The information in this handbook is set out as follows:

- **Faculty Information**

- **Undergraduate Study**
 - Courses: Science and Advanced Science
 - Information on How to Structure Your Course
 - Program Outlines
 - Specific, Professional and Combined courses: followed by program outlines
 - Subject Descriptions: this section includes HSC requirements, prerequisites, co-requisites, exclusions and other notes

- **Graduate Study**
 - Courses and Programs: followed by course outlines
 - Subject Descriptions: this section includes prerequisites, co-requisites, exclusions and other notes
 - Conditions for the Award of Higher Degrees

- **Scholarships and Prizes**

- **Calendar of Dates**

It is University policy to promote equal opportunity in education (refer to EEO Policy Statement, The University of New South Wales Calendar (Summary Volume) and Student Guide 1992).
Science

1992 Handbook

THE UNIVERSITY OF NEW SOUTH WALES
Subjects, courses and any arrangements for courses including staff allocated as stated in this Handbook are an expression of intent only. The University reserves the right to discontinue or vary arrangements at any time without notice. Information has been brought up to date as at 4 November 1991, but may be amended without notice by the University Council.
Contents

Faculty Information

Board of Studies in Science and Mathematics
Some People Who Can Help You
Enrolment Procedures
General Information

Undergraduate Study: Science Courses

Science Course (3970) and Advanced Science Course (3972-3977)
Science and Mathematics Course Programs
How to structure your degree course
Three year pass degree
Four year honours degree
Satisfactory progress and workload
Rules governing admission to the course with advanced standing
Program Outlines
Range of programs
Details of programs

Anatomy 10, Atmospheric and Climate Science 10, Biochemistry and Molecular Genetics 12, Biological Science 12, Biomedical Science 13, Biotechnology 13, Botany 13, Chemistry 14, Computer Science 15, Earth and Environmental Science 15, Ecology 16, Environmental Science 17, Genetics 20, Geography 20, Geology and Geophysics 21, Information Systems 22, Marine Science 22, Mathematics 24, Medical Physics 26, Microbiology and Immunology 27, Molecular Genetics 27, Neuroscience 28, Philosophy 28, Physics 30, Physiology and Pharmacology 30, Psychology 31, Science and Technology Studies 32, Zoology 32

Undergraduate Study: Special Courses

Specific Science degree courses
3431 Psychology Degree Course (BSc (Psychol)) Full-time
3971 Business Information Technology Course
3950 Course (BOptom) Full-time
3951 Combined Science/Optometry Course (BSc BOptom)

Professional and Combined degrees in Science
3611 Combined Science/Aeronautical Engineering Course
3661 Combined Science/Industrial Engineering Course
3681 Combined Science/Mechanical Engineering Course
3701 Combined Science/Naval Architecture Course
3725 Combined Science/Electrical Engineering Course
3730 Combined Science/Civil Engineering Course
3820 Combined Science and Medicine Course
3995 Combined Science/Commerce Course Programs
4075 Combined Science/Education Course Programs
4770 Combined Science/Law Course
Undergraduate Study: Subject Descriptions

Identification of subjects 39
Alphabetical prefixes 39
Subject Descriptions 41

Graduate Study: Courses and Programs

Faculty of Biological and Behavioural Sciences 107
Faculty of Science 107
Enrolment Procedures 107
Faculty of Biological and Behavioural Sciences 107
Higher Degree Qualifying Program 107

Graduate Diplomas
School of Biochemistry and Molecular Genetics
5345 Biochemistry Graduate Diploma Course 109
School of Biological Science
5350 Biological Science Graduate Diploma Course 109
School of Microbiology and Immunology
5355 Microbiology and Immunology Graduate Diploma Course 110
School of Psychology
5330 Psychology Graduate Diploma Course 110

Department of Biotechnology
5015 Biotechnology Graduate Diploma Course 111

Masters Degrees
School of Psychology
8252 Master of Psychology (Applied) Degree Course 112
8251 Master of Psychology (Clinical) Degree Course 113

Department of Biotechnology
8042 Master of Applied Science (Biotechnology) Degree Course 114

Faculty of Science 114
Graduate Diplomas
School of Chemistry
5510 Food and Drug Analysis Graduate Diploma Course 115
Faculty of Science
5530 Physical Oceanography Graduate Diploma Course 116

Masters Degrees
School of Chemistry
8770 Master of Chemistry 117
School of Mathematics
8740 Master of Mathematics 118
8750 Master of Statistics 119
School of Optometry
8760 Master of Optometry 120
School of Physics
8730 Master of Physics 120
Graduate Study: Subject Descriptions 122

Identification of Subjects by Number 122
Alphabetical prefixes 122
Subject Descriptions 124

Anatomy 124, Biochemistry 124, Biological Science 124, Biotechnology 124, Chemistry 125, Civil Engineering 126, Medicine 126, Economics 126, Geography 127, Engineering 127, Mathematics 127, Microbiology and Immunology 129, Oceanography 129, Optometry 129, Physics 130, Psychology 131, Safety Science 134

Graduate Study: Conditions for the Award of Higher Degrees 135

Doctor of Philosophy 137
Master of Chemistry 139
Master of Engineering, Master of Science 139
Master of Engineering, Master of Science and Master of Surveying, without supervision 141
Master of Mathematics 142
Master of Optometry 142
Master of Physics 142
Master of Psychology (Applied) and (Clinical) 143
Master of Science 143
Master of Science without supervision 143
Master of Statistics 143
Graduate Diploma 144

Scholarships and Prizes 147

Scholarships
Undergraduate 147
Graduate 149

Prizes
Undergraduate 151
Graduate 155

Calendar of Dates 156

Session Dates 156
Important Dates 157
Welcome to The University of New South Wales!

This Handbook sets out information about the Science Courses, which are amongst the most varied and flexible available in our University.

Some of you have already decided on a professional career in a clinical discipline, while others have a clear preference for some field of experimental science.

Some of you may choose theoretical scientific studies, while a great many will opt to maintain a broad program of varied subjects throughout your course.

All of you will have the opportunity to be taught by active scientists who are engaging in research of international significance, and all of you will acquire skills of great importance to the future of the community. While this handbook sets out the possibilities, we hope that you will feel free to take personal advice over your subject and career choices.

General course advice is always available from the Board of Studies in Science and Mathematics office and every science-based School will be happy to discuss options with interested students. Not all new students are new to universities, of course, and many of the new students this year will have chosen to pursue higher degree work in science at the University of New South Wales.

For graduate students the link with an individual school and discipline is even closer but all of you should feel that the general faculty resources are very much at your disposal. And please do not forget that science should be fun! We wish you every success and sincerely hope that your student years as valued members of our community will be stimulating, happy and rewarding.

Gavin Brown
Dean
Board of Studies in Science and Mathematics
Science courses take advantage of a wide range of science and technology based subjects available across the University.

The Board of Studies in Science and Mathematics administers these courses and is therefore responsible for the undergraduate studies of students specialising in disciplines associated with the faculties of Biological and Behavioural Sciences and of Science along with several schools from other faculties.

Board of Studies in Science and Mathematics

The Science Courses are administered by the Board of Studies in Science and Mathematics which includes all members of the Faculty of Biological and Behavioural Sciences and the Faculty of Science and some members of specific Schools in other faculties contributing to the Science and Mathematics Course: Chemical Engineering and Industrial Chemistry; Geography; Mines (Applied Science); Science and Technology Studies; Philosophy (Arts); Accountancy; Economics; Information Systems (Commerce); Electrical Engineering; Computer Science and Engineering; Mechanical and Manufacturing Engineering; Surveying (Engineering); Anatomy; Community Medicine; Physiology and Pharmacology; Education (Professional Studies); and the Centre for Liberal and General Studies.

The Dean is Professor G. Brown who is also the Dean of the Faculty of Science.
The Chair is Associate Professor G. Russell.
The Coordinator of Studies in Science and Mathematics is Associate Professor R. J. King.
The Administrative Officer is Mr P. Buist.

Some People Who Can Help You

If after reading this handbook you still have problems, please consult the appropriate staff.

For matters which concern the administration of the science course consult with the staff of the Board of Studies in Science and Mathematics Office (Room L-G06G, Biological Sciences Building, map reference D25).

For academic advice regarding particular programs or subjects consult the appropriate staff member for each program of study or subject, as listed later in this handbook.

Important: As changes may be made to information provided in this handbook, students should frequently consult the noticeboard of the Board of Studies in Science and Mathematics and the official noticeboards of the University.
Enrolment Procedures

New students will receive enrolment information with their offer of a place in the Science course. All students re-enrolling in 1992 should obtain a copy of the leaflet Re-Enrolling 1992: Procedures and Fees for Science Courses. This is available from the Course Administration Office and the Admissions Office. All quotas are assessed on the basis of applications made at the time of preliminary enrolment. Students enrolling in graduate courses should contact the Postgraduate Section.

The subject timetable for the Science and Mathematics Course and the Advanced Science Courses is available in late October/early November from the Science and Mathematics Course Office, Room L-G06G, Biological Sciences Building. All re-enrolling students should collect one of these timetables along with a preliminary enrolment form (SM92). The preliminary enrolment form is to be completed and returned to the Science and Mathematics Office by late December.

Students not lodging a completed enrolment form before the first day of Session 1 have no guarantee that a place is available in the subjects offered in that year. This is particularly important for subjects where laboratory space is limited.

General Information

While this Handbook has been specially designed as a detailed source of reference in all matters related to the Faculty, the University’s Student Guide is intended to provide general information on some important rules and procedures, and introduces students to many of the services available to them. The Guide, which puts the Faculty into perspective within the University as a whole, is issued free of charge to all enrolled students. For other details about some aspects of the University and its activities students might need to consult the University Calendar.
Undergraduate Study

3970
Science and Mathematics Science Course

3972-3977
Advanced Science and Mathematics Course

UAC Codes:
NSC (science); NCS (computing); NSD (advanced science)

The Science and Mathematics Course (3970) and the Advanced Science and Mathematics Courses (3972-3977) lead to the award of the degree of Bachelor of Science on the completion of a three year program or a Bachelor of Science degree at honours level on the completion of a four year program. The main aims of the Science and Mathematics Course may be summarized as providing opportunities for students to prepare themselves for careers in research technology, science, mathematics and education, areas of management or public policy, involving the use of science or mathematics.

Science and Mathematics Course Programs

The Board of Studies in Science and Mathematics offers a wide choice of programs each designed to meet specific aims and objectives. Most programs are identified with a particular School or discipline but some are multi-disciplinary.

Programs in the Science and Mathematics Course have been designed to:

1. develop and sustain an interest in and knowledge of Science and Mathematics.
2. develop a working knowledge of scientific methods of investigation and a favourable attitude towards them.
3. encourage curiosity and creative imagination and an appreciation of the role of speculation in the selection and solution of problems, the construction of hypotheses, and the design of experiments.
4. develop an appreciation of scientific criteria and a concern for objectivity and precision.
5. develop confidence and skill in formulating problems and in treating both qualitative and quantitative data.
6. develop the ability and disposition to think logically, to communicate clearly by written and oral means, and to read critically and with understanding.
7. develop the habit of seeking and recognizing relationships between phenomena, principles, theories, conceptual frameworks and problems.
8. promote understanding of the significance of science, technology, economics and social factors in modern society, and of the contributions they can make in improving humans' material conditions and in widening their imaginative horizons and their understanding of the universe.
9. provide opportunities for the development of students' motivations and social maturity, and an awareness of their capabilities in relation to a choice of career which will be fruitful to themselves and to society.

Details of the programs follow the general information on the structure of the course.
How to structure your course

Bachelor of Science
BSc

The Bachelor of Science degree is awarded on completion of a three year program (leading to the award of the degree at pass level) or a four year program (leading to the award of the degree at honours level) chosen from specific programs approved by the Board of Studies in Science and Mathematics. The time specified is a minimum time required for completion of the degree. It may be taken over a longer period of time but note that it is not possible to complete studies even at Level I by evening classes alone.

Three year degree at pass level

Basic requirements

1. A total of 23 science units and 2 general education units (ie 56 hours of Category A and 56 hours of Category B). Each subject offered to science students has a unit value (usually 1 but ranging from 0.5 to 4 units) based on the number of hours taught and the type of study.

2. A student must select and be enrolled in one of the prescribed programs. Programs are designed to link subjects in such a way that a coherent pattern of study is achieved in a specified discipline. All programs consist of 23 units at Level I, II, III, III as specified. Not less than eight nor more than ten units may be from Level I, and two of the Level I units must be mathematics (MATH 1032 Mathematics I or MATH 1042 Higher Mathematics, or both MATH 1011 and MATH 1021 General Mathematics B and C).

3. In order to graduate a student must pass all the subjects specified in a program.

4. Where a choice of subjects is indicated in a program care must be taken to satisfy prerequisites and co-requisites. A prerequisite unit is one which must be completed prior to enrolment in the unit for which it is prescribed. A co-requisite unit is one which must either be completed successfully before or be studied concurrently with the unit for which it is prescribed. An excluded unit is one which cannot be counted towards the degree qualification together with the unit which excludes it.

5. A student may change from one program to another only with approval. A written application to make the change, together with details of any optional units selected in the new program, must be lodged at the office of the Board of Studies in Science and Mathematics, Room L-G06G (Biological Sciences Building).

6. A student may not undertake more than 8 Science units in any one year. Exceptional cases must be discussed with and have approval from the Coordinator acting on behalf of the Dean of the Board of Studies in Science and Mathematics.

7. Some subjects and programs have quotas. When such restrictions apply, entry to these subjects or programs is based solely on academic achievement.

8. General education electives in the three year (pass) degree are those in Categories A and B as indicated here. General Education is an integral part of the degree. Among its objectives, the General Education program provides the opportunity to address some of the key questions you will face as individuals, citizens and professionals.

General Education Electives

Category A. The External Context; an introduction in non-specialist terms to an understanding of the environments in which humans function. 56 hours

1. Australia and the Development of the World Economy. How do we, can we, generate wealth? 28 hours

2. Human Inequality. How can we, ought we, distribute wealth, status and power? 28 hours
3. Science and Civilization. What steps should we take, and what policies should we adopt, in science and technology? 56 hours
4. Ecosystems, Technology and Human Habitation. What effects do our wealth generating and techno-scientific activities have on the environment? 28 hours
5. Mass Media and Communication. What are the effects of the new mass media of communication? 28 hours
6. Australian Society and Culture. What are the key social and cultural influences on Australia today? 28 hours

Category B: The Internal Context of Assumptions And Values: an introduction to, and a critical reflection upon, the cultural bases of knowledge, belief, language, identity and purpose. 56 hours
1. The Self and Society. How do we define ourselves in relation to the larger human community? 56 hours
2. Changing Conceptions of Human Nature and Well-Being. How do our conceptions of human nature and well being influence both individual and social behaviour? 28 hours
3. The Pursuit of Human Rationality. What are the prevailing conceptions of and challenges to human rationality? 28 hours
4. The Use of Language, Images and Symbols. How do language, images and symbols function as means and media of communication? 28 hours
5. The Computer: Its Impact, Significance and Uses. What is the impact of the computer on human society and culture? 28 hours
6. Beliefs, Values and the Search for Meaning. Which systems of belief and configurations of values are most conducive to the survival and enhancement of the human species and the planet earth? 28 hours

Four year degree at honours level

Basic requirements

1. All requirements of a three year program, including both the Science and the General Education electives specified.
2. (1) An approved honours program offered by one or more schools; or (2) at least 10 units at Level IV as specified in an individual program.
3. The general education requirement in the honours degree is from Category C.

General Education Elective

Category C. An Introduction To The Design And Responsible Management Of The Human And Planetary Future. An introduction to the systems over which human beings exercise some influence and control.

The central question to be addressed by students in a systematic and formal way is: for what purpose or purposes will I use my intellectual skills, my expertise, or my technological prowess?

Will these abilities be used, for example:
- in a creative and innovative way?
- to widen the circle of human participation in the benefits they bring?
- to break down the barriers of exclusion and discrimination?
- to enhance the prospects for survival of the human species?
- to enhance the capacity of the planet earth to sustain life?

The exact way in which Category C is satisfied depends on the honours program in each discipline.
For entry to Year 4 students are required:
1. to have completed Years 1, 2 and 3 of the specific program and to have satisfied prerequisite requirements as specified in that program. The general education electives must be completed;
2. to seek the guidance of the appropriate Head of School at an early stage of study to ensure that the program being followed is best suited to lead to the Year 4 honours program;
3. to have completed relevant subjects normally with better than passing grades;
4. to have the approval of the appropriate Head of School.

Satisfactory Progress and Workloads

The expected maximum workload for students is four science units per session. This can be exceeded only in exceptional circumstances by students with a good academic record and requires the permission of the Coordinator of Studies, acting on behalf of the Dean of the Board of Studies in Science and Mathematics. Students with external commitments, such as part-time employment, in excess of ten hours per week, should take fewer units. External commitments are not to be taken into consideration in relation to such matters as extensions of time for written work or failure to attend examinations, which may, for some subjects, be scheduled on Saturday mornings. Students whose performance is unsatisfactory will be asked to show cause why they should remain in their course of study.

Failure to show cause can result in exclusion from a subject or the course.
A show cause will be issued to any student who fails a subject twice, or is deemed to be making unsatisfactory progress.
Unsatisfactory progress can be evidenced by failure of more than 50% of subjects attempted in a particular year, failing to pass the equivalent of four science units in one year, or failing to complete the requirements of first year in the first two years of study.

Rules governing admission to the Science and Mathematics Course with advanced standing

Any person who makes application to enrol in the Science and Mathematics Course (3970), the Advanced Science Courses (3972-3977), or in a combined degree course which includes the Science degree course administered by the Board of Studies in Science and Mathematics, may be admitted to the course of study leading to such degree with such standing on the basis of previous attainment as may be determined by the Board of Studies in Science and Mathematics provided that:
1. where students transfer from another tertiary institution, they shall not in general be granted standing in the course which is superior to that which they have enjoyed at the institution from which they transferred.
2. the standing granted by the Board of Studies in Science and Mathematics in the case of any application based upon any degrees or other award held by applicants, should not be such as will permit the applicants to qualify for the award of the science degree, without completing the course of instruction and passing examinations in at least those subjects comprising the latter half of the four year Science and Mathematics course, so that where such a program of study would involve the applicants in repeating courses of instruction in which the Board of Studies in Science and Mathematics deemed the applicants to have already qualified, the Board may prescribe an alternative program of studies in lieu thereof.
3. the standing granted by the Board of Studies in Science and Mathematics in the case of applications based on partial completion of the requirement for any degree or other award of another institution shall not be such that it will permit the applicants to qualify for the award of the science degree by satisfactory completion of the program of study deemed by the Board to be less than that required for students in full time attendance in the final year of the Science and Mathematics Course.
4. the standing granted by the Board of Studies in Science and Mathematics in the case of applications based upon the partial completion of the requirements for any degree or award of the University may be such as to give full credit in the Science and Mathematics Course for work done in the course from which the students transfer.

Program Outlines

Each program has a four-digit identifying number. Most programs are set out as Years 1, 2, 3 and 4 for the four year program and in these cases Years 1, 2 and 3 comprise a three year program. A few programs are set out as Years 1, 2 and 3 and lead to the award of the pass degree only.

Students wishing to take units additional to the minimum 23 required for the pass degree should be aware that these units will attract an additional fee as voluntary subjects.

Range of programs

The range of programs has been designed to cover a wide variety of needs in the various areas of science and mathematics. All programs follow in alphabetical order.

BIOCHEMISTRY see program 4100
BIOLOGICAL SCIENCE see program 1700
BIOTECHNOLOGY see program 4200
BOTANY see program 1743
BUSINESS INFORMATION TECHNOLOGY see course 3971
CHEMISTRY see program 0200
COMMUNITY MEDICINE subjects available in some programs
COMPUTER SCIENCE see program 0600 (separate UAC entry code NCS)
EARTH AND ENVIRONMENTAL SCIENCE see program 2527
ECOLOGY see programs 6851, 6852, 6853
GENETICS see program 6840 and MOLECULAR GENETICS 4110
GEOGRAPHY see program 2700
GEOLOGY see programs 2500, 2503
GEOPHYSICS see program 2503 under GEOLOGY
INFORMATION SYSTEMS see program 1400 (separate UAC entry code NIT)
MARINE SCIENCE see programs 6831, 6832, 6833, 6834
MATHEMATICS see programs 1000, 1006, 1061
MOLECULAR GENETICS see program 4110
MICROBIOLOGY AND IMMUNOLOGY see program 4400
PHARMACOLOGY see program 7300
PHILOSOPHY see program 5200, 5262
PHYSICS see programs 0100, 0161, and GEOLOGY and GEOPHYSICS 2503
PHYSIOLOGY AND PHARMACOLOGY see program 7300
PSYCHOLOGY see program 1200, also course 3431
SCIENCE AND TECHNOLOGY STUDIES see program 6200, and PHILOSOPHY 5262
STATISTICS see MATHEMATICS programs 1006, 1061
ZOOLOGY see program 1745
All of these programs are available to Advanced Science students. The following additional programs are available only to Advanced Science students (transfer to these programs is possible for course 3970 students but only on the basis of academic performance):

ANATOMY see program 7000 (Course 3972)
ATMOSPHERIC AND CLIMATE SCIENCE see programs 0181 (Course 3974), 0182 (Course 3975), 0183 (Course 3977)
BIOMEDICAL SCIENCE see program 7370 (Course 3972)
CHEMISTRY, PURE AND APPLIED see program 0205 (Course 3972)
ENVIRONMENTAL SCIENCES see programs 6861 - 6868 (Course 3976)
MATHEMATICS WITH COMPUTING see program 1060 (Course 3972)
MATHEMATICS OF MANAGEMENT see program 6810 (Course 3972)
MEDICAL PHYSICS see program 0141 (Course 3973)
NEUROSCIENCE see program 7312 (Course 3972)
PHILOSOPHY WITH COMPUTING see program 5206 (Course 3972)
PSYCHOLOGY WITH COMPUTING see program 1206 (Course 3972)

In addition to Courses 3970 - 3977 programs are also included for Courses 3611 (Science/Aeronautical Engineering), 3661 (Science/Industrial Engineering), 3681 (Science/ Mechanical Engineering), 3701 (Science/Naval Architecture), 3725 (Science/Electrical Engineering), 3730 (Science/Civil Engineering), 3820 (Science/Medicine), 3951 (Science/Optometry), 3995 (Science/Commerce), 4075 (Science/Education), 4770 (Science/Law).

Details of Programs

ANATOMY

Entry to Anatomy programs is normally limited students who enter the program through advanced science. Entry at Level II is possible and academic merit is the sole criterion. Students planning this are advised to enrol initially in the Biological Sciences holding program 6817 and apply to meet the quota at the time of pre-enrolment for Level II.

A major in anatomy may suitably be combined with elective subjects from Biochemistry Physiology or Psychology.

7000
Anatomy (Advanced Science only)

Year 1
BIOS1011, BIOS1021
MATH1032 or MATH1042 or both
MATH1011 and MATH1021
4 elective Level I units

Year 2
ANAT2111, ANAT2211
5 or 6 elective units Recommended: Biological Science, Biochemistry, Physiology, Psychology
One 56 hour or two 28 hour Category A General Education subjects

Year 3
At least 4 Level III Anatomy units (may include PATH3201)
One 56 hour or two 28 hour Category B General Education subjects
Further units to give a total of 23 science units
Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units

Year 4 (Honours)
ANAT4508

ATMOSPHERIC AND CLIMATE SCIENCE

All programs include a core of atmospheric and climate science subjects offered by the Schools of Physics, Chemistry and Mathematics, including atmospheric radiation, atmospheric dynamics, atmospheric chemistry and climate modelling. In addition, at least two elective subjects must be chosen from a list which includes cloud physics, atmospheric remote sensing, upper atmosphere physics and boundary layer meteorology. Students may undertake significant studies in higher level Physics and Mathematics, Chemistry, or the Biological Sciences. Level IV includes a literature survey project, and a larger research project.

Atmospheric and climate science subjects to be taken at Levels 3 and 4 do not appear in this Handbook. For information contact Dr M. Box, School of Physics.
These are specific four year programs, and honours are awarded to all students who perform at an appropriate standard during the final two years. The research project is weighted more highly in determining the final grade of honours awarded.

0181
Atmospheric and Climate Science (Physical) (Advanced Science only)

This program emphasises computer modelling of the atmosphere, development of advanced instrumentation, or the general physics of the atmosphere. Students must study advanced subjects in Physics and Mathematics, and may obtain a recognised specialization in Physics.

Year 1
CHEM1002
MATH1032 or MATH1042
PHYS1002, PHYS1601
1 Level I elective unit

Year 2
MATH2510, MATH2100, MATH2120
MATH2501 or MATH2841
PHYS2001, PHYS2011, PHYS2021, PHYS2031, PHYS2630, PHYS2810, PHYS2820
One 56 hour or two 28 hour Category A General Education subjects

Year 3
MATH2520
PHYS3041, CHEM3111
3 units of Atmospheric and Climate Science
2 elective units
One 56 hour or two 28 hour Category B General Education subjects

Year 4
MATH2841
3.5 units of Atmospheric and Climate Science
3 elective units including at least 1 unit from: GEOG3032, MSCI2001, MSCI3001
1 General Education subject (Category C)

* Under special circumstances, an alternative subject may be taken instead of BIOS1011.

0182
Atmospheric and Climate Science (Chemical) (Advanced Science only)

This program emphasises chemistry of the atmosphere, including air pollution, chemical cycles of important greenhouse gases, and chemical instrumentation. Students take four specified units of Level III Chemistry, and may obtain a recognised specialization in Chemistry.

Year 1
BIOS1011*
CHEM1002
MATH1032 or MATH1042
PHYS1002, PHYS1601

Year 2
CHEM2011, CHEM2041
MATH2510, MATH2100, MATH2120
PHYS2001, PHYS2011, PHYS2031, PHYS2630, PHYS2810, PHYS2820
One 56 hour or two 28 hour Category A General Education subjects

Year 3
CHEM3041, CHEM3111
MATH2520
PHYS2021, PHYS3030, PHYS3060
One 56 hour or two 28 hour Category B General Education subjects

Year 4
MATH2841
1 General Education subject (Category C)

0183
Atmospheric and Climate Science (Biospheric) (Advanced Science only)

This program emphasises the interactions between the atmosphere and the biosphere, including chemical sources and sinks, and biospheric responses to climate change. Students are required to take four units of Biological Science from a specified list (consult Program advisors), and may obtain a recognised specialization in Biology.

Year 1
BIOS1011, BIOS1021
CHEM1002
MATH1032 or MATH1042
PHYS1002

Year 2
BIOS2011
MATH2510, MATH2100, MATH2120
PHYS2001, PHYS2011, PHYS2031, PHYS2630, PHYS2810, PHYS2820
1 additional Biology unit in consultation with Program advisors
One 56 hour or two 28 hour Category A General Education subjects

Year 3
MATH2520
PHYS2021, PHYS3030, PHYS3060
1 elective unit
1 General Education subject (Category C)

Year 4
GEOG3032
MATH2841
3.5 units of Atmospheric and Climate Science
1 elective unit
1 General Education subject (Category C)
BIOCHEMISTRY AND MOLECULAR GENETICS

Biochemistry is concerned with understanding life processes, especially molecular aspects of living organisms. Historically, the diverse approaches of chemistry and physiology were applied to biological systems but now Biochemistry has achieved its own techniques, approaches and body of knowledge, and its ideas pervade biology. It, however, retains a molecular basis and is an ideal study for those students who are interested in understanding and appreciating biological processes at the molecular rather than descriptive level. Integration of this molecular approach at the cellular, tissue, organ and whole organism level is an important part of Biochemistry. Biochemistry also represents a fundamental component of medical science and has an important role in many aspects of modern medicine.

See also program 4110 Molecular Genetics.

4100 Biochemistry

The program allows students to combine Biochemistry with other disciplines, for example Microbiology, Chemistry, Physiology, Biotechnology, Biological Science, Genetics or Anatomy.

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I units (Recommended: Physics, Computing)

Year 2
BIOC2312
BIOS2011, BIOS2021
CHEM2021 or CHEM2041
2 or 3 elective units
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOC3111 or BIOC3121 or both BIOC3111 and BIOC3121
2 or more units from Level III Biochemistry units (one of these units may be replaced by a Level III unit offered by the School of Biotechnology. Immunology units offered by the School of Microbiology and Immunology or by BIOS3041)
Further elective units to give a total of 23
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units

Year 4 (Honours)
BIOC4318

BIOLOGICAL SCIENCE

Biological Science encompasses all aspects of plants and animals including their relationship to each other and to the environment. The programs leading to the award of a science degree in Biological Science include cell biology, plant and animal physiology, ecology, genetics, taxonomy, marine biology, entomology and evolutionary studies. These studies are particularly relevant in the fields of agriculture, forestry, wildlife management, conservation and related environmental sciences. Specializations are available in both Botany and Zoology as well as Ecology (6853), Marine Science-Biological Oceanography (6832) and Environmental Science (6861).

6817 Biological Sciences Holding Programs

Level I is identical in most programs in the Biological Sciences. Students who wish to study the biological sciences, but at Level I are unsure of the field in which they wish to specialize, are advised to enrol in this program and then transfer to the appropriate program in Level II.

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I units

Year 2
BIOC2312
BIOS2011, BIOS2021
CHEM2021 or CHEM2041
2 or 3 elective units
One 56 hour or two 28 hour Category A General Education subjects

Year 3
5 units from BIOS3011, BIOS3021, BIOS3031, BIOS3041, BIOS3051, BIOS3061, BIOS3071, BIOS3081, BIOS3091, BIOS3101, BIOS3111, BIOS3121, BIOS3131, BIOS3141, MICR3031
2 elective units (which may be also from this list)
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units

Year 4 (Honours)
BIOS4013
7370
Biomedical Science (Advanced Science only)

Year 1
BIOS1011, BIOS1021
CHEM1002
MATH1032, MATH1042 or both MATH1011 and MATH1021
One of the following subjects:
PHYS1002 or PHYS1022 or COMP1811 and COMP1821 or PSYC1002
Before Year 2 commences students should consult with Schools contributing to their proposed program about appropriate subjects and levels required for any particular honours year subject

Year 2
Students must take 7 or 8 units, with at least 5 units from:
ANAT2111, ANAT2211, BIOG2312, BIOS2021, MIRC2201 or MIRC2011, PHPH2112
One 56 hour or two 28 hour Category A General Education subjects
Elective units should be preferably in subject areas such as Mathematics, Physics, Chemistry, Computing or Psychology (see comments for Year 4).

Year 3
After consultation with appropriate Schools about the proposed Honours Year subject students would ordinarily choose 7 or 8 units (to complete a total of 23 or 24 units) from the following subject areas: Physiology and Pharmacology, Anatomy, Biochemistry, Microbiology and Immunology, Pathology, Biotechnology
One 56 hour or two 28 hour Category B General Education subjects

Year 4
Subject to satisfactory progress through the course students may proceed to the honours year. Before commencement of Level II students should consult an appropriate school (see the lists under Year 3) about the subjects required for a particular honours program.

4200
Biotechnology

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I units

Year 2
BIOC2312
BIOS2011, BIOS2021
MIRC2011
2 elective units (Recommended: Biochemistry, Chemistry, Microbiology)
One 56 hour or two 28 hour Category A and One 56 hour or two 28 hour Category B General Education subjects

Year 3
BIOT3011, BIOT3021, BIOT3031, BIOT3061
Additional elective units to give a total of 23.
Students proposing to undertake Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
BIOT4073 (F/T) BIOT4083 (P/T)

BIOTECHNOLOGY

Biotechnology employs a body of multidisciplinary expertise directed towards the utilization and recycling of natural resources by controlled biological action, usually in a reactor. Its study provides an appreciation of the capabilities of biological systems and the skills required to maximize these capabilities on the industrial scale. Particular attention is given to: the selection of the appropriate systems and their maximization by genetic and or enzyme tailoring; the design of biological reactors and their ancillary equipment; optimization and control of the processes. It is by these means that products are manufactured at ensured standards of quality. The products include certain foods and beverages, baker’s yeast, antibiotics, steroids, vaccines, enzymes, amino acids, nucleotides, vitamins, organic acids, alcohols, metals, plant growth regulators and insecticides. Specific mammalian proteins, such as insulin and growth hormone, are also produced by micro-organisms which have been genetically engineered to contain the appropriate mammalian gene.

Students wishing to undertake training in biotechnology may do so by combining such training with a major in another relevant discipline, preferably biochemistry, microbiology or chemistry. The fourth (honours) year includes further formal training as well as research in biotechnology. Alternatively, students with no previous training in biotechnology may undertake the biotechnology honours year, provided they have the necessary background training in biochemistry and microbiology; in such cases the Level III biotechnology units constitute the formal component.

BOTANY

Plant Science is concerned with all aspects of the structure and function of both green and non-green plants and the relation of plants to their environments. The major aspects of the subject range from plant anatomy and morphology through physiology, ecology, taxonomy, palynology, phycology and mycology. The applications of these studies are particularly relevant in the fields of agriculture, horticulture, forestry, marine studies, conservation and related environmental sciences.
CHEMISTRY

The programs in Chemistry are 0200 (Chemistry) and 0205 (Pure and Applied Chemistry, for Advanced Science only). Both programs provide a basic scientific education and a professional training in the chemical sciences. Fundamental, applied, environmental and industrial aspects of chemistry are included.

The following combinations should be considered:
- Chemistry/Biochemistry: programs 0200 and 4100 are mutually compatible;
- Chemistry/Computer Science: programs 0200 and 0600 are mutually compatible;
- Chemistry/Geology: programs 0200 and 2500 can be made compatible (initially consult the School of Chemistry);
- Chemistry/Mathematics: programs 0200 and 1000 are mutually compatible;
- Chemistry/Physics: programs 0200 and 0100 are not mutually compatible, but an appropriate program can be arranged by consultation with the Schools of Chemistry and Physics;
- Chemistry/Biotechnology: programs 0200 and 4200 are mutually compatible;
- Chemistry/Physiology: programs 0200 and 7300 (strand 2: Pharmacology) are mutually compatible as a 24 unit program.

Other combinations can be arranged by consultation initially with the School of Chemistry.

CHEMISTRY 0200

Chemistry

Program 0200 combines chemistry with other disciplines such as physics, geology, biochemistry, mathematics, computer science, biotechnology, physiology and pharmacology. These programs with more than one field of specialization result in a broadly based degree in the chemical sciences. For example: a combination of chemistry and biochemistry leads to further work in areas such as toxicology and neurochemistry; a combination of Level III chemistry with mathematics or computing provides a valuable basis for the many applications of computers in chemistry; chemistry with physics or materials science allows entry into the rapidly developing fields of hi-tech materials.

* Year 1*
 - CHEM1002
 - MATH1032 or MATH1042 or both MATH1011 and MATH1021
 - PHYS1002 or PHYS1022
 - 2 elective Level 1 units

* Year 2*
 - CHEM2011, CHEM2021, CHEM2031, CHEM2041
 - 3 elective units

Choose 4 Level III Chemistry units of which at least 3 are from:
- CHEM3011, CHEM3021, CHEM3031, CHEM3041
- Choose 4 elective units

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

* Year 4 (Honours)*
 - CHEM4003

* Students wishing to specialize in Chemistry with either Geology or Biotechnology may vary specified units with approval of the Board of Studies in Science and Mathematics.

CHEMISTRY 0205

Pure and Applied Chemistry (Advanced Science only)

Program 0205 is designed for students who wish to specialise in the chemical sciences, and undertake the maximum number of chemistry subjects. It is designed to provide education and training in all contemporary fields of chemistry, and should be selected by students who wish to devote their studies at Level III entirely to chemistry.

* Year 1*
 - CHEM1002
 - MATH1032 or MATH1042 or both MATH1011 and MATH1021
 - PHYS1002
 - 2 elective Level I units
Year 2
CHEM2011, CHEM2021, CHEM2031, CHEM2041
3 elective units (Recommended: Biochemistry, Biotechnology, Computer Science, Geology, Mathematics, Physics, Physiology)
One 56 hour or two 28 hour Category A and One 56 hour or two 28 hour Category B General Education subjects

Year 3
CHEM3011, CHEM3021, CHEM3031, CHEM3041
4 Level III Chemistry units
Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 4 (Honours)
CHEM4003

COMPUTER SCIENCE

Entry to this program is restricted to students who have been offered a place directly (UAC code NCS). Entry to later years is considered only in exceptional circumstances.

Computer Science involves the study of the design, construction and uses of computer systems. It is concerned with the representation of data and data structures in computer systems and the design of algorithms for automatic manipulation of this information by programming languages and machine systems. It is very much concerned with the design and development of hardware and software tools by which computer applications may be developed, but not so much with the applications themselves. It is, however, noted that non-computing elements (such as human interface or psychological aspects) can often dictate the level of success of computing systems. At the University of New South Wales, particular emphasis is given to comprehension of the basic principles behind computing tools, operating systems, compilers and translators, and computer hardware.

Students in other programs may take some Level I and Level II Computer Science subjects. See specific programs available: Computer Science/Physics (0161 Physics/Computer Science); Computer Science/Mathematics/Statistics (1061 Mathematics or Statistics/Computer Science and 1060 Mathematics with Computing); Computer Science/Psychology (1206 UAC entry code NCS); Computer Science/Philosophy (1206 UAC entry code NCS); Information Systems (1400 UAC entry code NIT).

EARTH AND ENVIRONMENTAL SCIENCE

This program combines Geology and Geography giving an understanding of present geological processes and their relationships with the land surface. The effects on the natural processes of human activities, from industrial pressures to urban developments, are an integral part of the course. Community need for developments in a variety of environments and the vital role of environmental interdisciplinary safeguards have been among the main guide-lines in the selection of subjects within the program.

2527
Earth and Environmental Science

Year 1
CHEM1002 or both CHEM1101 and CHEM1201 or CHEM1302 or CHEM1401 and CHEM1501
GEOG1031, GEOG1051
GEOL1101, GEOL1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021

Year 2
BIOS1011, BIOS1021
GEOG2021, GEOG2032, GEOG3051
GEOL2011, GEOL2031, GEOL7221
One 56 hour or two 28 hour Category A General Education subjects

Year 3 (Old Program 1992 only)
GEOG3011, GEOG3021
GEOL3121, GEOL6231
At least 3 units from: BIOS2031, BIOS2051, BIOS2061, BIOS3061, BIOS3101, GEOG3032, GEOG3062, GEOG3071, GEOG3122, GEOL2130, GEO5111, GEO5310, GEO5351 GEO5381, GEOL6321
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 3 (New Program from 1993 onwards)
GEOG3011, GEOG3021
GEOL3031, GEOL6231,
and at least 2.5 units selected from BIOS2031, BIOS2051,
BIOS2061, BIOS3061, BIOS3101, GEOG3032,
GEOG3062, GEOG3071, GEOG3122, GEOL2042,
GEOL3011, GEOL2072, GEOL3072, GEOL3092,
GEOL6321

Year 4 (Honours)
GEOG4303 or GEOG4050/GEOG4100

ECOLOGY

The Ecology programs allow students to specialise in selected areas of Ecology yet provide experience in a range of related cross disciplinary units, Biological Ecology (6853), Geographical Ecology (6851) and Mathematical Ecology (6852). Optional units allow students to match their interests and career aspirations. The selection of these units must be discussed with a Program adviser.

6851
Geographical Ecology

Year 1
BIOS1011, BIOS1021
GEOG1031, GEOG1051
MATH1032 or MATH1042 or both MATH1011 and
MATH1021
Choose 1 of the strands:
1. CHEM1002 or both CHEM1101 and CHEM1201
2. GEOG1101, GEOG1201
3. 2 Level I units

Year 2
BIOS2011, BIOS2051 and BIOS2031 or BIOS2061
BIOS2041 or GEOG2013
GEOG2021, GEOG3021
At least 1 unit from:
BIOS2021, BIOS2031, BIOS2061, GEOG2032,
GEOG3032, GEOG3042, GEOG2032, GEOG3042,
GEOL2121, GEOL6231, MIRC2201, MIRC2011
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071, BIOS3101, BIOS3111
GEOG3011, GEOG3062, GEOG3211
At least 1 unit from:
BIOS3011, BIOS3031, BIOS3041, BIOS3051, BIOS3061,
BIOS3081, BIOS3121, BIOS3131, GEOG2032,
GEOG3032, GEOG3042, GEOG3051, MIRC3071
Further elective units (to be discussed with Program adviser) to give a total of 23
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete at least 6 Level III units.

Year 4 (Honours)
BSSM4023 (F/T), BSSM4029 (P/T)

6852
Mathematical Ecology

Year 1
BIOS1011, BIOS1021
COMP1811
MATH1081, MATH1032 or MATH1042
Choose 1 of the strands:
1. CHEM1002 or both CHEM1101 and CHEM1201
2. GEOG1031, GEOG1051
3. PHYS1002 or PHYS1022

Year 2
BIOS2011, BIOS2051, MATH2501, MATH2510
BIOS2031 or BIOS2061
Choose 1 of the strands:
1. MATH2120, MATH2200, MATH2841
2. MATH2801, MATH2821
At least 1 unit from: BIOS2021, BIOS2031, BIOS2061,
GEOG2013, GEOG3021, GEOG3042, GEOG3051,
GEOG3062, MATH2160, MATH2180, MATH2220,
MATH2301, MATH2501, MATH2810, MATH2830,
MIRC2201 or MIRC2011
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3101, BIOS3111 and BIOS3061 or GEOG3021
At least 3 units from subjects related to the strand chosen in Year 2:
1. MATH3161, MATH3181, MATH3201, MATH3540,
MATH3550, MATH3870, MATH3880
2. MATH2810, MATH2830, MATH3801, MATH3811,
MATH3820, MATH3830, MATH3840, MATH3850,
MATH3861
At least 1 unit from: BIOS3011, BIOS3021, BIOS3031,
BIOS3041, BIOS3051, BIOS3061, BIOS3071, BIOS3081,
BIOS3091, BIOS3121, BIOS3131, BIOS3141,
GEOG2013, GEOG3011, GEOG3021, GEOG3051,
GEOG3062, MIRC3071
Further elective units (to be discussed with program adviser) to give a total of 23
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete at least 6 Level III units.

Year 4 (Honours)
BSSM4023 (F/T), BSSM4029 (P/T)
Category C General Education requirement
6853
Biological Ecology

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
GEOG1031, GEOG1051
MATH1032 or MATH1042 or both MATH1011 and MATH1021

Year 2
BIOC2312
BIOS2011, BIOS2041, BIOS2051 and BIOS2031 or BIOS2061
1 unit from: BIOS2031, BIOS2061, GEOG2021, GEOG2032, GEOG3042, MICR2011, MICR2201
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071, BIOS3101, BIOS3111
GEOG3021
2 further Level III units from: BIOS3011, BIOS3031, BIOS3041, BIOS3051, BIOS3061, BIOS3081, BIOS3121, BIOS3131, GEOG2032, GEOG2011, GEOG3032, GEOG3042, GEOG3051, GEOG3211, MICR3071
Further elective units (to be discussed with Program adviser) to give a total of 23
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete at least 6 Level III units

Year 4 (Honours)
BSSM4023 (F/T), BSSM4029 (P/T)

ENVIRONMENTAL SCIENCE

Electives in these programs may be restricted to those in table ENVS immediately below. Environmental Science programs allow specialization in a number of aspects: Biological Environments (Terrestrial, Marine and Microbial), Environmental Chemistry, Earth Environments, Environmental Mathematics (Statistics and Population Dynamics).

All programs have the requirements for subjects to be selected from the following table.

TABLE ENVS

<table>
<thead>
<tr>
<th>Level I Units</th>
<th>Level II Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS1011, PHYS1002</td>
<td>BIOS2011, BIOS2031, BIOS2041, BIOS2051, BIOS2061, CHEM2011, CHEM2021, CHEM2031, CHEM2041, GEOG2013, GEOG2032, GEOL2111, GEOL2230, GEOG5271, GEOG6231, MATH2100, MATH2120, MATH2200, MATH2220, MATH2301, MATH2501, MATH2510, MATH2520, MATH2801, MATH2810, MATH2821, MATH2830, MATH2841, MICR2201, MSCI2001</td>
</tr>
</tbody>
</table>

6861
Biological Environments (Terrestrial) (Advanced Science only)

Year 1
BIOS1011, BIOS1021
CHEM1002
ENVS1011, ENVS1021
MATH1032 or MATH1011 and MATH1021

Year 2
BIOS2011, BIOS2041
ECON1107
ENVS2010, ENVS2020
GEOL1101
LAWSXXXX*
At least two units from BIOS2031, BIOS2061, BIOS2041, MSCI2001, MICR2201
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071, BIOS3101, BIOS3111, BIOS3131
GEOG2021, GEOG3021
At least one unit for major sequence from Table ENVS
One 56 hour or two 28 hour Category B General Education subjects

Year 4
ENVS3011
GEOG3042, GEOG3062
BIOS4004 (Thesis Project 4 units) or BIOS4002 (Thesis Project 2 units) plus 2 further units from Table ENVS
Category C General Education requirement
* Please note subjects ending in XXXX are yet to be finalised; students should consult subsequent handbooks.

6862
Biological Environments (Marine) (Advanced Science only)

Year 1
BIOS1011, BIOS1021
CHEM1002
ENVS1011, ENVS1021
MATH1032 or MATH1011 and MATH1021
Year 2
BIOS2011, BIOS2041
ECON1107
ENVS2010, ENVS2020
GEOL1101
LAWSXXXX*
MSCI2001
At least 2 units from: BIOS2031, BIOS2051, BIOS2061, MICR2201
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071, BIOS3081, BIOS3091, BIOS3111
GEOG2021, GEOL6321
MSCI3001
One 56 hour or two 28 hour Category B General Education subjects

Year 4
BIOS3101
ENVS3011
GEOG2021, GEOG3021
MICR3011, MICR3071
1 further Level III unit for your major sequence from Table ENVS
One 56 hour or two 28 hour Category B General Education subjects

6864
Environmental Chemistry (Advanced Science only)

Year 1
BIOS1021
CHEM1002
ENVS1011, ENVS1021
GEOL1101
MATH1032 or MATH1011 and MATH1021

Year 2
CHEM2011, CHEM 2021, CHEM2031, CHEM2041
ECON1107
ENVS2010, ENVS2020
LAWSXXXX*
1 statistics unit from: BIOS2041, GEOG2013, or MATH2841
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071
CHEM XXXXX*, CHEM XXXXX*, CHEM XXXXX*
PHYS1002
2 optional units from Table ENVS
One 56 hour or two 28 hour Category B General Education subjects

Year 4
ENVS3011
GEOG2021, GEOG3042, GEOG3062
CHEM4005 (Environmental Chemistry/Science project 3 units)
Category C General Education requirement
* Please note subjects ending in XXXX are yet to be finalised; students should consult subsequent handbooks.

6865
Earth Environments (Advanced Science only)

Year 1
BIOS1021
CHEM1002
ENVS1011, ENVS1021
GEOL1101
MATH1032 or MATH1011 and MATH1021

Year 2
ECON1107
ENVS2010, ENVS2020
GEOG2021
GEOL2111, GEOL5271, GEOG2032
LAWSXXXX*
1 unit from: GEOL6231, GEOL2230, GEOG2081, GEOG2102, MSCI2001
Other options may be available subject to approval from course coordinator
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071
GEOG3011, GEOL3251, GEOG3111
4 units from: GEOG2013, GEOG3021, GEOG3032, GEOG3051, GEOG3122, GEOG3192, GEOG3202, GEOG3211, GEOL6231, GEOG3130, GEOG3281
One 56 hour or two 28 hour Category B General Education subjects
Other options may be available subject to approval from course coordinator

Year 4
ENVS3011
GEOG3042, GEOG3062
GEOL5471, GEOL6321
APSEXXXX (Thesis Project 2 units)
Category C General Education requirement
* Please note subjects ending in XXXX are yet to be finalised; students should consult subsequent handbooks.

6866
Environmental Mathematics (Fluid Dynamics) (Advanced Science only)

Year 1
BIOS1021
CHEM1002
ENVS1011, ENVS1021
MATH1032 or MATH1042
PHYS1002

Year 2
ECON1107
ENVS2010, ENVS2020
LAWSXXXX*
MATH2100, MATH2120, MATH2200, MATH2220, MATH2301, MATH2510, MATH2520
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071, GEOG2021, GEOL1101
MATH3121, MATH3301, MATH3241, MATH3261
PHYSXXXX*
One 56 hour or two 28 hour Category B General Education subjects

Year 4
ENVS3011
GEOG3042, GEOG3062
MATHXXXX* (2 units) Major Project involving analysis and interpretation of existing data, or modelling of a simple process
An additional unit is taken in a topic associated with environmental fluid dynamics, numerical modelling or data analysis, chosen after consultation
Category C General Education requirement
* Please note subjects ending in XXXX are yet to be finalised; students should consult subsequent handbooks.

