or project on contact lenses in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The G Nissell & Company Australia Pty Ltd Prize</td>
<td>Trial fitting set of contact lenses</td>
<td>The best performance in the Contact Lens sections of OPTM9042 Optometry B and OPTM9041 Clinical Optometry in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Hoya Lens Australia Pty Ltd Prize</td>
<td>$250.00</td>
<td>The best academic record in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Hydron (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in Year 4 of the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Hydron (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in OPTM9042 Optometry B in the Bachelor of Optometry course.</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>School of Optometry (continued)</th>
<th>Value $</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Martin Wells Pty Ltd Prize</td>
<td>$200.00</td>
<td>The best performance in OPTM9021 Anatomy and Physiology of the Eye and Visual System in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Martin Wells Pty Ltd Prize</td>
<td>$200.00</td>
<td>The best performance in OPTM9032 Diagnosis and Management of Ocular Disease in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Martin Wells Pty Ltd Prize</td>
<td>$200.00</td>
<td>The best final Year Essay in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Optical Products Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The Optometric Vision Research Foundation Prize</td>
<td>$200.00</td>
<td>The best research project in the final year of the Prize Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Optometrists Association of NSW Prize</td>
<td>$100.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The Optyl (Australia) Pty Ltd Prize</td>
<td>$100.00</td>
<td>The best performance in the practical work of OPTM9034 Clinical Methods in the Bachelor of Optometry course.</td>
</tr>
<tr>
<td>The Safilo Australia Prize</td>
<td>$150.00</td>
<td>The best performance in a subject selected by the Head of School</td>
</tr>
<tr>
<td>The Theo Kannis Prize for Clinical Optometry</td>
<td>$250.00</td>
<td>The best performance in OPTM9041 Clinical Optometry by a student in the Bachelor of Optometry course.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Australian Institute of Physics Prize</td>
</tr>
<tr>
<td>The Bodal Prize</td>
</tr>
<tr>
<td>The Bodal Prize</td>
</tr>
<tr>
<td>The ETP-Oxford Prize</td>
</tr>
<tr>
<td>The Gordon and Mabel Godfrey Award in Theoretical Physics 4</td>
</tr>
<tr>
<td>The Gordon and Mabel Godfrey Prize in Theoretical Physics 3</td>
</tr>
<tr>
<td>The Head of School's Prize in Physics</td>
</tr>
<tr>
<td>The Parameters Prize in Electronics</td>
</tr>
<tr>
<td>The Physics Staff Prize for Physics 1</td>
</tr>
</tbody>
</table>
Undergraduate University Prizes (continued)

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value ($)</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Physics Staff Prize for Physics 2</td>
<td>$150.00</td>
<td>The highest aggregate in PHYS2001 Mechanics & Computational, PHYS2011 Electromagnetism and Thermal Physics, PHYS2021 Quantum Physics & Relativity, PHYS2031 Laboratory by a student in the Bachelor of Science course</td>
</tr>
<tr>
<td>The Physics Staff Prize for Physics Honours</td>
<td>$200.00</td>
<td>The best performance in the Physics Honours Year by a student in the Bachelor of Science course</td>
</tr>
</tbody>
</table>

School of Psychology		
The Australian Psychological Society Prize	$100.00	The best performance in a subject selected by the Head of School
The Milon Buneta Prize	$80.00	The best performance in Year 2 of the Bachelor of Science course in Psychology
The Psychology Staff Prize	$80.00	The best performance in Year 2 Psychology by a student in the Bachelor of Science course in Psychology

Graduate University Prizes

The following table summarizes the graduate prizes awarded by the University.

<table>
<thead>
<tr>
<th>Donor/Name of Prize</th>
<th>Value ($)</th>
<th>Awarded for</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The J.R. Holmes Prize</td>
<td>$75.00</td>
<td>Excellence in at least 4 pass-level pure mathematics level 3 units, taken over no more than two consecutive years by a student in the Science, Arts or Education courses</td>
</tr>
</tbody>
</table>

<p>| | | |
| | | |
| School of Optometry | | |
| The Hydron Contact Lense Prize | Trial fitting set of contact lenses | The best performance in OPTM8005 Advanced Contact Lens Theory and Practice in the Master of Optometry course |
| The Theo Kannis Prize for Advanced Clinical Optometry | $250.00 | The best performance in OPTM8001 Advanced Clinical Optometry by a student in the Master of Optometry course |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The University of New South Wales Kensington Campus

Theatres

Biomedical Theatres E27
Central Lecture Block E19
Classroom Block (Western Grounds) H3
Vox Wrenches Theatre F17
Keith Burrows Theatre J14
Main Building (Physics) Theatrette K14
Mathews Theatres D23
Parade Theatre E3
Science Theatre F13
Sir John Clancy Auditorium C24