6867
Environmental Mathematics (Statistics) (Advanced Science only)

Year 1
BIOS1011, BIOS1021
CHEM1002
ENVS1011, ENVS1021
MATH1032 or MATH1042

Year 2
BIOS2011
ECON1107
ENVS2010, ENVS2020
GEOL1101
LAWSXXXX*
MATH2501, MATH2510, MATH2520, MATH2801, MATH2821
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3071, BIOS3101, BIOS3111
GEOG2021
MATH2810, MATH2830, MATH3811, MATH3820, MATH3830
One 56 hour or two 28 hour Category B General Education subjects

Year 4
ENVS3011
GEOG3042, GEOG3062
MATHXXXX* (Thesis Project 2 units)
Category C General Education requirement
* Please note subjects ending in XXXX are yet to be finalised; students should consult subsequent handbooks.
6868
Environmental Mathematics (Population Dynamics) (Advanced Science only)

Year 1
BIOS1011, BIOS1021
CHEM1002
ENVS1011, ENVS1021
MATH1032 or MATH1042

Year 2
BIOS2011
ECON1107
ENVS2010, ENVS2020
GEOL1101
LAWSXXXX*
MATH2200, MATH2220, MATH2501, MATH2510, MATH2520, MATH2841
One 56 hour or two 28 hour Category A General Education subjects

Year 3
BIOS3061, BIOS3071, BIOS3111
GEOG2021, GEOG3062
MATH3201, MATH3540, MATH3550
One 56 hour or two 28 hour Category B General Education subjects

Year 4
ENVS3011
GEOG3042
MATH3161, MATH3181, MATHXXXX*(Thesis Project 2 units)
Category C General Education requirement
* Please note subjects ending in XXXX are yet to be finalised; students should consult subsequent handbooks.

GENETICS

Genetics is covered in two programs: Program 6840 is broadly based and initially covers all aspects of Genetics. It allows students at Level III to maintain a broad range of interests including Molecular Genetics, Evolutionary and Population Genetics and Human Genetics or to concentrate on a particular field. Molecular Genetics (4110) allows students to specialise in Molecular Biology and Genetics. In both programs students can also specialise in Biochemistry, Biological Science, Biotechnology or Microbiology/Immunology. Year 4 (Honours) programs in Genetics are available in any of these schools and also in the School of Community Medicine.

6840
Genetics

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I units

Year 2
BIOS2011, BIOS2021
MATH2841 or BIOS2041
2 or 3 elective units. (Recommended: BIOS2031, BIOS2051, BIOS2061, CHEM2021, COMP1011, MICR2011, WOOL3803 or BSSM2101)
One 56 hour or two 28 hour Category A General Education subjects

Year 3
At least 4 units from: BIOS3121, BIOS3131, BIOS3281, BIOT3031 or MICR3021, CMED8201, CMED8202 or CMED8302, CMED8303, WOOL4813 and further elective units to give a total of 23
Recommended: BIOS3111, BIOS3071, BIOS3121, BIOS3141, BIOT3011, COMP1021, MICR3011, MICR3041, WOOL3901
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete 7 Level III subjects

Year 4 (Honours)
BSSM4103 (F/T), BSSM4109 (P/T)

GEOGRAPHY

Geography is the scientific study of variations from place to place on the earth's surface. It provides an analytical framework for understanding and investigating many of society's pressing problems such as the use and management of scarce resources, the impact of environmental hazards on human activities, soil erosion and conservation, land use conflicts, and the spatial organization of human affairs.

The program 2700 includes physical and human Geography, with particular emphasis on studies of the natural environment, as well as a grounding in basic analytical skills and techniques (eg statistical methods and computing, remote sensing and air-photo interpretation, field and laboratory techniques) required for problem-solving and application.

Geography can be usefully combined with other sciences, especially Geology and Biological Science, studied with Geology in the Earth and Environmental Science (2527), with Biological Science in Ecology (6851) and with Environmental Science programs (especially 6865).

2700
Geography

Year 1
GEOG1031 or GEOG1051 and GEOG1062
MATH1032 or MATH1042 or both MATH1011 and MATH1021
Elective Level I units to make a total of 8
Year 2
3 Geography units
5 elective units
One 56 hour or two 28 hour Category A General Education subjects

Year 3
4 Level III Geography units
GEOG3000
3 elective units
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units and must have completed GEOG2013 or GEOG3221

Year 4 (Honours)
GEOG4100/GEOG4050

GEOLOGY AND GEOPHYSICS

Geology is the study of the nature and evolution of our planet. It is concerned with the composition and modes of formation and deformation of the igneous, sedimentary and metamorphosed rocks and concentrations of minerals that comprise the earth’s crust and interior. Geology enquires into the essential controls on the development and distribution of such rocks and minerals in space and geological time. Likewise it is concerned with the nature, distribution, and evolution of life forms through time. Resource geology is concerned with the application of all geological knowledge to the location and extraction of mineral and energy deposits, and to engineering and environmental tasks, activities fundamental to society. Thus geology has an applied, professional function as well as being a scientific discipline.

Geophysics employs sophisticated instrumentation in order to construct physical earth models and is a companion discipline to Geology.

Program for Professional Geology

Since June 1986, the Australasian Institute of Mining and Metallurgy has required that its corporate members, including professional geologists, shall have completed a four year course. Students wishing to enter the geology profession through Science should take program 2500 with a double specialization in Applied Geology and then take a Year 4 honours program. Year 4 is divided between a core of advanced geological topics, and one strand chosen from mineral resources, sedimentary basin resources, engineering and environmental geology, or geophysics. Session 2 of Year 4 is devoted to a specialised research project.

Single Specialization in Geology

Geology is a natural companion to other sciences, such as Chemistry (in Geochemistry), Botany and Zoology (in Palaeontology) and Geography. Program 2500 also allows a single specialization in Geology. Students who wish to undertake an honours degree program that includes geology with another science should consult the Department of Applied Geology. Those interested in combining Geology with Biology should read the following section.

Geology with Biological Science

Geology and the Biological Sciences meet in a palaeontology, the evolution and environmental controls on the growth of ancient life forms. Palaeontology provides geologists with essential information about the relative ages and depositional environments of sedimentary rocks, particularly the strata with potential to yield fossil fuels.

Geology in Marine Science

See Marine Science (Earth Science Oceanography) (6833).

2500

Geology

Year 1
CHEM1002 or both CHEM1101 and CHEM1201 or CHEM1302 or CHEM1401 and CHEM1501
GEOL1101, GEOL1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
and either
BIOS1011 and BIOS1021 or GEG1031 GEOL1051, GEOL1022 or PHYS1002 or PHYS1022

Year 2
GEOL2022, GEOL2031, GEOL2011
At least 4.5* units from: GEOL2041, GEOL2042, GEOL2051, GEOL2062, GEOL2072, GEOL2092
One 56 hour or two 28 hour Category A General Education subjects

Year 3 (Old Program 1992 only)
GEOL3111, GEOL3121
At least 2 Applied Geology units from: GEOL3130, GEOL3141, GEOL3211, GEOL3241, GEOL3251, GEOL3271, GEOL3281, GEOL3331
Further elective units to a total of 23.
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units.

Year 3 (New Program)
GEOL3011, GEOL3031
At least 2 Applied Geology units from: GEOL3021, GEOL3052, GEOL3072, GEOL3082, GEOL3092, GEOL3101, GEOL3102
Further elective units to a total of 23
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units

Year 4 (Honours)
GEOL4303

* Students following a combination of Applied Geology with Botany and/or Zoology at Level I must take Biology subjects, BIOS1011, BIOS1021. At Level II they should take BIOS2031, BIOS2041, BIOS2051, BIOS2061 and 3 units of Geology which must include GEOL2031 and GEOL2062. At Level III at least 4 units of Geology which must include GEOL3031 plus BIOS3131 and 3 units chosen from BIOS3101, BIOS3051, BIOS3071, BIOS3081, BIOS3091, BIOL3121 (For 1992 students should consult the Department of Applied Geology for details.)
2503

Geophysics

Professional geophysicists work closely with geologists and, appropriately, studies of both disciplines are undertaken in the one school. Fundamental and applied geophysics is taught to geology students in the geology program 2500, but program 2503 is for students who intend to become professional geophysicists. Students should consult Mr N. Menick, Department of Applied Geology for course approval.

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
GEOL1101, GEOL1201
MATH1032 or MATH1042
PHYS1002

Year 2
GEOL2041, GEOL2042, GEOL2051, GEOL2062,
GEOL8220
MATH2100, MATH2120
PHYS2001, PHYS2011, PHYS2021, PHYS2031
One 56 hour or two 28 hour Category A and One 56 hour or two 28 hour Category B General Education subjects

Year 3 (Old Program 1992 only)
GEOL3130, GEOL3331, GEOL8320, GEOL8330,
GEOL8340, GEOL8350, GEOL8360
2 units from Level III Physics and/or Mathematics
2 elective units

Year 3 (from 1993 onwards)
GEOL3052, GEOL3072, GEOL3082, GEOL8320,
GEOL8330, GEOL8340, GEOL8350, GEOL8360
Plus 3 units from Level III Physics and/or Mathematics
Students proposing to proceed to Year 4 (Honours) must complete 8 Level III units

Year 4 (Honours)
GEOL4303

INFORMATION SYSTEMS

Entry to this program is restricted to students who have been offered a place directly (UAC code NIT). There is a strict quota on entry to later years of this program.

Information Systems is concerned with information systems analysis and design, data management, computer processing, edp audit, management information systems and applied expert systems within business and government organizations. There is a growing maturity in the discipline as the underlying theory and associated principles become better understood and as advanced information processing techniques emerge. In many respects the development of the knowledge base which forms the discipline parallels developments in computing technology as new opportunities become apparent for the solution of information processing problems. Hence, information systems is concerned with the way in which computer systems are used within organizations – mainly business and government. There is a high degree of complementarity between Computer Science and Information Systems. The program is intended to develop conceptual and practical skills. After an introductory first year, students study systems design, database, communications and commercial programming in parallel with computer science, mathematics and management accounting units. In the honours year, well qualified students may specialise in advanced information systems and data management topics.

See also Course 3971

1400

Information Systems

Year 1
ACCT1501, ACCT1511
COMP1811
ECON1101, ECON1102
INFS1602
MATH1032 or MATH1042

Year 2
COMP1821
INFS2603, INFS2609
MATH2841 or MATH2801
4 elective units
One 56 hour or two 28 hour Category A General Education subjects

Year 2 (Direct Year 2 Entrants)*
COMP1821
ACCT1501, ACCT1511, INFS1602, INFS2603, INFS2609
MATH2801 or MATH2841
1 elective unit
One 56 hour or two 28 hour Category A General Education subjects

Year 3
ACCT2522, INFS3605, INFS3607, INFS3608
3 elective units including at least one at Level III
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units

Year 4 (Honours)
INFS4794
The Category C General Education requirement is covered by components of compulsory subjects in the course.

* Students admitted at Level II must enrol in another science program for Year 1. Transfer is based on academic performance at Level I.

MARINE SCIENCE

Marine Science programs allow specializations in selected areas of marine science, yet also include adequate exposure to other pertinent disciplines.

All students must select one major sequence from: Physical Oceanography (6831) or Biological Oceanography (6832) or Earth Science Oceanography (6833) or Environmental Chemistry (6834). In addition, two minor sequences from the Physical, Biological, Earth Science, and Chemical minor sequences must be taken.
6831
Marine Science (Physical Oceanography)

Year 1
MATH1032 or MATH1042
PHYS1002, PHYS1611 or PHYS1601
2 units from 1 of the strands:
1. BIOS1011, BIOS1021 or CHEM1002 or both CHEM1101 and CHEM1201 or
2. GEOL1101, GEOL1201
MATH1081 or 1 further unit from the above strands

Year 2
MATH2120, MATH2160, MATH2501, MATH2200 or MATH2220
MSCI2001
PHYS2001
Continue the strand chosen in Year 1:
1. CHEM2041 and at least 1 unit from: BIOS2011, BIOS2051, BIOS3111 or
2. CHEM2011 or
3. GEOL6201
Additional elective units to give a total of 8
One 56 hour or two 28 hour Category A General Education subjects

Year 3
MATH2280, MATH3121, MATH3201, MATH3241, MATH3261
MSCI3001
2.5 units from: PHYS2021, PHYS2031, PHYS2601, PHYS3150, PHYS3631, MATH3101, MATH3301, GEOL6330, BIOS3081 or GEOL6311 or GEOL6231 or BIOS3091
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units

Year 4 (Honours)
MSCI4003 F/T, MSCI4009 P/T

6832
Marine Science (Biological Oceanography)

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1101 and MATH1021
2 units from 1 of the strands:
1. GEOL1101, GEOL1201
2. PHYS1002 or PHYS1022

Year 2
MSCI2001
GEOL6201, GEOL6221, GEOL6231
Continue both of the strands chosen in Year 1:
1. At least 1 unit from: BIOS2011, BIOS2031, BIOS2051 or CHEM2011 or CHEM2081
2. MATH2021 or MATH2841 or MATH2801
Additional elective units to give a total of 8
One 56 hour or two 28 hour Category A General Education subjects

Year 3
GEOL6310, GEOL6330, GEOL6311, GEOL6321
3 Level III units which may include the subjects corresponding to the strands chosen in Years 1 and 2:
1. BIOS3081, BIOS3091 or
2. CHEM3311
3. MSCI3001, MATH3021
1 elective unit
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units

6833
Marine Science (Earth Science Oceanography)

Year 1
GEOL1101, GEOL1201
MATH1032 or MATH1042 or both MATH1101 and MATH1021
4 units from 2 of the strands:
1. BIOS1011, BIOS1021 or CHEM1002 or both CHEM1101 and CHEM1201 or
3. PHYS1002 or PHYS1022

Year 2
MSCI2001
GEOL6201, GEOL6221, GEOL6231
Continue both of the strands chosen in Year 1:
1. At least 1 unit from: BIOS2011, BIOS2031, BIOS2051 or
2. CHEM2011 or CHEM2081
3. MATH2021 or MATH2841 or MATH2801
Additional elective units to give a total of 8
One 56 hour or two 28 hour Category A General Education subjects

Year 3
GEOL6310, GEOL6330, GEOL6311, GEOL6321
3 Level III units which may include the subjects corresponding to the strands chosen in Years 1 and 2:
1. BIOS3081, BIOS3091
2. CHEM3311
3. MSCI3001, MATH3021
1 elective unit
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units
6834
Marine Science (Environmental Chemistry)

Year 1
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042
4 units from 2 of the strands:
1. BIOS1011, BIOS1021
2. GEOL1101, GEOL1201
3. PHYS1002

Year 2
CHEM2011, CHEM2041
MSCI2001
Continue both of the strands chosen in Year 1:
1. At least 1 unit from: BIOS2011, BIOS2051, BIOS2031
 2. GEOL6231
2. MATH2021 or MATH2841
Additional elective units to give a total of 8
One 56 hour or two 28 hour Category A General Education subjects

Year 3
CHEM3041, CHEM3311
2 Level III units which may include the subjects corresponding to the strands chosen in Years 1 and 2:
1. BIOS3081, BIOS3091
2. None
3. MSCI3001, MATH3021
Additional elective units to give a total of 7
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units

Year 4 (Honours)
MSCI4003 (F/T) MSCI4009 (P/T)

MATHMATICS

The School is divided into Departments of Pure Mathematics, Applied Mathematics and Statistics. Program 1000 allows specialization in any of these areas. Students wishing to major or undertake Honours in Statistics should consult program 1006. Students wishing to proceed to Year 4 (Honours) should select higher mathematics subjects. There is also a specified interdisciplinary program, Mathematics of Management. Mathematics is also available through the Marine Science (Physical Oceanography) (6831).

Pure Mathematics is concerned with the whole structure of mathematics. Research focuses on the creation of new mathematical systems and the finer analysis of partially understood fields. Problems of mathematics come from many sources of science and industry but the pure mathematician is concerned with the problems themselves rather than with their sources. Courses provide the necessary equipment for those using mathematics in any way, to give basic familiarity with the fundamental language of modern science and technology and to develop appreciation for, and insight into, one of our major cultural achievements.

Applied Mathematics concerns the development of mathematics and models for understanding scientific phenomena, for the solution of technical and industrial problems, and for use in the social, economic and management sciences. Courses provide basic mathematical and computational skills needed for a wide range of applications, to develop the capability to construct, analyse, and interpret mathematical models, and to encourage enthusiasm for the role of the mathematician in a variety of contexts.

Statistics is the science and art of using factual material for modelling and inference. Its mathematical foundations are in the theory of probability and it deals with how to estimate and make decisions using knowledge which is uncertain or observational material which is subject to error. There is a rich interplay of ideas between the theory of statistics and fields such as engineering, medicine and biological and behavioural sciences where statistical problems constantly arise.

Pure Mathematics major
A 1000 program is considered as a degree in Pure Mathematics if it includes four units of Pure Mathematics Level III. MATH1081 in Year 1 is highly recommended.

Furthermore:
1. Pure Mathematics subjects relevant to the mathematical aspects of Computer Science are MATH2400 and MATH2410 in Year 2, and MATH3400, MATH3420 and MATH3430 in Year 3.
2. Pure Mathematics subjects relevant to mathematics teaching are MATH3500, MATH3510, MATH3520, MATH3530, MATH3560 and MATH3570 in Year 3, or their higher equivalents.
3. Pure Mathematics subjects relevant to the applications of mathematics in physics or engineering are MATH3540, MATH3550, MATH3570 and MATH3580 in Year 3.

Applied Mathematics major
A 1000 program is considered a degree in Applied Mathematics if it includes four units of Level III Applied Mathematics.

Note the following recommendation:
Level II: At least two of: MATH2160, MATH2180, MATH2200, MATH2301.
Level III: At least three of: MATH3101, MATH3121, MATH3161, MATH3181, MATH3201, MATH3241, MATH3261, MATH3301.
In addition, the following are recommended in Year 1
1. For students interested in physical sciences or for theoretical oceanography and fluid mechanics: either PHYS1002 or appropriate Level I Engineering subjects.
2. For students interested in economic or management sciences: see Mathematics for Management (6810).
3. For students interested in social or biological sciences, at least two of the following: BIOS1011 and BIOS1021; PSYC1002; PHYS1002; CHEM1002 or both CHEM1101 and CHEM1201.
4. Applied mathematics for computational methods or computer science: COMP1811, MATH1081.
Statistics major
See program 1006 (Statistics).

1000
Mathematics

Year 1
MATH1032 or MATH1042
6 elective Level I units*

Year 2
MATH2100, MATH2120, MATH2501, MATH2510, MATH2520
1 further Level II or Level III Mathematics unit
4 elective units*
One 56 hour or two 28 hour Category A General Education subjects

Year 3
4 Level III Mathematics units
3 elective units*
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 6 Level III units

Year 4 (Honours)
MATH4003 or MATH4103 or MATH4603
* Up to 8 units may be from subjects that are restricted to this program or Arts subjects from the following schools: Economics, English, French, German, History, Music, Political Science, Russian, Sociology, Spanish and Latin American Studies and Theatre Studies. Upper Level Economics subjects are restricted to those in Economic History plus ECON2103, ECON2104 (6 BA credit points at Level I or 4 credit points at Upper Level are equivalent to 1 science unit).

1006
Statistics

Year 1
MATH1032 or MATH1042
6 elective Level I units*

Year 2
MATH2120, MATH2501, MATH2510, MATH2520, MATH2801, MATH2810, MATH2821, MATH2830
2.5 elective units*
One 56 hour or two 28 hour Category A General Education subjects

Year 3
4 units from: MATH3801, MATH3811, MATH3820, MATH3830, MATH3840, MATH3850, MATH3861, MATH3971
3 Level III Mathematics and/or Computer Science units
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 4 Higher Level III Statistics units including MATH3980

1060
Mathematics with Computing (Advanced Science only)

Year 1
COMP1811, COMP1821
MATH1042, MATH1081
3 elective Level 1 units*

Year 2
COMP2011, COMP2031
MATH2501, MATH2301, MATH2510** or MATH2100, MATH2400, MATH2801*** or MATH2841
2 elective Level II units*
(Recommended alternative strands: Applied Mathematics: Level II MATH2120. Level III MATH3101 and at least one of MATH3161, MATH3181, MATH3201. Pure Mathematics: Level II MATH2410. Level III MATH3420, MATH3430, MATH3520. Statistics: Level II MATH2810, MATH2821. Level III: MATH3811, MATH3861)
One 56 hour or two 28 hour Category A General Education subjects

Year 3
2 Computer Science Level III units from: COMP3111, COMP3121, COMP3311, COMP3411
MATH3301, MATH3400
3.5 elective units*
(Recommended alternative strands: as listed in Year 2 above)
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete at least 6 Level III units. Consult the head of the appropriate department at the commencement of Year 3.

Year 4 (Honours)
MATH4003 or MATH4103 or MATH4603 or MATH4903
* Up to 8 units may be from subjects that are restricted to this program or Arts subjects from the following schools: Economics, English, French, German, History, Music, Political Science, Russian, Sociology, Spanish and Latin American Studies and Theatre Studies. Japanese is also available. Upper Level Economics subjects are restricted to those in Economic History plus ECON2103, ECON2104 (6 BA credit points at Level I or 4 credit points at Upper Level are equivalent to 1 science unit).

** In the Statistics strand, MATH2510 Real Analysis and MATH2801 Probability and Random Variables must be taken.
1061
Mathematics or Statistics/Computer Science

Year 1
COMP1811
MATH1032 or MATH1042, MATH1081
4 elective Level I units*

Year 2
COMP1821
MATH2120, MATH2501, MATH2510, MATH2520
One of the strands:
1. MATH2100, MATH2301, MATH2841
 and at least 1 unit from: MATH2160, MATH2200, MATH2400, MATH2410
or
2. MATH2801, MATH2810, MATH2821, MATH2830.
Further units from Mathematics and/or Computer Science
to make a total of 8
One 56 hour or two 28 hour Category A General Education subjects

Year 3
Continue the strand chosen in Year 2:
1. COMP2011, MATH3301 and 3 Level III Mathematics units
 or
2. MATH3861 and 4 Level III Statistics units
Further units from Mathematics and/or Computer Science
to make a total of 8
One 56 hour or two 28 hour Category B General Education subjects

Year 4 (Honours)
MATH4003 or MATH4103 or MATH4603 or MATH4903
* Up to 8 units may be from subjects that are restricted to this program or Arts subjects from the following schools: Economics, English, French, German, History, Music, Political Science, Russian, Sociology, Spanish and Latin American Studies and Theatre Studies. Upper Level Economics subjects are restricted to those in Economic History plus ECON2103, ECON2104 (6 BA credit points at Level I or 4 credit points at Upper Level are equivalent to 1 science unit).

6810
Mathematics of Management (Advanced Science only)

This program includes subjects given by the Schools of Accountancy and of Economics. There has been an increasing trend towards more use of mathematics, and the use of more advanced mathematics, in scientific management. This program trains mathematicians with an interest in the application of mathematics to management science. The mathematics content is that of a full mathematics degree. Students completing this program with good records are eligible for entry to the Master of Commerce graduate degree program in the School of Accountancy. If appropriate subjects are selected, then this degree (MCom), which may be awarded by part-time study, qualifies the graduate for provisional membership of the Australian Society of Accountants; full membership is then granted after appropriate experience.

0141
Medical Physics (Advanced Science only)

Year 1
BIOS1011, BIOS1021
CHEM1002
MATH1032
PHYS1002 (or PHYS1022 at distinction level)

Year 2
BIOC2312
MATH2510, MATH2100
PHYS2410, PHYS2001, PHYS2021, PHYS2011, PHYS2031, PHYS2630
One 56 hour or two 28 hour Category A General Education subjects

MEDICAL PHYSICS

Medical Physics is the application of physics to diagnosis, treatment and prevention of human disease and disability. There is a continuing demand for professional physicists in this area as new physical techniques are rapidly translated into new medical instruments. There is an increasing demand for health physicists in industry and the public service to monitor environmental and occupational sources of radiation and other hazards.

This program gives an essential strong background in conventional physics including electronics and computing, a general background in the biological sciences and some specialised knowledge in biophysics and medical physics. Honours will be awarded on the basis of suitable weighted performance over the last three years of this four years advanced science degree.
Year 3
ANAT2111
MATH2120
PHPH2112
PHYS3410, PHYS3041, PHYS3060, PHYS1601
Plus at least 1 elective unit chosen from:
MATH2520, MATH2160, MATH2841, MATH3121
PATH3201
PHYS3631, PHYS3620, PHYS3710/20, PHYS2601,
PHYS3010*, PHYS3050*
One 56 hour or two 28 hour Category B General Education subjects

Year 4
4 units of Medical Physics (for information contact Dr J. R. Smith, School of Physics)
PHYS3021, PHYS3030
1 General Education (Category C) subject
Plus at least 2 elective units from the subjects listed for year 3 electives
* Students intending to undertake a higher degree in Physics would need to select PHYS3010 and PHYS3050.

MICROBIOLOGY AND IMMUNOLOGY

Microbiology encompasses the scientific study of the smallest forms of life, namely bacteria, viruses, algae, fungi and protozoa. Micro-organisms are probably best known as agents of disease in people, in other animals and in plants. Other micro-organisms cause food spoilage, as well as serious deterioration in textiles and structural materials. Not all micro-organisms are harmful. We depend on micro-organisms for the recycling of organic wastes, for biodegradation of pollutants, for maintenance of soil fertility, and for production of foods, beverages, pharmaceuticals (especially antibiotics), and other industrially important materials. Molecular biology and microbial genetics are increasingly important in microbiology.

Immunology, the study of the immune system, has contributed significantly to modern medicine in areas such as blood transfusion, organ transplantation, allergic reactions and immunity to disease. In cell biology, immunology has advanced our understanding of differentiation, cell-cell co-operation and the triggering of proliferation and differentiation by cell surface receptors.

4110
Microbiology and Immunology

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I units

Year 2
BIOS2312
BIOS2011, BIOS2021
MICR2011
2 or 3 elective units*
One 56 hour or two 28 hour Category A General Education subjects

Year 3
MICR3011, MICR3021
At least 2 units from BIOS3041, MICR3031, MICR3041,
MICR3051, MICR3061, MICR3071, MICR3081
Additional elective units to give a total of 23
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to undertake Year 4 (Honours) must complete 8 Level III units

Year 4 (Honours)
MICR4013, MICR4023
*Students wishing to take MICR3041 Immunology 1 are strongly advised to take ANAT2211 Histology 1 at Level II. BIOS2041 Biometry is recommended, particularly for students interested in MICR3071 Environmental Microbiology or in research.

Other recommended elective subjects include: biochemistry, biotechnology, biological science.

MOLECULAR GENETICS

Recent advances in Molecular Biology, especially the continuing development of recombinant DNA technology, have revolutionised our understanding of the structure, function and regulation of individual genes. These advances have opened up the exciting field of Molecular Genetics, one of the most rapid growth areas in biology. This marriage of Biochemistry, Molecular Biology and Genetics provides an exciting new approach for the study of all living organisms, including the human. Biochemistry and Molecular Genetics therefore represent fundamental components of biological and medical science and they will have increasingly important roles to play in many aspects of modern medicine, genetics and evolutionary biology.

4110
Molecular Genetics

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I units

Year 2
BIOS2312
BIOS2011, BIOS2021
CHEM2021 or CHEM2041
MICR2011
1 or 2 elective units
One 56 hour or two 28 hour Category A General Education subjects
Year 3
BIOC3281
At least 2 units from:
BIOC3121, BIOC3131, BIOT3031 or MICR3021
1 or 2 units from:
BIOC3111, BIOT3011, CMED8303, MICR3011,
MICR3041 to give a total of at least 5 Level III units from
the above.
A further 2 or 3 units to give a total of 23
Highly recommended: BIOC3271, BIOT3061, CMED8302,
MICR3051
One 56 hour or two 28 hour Category B General Education
subjects
Students proposing to proceed to Year 4 (Honours) must
complete 8 Level 3 units

Year 4 (Honours)
BIOC4318 or BIOS4013 or BIOT4073 or CMED8001 or
MICR4013

NEUROSCIENCE

This program seeks to introduce students to the biological
and behavioural aspects of the nervous system. The
program is based around the neuroscience units offered by
the Schools of Anatomy, Physiology and Pharmacology,
and Psychology

7312
Neuroscience (Advanced Science only)

Year 1
BIOS1011, BIOS1021
CHEM1002
MATH1011 and MATH1021 or MATH1032 or MATH1042
PSYC1002

Year 2
ANAT2111
BIOC2312
PHPH2112
PSYC2001, PSYC2021
One 56 hour or two 28 hour Category A General Education
subjects

Year 3
ANAT3411, ANAT3421
PHPH3121, PHPH3131
PSYC3021, PSYC3031
Two additional units at Level II or Level III to complete 23
units
One 56 hour or two 28 hour Category B General Education
subjects

Year 4
Subject to satisfactory progress throughout the course,
students may proceed to the Honours year. Before the
commencement of Year 2 students should consult with the
appropriate Schools and the Neuroscience program
co-ordinating committee consisting of representatives from
the Schools of Anatomy, Physiology and Pharmacology,
and Psychology, about the subjects required for a particular
Honours program.

PHILOSOPHY

Philosophy is a wide-ranging discipline, catering for a great
diversity of interests, for instance, in science, reasoning,
persons, and social issues, and encouraging critical and
imaginative thought about the foundations of other
subjects. Apart from providing considerable choices for
students majoring in Philosophy, the diversity of Upper
Level subjects makes it possible for students majoring in
other disciplines to select subjects complementing their
main interest.

Value of Upper Level Subjects In Philosophy
All Level II/III subjects in Philosophy have one unit value in
science.

Specialization in Philosophy
Students specializing in Philosophy must complete, in
addition to PHIL1006 and PHIL1007 (Introductory
Philosophy A and Introductory Philosophy B), the
equivalent of six full-point Upper Level (II/III) units. Of these,
at least four units must be chosen from List A, which
includes subjects in Logic, Philosophy of Mind, Philosophy
of Science, and areas of History of Philosophy relevant to
those subject areas. Students normally take the equivalent
of two Level II/III units in Year 2, and the equivalent of four
Level II/III units in Year 3.

List A
PHIL2106 Logic
PHIL2107 Advanced Philosophy of Science
PHIL2108 Ways of Reasoning
PHIL2109 Metaphysics (Realisms)
PHIL2116 Scientific Method
PHIL2206 Contemporary Philosophy of Mind
PHIL2207 Issues in the Philosophy of Psychology
PHIL2208 Epistemology (Scepticisms)
PHIL2209 Epistemology (Knowledge and Justification)
PHIL2216 Human Nature and Human Understanding: the
Empiricist Approach
PHIL2217 Personal Identity
PHIL2218 Philosophical Foundations of Artificial
Intelligence
PHIL2219 Topics in Philosophy of Language
PHIL2226 Twentieth Century Analytic Philosophy
PHIL2227 Hume, Leibniz, Kant: Themes in Metaphysics
PHIL2518 Greek Philosophy: Issues in Ethics and
Epistemology
PHIL2308 Reason and the Passions: Descartes, Spinoza
and Hume
PHIL3106 Pre-Honours Seminar

The remaining two units are to be chosen from other
Upper-Level Philosophy subjects.

Level II/III
Some Level II/III subjects deal with particular philosophical
topics; others can be taken in sequence to give more
sustained treatments of larger areas. Students may select
freely among these, subject to stipulations regarding
prerequisites. They are welcome to seek advice and further
information from the School.

In certain circumstances the prerequisite specified for
subjects may be waived; for example, in the case of
students who have already studied similar material, or who
wish to take isolated subjects relevant to another discipline.
Students who feel they have a case for a concession of this kind should consult the School.

Honours Entry Requirements
Students intending to proceed to an Honours degree in Philosophy, complete Years 1 – 3 of Programs 5200 or 5262 with an overall credit record (and some indications of Distinction ability) in the Philosophy units included in those programs; plus PHIL3106 Pre-Honours Seminar.

5200
Philosophy

Year 1
MATH1032 or MATH1042 or both MATH1011 and MATH1021
PHIL1006, PHIL1007
4 elective Level I Units

Year 2
2 Philosophy units*
6 elective units
One 56 hour or two 28 hour Category A General Education subjects

Year 3
4 Philosophy units*
3 elective units
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units including PHIL3106.

Year 4 (Honours)
PHIL4000

* A combination of 3 half unit Philosophy subjects count as the equivalent of 2 Science units. Refer to List A above for compulsory subjects.

5206
Philosophy and Computing (Advanced Science only)

Year 1
COMP1011, COMP1021
MATH1032, MATH1081
PHIL1006, PHIL1007
1 elective level I unit

Year 2
COMP2011, COMP2031
PHIL2218
At least 2 Philosophy units from: PHIL2106, PHIL2806, PHIL2207, PHIL2108, PHIL2218, PHIL2116, PHIL2107, PHIL2217, PHIL2216, PHIL2109, PHIL2208, PHIL2209
One 56 hour or two 28 hour Category A General Education subjects

Year 3
COMP3411
A further 2 Computer Science subjects must be selected from: COMP3131, COMP3111, COMP3121, COMP3111
A further three subjects from Philosophy must be selected from the previous list
One 56 hour or two 28 hour Category B General Education subjects

Year 4
The fourth year honours program allows specialization in either computer Science or Philosophy or in the combined program. The specialization is determined by the thesis. Students intending to specialise in philosophy must complete PHIL3106.

Philosophy of Science
The Philosophy of Science program provides a coherent sequence of subjects for advanced study within the areas of logic, methodology and philosophy of science, or is suitable for those who merely wish to deepen their comprehension of the subject matter of a major in another field. The program leads towards a core subject PHIL2107 Advanced Philosophy of Science in Year 3.

5262
Philosophy of Science

Year 1
MATH1032 or MATH1042 or both MATH1011 and MATH1021
1 unit from: HPST1106, HPST1108, HPST1107 or PHIL1006 PHIL1007
5 elective Level I units

Year 2
PHIL2106
PHIL2116 or HPST2106
HPST2116
Further elective units to make a total of 8
One 56 hour or two 28 hour Category A General Education subjects

Year 3
PHIL2107
3 units from: PHIL2207, PHIL2116, HPST3012, HPST3106, HPST3117
3 elective units
One 56 hour or two 28 hour Category B General Education subjects

Year 4 (Honours)
PHIL4000 or SCTS4106
PHYSICS

The programs offered by the School (0100, 0141, 0161 and 0181) reflect the importance of Physics in science and technology at both the fundamental and at the applied levels.

0100
Physics

Program 0100 Physics offers great flexibility in the choice of subjects for students enrolled in the BSc degree at pass level. Students who proceed further, may take honours in either Physics, Theoretical Physics or Physics/Geology.

Year 1
MATH1032 or MATH1042*
PHYS1002
4 elective Level I units** ***

Year 2
MATH2100, MATH2120, MATH2510, MATH2520*
PHYS2001, PHYS2011, PHYS2021, PHYS2031
2 elective units**
One 56 hour or two 28 hour Category A General Education subjects

Year 3
PHYS3010, PHYS3021, PHYS3030, PHYS3041, PHYS3050***, PHYS3060***
3 elective units****
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 Honours must complete 7 Level III units normally Physics subjects (unless specialising in Biophysics Theoretical Physics or Geology).

Year 4 (Honours)
Choose one of PHYS4103, PHYS4503, BSSM4013 (A Category C General Education subject is incorporated)

*Students are encouraged to select Higher Level Mathematics subjects where applicable.
**Seek advice from the School of Physics regarding subject choice. Incorrect choices could exclude later study of certain areas or prevent the combination of Physics with other disciplines. Appropriate Level I electives include: COMP1811, PHYS1601, CHEM1002.
***Students interested in Biophysics may replace PHYS3050 (or PHYS3060) with PHYS4110 provided CHEM1002, BIOS1011 and BIOS1021 are completed in Year 1 and BIOL2012 is taken in Year 2.
****For students specialising in Theoretical Physics, additional mathematics subjects are specified. In Year 2 students should include subject MATH2501 (or MATH2601) and in Year 3 MATH3121 and Theoretical Physics subjects.

0161
Physics/Computer Science

Program 0161, (Physics/Computer Science) includes basic Physics, Mathematics and Computer Science subjects necessary to meet the specific aims of the program.

Year 1
COMP1811*
MATH1032 or MATH1042
PHYS1002, PHYS1601
2 elective Level I units**

Year 2
COMP1821
MATH2100, MATH2120, MATH2510, MATH2520
PHYS2011, PHYS2021, PHYS2031
1 Level II Computer Science unit
1 unit from PHYS2601, MATH2501, MATH2301 or a Level II Computer Science unit*
One 56 hour or two 28 hour Category A General Education subjects

Year 3
PHYS2001, PHYS3010, PHYS3021, PHYS3030
2 further Level III Physics units
1 Level III Computer Science unit*
1 unit from:
1. PHYS2601, PHYS3601, MATH3101, MATH3121, MATH2301, MATH3301
2. Level III Physics
3. Computer Science*
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 Honours must complete 6 Level III units

Year 4 (Honours)
PHYS4103 or PHYS4503 (A Category C General Education subject is incorporated)

*Quota restrictions apply to most Level III Computer Science subjects and students wishing to take these subjects should in Year 1 apply for entry to the Computer Science quota.
**Consult the School of Physics for advice about appropriate subjects.

PHYSIOLOGY AND PHARMACOLOGY

Physiology, the study of the processes and mechanisms which serve and control the various functions of the body, begins at Level II with a full year core subject Physiology I. Students majoring in Physiology should note Physiology 2 prerequisites, normally satisfactory completion of Physiology 1 and the Level II Biochemistry subject.

Physiology 2 provides the 4 units at Year 3 level required for a degree with a single specialization in Physiology and can be taken with allied disciplines, such as Chemistry, Psychology, Zoology, Biochemistry or Anatomy to give a degree with a double specialization. Students who wish to take Physiology as a major subject should follow Strand 1 of the program 7300. The School also offers a Level III subject, Pharmacology, normally taken concurrently with
Physiology 2, or with Level III Biochemistry or Chemistry subjects. Pharmacology is also a full year subject. Students who wish to form a major with Pharmacology should follow Strand 2.

7300
Physiology and Pharmacology

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I Units

Year 2*
PHPH2112
one of the strands
1. BIOC2312
2. 3 Level II units (this would normally include prerequisite subjects for one of the Pharmacology co-requisite subjects shown for year 3)
4 elective units (Recommended electives: Anatomy, Biological Science, Biochemistry, Chemistry, Psychology)
One 56 hour or two 28 hour Category A General Education subjects

Year 3
Continue the strand chosen in Year 2:
1. PHPH3114
2. PHPH3152 and either
2 Level III Chemistry units or BIOC3111, BIOC3121 and BIOC3271 or PHPH3114
Further units to give a total of 23
One 56 hour or two 28 hour Category B General Education subjects

Students taking Year 4 (Honours) must complete 7 Level III units

Year 4 (Honours)
PHPH4218 or PHPH4258
The Category C General Education requirements are met within the Honours Program through seminars, an essay and participation in discussion groups.

PSYCHOLOGY

Psychology is both a basic discipline and a field of professional practice. As a science, psychology is concerned with the study of both the more complex forms of behaviour, and associated mental processes. It seeks to understand the basic psychological processes such as learning, memory, perception and motivation; the biological basis of behaviour; the development and decline of behavioural capacities from infancy to old age; individual differences in behaviour; social influences on behaviour; and the collective behaviour of social groups. In addition, disorders of behaviour form an important part of the subject matter of psychology.

Students who wish to obtain qualifications that will allow them to practise psychology need to complete a four year honours program. The present minimum qualifications for registration in New South Wales as a psychologist and for membership of the Australian Psychological Society (the professional body of Australian psychologists) are a degree (with a major in psychology) and a fourth year of study of psychology, followed either by further graduate study or two years of supervised experience in some practical field of psychology. A professional qualification in psychology may lead to careers in research, teaching and applied fields such as personnel selection and management, vocational guidance, advertising and clinical practice.

There is also a four year full-time professional science degree course (3431) described later in this handbook.

1200
Psychology

Year 1
MATH1032 or MATH1042 or both MATH1011 and MATH1021
PSYC1002
4 elective Level I units*

Year 2**
PSYC2001
2 units from:
PSYC2011, PSYC2021, PSYC2031, PSYC2031
5 elective units* (no more than 1 additional unit from Level II Psychology)
One 56 hour or two 28 hour Category A General Education subjects

Year 3**
4 Level III Psychology units
3 elective units*
One 56 hour or two 28 hour Category B General Education subjects

Year 4 (Honours)**
PSYC4023 or PSYC4033

* Suitable supporting subjects include Anatomy, Physiology, Genetics of Behaviour, Science and Technology Studies, and Philosophy. Students may contact the School for advice.

** Students intending to proceed to honours must include PSYC2001, PSYC2011, PSYC2021 and PSYC2031 at Level II, and 8 Level III Psychology units including PSYC3001 PSYC3021 and PSYC3031 if they wish to take PSYC4033 at Level IV. Students intending to take PSYC4023 at Level IV must include PSYC3011. Entrance to either of the Level IV honours programs requires students to have completed Psychology units with an average of at least 68% and is at the discretion of the Head of School.
1206
Computer Science/Psychology (Advanced Science only)

This program is for students with interests in computational modelling and artificial intelligence, on the one hand, and human information processing, cognition, and group decision making, on the other. The program should be particularly useful for those who will work in a commercial environment that requires both 'people skills' and an application oriented knowledge of computing. It would also serve as a good basis for interdisciplinary research in areas that include both Psychology and Computer Science.

Year 1
COMP1011 and COMP1021
MATH1032 or MATH1042, MATH1081
PSYC1002
1 elective Level I unit

Year 2
COMP2011 and COMP2031
PSYC2001, PSYC2011 and PSYC2021
3 elective units, including
2 from the list below*
One 56 hour or two 28 hour Category A General Education subjects

Year 3
COMP3111, COMP3411 and COMP3511
PSYC3001 and PSYC3191
3 units from the list below, including at least 2 Level III Psychology units
One 56 hour or two 28 hour Category B General Education subjects

Year 4 (Honours)
COMP4913 or PSYC4023 or PSYC4043
Students proposing to proceed to the honours year in Psychology must take 4 Level II and 4 Level III Psychology units, including PSYC2031, PSYC3021 and PSYC3031, in Years 2 and 3
Students proposing to proceed to the honours year in Computer Science must take 4 Level III Computer Science units

* Elective List
COMP2021, Level III Computer Science not otherwise specified
PSYC2031, PSYC3011, PSYC3021, PSYC3031,
PSYC3041, PSYC3061, PSYC3141, PSYC3151,
PSYC3161

6200
Science and Technology Studies

Year 1
MATH1032 or MATH1042 or both MATH1011 and MATH1021
Any Level I HPST or SCTS unit
5 elective Level I units

Year 2
HPST2106
SCTS2106 or SCTS 2107
1 additional HPST or SCTS unit
5 elective units
One 56 hour or two 28 hour Category A General Education subjects

Year 3
4 HPST or SCTS units
3 elective units
One 56 hour or two 28 hour Category B General Education subjects
Students proposing to proceed to Year 4 (Honours) must complete 7 Level II/III units

Year 4 (Honours)
SCTS4106

ZOOLEGy

Animal Science is the study of the structure, function, classification, genetics, evolution, habits and distribution of animals and their relationship to each other and to the environment. The school has special expertise in animal behaviour, ecology, entomology, evolutionary studies and palaeontology, marine biology, neurobiology and physiology. The courses leading to the award of a science degree in Zoology are dependent on adequate background in biometry and biochemistry.

1745
Zoology

Year 1
BIOS1011, BIOS1021
CHEM1002 or both CHEM1101 and CHEM1201
MATH1032 or MATH1042 or both MATH1011 and MATH1021
2 elective Level I units
Year 2
BIOC2031
BIOS2011, BIOS2021, BIOS2031, BIOS2041, BIOS2061
1 elective unit
One 56 hour or two 28 hour Category A General Education subjects

Year 3
4 units from BIOS3011, BIOS3021, BIOS3031, BIOS3051, BIOS3071, BIOS3081, BIOS3091, BIOS3111, BIOS3131, BIOS3141
3 elective units (which may be also from this list)
One 56 hour or two 28 hour Category B General Education subjects

Students proposing to proceed to Year 4 (Honours) must complete 7 Level III units

Year 4 (Honours)
BIOS4033
Undergraduate Study

Specific science degree courses
Board of Studies in Science and Mathematics

Professional and combined degrees with science
Board of Studies in Science and Mathematics and another Faculty

Besides the undergraduate studies in Science and Advanced Science there are other specific courses offered in the Faculty of Biological and Behavioural Sciences and in the Faculty of Science. These are the Psychology Full-time Degree Course 3431 (UAC-NPS), Business Information Technology Course 3971 (UAC-NIT), Optometry Course 3950 (UAC-NOP), and Combined Science/Optometry Course 3951.

There are also other degrees from Faculties other than Science which can be combined with a science degree.

Specific Science degree courses

Board of Studies in Science and Mathematics

3431
Psychology Degree Course
Full-time

Bachelor of Science (Psychology)
BSc(Psychol)

The four year full-time course in Psychology, which leads to the award of the degree of Bachelor of Science (Psychology), is designed to meet the requirements of students who intend to become professional psychologists, as either practitioners or research workers.

The course requirements have been so designed that they allow for:
1. a solid core of psychology to equip the psychologist-in-training with psychological theory, skill in experimentation and psychological techniques;
2. supporting studies in mathematics and or biology (a minimum of one year is compulsory);
3. supporting studies in the Arts and Social Sciences (a minimum of one year is compulsory); and
4. the special needs, interests and academic or vocational background of individual students.

Degree Program

Year 1
PSYC1002
BIOS1011 and BIOS1021 or
MATH1032 or both MATH1011 and MATH1021
ECON1101 and ECON1102, or PHIL1006 and PHIL1007 or
12 Arts credit points of Level I Sociology or Political Science or other approved Arts and Social Sciences discipline

Choose 1 elective Level 1 subject from Arts and Social Sciences or Science

Year 2
PSYC2001, PSYC2011, PSYC2021, PSYC2031, PSYC2042

One Level II subject following on from one of the Level 1 non-psychology subjects taken which constitutes a recognised sequence of two years (one Level II subject is equivalent to 2 Science Level II units or 12 Arts Upper Level credit points)

Category A General Education (56 hours) and Category B General Education (56 hours)

Note: If one of the Year 1 non-psychology subjects is divided into 2 single session subjects students may be able to replace the Session 2 subject with the Category A General Education (56 hours) requirement and in Year 2 take the other non-psychology subject and the Category B General Education (56 hours) requirement.

Year 3
Choose 8 Level III Psychology units including PSYC3001, PSYC3021 and PSYC3031

Students intending to take PSYC4003 in Year 4 must also include PSYC3011 as one of the 8 units.
Year 4
PSYC4003 or PSYC4013

Examples of recognised sequences:

Arts and Social Sciences
Year 1
12 Level I credit points of Economics, Philosophy, Political Science, Sociology or other approved discipline.
Year 2
12 Upper Level credit points following on from the Year 1 choice

Biochemistry
Year 1
BIOS1011, BIOS1021
CHEM1002
Year 2
BIOC2312

Genetics
Year 1
BIOS1011, BIOS1021
CHEM1002 (for BIOS2021 only)
Year 2
Choose 2 units from BIOS2021 and BIOC2312, BIOS3071, BSSM2101

Mathematics or Statistics
Year 1
MATH1032
Year 2
Choose either 2 Level II units of Pure or Applied Mathematics for Mathematics, or MATH2801 and MATH2810 for Statistics

Physiology
Year 1
BIOS1011, BIOS1021
CHEM1002
Year 2
PHPH2112
For students in Course 3431 the additional prerequisite of either MATH1032 or MATH1011 and MATH1021 for PHPH2112 has been waived by the School of Physiology and Pharmacology.

Zoology
Year 1
BIOS1011, BIOS1021
Year 2
Choose 2 units from BIOS2011, BIOS2031, BIOS2061, BIOS3011

Note: For details of Arts and Social Sciences subjects refer to the Faculty of Arts and Social Sciences handbook.

Award of the Degree

The final grading for the degree is based on performance in all Psychology subjects taken over the four years. The degree may be awarded at either Pass level or with Honours.

Advanced Standing

1. Graduates may be admitted with exemption from no more than five subjects or their unit equivalents that they have completed. No more than two Psychology subjects may be included in these exemptions.
2. Undergraduates who transfer from another course to the Psychology Course may be admitted with exemption in no more than seven subjects or their unit equivalents that they have completed.

3971
Business Information Technology
Full-time

Bachelor of Science
BSc
This is an industry linked education course leading to the award of the qualification Bachelor of Science The course draws on three core disciplinary areas: Information Systems, Accounting, and Computer Science.
The course has been designed in conjunction with the Information Systems industry to provide for the needs of Australian businesses. The course combines the normal requirements for the award of the degree with co-ordinated industrial experience in the sponsoring organizations. A scholarship is payable from a fund donated by the sponsoring organizations. Entry to the course is limited to students awarded a scholarship through the BIT selection Procedure.
Consideration for entry to the course may proceed only on the basis of an application directly to the Office of Industry Linked Education at the University of New South Wales and application through UAC.
Students who are academically acceptable for the 3971 course but who are not offered a scholarship should consider registering for first year entry into the 1400 program. If scholarships become available at the end of Year 1, students undertaking the 1400 program may be offered transfer to the 3971 course
An Honours option is also available within the four year BIT course. This option is available to students who perform well in Years 1 and 2 and require additional courses in Years 3 and 4; although it may also be possible to finalise the honours program within the first semester of a fifth year (possibly part-time).

Objectives of the Course

This four year course teaches Information Systems (see Program 1400 in 3970 for a description) and provides industrial training linked to that teaching. The three industrial training periods in the course are each of approximately six months duration, running from January of Years 2 and 4, and July of Year 3 of the program.
Degree Program

Year 1
ACCT1501, ACCT1511
COMP1811, ECON1101, ECON1102
INFS1602
MATH1032 or MATH1042

Year 2
COMP1821
INFS2603, INFS2609, INFS2691
2 elective units
One 56 hour or two 28 hour Category A General Education subjects

Year 3
ACCT2522, INFS3605, INFS3608, INFS3616, INFS3692
MATH2841
1 elective unit
Honours students additionally take INFS3607 and a further elective unit

Year 4 (Pass Degree)
INFS3607, INFS3611, INFS4693
2 units including at least one at Level III
One 56 hour or two 28 hour Category B General Education subjects

Year 4 (Honours Degree)
INFS3611, INFS4886, INFS4887, INFS4693, INFS4893, INFS4794, INFS4898
One option must be chosen from INFS4805, INFS4810, INFS4811, INFS4812, INFS4825, INFS4853, INFS4857, INFS4891
Choose 1 elective Level III unit
One 56 hour or two 28 hour Category B General Education subjects (which alternatively could be taken in Year 3).

3950
Optometry Degree Course
Full-time

Bachelor of Optometry
BOptom

The School provides a four year full-time course in Optometry leading to the award of the degree of Bachelor of Optometry, at either the Pass or Honours level. A new course structure for Year 2 has been implemented from 1992. Professional training including clinical optometry will be interwoven with basic studies of visual and ocular science over the four years of the course. As distinct from past practice the only entry point into Optometry will be at the Year 1 level.

Degree Program

Year 1
BIOS1011 Biology A
CHEM1809 Biological Chemistry for Optometry Students
MATH1051 Mathematics 1F
OPTM1201 Ocular and Visual Science I
OPTM1202 Clinical Optometry I
OPTM1203 Physical and Geometrical Optics
OPTM1204 Dispensing
OPTM1205 Measurement of Light and Colour
PHYS1999 Physics (Optometry)

Year 2
Full Year
MATH2819 Statistics SA
OPTM2106 Pathology for Optometry Students
OPTM2107 Microbiology for Optometry Students
OPTM2208 Diagnosis of Ocular Disease
OPTM2301 Ocular and Visual Science II
OPTM2302 Clinical Optometry II
OPTM2303 Spectacle Lens and Optical Systems
PHPH2111 Principles of Physiology
PSYC2116 Human Development (Optometry)

Year 3
OPTM9031 Optometry A
OPTM9032 Diagnosis and Management of Ocular Disease
OPTM9033 Theory of Spectacle Lenses and Optical Instruments
OPTM9034 Clinical Methods
PSYC1002 Psychology 1
One 56 hour or two 28 hour Category A and one 56 hour or two 28 hour Category B General Education subjects

Year 4
MDCN8001 Principles of Medicine for Optometry Students
OPTM9041 Clinical Optometry
OPTM9042 Optometry B
PSYC4106 Psychology (Optometry)
1 General Education subject (Category C)

3951
Combined Science/ Optometry Course

BSc BOptom

Conditions for the combined course leading to the award of the degrees of BSc BOptom

1. Undergraduates* of The University of New South Wales who have satisfied the examiners in at least the first two years of the Optometry degree course may be admitted to the Science degree course with advanced standing for the purpose of qualifying for the award of the two degrees of BSc BOptom. Such undergraduates' performance shall have been of a high standard and their admission shall be subject to the approval of the Dean of the Faculty of Science.

2. In order to qualify for the award of the degree of BSc, students so admitted shall be required to complete the appropriate general studies subjects and no less than four units of either Level II or Level III and four other Level III units, in accordance with the Science and Mathematics Course regulations. The units submitted for the award of
the Bachelor's degree under these regulations must include at least four Level III units chosen from related disciplines in accordance with the Science Course regulations.

3. In order to qualify for the award of the degree of BOptom, students so admitted shall complete the requirements of the Optometry degree course.

"In Rule 1, the word 'undergraduates' includes graduands, ie persons may be admitted under these rules if they have has met all requirements for a first degree which has not yet been conferred and admission under these rules shall be no bar to the subsequent award of the first degree.

Professional and Combined degrees with Science

Board of Studies in Science and Mathematics and another Faculty

3611
Combined Science / Aeronautical Engineering Course
Bachelor of Engineering / Bachelor of Science
BE BSc

3661
Combined Science / Industrial Engineering Course
Bachelor of Engineering / Bachelor of Science
BE BSc

3681
Combined Science / Mechanical Engineering Course
Bachelor of Engineering / Bachelor of Science
BE BSc

3701
Combined Science / Naval Architecture Course
Bachelor of Engineering / Bachelor of Science
BE BSc

3725
Combined Science / Electrical Engineering Course
Bachelor of Engineering / Bachelor of Science
BE BSc

3730
Combined Science / Civil Engineering Course
Bachelor of Engineering / Bachelor of Science
BE BSc

For details of the Combined Science/Aeronautical Engineering, Industrial Engineering, Mechanical Engineering, Electrical Engineering, Civil Engineering and Naval Architecture Courses refer to the Faculty of Engineering Handbook.

Board of Studies in Science and Mathematics and the Faculty of Engineering

3820
Combined Science and Medicine Course
Bachelor of Science / Bachelor of Medicine and Bachelor of Surgery
BSc MB BS

For details of the Combined Science / Medicine Course refer to the Faculty of Medicine Handbook.
Board of Studies in Science and Mathematics and the Faculty of Commerce and Economics

3995
Combined Science / Commerce Course

Bachelor of Science / Bachelor of Commerce
BSc BCom

For details of the Combined Science / Commerce Course refer to the Faculty of Commerce and Economics Handbook.

Board of Studies in Science and Mathematics and the Faculty of Law

4770
Combined Science / Law Course

Bachelor of Science / Bachelor of Laws
BSc LLB

For details of the Combined Science / Law Course refer to the Faculty of Law Handbook.

Board of Studies in Science and Mathematics and the Faculty of Professional Studies

4075
Combined Science / Education Course

Bachelor of Science / Bachelor of Education
BSc BEd

For details of the Combined Science / Education Course refer to the Faculty of Professional Studies Handbook.
Descriptions of all undergraduate subjects in Science are listed in alphanumeric order in this section of the handbook. For academic advice regarding a particular subject consult with the appropriate contact for that subject as listed.

Identification of Subjects

The subjects in the University available to science students are listed in this section. A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

Each subject is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subjects are listed in this section of the handbook. Subject descriptions follow in the next section of the handbook.

Prefixes

The identifying alphabetical prefixes for each organizational unit follow.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry and Molecular Genetics</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science and Mathematics</td>
<td></td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>COMP</td>
<td>School of Computer Science and Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Economics and Econometrics</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking and Finance</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational unit</td>
<td>Faculty</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal and General Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>INFS</td>
<td>School of Information Systems</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>JAPN</td>
<td>Asian Studies Unit</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Law</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies and Taxation</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Engineering</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>MDCM</td>
<td>School of Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology and Immunology</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>MSCI</td>
<td>Board of Studies in Science and Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>OCEA</td>
<td>Oceanography (Mathematics)</td>
<td>Science</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Science</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology and Pharmacology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Science</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Medicine</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Engineering</td>
</tr>
<tr>
<td>SAFE</td>
<td>Department of Safety Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>SCTS\</td>
<td>School of Science and HPST</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool and Animal Science</td>
<td>Applied Science</td>
</tr>
</tbody>
</table>

HSC Exam Prerequisites

Subjects which require prerequisites for enrolment in terms of the HSC Examination percentile range, refer to the 1978 and subsequent Examinations.

Candidates for enrolment who obtained the HSC in previous years or hold other high school matriculation should check with the appropriate school on what matriculation status is required for admission to a subject.
Accounting

Accounting Level I

ACCT1501

Accounting Management 1A
Staff Contact: School Office
U1 S1 HPW4.5
Notes: Restricted to programs 0600, 1000, 1400, 6810, Courses 3681 and 3971. Not available in Year 1 of programs 0600, 1000, 1400. May be counted in combined degree courses 3611, 3661 and 3701 only in special circumstances.

This is the first unit in a sequence of subjects dealing with aspects of the practice of financial reporting, and reviewing the analytical and investigative tools and processes used within the discipline of accounting. The basic accounting process, whereby financial data from source documents are recorded, processed, summarized and adjusted (in terms of a given set of accounting concepts) culminating in the preparation of financial reports. Design of accounting systems and incorporation of internal controls. Accounting for cash debtors, inventories and propery, plant and equipment. Uses and limitations of traditional financial reports.

ACCT1511

Accounting and Financial Management 1B
Staff Contact: School Office
U1 S2 HPW4.5
Prerequisite: ACCT1501
Notes: Restricted to programs 0600, 1000, 1400, 6810 and Course 3971.

Accounting Level II

ACCT2522

Accounting and Financial Management 2A
Staff Contact: School Office
U1 S2 HPW4.5
Prerequisite: ACCT1511
Notes: Restricted to programs 0600, 1000, 1400, 6810 and Course 3971.

The design and operation of management accounting systems, including product costing systems and budgeting planning and control systems. In particular, attention is focused on the theoretical and practical implications of management accounting system design on organizational functioning, with emphasis on both manufacturing and service organizations. Involves the use of spreadsheet modelling and the use of personal computers.

ACCT2532

Accounting and Financial Management 2A (Hons)
Staff Contact: School Office
U1 S2 HPW4.5
Prerequisite: ACCT1511
Notes: Restricted to programs 0600, 1000, 1400, 6810 and Course 3971. Excluded ACCT2522.

Content includes that of ACCT2522 Accounting and Financial Management 2A plus additional and more advanced work in management accounting.

ACCT2542

Accounting and Financial Management 2B
Staff Contact: School Office
U1 S2 HPW4.5
Prerequisite: ACCT1511
Notes: Restricted to programs 0600, 1000, 1400, 6810 and Course 3971.

The third financial reporting unit after ACCT1501 and ACCT1511 with a consideration of more complicated transactions and events as well as the accounting problems in certain specific industries. The contracting cost and other frameworks for the analysis of financial reporting. More advanced aspects of accounting for shareholders' equity, liabilities and assets including interperiod company tax allocation and lease accounting. Accounts of a company. Profit and Loss account, balance sheet, and summary of sources and applications of funds. Application of computer technology to financial accounting problems.
ACCT2552
Accounting and Financial Management 2B (Hons)
Staff Contact: School Office
U1 S2 HPW4.5
Prerequisite: ACCT1511
Notes: Restricted to programs 0600, 1000, 1400, 6810 and Course 3971. Excluded ACCT2542.
Content includes that of ACCT2542 Accounting and Financial Management 2B plus additional and more advanced work in financial accounting.

Accounting Level II
ACCT3563
Accounting and Financial Management 3A
Staff Contact: School Office
U1 S1 HPW4.5
Prerequisite: ACCT2542
Notes: Restricted to programs 1400, 6810 and Course 3971.
The practices and problems associated with reporting on the affairs of complex organizations and structures including the technique of consolidation accounting; reporting on relationships with subsidiaries, associated companies, joint ventures, trusts etc; segment reporting, reporting where the affairs of subsidiaries or associates are stated in foreign currencies, and other foreign currency translation issues. Overall view of developments in financial accounting and perspectives on the process whereby regulations governing the practice of external reporting are produced and compliance with those rules is administered.

ACCT3573
Accounting and Financial Management 3A (Honours)
Staff Contact: School Office
U1 S1 HPW6
Prerequisite: ACCT2522
Notes: Restricted to program 6810.
Includes ACCT3563 Accounting and Financial Management 3A plus additional and more advanced work in both accounting theory and in the financial management and accountability of corporate enterprises.

ACCT3583
Accounting and Financial Management 3B
Staff Contact: School Office
U1 S2 HPW4.5
Prerequisite: ACCT2522
Notes: Restricted to programs 1400, 6810 and Course 3971.
Management Accounting for decision making: development of skills in financial analysis, and analytical skills and techniques for modelling and solving a variety of typical managerial decision problems with regard to organizational content. Use of the mainframe computer financial modelling package IFPS.

ACCT3593
Accounting and Financial Management 3B (Honours)
Staff Contact: School Office
U1 S2 HPW6
Prerequisite: ACCT2522
Notes: Restricted to program 6810.
Includes ACCT3583 Accounting and Financial Management 3B, plus more advanced work dealing with theoretical and research issues in management accounting.

Anatomy
Anatomy units may be taken in programs other than 7000 only with the special permission of the Head of the School of Anatomy.

Anatomy Level II
ANAT2111
Introductory Anatomy
Staff Contact: Dr E. Tancred
U1 S1 HPW6
Prerequisites: BIOS1011, BIOS1021
Notes: Restricted to program 7000 or in the Anatomy Quota.
Introduction to gross anatomy, based on a study of prospected specimens. Musculoskeletal, cardiovascular, respiratory, gastrointestinal, genitourinary and nervous systems. General topographical and surface anatomy.

ANAT2211
Histology 1
Staff Contact: Dr P. Waite
U1 F HPW3
Prerequisites: BIOS1011, BIOS1021.
Co-requisite: ANAT2111
Notes: Restricted to program 7000 or in the Anatomy Quota.
Elementary theory of light and electron microscopy. Mammalian cell morphology and ultrastructure. Introduction to simple histological techniques. Basic histology, including the morphological and functional properties of epithelial, connective, muscle and nervous tissues. Systematic histology, including a histological examination of the major systems of the body: cardiovascular, respiratory, lymphatic, integumentary, digestive, endocrine, urinary, reproductive and nervous including eye and ear. Emphasis on the ability to interpret histological sections and selected electron micrographs of mammalian tissues and organs and to relate morphology to tissue and organ function.

Anatomy Level III
ANAT3121
Visceral Anatomy
Staff Contact: Dr K. Ashwell
U1 S2 HPW6
Prerequisite: ANAT2111
Notes: Restricted to program 7000 or in the Anatomy Quota.
Detailed study of the visceral system, including autonomic nervous system, head and neck regions and the cardiovascular, respiratory, gastrointestinal and genitourinary systems. Tutorials include clinical cases and surface and radiological anatomy.
ANAT3131
Functional Anatomy 1
Staff Contact: A/Prof D. Tracey
U1 S1 HPW6
Prerequisite: ANAT2111
Notes: Restricted to program 7000 or in the Anatomy Quota.

Functional anatomy of the musculoskeletal system in the head and neck and upper limb. Includes biomechanics of connective tissue in particular bone, cartilage and tendon. Tutorials involve study of prosected specimens, X-rays and surface; anatomy students also carry out their own dissections of the upper limb.

ANAT3141
Functional Anatomy 2
Staff Contact: A/Prof D. Tracey
U1 S2 HPW6
Prerequisite: ANAT3131
Notes: Restricted to program 7000 or in the Anatomy Quota.

Functional anatomy of the musculoskeletal system in the trunk and lower limb. Includes functional aspects of muscle and a discussion of the mechanics and energetics of walking and running. Tutorials involve study of prosected specimens, X-rays and surface anatomy; students also carry out their own dissections of the lower limb.

ANAT3211
Histology 2
Staff Contact: Dr B. Freeman
U1 F HPW3
Prerequisite: ANAT2211
Notes: ANAT3211 and ANAT3220 are mutually exclusive. Restricted to program 7000 or in the Anatomy Quota.

ANAT3220
Histological and Histochemical Techniques
Staff Contact: Dr B. Freeman
U1 S1 HPW3
Prerequisites: BIOS1011, BIOS1021 and any 1 of BIOC2312, BIOS2061 or ANAT2211
Notes: Excluded ANAT3211. Restricted to course 3820.

ANAT3311
Mammalian Embryology
Staff Contact: Dr M. Smith
U1 F HPW3
Corequisites: ANAT2211, ANAT2111
Notes: Restricted to program 7000 or in the Anatomy Quota.

ANAT3411
Neuroanatomy 1
Staff Contact: Prof I. Tork
U1 S1 HPW6
Prerequisites: ANAT2211, ANAT2111
Notes: Restricted to program 7000 or in the Anatomy Quota.

Nerve cells and glial cells, cytoarchitecture of brain and spinal cord. Functional anatomy of sensory and motor processing, and higher cerebral functions such as language and emotions. Blood supply of the central nervous system, cerebrospinal fluid and membranous coverings. Comparative anatomy of the brain.

ANAT3421
Neuroanatomy 2
Staff Contact: Prof I. Tork
U1 S2 HPW3
Prerequisites: ANAT3411
Notes: Restricted to program 7000 or in the Anatomy Quota.

Topics of contemporary neuroanatomy and neuroscience. Includes: sensory, motor and associational areas of the cerebral cortex, cerebral asymmetry, hippocampus, regulatory centres of the brainstem, sensory organs. Recent advances in chemical neuroanatomy and neuroendocrinology. Neuroanatomy of major neurological diseases, scientific basis of novel approaches to treatment. Recent work on the development of the brain. Content is organized in seminar format, and is based primarily on original publications. Students are required to undertake a substantial amount of private study.

Anatomy Level IV
ANAT4508
Anatomy 4
Staff Contact: Prof I. Tork
U10 F
Prerequisites: Completion of program 7000 including 6 Level III units 4 of which must be Anatomy units.

An honours program consisting of the preparation of an undergraduate thesis and participation in School seminars. The Category C General Education requirements are met within the Honours Program through seminars, and essay and participation in discussion groups.

Biochemistry and Molecular Genetics
Biochemistry Level II
BIOC2312
Principles of Biochemistry and Molecular Biology
Staff Contact: Dr A. Bagnara
U2 F HPW6
Prerequisites: BIOS1011 and BIOS1021, CHEM1101 and
CHEM1201 or CHEM1002

Notes: Excluded CHEM2329.

Biochemistry Level III

BIOC3111
Molecular Biology of Proteins

Staff Contact: Dr M. Edwards
U1 S1 HPW6

Prerequisites: BIOC2312, CHEM2021 or CHEM2041

Notes: Excluded 41.102, 41.102A.

Modern aspects of the structure-function relationships of proteins including discussion of the latest techniques of protein characterization. Topics include: separation and analytical procedures; determination of amino acid sequence data; the nature of protein-protein and protein-ligand interactions including aspects of substrate binding, enzyme kinetics and enzyme mechanisms; the molecular architecture of proteins from the standpoint of the relationships among primary, secondary, tertiary and quaternary structures; aspects of protein engineering. Practical work illustrates and complements the lectures and provides experience with modern techniques of protein molecular biology.

BIOC3121
Molecular Biology of Nucleic Acids

Staff Contact: A/Prof A. Mackinlay
U1 S1 HPW6

Prerequisites: BIOC2312, CHEM2021 or CHEM2041

Notes: Excluded 41.102, 41.102A.

Detailed analysis of gene structure and function including: structure and properties of polynucleotides such as DNA and RNA; structure of chromatin; mechanisms and regulation of gene replication, transcription and translation; recombinant DNA technology, nucleic acid sequencing, DNA-DNA and DNA-RNA hybridization as important tools of modern molecular biology; protein production using recombinant DNA systems. Practical work illustrates and complements the lectures and provides experience with contemporary biochemical techniques.

BIOC3131
Biochemistry and Genetic Engineering of Plants

Staff Contact: Dr I. Mc Farlane
U1 S1 HPW6

Prerequisite: BIOC2312

The techniques of recombinant DNA technology and plant tissue culture with their application to the modification and improvement of plant productivity.

Plant organ, tissue and cell culture, organogenesis, embryogenesis and clonal plant propagation. The long term preservation of germplasm and plant genetic resources. Products from cultures, plant cells and the technology of plant cell culture. Structure and expression of plant genes. Plant molecular biology including cloning plant genes and vectors for gene cloning. Genetic manipulation of plants to improve their natural resistance to pests, disease and environmental stress. Practical work provides training in the basic techniques of plant tissue culture with application of selected techniques to plant genetic engineering.

BIOC3261
Human Biochemistry

Staff Contact: A/Prof P. Schofield
U1 S2 HPW6

Prerequisite: BIOC2312

Aspects of metabolism that are of particular relevance to the human: nutrition, exercise, neurochemistry, xenobiotics and genetic diseases.

The role of triglyceride, cholesterol and lipoprotein metabolism in human health, and other selected areas of human nutrition. Exercise, the metabolic fuels utilized and the use of in vivo NMR to monitor changes in energy metabolism. Specialized aspects of endocrinology and neurochemistry including prostaglandins, leukotrienes, enkephalins and endorphins. The interrelation of purines, pyrimidines, folate and cobalamin metabolism in humans. Xenobiotics: the metabolism of foreign compounds by humans. Biochemical aspects of genetic disease including the use of recombinant DNA techniques for prenatal diagnosis and carrier detection. Practical work amplifies the lectures.

BIOC3271
Cellular Biochemistry and Control

Staff Contact: Dr G. Zaltis
U1 S2 HPW6

Prerequisite: BIOC2312

Cell biology from a molecular physiochemical viewpoint. Biochemical aspects of cellular organization and how they are integrated and controlled. The arrangement of the component molecules of organelles, their function in integrated cellular metabolism and the molecular interactions between the cells of multicellular organisms. The biochemistry of the cytoskeleton, carriers and intracellular transport systems. The regulation of cellular processes at the molecular endocrine level. Growth and differentiation. Aspects of cancer metabolism, the biochemistry of cell to cell communication and the structure and function of the extracellular matrix. Complementary to BIOS3141 Ultrastructure and Function of Cells and students with a special interest in cell biology are encouraged to take both subjects. Practical work amplifies the lectures.

BIOC3281
Recombinant DNA Techniques and Eukaryotic Molecular Biology

Staff Contact: Dr T. Stewart
U1 S2 HPW6

Prerequisite: BIOC3121

Notes: Excluded 41.132, 41.102E.

The organization of the genomes of higher organisms derived mainly from the application of recombinant DNA
technology and related techniques. Methods used for the isolation, identification and characterization of eukaryotic genomes in terms of the organization of single-copy and repeated sequences and of coding and non-coding sequences and of several gene clusters, eg the alpha and beta globin gene clusters. Mechanisms known to operate in the control of eukaryotic gene expression, both at the DNA level and at the level of RNA processing. Review of several specialized genetic systems in plants and animals such as mitochondria, chloroplasts and RNA and DNA tumour viruses. Practical work provides training in the use of sterile techniques and in working with polynucleotides under nuclease-free conditions, using basic techniques such as hybridization and DNA sequencing.

Biochemistry Level IV

BIOC4318/BIOC4618
Biochemistry 4 (Honours)
U10 F
Prerequisites: Completion of program 4100 including 8 Level III units 4 of which must be Biochemistry units.

Advanced training in selected areas of biochemistry including a supervised research program that places emphasis on the use of specialized techniques relevant to the research area. A written thesis on the research is required.

The Category C General Education requirements are met within the Honours Program by seminars, an essay and participation in discussion groups.

Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further information regarding the following subjects see the Faculty of Medicine Handbook.

BIOC1319
Biochemistry for Medical Students
BIOC2329
Medical Biochemistry and Genetics

Biological Science

Biological Science Level I

BIOS1011
Biology A
Staff Contact: Dr R. Vickery
U1 S1 HPW6
Prerequisites: HSC Exam Score Required: 2 unit Science (Physics) 53-100, or 2 unit Science (Chemistry) 53-100, or 2 unit Science (Geology) 53-100, or 2 unit Science (Biology) 53-100, or 3 unit Science 90-150, or 4 unit Science 1-50
Notes: The course guide must be purchased during enrolment week. Equipment required for practical classes is listed in the Course Guide and must be purchased before session starts.

The biology of cells; their structure as seen with light and electron microscopes; how they move; take in and excrete substances their chemistry and use of energy. Inheritance and mutations; genes and how they work. The theory covered in the lectures and tutorials is illustrated by observation and experiment in laboratory classes.

BIOS1021
Biology B
Staff Contact: Dr R. Vickery
U1 S2 HPW6
Prerequisites: BIOS1011
Notes: Students with percentile range 65-100 in HSC Examination 4 unit Science, or 2 unit Biology may apply to the Director of Biology to enrol in Level II Biological Science units in lieu of BIOS1021 after completion of BIOS1011. Successful students will have met the prerequisite requirement of BIOS1021 Biology B for Level II and Level III units.

The evolution, diversity and behaviour of living things and the ways in which they have adapted to varying environments. Emphasis on the structure and function of flowering plants and vertebrate animals, and their roles in Australian ecosystems. The theory covered in lectures and tutorials is illustrated by observation and experiment in laboratory classes, which include dissection of a toad and a rat.

Biological Science Level II

BIOS2011
Evolutionary and Physiological Ecology
Staff Contact: A/Prof B. Fox
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS1021
Introduction to functional relationships between living organisms and environments they live in. Illustration of structural, physiological, ecological and behavioural characteristics as examples of adaptations or neutral traits, and the evaluation of these attributes as the outcome of ecological and evolutionary selection. Also serves content as an introduction to the process of scientific enquiry.

BIOS2021
Introductory Genetics
Staff Contact: Dr W. Shenwin, Dr A. Wilton
U1 S2 HPW6
Prerequisites: BIOS1011 and BIOS1021,
Co-requisite: BIOC2312

BIOS2031
Biology of Invertebrates
Staff Contact: A/Prof P. Greenaway
U1 S2 HPW6
Prerequisites: BIOS1011 and BIOS1021
A comparative study of morphology, taxonomy and functional biology of invertebrate animals. Emphasis is placed on the major groups (arthropods and molluscs) and
on marine forms. Practical classes and a compulsory field camp illustrate the lecture material.

BIOS2041
Biometry
Staff Contact: Mr A. Woods
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS1021
Notes: Excluded MATH2801, MATH2901, MATH2841.
Application of statistics to biological data. The main probability distributions (chi square, normal, student's t, F). Estimation statistics and tests of hypotheses. parametric and nonparametric anovas and linear regression / correlation. Goodness of fit testing. A priori and A posteriori comparisons. Introduction to factorial analysis.

BIOS2051
Flowering Plants
Staff Contact: A/Prof A. Ashford
U1 S2 HPW6
Prerequisites: BIOS1011 and BIOS1021
Basic plant biology including cell structure, plant morphology and anatomy, water and sugar transport, seed structure and physiology, plant growth and development aboresent, leaves and photosynthesis, roots, micro-organisms and nutrition, evolution of land plants and plant taxonomy. Practical work: plant anatomy and light microscopy; collection of numerical data and a statistical analysis, plant identification.

BIOS2061
Vertebrate Zoology
Staff Contact: Dr M. Augee
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS1021
Comparative study of the Chordata, with particular reference to the vertebrates, including morphology, systematics, evolution and natural history, with reference to selected aspects of physiology and reproduction. Practical work to supplement lectures. Field excursions.

Biological Science Level III

BIOS3011
Animal Behaviour
Staff Contact: Dr D. Croft
U1 S2 HPW6
Prerequisites: BIOS2041, and BIOS2031 or BIOS2061.
Introduction to ethology, the biological study of behaviour. Physiological, ecological, developmental and evolutionary aspects of behaviour as important elements in the analysis of behaviour, particularly social behaviour. Includes both field and laboratory work.

BIOS3021
Comparative Animal Physiology
Staff Contact: Dr A. Beal
U1 S1 HPW6
Prerequisite: BIOS2031 or BIOS2061
The physiology of invertebrates and vertebrates including the special features of Australian mammals. The systems and functions examined include reproduction, hormones, nerves, blood, circulation, respiration and kidneys with emphasis on the control and integration of organ systems and body functions.

BIOS3031
Ecological Physiology
Staff Contact: Prof T. Dawson
U1 S2 HPW6
Prerequisite: BIOS2031 or BIOS2061
Physiological adaptation to habitat in animals. The problems imposed by the basic physiological characteristics of major animal groups under different environmental conditions are examined, especially osmotic and ionic regulation, oxygen availability, metabolism and temperature regulation acclimation. Particular attentional is given to Australian fauna and conditions.

BIOS3041
Plant-Microbe Interactions
Staff Contact: A/Prof A. Ashford
U1 S2 HPW6
Prerequisites: BIOS2011 and BIOS2051 or MICR2210
The relationship between microbes and plant surfaces particularly in the soil environment, rhizosphere organisms, role of micro-organisms in mineral acquisition by plants, mutualistic symbioses between roots and micro-organisms, dynamics of infection and host invasion, plant pathogen interactions. Fungi in culture and basic fungal taxonomy. Inoculation of plant material to produce symbioses and examination of infection processes, histochemistry and light microscopy.

BIOS3051
Entomology
Staff Contact: Dr A. Richards
U1 S1 HPW6
Prerequisites: BIOS2031
Classification, external morphology and internal anatomy of insects, studies on environmental sensory physiology and behaviour, especially reproductive behaviour, social organization and pheromones. Ecology, chemical, biological and physical control of insect pests which attack people, crops or livestock and side effects of pest control methods. Practical work to illustrate the lectures.

BIOS3061
Plant Ecosystem Processes
Staff Contact: Dr R. Vickery
U1 S1 HPW6
Prerequisites: BIOS1011 and BIOS102 and any 2 Level II Science subjects
Soil and atmospheric environments in which plants live and their interaction with the environment. Interactions at scales ranging from the microenvironment to the ecosystem; energy and mass transfer over these scales is investigated and modelled. Impacts of global change on vegetation. Exchange of greenhouse gases between atmosphere and biosphere.

BIOS3071
Conservation Biology and Biodiversity
Staff Contact: A/Prof P. Adam
U1 S2 HPW6
Prerequisites: BIOS1011 and BIOS1021
Applications of community biology, population ecology and genetics to management of environmental problems in nature and artificial ecosystems, including Australian examples. Nature and importance of global diversity, Management and design of programs for the conservation of species and ecosystems, including reserves, off site conservation, and computer simulations. Field excursions compulsory.

BIOS3081
Ocean Biology and Fisheries
Staff Contact: Dr P. Dixon
U1 S1 HPW6
Prerequisite: MSCI2001 or 2 Level II units in Biological Science
Notes: Students intending to enrol in this unit should register with the School of Biological Science for the February field trip by 13 January.
The ocean environment and its effect on the life of marine organisms. Emphasis on the biology of Zooplankton and fish, together with the study of fisheries. Field studies are an integral component.
Complements BIOS3091 Marine Biology.

BIOS3091
Marine Biology
Staff Contact: A/Prof R. King
U1 S2 HPW6
Prerequisite: MSCI2011 or 2 Level II units in Biological Science
Marine benthic habitats. Biology and physiology of algae, seagrasses, mangroves and saltmarsh. Community dynamics on rocky shores and reefs. Mariculture and biotechnology, with particular emphasis on marine algae, both macroalgae (seaweeds) and phytoplankton. Plant/animal interactions and population dynamics of marine benthic invertebrates. Fieldwork is included.
Complements BIOS3081 Ocean Biology and Fisheries.

BIOS3101
Australian Ecosystems and Community Analysis
Staff Contact: A/Prof P. Adam
U1 S2 HPW6
Prerequisites: BIOS2051 or GEOG1012 and GEOG1031 or BIOS2011
Methods for detection and analysis of spatial pattern in the distribution of organisms and communities. Geological history of the Australian environment and biota. Selected habitat types are examined in detail with issues related to their distribution, species composition and functioning. Participation in fieldwork is essential.

BIOS3111
Population and Community Ecology
Staff Contact: A/Prof B. Fox
U1 S1 HPW6
Prerequisites: BIOS1021 and MATH1032 or MATH1042 or MATH1021
Factors regulating dynamics of interacting populations, renewable resource management, ecosystem stability, cycles and chaos, simulation modelling in ecology, niche theory, competition, habitat selection, community structure, species diversity, island biogeography, ecological gradients. Succession following disturbance (fire, mining, or logging). Participation in fieldwork is essential.

BIOS3121
Evolution and Phylogenetics
Staff Contact: A/Prof C. Quinn
U1 S1 HPW6
Prerequisite: At least one Level II Biological Science unit, or BIOC2312
Evolutionary and ecological genetics: variation between individuals, populations and species. Assessing relationships and reconstructing phylogenies; evolution and biogeography of Australian groups of vertebrates and land plants.

BIOS3131
Mammology
Staff Contact: Prof M. Archer
U1 S2 HPW6
Prerequisite: BIOS2061
An introduction to the origin and nature of mammals, their evolutionary patterns, diversity, contemporary and historical biogeography, community structure, life history strategies compared with those from other lands, field techniques and aspect of conservation biology. Focus on endemic Australian mammals: monotremes, marsupials, bats, cetaceans, rodents dingos and humans.

BIOS3141
Ultrastructure and Function of Cells
Staff Contact: A/Prof A. Ashford
U1 S1 HPW6
Prerequisite: BIOS2051 or BIOS2031 or BIOS2061 or BIOS2312 or MICR2201
Concepts and techniques in ultrastructure and cell biology including secretion of macromolecules, cell recognition, membrane structure and function, transmission, communication and nerve function. Practical work includes histochemistry, electrophysiology, specimen preparation for, and use of transmission and scanning electron microscopes.

Biological Science Level IV
Staff Contact: A/Prof C. Quinn

BIOS4013/BIOS4019
Botany 4 (Honours)
U10 F
Prerequisites: Completion of program 1700 including 7 Level III units

BIOS4023/BIOS4029
Zoology 4 (Honours)
U10 F
Prerequisites: Completion of program 1743 including 7 Level III units, 4 of which must be Botany units or a closely related discipline

BIOS4033/BIOS4039
Zoology 4 (Honours)
U10 F
Prerequisites: Completion of program 1745 including 7 Level III units 4 of which must be Zoology units
The Category C General Education requirements are met within these Honours Programs by seminars, an essay and participation in discussion groups.

Biotechnology

Biotechnology Level III

BIOT3011
Biotechnology A
Staff Contact: A/Prof N. Dunn
U1 S1 HPW6
Prerequisite: BIOT3011

Mutation and mutant selection, genetic exchange and recombinant-DNA technology applicable to the development of improved and novel commercial processes. Basic principles of reactor design and operation for use of different biocatalysts, product recovery and purification of fermentation products.

BIOT3021
Biotechnology B
Staff Contact: Prof P. Rogers
U1 S2 HPW6
Prerequisite: BIOT3011

Application of principles of biotechnology to the analysis and design of fermentation processes of industrial relevance. Use of quantitative approach; mass and heat balance calculations, kinetic analysis, bioreactor control and optimization. Technical and economic feasibility studies and a design project. Aspects of patenting and regulation relevant to biotechnology.

BIOT3031
Microbial Genetics
Staff Contact: Dr S. Delaney
U1 S1 HPW6
Prerequisites: BIOS2011, BIOS2021, BIOT3011, MICR2011
Notes: Excluded MICR3021

Genetics of bacteriophage, bacteria and yeasts, including mutation and repair, plasmids gene transfer, transposable genetic elements, gene cloning and genetics of nitrogen fixation.

BIOT3061
Modern Techniques in Biotechnology
Staff Contact: Dr S. Mahler
U1 S2 HPW6
Prerequisite: BIOT3011

Technology related to production, modification and downstream processing of monoclonal antibodies and selected recombinant products. DNA amplification and genetic probes. Medical environmental and forensic applications of monoclonal and probing technology.

Biotechnology Level IV

BIOT4073/BIOT4083
Biotechnology (Honours)
Staff Contact: School Office

U10 F
Prerequisites: Completion of 8 Level III units 4 of which must be Biotechnology or related discipline

Advanced formal training in selected areas of biotechnology and participation in one of the School's research projects.

The Category C General Education requirements are met within the Honours Program by seminars, an essay and participation in discussion groups.

Board of Studies in Science and Mathematics

Board of Studies in Science and Mathematics Level IV

BSSM4013/BSSM4019
Geology and Physics 4 (Honours)
U10 F
Prerequisites: Completion of program 0100 including 8 Level III units

Combines Geology and Physics in Program 0100, made by arrangement with the Heads of the two Schools.

BSSM4023/BSSM4029
Ecology 4 (Honours)
A/Prof B. Fox
U10 F
Prerequisites: Completion of Program 6851, 6852 or 6853 including 6 Level III units

BSSM4103/BSSM4109
Genetics 4 (Honours)
Staff Contact: Prof I. Dawes
U10 F
Prerequisites: Completion of Program 6840 including 6 Level III units

The Category C General Education requirements are met by participation in the Category C program offered by the supervisor's School.

Chemistry

Chemistry Level I

CHEM1002
Chemistry 1
Staff Contact: Dr T. Findlay
U2 F HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 55-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Chemistry 53-100, or 3 unit Science 90-150, or 4 unit Science 1-50, or 2 unit Physics 53-100
Notes: CHEM1002 is the normal prerequisite for Level II Chemistry.

CHEM1101
Chemistry 1A
Staff Contact: Dr T. Findlay
U1 S2 HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 55-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Chemistry 53-100, or 3 unit Science 90-150, or 4 unit Science 1-50, or 2 unit Physics 53-100

CHEM1201
Chemistry 1B
Staff Contact: Dr T. Findlay
U1 S2 HPW6
Prerequisite: CHEM1101
Notes: The two subjects CHEM1101 and CHEM1201, taken sequentially, are equivalent to CHEM1002.
Molecular geometry, hybridization of orbitals. Periodicity of physical and chemical properties of elements and compounds. Organic chemistry, including stereoisomerism.

CHEM1302
Introductory Chemistry
Staff Contact: Dr T. Findlay
U2 F HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 55-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100
Notes: Students who perform very well in CHEM1302 are permitted to continue on to Level II chemistry with the permission of the Head of School of Chemistry.

CHEM1401
Introductory Chemistry A
Staff Contact: Dr T. Findlay
U1 S1 HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 55-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100

CHEM1501
Introductory Chemistry B
Staff Contact: Dr T. Findlay
U1 S2 HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 55-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Chemistry 53-100, or 3 unit Science 90-150, or 4 unit Science 1-50, or 2 unit Physics 53-100
Notes: The two subjects CHEM1401 and CHEM1501, taken sequentially, are equivalent to CHEM1302.
Atomic and molecular structure. Equilibrium constants, acid-base and solubility. Periodicity of physical and chemical properties of elements and compounds. Organic chemistry including stereoisomerism.

Chemistry Level II

CHEM2011
Physical Chemistry
Staff Contact: Dr D. Smith
U1 S1 or S2 HPW6
Prerequisites: CHEM1002, MATH1032 or MATH1042 or MATH1011 and MATH1021

CHEM2021
Organic Chemistry
Staff Contact: Prof P. Clezy
U1 F or S2 HPW6
Prerequisite: CHEM1002
Discussion of the major types of organic reaction mechanisms, eg addition, substitution, elimination, free-radical, molecular rearrangement within context of important functional groups. Introduction to the application of spectroscopic methods to structure determination.

CHEM2031
Inorganic Chemistry and Structure
Staff Contact: Dr P. Clezy
U1 S1 or S2 HPW6
Prerequisite: CHEM1002

CHEM2041
Chemical and Spectroscopic Analysis
Staff Contact: Dr G. Moran
U1 S1 or S2 HPW6
Prerequisites: CHEM1002, MATH1032 or MATH1042 or MATH1011 and MATH1021
Chemistry Level III

CHEM3011
Physical Chemistry
Staff Contact: Prof R. Howe
U1 S1 HPW6
Prerequisites: PHYS1002, CHEM2011, CHEM2031, CHEM2041

CHEM3021
Organic Chemistry
Staff Contact: A/Prof M. Gallagher
U1 S1 HPW6
Prerequisite: CHEM2021

CHEM3031
Inorganic Chemistry
Staff Contact: A/Prof H. Goodwin
U1 S1 HPW6
Prerequisite: CHEM2031

Descriptive chemistry and bonding, stereochemistry, magnetic and spectroscopic properties, stabilities of complexes of normal and inner transition series elements. Stabilization of oxidation states. Aspects of the chemistry of p-block elements including the inert pair effect.

CHEM3041
Analytical Chemistry
Staff Contact: A/Prof P. Alexander
U1 S1 HPW6
Prerequisite: CHEM2041

Instrument design, theory and operating principles for the following instrumental areas: electrochemical, atomic and molecular spectroscopy, chromatography, mass spectrometry, automated analysis.

CHEM3111
Surface Chemistry: Principles and Applications
Staff Contact: Dr R. Lamb
U1 S2 HPW6
Prerequisite: CHEM3011

CHEM3121
Synthetic Organic Chemistry
Staff Contact: Dr R. Read
U1 S2 HPW6
Prerequisite: CHEM3021

CHEM3131
Advanced Inorganic Chemistry
Staff Contact: Dr D. Phillips
U1 S2 HPW6
Prerequisite: CHEM3031

Inorganic reactions and reactivity, reactions of co-ordinated ligands and activation of small molecules. Group theory and spectroscopy. Bio-inorganic chemistry; the occurrence and co-ordination of metals in biology, common metal containing enzymes. Heavy metals, detoxification mechanisms and inorganic aspects of environmental chemistry. Inorganic compounds and materials with significant electronic and magnetic properties.

CHEM3141
Advanced Instrument Analysis
Staff Contact: A/Prof P. Alexander
U1 S2 HPW6
Prerequisite: CHEM3041

Advanced approaches to problem solving in analytical science using modern instrumental techniques and microcomputers for the analysis of complex organic, biological, inorganic and environmental materials. Selection and optimization of instrumental parameters; theory of separation strategies for identification and quantitative determinations. Networking of computer-controlled workstations for laboratory automation and management.

CHEM3211
Physical Chemistry of Large Molecules
Staff Contact: Dr D. Smith
U1 S2 HPW6
Prerequisite: CHEM2011

CHEM3221
Biological Organic Chemistry
Staff Contact: A/Prof N. Cheetham
U1 S2 HPW6
Prerequisite: CHEM3021

Interdisciplinary aspects of selected classes of organic compounds of biological significance. Properties of proteins, poly-saccharides. Structural and synthetic aspects of selected drugs; metabolism and analysis. Herbicides, fungicides, pesticides; synthesis, degradation, mode of action.

CHEM3231
Nuclear and Radiation Chemistry
Staff Contact: A/Prof M. Long
U1 S2 HPW6
Prerequisites: CHEM2011 or CHEM2021 or CHEM2031 or CHEM2041
Origin and properties of nuclear radiations, their interaction with matter and their detection and measurement. Effect of radiation on living cells, contamination and radiation hazards, factors affecting radiotoxicity. Applications of isotopes as tracers and radiation sources.

CHEM3311
Environmental Chemistry
Staff Contact: Dr W. Johnson

U1 S2 HPW6
Prerequisites: CHEM2011, CHEM2041

CHEM3321
Applied Organic Chemistry
Staff Contact: A/Prof N. Cheetham

U1 S2 HPW6
Prerequisites: CHEM3021

Polymerization processes and synthetic polymers; initiators, chain transfer agents, retarders. Pigments and dyestuffs; Basis of colour in organic compounds. Oxidation and reduction processes; theory and industrial importance.

CHEM3510
Quantum Chemistry and Symmetry
Staff Contact: A/Prof A. Rae

U.5 S2 HPW3
Prerequisite: CHEM2031

CHEM3530
Molecular Structure Determination
Staff Contact: Dr S. Colbran

U.5 S2 HPW3
Prerequisites: CHEM2031, CHEM2041

Techniques for the determination of molecular structure, with emphasis on multinuclear NMR and X-ray diffraction. Experimental requirements and procedures, instruments. Interpretation of results, applications in current research problems. Databases and computing; computer graphics and molecular modelling.

CHEM3630
Organometalllic Chemistry
Staff Contact: Dr N. Roberts

U.5 S2 HPW3
Prerequisites: CHEM2021, CHEM2031

Preparation, structure and reactions of transition metal and main group organometallic compounds. Structure and bonding of ligands; ligand stabilization and activation; novel effects of ligand bulk and geometry. Catalytic applications of organometallic compounds.

CHEM3640
Computers in Chemistry
Staff Contact: A/Prof P. Alexander

U.5 S2 HPW3
Prerequisites: CHEM2011, CHEM2041

Computing techniques introduced through specific chemical applications; simple and complex equilibria, rate equations, analysis of multicomponent mixtures, instrumental calibration curves. Treatment of transient signals. Specific case studies selected from spectroscopy, chromatography, and electrochemistry. Chemical databases and the literature, spectroscopic databases.

Chemistry Level IV

CHEM4003/CHEM4004
Chemistry 4 (Honours)
U10 F

Prerequisites: Completion of Program 0200 or 0205 Including 8 Level III Units 4 of which must be Chemistry units.

Consists of selected series of lectures on advanced topics in Chemistry and a research project.

The Category C General Education requirements are met within the Honours Program by seminars, discussion and the safety training program.

Students intending to seek admission to this program should consult the School re selection of units in the earlier years and apply to the Head of the School for consideration for admission at the end of Year 3 (or completion of requirements for the award of the pass degree).

Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further information regarding the following subjects see the Faculty of Applied Science Handbook and Faculty of Engineering Handbook.

CHEM1806
Chemistry 1 EE
Staff Contact: Dr T. Findlay

U.5 S1 HPW3
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 67-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Science (Physics) 53-100, or 2 unit Science (Chemistry) 53-150, or 4 unit Science 1-50, or 3 unit Science 90-150

Notes: Restricted to Courses 3640 and 3725

CHEM1807
Chemistry 1 ME
Staff Contact: Dr T. Findlay

U1 S1 HPW6
Notes: excluded CHEM1101, CHEM1201, CHEM1002
Restricted to Course 3681

CHEM1808
Chemistry 1CE
Staff Contact: Dr T. Findlay
U1 S2 HPW6
Notes: Excluded CHEM1101, CHEM1201, CHEM1002
Restricted to course 3730

CHEM1809
Biological Chemistry for Optometry Students
Staff Contact: Dr T. Findlay
U2 F HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 55-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Chemistry 59-100, or 3 unit Science 90-150, or 4 unit Science 1-50, or 2 unit Physics 53-100
Notes: Restricted to course 3950

CHEM2828
Organic and Inorganic Chemistry for Chemical Engineers
Staff Contact: Prof P. Clezy
Discussion of selected types of organic reactions to provide a broad cover of the chemistry of aliphatic and aromatic compounds. Survey of the structures, energetics, bonding, reactions and physical properties, and applications, of selected compounds of main group elements and of lanthanide and d-block transition elements.

CHEM2929
Fundamentals of Biological and Agricultural Chemistry
Staff Contact: Dr P. Southwell-Keely

CHEM3829
Organic Chemistry
Staff Contact: Prof D. Black
The spectroscopic identification of organic compounds, free radical chemistry and electro-organic processes, various aspects of the organic industrial processes such as industrial synthesis based on petrochemicals, and organometallic reactions of industrial interest. Selected topics from the dyestuff, pharmaceutical and agricultural industries.

CHEM3926
Instrumental Methods of Food Analysis
Staff Contact: A/Prof G. Crank
Treatment of theory and practice of modern instrumental methods of analysis, with strong emphasis on the analysis of food constituents. Variety of spectroscopic and chromatographic techniques.