Link B6
Maintenance Workshop B13
Materials Science and Engineering E8
Mathews F23
Mechanical and Industrial Engineering J17
Medicine (Administration) B27
Menzies Library E21
Morven Brown (Arts) C20
New College (Anglican) L6
Newton J12
NIDA D2
Parking Station H25
Philip Baxter College D14
Robert Heffron (Chemistry) E12
Sam Cracknell Pavilion H8
Shalom College (Jewish) N9
Sir Robert Webster (Textile Technology) G14
Wool & Animal Sciences G14
Squash Courts B7
Swimming Pool B4
Unisearch House L5
University Regent J2
University Union (Roundhouse) - Stage I E6
University Union (Blockhouse) - Stage II G6
University Union (Squarehouse) - Stage III E4
Wallace Wurth School of Medicine C27
Warrane College M7

Buildings

Affiliated Residential Colleges
New (Anglican) L6
Shalom (Jewish) N9
Warrane M7
Applied Science F10
Architecture H14
Arts (Morven Brown) C20
Banks F22
Barker Street Gatehouse N11
Basser College C18
Biological Sciences D26
Central Store B13
Chancellery C22
Chemistry (Dalton) F12
Robert Heffron E12
Civil Engineering H20
Commerce and Economics (John Goodsell) F20
Dalton (Chemistry) F12
Electrical Engineering G17
Geography and Surveying K17
Goldstein College D16
Golf House A27
Gymnasium B5
House at Pooh Corner N8
International House C6
Io Myers Studio D9
John Goodsell (Commerce and Economics) F20
Kanga's House O14
Kensington Colleges C17 (Office)
Basser C18
Goldstein D16
Philip Baxter D14

Biomedical Library F23
Biomedical Engineering A28
Biotechnology D26
Bookshop G17
Building H14
Careers and Employment F15
Chaplain's Office C22
Chaplains E15
Chemical Engineering and Industrial Chemistry F10
Chemistry E12
Child Care Centres N8, O14
Civil Engineering H20
Commerce and Economics (Faculty Office) F20
Community Medicine D26
Computing Services Department F21, D26
Counselling and Careers Service F15
Economics F20
Education G2
Education Testing Centre E15
Electrical Engineering and Computer Science G17
Energy Research, Development and Information Centre F10
Engineering (Faculty Office) K17
English C20
Ethics Committees Secretariat B8
Examinations C22
Feasibility Office C22
Food Science and Technology F10
French C20
General Staff Office C22
Geography K17
German Studies C20
Graduate Office and Alumni Centre E4
Graduate School of the Built Environment H14
Groundwater Management and Hydrogeology F10
Health Services Management C22
History C20
Industrial Arts H14
Industrial Design G15
Industrial Relations and Organizational Behaviour F20
Information Systems F20
International Student Centre F15
IPACE F23
Kanga's House O14
Kensington Colleges C17 (Office)
Kanga's House O14
Kensington Colleges C17 (Office)
Basser C18
Goldstein D16
Philip Baxter D14

Library E21
Lost Property C22
Marine Science D26
Marketing F20
Materials Science and Engineering E8
Mathematics F20
Medical Education H27
Medical Education (Faculty Office) B27
Microbiology D26
Mineral Processing and Extractive Metallurgy E8
Mining Engineering K15
Music B11
National Institute of Dramatic Art D2
News Service C22
Optometry J12
Pathology C27
Patrol and Cleaning Services C22
Petroleum Engineering D12
Philosophy C20
Physics K15
Physiology and Pharmacology C27
Political Science C20
Printing Unit C22
Psychology D3
Publications Section C22
Remote Sensing K17
Russian Studies C20
Safety Science J17
Science and Mathematics Course Office D26
Science and Technology Studies C20
Social Work G2
Sociology C20
Spanish and Latin American Studies C20
Sport and Recreation Centre B6
University Health Services E15
Student Records C22
Student Services F15
Students' Union E4 and C21
Surveying K17
Professional Development Centre E15
Textile Technology G14
Theatre Studies B10
Town Planning K15
Union Shop (Upper Campus) D19
University Archives E21
University Press A28
University Union (Blockhouse) G6
Waste Management H20
WHO Regional Training Centre C27
Wooll & Animal Sciences G14
This Handbook has been specifically designed as a source of reference for you and will prove useful for consultation throughout the year.

For fuller details about the University – its organization, staff membership, description of disciplines, scholarships, prizes, and so on, you should consult the Calendar.

The Calendar and Handbooks also contain a summary list of higher degrees as well as the conditions for their award applicable to each volume.

For detailed information about courses, subjects and requirements of a particular faculty you should consult the relevant Faculty Handbook.

Separate Handbooks are published for the Faculties of Applied Science, Architecture, Arts, Commerce and Economics, Engineering, Law, Medicine, Professional Studies, Science (including Biological and Behavioural Sciences and the Board of Studies in Science and Mathematics), and the Australian Graduate School of Management (AGSM).

The Calendar and Handbooks, which vary in cost, are available from the Cashier’s Office.