CHEM3929
Food Chemistry
Staff Contact: A/Prof G. Crank
Treatment of the chemistry of important food constituents. Topics include: proteins, carbohydrates, fats and oils, vitamins, natural and synthetic pigments essential oils and flavours, importance of water in foods.

Community Medicine

Community Medicine Level II/III

CMED3111
Genetics of Behaviour
Staff Contact: Dr L. Lai
U1 S2 HPW6
Prerequisite: BIOS1011
Principles of Mendelian, polygene and chromosomal genetics with examples from behavioural genetics. Emphasis on human behaviour in particular the genetics of mental retardation and psychiatric disorders. DNA technology in behavioural genetics. Practical classes aim at pedigree studies and the mathematical treatment of data.

CMED8201
Population Genetics
Staff Contact: Dr A. Stark
U1 S1 HPW5
Prerequisites: One unit of statistical methods, or theory, as approved by the Head of School
The genetic structure of populations: genetic relationships, mating systems random and assortative mating, inbreeding, sexual selection, finite populations, systematic forces selection, mutation, migration, genetic distance between populations, genetic load, stable populations, molecular population genetics, evolutionary trees; computer methods.

CMED8202
Human Genetic Analysis
Staff Contact: Dr A. Stark
U1 S2 HPW5
Prerequisites: A unit of genetics and a unit of statistical methods, or theory, as approved by the Head of School.
Principles and methods of human genetics: design of surveys, estimation and applications of genic and genotypic frequencies, selective values, mutation and migration rates, coefficients of kinship, inbreeding and assortative mating, recombination fractions and heritabilities; segregation analysis; risks of recurrence of disease; consequences of human intervention; computer methods.

CMED8302
Biochemical Genetics of Man
Staff Contact: Dr L. Lai
U1 S2 HPW6
Prerequisites: BIOC2312 and BIOS2021 or BSSM2101

Inherited variation of blood group proteins, their possible selective roles, and their application to the study of biological relationship between populations and recent advances in gene characterization. Inherited DNA variation or restriction fragment length polymorphism, its application to studies of genetic diseases and of human populations. General approach from two loci per chromosome. Application of statistical techniques to analyzing population data.

CMED8303
Human Genetics
Staff Contact: Dr L. Lai
U1 S1 HPW6
Prerequisite: BIOS2021

The principles and concepts of human genetics and methods used to study the nature and extent of genetic differences of mechanisms of inheritance and gene expression, gene linkage and patterns of inheritance; principles and applications of population genetics and cytogenetics; modern molecular techniques for human gene mapping disease gene localization and the prospects of gene therapy; genetic fingerprinting and current ethical issues in human genetics.

Community Medicine Level IV

CMED8001
Human Genetics
U10 F
Prerequisites: Completion of at least 3 of the following: BIOC3111 and BIOC3121, BIOT3031, MICR3041, BIOS3071, CMED8201, CMED8202, CMED8302, CMED8303, BSSM3101 as well as 8 Level III units

Computer Science and Engineering

Computer Science and Engineering Level I

COMP1011
Computing 1A
Staff Contact: Mrs L. Inkster
U1 S1 or S2 HPW6
Prerequisites: As for MATH1032
Co-requisites: MATH1032 or MATH1042
Notes: Excluded COMP1811. Restricted to programs 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.

Defining problems. Reasoning about and solving problems using logic, abstraction, specification, algorithms and data structures. Exposure to a functional programming language (Miranda) for practical experience with these concepts. Introduction to computing systems: hardware (CPU, memory, peripherals), software (operating systems, networks, languages) and users. Introduction to computing applications: document processing, spreadsheets, data bases, graphics and communications.

COMP1021
Computing 1B
Staff Contact: Dr G. Whale
U1 S2 HPW6
Prerequisite: COMP1011
Notes: Excluded COMP1821, 6.620, 6.621, 6.021D.

COMP1811
Computing 1 (Procedural)
Staff Contact: Mr P. Compton
U1 S1 or S2 HPW6
Prerequisites: As for MATH1032
Co-requisites: MATH1032 or MATH1042
Notes: Excluded COMP1011, 6.611, 6.600

Defining problems. Reasoning about and solving problems using logic, abstraction, specification, algorithms and data structures. Exposure to a procedural programming language (Modula-2) for practical experience with these concepts. Introduction to computing systems: hardware (CPU, memory, peripherals), software (operating systems, networks, languages) and users. Introduction to computing applications: document processing, spreadsheets, data bases, graphics and communications.

COMP1821
Computing 2
Staff Contact: Dr T. Gedeon
U1 S1 or S2 HPW6
Prerequisite: COMP1811
Notes: Excluded COMP1021, 6.621, 6.021D. Available in Year 1 of program Mathematics with Computing (1061)

COMP2011
Data Organization
Staff Contact: Ms A. Sowmya
U1 S1 or S2 HPW5
Prerequisite: COMP1021 or COMP1821
Notes: Excluded 6.641.

COMP2021
Digital System Structures
Staff Contact: Prof G. Hellestrand
U1 S1 or S2 HPW5
Prerequisite: COMP1021 or COMP1821
Notes: Excluded ELEC2012.
Analysis, design, and realization of digital subsystems: data path, instruction decode, address generation, arithmetic algorithms, fetch-execute cycle. Timing, minimization, switch and gate logic, combinational and sequential circuits, flip-flops, hardware description techniques, circuit schematics and simulation tools. Translation of higher level programming abstractions and data structures to a real computer using 68000 macro assembler. Hardware models, programming models, and the I/O subsystem.

COMP2031
Concurrent Computing
Staff Contact: Prof G. Hellestrand
U1 S1 or S2 HPW5
Prerequisite: COMP1021 or COMP1821

Computer Science and Engineering Level III

COMP3111
Software Engineering
Staff Contact: Mr K. Robinson
U1 S1 HPW5
Prerequisites: COMP2011, COMP2031
Notes: Excluded 6.642, 6.660G. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.
Informal specification: Data flow diagram methodology, analysis, design, testing, management and documentation of software. Formal specification: set theory, logic, schema calculus, case studies. The Z specification notation. Managing the project lifecycle. CASE tools. A major group project.

COMP3121
Algorithms and Programming Techniques
Staff Contact: Dr P. Chaudhuri
U1 S2 HPW5
Prerequisite: COMP2011
Notes: Excluded 6.642, 6.660G. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.

COMP3131
Parsing and Translation
Staff Contact: Mr K. Robinson
U1 S2 HPW5
Prerequisites: COMP2011
Notes: Excluded 6.643, 6.664G. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.

COMP3211
Computer Organization and Design
Staff Contact: Prof G. Hellestrand
U1 S1 HPW5
Prerequisites: COMP2021 or ELEC2012
Notes: Excluded 6.654G, ELEC3020. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.
Combinational and sequential circuit design; synchronization, communication and arbitration; register transfer specification (modal). Arithmetic design strategies. Memory organization: physical and virtual address space; operating system and compiler support; memory mapping and caching. Communications organization: shared memory, memory mapping; network systems. Processor design: the instruction pipeline; hardwired and micro-programmed control; instruction sets; RISC and object-based processor organization. Error detection/correction and fault tolerance: faults, errors, and failures; coding theory.

COMP3221
Microprocessors and Interfacing
Staff Contact: Dr S. Matheson
U1 S2 HPW5
Prerequisite: COMP2011
Notes: Excluded 6.0318, 6.060G, 6.613, ELEC3020. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.
The concept of a microprocessor system, busses, address spaces, memory devices, bus timing, bus standards, the VME bus, I/O device interfacing, polling, interrupts, DMA interfaces, the 68000 processor family, the C programming language, device drivers, the device driver software environment, other microprocessors, advanced topics. Laboratory work involves interfacing to and programming MC68000-series microprocessor-based systems.
COMP3231
Operating Systems
Staff Contact: Mr S. Russell
U1 S1 HPW5
Prerequisite: COMP2031
Notes: Excluded 6.632, 6.663G, 6.672. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.
Services provided by operating systems. System calls and tuning. Protection and security.

COMP3311
Database Systems
Staff Contact: Prof J. Hiller
U1 S2 HPW5
Prerequisite: COMP2011
Notes: Excluded 6.663, 6.605G, 6.659G, INFS3608. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.
The relational database model, object data bases, 4GL query languages, database design and implementation, deductive databases. Concurrency, optimization, distribution. A major project involving both design and realization.

COMP3321
Business Systems Organization
Staff Contact: --
U1 S2 HPW5
Prerequisite: COMP2011
Review of the organization of accounting systems in journals, accruals, merchandising. The structure, design, development, and integration of various business systems selected from the following: general ledger; financial reporting; debtors; creditors; stock control; invoicing; purchasing and receiving; fixed assets; payroll. Systems for generating application systems and packages. User interfaces. File specifications and B-tree index files. Distributed commercial systems. Group project: the partial implementation of a business system.

COMP3331
Computer Networks and Applications
Staff Contact: Prof J. Lions
U1 S2 HPW5
Prerequisite: COMP2011, COMP2031
Notes: Excluded 6.633, 6.659G. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.

COMP3411
Artificial Intelligence
Staff Contact: Dr C. Sammut
U1 S1 HPW5
Prerequisite: COMP2011
Notes: Excluded 6.666G. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.

COMP3421
Computer Graphics
Staff Contact: Dr T. Lambert
U1 S1 HPW5
Prerequisite: COMP2011
Notes: Excluded 6.668G. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.

COMP3511
Human-Computer Interaction
Staff Contact: Dr C. Quinn
U1 S1 HPW5
Prerequisite: COMP2011
Notes: Excluded 6.006G. Restricted to program 0600 and Combined degree courses 3611, 3661, 3681, 3701, 3725, 3730, 4770.
Communication between computing systems and their users, with an emphasis on applications related to high-level query languages and searching techniques. Cognitive issues figure prominently in the treatment. Topics include theories and principles of interface design, interaction styles, interactive devices, interface and language testing, the null value problem, natural language systems.

Computer Science and Engineering Level IV
COMP4914/COMP4913
Computer Science 4
Staff Contact: Dr C. Quinn
U10 F
Prerequisites: Completion of program 0600 including 7 Level III units.
The Honours year consists of advanced coursework electives and a thesis. Category C General Education requirements are satisfied by the completion of the subject COMP9015 Issues in Computing, which is taken as part of the Honours subject.

Economics

Economics Level I

ECON1101
Microeconomics 1
Staff Contact: Dr R. Conlon
U1 S1 or S2 HPW3.5
Prerequisites: HSC minimum mark required: Contemporary English 60, 2 unit English (General) 60, or 2 unit English 53, or 3 unit English 1
Notes: Excluded ECON1103, ECON1104, 15.001. Restricted to programs 0600, 1000, 1400, 6810.

ECON1102
Macroeconomics 1
Staff Contact: Dr R. Conlon
U1 S1 or S2 HPW3.5
Prerequisite: ECON1101
Notes: Excluded 15.011. Restricted to programs 0600, 1000, 1400, 6810.
Introduction to the analysis of aggregate output, employment and economic growth and their relationship to the policy issues of unemployment, inflation and the balance of payments. Social accounting and aggregate income and expenditure analysis. Introduction to macroeconomic models of income determination; consumption and investment functions. Role of money and financial institutions; interactions between goods and money markets in equilibrium and disequilibrium situations. Analysis of recent Australian macroeconomic experience.

ECOH1301
Australia in the International Economy in the 20th Century
Staff Contact: Dr D. Meredith
U1 S1 HPW3
Prerequisites: HSC minimum mark required: Contemporary English 60, 2 unit English (General) 60, or 2 unit English 53, or 3 unit English 1
Notes: Excluded 15.901. Restricted to program 6810.
The international economy at the end of the 19th century: trade, factor flows, and payments arrangements. Problems of the international economy between the wars. The impact of World War II and the international economy in the postwar era. Australian economic development and its relationship with the international economy; economic fluctuations; problems of the inter-war period; growth of manufacturing; government policy and action; the importance of the mining industry; economic development and the distribution of income and wealth.

Economics Level II

ECON2101
Microeconomics 2
Staff Contact: Dr R. Conlon
U1 S1 HPW4
Prerequisites: ECON1102, ECON1203
Notes: Excluded 15.002, 15.072, ECON2103, 15.012, ECON2121. Restricted to programs 0600, 1000, 6810.

ECON2102
Macroeconomics 2
Staff Contact: Dr R. Conlon
U1 S2 HPW4
Prerequisites: ECON1102, ECON1203
Notes: Excluded 15.042, 15.062, ECON2104, ECON2122, 15.052. Restricted to programs 0600, 1000, 6810.

ECON2103
Applied Microeconomics
Staff Contact: Dr R. Conlon
U1 S2 HPW3.5
Prerequisite: ECON1102
Co-requisites: ECON1202 or ECON2200
Notes: Excluded 15.002, 15.072, ECON2101, ECON2121, 15.012. Restricted to program 6810.
Structural change in the Australian economy. The effect of different market structures on firms and consumer welfare. Consequences of market failure and the effects of government regulation. Investment decisions in the public and private sectors, including the estimation of future benefits, revenues and costs, the measurement of consumer and producer surplus. Economics of non-renewable and other resources. Australia's international trade and investment and the effects of restrictions on international trade and investment.

ECON2104
Applied Macroeconomics
Staff Contact: Dr R. Conlon
U1 S1 or S2 HPW3.5
Prerequisite: ECON1102
Co-requisites: ECON1202 or ECON2200
Notes: Excluded 15.042, 15.062, 15.202E, 15.052, 15.222E, ECON2102, ECON2122. Restricted to program 6810.
Economic growth and fluctuations in Australia. Inflation, unemployment and balance of payments issues. Fiscal,
monetary, exchange rate and incomes policies. Changes in the structure of the Australian financial system and its links with the international monetary system. Effects of restrictions on capital markets.

Economics Level III

ECON3101
Microeconomics 3
Staff Contact: Dr R. Conlon
U1 S1 HPW4
Prerequisites: ECON2101, ECON2102, ECON2206
Notes: Excluded 15.143, 15.321E, 15.153. Restricted to programs 0600, 1000.
Extensions of microeconomic theory; general equilibrium approaches to economic analysis; international trade including analysis of trade restrictions and distortions. Limitations of the general competitive model; uncertainty and risk with applications to modern theories of corporate behaviour.

ECON3102
Macroeconomics 3
Staff Contact: Dr R. Conlon
U1 S2 HPW4
Prerequisites: ECON2101, ECON2102, ECON2206
Notes: Excluded 15.003, 15.013, 15.322E. Restricted to program 0600.

Electrical Engineering Level II

ELEC2010
Circuit Theory
Staff Contact: School Office
U.5 S1 HPW4
Prerequisites: ELEC1011, PHYS1002, MATH1032
Co-requisite: MATH2520 or MATH2620
Notes: Excluded 6.021A. Restricted to program 0600.
Dynamic response of linear circuits: 1st and 2nd order circuits with DC sources, introduction to higher order circuits. Sinusoidal steady state operation: phasors, impedance and admittance; dynamic response of circuits driven by sinusoidal sources, concepts of power electronics; linearity, network theorems; resonance, bandwidth, and quality factor. Two-port networks: parameters, circuits as filters. Power in steady-state circuits; average and reactive power, power factor, power factor correction. Three-phase circuits: balanced and unbalanced steady-state operation; real and reactive power in balanced circuits, transient analysis.

ELEC2020
Analog Electronics
Staff Contact: School Office
U.5 S2 HPW4
Prerequisites: PHYS2989, ELEC2010
Notes: Excluded 6.021C. Restricted to program 0600.
Operating principles and terminal characteristics of PN diodes, bipolar and field effect transistors, and thyristors. Small signal models of devices, including h-parameter model. Analysis and design of low-frequency Class-A amplifiers, including choice of biasing method.

Environmental Science

Environmental Science Level I

ENVS1011
Environmental Science 1A
Staff Contact: A/Prof B. Fox
U1 S1 HPW6
Notes: Restricted to the Environmental Science Programs.
A mix of lecture, tutorial and laboratory classes outline the global environmental processes which underline major global-scale environmental problems. These problems are placed in perspective with regional case studies to highlight specific issues using seminars, workshops, field excursions and group projects. Processes examined include linkage between the lithosphere and biosphere, atmospheric circulation energy and radiation balance and ecosystem function. Desertification, deforestation, climate change, ozone depletion, energy conversion and pollution are considered together with the political aspects and values inherent in environmental issues.

ENVS1021
Environmental Science 1B
Staff Contact: A/Prof B. Fox
U1 S2 HPW6
Prerequisite: ENVS1011
A mix of lecture, tutorial and laboratory classes outline the linkages between components of the physical environment, particularly the movement of energy and matter. Topics include the Earth's energy balance, nutrient cycles in vegetation and soil, imbalances leading to land degradation and instability. The hydrological cycle is used as a specific example linking inland water sources and marine resources. Regional case studies are used to highlight specific issues using seminars, workshops, field excursions and group projects.

Environmental Science Level II
ENVS2010
Population Analysis and Environment
Staff Contact: A/Prof B. Fox
U.5 S2 HPW3
Prerequisite: ENVS1011
The impact of human population growth on all aspects of resource management in the environment. Limiting resources, time lags, survivorship and the relation to their effects on demographic processes in human populations. The impact of the world population on global-scale environmental problems in terms of different cultures and developmental levels and compared to the Australian situation.

ENVS2020
The Urban Environment
Staff Contact: A/Prof B. Fox
U.5 S2 HPW3
Prerequisites: BIOS1021, CHEM1002, ENVS1011, ENVS1021
Consideration of the special impacts which urbanization has on the environment and of the urban public as a component of the environment. The impacts of industrial and residential activities, conflicts between these, and government regulatory mechanisms.

Banking and Finance
Banking and Finance Level II
FINS2613
Business Finance 2A
Staff Contact: School Office
U1 S1 or S2 HPW3
Prerequisites: ACCT1511, ECON1102 and MATH1032
Notes: Excluded 14.613. Restricted to programs 1400, 6810.
The essential aspects of financial decision-making in business including: factors influencing capital expenditure decisions; alternative approaches to valuation; factors affecting the formulation of the capital structure; influence of the capital market environment.

Banking and Finance Level III
FINS2612
Australian Capital Markets
Staff Contact: School Office
U1 S1 or S2 HPW3
Notes: Excluded 14.864. Restricted to program 1400.
As for FINS5512. See Graduate Study Subject Descriptions.

Banking and Finance Level III
FINS2614
Applied Corporate Finance
Staff Contact: School Office
U1 S1 or S2 HPW3
Prerequisites: FINS2613 or FINS2714
Notes: Excluded 14.614. Restricted to programs 1400, 6810.
Advanced issues associated with the investment and financing decisions of corporations. Topics include mergers and takeovers management buy outs, executive compensation schemes, advanced capital budgeting problems, and issues in treasury management. Discussion on ethical issues.

FINS3615
Investments
Staff Contact: School Office
U1 S1 or S2 HPW3
Prerequisite: FINS2613
Notes: Excluded 14.615. Restricted to program 6810.
An introduction to investment theory and practice. Primary asset pricing models, including CAPM and APT models, relevant empirical tests, and the models to the problem of measuring portfolio performance. Investment management in the social, ethical and economic context. Security analysis of bonds and equities; the use of options, futures and forwards in portfolio hedging and risk management; and current issues in portfolio management including 'green' funds, passive vs active management, index funds and international diversification.

Banking and Finance Level I
FINS2611
Business Finance 2B
Staff Contact: School Office
U1 S1 or S2 HPW3
Prerequisites: ACCT1511, ECON1102 and MATH1032
Notes: Excluded 14.611. Restricted to programs 1400, 6810.
The essential aspects of financial decision-making in business including: factors influencing capital expenditure decisions; alternative approaches to valuation; factors affecting the formulation of the capital structure; influence of the capital market environment.

Geography
Geography Level I
GEOG1031
Environmental Processes
Staff Contact: Dr M. Melville
U1 S2 HPW4
Notes: Excluded GENS4240.
Essential and continuing links between components of the physical environment. Movement of energy and matter in the physical environment, including consideration of Earth's energy balance, the hydrological cycle, nutrient cycles in vegetation and soil, imbalances leading to land degradation and instability, alterations to and movement of materials.
GEOG1051
Global Environmental Problems and Processes
Staff Contact: Dr I. Prosser
U1 S1 HPW3
Notes: Excluded GENs4240. A field excursion, equivalent to 8 tutorial hours, is a compulsory part of the subject.
Principles and processes necessary to appreciate the physical background behind major global-scale environment problems. Includes the linkages between the lithosphere, hydrosphere and biosphere, atmospheric circulation, energy and radiation balance and ecosystem function.

GEOG1062
Australia and Global Development
Staff Contact: A/Prof I. Burnley
U1 S2 HPW3
Notes: Excluded 26.455. A field excursion, equivalent to 8 tutorial hours, is a compulsory part of the subject.
The progressive integration of Australia into global capitalism and social and environmental consequences of this process in Australia and Pacific Rim countries with consideration of relationships between world production centres and Australia.

Geography Level II

GEOG2013
Geographical Data Analysis
Staff Contact: Dr B. Parolin
U1 S1 HPW4
Prerequisites: GEOG1051 and either GEOG1031 or GEOG1062
Notes: Excluded GEOG2093.
Inferential statistics and hypothesis testing in the analysis of spatial data. Methods of analysing categorical data, identifying spatial correlation and associations, and multivariate methods applicable to topics in physical and economic geography.

GEOG2021
Introduction to Remote Sensing
Staff Contact: Mr A. Evans
U1 S2 HPW4
Principles and technical aspects of remote sensing. Colour theory, photographic and digital imaging systems, and image interpretation. Some computer related skills are taught in the laboratory.

GEOG2032
Geomorphology
Staff Contact: Dr W. Erskine
U1 S1 HPW4
Prerequisites: GEOL1201, GEOG1031 or GEOG1051
Fluvial geomorphology including water movement and sediment transport in river channels, hydraulic geometry, channel patterns, river channel changes. Geomorphic processes and land forms in coastal and arid environments including their quaternary development in Australia.

GEOG2092
Australian Social and Economic Landscapes
Staff Contact: A/Prof I. Burnley
U1 S2 HPW3
Prerequisites: GEOG1062
Notes: Three days fieldwork, equivalent to 24 tutorial hours, is compulsory.
The principal forces shaping the contemporary social and economic landscapes of Australia involving Australia's changing population profile and distribution, changing urban landscapes, regional disparities in social and economic well-being and the declining fortunes of rural Australia.

GEOG2093
Geographic Methods
Staff Contact: Dr S. Walker
U1 S2 HPW4
Prerequisites: GEOG1051 and either GEOG1031 or GEOG1062
Notes: Excluded GEOG2013.
Statistical procedures and field methods used in both human and physical geography. Includes: measures of spatial distribution; samples and estimates; measures of association and correlation; data collection and computer analysis; field observations. Three days fieldwork is compulsory.

GEOG2102
Environmental Issues in Australia
Staff Contact: Not offered in 1992.
U1 S2 HPW3
Notes: Not offered in 1992.
Selected issues in Australia demonstrating the impacts of economic growth and development on the natural environment. Case studies from tourist developments, forestry, agriculture and land degradation, suburbanization, water use, and power generation. Emphasis is for environmentally sound planning and resource management practices.

Geography Level III

GEOG3000
Field Project 3
Staff Contact: Dr M. Sant, Dr M. Melville
U0 S2 HPW3
Prerequisite: GEOG3011 or GEOG2032 or GEOG3021 or GEOG3211
A five days field project normally undertaken during a recess, designed to support teaching in Year 3 (Level III) subjects in physical and economic geography and to demonstrate the application of field methods in problem solving and research projects.

GEOG3011
Pedology
Staff Contact: Dr M. Melville
U1 S2 HPW4
Prerequisites: GEOG1031 or GEOG1051 and any one of CHEM1101 or CHEM1401, or both GEOL1101 and GEOL1201 or both BIOS1011 and BIOS1021
Soil physical and chemical properties and their interrelationships, emphasizing clay-mineral structure and
behaviour, soil solution chemistry and soil water movement. Soil properties in natural, rural and urban landscapes. Laboratory analysis of soil physical and chemical characteristics with emphasis on properties associated with land capability assessment.

GEOG3021
Biogeography
Staff Contact: A/Prof J. Dodson
U1 S1 HPW4
Prerequisites: GEOG1031 or GEOG1051 or both BIOS1011 and BIOS1021

The development of the Australian biogeographic element. Study of the recent past to understand present distributions of taxa. The role of humans and climatic change on Australian vegetation. Classification, ordination and mapping of vegetation. Ecology of selected Australian vegetation types.

GEOG3032
Remote Sensing Applications
Staff Contact: Mr A. Evans
U1 S1 HPW4
Prerequisite: GEOG2021

Techniques and applications of remotely sensed data. Both introduction to image processing techniques and the use of remote sensing in geography laboratories are computer based and emphasise the application of knowledge learned in class and in GEOG2021.

GEOG3042
Environmental Impact Assessment
Staff Contact: Dr W. Erskine
U1 S2 HPW4
Prerequisite: GEOG1031 or GEOG1051

Introduction to the legal requirements and practical procedures for the preparation of environmental impact statements and the methods of impact evaluation. Examination of case studies dealing with typical environmental, economic and social impacts.

GEOG3051
Soils and Landforms
Staff Contact: Dr I. Prosser
U1 S2 HPW4
Prerequisites: GEOG3011 or GEOG2032 or GEOG2081; or by permission of Head of School

Systematic analysis of processes operating in drainage basins, covering weathering, runoff generation, erosion, sediment storage, sediment yield and the response of basins to altered conditions. Soil stratigraphy and classification, pedogensis and soil mapping with emphasis on the Riverina plain.

GEOG3062
Environmental Change
Staff Contact: A/Prof J. Dodson
U1 S1 HPW4

GEOG3122
Geographic Information Systems
Staff Contact: Prof B. Garner
U1 S1 HPW4

Basic concepts and principles of GIS with particular reference to applications in environmental studies, resource evaluation, and urban and regional analysis. Practical work is based on the MAP and other GIS software.

GEOG3142
Geographic Information Systems Applications
Staff Contact: Prof B. J. Garner and Dr Q. Zhou
U1 S1 HPW4
Prerequisite: GEOG3122.

Applications of geographical information systems in resources and environmental management and urban and regional analysis. Case studies include the monitoring of land degradation, management of biological and physical resources and environmental conflict resolution.

GEOG3152
Social Welfare and Urban Development
Staff Contact: Dr S. Walker
U1 S2 HPW4
Prerequisite: GEOG2092 or GEOG3202

A consideration of welfare aspects of urban development, including social policies and urban structure; social costs and benefits of urban renewal especially in the inner city; growth centres and new towns; distributional aspects of social services; and spatial disparities in social well-being.

GEOG3161
Computer Mapping and Data Display
Staff Contact: Prof B. Garner
U1 S1 HPW4

Introduction to theoretical and practical problems in displaying data graphically and constructing thematic maps by computer using the GIMMS mapping package. The emphasis is on developing skills in automated cartography through hands-on experience. No previous computing expertise is required.

GEOG3172
Spatial Population Analysis
Staff Contact: A/Prof I. Burnley
U1 S2 HPW4
Prerequisite: GEOG2092

Population growth and structure in an international urban and regional context involving consideration of fertility, mortality and migration within the framework of the demographic and epidemiological transition and migration theory, and the impacts of structural change.

GEOG3181
Urban Activity Systems
Staff Contact: Dr B. Parolin
U1 S1 HPW4
Prerequisite: GEOG2092

Focus is on trip making, movement, and activity patterns in urban areas. Topics include the activity concept, travel behaviour and urban spatial structure; constraints to individual travel behaviour and activity pattern linkages; travel and activity patterns of the transport disadvantaged.
GEOG3192
Urban and Regional Development
Staff Contact: Dr M. Sent
U1 S2 HPW4
Prerequisite: GEOG2092
Theories of urban and regional change leading to assessment of the role of planning. Emphasis on resource allocation, conflict resolution and evaluation techniques including cost-benefit analysis and environmental impact assessment. Examples are taken principally from the fields of recreation and tourism.

GEOG3202
Australian Social Environments
Staff Contact: Dr P. Simons
U1 S1 HPW4
Prerequisite: GEOG1051
Focus is on the interaction between human communities and the built environment in Australia: the effects of the natural environment on the evolution of settlement patterns; detailed analysis of rural and metropolitan social environments. Emphasis on inner city, suburbia, behavioural and social area approaches, and to managerialist and structural theories of social change on areas and their communities.

GEOG3211
Australian Environment and Natural Resources
Staff Contact: Dr M. Fox
U1 S1 HPW4
Prerequisite: GEOG2032 or GEOG1051
Notes: Excluded GEOG2081.
Features of the Australian physical and biotic environment in relation to their historical development and current status. The conflict between resource exploitation and conservation, shown with topical issues of natural resource use.

GEOG3221
Advanced Geographic Methods
U1 S1 HPW4
Prerequisite: GEOG2093
Notes: Excluded GEOG2013.

GEOG3333
Special Topic
Staff Contact: Dr M. Melville
U1 S1 or S2 HPW4
Admission by permission to suitable students with good passes in at least four subjects at Level III. Individually supervised reading and assignments as an approved topic in Geography not otherwise offered.

Geography Level IV
GEOG4100/GEOG4050
Honours Geography
Staff Contact: Dr M. Melville
U10 F
Prerequisites: Completion of program 2700, 2527 or 6851 including GEOG2013, GEOG3221 and 8 Level III units.
Details of Honours Geography for Science students are available from the School of Geography office. Students are required to undertake an original piece of work extending throughout the year and to submit a thesis based upon it; and to participate in seminars and fieldwork as notified by the School.
The Category C General Education requirements are met through compulsory coursework during the Honours program.

Applied Geology
Field tutorials are an essential part of these subjects, and are held during weekends and/or recesses. Dates and costs are available during the first week of the subject. Attendance is compulsory.

Applied Geology Level I
GEOL1101
Geological Processes
Staff Contact: Dr P. Lennox
U1 S1 HPW6
Notes: Field work of up to 2 days.
Stream 1
Stream 2
Available only with permission of the Head of School. A program of projects and independent study of selected aspects of geology.

GEOL1201
Geological Environments
Staff Contact: Dr P. Lennox
U1 S2 HPW6
Prerequisites: HSC Exam Score Required: 2 unit Mathematics 55-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 and 2 unit Science (Physics) 53-100, or 2 unit Science (Chemistry) 53-100, or 2 unit Science (Geology) 53-100, or 2 unit Science (Biology) 53-100, or 4 unit Science 1-50 and GEOL1101. Two unit Mathematics refers to the 2 Unit Mathematics subject, related to the 3 unit Mathematics subjects, not to Mathematics in Society or Mathematics in Practice.
Notes: Field work of up to 4 days.
Applied Geology Level II

GEOL2011
Mineralogy and Igneous Petrology
Staff Contact: Dr P. Rickwood / A/Prof B. Henson
U1 S1 HPW6
Prerequisite: GEOL1101
Notes: Excluded GEOL6321. Field work of up to 5 days.

GEOL2031
Sedimentology and Palaeontology
Staff Contact: A/Prof C. Ward / Prof J. Roberts
U1 S1 HPW6
Prerequisite: GEOL1101
Notes: Excluded GEOL6201. Fieldwork of up to 5 days.

GEOL2022
Petrology and Structural Geology
Staff Contact: A/Prof C. Ward / A/Prof B. Henson / Dr P. Lennox
U1 S2 HPW6
Prerequisite: GEOL2111
Notes: Fieldwork of up to 4 days.

GEOL2041
Geological Computing
Staff Contact: Dr C. Chork
U.5 S1 HPW3
Prerequisite: GEOL1101
Operating systems and hardware. Fortran programming; text editing; control for VAX and PC’s; examples of computing applied to geological problems. Practical work on geostatistical problems using library programs such as SPSS and BMDP and commercial PC software such as Statgraf.

GEOL2042
Geological Statistics
Staff Contact: Dr C. Chork
U.5 S2 HPW3
Prerequisite: GEOL1101
Measurement scales in geology. Probability distributions and their properties; sampling and tests of significance. Analysis of varice, introducito matrix algebra, egression analysis, trend surface analysis, time series analysis, Markov chain analysis, introduction to non-parametric statistics, introduction to multivariate statistics data. Application of these techniques using geological data.

GEOL2051
Introductory Geophysics
Staff Contact: Mr N. Merrick
U.5 S1 HPW3
Prerequisite: GEOL1101
Notes: Fieldwork of up to 2 days.
Principles of gravity, geomagnetism, geothermy and seismology and their relation to shape, internal constitution and dynamic processes of the earth. Introduction to radiometric, gravity and magnetic exploration methods.

GEOL2062
Geological Surveying
Staff Contact: A/Prof A. Albani
U.5 S2 HPW3
Prerequisite: GEOL1101
Notes: Fieldwork of up to 4 days.

GEOL2072
Environmental Geology
Staff Contact: Mr G. Mc Nally / Dr W. Milne-Home / A/Prof A. Albani
U.5 S2 HPW3

GEOL2092
Geochemistry
Staff Contact: Dr P. Rickwood / Dr C. Chork
U.5 S2 HPW3
Prerequisite: GEOL1101

GEOL6201
Marine Geology 1
Staff Contact: A/Prof A. D. Albani / Dr C. R. Ward
U1 F HPW3
Prerequisites: GEOL1101 and GEOL1201
Notes: Excluded Program 2500, 2503, GEOL2031, GEOL2022. Fieldwork of up to 8 days.
Flow regimes and sedimentary structures. Depositional processes and sedimentation in modern and ancient environments. The facies concept: principles of gravity, geomagnetism, geothermy and seismology and their relation to shape, internal constitution and dynamic processes of the earth. Igneous and sedimentary rock types of the ocean floor and their significance.

GEOL6221
Introductory Geophysics
U.5 S1 HPW3
Prerequisite: GEOL1101
Notes: Excluded programs 2500, 2503, GEOL2051. Fieldwork of up to 2 days.

GEOL7221
Surficial Materials and Processes
Staff Contact: A/Prof C. R. Ward
U1 S2 HPW5
Prerequisite: GEOL2111
Notes: Restricted to program 2527.
The structure and properties of clay minerals. Techniques for clay identification. Chemical weathering, origin and industrial use of clay minerals. Sedimentary petrology. Composition, texture, microscopic identification and origin of clastic and non-clastic sedimentary rocks. The hydrological cycle, hydrological characteristics of rocks exploration and monitoring of groundwater resources.

GEOL8220
Sedimentology
Staff Contact: See GEOL3121
U.5 S1 HPW2
Prerequisite: GEOL1201
Notes: Excluded GEOL2031. Restricted to program 2503.
As for Sedimentology in GEOL3121 Earth Environments 1.

Applied Geology Level II/III

GEOL6231
Coastal Monitoring Techniques
Staff Contact: A/Prof A. D. Albani
U1 F HPW3
Notes: Excluded programs 2500, 2503. Fieldwork of up to 8 days.
General principles of surveying, Coastal position fixing, Co-ordinates systems and their application to coastal mapping, Long and short term monitoring of coastal changes, Tides and their measurement and bathymetric surveys. Intensive practical approach, designed to give an understanding of coastal surveying.

Applied Geology Level III

GEOL3011
Mineralogical Techniques
Staff Contact: -
U.5 S1 HPW3
Prerequisite: GEOL2011
Notes: Not available until 1993.

GEOL3021
Igneous and Metamorphic Processes
Staff Contact: A/Prof B. J. Hensen
U1 S1 HPW4
Prerequisite: GEOL2011
Notes: Field tutorials of 3 days duration, Not available until 1993.
Origins of silicate liquids, trace elements and isotopes as petrogenetic indicators, Field petrographic and literature studies of igneous suites, Metamorphic reactions, Mineral assemblages as geobarometers and geothermometers, Pressure-temperature-timepaths and tectonic setting of metamorphism.

GEOL3031
Stratigraphy and Basin Analysis
Staff Contact: Prof J. Roberts
U1.5 S1 HPW6
Prerequisite: GEOL2031
Notes: A field mapping camp of 8 days duration is included, Not available until 1993.
Stratigraphy, Geological evolution of the Australian continent with emphasis on the development of the Precambrian craton, Phanerozoic basins and mobile zones.

GEOL3052
Exploration Geophysics
Staff Contact: Mr N. Merrick
U1 S2 HPW4
Prerequisite: GEOL1201
Notes: Field tutorials of 3 days duration, Not available until 1993.
Introduction to seismic, electrical and electromagnetic methods of geophysical exploration, Data interpretation and application of these methods for mineral, petroleum, coal and groundwater exploration and engineering projects.

GEOL3072
Engineering Geology
Staff Contact: Prof G. Hocking
U.5 S2 HPW3
Notes: Field tutorials of 3 days duration, Not available until 1993.
Rock and soil masses and their engineering behaviour, Influences of composition and fabric, Discontinuities in rocks and soils and their analysis for engineering purposes, Mechanical properties and their measurement, Stress-strain theory.

GEOL3082
Structural Geology
Staff Contact: Dr P. Lennox
U1.5 S2 HPW3
Prerequisite: GEOL2022
Notes: A field mapping project of 5 days duration, Not available until 1993.
Structural analysis at the microscopic, mesoscopic and macroscopic scales, Structural analysis using Bermagui, Cooma and Broken Hill Terrains, Folds, faults and foliation development, Strain analysis, deformation mechanisms and the relationship between deformation and metamorphism.

GEOL3092
Exploration Geochemistry
Staff Contact: Dr P. Lennox
U.5 S2 HPW2
Prerequisites: GEOL2092 and GEOL3101
Notes: Field tutorials of up to 3 days duration, Not available until 1993.
Principles and techniques of soil drainage and rock geochemistry as applied to mineral exploration.
GEOL3101
Ore Deposits
Staff Contact: A/Prof G. Taylor / Dr A. Dunlop
U1 S1 HPW6
Prerequisite: GEOL2022 or GEOL3011
Notes: Field tutorials of 4 days duration. Not available until 1993.
Characteristics of the main types of mineral deposits and their mode of origin. Porphyry, copper, gold, volcanic-sedimentary magmatic, iron, maganese, residual and placer ores. Study of selected ores and minerals under the microscope.

GEOL3102
Fossil Fuels and Non-Metallic Resources
Staff Contact: A/Prof C. Ward
U1 S2 HPW6
Prerequisite: GEOL2011 or GEOL3031
Notes: Field tutorials of 2 days duration. Not available until 1993.

GEOL3111
Earth Materials 3
Staff Contact: Dr P. C. Rickwood / Dr C. Y. Chork
U1 S3 HPW6
Prerequisite: GEOL2211
Notes: Not available after 1992.

GEOL3121
Earth Environments 2
Staff Contact: Prof J. Roberts
U1 S1 HPW6
Prerequisite: GEOL2121
Notes: Not available after 1992.
Stratigraphy. Geological evolution of the Australian continent with emphasis on the development of the Precambrian craton, Phanerozoic basins and mobile zones.

GEOL3130
Mathematical Geology 2
Staff Contact: Dr C. Chork
U.5 S1 HPW3
Prerequisite: GEOL2230
Notes: Not available after 1992.
Analysis of variance. Introduction to matrix algebra. Regression analysis; trend surface analysis; time series analysis; Markov chain analysis. Introduction to nonparametric statistics. Introduction to multivariate statistics. Practical work based on the use of SPSS, BMDP and other library programs.

GEOL3141
Mineral and Energy Resources 1
Staff Contact: A/Prof G. Taylor / Dr A. Dunlop
U1 S1 HPW6
Prerequisite: GEOL2211
Notes: Fieldwork of up to 3 days. Not available after 1992.
Characteristics of the main types of mineral deposits and their mode of origin. Porphyry, copper, gold, volcanic-sedimentary magmatic, iron, maganese, residual and placer ores. Study of selected ores and minerals under the microscope.

GEOL3211
Earth Materials 4
Staff Contact: A/Prof C. Ward / A/Prof B. Hansen
U1 S2 HPW6
Prerequisite: GEOL2121
Notes: Fieldwork of up to 4 days. Not available after 1992.

GEOL3241
Mineral and Energy Resources 2
Staff Contact: A/Prof C. Ward
U1 S2 HPW6
Prerequisite: GEOL2121 or GEOL8220
Notes: Fieldwork of up to 4 days. Not available after 1992.

GEOL3251
Engineering and Environmental Geology
Staff Contact: Prof G. Hocking / A/Prof A. Albani / Dr W. Milne-Home
U1 S2 HPW6
Notes: Fieldwork of up to 3 days. Not available after 1992.
GEOL3271
Structural Geology
Staff Contact: Dr P. Lennox
U.5 S2 HPW2
Prerequisite: GEOL2211
Notes: Fieldwork of up to 4 days. Not available after 1992.
Advanced Structural Geology: Analysis of structural elements at the microscopic, mesoscopic and macroscopic scales. Detailed studies of the analysis of metamorphic terrains, e.g., Cooma Complex, Broken Hill.

GEOL3281
Exploration Geochemistry
Staff Contact: Dr A. Dunlop
U.5 S2 HPW2
Prerequisites: GEOL3111, GEOL3141
Notes: Not available after 1992.
Principles and techniques of soil, drainage and rock geochemistry as applied to mineral exploration.

GEOL3331
Exploration Geophysics
Staff Contact: Mr N. Merrick
U1 S2 HPW3
Prerequisite: GEOL1201
Notes: Fieldwork of up to 3 days. Not available after 1992.
Physical properties of rocks and soils. Introduction to seismic, gravity, magnetic, electrical, electromagnetic and radiometric methods of geophysical exploration. Application of these methods in the search for mineral deposits, petroleum, coal and groundwater and civil and mining engineering projects. Interpretation of geophysical data.

GEOL6330
Exploration and Seismic Methods
Staff Contact: Mr N. Merrick
U.5 S2 HPW3
Prerequisite: GEOL6201
Notes: Excluded GEOL8360. Fieldwork of up to 1 day.
Principles of gravity, geomagnetism, geothermy and seismology and their relation to shape, internal constitution and dynamic processes of the earth. Introduction to radiometric, gravity and magnetic exploration methods.

GEOL6311
Marine Geology 2
Staff Contact: A/Prof A. Albani
U1 F HPW3
Prerequisite: GEOL6201
Notes: Excluded GEOL3102, GEOL3031, GEOL2072, GEOL3121, GEOL3251, GEOL3211. Restricted to program 6833.

GEOL6321
Coastal Environmental Assessment
Staff Contact: A/Prof A. Albani
U1 F HPW3
Notes: Restricted to programs 6832, 6833, 6870.
The morphology of coastal environments and the relationship between water masses and the sedimentary and benthic characteristics of the bottom. Analytical methodology and statistical data evaluation. Practical work from data evaluation to environmental assessment involves each student as an active member of a project team.

GEOL8310
Stratigraphy
Staff Contact: See GEOL3121
U.5 S1 HPW2
Prerequisite: GEOL8220
Notes: Excluded GEOL3121. Restricted to program 2503.
As for Stratigraphy, in GEOL3121 Earth Environments 2.

GEOL8320
Gravity and Magnetic Methods
Staff Contact: –
U.5 S1 HPW3
Prerequisites: PHYS1002, MATH1032
Notes: Fieldwork of up to 1 day. Not offered in 1992.

GEOL8330
Seismic Methods
Staff Contact: –
U.5 S1 HPW3
Prerequisites: PHYS1002, MATH1032
Notes: Fieldwork of up to 1 day. Not offered in 1992.

GEOL8340
Electrical Methods
Staff Contact: Mr N. Merrick
U.5 S1 HPW3
Prerequisites: PHYS1002, MATH1032
Notes: Fieldwork of up to 1 day.

GEOL8350
Geological Applications
Staff Contact: –
U.5 S1 HPW4
Prerequisite: GEOL1201
Notes: Restricted to program 2503. Not offered in 1992.
A subject of ten weeks' duration. Structural Geology: Elements of structural geology, stereographic projection and fracture analysis. Geology of Fuels: Origin of coal, oil and natural gas; stratigraphic and structural consideration...
of oil and coalfields. Hydrogeology. Principles of hydrogeology; transmission of groundwater in rocks and soils.

GEOLE8360
Geophysical and Geological Applications
Staff Contact: -
U.5 S2 HPW3
Prerequisite: GEOL1201

Geological Interpretation of Geophysical data: Seismic stratigraphy. Coal-seam geometry from high resolution seismic and inseam data. Geology of Ore Deposits: Mineralogy of industrially important metallic and non-metallic minerals. Theories of ore formation including secondary enrichment processes.

Applied Geology Level IV
GEOL4303
Geology Honours
Staff Contact: School Office
U10 F
Prerequisites: Completion of programs 2500, 2503, including 8 Level III units.

Students with a double major in geology will follow the program set for Year 4 students in the Faculty of Applied Science Course 3000 Applied Geology. Students with a single major will follow a course of advanced study that includes geological topics subject to approval of the Head of School.

GEOL4313
Earth and Environmental Science (Honours)
Staff Contact: School Office
U10 F
Prerequisites: Completion of program 2527 including 8 Level III units

For combined Geology/Physics honours see entry under Board of Studies in Science and Mathematics.

The Category C General Education requirements are met through compulsory coursework during the Honours Program.

Information Systems

Information Systems Level II
INFS1602
Computer Information Systems 1
Staff Contact: Ms A. Katalanos
U1 S1 or S2
Notes: Excluded 14.602. Restricted to programs 0600, 1000, 1400, 6810 and Course 3971.

An understanding of the content of information systems, types in society; information systems at an organizational level, typical commercial applications, the systems lifecycle, design concepts, designing and setting up a simple system using a fourth generation language.

INFS2603
Computer Information Systems 2
Staff Contact: Ms A. Katalanos
U1 S2 HPW3
Prerequisite: INFS1602
Notes: Excluded 14.603, INFS3606. Restricted to programs 0600, 1000, 1400, 6810 and Course 3971.

System analysis and design: requirements analysis and specification, logical and physical design of business systems, specification and updating of files, man-machine dialogue procedures. Comparison of design methodologies.

INFS2609
Computer Information Systems Technology
Staff Contact: Ms A. Katalanos
U1 S1 HPW3
Prerequisite: COMP1811 or INFS1602
Notes: Restricted to programs 1400, 6810, 1000, 0600 and Course 3971.

Programming in the commercial environment; COBOL; Hardware and operating; systems concepts and their impact on the commercial computing environment. Introduction to computer networks and distributed systems. Introduction to object-oriented programming.

INFS3616
Commercial Programming Principles
Staff Contact: Ms A. Katalanos
U1 S2 HPW3
Prerequisite: INFS3605.
Co-requisite: INFS3692
Notes: Restricted to Course 3971.

An advanced treatment of the practice of implementing commercial systems. Topics include the use of library code, program design for performance, the use of code generators, project control and reporting practice.

Information Systems Level II/III
INFS2691
Industrial Training 1
Staff Contact: Ms A. Katalanos
U0 S1 HPW1
Prerequisite: INFS1602
Notes: Restricted to Course 3971.

A practical treatment of the characteristics of commercial information systems. Topics include analysis of an existing information system; development of overview documentation of the system; evaluation of the interface design; consideration of the role of security and control mechanisms.

INFS3605
Computer Systems Implementation
Staff Contact: Ms A. Katalanos
U1 S1 HPW3
Prerequisite: INFS2603
Notes: Excluded 14.605. Restricted to programs 0600, 1400, 6810 and Course 3971.

Supervised implementation of an information systems project in a commercial programming language. Advanced programming techniques: sub-programs, inter-active
programming, inter-active file access. Life cycle physical design, debugging, maintenance, version control, testing, user documentation, management of human resources in an implementation environment, project estimating and control, CASE technologies, comparison of a range of programming languages.

INFS3607
Distributed Computer Systems
Staff Contact: Ms A. Katalanos
U1 S2 HPW3
Prerequisite: INFS2603
Notes: Excluded 6.633, 14.607. Restricted to programs 0600, 1400, 6810 and Course 3971.
Advanced data communication concepts, computer networks, reference to international standards and common industry communications software packages; transaction processing software and interface with data management systems; local networks; interaction between text processing and data processing; a case involving the design of a telecommunications based commercial system.

INFS3608
Database Systems
Staff Contact: Ms A. Katalanos
U1 S1 HPW3
Prerequisite: INFS2603
Notes: Excluded 14.608, COMP3311. Restricted to programs 0600, 1400, 6810 and Course 3971.
Advanced data analysis and modelling techniques; database management system architectures including hierarchical, network and relational approaches; database reliability, security and integrity issues; data description and manipulation languages.

INFS3611
Information Systems Development
Staff Contact: Ms A. Katalanos
U1 S2 HPW3
Prerequisites: INFS2603 and approval from Head of School
Notes: Excluded 14.611. Restricted to programs 0600, 6810, 1400 and Course 3971.
A systems analysis design case study where students are required to produce: statement of requirements, feasibility/evaluation study, logical design, physical design and presentation of proposals to users. User requirements elicitation techniques and approaches, project management, alternative design methodologies, information systems life cycle and practical use of CASE tools.

INFS3692
Industrial Training 2
Staff Contact: Ms A. Katalanos
U0 S2 HPW1
Prerequisites: INFS2691 and INFS2603.
Co-requisite: INFS3616
Notes: Restricted to Course 3971.
An in-depth practical exposure to information systems development. Topics include the structure and management of the implementation teams; the roles of users and information staff in implementation; scheduling and control during implementation.

INFS4693
Industrial Training 3
Staff Contact: Ms A. Katalanos
U0 S1 HPW1
Prerequisite: INFS3692.
Co-requisite: INFS3611
Notes: Restricted to programs Course 3971.
In-depth practical work in information systems analysis and Design. Topics include the structure and management of analysis and design teams; the roles of users and Information Systems staff in analysis and design; scheduling and control during analysis and design.

Information Systems Level IV

INFS4003/INFS4004
Information Systems (Honours) Thesis
Staff Contact: Ms A. Katalanos
U10 F
Prerequisites: Completion of program 1400 including 6 Level III units.

INFS4794
Thesis (Information Systems)
Staff Contact: Ms A. Katalanos
Available only to Year 4 (Honours) students.

INFS4805
Information Systems Auditing
Staff Contact: Ms A. Katalanos
As for INFS5905. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4810
Advanced Data Management
Staff Contact: Ms A. Katalanos
As for INFS5926. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4811
Knowledge Based Information Systems
Staff Contact: Ms A. Katalanos
As for INFS5927. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4812
Managing Software Development
Staff Contact: Ms A. Katalanos
Software engineering of complex systems, project planning and management, estimation models and techniques, project scheduling, software quality, reliability, assurance, software project productivity models.

INFS4826
Object Orientated Information Systems
Staff Contact: Ms A. Katalanos
As for INFS5925. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.
INFS4853
Advanced Systems Management
Staff Contact: Ms A. Katalanos
As for INFS5953. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4857
Operations Research for Management 1
Staff Contact: Ms A. Katalanos
As for INFS5957. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4886
Research Topics in Information Systems 1
Staff Contact: Ms A. Katalanos
As for INFS5986. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4887
Research Topics in Information Systems 2
Staff Contact: Ms A. Katalanos
As for INFS5987. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4891
Decision Support Systems
Staff Contact: Ms A. Katalanos
As for INFS5991. See Graduate Study: Subject Descriptions in the Faculty of Commerce and Economics Handbook.

INFS4893
Special Topic in Information Systems
Staff Contact: Ms A Katalanos
As for INFS 5993. See Graduate Study: Subject Descriptions for the Faculty of Commerce and Economics Handbook.

INFS4898
Project Seminar
Staff Contact: Ms A. Katalanos

Japanese

Japanese Level I
All Japanese subjects are restricted to programs 0600, 1400, and Course 3971 and Advanced Science students in Program 1000.

JAPN1000
Japanese 1A (Core)
Staff Contact: A/Prof W. Purcell
U1 S1 HPW5
Prerequisite: JAPN1000 or equivalent
Notes: Excluded JAPN1101, JAPN1201.

Further acquisition of communication skills in basic Japanese, regarding everyday non-technical topics. A further 100 Kanji are introduced and developed through progressive practice.

JAPN1100
Japanese 1A (Intermediate)
Staff Contact: A/Prof W. Purcell
U1 S1 HPW5
Prerequisites: 70-100 percentile range in 2-unit NSW HSC Japanese or 80-100 percentile range in 2-unit Z NSW HSC Japanese, or equivalent (subject to placement test)
Notes: Excluded JAPN1000, JAPN1200.

Further develops students' fundamental knowledge of spoken/written Japanese and introduces them to authentic Japanese through tapes and readings in order to refine communication skills. 150 Kanji are progressively introduced.

JAPN1201
Japanese 1A (Advanced)
Staff Contact: A/Prof W. Purcell
U1 S1 HPW5
Prerequisites: 35-50 percentile range in 3-unit NSW HSC Japanese or competence in Japanese (subject to placement test)
Notes: Excluded JAPN1000, JAPN1100.

Builds upon students' knowledge of Japanese language. Skills are improved through communicative (both written and spoken) activities. 150 Kanji are introduced progressively.

JAPN1001
Japanese 1B (Core)
Staff Contact: A/Prof W. Purcell
U1 S2 HPW5
Prerequisite: JAPN1000 or equivalent
Notes: Excluded JAPN1101, JAPN1201.

Introduction to modern Japanese speaking, listening, reading and writing using communicative methods. Hiragana, Katakana and 100 Kanji are introduced and developed through progressive practice.

JAPN1100
Japanese 1B (Intermediate)
Staff Contact: A/Prof W. Purcell
U1 S2 HPW5
Prerequisite: JAPN1100 or equivalent
Notes: Excluded JAPN1101, JAPN1201.

Further acquisition of communication skills in basic Japanese, regarding everyday non-technical topics. A further 100 Kanji are introduced and developed through progressive practice.

JAPN1200
Japanese 1B (Advanced)
Staff Contact: A/Prof W. Purcell
U1 S1 HPW5
Prerequisites: JAPN1200 or equivalent (subject to placement test)
Notes: Excluded JAPN1001, JAPN1101.

Looks at Japanese usage, both written and spoken, for those who have acquired a high level of competency in Japanese. A further 200 Kanji are introduced.
Law

LAWS2160
Administrative Law
S1 or S2 HPW4
Notes: Restricted to Course 4770.

LAWS1120
Legal System of Torts
F HPW4
Notes: Restricted to Course 4770.

LAWS1410
Contracts
F HPW4
Notes: Restricted to Course 4770.

LAWS1610
Criminal Law
F HPW4
Notes: Restricted to Course 4770.

LAWS3010
Property and Equity
F HPW4
Notes: Restricted to Course 4770.

LAWS6210
Law, Lawyers and Society
S1 or S2 HPW4
Notes: Restricted to Course 4770.

LAWS7410
Legal Research and Writing 1
F HPW2
Notes: Restricted to Course 4770.

Legal Studies and Taxation

Legal Studies and Taxation Level I

LEGT7711
Legal Environment of Commerce
Staff Contact: School Office
U1 S1 or S2 HPW3
Prerequisites: HSC minimum mark required - 2 unit English (General) 60 or 2 unit English 53 or 3 unit English 1
Notes: Excluded 14.774. Restricted to programs 1400, 6810 and Course 3971.

The Australian legal system and areas of substantive law relevant to commerce including contract, business organization, employment, commercial arbitration, advertising, trade regulation, civil compensation, discrimination.

Legal Studies and Taxation Level II

LEGT7721
Legal Transactions in Commerce
Staff Contact: School Office
U1 S1 or S2 HPW3
Notes: Restricted to program 1400 and Course 3971.

General principles of law of contract and specialized commercial transactions including banking and negotiable instruments, insurance, agency, sale of goods, bailment, suretyship.

LEGT7731
Legal Regulations of Commerce
Staff Contact: School Office
U1 S1 or S2 HPW3
Prerequisite: LEGT7711
Notes: Restricted to program 1400 and Course 3971.

The regulation of restrictive trade practices and sales promotion. The legal framework of marketing strategy with special reference to anti-competitive practices (including collusive activity, exclusive dealing, price discrimination, resale price maintenance, mergers and monopolization) and consumer protection law (including misleading and deceptive advertising and other unfair practices). Consumer credit; product liability; protection of intellectual property.

Legal Studies and Taxation Level III

LEGT7741
Legal Organization of Commerce
Staff Contact: School Office
U1 S2 HPW3
Prerequisite: LEGT7721
Notes: Restricted to programs 1400 and Course 3971.

The law relating to corporations including company takeovers and the securities industry, partnerships, joint ventures and trusts, with special reference to their comparative utility.

LEGT7751
Taxation Law
Staff Contact: School office
U1 S1 HPW4
Prerequisite: LEGT7721 or LEGT7731
Notes: Restricted to program 1400 and Course 3971.

The law and practice of the taxation of income under the Income Tax Assessment Act 1936 (Commonwealth) including the concepts of income and allowable deductions; alienation of income; taxation of partnership, trusts and corporation; tax avoidance and evasion. Taxes. Introduction to stamp duties, payroll tax, land tax and sales tax. Tax policy.

Marine Science

Marine Science Level II

MSCI2001
Introductory Marine Science
Staff Contact: Dr P. Dixon
U1 S1 HPW4
Notes: Fieldwork in Midyear Recess.

Ocean basins, sediments, properties of seawater, ocean circulation, coasts and coastal processes. Marine biology and ecology, primary and secondary productivity.
Marine Science level III

MSCI3001
Physical Oceanography
Staff Contact: Dr P. Dixon
U1 S2 HPW4
Prerequisite: MATH1032 or MATH1042
Notes: Laboratory and fieldwork.
The physical properties and motions of the oceans, and their measurement, oceanographic instrumentation. The design of small and large scale ocean experiments.

Marine Science level IV

MSCI4003/MSCI4009
Marine Science 4 (Honours)
Staff Contact: Dr P. Dixon
U10 F
Prerequisites: Completion of program 6831, 6832, 6833 or 6834 including 8 Level III units.
The Category C General Education requirements are met within the Honours program by seminars, an essay and participation in discussion groups.

Mathematics

1. Many subjects in the School of Mathematics are offered at two levels. The higher level caters for students with superior mathematical ability. Where both levels are offered grades higher than Distinction are only awarded in the ordinary level in exceptional circumstances.

2. Students proposing to proceed to Year 4 (Honours) in a Mathematics program may be required to take some of their Mathematics subjects at higher level. However, students should not think that the higher level subjects are intended only for those in honours programs. Any student with the ability to undertake higher subjects benefits from so doing.

Higher level Mathematics subjects are normally classified as being offered by one of the three Departments of the School: Applied Mathematics, Pure Mathematics and Statistics.

Mathematics Level I

Students whose course or program require them to take Mathematics subjects in later years must take the standard first year subject MATH1032 Mathematics 1 or its higher equivalent MATH1042 Higher Mathematics 1. The higher version covers all of the material in MATH1032, often at greater depth, and is intended for students who have obtained very high marks in the 3 or 4 unit mathematics courses of the Higher School Certificate.

Students who do not intend studying mathematics beyond Year 1 may instead take the pair of subjects MATH1011 General Mathematics 1B and MATH1021 General Mathematics 1C. However, students who select this subject should weigh seriously the implications of their choice because no further mathematical subjects are normally available. A student with meritorious performance in MATH1021 may be permitted to proceed to a certain limited number of Year 2 subjects intended for biologists and chemical engineers. The single subject MATH1011 is also available to students seeking a prerequisite for MATH1032.

The subject MATH1081 Discrete Mathematics is an additional Level 1 subject designed for students in Computer Science or Mathematics programs. There is also the optional subject MATH1061 for students who want an introduction to the use of computers but who do not intend any further computing studies.

The subjects MATH1051 Mathematics 1F and MATH1090 Discrete Mathematics for Electrical Engineers are restricted to students in the Optometry and Electrical Engineering courses respectively.

MATH1011
General Mathematics 1B
Staff Contact: School of Mathematics First Year Office
U1 S1 HPW6
Prerequisites: HSC exam score range required: 2 unit Mathematics (60-100) or 2 and 3 unit Mathematics (1-50) or 3 and 4 unit Mathematics (1-200). (2 unit Mathematics in this instance refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject. It does not refer to the subjects Mathematics in Society or Mathematics in Practice. These numbers may vary from year to year.)
Notes: Excluded MATH1032, MATH1042, ECON2200, ECON2201, ECON2202.

Functions (and their inverses), limits, asymptotes, continuity; differentiation and applications; integration, the definite integral and applications; inverse trigonometric functions; the logarithmic and exponential functions and applications; sequences and series; mathematical induction; the binomial theorem and applications; introduction to probability theory; introduction to 3-dimensional geometry; introduction to linear algebra.

MATH1021
General Mathematics 1C
Staff Contact: School of Mathematics First Year Office
U1 S2 HPW6
Prerequisite: MATH1011
Notes: Excluded MATH1032, MATH1042, ECON2200, ECON2201, ECON2202.

Techniques for integration, improper integrals; Taylor's theorem; first order differential equations and applications; introduction to multivariable calculus; conics; finite sets; probability; vectors, matrices and linear equations.

MATH1032
Mathematics 1
Staff Contact: School of Mathematics First Year Office
U2 F HPW6
Prerequisites: HSC exam score range required: 2 unit Mathematics (67-100) or 2 and 3 unit Mathematics (100-150) or 3 and 4 unit Mathematics (100-200) or MATH1011 (2 unit Mathematics in this instance refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject. It does not refer to the subjects Mathematics in Society or Mathematics in Practice. These numbers may vary from year to year.)
Notes: Excluded MATH1011, MATH1021, MATH1042, ECON2200, ECON2201, ECON2202.

Calculus, analysis, analytic geometry, linear algebra, an introduction to abstract algebra, elementary computing.
MATH1042
Higher Mathematics 1
Staff Contact: School of Mathematics First Year Office
U2 F HPW6
Prerequisites: HSC exam score range required: 3 unit Mathematics (145-150) or 4 unit Mathematics (186-200) or MATH1011 (these numbers may vary from year to year.)
Notes: Excluded MATH1011, MATH1021, MATH1032, ECON2200, ECON2201, ECON2202.
As for MATH1032 Mathematics 1, but in greater depth.

MATH1051
Mathematics 1F
Staff Contact: School Office
U1 S1 HPW6
Prerequisites: 3 unit HSC Mathematics
Notes: Excluded MATH1011, MATH1021, MATH1032, MATH1042. Restricted to course 3950. Complex numbers, vectors and vector geometry, matrices and matrix algebra. Functions, continuity and differentiability, integration, introduction to differential equations and series of functions.

MATH1061
Introductory Applied Computing
Staff Contact: School of Mathematics First Year Office
U1 S2 HPW6
Prerequisites: As for MATH1011.
Co-requisites: MATH1021 or MATH1032 or MATH1042
Notes: Excluded any subject offered by the School of Computer Science and Engineering.
The major components of a computer, software vs hardware. The role of computers, history, range of available hardware and software, computing issues and standards. The operating systems DOS and UNIX, files and text editors, networks and communications. An overview of spreadsheets, databases, graphics and other software packages. Structured programming in the high level language C, covering a variety of data types, efficiency, language standards, and libraries of functions and subprograms. Mathematical applications from a wide variety of areas.

MATH1081
Discrete Mathematics
Staff Contact: School of Mathematics First Year Office
U1 S1 or S2 HPW6
Prerequisites: As for MATH1032.
Co-requisites: MATH1032 or MATH1042
Notes: Excluded MATH1090.

MATH1090
Discrete Mathematics for Electrical Engineers
Staff Contact: School of Mathematics First Year Office
S1 HPW3
Co-requisite: MATH1032 or MATH1042
Notes: Excluded MATH1081.
The role of proof in mathematics, logical reasoning and implication, different types of proofs. Sets, algebra of sets, operations on sets, mathematical logic, truth tables, syntax, induction. Recursion, recursive logic, recurrence relations.

Mathematics Level II
The subject MATH2009 Engineering Mathematics 2 is a servicing subject for some Engineering and Applied Science courses and is not available for students in the Science course who wish to take only one unit of mathematics at Level II. It may be followed by the Level III subject Mathematics 3.

MATH2009
Engineering Mathematics 2
Staff Contact: School Office
F HPW4
Prerequisite: MATH1032
Notes: Restricted to Combined degree courses 3681, 3730
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; introduction to numerical methods; matrices and their application to theory of linear equations, eigenvalues and their numerical evaluation; vector algebra and solid geometry; multiple integrals; introduction to vector field theory.

MATH2021
Mathematics 2
Staff Contact: School Office
U1 F HPW2
Prerequisite: MATH1022 (Cr) or MATH1032
Notes: Mathematics MATH2021 is included for students desiring to attempt only one Level II Mathematics unit. If other Level II units in Pure Mathematics or Applied Mathematics are taken, MATH2021 Mathematics is not counted.
Differential equations, use of Laplace transforms, solutions by series; partial differential equations and their solution for selected physical problems, use of Fourier series; multiple integrals, matrices and their application to theory of linear equations, eigenvalues; introduction to numerical methods.

Applied Mathematics Level II
MATH2100
Vector Calculus
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2110.
Properties of vectors and vector fields; divergence, gradient, curl of a vector; line, surface, and volume integrals. Gauss and Stokes' theorems. Curvilinear co-ordinates.
MATH2110
Higher Vector Analysis
Staff Contact: School Office
U.5 S1 HPW2.5
Prerequisite: MATH1032 with a mark of at least 70 or MATH1042
Notes: Excluded MATH2100.
As for MATH2100 but in greater depth.

MATH2120
Higher Mathematical Methods for Differential Equations
Staff Contact: School Office
U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042.
Notes: Excluded MATH2130.
Introduction to qualitative and quantitative methods for
ordinary and partial differential equations. The following
topics are treated by example. Ordinary differential
equations: linear with constant coefficients, first-order
systems, singularities, boundary-value problems,
eigenfunctions, Fourier series. Partial differential
equations: characteristics, classification, wave equation,
heat equation, Laplace's equations, separation of variables
methods.

MATH2130
Higher Mathematical Methods for Differential Equations
Staff Contact: School Office
U.5 S2 HPW2.5
Prerequisite: MATH1032 with a mark of at least 70 or MATH1042
Notes: Excluded MATH2120.
As for MATH2120 but in greater depth.

MATH2160
Linear Programming
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH1032 or MATH1042
Co-requisite: MATH2501 or MATH2601.
A first course in mathematical modelling and solution
techniques for problems. The revised simplex and dual
simplex methods, theory and application of sensitivity
analysis, duality theory. Networks, transportation and
assignment problems. Examples, applications and
computing methods are prominent features.

MATH2180
Operations Research
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2160
Modelling and solution techniques for optimization
problems of interest to business and industry. Topics are
selected from linear programming, integer programming,
(discrete) dynamic programming, project scheduling, game
theory, queuing theory, inventory theory and simulation.
Software packages are used to solve realistic problems.

MATH2200
Discrete Dynamical Systems
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH1032 or MATH1042
Co-requisite: MATH2501 or MATH2601
The study of dynamical systems whose states change at
discrete points in time. Difference equations, general
properties. Linear systems, stability, oscillations,
\(z\)-transforms. Nonlinear systems, critical points, periodic
cycles, chaotic behavior. Applications selected from
engineering, biological, social and economic contexts.

MATH2220
Continuous Dynamical Systems
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH1032 or MATH1042.
The study of continuous dynamical systems. One-dimensional systems, kinematic waves, applications
include traffic flow and waves in fluids. An introduction to
the modelling of physical, biological and ecological
systems, stability, oscillations and resonance.

MATH2301
Mathematical Computing A
Staff Contact: School Office
U1 S1 HPW4
Prerequisite: MATH1032 or MATH1042.
Structured programming in FORTRAN, errors in
representing real numbers and their effect on calculations,
and mathematical algorithms based on polynomial
approximations.

Pure Mathematics Level II

MATH2400
Finite Mathematics
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: MATH1081 Discrete Mathematics is advised.
Positional number systems, floating-point arithmetic, rational
arithmetic, congruences. Euclid's algorithm, continued
fractions, Chinese remainder theorem, Fermat's theorem,
applications to computer arithmetic. Polynomial arithmetic,
division algorithm, factorization, interpolation, finite field.
Codes, error correcting codes, public-key cryptography.

MATH2410
Automata and Algorithms
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: MATH1081 Discrete Mathematics is advised.
Finite automata, regular languages and Kleene's theorem.
Analysis of fast algorithms for matrix, integer and
polynomial manipulation, sorting etc. Discrete and Fast
Fourier Transform and applications.

MATH2501
Pure Mathematics 2 - Linear Algebra
Staff Contact: School Office
U1 S1 or S2 HPW5 or F HPW2.5
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2601.
Vector spaces, linear transformations, change of basis,
inner products, orthogonalization, reflections and QR
factorizations, Eigenvalues and eigenvectors,
diagonalization. Jordan forms and fuctions of matrices.
Applications to linear systems of differential equations, quadratics, rotations. Laplace transforms.

MATH2510
Real Analysis

Staff Contact: School Office

U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042

Notes: Excluded MATH2610.

Multiple integrals, partial differentiation. Analysis of real valued functions of one and several variables.

MATH2520
Complex Analysis

Staff Contact: School Office

U.5 S1 or S2 HPW2.5
Prerequisite: MATH1032 or MATH1042

Notes: Excluded MATH2620.

Analytic functions, Taylor and Laurent series, integrals. Cauchy's theorem, residues, evaluation of certain real integrals.

MATH2601
Higher Linear Algebra

Staff Contact: School Office

U1 S1 HPW5
Prerequisite: MATH1042 or MATH1032 with a mark of at least 70

Notes: Excluded MATH2501.

As for MATH2510, but in greater depth, and with additional material on unitary, self-adjoint and normal transformations.

MATH2610
Higher Real Analysis

Staff Contact: School Office

U.5 S1 HPW5
Prerequisite: MATH1042 or MATH1032 with a mark of at least 70

Notes: Excluded MATH2510.

As for MATH2510 Pure Mathematics 2 Real Analysis but in greater depth.

MATH2620
Higher Complex Analysis

Staff Contact: School Office

U.5 S1 or S2 HPW2.5
Prerequisite: MATH1042 or MATH1032 with a mark of at least 70

Notes: Excluded MATH2520.

As for MATH2520 Pure Mathematics 2 Complex Analysis, but in greater depth.

Statistics Level II

The subjects MATH2819, MATH2829, MATH2839, MATH2849, MATH2859 and MATH2969 are not available to Science students unless specified as part of a program. The subject MATH2841 Statistics SS is available for Science students who wish to take only one unit of statistics at Level II. It can be followed by the Level III subjects MATH3870 and MATH3880.

MATH2801
Probability and Random Variables

Staff Contact: School Office

U1 S1 HPW4
Prerequisite: MATH1021(Cr) or MATH1032 or MATH1042

Notes: Excluded MATH2819, MATH2841, MATH2901, BIOS2041. This subject is offered in odd numbered years. Probability, random variables, standard discrete and continuous distributions, multivariate distributions, transformations, random sampling, sampling distributions, limit theorems.

MATH2810
Statistical Computing and Simulation

Staff Contact: School Office

U.5 S1 HPW2
Prerequisite: MATH1021 (Cr) or MATH1032 or MATH1042

Co-requisite: MATH2801

Notes: Excluded MATH2910.

Introduction to APL, random variables, univariate transformation, simulation of random variables, APL programming, integer value random variables, random walks theory and simulation, introduction to Markov chains.

MATH2819
Statistics SA

Staff Contact: School Office

U1 F HPW2
Prerequisite: MATH1032 or MATH1042

Notes: Restricted to Science students in programs 6832, 6833 and course 3950.

Probability, random variables, independence. Binomial, Poisson and normal distributions, transformations to normality, estimation of mean and variance, confidence intervals, tests of hypotheses, contingency tables, two sample tests of location, simple and multiple linear regression, analysis of variance for simple models.

MATH2821
Basic Inference

Staff Contact: School Office

U1 S2 HPW4
Prerequisite: MATH2901

Notes: Excluded MATH2921, MATH2841, MATH2819, BIOS2041.

Point estimation: general theory, estimation by moments, maximum likelihood, interval estimation with general theory and application, hypothesis testing using Neyman Pearson theory, linear regression and prediction, analysis of variance.

MATH2829
Statistics SU

Staff Contact: School Office

S1 HPW3
Prerequisite: MATH1032 or MATH1042

Notes: Not available to Science students.

Introduction to probability theory, random variables and distribution functions, sampling distributions, including those of t, ch^2 and F. Estimation procedures, including confidence interval estimation with an emphasis on least squares and surveying problems, and computer based exercises.
MATH2830
Nonparametric Statistical Inference
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2801.
Co-requisite: MATH2821
Notes: Excluded MATH2930.
Order statistics, exact and approximate distributions, multinominal distributions, goodness of fit, contingency tables, one-sample and two-sample estimation and inference problems.

MATH2839
Statistics SM
Staff Contact: School Office
U1 F HPW2
Prerequisite: MATH1032
Notes: Excluded MATH2841, MATH2801, MATH2821, MATH2901, MATH2921. Restricted to combined degree course 3681.

Introduction to probability theory, with finite, discrete and continuous sample spaces. Random variables: the standard elementary distributions including the binomial, Poisson and normal distributions. Sampling distributions: with emphasis on those derived from the normal distribution: t, χ² and F. Estimation of parameters: the methods of moments and maximum likelihood and confidence interval estimation. The standard test of statistical hypotheses, and, where appropriate, the powers of such tests. An introduction to regression and the bivariate normal distribution.

MATH2841
Statistics SS
Staff Contact: School Office
U1 F HPW2
Prerequisites: MATH1042, MATH1032 or MATH1021CR
Notes: Excluded MATH2801, MATH2821, MATH2901, MATH2921, MATH2819, BIOS2041.

An introduction to the theory of probability, with finite, discrete and continuous sample spaces. The standard univariate distributions: binomial, Poisson and normal, an introduction to multivariate distributions. Standard sampling distributions, including those of χ², t and F. Estimation by moments and maximum likelihood (including sampling variance formulae, and regression); confidence interval estimation. The standard tests of significance based on the above distributions, with a discussion of power where appropriate. An introduction to experimental design; fixed, random effect models.

MATH2849
Statistics SE1
Staff Contact: School Office
S2 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: Not available to Science students.

Introduction to probability theory, random variables and distribution functions; the binomial, Poisson and normal distributions in particular. Standard sampling distributions including those of χ² and t.

MATH2859
Statistics SE2
Staff Contact: School Office
S1 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: Not available to Science students.

MATH2869
Statistics SC
Staff Contact: School Office
S1 HPW2
Prerequisite: MATH1032 or MATH1042
Notes: Not available to Science students.

MATH2901
Higher Probability and Random Variables
Staff Contact: School Office
U1 S1 HPW4
Prerequisite: MATH1032 or MATH1042
Notes: Excluded MATH2801, MATH2841, MATH2819, BIOS2041.
As for MATH2801 but in greater depth.

MATH2910
Higher Statistical Computing and Simulation
Staff Contact: School Office
U.5 S1 HPW4
Prerequisite: MATH1032 or MATH1042.
Co-requisites: MATH2901
Notes: Excluded MATH2810.
As for MATH2810 but in greater depth.

MATH2921
Higher Basic Inference
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH2901
Notes: Excluded MATH2821, MATH2841, MATH2819, BIOS2041.
As for MATH2821 but in greater depth.

MATH2930
Higher Nonparametric Statistical Inference
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2901.
Co-requisite: MATH2921
Notes: Excluded MATH2830.
As for MATH2830 but in greater depth.
Mathematics Level III

Students considering proceeding to Year 4 (Honours) in one of the Mathematics programs should consult with the relevant Department before making a final choice of Level III subjects.

The subject MATH3021 Mathematics 3 is the only Level III Mathematics subject available for Science students who have previously taken MATH2021.

MATH3021
Mathematics 3
Staff Contact: School Office
U1 F HPW2
Prerequisites: MATH2021
Notes: Excluded any other Level III in Pure Mathematics or Applied Mathematics except for MATH3261.

Vector calculus; special functions; convolution theorem and Fourier integrals; Laplace transforms with application to ordinary and partial differential equations.

Applied Mathematics Level III

Before attempting any Level III Applied Mathematics subject a student must have completed at least 2 units of Level II Mathematics including the prerequisites specified below.

The subject MATH3141 is not available to Science students. Usually only two of the advanced subjects MATH3110, MATH3130, MATH3170 and MATH250 are offered in one year.

MATH3101
Numerical Analysis
Staff Contact: School Office
U1 S1 HPW4
Notes: Excluded MATH3141.

Analysis of some common numerical methods. Iterative methods for solving nonlinear equations; interpolation using polynomials, splines and trigonometric functions; least-squares approximation and orthogonal functions; numerical differentiation and integration: extrapolation; finite difference methods for initial value problems for ordinary differential equations; iterative techniques for large systems of linear equations.

MATH3110
Advanced Numerical Analysis
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: a weighted average mark of at least 70 in 2 units at Level II Mathematics

Development and analysis of numerical methods for the computational solutions of mathematical problems. One or more topics selected from: computational methods for partial differential equations including finite element methods, finite difference methods, spectral methods, multi-grid methods; computational methods for matrix problems including iterative methods and preconditioners, least-squares problems and singular value decomposition; orthogonality for matrix and polynomial problems, algorithms for parallel computers. It is highly recommended that MATH3101 be taken concurrently.

MATH3121
Mathematical Methods
Staff Contact: School Office
U1 S1 HPW4
Prerequisites: MATH2120, MATH2520
Notes: Excluded MATH3141, MATH3150.

MATH3130
Advanced Mathematical Methods
Staff Contact: School Office
U.5 S1 HPW2
Prerequisites: a weighted average mark of at least 70 in MATH2120, MATH2520 and one further unit of Level II Mathematics
Notes: Not offered in 1992.

Fundamental methods for solution of problems in applied mathematics, physics and engineering. One or more topics selected from: asymptotic and perturbation techniques, singularity analysis, nonlinear waves, solitons, bifurcation theory, chaotic dynamics. It is highly recommended that MATH3121 be taken concurrently.

MATH3141
Electrical Engineering Mathematics 3
Numerical and Mathematical Methods
Staff Contact: School Office
S2 HPW3.5
Prerequisites: MATH2100, MATH2501, MATH2510
Notes: Excluded MATH2120, MATH21390, MATH3101.
Not available to Science Students.

MATH3150
Transform Methods
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2100, MATH2520.

MATH3161
Optimization Methods
Staff Contact: School Office
U1 S1 HPW4
Prerequisites: MATH2501, MATH2100 or MATH2510.

Development, analysis and application of methods for optimization problems. Theory of multivariable optimization; including necessary and sufficient optimality conditions, stationary points, Lagrange multipliers, Kuhn-Tucker conditions, convexity and duality. Numerical methods for one dimensional minimization, unconstrained multivariable minimization (including steepest descent, Newton, quasi-Newton and conjugate gradient methods) and constrained multi-variable minimization (including linear programming and quadratic programming).

MATH3170
Advanced Optimization
Staff Contact: School Office
U1 S1 HPW4
Prerequisites: A weighted average mark of at least 70 in MATH2501 and one further unit of Level II Mathematics including MATH2100 or MATH2510

Notes: This subject is offered in alternate years.

Development, analysis and application of methods for optimization problems. One or more topics from: Combinatorial optimization, network flows, complexity, convex programming, non-smooth optimization, duality, complementary problems, minimax theory, game theory, stochastic optimization, new approaches to linear programming. It is highly recommended that MATH3161 be taken concurrently.

MATH3181
Optimal Control
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH2100 or MATH2510

An introduction to the optimal control of dynamical systems. Mathematical descriptions of dynamical systems. Stability, controllability, and observability. Optimal control. Calculus of variations. Dynamic programming. Examples and applications are selected from biological, economical and physical systems.

MATH3201
Dynamical Systems and Chaos
Staff Contact: School Office
U1 S2 HPW4
Prerequisite: MATH2120 or MATH3540

Regular and irregular behaviour of nonlinear dynamical systems. A selection from topics developing the theory of nonlinear differential and difference equations, with applications to physical, biological and ecological systems. Topics from stability and bifurcation theory, Floquet theory, perturbation methods, Hamiltonian dynamics, resonant oscillations; chaotic systems, Lyapunov exponents, Poincaré maps, homoclinic tangles.

MATH3241
Fluid Dynamics
Staff Contact: School Office
U1 S1 HPW4
Prerequisites: MATH2100, MATH2120

The mathematical modelling and theory of problems arising in the flow of fluids. Cartesian tensors, kinematics, mass conservation, vorticity, Navier-Stokes equation. Topics from inviscid and viscous fluid flow, gas dynamics, sound waves, water waves.

MATH3250
Advanced Fluid Dynamics
Staff Contact: School Office
U1 S2 HPW2
Prerequisites: a weighted average mark of at least 70 in MATH2100, MATH2120 and one further unit of Level II Mathematics

Notes: Not offered in 1992.

The mathematical modelling and theory of problems arising in the flow of fluids. One or more topics from atmosphere-ocean dynamics, climate modelling, hydrodynamic stability, turbulence, environmental fluid dynamics, computational methods. It is highly recommended that MATH3241 be taken concurrently.

MATH3261
Oceanography
Staff Contact: School Office
U1 S2 HPW4
Prerequisites: MATH2021 or both MATH2100 and MATH2120.

MATH3301
Mathematical Computing B
Staff Contact: School Office
U1 S2 HPW4
Prerequisites: MATH2120, MATH2301

The design and use of computer programs to solve practical mathematical problems. Matrix computations and use of existing mathematical software packages, plus case studies from applications involving numerical integration, differential equations, symbolic algebra, and vector and parallel computers.

Pure Mathematics Level III

Before attempting any Level III Pure Mathematics subject students must have completed at least two units of Level II Mathematics including the prerequisites specified below. For higher subjects the average performance of the above two units should be at distinction level. Subject to the approval of the Head of Department, this may be relaxed.

Students wishing to enrol in Level III Higher Pure Mathematics subjects should consult with the Pure Mathematics Department before enrolling. The subjects MATH3680, MATH3740 and MATH3780 normally are offered only in even numbered years and the subjects MATH3670, MATH3730 and MATH3770 only in odd numbered years.
MATH3400
Logic and Computability
Staff Contact: School Office
U.5 S1 HPW2
The propositional calculus its completeness and consistency: Turing machines; unsolvable problems; computability and Church's thesis; Godel's incompleteness theorems.

MATH3420
Information, Codes and Ciphers
Staff Contact: School Office
U.5 S2 HPW2
Introduction to discrete information theory (including Shannon's theorems), error-correcting codes and cryptography.

MATH3430
Symbolic Computing
Staff Contact: School Office
U.5 S2 HPW2
Principles of, uses of and algorithms underlying symbolic computing systems. Applications in pure and applied mathematics using a variety of symbolic computing systems.

MATH3500
Group Theory
Staff Contact: School Office
U5 S2 HPW2
Notes: Excluded MATH2601 (before 1992).
Mathematical systems, groups, determination of small groups, homomorphisms and normal subgroups.

MATH3510
Geometry
Staff Contact: School Office
U.5 S2 HPW2
Notes: Excluded MATH3780 (from 1992), MATH3640 (before 1992).
Elementary concepts of Euclidean, affine and projective geometries.

MATH3520
Number Theory
Staff Contact: School Office
U.5 S1 or S2 HPW2
Notes: Excluded MATH3740 (from 1992), MATH3610 (before 1992).
Introduction to algebraic structures. Euclidean domains, primes and irreducibles, factorization. Diophantine equations, polynomial congruences, arithmetic functions, primitive roots, quadratic residues, quadratic reciprocity, sums of squares.

MATH3530
Combinatorial Topology
Staff Contact: School Office
U.5 S1 HPW2
Notes: Excluded MATH3760 (from 1992).
Elementary combinatorial topology of surfaces.

MATH3540
Ordinary Differential Equations
Staff Contact: School Office
U.5 S1 or S2 HPW2
Prerequisite: MATH2501,
Notes: Excluded MATH3640 (from 1992).
The initial value problem, existence, uniqueness, continuation, and dependence on initial conditions and parameters. The Gronwall inequality, linear systems, variation of parameters formula, plane autonomous systems, Poincaré space, Poincaré-Bendixson theory. Stability of linear and almost linear systems, Lyapunov's second method.

MATH3550
Partial Differential Equations
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2510, MATH2520.
Co-requisites: MATH3540
Notes: Excluded MATH3650 (from 1992).

MATH3560
History of Mathematics
Staff Contact: School Office
U.5 S2 HPW2
Topics from the history of mathematics, with emphasis on the development of those ideas and techniques used in undergraduate courses. Students are expected to read widely and to present written material based on their readings.

MATH3570
Foundations of Calculus
Staff Contact: School Office
U.5 S1 HPW2
Notes: Excluded MATH3610.

MATH3580
Differential Geometry
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2510
Notes: Excluded MATH3760 (from 1992), MATH3750 (before 1992).
Curves and surfaces in space. Gaussian curvature, Gauss theorem. Gauss Bonnet theorem.
MATH3610
Higher Real Analysis
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2610 or MATH2510(Cr)
Notes: Excluded MATH3570, MATH3601.

MATH3620
Higher Functional Analysis
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2501 (Cr) or MATH3610, MATH2601
Notes: Excluded MATH3601.

MATH3630
Integration and Mathematical Probability
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH3610
Notes: Excluded MATH3740 (before 1992).
Rings and algebras of sets, Lebesgue integration, dominated convergence theorem, L^p-spaces, Borel-Cantelli theorem, Riesz representation theorem, Fubini’s theorem, stochastic processes, random variables, martingales.

MATH3640
Higher Ordinary Differential Equations
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2601 or MATH2501 (Cr)
Notes: Excluded MATH3540.
As for MATH3540, but in greater depth.

MATH3650
Higher Partial Differential Equations
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2610 or MATH2510 (Cr) or MATH2620 or MATH2520 (CR)
Co-requisite: MATH3640
Notes: Excluded MATH3550, MATH3660 (before 1992).
As for MATH3550, but in greater depth.

MATH3670
Higher Set Theory and Topology
Staff Contact: School Office
U.5 S1 HPW2
Co-requisite: MATH3610
Notes: Excluded MATH3730 (before 1992). This subject is offered in odd numbered years only.
Set theory, axiom of choice, ordinals and cardinals, topological spaces, compactness, quotient topologies.

MATH3680
Higher Complex Analysis
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2620 or MATH2520 (Cr)
Co-requisite MATH3610 is recommended
Notes: Excluded MATH3630 (before 1992). This subject is offered in even numbered years only.
Topics in advanced complex function theory from conformal mappings; analytic continuation; entire and meromorphic functions; elliptic functions; asymptotic methods; integral formulae; harmonic functions; Riemann surfaces.

MATH3710
Higher Algebra I
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2501 (Cr)
Notes: Excluded MATH3500, MATH3710 and MATH3720 (both before 1992).
Groups, subgroups, factor groups, matrix groups, Sylow theorems, isomorphism theorems, rings, ideals, factor rings, fields, algebraic and transcendental extensions, constructability, finite fields.

MATH3720
Higher Algebra II
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH3710.
Notes: Excluded MATH3720 (before 1992).
Galois theory, additional group theory, representations and characters of finite groups.

MATH3730
Higher Advanced Algebra
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH3710
Notes: Excluded MATH3720 (before 1992). This subject is offered in odd numbered years only.
Topics from rings; commutative rings; factorization theory; modules; associative and Lie algebras; Wedderburn theory; category theory.

MATH3740
Higher Number Theory
Staff Contact: School Office
U.5 S2 HPW2
Notes: Excluded MATH3520, MATH3610 (before 1992). This subject is offered in even numbered years only.
Topics from elementary number theory; prime numbers; number theoretic functions; Dirichlet series; prime number theorem; continued fractions; diophantine approximation; quadratic reciprocity; algebraic number theory; class number theorem.

MATH3760
Higher Topology and Differential Geometry of Surfaces
Staff Contact: School Office
U.5 S1 HPW2
Prerequisites: MATH2501 (Cr) or MATH2601, MATH2510
MATH3770
Higher Calculus on Manifolds
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH3760.
Notes: Excluded MATH3760 (before 1992). This subject offered in odd numbered years only.

MATH3780
Higher Geometry
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2501 (Cr) or MATH2601, MATH3500 (Cr) or MATH3710
Notes: Excluded MATH3510, MATH3640 (before 1992). This subject offered in odd numbered years only.

Statistics Level III
The two half unit subjects MATH3870 Regression Analysis and Experimental Design and MATH3880 Applied Stochastic Processes are available to Science students who have previously taken MATH2821 or MATH2841 and who wish to take only one unit of statistics at Level III. The Level II subjects MATH2821 and MATH2921 may also be counted as being at Level III.

MATH3801
Stochastic Processes
Staff Contact: School Office
U1 S1 HPW4
Prerequisites: MATH2501, MATH2510, MATH2801.
Notes: Excluded MATH3880, MATH3901.

MATH3811
Linear Models
Staff Contact: School Office
U1 S1 HPW4
Prerequisites: MATH2501, MATH2510, MATH2801.
Notes: Excluded MATH3870, MATH3911.

MATH3820
Sample Survey Theory
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2821
Notes: Excluded MATH3920.
Finite population sampling theory illustrated by mean estimation; simple random, stratified, cluster, systematic, multistage and ratio sampling, sampling proportional to size.

MATH3830
Design and Analysis of Experiments
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2821, MATH3811
Notes: Excluded MATH3870, MATH3930.

MATH3840
Statistical Inference
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2821
Notes: Excluded MATH3940.

MATH3850
Nonparametric Methods
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2830, MATH2831,
Notes: Excluded MATH3950.

MATH3861
Statistical Computation
Staff Contact: School Office
U1 S2 HPW4
Prerequisites: MATH2821, MATH2810
Array and sequential processing in APL. Standard statistical operations and their efficient coding. Simulation of random variables and stochastic processes. Efficient coding of survey data. Modular package construction, and the use of packages eg STATAPL, IDAP, INSTAPAK, SPSS, GLIM, GENSTAT, MINITAB, SAS, BMD. A project, to construct a small package consistent with general specifications and with safeguards against common errors.
MATH3870
Regression Analysis and Experimental Design
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2821 or MATH2841 or approved equivalent
Notes: Excluded MATH3811, MATH3830, MATH3911 MATH3930.
A revision of linear regression with extension to multiple and stepwise linear regression. Analysis of block designs, Latin squares, factorial designs, variance component and mixed model analyses. Bioassay, logistic models. Contingency tables.

MATH3880
Applied Stochastic Processes
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2841 or MATH2801 or MATH2901 or approved equivalent
Notes: Excluded MATH3801, MATH3901.
An introduction to processes in discrete and continuous time Markov chains and Markov processes, branching processes, time series with moving average models.

MATH3901
Higher Stochastic Processes
Staff Contact: School Office
U1 S1 HPW4.5
Prerequisites: MATH2501, MATH2510, MATH2901
Notes: Excluded MATH3801, MATH3880.
As for MATH3801 but in greater depth.

MATH3911
Higher Linear Models
Staff Contact: School Office
U1 S1 HPW4.5
Prerequisites: MATH2921, MATH2501, MATH2510
Notes: Excluded MATH3811, MATH3870.
As for MATH3811 but in greater depth.

MATH3920
Higher Sample Survey Theory
Staff Contact: School Office
U.5 S1 HPW2
Prerequisite: MATH2921
Notes: Excluded MATH3820.
As for MATH3820 but in greater depth.

MATH3930
Higher Design and Analysis of Experiments
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2921, MATH3911
Notes: Excluded MATH3830, MATH3870.
As for MATH3830 but in greater depth.

MATH3940
Higher Statistical Inference
Staff Contact: School Office
U.5 S2 HPW2
Prerequisite: MATH2921
Notes: Excluded MATH3840.
As for MATH3840 but in greater depth.

MATH3950
Higher Nonparametric Methods
Staff Contact: School Office
U.5 S2 HPW2
Prerequisites: MATH2921, MATH2030
Notes: Excluded MATH3850.
As for MATH3850 but in greater depth.

MATH3971
Higher Probability Theory
Staff Contact: School Office
U1 Not offered in 1991 HPW4
Prerequisites: MATH2901, MATH2501, MATH2510.

MATH3980
Higher Statistics Project
Staff Contact: School Office
U.5 F HPW
Prerequisites: MATH2901, MATH2921
Co-requisites: At least four units from Level III Statistics.

Mathematics Level IV
To enter Level IV Mathematics students must have completed the first three years of one of the programs 1000, 1006, 1060, 1061 or 6810 with an appropriate set of Level III subjects. Some higher Mathematics subjects should normally be included at Levels II and III. Students must discuss their Level III selection of subjects with the department concerned.

MATH4003/4004
Mathematics and Computer Science Honours
Staff Contact: School Office
U10 F
Prerequisites: 7 Level III units including at least three from Computer Science

MATH4103/MATH4104
Applied Mathematics 4 (Honours)
U10 F
Prerequisites: Completion of program 1000 or 6810 including 6 Level III units (some Higher Mathematics subjects should normally be included at Levels II and III in order to enter Level IV Mathematics: students should discuss their Year 3 program in Department concerned.)
Undergraduate thesis together with advanced lecture courses. Includes advanced mathematical methods for applied mathematics, advanced optimization, numerical analysis, theory of linear and non-linear dynamical systems, optimal control, operations research, functional analysis and applications, mathematics of economic models and of economic prediction, fluid mechanics, oceanography, microhydrodynamics, and analytical and numerical solution of partial differential equations. May also include advanced lectures given by other Departments or Schools.
The Category C General Education requirement is met by the 56 hour subject The Role of Mathematics in Society which is part of the Honours program.

MATH4603/MATH4604
Pure Mathematics 4 (Honours)
U10 F
Prerequisites: completion of program 1000 including 6 Level III units (some Higher Mathematics subjects should normally be included at Level II and III in order to enter Level IV Mathematics: students should discuss their Year 3 program in Department concerned.)

Undergraduate thesis together with advanced lectures on topics chosen from fields of current interest in Pure Mathematics. May also include advanced lectures given by other Departments or Schools.

The Category C General Education requirement is met by the 56 hour subject The Role of Mathematics in Society which is part of the Honours program.

MATH4903/MATH4904
Theory of Statistics 4 (Honours)
U10 F
Prerequisites: Completion of program 1006 including 6 Level III units.

The Category C General Education requirement is met by the 56 hour subject The Role of Mathematics in Society which is part of the Honours program.

Materials Science and Engineering

Materials Science and Engineering Level II

MATS1002
Microstructural Analysis
Staff Contact: Dr A. Crosky
U1 S1 HPW3
Notes: Restricted to Combined degree course 3681.

Specimen preparation techniques. Principles of optical microscopy and stereology. Electron microscopy, microchemical analysis

MATS1072
Physics of Materials
Staff Contact: Dr S. Blair
U1 S2 HPW
Prerequisite: PHYS1002
Notes: Restricted to Combined degree course 3681.

Interatomic bonding in solid materials. Types of interatomic bonds, metallic, covalent, ionic. Introductory quantum mechanics in one dimension, free electron theory, effects of periodic potential, density of states curves. Effect of electron to atom ratio on conductivity and crystal structure; semiconductors; intrinsic, extrinsic. Exchange energy; ferromagnetism, antiferromagnetism. Elementary perturbation theory, covalent bond; crystal structures, properties. Ionic bond, crystal structures, force models, properties.

MATS1253
Ferrous Alloys
Staff Contact: Dr P. Kraulis
U1 S2 HPW3
Prerequisite: MATS4363 (units 1 and 3)
Notes: Restricted to Combined degree course 3681.

MATS4363
Origins of Microstructure
Staff Contact: Dr A. Crosky
U1 S1 HPW5
Co-requisites: CHEM1011, and MATS1062 or MECH2400
Notes: Restricted to Combined degree course 3681.

Unit 1: Phase Equilibria

Unit 3: Metallography and phase equilibrium laboratory

MATS9520
Engineering Materials
Staff Contact: Dr A. Crosky
U1 S1 HPW3
Prerequisites: PHYS1002, CHEM1807
Notes: Restricted to Combined degree course 3681.

Microstructure and structure-property relationships of the main types of engineering materials (metals, polymers, ceramics and composites). Micromechanisms of elastic and plastic deformation. Fracture mechanisms for ductile, brittle, creep, fatigue modes of failure in service; corrosion. Metal forming by casting and wrought processes. Phase equilibria of alloys; microstructural control by thermo-mechanical processing and application to commercial engineering materials. Laboratory and tutorial work includes experiments on cast and recrystallized structures, ferrous and non-ferrous microstructures and fracture and failure analysis.
Materials Science and Engineering Level III

MATS1042
Crystallography and X-Ray Diffraction
Staff Contact: Dr P. Munroe
U.5 S2 HPW4
Prerequisite: MATS4363 (units 1 and 3)
Notes: Restricted to Combined degree course 3681.

MATS1083
Non Ferrous Alloys
Staff Contact: Dr P. Krauklis
U.5 S2 HPW3
Co-requisite: MATS4363 (units 1 and 3)
Notes: Restricted to Combined degree course 3681.

MATS1263
Alloy Steels
Staff Contact: Dr P. Krauklis
U.5 S2 HPW2
Prerequisite: MATS1253
Notes: Restricted to Combined degree course 3681.

MATS4363
Origins of Microstructure (Units 2 and 4)
U.5 S1/S2 HPW2/3
Prerequisite: MATS1253
Notes: Restricted to Combined degree course 3681.
Unit 2: Diffusion

Unit 4: Phase transformations

MATS7223
Mechanical Behaviour of Materials
Staff Contact: Dr A. Crosky
U1 S1/S2 HPW5/3
Notes: Restricted to Combined degree course 3681.
MATS9323
Mechanical Behaviour of Materials
Staff Contact: Dr A. Crosky
U1 S1/S2 HPW2/4
Prerequisites: MATS4363 (units 1 and 3) and MATS1062 or MECH2400
Notes: Restricted to Combined degree course 3681.

Unit 1: Deformation
Atomic and molecular description of deformation. Introduction to dislocation theory and its application to mechanical properties. Chain dynamics under stress.

Unit 2: Fractographic analysis
Classification of macroscopic and microscopic fracture mechanisms. Initiation and propagation of ductile, brittle, fatigue, creep, stress corrosion, and corrosion fatigue fractures. Effect of material defects, design deficiencies and incorrect processing on the origin and cause of fracture. Analysis of various modes of fracture using fractographic techniques involving optical microscopy and scanning and transmission electron microscopy.

Unit 3: Deformation and strengthening mechanisms
Strengthening mechanisms, creep, fracture, grain size dependence of strength. Introduction to generation of deformation and recrystallization textures. Measurements of age-hardening, activation energy of strain ageing.

Medicine
MDCN8001
Principles of Medicine for Optometry Students
Staff Contact: Dr L. Simons (St Vincent's Hospital)
Notes: Restricted to course 3950.
All aspects of current clinical medical practice, including historical, epidemiological, pathophysiological, diagnostic, therapeutic and public health aspects of disease in people and the various clinical categories of practice.

Mechanical and Manufacturing Engineering
Mechanical and Manufacturing Engineering Level I
MANF1110
Manufacturing Technology
Staff Contact: Dr P. Mathew
U1 S2 HPW3
Co-requisite: MECH1110
Notes: Excluded 5.030. MECH1110 and MANF1110 must be studied in pairs.
Description of the processes classified as forming from liquid or solid, material removal, material joining. Elementary mechanics of forming and cutting processes. Analysis of the primary functions of machine tool structures and their operation. Relationship between product design and manufacture processes. Elementary functional analysis of product designs, including linear loop equations, limits and fits, dimensional accuracy of processes and alternative design and manufacturing strategies.

MECH0160
Introductory Engineering Design and Drawing Practice
Staff Contact: Prof A. Churches
U1 S1 HPW3
Co-requisite: MECH0360
Notes: Excluded 5.012, 5.030, MECH0130, 5.010, 5.0016. MECH0160 and MECH0360 must be studied in pairs.
Intended specifically for electrical engineering students and is to be taken in conjunction with MECH1300. Introduction to engineering design: Engineering method, problem identification, creative thinking, mathematical modelling; computer-aided design; materials and processes; communication of ideas; the place of engineering in society.

MECH0360
Introductory Engineering Mechanics
Staff Contact: Mr R. Randall
U1 S1 HPW3
Prerequisites: HSC Exam Score Required: 2 unit Science (Physics) 53-100, or 3 unit Science 90-150, or 4 unit Science multistrand 1-50, or 2 unit Industrial Arts (Engineering Science) 53-100, or 3 unit Industrial Arts (Engineering Science) 1-50
Co-requisite: MECH0160
Notes: Excluded 5.010, 5.0101, 5.0201. MECH1300. MECH0160 and MECH0360 must be studied in pairs.
Intended specifically for electrical engineering students, and is to be taken in conjunction with MECH0160. Equilibrium. Friction. Systems of multforce members, co-planar and three-dimensional. Mass centre; centroid; Fluid statics. Plane particle kinematics: rectilinear, curvilinear and relative motion. Plane particle kinetics: equations of motion; work, power, energy; impulse, momentum, impact.

MECH1100
Mechanical Engineering Design 1
Staff Contact: School Office
U.5 S2 HPW3
Co-requisite: MECH1000
Notes: Excluded 5.0012. Restricted to Combined degree course 3681.
Introduction to hardware. Studies of a range of engineering components, considering: what they do, how they do it, how they were made, the range of possible forms for each item, why each item has its particular form. Design philosophy. Design as the formulation and implementation of practical ways of fulfilling needs, including: recognising the need, generalising the question, considering a range of solutions, selecting a short-list, analysing the selected range, making a final choice. Commercial philosophy. Impetus for design, market competition, significance of innovation, intellectual property, financing, manufacturing, marketing, etc.
MECH1110
Graphical Analysis and Communications
Staff Contact: Prof A. Churches
U 1 S 2 HPW3
Co-requisite: MANF1110
Notes: Excluded 5.030, MECH030. MECH1110 and MANF1110 must be studied in pairs.
Descriptive geometry as the basis of analysis and synthesis of spatial relationships: points, lines, planes, solids, intersections. Orthographic and other projection systems. Engineering drawing as a means of definition and communication, selection of views, construction of drawings, conventions, dimensions and tolerancing. Introduction to computer-based drafting systems.

MECH1300
Engineering Mechanics 1
Staff Contact: Mr R. Randall
U.5 S1 or S2 HPW4 or 3
Prerequisites: As for MECH0360
Notes: Excluded MECH0360. Restricted to combined degree course 3681.
Students who wish to enrol in this subject in courses other than the full-time courses in Aerospace Engineering, Electrical Engineering, Manufacturing Management, Mechanical Engineering and Naval Architecture can make up for the lack of the prerequisite by work taken in Physics in the first half of Year 1.

MECH1400
Mechanics of Solids 1
Staff Contact: School Office
U.5 S2 HPW3
Co-requisite: MECH1300
Notes: Restricted to Combined degree course 3681.

MECH1500
Computing 1M
Staff Contact: School Office
U.5 S2 HPW3
Co-requisite: MATH1032
Notes: Excluded 10.211E. Restricted to Combined degree course 3681.
Introduction: history, applications, hardware, software, a model of a computer system, editors, operating systems. Program design and development: programming objectives, data structures, algorithms, symbolic names, translation of algorithms, steps in programming, programming style, syntax charts, errors and debugging. Data: data types, declarations, input, output, file control. Programming constructs: arithmetic expressions, assignment, relational and logical expressions, selection, iteration, intrinsic functions, statement functions, subprograms, common communication. Applicants using existing programs: sorting, word processing, graphics and plotting, simultaneous linear algebraic equations.

Mechanical and Manufacturing Engineering
Level II
MECH2300
Engineering Mechanics 2A
Staff Contact: School Office
U.5 S1 or S2 HPW3
Prerequisites: PHYS1002, MATH1032, MECH1300
Notes: Restricted to Combined degree course 3681.
Kinetics of systems of particles; plane steady mass flow. Plane kinematics and kinetics of rigid bodies: moment of inertia; motion relative to translating and rotating frames of reference, equations of motion; work and energy, impulse and momentum. Virtual work for static and dynamic systems. Kinematics and kinetics of simple mechanisms.

MECH2310
Engineering Mechanics 2B
Staff Contact: School Office
U.5 S2 HPW2
Co-requisite: MECH2300
Notes: Restricted to Combined degree course 3681.

MECH2400
Mechanics of Solids 2
Staff Contact: School Office
F HPW3.5
Prerequisites: MECH1400, MATH1032
Notes: combined with MECH2600 worth 1.5 units. Excluded 5.4220. Restricted to Combined degree course 3681.
Mechanical properties of materials: tensile and compressive behaviour; hardness; testing machines. Analysis of stress and strain at a point (2D, 3D, Mohr’s Circles); generalized Hooke’s Law; modulus of rigidity; bulk modulus; interdependence of elastic moduli; strain energy (total, volumetric and distortion); yield criteria; combined loads in beams; fatigue, stress concentrations, Miner’s Rule; membrane stresses; bending of composite beams; bending and unsymmetrical beams; direct shear stresses in beams, shear centre; elastic and inelastic buckling of columns.

MECH2600
Fluid Mechanics 1
Staff Contact: School Office
F HPW2
Prerequisites: PHYS1002, MECH1300
Notes: Combined with MECH2400 worth 1.5 units. Restricted to Combined degree course 3681.
Units. Fluid properties; fluid statics. Flow fields; unsteady and compressible flow. Bernoulli’s equation. Momentum equations. Ideal flow. Flow measurement. Dimensional analysis: similitude; dimensionless numbers; methods of analysis. Steady one dimensional flow in ducts: laminar and turbulent; pressure loss; friction factor; losses in bends and
fittings. Elementary boundary layer flow; skin friction and drag. Pumps and turbines.

MECH2700
Thermodynamics 1
Staff Contact: School Office
U1.5 F HPW2
Prerequisite: MATH1032
Notes: Restricted to Combined degree course 3681.

Microbiology and Immunology

Microbiology and Immunology Level II Subjects

MICR2011
Microbiology 1
Staff Contact: Dr S. Hazell
U1 S2 HPW6
Prerequisite: BIOS2011.
Co-requisites: BIOC2312 and BIOC2021
Notes: Excluded MICR2201.

Mandatory for students wishing to major in program 4400 Microbiology and Immunology, and is also offered as a single unit elective. Major topics include characteristics of micro-organisms, growth, taxonomy, biosynthetic and bioenergetic mechanisms and interactions with the environment.

MICR2201
Introductory Microbiology
Staff Contact: Dr Y. Barnet
U1 S1 HPW6

An optional unit for students who do not wish to major in microbiology. Introduction to microbiology not requiring any previous knowledge of biology (bridging courses are given for students in this category). The nature microorganisms and their importance to people and the environment.

Microbiology and Immunology Level III Subjects

MICR3011
Microbiology 2
Staff Contact: Dr B. Wallace
U1 S1 HPW6
Prerequisites: BIOS2011, BIOS2021, BIOC2312 and MICR2011

Essential for students majoring in microbiology. It extends material covered in Microbiology I with special emphasis on bacterial physiology and groups of medically and environmentally significant micro-organisms. Major topics include structure and function of bacterial cells, antibacterial agents and environmental effects.

MICR3021
Microbial Genetics
Staff Contact: Dr B. Wallace
U1 S1 HPW6
Prerequisites: BIOS2011, BIOS2021, BIOC2312 and MICR2011
Notes: Excluded BIOT3031.

Essential for students majoring in microbiology. Major topics include genetics of bacteriophage, bacteria and yeasts, mutation and repair, plasmids, gene transfer, transposable genetic elements, gene cloning (genetic engineering) and genetics of nitrogen fixation.

MICR3031
Applied Mycology
Staff Contact: Dr L. Couperwhite
U1 S1 HPW6
Prerequisite: MICR2201 or MICR2011 or MICR2218.

An introduction to the applications and economic importance of fungi to people and the environment. Topics include the use of fungi as food and fodder, in food and beverage fermentations and for medical purposes; poisonous fungi, fungi as animal pathogens and fungal biodegradation.

MICR3041
Immunology I
Staff Contact: Prof G. Jackson
U1 S1 HPW6
Prerequisite: BIOC2312

Basic immunology and immunological techniques. Topics include innate and adaptive immunity, development of the immune system, induction and expression of the immune response, structure and function of antibodies, antigen-antibody reactions, the major histocompatibility complex, aspects of immunology in disease.

MICR3051
Immunology 2
Staff Contact: Dr A. Collins
U1 S1 HPW6
Prerequisite: MICR3041

Advanced immunology. Major topics include antigen epitope analysis, processing and presentation, lymphocyte biology, immunogenetics of the molecules of recognition, cytokines, immune regulation, the mucosal immune system, immunity to infectious diseases, vaccine development and clinical immunology.

MICR3061
Animal Virology
Staff Contact: A/Prof R. Hawkes
U1 S2 HPW6
Prerequisite: MICR3041

Essential for students majoring in microbiology. It extends material covered in Microbiology I with special emphasis on bacterial physiology and groups of medically and environmentally significant micro-organisms. Major topics include structure and function of bacterial cells, antibacterial agents and environmental effects.
MICR3071
Environmental Microbiology
Staff Contact: Dr Y. Bamet
U1 S2 HPW6
Prerequisite: MICR2201 or MICR2011.

Major topics include the complexity of natural habitats, interaction of micro-organisms with their environment with an emphasis on evolution and adaptation, environmental monitoring in aquatic and soil habitats, manipulation of microbial populations in natural habitats including problems with the release of genetically engineered micro-organisms.

MICR3081
Medical Bacteriology
Staff Contact: Dr S. Hazell
U1 S2 HPW6
Prerequisite: MICR2201/MICR3011.

Includes strategies that the micro-organisms have adopted to overcome host defences, research processes that have led to an understanding of microbial pathogenesis, immunization, treatment and epidemiology. Laboratory classes develop practical skills required in a routine diagnostic laboratory.

Microbiology and Immunology Level IV

MICR4013/MICR4023
Microbiology 4 (Honours)
U10 F
Prerequisite: completion of program 4400 including 8 Level III units 4 of which must be Microbiology and Immunology units

Advanced training in selected areas of Microbiology and Immunology: a formal component consisting of seminars, tutorials, introductory electron microscopy and written assignments, plus a supervised research program in a specific area of microbiology or immunology.

The Category C General Education requirements are met within the Honours Program by seminars, an essay and participation in discussion groups.

Optometry

Optometry subjects are restricted to course 3950 and are listed in the course outline. For further information on Optometry subjects consult the School.

OPTM1201
Ocular and Visual Science I
Staff Contact: Mr G. Dick
Optical systems of the eye: schematic eye, reduced eye, emmetropia, spherical ametropia, astigmatic ametropia, correction of ametropia, elementary magnification effects, aphakia. Accommodation, presbyopia, correction of presbyopia. Accommodation and convergence. Aberrations of the eye, phorias, measurement of phorias. Modulation transfer function Gradient index optics.

OPTM1202
Clinical Optometry I
Staff Contact: Prof B. Holden
Lectures and practical assignments in visual acuity, keratometry, auto-refraction, visual fields, tonometry and colour vision, frame selection, facial fitting, insertion and removal of contact lenses.

OPTM1203
Physical and Geometrical Optics
Staff Contact: A/Prof D. Crewther

OPTM1204
Dispensing
Staff Contact: Mr I. Robinson
Mechanical optics and optical dispensing. Practical assignments in spectacle frame measurements, frame materials, basic focimetry, basic lens layout, lens glazing, frame adjustments.

OPTM1205
Measurement of Light and Colour
Staff Contact: A/Prof S. Dain
OPTM2301
Ocular and Visual Science II
Staff Contact: Dr P. Anderton
Provides familiarity with the structure and function of the human visual system. Topics include: the embryology of the eye; structure and function in the anterior eye; the orbit; extrinsic and intrinsic muscles; lens and accommodation; lids, glands and conjunctiva; intraocular pressure; the pupil; neural structure and function of the retina and visual pathways; vegetative retinal physiology; control of eye movements; physiology of colour and light perception.

OPTM2302
Clinical Optometry II
Staff Contact: Dr B. Junghans
Refraction, aetiology and treatment of ametropia, objective and subjective refraction, prescribing visual aids. Binocular vision: sensory and motor aspects. Orthoptics: Convergence / accommodation anomalies, strabismus, amblyopia. Contact lenses: contact lens design and manufacture, fitting techniques, care and maintenance. Interviewing and communication skills. Practical assignments in opthalmoscopy, biomicroscopy, tonometry, visual fields, refraction, colour vision tests, assessment of binocular vision and strabismus.

OPTM2303
Spectacle Lens and Optical Systems
Staff Contact: Mr G. Dick

OPTM2306
Pathology for Optometry Students
Staff Contact: Prof H. Collin
Introduces the basic disease processes associated with trauma, acute and chronic inflammation; repair, regeneration, haemorrhage, thrombosis, embolism, ischaemia, infarction, degeneration, hyperplasia, hypertrophy, atrophy, metaplasia, neoplasia, carcinogenesis and aging.

OPTM2307
Microbiology for Optometry Students
Staff Contact: Dr P. Anderton

OPTM2308
Diagnosis of Ocular Disease
Staff Contact: Prof H. Collin
Introduces the aetiology, pathology, signs, symptoms, prognosis, and management of disease of the eyelids, cornea, conjunctiva, iris, ciliary body, choroid, retina, optic nerve, lens and vitreous. Includes glaucoma and lesions of the visual pathways.

OPTM9031
Optometry A
Staff Contact: Dr D. O’Leary
Refraction: theory and practice of keratometry, measurement of vision and visual acuity, aetiology and treatment of ametropia, objective and subjective refraction, prescribing special visual aids. Binocular vision; sensory and motor fusion; retinal correspondence; the horopter; stereopsis. Orthoptics convergence/accommodation anomalies, strabisms, amblyopia. Contact lenses: corneal anatomy and physiology, contact lens design and manufacture, fitting techniques, care and maintenance. Low vision: examination of the low vision patient, selection of aids.

OPTM9032
Diagnosis and Management of Ocular Disease
Staff Contact: Prof H. Collin

OPTM9033
Theory of Spectacle Lenses and Optical Instruments
Staff Contact: Mr G. Dick
Advanced geometrical optics and spectacle lens design. Aberrations and their control. The elements of telescopes, microscopes and other optical systems used especially in clinical practice.

OPTM9034
Clinical Methods
Staff Contact: Dr J. Alexander / Dr B. Junghans
Practical assignments in opthalmoscopy, biomicroscopy, tonometry, gonioscopy, visual fields, colour vision tests, refraction, assessment of binocular vision, strabismus, contact lens fitting.

OPTM9041
Clinical Optometry
Staff Contact: Mr D. Pye
Students are required to examine patients in the Optometry Clinic, to diagnose their problems and to prescribe optical aids, orthoptic treatment or other management or referral as required. They also work in special clinics, including orthoptics, colour vision, low vision, children’s vision and contact lenses, and participate in patient review clinics.
OPTM9042
Optometry B
Staff Contact: A/Prof S. Dain
Public health optometry: contact lens fitting; pharmacology for optometrists; paediatric optometry; colour vision; advanced physiological optics; current issues and research; legal aspects; projects.

OPTM9043
Optometry and the Professional Environment
Staff Contact: Mr D. Pye

Pathology

Pathology Level III

PATH3201
Basic and Applied Pathology
Staff Contact: A/Prof R. Hewlett
U1 F HPW3
Prerequisites: ANAT2211, ANAT2111, PHPH2112 or equivalent

Lectures and practical class demonstrations. Includes exposition of the basic classification of pathological processes, study of the processes of cell and tissue degeneration, acute and chronic inflammation, vascular disease, including thrombosis, embolism, ischaemia and infarction. Coverage of the processes of healing and regeneration with specific reference to healing of skin wounds and the healing of fractures. Aberrations of cell growth used to introduce the subject of neoplasia and carcinogenesis. Exposure to examples of specific disease entities of general practical importance such as appendicitis, pneumonia, arthritis, pulmonary and myocardial infarction, metabolic bone diseases as well as lung, bone, alimentary and cerebral tumours exemplifying the basic or fundamental processes. Correlation of pathological processes with development of specific clinical syndromes.

Pathology Level IV

PATH0005/PATH0006
Pathology (Honours)
Staff Contact: School Office
U10 F
Prerequisites: completion of program 7000 including 6 Level III units

Philosophy

Philosophy is a wide-ranging discipline, catering for a great diversity of interests, for instance, in science, reasoning, persons, and social issues, and encouraging critical and imaginative thought about the foundations of other subjects. Apart from providing considerable choices for students majoring in Philosophy, the diversity of Upper Level subjects makes it possible for students majoring in other disciplines to select subjects complementing their main interest.

Philosophy Level I

First Enrolment in Philosophy
There are two Level I subjects:
Each of these has 1-unit value. They can be taken separately, and students can gain Upper Level status in Philosophy quality to enrol in Upper Level subjects by passing in only one. However, students enrolling in one will normally enrol in both, and students wishing to major in Philosophy must do so.

PHIL1006
Introductory Philosophy A (Session 1)
Staff Contact: Dr S. Cohen, Mr S. Staines, Dr P. Cam.
U1 S1 HPW3
Introduces to philosophical thought and issues. Topics: the nature of argument; philosophy of mind; ethics and political philosophy.

PHIL1007
Introductory Philosophy B (Session 2)
Staff Contact: Dr N. Harpley, Dr S. McColl, Dr S. Hetherington.
U1 S2 HPW3
A further introduction to philosophy through a study of traditional and contemporary discussions of three topic areas: epistemology; perception; science and religion; ideas of utopia.

Value of Upper Level Subjects in Philosophy
All Upper Level subjects are full units.

Specialization in Philosophy
Students majoring in Philosophy must complete, in addition to PHIL1006 and PHIL1007 (Introductory Philosophy A and Introductory Philosophy B), the equivalent of six full-point Upper Level (II/III) units. Of these, at least four units must be chosen from List A, which includes subjects in Logic, Philosophy of Mind, Philosophy of Science, and areas of History of Philosophy relevant to those subject areas. Students normally take the equivalent of two Level II/III units in Year 2, and the equivalent of four Level II/III units in Year 3.

List A
PHIL2106 Logic
PHIL2216 Human Nature and Human Understanding: the Empiricist Approach
PHIL2206 Contemporary Philosophy of Mind
PHIL2207 Issues in the Philosophy of Psychology
PHIL2108 Ways of Reasoning
PHIL2308 Reason and the Passions: Descartes, Spinoza and Hume
PHIL2116 Scientific Method
PHIL2219 Topics in Philosophy of Language
PHIL2227 Hume, Leibniz, Kant
PHIL2226 Twentieth Century Analytic Philosophy
PHIL2518 Greek Philosophy: Issues in Ethics and Epistemology
PHIL2218 Philosophical Foundations of Artificial Intelligence
PHIL2217 Personal Identity
PHIL2107 Advanced Philosophy of Science
PHIL3106 Pre-Honours Seminar

The remaining two units are to be chosen from other Upper Level Philosophy subjects.

Level II/III

Some Upper Level subjects deal with particular philosophical topics; others can be taken in sequence to give more sustained treatments of larger areas. Students may select freely among these, subject to stipulations regarding prerequisites. They are welcome to seek advice and further information from the School.

In certain circumstances the prerequisites specified for units or half-units may be waived; for example, in the case of students who have already studied similar material, or who wish to take isolated units or half-units relevant to another discipline. Students who feel they have a case for a concession of this kind should consult the School.

Honours Entry Requirements

Students intending to proceed to the award of an Honours degree in Philosophy complete years 1-3 of programs 5200 or 5262 with an overall credit record and some indication of Distinction ability in the philosophy units included in those programs; plus PHIL3106 (Pre-Honours Seminar).

Philosophy Level II/III

Notes: Level II Status in Philosophy consists in being in second or later year of university study, and also having taken and passed at least one Level I Philosophy unit. The prerequisite may be waived in certain cases by the School.

Level III Status in Philosophy consists of having an overall standard of credit or higher in 8 Philosophy units.

PHIL2106

Logic

Staff Contact: Dr S. Hetherington

U1 S1 HPW3

Prerequisite: Any Level I subject

Notes: Excluded 52.2030, 52.2031, MATH1081, MATH3400.

This subject is about deductive logic (in particular, propositional logic and predicate logic). Aims to construct, and to understand, a precise, unambiguous, formal language. Many important parts of English are translatable into it, hence many arguments of English are translated into it too. It is a language with which we can better understand the concept of deductive proof.

PHIL2108

Ways of Reasoning

Staff Contact: Dr S. McColl

U1 S2 HPW3

Prerequisite: Level II status in Philosophy

Uses material drawn from everyday sources, such as newspapers, books and advertisements, and including television. The nature of argument, fallacies, reasoning and the role of reasoning. From studying the structure of arguments students are able to improve their critical skills and the presentation of their own arguments.

PHIL2109

Metaphysics (Realisms)

U1 HPW3

Prerequisites: Level II Status in Philosophy.

Notes: Not offered in 1992

PHIL2116

Scientific Method

Staff Contact: Mr G. O'Brien

U1 S1 HPW3

Prerequisite: Level II status in Philosophy

General introduction to the philosophy of science, with an emphasis on an examination of the nature of scientific method and the reliability of scientific knowledge: logical positivism; the problem of induction; falsificationism; the theory-dependence of observation; post-positivist philosophy of science - Kuhn, Feyerabend, Lakatos and Laudan. Discussion of some of the social and political factors in science: gender bias and the feminist critique; the sociology of knowledge; the politics of scientific practice.

PHIL2206

Contemporary Philosophy of Mind

Staff Contact: Dr P. Cam

U1 S1 HPW3

Prerequisite: Level II status in Philosophy

Notes: Excluded 52.2002, 52.250.

Introduces some major issues in the field. Topics: relating the mental to the physical; alternative approaches to the psychology of belief and desire; the psychology of experience and consciousness; mental imagery.

PHIL2207

Issues In the Philosophy of Psychology

Staff Contact: Dr P. Cam

U1 S2 HPW3

Prerequisite: Level II status in Philosophy or PSYC1002

Notes: Excluded 52.2003, 52.251.

Philosophical issues in theoretical psychology, drawn from philosophical and psychological writings on personal identity, consciousness, perception, psychology and the brain sciences.

PHIL2208

Epistemology (Scepticism)

Staff Contact: Dr S. Hetherington

U1 S1 HPW3

All of us acknowledge that there are things we do not know. But such humility can turn into perplexity when we encounter epistemological sceptics. A sceptic typically denies us either vast amounts of knowledge or justification of some sort, but extremely everyday, sorts of apparent knowledge or justification. In short, sceptics argue for surprising denials of knowledge or justification. Examines some prominent sceptical arguments - one of less, and ones of more, recent vintage. They attack knowledge of, or justified belief in, such areas as these: the external world, the unobserved, linguistic meaning, everything.
PHIL2209
Epistemology (Knowledge and Justification)
Staff Contact: Dr S. Hetherington
U1 S2 HPW3
Prerequisite: Level II status in Philosophy

Epistemology is officially the Theory of Knowledge. One of its most important questions is therefore ‘What is knowledge?’ Answering this generally leads to another question: ‘What is justified belief?’ (For most epistemologists think knowledge is a sort of justified belief.) This subject is built around these questions; we consider various attempts that epistemologists have made to answer them. Here are some of the concepts examined: perception, false belief, defeated evidence, causality, reliability, cognitive responsibility, perspectives.

PHIL2216
Human Nature and Human Understanding: The Empiricist Approach
Staff Contact: Mr N. Harpley
U1 S1 HPW3
Prerequisite: Level II Status in Philosophy
Notes: Excluded 52.2130, 52.2170.

The traditional empiricists Locke, Berkeley, and Hume developed a substantial framework for theories concerning human nature and particularly for the consideration of issues arising in the attempt to explain our perception and knowledge of the world. The empiricist approach to these matters was revivified and became dominant in the first half of this century. Notable figures in recent empiricism include Russell and Quine and the leaders of the Logical Positivist movement. The subject involves a study of the major concerns of traditional and modern empiricists.

PHIL2217
Personal Identity
U1 S1 HPW3
Prerequisite: Level II Status in Philosophy
Notes: excluded 52.2180, 52.232.

PHIL2218
Philosophical Foundations of Artificial Intelligence
Staff Contact: Mr P. Staines
U1 S1 HPW3
Prerequisite: Level II status in Philosophy.
Notes: Excluded 52.2026.

The assumptions, achievements and prospects for artificial intelligence through consideration of problems in understanding and designing natural and artificial minds. Some of the design requirements for building intelligent systems, as is the nature and scope of computation and its role in artificial intelligence. Some work on artificial intelligence has been described as ‘philosophical explication turned into computer programs’. The idea that it can make a direct contribution to philosophy is explored.

PHIL2219
Topics in Philosophy of Language
Staff Contact: Dr J. O’Leary-Hawthorne
U1 S1 HPW3
Prerequisite: Level II status in Philosophy
1. The relation between words and the world. Here the central topic is theories of truth; we look at the coherence theory, the correspondence theory, the redundancy theory etc. An important related topic is theories of reference.
some less familiar arguments from Nietzsche, Dewey, James, Dilthey and Heidegger, all related to the changing category of 'experience'. Hegel's philosophy tries to provide a narrative of experience in which mind is always restless, unceasingly involved in posting its own limits and overcoming them. The central figure around which this story revolves is death as the power of the negative, but death in Hegel's scheme loses its threat and becomes merely a symbol. After Hegel, contemporary European philosophy turns back to finitude: inspired by Hegel or reacting against him, writers use a variety of philosophic, sociological and literary means to reflect on mortality, decay, dread, melancholy and violence.

PHIL2407
Culture and Critical Theory: Trends in Contemporary European Philosophy
Staff Contact: Dr L. During
U1 S2 HPW3
Prerequisite: Level II status in Philosophy
Trends in recent European Philosophy. Emphasis will vary from year to year, ranging from emphasis on the philosophical dimension of critical theory and its interdisciplinary investigations of the concept of modern culture to the project of rethinking philosophy as cultural criticism. Students should consult the School Handbook for detailed descriptions of the subject each year.

PHIL2409
Speaking through the Body: Feminism, Psychoanalysis, Literature
Staff Contact: Dr L. During
U1 S1 HPW3
Prerequisite: Level II status in Philosophy
The metaphorical relation between femininity and language in recent French philosophy. Topics include femininity, transgression and jouissance; transvestitism and gender ambivalence; woman versus truth; and Kristeva's treatment of the 'maternal' and the 'hysteric' woman. Readings will be taken from the work of Freud, Lacan, Marguerite Duras, Irigaray, Deleuze and Guattari, Djuna, Barnes, Nietzsche, Virginia Woolf and Kristeva.

PHIL2506
Classical Political Philosophy
Staff Contact: –
U1 HPW3
Prerequisite: Level II status in Philosophy.
The work of some central figures in the history of political philosophy, with regard to the basis of political society, its various functions, and its relation to the individuals in it. Topics include the idea of a state of nature, theory of a social contract, the establishment of political rights and obligations, and the relation of moral and political concerns within a political society.

PHIL2507
The Ethics of Plato and Aristotle
Staff Contact: –
U1 HPW3
Prerequisite: Level II status in Philosophy
A systematic investigation of the moral theories of Plato and Aristotle, and some discussion of the difference between the approaches, concerns, and general aims of classical Greek ethics compared with more modern moral theorising. Beginning with the apparently immoral and subsequent amoral position of Thrasymachus and his question in Book 1 of the 'The Republic', 'Why should I be just?', the subject investigates the ways in which Plato and Aristotle each sets out the problems of the nature of morality and why a person should be moral, their approaches to the solutions to these problems, and their positive moral theories.

PHIL2508
Theories in Moral Philosophy
Staff Contact: –
U1 HPW3
Prerequisite: Level II status in Philosophy
Examination of three moral theories central in the history and development of moral philosophy. Hume, Kant, and Mill offer different kinds of moral theories, differing approaches to arriving at a moral theory, and specific theories which are markedly different from each other. Each moral theory is investigated in itself and in comparison with the other two.

PHIL2509
Philosophy of Law
Staff Contact: Dr S. Cohen
U1 S2 HPW3
Prerequisite: Level II status in Philosophy.
Notes: Excluded 52.2150.
Selected conceptual and normative issues in the philosophy of law, centring around the broad areas of law, eg its nature, validity, bindingness, and relation to morality, liberty, justice, responsibility (including strict, vicarious and collective liability), and punishment.

PHIL2516
Philosophical Foundations of Marx's Thought
Staff Contact: –
U1 S2 HPW3
Prerequisite: Level II status in Philosophy.
Notes: Excluded 52.373. May not be offered in 1992.
The basics of Marx's historical materialism and dialectical materialism.

PHIL2517
Philosophy and Gender
Staff Contact: –
U1 S1 HPW3
Prerequisite: Level II status in Philosophy
Notes: Excluded 52.216. May not be offered in 1992.

PHIL2518
Greek Philosophy: Issues in Ethics and Epistemology
Staff Contact: Dr S. Cohen, Prof G. Lloyd
U1 S2 HPW3
Prerequisite: Level II status in Philosophy
Notes: Excluded 52.2040, 52.2220, PHIL2507.
Themes in Plato and Aristotle which have had a continuing influence in western philosophy. Concepts of virtue and knowledge in relation to ideals of wisdom and contemplation.
PHIL2606
Aesthetics
Staff Contact: Dr L. During
U1 S1 HPW3
Prerequisite: Level II status in Philosophy

Emphasis on the visual arts, also including literature and film. Topics include subjectivity and objectivity in aesthetics, with special reference to Kant; concepts of tradition and genre; concepts of representation and 'expression'. Issues of the modern and post-modern (plus a case study), discussing the history of the female nude in European painting.

PHIL2607
Philosophy and Literature
Staff Contact: Prof G. Lloyd
U1 S2 HPW3
Prerequisite: Level II status in Philosophy

Philosophical aspects of the concept of representation in relation to literature, theories of the differences between philosophy and literature, and of the nature and role of the metaphor. Study of some central texts of Greek philosophy in conjunction with some contemporary philosophical discussions of literature which make use of them. Topics include Plato's criticism of the poets in the Republic; Iris Murdoch on 'the true' and 'the good' and the ethical significance of literature; Ricoeur on mimesis and narrative; Richard Rorty on philosophy as a 'kind of writing'.

PHIL2706
Seminar A
Staff Contact: Prof G. Lloyd
U1 S1 HPW3
Prerequisite: Level II status in Philosophy

Admission by permission, based on a student's performance in Upper Level subjects. Topics vary and are influenced by student requests.

PHIL2707
Seminar B: Aesthetics -- Post Modern and Avant Garde
Staff Contact: Dr L. During
U1 S2 HPW3
Prerequisite: Level II status in Philosophy

A seminar for students with a background in aesthetics or contemporary European philosophy. Theories of modernism and its successors (Burger, Greenberg, Fried, Jencks, Adorno, Jameson, Lyotard, Baudrillard) together with recent attempts to abandon modernism in the name of a more eclectic and popular approach. Examples from the world of the dadaists, surrealists, futurists, Bauhaus, Pop artists, and minimalists. Students aiming to enrol in this seminar should have a strong interest in art.

PHIL2708
Reading Option
Staff Contact: Prof G. Lloyd
U1 S1 or S2 HPW3
Prerequisite: Level II status in Philosophy

Students wishing to work in an area not covered by an existing subject or seminar may apply to the School to take a reading option. Not more than one such subject may be accepted as part of a degree course. Approval of a program for a reading option depends on its suitability and on the availability of a member of staff to undertake supervision.

Philosophy Level III
Notes: Level III Status in Philosophy consists of having an overall standard of credit or higher in 8 Philosophy units.

PHIL2107
Advanced Philosophy of Science
Staff Contact: Dr G O'Brien
U1 S2 HPW3
Prerequisite: PHIL2106 or PHIL2116 or HPST2106

Some current issues in the philosophy of the sciences and including discussion of the role of experiment in science; the cognitive status of theories; explanation; confirmation; inter-theoretical reduction; reductionism; models and metaphors; the logic of theory generation; the revival of realism; problems of classification.

PHIL3106
Pre-Honours Seminar
Staff Contact: Prof G. Lloyd
U1 S2 HPW3
Prerequisite: 5 units in Philosophy

For students intending to take Honours in Philosophy; designed to form skills in philosophical research and writing through seminar discussion of readings illustrating a range of philosophical approaches, styles and techniques.

Philosophy Level IV

PHIL4000/PHIL4050
Philosophy Honours (Research)
Staff Contact: Prof G. Lloyd
U10 F
Prerequisites: Completion of program 5200, 5262 or 5206 including 7 Level III units

The Honours Year consists of writing a research thesis under supervision and two seminar courses.

The Category C General Education requirements are met within the Honours Program by seminars and a statement.

Physics

Physics Level I Subjects
Notes: Where mathematics subjects are specified as prerequisites or as co-requisites, the higher levels of such subjects are acceptable and preferable. The total unit value of the combination of PHYS1022 and PHYS1002 is 3 units.

PHYS1002
Physics 1
Staff Contact: A/Prof G. Russell
U2 F HPW6
Prerequisites: HSC Exam Score Range Required: 2 unit Mathematics 67-100, or 3 unit Mathematics 1-50, or 4 unit Mathematics 1-100 or (for PHYS1002 only) MATH1001, and 2 unit Science (Physics) 57-100, or 2 unit Science (Chemistry)
60-100, or 3 unit Science 90-150, or 4 unit Science 1-50 or PHYS1022 1-50 (2 unit Mathematics in this instance refers to the 2 unit Mathematics subject which is related to the 3 unit Mathematics subject, and does not refer to the subjects Mathematics in Society or Mathematics in Practice).

Co-requisite: MATH1021 or MATH1032.

Aims and nature of physics and the study of motion of particles under the influence of mechanical, electrical, magnetic and gravitational forces. Concepts of force, inertial mass, energy, momentum, charge, potential, fields. Application of the conservation principles to solution of problems involving charge, energy and momentum. Electrical circuit theory, application of Kirchhoff's laws to AC and DC circuits. Uniform circular motion, Kepler's laws and rotational mechanics. Properties of matter: solids, liquids, gases. The wave theories of physics, transfer of energy by waves, properties of waves. Application of wave theories to optical and acoustical phenomena such as interference, diffraction and polarization.

Elective Syllabus
Those students enrolled in a physics program in the Science Course, and who have achieved a satisfactory performance in Session 1, may elect to take the following option for Session 2.

QUANTUM AND LASER PHYSICS
Waves in elastic media; sound waves; early quantum physics; the laser, operation and applications, interference, diffraction and polarization.

AC CIRCUIT THEORY
Addition of alternating quantities; series circuits, impedance, power, resonance, parallel circuits; ideal transformer.

SOLAR SYSTEM ASTROPHYSICS
Celestial dynamics: orbits; shape and rotation of planets, planetary rings; tests of Planetary atmospheres.

PHYS1022
Introductory Physics 1 (For Health and Life Scientists)
Staff Contact: A/Prof G. Russell
U2 F HPW6
Co-requisites: MATH1011 and MATH1021 or MATH1032.
Principally for students majoring in the life and health sciences disciplines. Topics at an introductory level.

The methods of physics, describing motion, the dynamics of a particle, conservation of energy, kinetic theory of gases, properties of liquids, vibrations and waves, electricity and conduction in solids, ions and ionic conduction, magnetism and electromagnetic induction, alternating current, atomic nature of matter, X-rays, the nucleus and radio-activity, geometrical optics, optical instruments, wave optics, microscopes and their uses.

PHYS1611
Laboratory Computers in Physical Science
Staff Contact: –
U1 HPW6
Co-requisites: MATH1011 and MATH1021 or MATH1032 and PHYS1002 or PHYS1022

PHYS1999
Physics I (Optometry)
U1 S1 HPW6
Notes: Restricted to course 3950.

Physics Level II Subjects
Notes: Where mathematics subjects are specified as prerequisites or as co-requisites, the higher levels of such subjects are acceptable and preferable. Students are also advised that other subjects may be acceptable equivalent prerequisites or co-requisites to those listed, eg Unit PHYS2989 of course 3640 may be acceptable in place of PHYS2021. Enquiry should be made to the School of Physics.

PHYS2001
Mechanics, and Computational Physics
Staff Contact: Dr K. Vost
U1 S1 HPW4
Prerequisites: PHYS1002, MATH1032.
Co-requisite: MATH2100
Notes: Excluded PHYS2999.

Harmonic motion, systems of particles, central force problems, Lagrange's equations, coupled oscillations, travelling waves, pulses, energy and momentum transfer, computer operating systems, introduction to FORTRAN, libraries and software packages, use of computers to solve problems in physics.

PHYS2011
Electromagnetism and Thermal Physics
Staff Contact: Dr K. Vost
U1 S2 HPW4
Prerequisites: PHYS1002, MATH1032.
Co-requisites: MATH2100
Notes: Excluded PHYS2999.

Electric field strength and potential, Gauss' law, Poisson's and Laplace's equations, capacitance, dielectrics and polarization, magnetism, electro-magnetic induction, Maxwell's equations, electromagnetic waves. Laws of thermodynamics, kinetic theory, microscopic processes, entropy, solid state defects, Helmholtz and Gibbs functions, Maxwell's relations, phase diagrams, chemical and electrochemical potential.

PHYS2021
Quantum Physics and Relativity
Staff Contact: Dr K. Vost
U1 F HPW2
Prerequisites: PHYS1002, MATH1032
Notes: Excluded PHYS2989.

nucleus: properties, forces, models, fission and fusion. Special theory of relativity, simultaneity, time dilation, length contraction, momentum and energy.

PHYS2031
Laboratory
Staff Contact: Dr K. Vost
U 1 F HPW3
Prerequisites: PHYS1002, MATH1032
Notes: Excluded PHYS2920.
Alternating current circuits, complex impedance, resonance, mutual inductance, introductory electronics, diode and characteristics and circuits, power supplies, transistor characteristics, single stage and coupled amplifiers, experiments using AC circuits. Experimental investigations in a choice of areas including radioactivity, spectroscopy, properties of materials, Hall effect, nuclear magnetic resonance, photography, vacuum systems.

PHYS2410
Introductory Biophysics
Staff Contact: Dr K. Vost
U 5 S 2 HPW2
Prerequisite: PHYS1002 or PHYS1022.

PHYS2500
Methods In Mathematical Physics
U 5 HPW2
Prerequisites: PHYS1002, MATH1032.
Co-requisites: MATH2100, MATH2120, MATH2510

PHYS2601
Computer Applications In Experimental Science 2
Staff Contact: Dr K. Vost
U 1 S 1 HPW5
Prerequisite: PHYS1601
Technical aspects of computer hardware, peripherals and systems. Bus logic devices; simple interface design; use of a general purpose interface for communication, data collection and control. Speed and capacity limitations of conventional peripherals; techniques to improve performance beyond the computer's capabilities.

PHYS2630
Electronics
Staff Contact: Dr K. Vost
U 5 S 2 HPW3
Prerequisite: PHYS1002 or PHYS1022
Notes: Excluded PHYS2920.
Review of AC theory. Transistors, basic circuits, transistor amplifiers. Feedback. Operational amplifiers, basic circuits, integrators, differentiators, compensation, Power supplies, voltage and current regulators, switching power supplies.

PHYS2810
Introductory Atmospheric Science
Staff Contact: Dr K. Vost
U 5 S 1 HPW2
Prerequisites: PHYS1002 or PHYS1022, MATH1032
Co-requisite: MATH2100
Notes: Excluded PHYS3180.
Introduction to the properties and problems of the atmosphere: composition and structure, thermodynamics and stability, solar and terrestrial radiation, ozone layer, equations of motion and their consequences, physical basis of climate and climate change.

PHYS2820
Introductory Meteorology
Staff Contact: Dr K. Vost
U 5 S 2 HPW3
Co-requisite: PHYS2810
Atmospheric circulation; synoptic meteorology, including surface and upper level information, meteorological instruments and satellites; applied thermodynamics and cloud macrophysics, thunderstorms and cyclones.

PHYS2920
Electronics (Applied Science)
Staff Contact: Dr K. Vost
U 5 S 1 HPW3
Prerequisite: PHYS1022 or PHYS1002
Notes: Excluded PHYS2921, PHYS2920.
The application of electronics to other disciplines. Includes principles of circuit theory; amplifiers, their specification and application, transducers; electronic instrumentation; industrial data acquisition.

Physics Level III Subjects
Notes: See notes for Physics Level II subjects.

PHYS3010
Quantum Mechanics
Staff Contact: Dr K. Vost
U 5 S 1 HPW3
Prerequisites: PHYS2011, MATH2120
Fundamental principles, harmonic oscillator systems, spherically symmetric systems, angular momentum, hydrogen atom, perturbation theory, variational methods, identical particles, quantum theory of atoms.

PHYS3021
Statistical Mechanics and Solid State Physics
Staff Contact: Dr K. Vost
U 5 S 1 HPW4
Prerequisites: MATH2120, PHYS2011, PHYS2021
Canonical distribution, paramagnetism, Einstein solid, ideal gas, equipartition, grand canonical ensemble, chemical potential, phase equilibria, Fermi and Bose statistics, Bose condensation, blackbody radiation. Crystal structure, bonding, lattice dynamics, phonons, free-electron models of metals, band theory, point defects, dislocations.

PHYS3030
Electromagnetism
Staff Contact: Dr K. Vost
U 5 S 1 HPW2
Prerequisites: PHYS2011, MATH2100, MATH2120
Electromagnetic fields; Maxwell's equations, Poynting theorem, electromagnetic potentials, electromagnetic waves. Reflection and transmission, Fresnel equations, waveguides, radiation fields, dipoles and antenna theory.
PHYS3041
Experimental Physics A
Staff Contact: Dr K. Vost
U1 F HPW4
Prerequisite: PHYS2031.

Basic experimental techniques and analysis of results in the following areas: electricity, magnetism, diffraction optics including X-ray and electron diffraction, solid state physics, nuclear physics, atomic physics and spectroscopy, vacuum systems.

PHYS3050
Nuclear Physics
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Co-requisite: PHYS3010

Nuclear shell model; theory of beta decay; the deuteron, nucleon-nucleon scattering; theories of nuclear reactions, resonances; mesons and strange particles, elementary particle properties and interactions; symmetries and quark models; strong and weak interactions.

PHYS3060
Advanced Optics
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Prerequisite: PHYS1002

Review of geometrical optics, including ray tracing, aberrations and optical instruments: physical optics, including Fresnel and Fraunhofer diffraction, transfer functions, coherence, and auto and cross correlation: applications of optics, including fibre optics, lasers and holography.

PHYS3100
Experimental Physics B1
Staff Contact: Dr K. Vost
U.5 S1 HPW4
Prerequisite: PHYS2031

Selected experiments and projects. Advanced experimental techniques and open ended projects in the areas covered in PHYS3041 Experimental Physics A together with projects involving electron and nuclear magnetic resonances, low temperature physics and superconductivity. Fourier optics, holography.

PHYS3120
Experimental Physics B2
Staff Contact: Dr K. Vost
U.5 S1 HPW4
Prerequisite: PHYS2031

As for PHYS3110 Experimental Physics B1.

PHYS3160
Astrophysics
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Prerequisite: PHYS2021

PHYS3180
Atmospheric Physics
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Prerequisites: PHYS1002, PHYS2010 or CHEM2021

Atmospheric thermodynamics, radiation, dynamics; energy balance, greenhouse effect, climate models and climate change, upper atmosphere physics.

PHYS3310
Physics of Solid State Devices
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Co-requisite: PHYS3021

Review of electronic structure in semiconductors; p-n junctions; bipolar and field effect transistors including formation, characteristics and electrical breakdown. Optical devices including light emitting diodes and junction lasers. Integrated circuit structures.

PHYS3320
Topics in Condensed Matter Physics
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Co-requisite: PHYS3021

Superconductivity, Meissner-Ochsenfeld effect, entropy, thermodynamics and relevant theories, Josephson junctions. Amorphous materials, preparation, magnetic properties, bandgaps, dangling bonds and ESR, mobility edge, solar cells. Polymers, structure, bonding, relaxation phenomena, electrical breakdown, liquid crystals.

PHYS3410
Biophysics
Staff Contact: Dr K. Vost
U.5 S2 HPW3
Prerequisites: PHYS2011, PHYS2021

PHYS3510
Advanced Mechanics, Fields and Chaos
Staff Contact: Dr K. Vost
U.5 S1 HPW2
Prerequisites: PHYS2001, MATH2100, MATH2510

Lagrange's equations and applications, variational principles, dissipative systems, Hamiltonian formulation, canonical transformations, Poisson brackets, Hamilton-Jacobi equation, continuous systems and fields, stability and chaos.
PHYS3520
Relativistic Electrodynamics
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Prerequisites: PHYS2021, MATH2510, MATH2100, MATH2120
Co-requisite: PHYS3030
Poisson's equation, heat conduction) and simulation techniques (phase transitions, molecular dynamics, chaos and stability).

PHYS3530
Advanced Quantum Mechanics
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Co-requisite: PHYS3010
Special relativity, covariant formulation of electrodynamics, stress tensor, radiation from moving charges, Lienard-Wiechert potentials, synchrotron radiation, bremsstrahlung, electro-magnetic mass, radiative damping, multipole expansion for fields, scattering.

PHYS3540
Plasmas and Laser Fusion
U.5 HPW2
Prerequisites: PHYS2011, PHYS2021
Notes: Not offered in 1992.

PHYS3550
General Relativity
Staff Contact: Dr K. Vost
U.5 S2 HPW2
Prerequisites: PHYS2021, MATH2510, MATH2100
Relativistic kinematics and dynamics, tensors and tensor operations, Christoffel symbols, formulation of general relativity, curvature of space, geodesics, gravitational field equations, Schwarzschild solution, tests of the theory, astrophysical and cosmological implications.

PHYS3601
Computer Applications in Instrumentation
Staff Contact: Dr K. Vost
U.5 S2 HPW5
Prerequisite: PHYS2601
Developments in computer architecture and hardware such as digital signal processors, parallel computing architectures, neural networks etc; computers and microcontrollers in instrumentation and control applications. Seminars on architecture, instrumentation and control. Projects on peripheral and stand-alone systems.

PHYS3610
Computational Physics
Staff Contact: Dr K. Vost
U.5 S2 HPW3
Prerequisites: PHYS2001, PHYS2021, MATH2120
Use of computers in solving and visualizing physical problems, including applications of least squares techniques, quantum mechanical eigenvalues and boundary value problems (Woods Saxon potential,

Staff Contact: Dr K. Vost
U.5 S2 HPW3
Prerequisites: PHYS2031, MATH2120
Notes: Excluded ELEC4042.

Measurement and sampling; noise power spectra; signal-to-noise improvement using digital techniques: digital filters, auto- and cross- correlation, methods based on Fourier transformation; system response including transfer functions, convolution, image enhancement.

PHYS3620
Computer Based Signal Processing
Staff Contact: Dr K. Vost
U.5 S2 HPW3
Prerequisites: PHYS2031, MATH2120
Notes: Excluded ELEC4042.

Measurement and sampling; noise power spectra; signal-to-noise improvement using digital techniques: digital filters, auto- and cross- correlation, methods based on Fourier transformation; system response including transfer functions, convolution, image enhancement.

PHYS3631
Advanced Electronics
Staff Contact: Dr K. Vost
U.1 S1 HPW6
Prerequisites: PHYS2031, PHYS2630

PHYS3710
Lasers and Applications
Staff Contact: Dr K. Vost
U.5 S1 HPW2
Notes: Offered in odd-numbered years only.

Interaction between light and matter, fundamental properties of laser amplifiers and oscillators, giant pulse generation, mode locking and Q switching, specific laser systems including gas lasers and semiconductor lasers, applications of lasers.

PHYS3720
Optoelectronics
Staff Contact: Dr K. Vost
U.5 S1 HPW2
Notes: Offered in even-numbered years only.

Introduction to non-linear optics, second harmonic generation, parametric amplification, phase matching, optical bistability, modulation of light, types of optical detectors including thermal detectors, photomultipliers and semiconductor detectors.

PHYS3760
Laser and Optoelectronics Laboratory
Staff Contact: Dr K. Vost
U.5 S2 HPW4
Aims to make students conversant with the techniques employed in laser technology and become familiar with various components used in laser applications. Includes the study of the construction, operation and characterization of several types of lasers. Other experiments involve applications of lasers such as holography, acousto-optics, fibre optics, optical spectroscopy, and a study of the safety aspects of lasers.
Physics Level IV

PHYS4103/PHYS4113
Physics 4 (Honours)
U10 F
Prerequisites: Completion of program 0100 including 7 Level III units, or 0161 including 6 Level III units

PHYS4503/PHYS4513
Theoretical Physics 4 Honours
Staff Contact: A/Prof J. Oitmaa
U10 F
Prerequisites: Completion of program 0100 including 7 Level III units, or 0161 including 6 Level III units
Notes: For the combined Physics/Geology honours see entry under Board of Studies in Science and Mathematics.

Honours programs consist of advanced lecture units and project work. Students normally undertake two separate projects during the year, in different research areas. All students take units in quantum mechanics, statistical mechanics and solid state physics. Four additional units are chosen from topics such as astronomy, atomic and molecular spectroscopy, condensed matter physics, experimental methods, biophysics, quantum field theory and quantum theory of solids. Students who enrol in Theoretical Physics 4 are required to include theoretical units among their electives and to undertake at least one project of a theoretical nature.
Admission to the honours program is at the invitation of the Head of School and normally requires at least a credit average in Year 3.

Servicing Subjects
These are mainly subjects taught within courses offered by other faculties.
For further information regarding the following subjects see the relevant Faculty Handbooks.

PHYS1909
Astronomy
Staff Contact: A/Prof G. Russell
An overview of Astronomy from the solar system to the stars and galaxies. Includes: exploring our solar system, the search for other solar systems; stars, their properties, evolution to pulsars, neutron stars and black holes; galaxies, radio galaxies and quasars; the expanding universe and cosmology.

PHYS1919
Physics 1 (Mechanical Engineering)
Staff Contact: A/Prof G. Russell

PHYS1929
Physics 1 (Surveying)
Staff Contact: A/Prof G. Russell

PHYS1939
Physics 1 (Building and Design)
Staff Contact: A/Prof G. Russell
Energy transfer: concepts of temperature and heat; calorimetry; gas laws; phase changes and humidity; heat transmission; refrigeration. Electrostatics and electromagnetism: electric and magnetic fields; DC circuits; electromagnetic induction. Sound: wave properties; absorption of sound. Properties of matter: atomic bond types and their relation to elasticity, plasticity and fracture; pressure in stationary and moving fluids.

PHYS1969
Physics 1 (Electrical Engineering)
Staff Contact: A/Prof G. Russell
Electrostatics in vacuum, electrostatics in dielectrics, steady state currents, magnetostatics in vacuum, ferromagnetism, electromagnetic induction, transient currents. Vectors, motion in one dimension, motion in a plane, particle dynamics, work and energy, the conservation of energy, conservation of linear momentum, collisions, rotational kinematics, rotational dynamics, simple harmonic motion, gravitation. Temperature, heat and the first law of thermodynamics, kinetic theory of gases. Waves in elastic media, sound waves, geometrical optics, interference, diffraction, gratings and spectra, polarization.

PHYS1989
Physics 1 (Civil Engineering)
Staff Contact: A/Prof G. Russell
For students in the School of Civil Engineering.

PHYS1999
Physics 1 (Optometry)
Staff Contact: A/Prof G. Russell
Physiology and Pharmacology

Physiology and Pharmacology Level II

Notes: Normal prerequisites for the courses in Physiology may be waived by the Head of School for students with a good academic record.

PHYS2959
Introduction to Semiconductor Physics (Computer Engineering)
Staff Contact: Dr K. Vost
Structural properties of solids; free electrons in metals; introductory quantum physics; band theory; semiconductors in equilibrium.

PHYS2969
Physics of Measurement (Surveying)
Staff Contact: Dr K. Vost
Resolution, accuracy and sensitivity of instruments. Errors of observation; transducers; thermometry; electrical noise; mechanical design of apparatus; optical instruments optical fibres; photometry; analogue-to-digital conversion and digital instruments. Measurements of very large and very small quantities.

PHYS2979
Electromagnetic Theory
Staff Contact: Dr K. Vost

PHYS2989
Solid State Physics (Electrical Engineering)
Staff Contact: Dr K. Vost
The concepts of waves and particles, introductory quantum mechanics, atomic structure, optical spectra and atomic structure, structural properties of solids, band theory and its applications, uniform electronic semiconductors in equilibrium, excess carriers in semiconductors.

PHYS2999
Mechanics and Thermal Physics (Electrical Engineering)
Staff Contact: Dr K. Vost
Particle mechanics, harmonic motion, central force problems, systems of particles, Lagrange's equations with applications, coupled oscillations, wave equation. Thermodynamic laws, entropy, kinetic theory, M-B distribution, microscopic processes, Maxwell's relations, chemical potential, phase diagrams, multicomponent systems, electrochemical potential, statistics of defects in solids.

Physiology and Pharmacology Level III

PHPH2111
Principles of Physiology (Optometry)
Staff Contact: School Office
U2 F HPW6
Notes: Restricted to course 3950.
Covers the same general areas of physiology as Physiology 1. Principles of Physiology is taken only by students enrolled in the BOptom degree course.

PHPH2112
Physiology 1
Staff Contact: Dr B. Nail
U2 F HPW6
Prerequisites: CHEM1002 or CHEM1101 and CHEM1201, MATH1032 or MATH1042 or MATH1011 and MATH1021, BIOS1021
Notes: Students intending to major in Physiology and/or Pharmacology should note Physiology 2 prerequisites.
Introduces fundamental physiological principles, dealing first with basic cellular function in terms of chemical and physical principles, and with the operation of the various specialized systems in the body, eg, the cardiovascular system, the respiratory system, the gastrointestinal system, the endocrine system, the nervous system. Includes a substantial series of practical class experiments on these different areas of physiology. This subject is taken by students enrolled in any of the Physiology program.

Physiology and Pharmacology
PHPH3131
Neurophysiology
Staff Contact: Prof M. Rowe
U1 S1 HPW6
Prerequisites: Normally as for PHPH3114 but may be studied only with permission of the Head of School.
The neural mechanisms in sensation and the control of posture and movement. Includes segments on neural control of cardiorespiratory function; transmitters and neuromodulators; neural mechanisms in certain higher functions, eg language and memory; nervous system plasticity; computer applications in neuroscience. Experimental work introduces the student to electrophysiological and other neuroscience research techniques.

PHPH3142
Organ Physiology
Staff Contact: A/Prof M. Perry
U2 S2 HPW12
Prerequisites: Normally as for PHPH3114 but may be studied only with permission of the Head of School.
An advanced coverage of aspects of cardiovascular, respiratory, renal, fetal exercise and gastrointestinal physiology. Emphasis on the function and control of each organ and system. Extensive practical component involving mammalian (including human) preparations.

PHPH3152
Pharmacology
Staff Contact: A/Prof G. Graham
U2 F HPW6
Prerequisites: PHPH2112.
Co-requisites: PHPH3114 or BIOC3111, BIOC3121 and BIOC3261 or 2 Level III Chemistry units
Includes a study of the absorption, distribution and metabolism of drugs, plus a study of the pharmacology of the autonomic nervous system, the cardiovascular system, the central nervous system, the kidney, the endocrine system and also a study of pharmakinetics. Practical complementing of the lecture program by demonstrating a variety of basic pharmacological techniques.

Physiology and Pharmacology Level IV
PHPH4218/PHPH4224
Physiology 4 (Honours)
Staff Contact: School Office
U10 F
Prerequisites: Completion of program 7300 including 7 Level III units of which must be Physiology units

Chemical Engineering and Industrial Chemistry

Polymer Science

Polymer Science Level III
POLY3010
Polymer Science
Staff Contact: School Office
U1 F HPW3
Prerequisites: CHEM2011, CHEM2021, MATH2021, MATH2819
Co-requisite: MATH2841
Notes: Restricted to Combined degree course 3681.

Psychiatry

Psychiatry Level II
PSCY2201
Human Behaviour
Staff Contact: School Office
U1 F HPW3
Notes: Restricted to Combined degree course 3820.
See Undergraduate Study: 3820 Combined Science and Medicine Course, earlier in this handbook.

Psychology

Psychology Level I Subject
PSYC1002
Psychology 1
Staff Contact: Dr A. Adams
U2 F HPW5
Notes: Excluded GENS4620, GENS5050.
Introduces the content and methods of psychology as a basic science, with emphasis on the biological and social
bases of behaviour, relationship to the environment, and individual differences. Training in the methods of psychological enquiry, and in the use of elementary statistical procedures.

Psychology Level II Subjects

Notes: Students may not enrol in more than four Level II Psychology units.

PSYC2001
Research Methods 2
Staff Contact: Dr K. Llewellyn
U1 S1 HPW4
Prerequisite: PSYC1002

General introduction to the analysis of data by means of inferential statistics (z, t and chi square). Issues in the use of statistics (power, robustness, multiple tests). General features of research methodology. Laboratory and statistical traditions affecting design and control procedures. The implications of the use of inferential statistics for research methodology generally.

PSYC2011
Psychological Assessment
Staff Contact: Dr S. Andrews
U1 S2 HPW3
Prerequisite: PSYC2001

Principles and techniques of psychological measurement. Types of tests and issues relevant to their construction, administration and interpretation in decisions about selection and classification.

PSYC2021
Attention, Memory and Thought
Staff Contact: A/Prof J. Taplin
U1 S1 HPW4
Prerequisite: PSYC1002

Introduces the fundamental principles of human cognition underlying pattern recognition, selective attention, memory storage and retrieval, and reasoning and problem-solving. Applications are considered.

PSYC2031
Personality and Social Psychology
Staff Contact: Prof J. Forgas
U1 S2 HPW4
Prerequisite: PSYC1002

1. Models of personality and their method of study, personality development and links with social behaviour.
2. Social behaviour and the processes of verbal and nonverbal communication, person perception and interpersonal relationships in particular.

PSYC2042
Psychology 2A
Staff Contact: Dr G. Huon
U2 F HPW4
Notes: Restricted to course 3431.

Introduction to several areas of professional practice in psychology and the roles of psychologists in these areas, eg developmental disabilities, and psychology and the law. Principles and techniques of interviewing and counselling in a variety of contexts.

PSYC2051
Human Development
Staff Contact: Dr D. Burnham
U1 S1 HPW4
Prerequisite: PSYC1002
Notes: Excluded PSYC2116, PSYC3111.
The physical, perceptual, cognitive, and psychosocial development of the human from genetic and pre-natal influences through to old age.

PSYC2116
Human Development (Optometry)
U1 S1 HPW3
Notes: Restricted to course 3950.

Psychology Level III Subjects

Notes: Students may not enrol in more than three Level III Psychology units unless PSYC2001 Research Methods 2 has been passed.

Students may not enrol in more than six Level III Psychology units unless PSYC3001 Research Methods 3A has been passed.

Students may not enrol in more than eight Level III Psychology units in course 3970.
Not all Level III Psychology units will necessarily be offered in each year.

PSYC3001
Research Methods 3A
Staff Contact: Dr K. Bird
U1 S1 HPW4
Prerequisite: PSYC2001

Analysis of variance for single factor and multifactor designs. Test procedures for planned and post-hoc contrasts defined on parameters of fixed and mixed models. General principles of experimental design.

PSYC3011
Research Methods 3B
Staff Contact: Dr K. Bird
U1 S2 HPW4
Prerequisite: PSYC3001

Multivariate statistics and computing. Data analysis using the SPSS and PSY computer programs; their statistical basis.

PSYC3021
Perception
Staff Contact: Prof B. Gillam
U1 S2 HPW4
Prerequisites: PSYC2001 and either PSYC2021 or PSYC2031

The study of the sensory basis of perception; the study of perception as an adaptive process by which individuals are able to correctly apprehend the external environment and localise themselves within it; the study of perceptual development in infants and young children.
PSYC3031
Behavioural Neuroscience
Staff Contact: A/Prof E. Kehoe
U1 S1 or S2 HPW4
Prerequisites: PSYC2001 and either PSYC2021 or PSYC2031
An examination of brain-behaviour relationships with emphasis on contemporary models of the neural bases of learning, memory and motivation. Topics may include classical and operant conditioning, neuropharmacology, the neural basis of feeding and its disorders, invertebrate and vertebrate models of learning, amnesias and theories of normal memory.

PSYC3041
Learning
Staff Contact: A/Prof R. Westbrook
U1 S2 HPW4
Prerequisite: PSYC3031
The conditions which promote learning, the contents of learning and the mechanisms by which learning is deployed in action. Emphasises the distinction between specialised and general-purpose learning abilities.

PSYC3051
Physiological Psychology
Staff Contact: Prof G. Paxinos
U1 S2 HPW4
Prerequisite: PSYC3031
The neural control of behaviour with special emphasis on cerebral localization of function in humans. Clinical conditions are considered to the extent that they illuminate mechanisms of brain control or they relate to theorising about brain function.

PSYC3061
Perceptual Theory
Staff Contact: –
U1 HPW4
Prerequisite: PSYC3021
Notes: Not offered in 1992.
Some major theoretical influences in perception, beginning with a historical view and then considering the different perspectives represented by Helmholtz, Gestalt psychology, and Gibson; the influence of computer vision (especially Marr) and the modern revolution in knowledge of the physiology of the visual system.

PSYC3071
Abnormal Psychology
Staff Contact: Dr P. Birrell
U1 S1 HPW4
Prerequisite: PSYC2001
Descriptive psychopathology; symptomatology and diagnostic features of schizophrenia, organic brain syndromes, affective disorders, neurotic disorders, psychopathy, sexual aberrations, and addictions.

PSYC3081
Experimental Psychopathology
Staff Contact: Dr P. Lovibond
U1 S2 HPW4
Prerequisite: PSYC3071
An examination of the aetiology and mechanisms of behavioural disorders in the light of experimental research and theory construction. Major topics include: aetiology and mechanisms of schizophrenia, affective disorders; psychophysiological disorders, anxiety, depression, addictive behaviours and amnesia.

PSYC3091
Counselling and Evaluation
Staff Contact: Dr G. Huon
U1 S1 HPW4
Prerequisites: PSYC2001 and PSYC2011
Notes: Excluded PSYC2042.
Theory and practice of counselling in a variety of contexts. Emphasises major theoretical orientations, counselling skills development and the evaluation of counselling effectiveness through behavioural and other assessments.

PSYC3101
Individual Differences
Staff Contact: Prof L. Brown
U1 S1 HPW4
Prerequisite: PSYC2001
Measurement and assessment of intelligence, psychometric assessment of personality, cognitive and affective aspects of personality, the authoritarian personality, achievement motivation, socio-biological models and critique.

PSYC3111
Development Psychology
Staff Contact: Dr D. Burnham
U1 S2 HPW4
Prerequisites: PSYC2001 and either PSYC2021 or PSYC2031
Notes: Excluded PSYC2051, PSYC2116.
Issues, methods, and theories in developmental psychology; the development of infants, toddlers, school children, and adolescents with reference to significant cognitive and social events in each of these periods.

PSYC3121
Social Psychology
Staff Contact: Prof J. Forgas
U1 S1 HPW4
Prerequisites: PSYC2001 and PSYC2031
Notes: Excluded PSYC3131.
Human sociability, affiliation and attraction, the development of interpersonal relationships, social influence processes, conformity, obedience, leadership, interaction in groups, affective influences on social cognition and behaviour.

PSYC3131
Cross-Cultural Social Behaviour
Staff Contact: A/Prof S. Bochner
U1 S2 HPW4
Prerequisites: PSYC2001 and PSYC2031
Notes: Excluded PSYC3121.
The social psychology of intergroup relations or contact between culturally diverse individuals and groups. Includes intercultural communication, inter-group conflict and its resolution, culture learning and orientation program, and cross-cultural social skills training. Illustration by studies of overseas students, migrants, international business
persons, and other individuals exposed to second-culture influences.

PSYC3141
Behaviour in Organizations
Staff Contact: A/Prof B. Hesketh
U1 S2 HPW4
Prerequisites: PSYC2001 and PSYC2031

Industrial and organizational psychology, job analysis, selection, motivation, management strategies, job design and a systems analytic approach to organizations, training, selection, work satisfaction and organizational climate.

PSYC3151
Cognition and Skill
Staff Contact: Dr H. Stanislaw
U1 S1 HPW4
Prerequisites: PSYC2001 and PSYC2021

Cognitive processes underlying skilled behaviour. Topics include detection and discrimination, the representation of knowledge, artificial intelligence, and the basis of expertise in skilled performance.

PSYC3161
Language and Its Development
Staff Contact: Dr M. Taft
U1 S1 HPW4
Prerequisites: PSYC2001 and PSYC2021

How language is acquired and used in reading, writing, speech comprehension and speech production. Language dysfunction and bilingualism.

PSYC3171
Recent Developments in Experimental Psychology
U1 HPW4
Prerequisites: PSYC2001 and PSYC2021
Notes: Not offered in 1992.

An occasional elective dealing with recent developments in experimental psychology.

PSYC3181
Issues in Applied Psychology
U1 HPW4
Prerequisites: PSYC2001 and PSYC2011
Notes: Not offered in 1992.

An occasional elective dealing with issues in applied psychology. Topics may include psychology and law, career choice and development, stress, forensic psychology and field versus laboratory research.

PSYC3191
Computer Science and Psychology
U1 HPW5
Prerequisites: COMP1011, COMP3411, PSYC2001 and PSYC2021
Notes: Not offered in 1992.

Investigates the burgeoning relationships between cognitive psychology and computer science. Topics include parallel distributed processing models of learning, memory and perception; processes of reasoning, logic and decision making; human expertise and expert systems.

Psychology Level IV Subjects

PSYC4003
Psychology 4 (Thesis/Course 3141)
Staff Contact: Dr J. Cranney
U10 F

Psychology 4 in the BSc(Psychol) degree course. A supervised research thesis and course work to be determined in consultation with the Head of School. The Category C General Education requirements are met by components of a number of compulsory subjects in the course and particularly by PSYC2042.

PSYC4013
Psychology 4 (Course 3141)
Staff Contact: Dr J. Cranney
U10 F

Psychology 4 in the BSc(Psychol) degree course. Course work and a supervised group research project to be determined in consultation with the Head of School. The Category C General Education requirements are met by components of a number of compulsory subjects in the course and particularly by PSYC2042.

PSYC4023
Psychology 4 (Thesis) Honours
Staff Contact: Dr J. Cranney
U10 F
Prerequisites: Completion of program 1200 or 1206 including 8 Level III units

Psychology 4 in the Arts, and the Science and Mathematics degree courses. A supervised research thesis and course work to be determined in consultation with the Head of School. The Category C General Education requirements are met by components of a number of compulsory subjects in the course and the 28 hour subject 'Issues in Psychology as a Science and a Profession', which forms part of Year 4 program.

PSYC4033
Psychology 4 Honours
Staff Contact: Dr J. Cranney
U10 F
Prerequisites: Completion of program 1200 or 1206 including 8 Level III units

Psychology 4 in the Arts, and the Science and Mathematics degree courses. Coursework and a supervised group research project to be determined in consultation with the Head of School. The Category C General Education requirements are met by components of a number of compulsory subjects in the course and the 28 hour subject 'Issues in Psychology as a Science and a Profession', which forms part of Year 4 program.

PSYC4043
Computer Science and Psychology 4 (Honours)
Staff Contact: Dr J. Cranney
U10 F
Prerequisites: Completion of program 1200 or 1206 including 8 Level III units

Combined Honours in Computer Science and Psychology.
The Category C General Education requirements are met by components of a number of compulsory subjects in the course and the 28 hour subject ‘Issues in Psychology as a Science and a Profession’, which forms part of Year 4 program.

Servicing Subjects

These are subjects taught within courses offered by other faculties.

PSYC2106
Psychology (Industrial Relations)
Problems and limitations affecting social research in industry. Critical review of American research from Hawthorne to Herzberg and of British research from Tavistock and Trist to Emery in Australia. Conflict and organic theories of organization and related theories of motivation and morale. The use of library resources. Practice in the skills and discipline required to obtain and evaluate empirical evidence in this field. Recent developments under the heading of ‘participation’ and democracy in industry.

For further information see the Faculty of Commerce and Economics handbook.

PSYC2116
Human Development (Optometry)
Staff Contact: Dr D. Burnham

Historical background and schools of psychology; current approaches to psychology; introduction to statistical inference; human development, including introduction to issues and methods in developmental psychology, and investigation of the physical, perceptual, cognitive, and psychosocial development of the human through the life span.

PSYC4106
Psychology (Optometry)
Staff Contact: Dr K. Llewellyn

U1 F HPW2

Notes: Restricted to course 3950.

Visual perception: The nature and characteristics of visual perception. Topics include: psychophysics, the organization of visual perception, the influence of context, and the effects of learning and motivation on perception. Emphasises an examination of relevant experimental data. Abnormal psychology: the concepts of normality and abnormality, and an examination of the principal psychodynamic processes. Causes and symptoms of various mental disorders are introduced with some emphasis on the importance of these symptoms in optometrical practice.

Science and Technology Studies

Science and Technology Studies Level I

Students undertaking subjects in Science and Technology Studies supplement class contact hours by study in the Library. Only two Level 1 units may be counted towards course 3970.

HPST1106
Myth, Megalith and Cosmos
Staff Contact: Mr A. Coronas
U1 S1 HPW3
Notes: Excluded 62.111.

A general introduction to the history and philosophy of science. Provides a background to HPST1107. From the closed world to the infinite universe, but is a self-contained subject in its own right. Examines the evidence for scientific knowledge in prehistoric cultures, the astronomy and cosmology of the ancient Near East civilizations, and the development of earlier Greek scientific thought.

HPST1107
From the Closed World To the Infinite Universe
Staff Contact: Dr G. Freeland
U1 S2 HPW3
Notes: Excluded 62.211.

A general introduction to the history and philosophy of science. Follows on from HPST1106 Myth, Megalith and Cosmos, but constitutes a self-contained subject in its own right without prerequisites. Examines the momentous transition from the ancient/medieval model of a closed world to modern cosmological theory.

HPST1108
Science: Good, Bad and Bogus: An Introduction to the Philosophy of Science
Staff Contact: Dr P. Slezak
U1 S2 HPW3

What is science? What are its distinctive characteristics as a form of inquiry? Why are astrology and ‘creationism’ widely considered to be pseudosciences? A critical consideration of the claims of astrology, psychoanalysis, parapsychology and creation-science provides a vehicle for raising central questions concerning the nature of science.

SCTS1106
Science, Technology and Social Change
Staff Contact: Dr D. Miller
U1 S1 HPW3
Notes: Excluded 62.110.

Relations between science, technology and society in the 20th Century. Theories on the nature of technological design and change. Examination of controversies including: environmental protection; nuclear energy and genetic engineering. The nature of public involvement in decisions about scientific and technological development.

SCTS1107
Understanding Technological Controversy
Staff Contact: Dr D. Miller
U1 S2 HPW3
Prerequisite: SCTS1106

The lecture series examines scientific and technical controversies in general; how they arise, how they are conducted, how and why they are resolved or remain unresolved. The tutorials are devoted to supervised group work on issues of concern to students in the areas of environment, energy, genetic engineering, and communication technologies.
Science and Technology Studies Level II/III

HPST2106
The Scientific Theory
Staff Contact: Dr G. Freeland
U1 S2 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 62.032.

A critical examination of the scientific theory, its origins, nature and nurture, with particular reference to selected historical examples chosen from both the physical and biological sciences. Topics include the structure of scientific revolutions; scientific explanation; relationships between theory and observation; the functions of models; the principles of theory establishment and rejection.

HPST2107
The Darwinian Revolution
Staff Contact: A/Prof D. Oldroyd
U1 S1 HPW2
Prerequisites: As for HPST2106
Notes: Excluded 62.104.

Scientific, philosophical, and social antecedents and consequences of Darwin's theory of evolution. The prevailing ideas in biology in the 18th and early 19th centuries. Darwin's life and work, the work of Mendel and the establishment of the 'synthetic' theory of evolution. The impact of evolutionary ideas in diverse fields of thought.

HPST2108
History of Medicine
Staff Contact: School Office
U1 S1 HPW3
Prerequisites: As for HPST2106

Development of theory and practice in Western medicine from the time of Hippocrates to the 20th century. 'Bedside' medicine from antiquity to the French Revolution; 'Hospital' medicine in the early 19th century; 'laboratory' medicine in the late 19th century; 'technological' medicine in the 20th century, with particular emphasis on the social role of modern medicine.

HPST2109
Computers, Brains and Minds: Foundations of Cognitive Science
Staff Contact: Dr P. Slezak
U1 S2 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 62.554.

Introduction to contemporary discussions of the mind, thought, intelligence and consciousness. Stress on the recent revolutionary developments in the computer simulation of thought or 'artificial intelligence' and linguistics. 'Can computers think?' 'Is the brain a machine?' Exploration of theories, methods and philosophical issues.

HPST2116
History of the Philosophy and Methodology of Science
Staff Contact: A/Prof D. Oldroyd
U1 S1 HPW3
Prerequisites: As for HPST2106

A survey of the history of ideas about the nature and method of science, considering such issues as Aristotelianism, Galileo's mathematization of nature, rationalism and empiricism, Kantianism, positivism, pragmatism, conventionalism, logicism, falsificationism, the realist/instrumentalist debate, and 'sociologism'.

HPST2117
Technology and Society
Staff Contact: Mrs N. Allen
U1 S2 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 26.251, 62.022.

The history of technology in its social and cultural context with special emphasis on the Industrial Revolution. Technology and its effects on human beings; the professionalization of engineering; the spread of industrialization, and the Second Industrial Revolution. Emphasis on the social and economic effects of the interactions of technology and society.

HPST2118
Body, Mind and Soul: The History and Philosophy of Psychology
Staff Contact: Dr P. Slezak
U1 S1 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 62.106.

The development of ideas concerning the nature of mind and its relation to the body. Topics include the immortality of the soul; the division of mind and body; the dispute over innate ideas; behaviourism; psychoanalysis; experimental psychology and the 'cognitive revolution'; minds as machines and the question of whether computers can think.

HPST3106
The Discovery of Time
Staff Contact: Dr G. Freeland
U1 S1 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 62.103.

The history of time, from the ancient world through the twentieth century. Clocks and other instruments for the measurement of time, civil and religious calendars, concepts of time, philosophy and theology of time, conceptions of history and of progress, the cognition of time, the age of the Earth and the antiquity of humanity, time and the development of modern science.

HPST3107
Relations Between Science and the Arts
*Staff Contact: *
U1 HPW3

The relationships between science, technology and the visual arts in the history of western culture.
HPST3108
Deity and Mother Earth
Staff Contact: Dr G. Freeland
U1 S2 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 62.285.
Conceptions of deity, from earliest times to the present, in relation to changing notions of sexuality and generation; the place of human beings in relation to their environment and the cosmos; the roles of the sexes within different cultures. The Earth Mother Goddess. The environmentalist movement; the Gaia hypothesis.

HPST3109
Issues in the Philosophy of Science
Staff Contact: –
U1 HPW3
Prerequisites: Completion of at least 2 HPST units.
Selected topics in contemporary philosophy of science chosen from scientific laws, theories and explanations, observation, evidence, confirmation, induction, models and metaphors, realism and instrumentalism, verification and falsification, scientific discovery and scientific revolutions, rationality and scientific method, science and pseudo-science.

HPST3116
Language and Mind: The Impact of Chomsky's Revolution
Staff Contact: –
U1 HPW3
Prerequisites: As for HPST2106
Chomsky's theories of language and mind which have revolutionised linguistics, psychology and philosophy. History of linguistics and psychology, especially the behaviourist approach of Skinner. Chomsky's impact on traditional philosophical debate between rationalists and empiricists concerning innate ideas.

HPST3117
Philosophical Problems in Evolutionary Biology
Staff Contact: –
U1 S2 HPW2
Co-requisite: HPST2106 or HPST2107
Notes: Not offered in 1992.
Current controversies in evolutionary theory, with consideration of topics such as essentialism and population thinking, falsifiability of the principle of natural selection, the group selection controversy, sociobiology, problems in classification and cladism, the neutral theory of evolution and the role of chance, punctuated equilibrium theory, the origin of life, creation ‘science’.

SCTS2106
Scientific Knowledge and Political Power
Staff Contact: –
U1 HPW3
Prerequisites: As for HPST2106
An introduction to the political dimensions of 20th century science. Topics include growth of expenditure on science in the twentieth century; science and politics; science and economic growth; the science-technology relationship; approaches to science policy; critiques of the role of science in contemporary society.

SCTS2107
The Sociology of Science and Technology
Staff Contact: Dr D. Miller
U1 S2 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 62.062.
An examination of the communal nature of scientific and technological activities which will include: an historical survey of the development of scientific and engineering professions; the internal workings of scientific communities; scientific communication; the reward system; fraud, disciplines and specialties in science and engineering.

SCTS2108
Information Technology, Politics and Policies
Staff Contact: –
U1 HPW3
Prerequisites: SCTS1106 or completion of at least 4 Level 1 science units.
Notes: Not offered in 1992.
Key issues for an ‘info-tech’ society including social policies and the future of work and education; mass media and telecommunications in the electronic age; commercialization and shifting patterns of trade in the world economy; deregulation and the role of ‘info-tech’ in global restructuring.

SCTS2109
The New Biotechnologies and Their Social Context
Staff Contact: –
U1 HPW3
Prerequisites: SCTS1106, or by permission of the Head of School for Year 3 and Year 4 students in the biological sciences
The social implications of the new biotechnologies, including recombinant DNA techniques, genetic manipulation of animals, and test tube babies. The present achievements and likely future developments of the new genetic and reproductive technologies, together with detailed discussions of the social, ethical and political implications of these developments.

SCTS3106
Science, Sustainable Development and the Third World
Staff Contact: Mr J. Marson
U1 S1 HPW3
Prerequisites: As for HPST2106
Notes: Excluded 62.082.
The disparities between the scientific and technical capabilities of industrialized and developing societies. The reasons for these disparities and their economic and social consequences. Topics include the problems of dependency; ‘appropriate’ technologies; technology transfer; alternate models and policies for development; the impact of modern technology on international relations.
SCTS3107
Women and Science
Staff Contact: Mrs N. Allen
U1 S1 HPW2
Prerequisites: As for HPST2106

A series of seminars on: the constraints and opportunities facing women scientists; an historical survey of women scientists, including some eminent Australians; the philosophical issues and implications for social policy raised by women's participation in science.

SCTS3108
Technological Development in 20th Century Australia
Staff Contact: –
U1 HPW3
Prerequisite: SCTS1106

The historical development of technology in Australia during the 20th century, with focus on three key dimensions: linkages between scientific research, industrial development and economic growth; technological change and its impact on Australian society; the distinctive features of Australia's geopolitical situation.

SCTS3109
Technology, Environment and Risk
Staff Contact: A/Prof G. McDonell
U1 S1 HPW3
Prerequisites: SCTS1106 or completion of at least 4 Level 1 science units

The growth of concern in advanced industrial societies over the risks associated with technological and environmental degradation. The relationships between perceived risk and social trust and institutional arrangements. The basis of present concern in anxieties over social control and in changing perceptions of ethics and politics. Case studies examine nuclear energy, hazardous wastes and information technology.

SCTS3116
The Politics of Energy
Staff Contact: A/Prof G. McDonell
U1 S2 HPW3
Prerequisites: As for SCTS3109

The fundamentals of energy, force, work and power; the social construction of energy use; resources and reserves; the 'energy crisis'; the nuclear energy process; solar and alternative sources; political economy of energy use coal, oil, nuclear; institutional power; market arrangements and the role of the State; energy in the 1980s and 1990s.

SCTS3117
Technology, Globalization and the Role of the State
Staff Contact: –
U1 HPW2
Prerequisites: Completion of at least 2 SCTS units

An analysis of the interaction between technology, economic growth and the internationalism of industry; the growing pressure on the State to adopt an increasingly interventionist role.

Science and Technology Studies Level IV Honours Program

SCTS4106
Science and Technology Studies (Honours)
Staff Contact: A/Prof D. Oldroyd
U10 F
Prerequisites: Completion of program 6200 including 7 Level II/III units

In the Honours Program, candidates are required to present a thesis and to complete coursework as approved by the Head of School.

The Category C General Education requirements are met within the Honours program by seminars and a statement.

Wool and Animal Science

Wool and Animal Science Level II

WOOL3803
Genetics 1
Staff Contact: A/Professor J. James
U1 F HPW3
Notes: Restricted to Combined degree course 3820

Wool and Animal Science Level III

WOOL3901
Biostatistics 1
Staff Contact: A/Professor J. James
U1 S1 HPW4
Notes: Restricted to program 6840

Design and analysis of comparative experiments, for continuous and discrete random variables. Analysis of variance for fixed, mixed and random models. Linear regression and correlation. Multiple comparison methods.

WOOL4813
Genetics 2
Staff Contact: A/Professor J. James
U1 F HPW4
Notes: Restricted to program 6840.

Faculty of Biological and Behavioural Sciences

Dean: Professor W. O'Sullivan

The Schools of the Faculty of Biological and Behavioural Sciences offer facilities for students to proceed to the award of a Graduate Diploma, the award of a master degree by research and the award of the degree of Doctor of Philosophy; and the award of a master degree by course work in Psychology (8251 and 8252) and in Biotechnology (8042).

Faculty of Science

Dean: Professor G. Brown

The Schools of the Faculty of Science supervise the graduate diploma courses Food and Drug analysis (5510) and Physical Oceanography (5530). The Schools of the Faculty also offer facilities for students to proceed to the award of masters degrees in Chemistry (8770), Mathematics (8740), Optometry (8760), Physics (8730) and Statistics (8750), masters degrees by research and to the award of Doctor of Philosophy.

Procedures

All students re-enrolling in 1992 or enrolling in graduate courses should contact the Postgraduate Section for enrolment details.

Faculty of Biological and Behavioural Sciences

Facilities are available in each of the Schools for research leading to the award of the degrees of Master of Science, Doctor of Philosophy and Graduate Diploma. The Department of Biotechnology (within the School of Applied Bioscience in the Faculty of Applied Science) offers a Graduate Diploma in Biotechnology and a Masters degree course in Biotechnology by formal study, and the School of Psychology offers Master of Psychology (Applied) and Master of Psychology (Clinical) degree courses.

Higher Degree Qualifying Program

Students without a BSc Honours degree wishing to register as higher degree candidates must usually complete a qualifying program, admission to which is subject to the approval of the Faculty Higher Degree Committee.
Applications must normally have a degree or diploma in an appropriate field of study from an approved university or institution, and in the case of a diploma, appropriate professional experience.

Undergraduates of this University may be admitted to the full-time or part-time Honours undergraduate course. Other applicants may be admitted to a full-time, part-time or external qualifying program. The duration of the qualifying program is a minimum of one year for full-time and two years for part-time or external students.

Content of Qualifying Program

The qualifying program consists of the whole of the usual program for the final Honours year of the undergraduate course, the following being the prescribed Level IV subjects:

- BIOC4318 Biochemistry Honours (Full-time)
- BIOC4618 Biochemistry Honours (Part-time)
- BIOS4013 Biological Science Honours (Full-time)
- BIOS4019 Biological Science Honours (Part-time)
- BIOT4073 Biotechnology Honours (Full-time)
- BIOT4083 Biotechnology Honours (Part-time)
- BIOS4023 Botany Honours (Full-time)
- BIOS4029 Botany Honours (Part-time)
- MICR4013 Microbiology and Immunology Honours (Full-time)
- MICR4023 Microbiology and Immunology Honours (Part-time)
- PSYC4023 Psychology 4 (Thesis) Honours
- PSYC4033 Psychology 4 (Honours)
- BIOS4033 Zoology Honours (Full-time)
- BIOS4039 Zoology Honours (Part-time)

The qualifying program is graded in the usual way, and in appropriate cases the results are expressed as a grading equivalent to Honours.

Alternative Qualifying Program

Applicants who cannot attend the University regularly for the above programs may be admitted as external qualifying students to a program similar to a standard Honours year. The following are the alternative qualifying subjects:

- BIOC6308 Biochemistry
- BIOS9917 Biological Science
- BIOT6013 Biotechnology
- BIOS9943 Botany
- MICR6043 Microbiology
- PSYC6000 Psychology
- BIOS9945 Zoology

The results in alternative qualifying subjects are graded Pass or Fail only.

Fees

Candidates enrolled in the Alternative Qualifying Program are exempt from student service fees.

Graduate Diplomas

The Graduate Diploma is designed as a one year full-time period of study and research. It is intended primarily as an advanced training program for graduates from overseas universities who wish to obtain specialised training in particular areas of biological and behavioural science. The expectation is that for suitably qualified students, the course would allow entrance to a higher degree program (MSc or PhD) provided suitable supervision and facilities were available. The course is also available to graduates of Australian universities who have not done an Honours course and who wish to pursue graduate study in a discipline other than that in which they obtained their first degree.

At the successful conclusion of the course the students would be provided with a Diploma Certificate showing their Higher Degree Qualifying status by the University and a statement of their proficiency from the relevant School.
Entrance for students for whom English is the second language would be dependent on achieving an adequate standard of written and spoken English.

The academic year for the University of New South Wales consists of two sessions, commencing in late February - early March and mid-July, respectively. It is preferred that new students arrive 2-3 weeks prior to the beginning of the Session, so that they can be oriented prior to the commencement of formal teaching.

Brief descriptions of the courses currently offered within the Schools of the Faculty of Biological and Behavioural Sciences and in the Department of Biotechnology follow.

School of Biochemistry and Molecular Genetics

5345
Biochemistry Graduate Diploma Course
Full-time

Graduate Diploma
GradDlp

Staff Contact: School Office

The course is tailored according to the background and requirements of the individual student. In most cases it would include advanced formal undergraduate training, including lectures in general and medical biochemistry, training in the use of modern biochemical techniques, eg scintillation counting, gas-liquid chromatography (GLC), high performance liquid chromatography (HPLC), molecular biology, spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy, and animal and plant cell culture. The student would also carry out a research project (or projects) in the laboratory of an academic member of staff and write a report on the project.

The School of Biochemistry has a wide range of interests and can offer research projects in most areas of biochemistry. Specialised areas of research are molecular biology, marine biochemistry, parasite biochemistry, plant biochemistry and the study of naturally occurring toxins.

School of Biological Science

5350
Biological Science Graduate Diploma Course
Full-time

Graduate Diploma
GradDip

Staff Contact: School Office

The course is designed to meet the needs and objectives of individual students building on that students' competence and experience. It includes a formal coursework component and a research project which is carried out under the supervision of a member of the academic staff. Students receive advanced formal training to provide them with background information relevant to their research project.

The School has a wide range of interests, and training and research are offered in both plant and animal sciences. Areas of biology in which facilities and appropriate supervision are available include: ecology, taxonomy, environmental physiology, marine and fisheries biology, genetics and evolution, mycology, ultrastructure, comparative physiology, mammalian studies.
School of Microbiology and Immunology

5355
Microbiology and Immunology Graduate Diploma Course
Full-time

Graduate Diploma
GradDip

Staff Contact: School Office

The structure of the course would be decided after discussions with students, taking into account their particular background, interest and career goals. Usually students would attend one or more of the advanced third year courses in either general microbiology, microbial genetics, environmental microbiology, immunology, mycology, plant/microbe interactions, medical bacteriology or animal virology. The rest of the year would be spent carrying out a research project supervised by a member of academic staff.

The School of Microbiology and Immunology has a number of research teams working on a range of well funded projects in microbiology, molecular biology and immunology. Specialised areas of research include microbial ecology, molecular genetics, environmental microbiology, marine microbiology, nitrogen fixation, the pathogenesis of intestinal infection, the immunology of the intestinal tract and arbovirus research.

School of Psychology

5330
Psychology Graduate Diploma Course
Full-time

Graduate Diploma
GradDip

Staff Contact: School Office

This one year course is adapted to suit the needs and objectives of each student, taking into account the areas of psychology in which they have already demonstrated competence. The expectation is that students who achieve an appropriate standard in the course are then admitted to a higher degree program, provided suitable supervision and facilities are available.

The course comprises formal teaching in an approved set of subjects drawn from the following areas: research methods and statistics, perception, learning, cognitive psychology, psycholinguistics, social psychology, clinical psychology, developmental psychology, personality, physiological psychology, abnormal psychology, and applied psychology. Both lectures and practical work will be given.

Students normally also carry out a research project under the supervision of a member of the academic staff of the School. Active research programs exist in experimental psychology, social psychology, clinical psychology, behavioural neuroscience and industrial/occupational psychology. Particular attention within each of these programs is paid to the inter-relationship between scientific theory and the practical application of psychological knowledge.
Department of Biotechnology

5015
Biotechnology Graduate Diploma Course
Full-time or Part-time

Graduate Diploma
Grad Dip

Staff Contact: School Office

The graduate diploma course provides the opportunity for graduates with no previous tuition in biotechnology to undertake training in this discipline.

A degree in a science-based course is required for admission. If the degree course has not included a biology component, the candidate is required to undertake some basic biology training as a prerequisite or co-requisite.

Under normal circumstances, students whose previous training has included a substantial component of biotechnology are not admitted to the course.

The course comprises study of undergraduate and graduate formal subjects, plus extensive laboratory training in biotechnology.

The diploma is awarded after one year's full-time study, consisting of an average of 18 hours per week, or two years part-time study, consisting of an average of 9 hours per week. The program includes the listed obligatory subjects plus sufficient of the listed elective subjects to meet the hours of study required. The electives include subjects necessary for students without previous tuition in biochemistry and/or microbiology, as well as alternatives for those with previous tuition in these disciplines. The choice of electives in each individual case is subject to approval by the Head of School.

Obligatory Subjects

BIOT3011 Biotechnology A
BIOT3021 Biotechnology B
BIOT5013 Practical Biotechnology

Elective Subjects

BIOT3031 Microbial Genetics
BIOT8010 Graduate Seminars
BIOT7100 Biological Principles
BIOT7110 Bioengineering Principles
Other suitable electives from the Department of Food Science and Technology and/or other Schools.

Masters Degrees

School of Psychology

Head of School: Professor B. Gillam
Administrative Officer: Mr T. Clulow

The School offers courses leading to the award of the degrees of Master of Psychology (Applied) and Master of Psychology (Clinical).
Master of Psychology (Applied) Degree Course
Full-time or Part-time

The Master of Psychology (Applied) degree course is aimed at providing psychology graduates with a postgraduate qualification which will equip them to make a distinctive contribution in work and other organisations. The emphasis of the program will be on developing applied research skills that integrate theory and practice. When combined with their undergraduate training and the required work experience, this program will equip psychologists with an understanding of organisational, social and cultural influences on behaviour. They will be able to apply this understanding to many problems through a critical, empirical orientation based on experimental methods, measurement and statistics. Areas of specialisation include Ergonomics, Organisational and Vocational Psychology, and psychological aspects of Occupational Health.

The normal entrance requirement is completion of an honours Class 1 or Class 2 degree in Psychology from the University of New South Wales or a qualification considered equivalent. Applicants who do not satisfy the above entrance requirements may be admitted to the program. Such admissions will be based on an assessment of the applicant’s knowledge, experience and occupation. Some additional qualifing subjects may be required of those who are admitted under this provision.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students. Students with advanced standing may have the minimum period reduced by up to one half of the program (ie a reduction of one session if a student has completed a PhD in an approved area of Psychology and one session if a student has completed part of the course work program).

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

The course consists of a 22 hour core program, a thesis, a 10 hour elective program, and professional practice component.

Subjects from other graduate degrees, including the Master of Psychology (Clinical) degree, may be included in the elective program with the permission of the School concerned and the Head of the School of Psychology.

Core Program
PSYC7000 Research and Evaluation Methods
PSYC7001 Psychological Assessment 1
PSYC7002 Psychological Assessment 2
PSYC7100 Industrial and Organizational Psychology 1
PSYC7101 Industrial and Organizational Psychology 2
PSYC7102 Psychological Principles of Training
PSYC7103 Applied Experimental Psychology
PSYC7104 Applied Cognitive Psychology
PSYC7105 Professional Practice (Applied):
PSYC7106 Graduate Colloquium (Applied)
PSYC7109 Principles of Ergonomics 3

Core Program
Year 2
PSYC7105 Professional Practice (Applied)
PSYC7107 Seminars in Applied Psychology
PSYC7108 Research Thesis (Applied)

Elective program
Year 2
PSYC7103 Applied Experimental Psychology*
PSYC7104 Applied Cognitive Psychology*
PSYC7110 Advanced Ergonomics
PSYC7111 Cross-cultural Perspectives in Applied Psychology*
PSYC7112 Vocational Psychology*
Master of Psychology (Clinical) Degree Course
Full-time or Part-time

Master of Psychology (Clinical)
MPsychol(Clinical)

This course is designed to provide professional training at an advanced level for honours graduates in psychology.

The normal entrance requirements are:
1. a degree of Bachelor, with Honours Class 1 or Class 2 in Psychology;
2. completion of a research thesis or research project in the Honours fourth year; and
3. completion of approved courses in learning, perception and cognition, physiological psychology, psychological statistics, psychometrics and abnormal psychology, or in such other fields as may be prescribed by the Head of the School.

Selection of students is based on academic qualifications and suitability for the course. It may be necessary to limit the number of new enrolments in any year.

The minimum period of registration before the award of the degree is four sessions for full-time students and six sessions for part-time students. Students with advanced standing may have the minimum period reduced by up to one half of the program ie a reduction of one session if a student has completed a PhD degree course in an approved area of Psychology and one session if a student has completed part of the coursework program.

To qualify for the degree, students must satisfy the examiners in respect of their academic attainments, and their skill and competence in relevant aspects of practical professional work.

The course consists of lectures, seminars, demonstrations and practical work, supervised clinical and community work, and a research thesis.

The major aims of the course are: 1. to acquaint students with the issues, findings and problems of contemporary clinical and community psychology, and 2. to equip them with basic clinical skills and techniques. A total of 760 hours of supervised clinical practice must be completed.

Assessment of student performance is by sessional examinations, class tests, seminar papers and a research thesis.

It should be noted that the course extends over three calendar years and not just four academic sessions with vacation breaks.

Year 1
PSYC7000 Research and Evaluation Methods
PSYC7001 Psychological Assessment 1

Year 2
PSYC7002 Psychological Assessment 2
PSYC7003 Graduate Colloquium
PSYC7200 Experimental Clinical Psychology
PSYC7202 Pharmacotherapy and other Physical Treatments
PSYC7203 Theory and Research in Psychopathology
PSYC7204 Child Clinical Psychology
PSYC7205 Professional Practice (Clinical)
PSYC7208 Behavioural Health Management
PSYC7209 Developmental Disabilities and Disorders
PSYC7210 Human Neuropsychology
Year 3
PSYC7003 Graduate Colloquium
PSYC7201 Family Based Therapies
PSYC7205 Professional Practice (Clinical)
PSYC7206 Research Thesis (Clinical)*
PSYC7207 Ethical Issues and Special Topics
Select one elective subject from:
1. ANAT6441 Neuroanatomy for Neuropsychologists
2. a subject from the Master of Psychology (Applied) degree course, or
3. with the approval of the Head of School of Psychology one other subject.

*Contributes approximately 25 per cent to the overall grading for the degree.

Note: Part-time students normally are expected to take half the full-time program in any one session.

Department of Biotechnology

Biotechnology Degree Course

The Department also offers a formal graduate course at the Masters degree Level (Master of Applied Science in Biotechnology). The course includes advanced treatments of all areas of biotechnology. It is open to graduates with a four-year degree in biotechnology or a related discipline, or who have, in the opinion of the Higher Degree Committee, acquired equivalent qualifications or experience. Intending students are referred to Conditions for the Award of Higher Degrees set out later in this handbook.

The course consists of lectures, tutorials, practical sessions, case history studies and a supervised project. The minimum period of registration before the award of the degree is two sessions for full-time students and four sessions for part-time students.

To qualify for the degree students must satisfy the examiners in the prescribed examinations, which include the submission and assessment of a report on the specified project.

8042
Biotechnology Degree Course
Full-time or Part-time

Master of Applied Science
MAppSc

Faculty of Science

Facilities are available in each of the schools for research leading to the award of the higher degrees of Master of Science and Doctor of Philosophy.

The following formal courses leading to graduate awards are also offered:

Faculty of Science: Graduate Diploma (in Physical Oceanography)
School of Optometry: Master of Optometry
School of Chemistry: Master of Chemistry, Graduate Diploma (in Food and Drug Analysis)
School of Mathematics: Master of Mathematics, Master of Statistics
School of Physics: Master of Physics

For admission to registration for all degrees of Master (except Master of Statistics), candidates must have completed one of the following:
1. An approved degree of Bachelor with Honours;
2. An approved three year course leading to the award of the degree of Bachelor plus an approved qualifying program. Suitable professional and or research experience may be accepted in lieu of the qualifying program
3. An approved four year course leading to the award of the degree of Bachelor.
Applicants for registration for the degree of Master of Statistics shall have been admitted to the degree of Bachelor with major studies in the field of statistics in the University of New South Wales or other approved university. The manner of presentation and examination of reports of projects undertaken as part of formal courses shall be determined by the Head of the School. The conditions governing these higher degrees are set out later in this handbook.

Graduate Diplomas

School of Chemistry

5510
Food and Drug Analysis Graduate Diploma Course
Full-time or Part-time

Diploma in Food and Drug Analysis
DipFDA

According to demand, the course may be available on a full-time basis over one year or on a part-time basis over two years.
The course in food and drug analysis is designed to provide systematic training at an advanced level for chemists who wish to extend their acquaintance with analytical techniques, and thus is suitable for those who may wish to practice as public analysts. It is also suitable for those who wish to work in the food or pharmaceutical industry. The prime aim is to present discussions of the principles and design of analytical methods which are therefore presented on a comparative basis.
It is considered that the techniques involved in the handling of foods and drugs together with those discussed in the ancillary subjects of the course provide a firm basis of approach to many other fields.
Intending students are referred to the conditions for the award of graduate diplomas set out elsewhere in this handbook.

Year 1*
CHEM7125 Food and Drugs 1
CHEM7115 Treatment of Analytical Data
CHEM7425 Instrumental Techniques in Food and Drug Analysis

Year 2*
CHEM7225 Food and Drugs 2
CHEM7325 Toxicology, Occupational and Public Health
MICR2201 Introductory Microbiology

*Full-time students take Years 1 and 2 in the one year.
Faculty of Science

5530
Physical Oceanography Graduate Diploma Course
Full-time or Part-time

Graduate Diploma
GradDip

Staff Contact: A/Prof J. Middleton

This graduate diploma is intended to train graduates in the physical sciences or engineering in the basic techniques of physical oceanography.

It is intended to develop student skills in planning and execution of oceanographic experiments, in the theory of oceanographic fluid mechanics, the applications and limitations of oceanographic equipment and of commonly used data analysis techniques.

Recent rapid developments in marine science coupled with the relative scarcity of persons able to take up support positions demonstrate the need for skilled persons who will be able to assist oceanographic research with minimum training. This program is aimed at providing such skilled graduates.

Intending students are referred to the conditions for the award of graduate diplomas set out elsewhere in this handbook. Basic entry qualifications for this program are a degree in Engineering or in Science with major studies in mathematics or physics.

The program, requiring 28 credits for completion, consists of a major project OCEA5115 worth 50% of the total accreditation for the program, the remaining 50 being comprised as indicated below.

1. Compulsory Subjects

OCEA5115 Experimental Project
OCEA5125 Geophysical Fluid Dynamics
OCEA5135 Instrumentation
OCEA5145 Applied Data Analysis

2. Elective Subjects

REMO9580 Image Analysis in Remote Sensing
REMO9581 Microwave Remote Sensing
CIVL9835 Coastal Engineering 1
CIVL9836 Coastal Engineering 2
CIVL9863 Estuarine Hydraulics
GEOG9150 Remote Sensing Applications
OCEA5155 Theoretical Project

Appropriate existing subjects within mathematics, physics or engineering chosen on the basis of individual background

Here 1 credit is defined as being 1 hour per week for one session The course may be taken over one year full-time or two years part-time.

Masters Degrees

School of Chemistry

Head of School: Professor I. Dance

Director of Graduate Studies: Associate Professor H. Goodwin (contactable via Chemistry Academic Office)
Master of Chemistry
MChem

Two programs are available, each with different goals and each requiring one year full-time study, or for program 2.582G, two years part-time study. Program *Food and Drug Chemistry (2.582G)* is directed specifically to students who wish to pursue advanced study of the chemistry of the components of food and drugs. Program *Modern Developments in Chemical Synthesis and Analysis (2.581G)* is more broadly based and is directed to those students who wish to obtain an overall perspective of the advances in chemistry. Entry requirements for the programs are indicated elsewhere in the handbook. Applicants for the Master of Chemistry degree programs who are not considered qualified for entry may undertake a qualifying program which is specified after the application has been fully considered.

Details of the programs follow.

Food and Drug Chemistry (2.582G)

This program involves an advanced study of the chemistry, stability, mode of action where applicable, and analysis of food constituents, food additives and selected drugs. The program may be taken either full-time or part-time. In addition to formal, examinable lecture courses and laboratory instruction the program involves a short research project supervised by a member of the academic staff. Entry into this program is excluded in the case of applicants who have completed the Graduate Diploma in Food and Drug Analysis (Course 5510).

1. Lecture/Laboratory Courses
 1. Food and Drugs 1
 2. Treatment of Analytical Data
 3. Instrumental Techniques in Food and Drug Analysis
 4. Food and Drugs 2
 5. Toxicology, Occupational and Public Health
 6. Introductory Microbiology

 The lecture time for the whole course is 160 hours. An additional 392 hours is spent by students in formal laboratory work. Students who have not previously taken an approved course in microbiology are required to complete subject MICR2201 Introductory Microbiology (84 hours) in addition to the above program.

2. Research project

A short research project undertaken over approximately 4 months full-time (400 hours laboratory work) is selected in relation to the combined interests of the student and the supervisor.

Modern Developments in Chemical Synthesis and Analysis (2.581G)

This program is designed to give students a broad, modern perspective of the advances in chemistry and allows pursuit of particular interests through involvement in a variety of courses and hands-on experience with the state-of-the-art facilities available within the School of Chemistry for the synthesis of substances, the characterization of their composition, structure and reactivity. The program is available on a full-time basis only. Students are required to complete a series of lecture courses with associated laboratory work and field trips, a literature survey and to participate in a seminar program. In addition, students must join one of the investigative groups in the School for more specific training.

Formal coursework

Students are required to complete all of the following courses of lectures and associated laboratory work.

1. Modern developments in chemical synthesis
2. Chemistry of new materials
3. Catalysis and industrial synthesis
4. Separation and purification techniques, including various forms of chromatography, radiochemical techniques and gas purification
5. Methods of composition and structure determination, including spectroscopic techniques, X-ray diffraction and atomic absorption spectrometry
6. Environmental chemistry, including aquatic, terrestrial and atmospheric pollution, and quality control.
7. Laboratory control, including data processing, safety in laboratories, computers in chemistry, computer networking of instruments and statistical methods

The lecture time for the formal coursework is about 140 hours with a further 330 hours for associated laboratory instruction.

Laboratory experience

Students are assigned to one of the investigative groups in the school, to observe and participate in the operation and application of various synthetic, instrumental or computational techniques. A choice is offered in the area to allow for the pursuit of particular interests. Approximately 200 hours are allocated to this activity and students are expected to submit a report for assessment on the activities of the group and their involvement.

Seminar program and literature survey

A program for each student is prescribed. This involves the preparation of a topic and the delivery of a seminar as well as participation in an overall seminar program.

School of Mathematics

Head of School: Professor I. Sloan
Director of Graduate Studies: Dr A. Dooley

The School offers graduate courses leading to the award of the degrees of Master of Mathematics (MMath) and Master of Statistics (MStats). The School also offers the pass degree of MA. For further details see the Faculty of Arts Handbook.

8740
Master of Mathematics Degree Course
Full-time or Part-time

Master of Mathematics
MMath

The Master of Mathematics degree course is intended for honours graduates in pure or applied mathematics, but others may be admitted after completing a qualifying course. The course may be completed in one year of full-time or two years of part-time study. The course may be taken as a preliminary step towards the award of a PhD in mathematics. It also provides advanced training for persons specialising in the teaching of mathematics in tertiary institutions. In addition an appropriate program may provide training for those employed or seeking employment in the area of industrial mathematics.

The program consists of seven approved lecture courses, the duration of each being two hours per week for one session. With the approval of the Head of the School of Mathematics a student may substitute for one or more of these lecture courses a reading course supervised by a member of staff. Again with this approval a student may substitute for at most two of these courses graduate courses offered either within or outside the School of Mathematics. Students are also required to participate in relevant departmental seminars. In addition, students are required to undertake a project supervised by a staff member. The project consists of either a critical review of the literature in a specific field of mathematics, or a short research project. It is anticipated that students spend three hours per week for two sessions on their project. Each candidate’s proposed program of study requires the approval of the Head of the School of Mathematics.

The conditions for the award of the degree are set out elsewhere in this handbook.
Master of Statistics Degree Course
Full-time or Part-time

Master of Statistics+
MStats

The Master of Statistics Course covers a wide range of statistical theory and practice and provides advanced training for practising statisticians. The course may be completed in two years of full-time or four years of part-time study, and it is available to graduates with a pass degree in statistics or an honours degree in a related field (commonly mathematics) with supporting study in statistics. Honours graduates in statistics may be exempted from a maximum of half the course. The conditions for the award of the degree are set out elsewhere in this handbook.

The academic requirement for the degree is 24 credits.
Each candidate's program of study must be approved by the Head of the School.

Compulsory Subjects

MATH5815 Experimental Design 1
MATH5835 Stochastic Processes
MATH5855 Multivariate Analysis 1
MATH5905 Statistical Inference
MATH5925 Project

Elective Subjects

MATH5825 Experimental Design 2
MATH5845 Time Series
MATH5865 Multivariate Analysis 2
MATH5875 Sample Survey Design
MATH5885 Sequential Analysis
MATH5895 Non-Parametric Methods
MATH5915 Special Topic A*
MATH5935 Special Topic B*
MATH5945 Discrete Distributions

Up to 6 credits may be taken in graduate subjects offered by other Departments or Schools within the University, subject to the approval of the Head of School. Such subjects include:

CIVL9403 Theory of Land Use/Transport Interaction
CIVL9405 Urban Transport Planning Practice
CIVL9417 Transport and Traffic Flow Theory
MATH3161 Optimisation Methods
MATH3181 Optimal Control
ECON3204 Econometrics B
MANF9330 Simulation in Operations Research
CMED8201 Population Genetics
CMED8202 Human Genetic Analysis

*To be arranged: eg biological statistics, further work on order statistics, population statistics, non-linear programming.

* The School is currently revising some aspects of these courses. Intending students should consult the School for details.

School of Optometry

Head of School: Professor H. Collin

The School offers a formal graduate course leading to the award of the degree of Master of Optometry (MOptom). This course comprises the study of three elective graduate subjects and of advanced Clinical Optometry, together with the preparation of a thesis on an assigned project. It may be completed in one year of full-time study, or (to meet the needs of practising optometrists) in two or three years of part-time study. The course provides advanced training in clinical and theoretical aspects of optometry, with opportunities for specialization in fields such as contact lenses, occupational optometry, and orthoptics.
Conditions for admission and for the award of the degree of Master of Optometry are set out elsewhere in this handbook.

8760
Master of Optometry Degree Course
Full-time or Part-time

Master of Optometry
MOptom

OPTM8001 Advanced Clinical Optometry
Three elective graduate subjects chosen from the list below
OPTM8008 Project

Elective Graduate Subjects
OPTM8002 Advanced Physiological Optics
OPTM8003 Pleorthoptics and Binocular Vision
OPTM8004 Advanced Contact Lens Studies
OPTM8005 Advanced Contact Lens Practice
OPTM8006 Occupational Optometry
OPTM8007 Clinical Photography
OPTM8009 Ocular Therapy

The seven elective graduate subjects offered are quite independent, and any three of them are suitable for a student seeking advanced professional training of a general nature. If clinical specialization is aimed at, the student would be advised to elect the graduate subjects shown below:

Specialization	Graduate Subjects
Contact Lenses | Advanced Contact Lens Studies
 | Advanced Contact Lens Practice
 | Clinical Photography
Occupational Optometry | Occupational Optometry
 | Pleorthoptics and Binocular Vision
 | Advanced Physiological Optics
Orthoptics | Pleorthoptics and Binocular Vision
 | Clinical Photography

School of Physics

Head of School: Professor J. Storey
Executive Assistant to Head of School: Dr K. Vost
Administrative Officer: Mr S. Lo

8730
Master of Physics Degree Course
Full-time or Part-time

Master of Physics
MPhysics

The School offers a graduate course leading to the award of the degree of Master of Physics degree (MPhysics).

The Master of Physics degree course is intended for honours graduates in physics. Others may be admitted if they have submitted evidence of such academic and professional attainments as may be approved by the Faculty of Science on the recommendation of its Higher Degree Committee. Applicants with other qualifications may be admitted after completing a qualifying examination approved by the Faculty of Science.

The subject matter of the course provides an advanced training in a branch of physics, the topic of which is determined during the year preceding that in which it is offered.
Students undertaking the masters course by formal study must enrol in one of the following subjects:

PHYS8015 Energy Alternatives
PHYS8025 Astrophysics
PHYS8035 Acoustics
PHYS8045 Biophysics
PHYS8055 Applied Physics

Enrolment in any one of the above subjects normally involves at least five units of lecture material, a literature survey, and small research project.
Descriptions of all graduate subjects in Science are listed in this section of the handbook. For academic advice regarding a particular subject consult with the appropriate contact for that subject as listed below.

Identification of Subjects

The subjects in the University available to science students are listed in this section. A subject is defined by the Academic Board as 'a unit of instruction approved by the University as being a discrete part of the requirements for a course offered by the University'.

Each subject is identified by a sequence of eight characters, consisting of a four character alphabetical prefix which identifies the organizational unit responsible for administering the subject, and a four digit numeric suffix identifies the subject.

Subjects are listed in this section of the handbook. Subject descriptions follow in the next section of the handbook.

Prefixes

The identifying alphabetical prefixes for each organizational unit follow.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Organizational unit</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT</td>
<td>School of Accounting</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>ANAT</td>
<td>School of Anatomy</td>
<td>Medicine</td>
</tr>
<tr>
<td>BIOC</td>
<td>School of Biochemistry and Molecular Genetics</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>BIOS</td>
<td>School of Biological Science</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>BIOM</td>
<td>Centre for Biomedical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>BIOT</td>
<td>Department of Biotechnology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>BSSM</td>
<td>Board of Studies in Science and Mathematics</td>
<td></td>
</tr>
<tr>
<td>CHEM</td>
<td>School of Chemistry</td>
<td>Science</td>
</tr>
<tr>
<td>CIVL</td>
<td>School of Civil Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>CMED</td>
<td>School of Community Medicine</td>
<td>Medicine</td>
</tr>
<tr>
<td>COMP</td>
<td>School of Computer Science and Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>ECOH</td>
<td>Department of Economic History</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>ECON</td>
<td>School of Economics, Departments of Economics and Econometrics</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>ELEC</td>
<td>School of Electrical Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>FINS</td>
<td>School of Banking and Finance</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>Prefix</td>
<td>Organizational unit</td>
<td>Faculty</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>GENS</td>
<td>Centre for Liberal and General Studies</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOG</td>
<td>School of Geography</td>
<td>Applied Science</td>
</tr>
<tr>
<td>GEOL</td>
<td>Department of Applied Geology</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>INFS</td>
<td>School of Information Systems</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>JAPN</td>
<td>Asian Studies Unit</td>
<td>Law</td>
</tr>
<tr>
<td>LAWS</td>
<td>School of Law</td>
<td>Commerce and Economics</td>
</tr>
<tr>
<td>LEGT</td>
<td>Department of Legal Studies and Taxation</td>
<td>Engineering</td>
</tr>
<tr>
<td>MANF</td>
<td>Manufacturing Management</td>
<td>Science</td>
</tr>
<tr>
<td>MATH</td>
<td>School of Mathematics</td>
<td>Medicine</td>
</tr>
<tr>
<td>MDCM</td>
<td>School of Medicine</td>
<td>Engineering</td>
</tr>
<tr>
<td>MECH</td>
<td>School of Mechanical and Manufacturing Engineering</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>MICR</td>
<td>School of Microbiology and Immunology</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MSCI</td>
<td>Board of Studies in Science and Mathematics</td>
<td>Science</td>
</tr>
<tr>
<td>OCEA</td>
<td>Oceanography</td>
<td>Medicine</td>
</tr>
<tr>
<td>OPTM</td>
<td>School of Optometry</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>PATH</td>
<td>School of Pathology</td>
<td>Medicine</td>
</tr>
<tr>
<td>PHIL</td>
<td>School of Philosophy</td>
<td>Science</td>
</tr>
<tr>
<td>PHPH</td>
<td>School of Physiology and Pharmacology</td>
<td>Applied Science</td>
</tr>
<tr>
<td>PHYS</td>
<td>School of Physics</td>
<td>Medicine</td>
</tr>
<tr>
<td>POLY</td>
<td>Department of Polymer Science</td>
<td>Biological and Behavioural Sciences</td>
</tr>
<tr>
<td>PSCY</td>
<td>School of Psychiatry</td>
<td>Engineering</td>
</tr>
<tr>
<td>PSYC</td>
<td>School of Psychology</td>
<td>Engineering</td>
</tr>
<tr>
<td>REMO</td>
<td>Centre for Remote Sensing</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>SAFE</td>
<td>Centre for Safety Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>SCTS\</td>
<td>School of Science and Technology Studies</td>
<td></td>
</tr>
<tr>
<td>HPST</td>
<td>Technology Studies</td>
<td></td>
</tr>
<tr>
<td>WOOL</td>
<td>Department of Wool and Animal Science</td>
<td></td>
</tr>
</tbody>
</table>
Subject Descriptions

Information Key
The following is the key to the information which may be supplied about each subject:

- **S1**: Session 1,
- **S2**: Session 2,
- **F**: Session 1 plus Session 2, ie full year,
- **SS**: Single Session, but which Session taught is not known at time of publication,
- **U**: Unit value, followed by number,
- **L**: Lecture, followed by hours per week,
- **T**: Laboratory/Tutorial, followed by hours per week,
- **HPW**: Hours per week,
- **WKS**: Weeks of duration.

Biological Science

BIOS3014
Ecological Studies In Arid Lands Management
Staff Contact: Dr D. Croft
S2 L2 T4
Techniques in ecological studies of animal communities. Adaptations to an arid environment, environmental and social determinants. Behaviour, diet and condition of native and feral animals. Competition between native and introduced herbivores. Strategies in the management of arid zone wildlife. Concurrent studies in relevant units in the School of Biological Science are prescribed to cover aspects of vegetation description and plant environment interactions.

BIOS9917
Alternative Higher Degree Qualifying Program
Staff Contact: Prof M. Archer
Similar in content and standard to BIOS4013 Biological Science Honours but designed specifically for students who cannot regularly attend the University.

BIOS9943
Alternative Higher Degree Qualifying Program
Staff Contact: Prof M. Archer
Similar in content and standard to BIOS4023 Botany Honours but designed specifically for students who cannot regularly attend the University.

BIOS9945
Alternative Higher Degree Qualifying Program
Staff Contact: Prof M. Archer
Similar in content and standard to BIOS4033 Zoology Honours but designed specifically for students who cannot regularly attend the University.

Biochemistry

BIOS3011
Biotechnology A
S1 HPW6

BIOS3021
Biotechnology A
S2 HPW6

BIOS3031
Biotechnology A
S1 HPW6

BIOT5013
Practical Biotechnology
Staff Contact: Ms R. Lee
F T6

Anatomy

ANAT5151
Introductory Functional Anatomy
Staff Contact: Head of School
Overview of basic human anatomy and physiology with an emphasis on structures and systems such as the eye, ear and skin, which are most vulnerable to chemical and physical trauma under industrial conditions. Other systems include the musculo-skeletal system, central and peripheral nervous systems, circulatory, respiratory, gastrointestinal, endocrine and urogenital systems.

ANAT6411
Neuroanatomy
Staff Contact: Head of School
This subject is identical in content as ANAT3411 Neuroanatomy 1 and is offered jointly with that subject.

Biotechnology
Illustration, demonstration and operation of laboratory-scale and pilot-scale equipment. Visits to appropriate industries. Experimental project or critical review.

BIOT6013
Alternative Higher Degree Qualifying Program
Staff Contact: Ms R. Lee
Training similar in content and standard to BIOT4073 Biotechnology Honours, but designed specifically for students who cannot regularly attend the University.

BIOT7010
Reading List in Biotechnology (Microbiology)
Staff Contact: A/Prof N. Dunn

BIOT7020
Reading List in Biotechnology (Biochemistry)
Staff Contact: A/Prof N. Dunn

BIOT7100
Biological Principles
Staff Contact: Dr S. Delaney
S1 L3
Characteristics of living systems, including biological macromolecules, cell structure and function, basic biochemistry, comparative metabolism, metabolic regulation, reproduction and genetics, basic plant biology, invertebrate zoology and micro-organisms of commercial significance.

BIOT7110
Bioengineering Principles
Staff Contact: Dr P. Doran
S1 L3

BIOT8010
Graduate Seminars
Staff Contact: Ms R. Lee
F HPW2

Chemistry

CHEM7115
Treatment of Analytical Data
Staff Contact: Dr D. Alderdice
F L1
Errors of measurement, the treatment, interpretation and comparison of sets of measurements, associated data and problems involving analysis of variance. Topics: description of sets of measurements, tests of significance, associated data, linear regression analysis; analysis of variance; biological assays, bacteriological counts, sampling problems.

CHEM7125
Food and Drugs 1
and
CHEM7225
Food and Drugs 2
Staff Contact: Dr D. Alderdice
F L1 T3
These two units contain common subject material but are subdivided to enable them to be taken over one or two years.

Food Considerations of proximate analysis. Gross determination of classes of food components plus detailed examinations within the groups for more important compounds. Origin, general introduction to analytical methods, relation to likely adulterations and impurities, groups of constituents; carbohydrates, sugars, by physical and chemical methods, jams and preserves, pectin, agar, alginates, oils and fats; protein foods, meat, gelatin, fish products; dairy products, milk, cream, cheese etc; fermented liquids, beer, wine, spirits, minor constituents. Principles of food processing, dehydration, quick freezing, canning; cereal products; beverages and flavouring essences; nutritional aspects, vitamins in detail; preservatives and food additives; radiation chemistry of food products. Background to food handling. Drugs Simple materials, including identification of unknowns by macro and micro procedures plus the examination of compounded materials. Elements of pharmacology chemotherapy and modes of action, galenicals, identification tests for alkaloids etc. Analytical chemistry of analgesics, sedatives, hypnotics, steroid hormones, antihistamines etc. Antibiotics, penicillin, streptomycin, aureomycin, sulphonamides. Activity of enzyme preparations; antiseptics and disinfectants; soaps and detergents. Chemotherapy etc.

CHEM7325
Toxicology, Occupational and Public Health
Staff Contact: Dr D. Alderdice
F L1 T3
Important classes of toxic materials found in the environment; treatment of pesticide residues, industrial chemicals of various types, toxic gases, mould metabolites and bacterial toxins occurring in food, carcinogenic substances, toxic metals etc. Effects of these substances on living organisms, particularly people. Practical work: pesticide residue analysis, blood and urine analysis, gas sampling and analysis, trace metal determination and experiments on the animal metabolism of toxic substances.

CHEM7425
Instrumental Techniques in Food and Drug Analysis
Staff Contact: Dr D. Alderdice
F L1 T3
Principles involved in modern instrumental techniques; detailed application and interpretation of results. UV, IR, NMR, and ESR, emission and atomic absorption spectroscopy, polarography, X-ray methods, fluorescence spectroscopy and gas chromatographic data and problems involving analysis of variance. Topics: description of sets of measurements, graphical representations, calculation of measures of location and spread; probability and random errors, binomial, normal and Poisson distributions; comparisons of sets of measurements, tests of significance; associated data, linear regression analysis;
analysis of variance; biological assays, bacteriological counts, sampling problems.

Civil Engineering

CIVL9403
Theory of Land Use Transport Interaction
Staff Contact: –
U3 SS
Notes: Not offered in 1992.
Theoretical aspects of land use transport planning. Basic concepts, data collection methods, systems models and equation of state function behaviour, optimising. Introduction to land use-transport modelling land use, generation, distribution, modal assignment, network assignment, evaluation. Planning methodologies short-, medium-, long-term; action planning, strategic planning; local, urban, regional, national.

CIVL9405
Urban Transport Planning Practice
Staff Contact: –
U3 SS
Notes: Not offered in 1992.
Analytical techniques for urban land use transport planning practice. Planning methodology: traffic generation, trip distribution, modal-choice, traffic assignment, evaluation. Land use forecasting; calibration and verification of behavioural models, application of mathematical programming models, case studies, public transport problems.

CIVL9417
Transport and Traffic Flow Theory
Staff Contact: –
U3 SS
Notes: Not offered in 1992.
Analysis of deterministic and stochastic models of the traffic stream. Topics include: definition and measurement of traffic stream parameters; space and time distribution of speed; overtaking models and the moving-observer method; fundamental diagram of traffic; car-following theory; headway and counting distributions; introduction to queuing theory; simulation techniques; signalled and unsignalled intersections.

CIVL9863
Estuarine Hydraulics
Staff Contact: A/Prof C. Dudgeon
U3 SS
Classification of estuary types and their characteristics. Tides, their origin, prediction and effect on estuarine circulation. Entrainment and mixing processes in estuaries. Sediment transport, channel stability.

Medicine

CMED8201
Population Genetics
U2
CMED8202
Human Genetic Analysis
U2
CMED9701
Occupational Disease
Staff Contact: School of Community Medicine Office
S2 L3 U3
Prerequisite: ANAT5151 or equivalent

Physical environment and disease: musculo-skeletal system, physical trauma; heat and cold, burns, electric shock; radiation, pressure, vibration, noise hearing. Chemical environment and disease: metallic poisons, carcinogens, allergens, microbial environment and disease. Systems approach: gastrointestinal tract; renal system; central and peripheral nervous systems; visual system, respiratory system, airborne particulates; skin.

Economics

Initial contact for these units should be directly with the School of Economics Office.

ECON3204
Econometrics B
U2 S2 L2 T1
Prerequisites: ECON3203 or MATH3811 or MATH3911
A theoretical treatment of further topics in single equation econometric modelling, including econometric specification tests, the Box-Cox transformation, dynamic models with auto-correlated errors, and nonlinear regression. Seemingly unrelated regressions. Simultaneous equation identification. Estimation and prediction. An overview of model-building, with illustrations from literature.

ECON5114
Economics A
S1 L2 T1
Microeconomic theory and applications including consumer behaviour and the theory of demand; costs, production and the theory of the firm price determination under competition, monopolistic and oligopolistic markets;
investment and technology; wages, and the distribution of income; welfare, economic efficiency and public policy.

ECON5125
Economics B
S2 L2 T1
Prerequisite: ECON5114

Overview of the macroeconomy; determination of aggregate income, interest rate and employment in closed and open economies; theories of inflation; inflation and unemployment policy; monetarist and Keynesian controversies.

Geography

GEOG9150
Remote Sensing Applications
Staff Contact: Initial contact with School Office

The application of remotely-sensed data and information in the description, classification and assessment of earth resources and environmental conditions. Different types of remote sensing data and imagery, their attributes, acquisition and uses. Relevance of remote-sensing data and imagery to a range of applications, including assessment of conditions of terrain, soils and surface materials, multitemporal monitoring and inventory of rangelands, croplands and forests; rural and urban land use assessment; surveillance of surface water resources and sedimentation; appraisal of changes in coastal zone. Use of remote sensing in environmental management and in environmental impact assessment.

Mathematics

MATH3161
Applied Mathematics 3 Optimization Methods
Staff Contact: School of Mathematics Office
U3 S1 L3 T1

Development, analysis and application of methods for optimization problems. Theory of multivariable optimization; including necessary and sufficient optimality conditions, stationary points, Lagrange multipliers, Kuhn-Tucker conditions, convexity and duality. Numerical methods for one dimensional minimization, unconstrained multivariable minimization (including steepest descent, Newton, quasi-Newton and conjugate gradient methods) and constrained multi-variable minimization (including linear programming and quadratic programming).

MATH3181
Optimal Control
U3

MATH5005
Advanced Mathematics Lecture Courses
Staff Contact: School of Mathematics Office
Each year a selection is offered in the following areas: Algebraic geometry; algebraic topology; categorical and homological algebra: commutative algebra; group theory; Lie groups and algebras; representation theory; group theory and its physical applications; advanced quantum mechanics; differential geometry; differential equations; optimal control theory; functional analysis; applied functional analysis; operator theory; harmonic analysis; advances numerical analysis; theory of functions; finite mathematics: number theory; logic; theoretical astrophysics; history of mathematics; recent advances in mathematics; mathematical economics; optimization and control.

MATH5815
Experimental Design 1
Staff Contact: School of Mathematics Office
U2

Modified designs for fixed effects models. Incomplete and balanced incomplete block designs. Confounding and
fractional replication. Randomization theory. Multiple comparisons.

MATH5825
Experimental Design 2
Staff Contact: School of Mathematics Office
U2
Extensive treatment of random and mixed models. Combinatorial structure of designs, cross-over and lattice designs, response surfaces.

MATH5835
Stochastic Processes
Staff Contact: School of Mathematics Office
U2

MATH5845
Time Series
Staff Contact: School of Mathematics Office
U2

MATH5855
Multivariate Analysis 1
Staff Contact: School of Mathematics Office
U2
Likelihood ratio tests for means, variances and structure. Discriminant, principal component, canonical and factor analysis.

MATH5865
Multivariate Analysis 2
Staff Contact: School of Mathematics Office
U2
The general linear hypothesis and analysis of dispersion. Tests based on roots, distribution theory.

MATH5875
Sample Survey Design
Staff Contact: School of Mathematics Office
U2
Simple, stratified and systematic random sampling. Estimation of proportions, ratios, and sample sizes. Multi-stage sampling.

MATH5885
Sequential Analysis
Staff Contact: School of Mathematics Office
U2
The sequential probability ratio test OC and ASN functions. General theory of sequential tests. Sequential estimation.

MATH5895
Non-Parametric Methods
Staff Contact: School of Mathematics Office
U2

MATH5905
Statistical Inference
Staff Contact: School of Mathematics Office
U2
Decision theory. General theory of estimation and hypothesis testing.

MATH5915
Special Topic A
Staff Contact: School of Mathematics Office
U2
To be arranged: eg biological statistics, further work on order statistics, population statistics, non-linear programming, discrete distribution theory.

MATH5925
Project
Staff Contact: School of Mathematics Office
U2

MATH5935
Special Topic B
Staff Contact: School of Mathematics Office
U2
To be arranged eg biological statistics, further work on order statistics, population statistics, non-linear programming, and other topics.

MATH5945
Discrete Distributions
Staff Contact: School of Mathematics Office
U2
Discrete and lattice distributions their general properties mostly via generating functions. The structures of contagious clustered distributions, with a study of specific examples such as the negative binomial. Neyman and Poisson-Pascal families, together with estimation and fitting procedures.

MATH5950
Regression Analysis and Experimental Design
Staff Contact: School of Mathematics Office

MATH5960
Applied Stochastic Processes
Staff Contact: School of Mathematics Office
Introduces processes in discrete and continuous time. Markov chains and Markov processes, branching processes, time series with moving average models.
Servicing Subjects

These are subjects taught within courses offered by other faculties.

For further information regarding the following see the Faculty of Engineering Handbook.

MATH5045
Advanced Mathematics for Electrical Engineers
Boundary value problems in partial differential equations. Selected topics from complex variable analysis, integral transforms, and orthogonal functions and polynomials.

BIOM9012
Biomedical Statistics

Microbiology and Immunology

MICR6043
Alternative Higher Degree Qualifying Program
Staff Contact: Prof A. Lee
Similar in standard to MICR4013 Microbiology Honours, but designed for students who cannot regularly attend the University.

Oceanography

Administered by the School of Mathematics. Please contact Dr J. Middleton.

OCEA5145
Applied Time Series Analysis
U2
Classification of random processes, sampling for discrete analysis, Fourier analysis, spectra, filtering. Cross-spectra, estimation and hypothesis testing, confidence limits, application to experiment planning. Emphasis on computer analysis of actual data.

OCEA5155
Theoretical Project in Physical Oceanography
U7
A theoretical project aimed at developing the prediction of oceanographical phenomena, tailored to meet individual student background but taken only by those students with a strong theoretical background.

Optometry

Initial contact for these subjects should be directly with the School of Optometry. All units are full year courses.

OPTM8001
Advanced Clinical Optometry
HPW4
Clinical work on selected patients, with special emphasis on advanced techniques and new developments. Optometric examination procedures, including: external and internal examination of the eyes; visual functions; tonometry; objective optometry; evaluation of binocular functions; aniseikonia; sub-normal vision; geriatric and pediatric optometry; the clinical application of electrophysiological techniques. Assessment of new instruments, methods and treatment.

OPTM8002
Advanced Physiological Optics
HPW4

OPTM8003
Pleorooptics and Binocular Vision
HPW4
An integrated subject, in which binocular vision and pleorooptics are studies from theoretical and clinical viewpoints. Clinical experience is provided by selected patients. Includes: the nature and control of eye movements and role in maintaining the perception of a stable visual world. Binocular and monocular subjective visual directions. The neurophysiological substrate of binocular vision and its phenomena. Stereopsis and its measurement. Accommodation, convergence, and oculo-motor imbalance. Laboratory and clinical methods of measuring eye position and visual directions. The aetiologies, measurements and treatment of strabismus, anomalous correspondence, eccentric fixation amblyopia.

OPTM8004
Advanced Contact Lens Studies
HPW4

OPTM8005
Advanced Contact Lens Practice
HPW4
Examination, evaluation and aftercare of contact lens patients.

OPTM8006
Occupational Optometry
HPW4

OPTM8007
Clinical Photography
HPW4

OPTM8008
Project
HPW4

OPTM8009
Ocular Therapy
HPW4
Pharmacology and clinical pharmacy, anterior segment disease, glaucoma systemic/medical considerations in eye care, CPR in emergencies, advanced diagnostic techniques.

Physics

Not all graduate subjects are necessarily offered in any one year.
Initial contact should be made with Associate Prof D. Miller

PHYS8015
Energy Alternatives
For MPhysics degree course students.
Details are determined during the year preceding that in which it is offered.

PHYS8025
Astrophysics
As for PHYS8015 Energy Alternatives.

PHYS8035
Acoustics
As for PHYS8015 Energy Alternatives.

PHYS8045
Biophysics
As for PHYS8015 Energy Alternatives.

PHYS8055
Applied Physics
As for PHYS8015 Energy Alternatives.

PHYS9183
Methods of Theoretical Physics
Notes: For PhD degree, MSc and MPhysics degree course students.
Response functions and Green's functions. Symmetry and group theory. Many particle systems. Tensor calculus and variational techniques.

PHYS9283
Methods of Experimental Physics
Notes: For PhD degree, MSc and MPhysics degree course students.
Psychology

PSYC6000
Alternative Higher Degree Qualifying Program
Refer to the School of Psychology for details.
Staff Contact: Mr T. Clulow

PSYC7000
Research and Evaluation Methods
Staff Contact: Mr T. Clulow
S1 HPW2
Problems of experimental design in applied fields; measurement and scaling; analysis of change, including sequential analysis, and the application of the experimental methods to the individual cases. Design and evaluation of programs.

PSYC7001
Psychological Assessment 1
Staff Contact: Mr T. Clulow
S1 HPW3
A theoretical basis, background information and practical skills in methods of assessment typically used in clinical and industrial psychology. Theory and research on interviewing, introduction to DSM III-R, assessment interviewing, assessment of intellectual functioning, test access and use and computerised testing, neuropsychological and organicity assessment, personality assessment and its use, assessment and goal attainment scaling, and ethical, legal and professional issues.

PSYC7002
Psychological Assessment 2
Staff Contact: Mr T. Clulow
S2 HPW2
Prerequisite: PSYC7001
The application of the principles of experimental psychology to problems of behavioural assessment in a wide variety of situations, eg organizational behaviour; lifestyle change; the management of behavioural disorders; institutional behavioural programs. Assessment procedures studied include: psychological tests, behavioural analysis and case

PSYC7003
Graduate Colloquium
Staff Contact: Mr T. Clulow
F HPW1
Participation in the staff-graduate student colloquium.

PSYC7100
Industrial and Organizational Psychology 1
Staff Contact: Mr T. Clulow
S1 HPW2
General framework for understanding organizational settings and how social structures and procedures affect work motivation, job satisfaction, performance and health. Emphasis placed on the particular contribution which psychologists can make to areas such as job analysis and design, selection, and performance appraisal, interpersonal and intergroup relations, the socio-technical analysis of production systems, social influence, leadership style, job enrichment, and communication patterns.

PSYC7101
Industrial and Organizational Psychology 2
Staff Contact: Mr T. Clulow
S2 HPW2
Prerequisite: PSYC7100
An advanced examination of some topics covered in PSYC7100 Industrial and Organizational Psychology 1 with a particular emphasis on the application of sound measurement and research principles to selection, job evaluation and work motivation. Special attention given to the application of social psychological principles to the work setting.

PSYC7102
Psychological Principles of Training
Staff Contact: Mr T. Clulow
S1 HPW2
Relevant principles from learning theory and cognitive psychology applied to training in industry and retraining for new technology. Training for adaptability and transfer; the important role of automaticity and attitudes in training. Development of work related cognitive, motor and social skills, and the use of computerised packages. Research on the effectiveness of different methods of training.

PSYC7103
Applied Experimental Psychology
Staff Contact: Mr T. Clulow
S1 HPW2
Notes: This subject not offered in 1992 but is offered in 1993.
A discussion of the perceptual and attentional mechanisms that limit our ability to obtain information, and the implications for such practical areas as ergonomics and selection. Topics include psychophysics and signal detection performance on vigilance tasks.
PSYC7104
Applied Cognitive Psychology
Staff Contact: Mr. T. Clulow
S1 HPW2
Notes: This subject is not offered in 1992 but is offered in 1993.
Cognitive factors that limit our ability to process information, methods used to cope with these limitations, and the implications for such practical areas as training and artificial intelligence. Topics include memory, reasoning and problem-solving, and performance on motor tasks.

PSYC7105
Professional Practice (Applied)
Staff Contact: Mr T. Clulow
Notes: 340 hours.
The application of theoretical aspects covered in the course to a variety of situations. Supervised work experience in a variety of settings together with a weekly meeting to allow systematic discussion of relevant professional, ethical and legal issues.

PSYC7106
Graduate Colloquium (Applied)
Staff Contact: Mr T. Clulow
F HPW1
Participation in the staff-graduate student colloquium.

PSYC7107
Seminars in Applied Psychology
Staff Contact: Mr T. Clulow
S1 HPW2
A series of seminars on topics of particular relevance to the practice of applied psychology, eg the organization and regulation of psychology as a profession; ethical standards in relation to clients, members of other professions and the public; legal aspects of psychological practice. Additional topics dealing with contemporary issues in applied psychology chosen in consultation with students undertaking the seminars.

PSYC7108
Research Thesis
Staff Contact: Mr T. Clulow
F HPW6
Research thesis involving an investigation into some aspect of applied psychology.

PSYC7109
Principles of Ergonomics
Staff Contact: Mr T. Clulow
S1 HPW3
Selected topics within the area of ergonomics drawn from anthropometrics and biomechanics; the design of displays and controls, including visual display units, keyboards, and workstations; work physiology and energy expenditure, fatigue and its measurement; the sources and control of stress at the workplace; social and equipment-related workplace design problems; the effects on human performance of environmental stressors such as noise, heat, cold and sleep loss (including shiftwork).

PSYC7110
Advanced Ergonomics
Staff Contact: Mr T. Clulow
S2 HPW3
Prerequisite: PSYC7109
Application of ergonomic principles and methods to the design and analysis of work tasks involving a high cognitive component, such as those involving human-computer interaction.

PSYC7111
Cross-cultural Perspective in Applied Psychology
Staff Contact: Mr T. Clulow
S2 HPW2
Notes: This subject is not offered in 1992 but is offered in 1993.
General issues in cross-cultural psychology; problems of conducting research in more than one cultural setting. Cross-cultural organizational psychology including a comparative analysis of production systems. Culture training and orientation including programs aimed at preparing managers to become culturally mediating persons.

PSYC7112
Vocational Psychology
Staff Contact: Mr T. Clulow
S1 HPW2
Notes: This subject is not offered in 1992 but is offered in 1993.
Individual career counselling, decision-making and work adjustment throughout life, traditional and computerised approaches to occupational information and psychological testing; staff development; relationships between work, leisure, retirement and unemployment. Vocational problems of groups such as minorities and those with disabilities.

PSYC7113
Special Topic
Staff Contact: Mr T. Clulow
S1 or S2 HPW2
An occasional elective dealing with applications of some special field of psychology.

PSYC7114
Graduate and Applied Seminars
Staff Contact: Mr T. Clulow
S1 or S2 HPW1
A weekly seminar during which academic staff, graduate students and visitors from other institutions make presentations about the work they are doing.

PSYC7200
Experimental Clinical Psychology 1
Staff Contact: Mr T. Clulow
F HPW4
The theoretical basis of clinical practice in individual, group, institutional, and community settings. The application of the principles of experimental psychology to the analysis of both adaptive and maladaptive patterns of behaviour. The study of a wide range of techniques of behavioural intervention.
An assessment of marital and family problems and a critical examination of the most influential and most effective intervention strategies.

Major biological treatments, especially pharmacotherapy currently used in the management of psychological disorders and dysfunctional behaviour. Familiarisation with the range of physical treatments and their use in clinical practice especially in relation to clinical psychology. Focus on the light which the modes of action of these treatments throws on the biological substrates of psychological disorders.

An illustration of theoretical principles and experimental strategies in research investigating the processes and mechanisms underlying psychological disturbance. Topics include the relationship between genetic and environmental factors in aetiology, the integration of laboratory and clinical evidence, and the status of biological, behavioural and cognitive theories of dysfunction.

Notes: 380 hours.

Supervised work with clients in the School's clinic, and in approved institutions.

A research thesis involving an investigation into some aspect of clinical or community psychology.

An examination of the ethical codes and legal requirements that clinical psychologists are expected to adhere to, and their applications to specific problems that confront practitioners, when dealing with social or cultural 'problems', making differential diagnoses, and interacting with their colleagues.

Lectures, practical classes and supervised clinical experience concerned with the theoretical and practical issues associated with the design, implementation and evaluation of behavioural programs for the promotion of positive mental and physical health.

An essentially practical subject focusing on childhood disorders, such as mental retardation, infantile autism, physical and sensory handicaps, specific learning difficulties, and hyperactivity. Methods of assessment include standardised tests of child development, behavioural checklists and interviews, and observation of present behaviour. Behavioural change procedures that may be effective in the treatment and management of the behavioural problems in question.

Neural bases of human behaviour, with particular emphasis on clinical applications. Issues in assessment and rehabilitation, functional analysis of each cerebral lobe, and particular disorders such as the dementias and aphasias.

These are subjects taught within courses offered by other faculties.

For further information regarding the following subjects see the Faculty of Arts and Social Sciences Handbook.

Theory of experimental psychology pertinent to cognitive science. Learning, memory, decision making, problem solving, perception, and language comprehension.

The neurophysiological substrates of learning, memory, perception and cognition. Introduction to the basic structure and physiology of the nervous system.

Human information processing: advanced topics in cognitive psychology with particular reference to temporal
dynamics of attention, organization, integration and retrieval processes for sensory and linguistic information.

PSYC7303
Neuroscience: Human Neuropsychology
Staff Contact: Mr T. Clulow
Advanced topics in the neurophysiology of human cognitive functioning, including consideration of the influence of brain disease and brain damage.

Safety Science

SAFE9232
Introduction to Occupational Health and Safety Law
Staff Contact: Initial contact with Centre for Safety Science Office
U3

The concept of law; the creation and interpretation of statutes; the judicial and court systems; locus stand; common law and equity; basic principles of legal liability of the Crown; the common law of employment; statutory regulation of employment; compulsory arbitration of industrial disputes. Outline of occupational health, safety and compensation legislation of the Australian States. Actions under the common law.

SAFE9424
Applied Ergonomics
Staff Contact: Initial contact with Centre for Safety Science Office
Prerequisite: SAFE9224 at a credit or equivalent
Graduate Study

Conditions for the Award of Higher Degrees

Rules, regulations and conditions for the award of first degrees are set out in the appropriate Faculty Handbooks.

For the list of undergraduate courses and degrees offered see Table of Courses (by faculty): Undergraduate Study in the Calendar

The following is the list of higher degrees, graduate diplomas and graduate certificates of the University, together with the publication in which the conditions for the award appear.

For the list of graduate degrees by research and course work, arranged in faculty order, see Table of Courses (by faculty): Graduate Study in the Calendar.

For the statements Preparation and Submission of Project Reports and Theses for Higher Degrees and Policy with respect to the Use of Higher Degree Theses see later in this section.

Higher Degrees and Graduate Diplomas

<table>
<thead>
<tr>
<th>Doctor of Science</th>
<th>DSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Letters</td>
<td>DLitt</td>
</tr>
<tr>
<td>Doctor of Laws</td>
<td>LLD</td>
</tr>
<tr>
<td>Doctor of Medicine</td>
<td>MD</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>PhD</td>
</tr>
<tr>
<td>Master of Applied Science</td>
<td>MAppSc</td>
</tr>
<tr>
<td>Master of Architectural Design</td>
<td>MArchDes</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>MArch</td>
</tr>
<tr>
<td>Master of Archives Administration</td>
<td>MAarchivAdmin</td>
</tr>
<tr>
<td>Master of Art</td>
<td>MArt</td>
</tr>
<tr>
<td>Master of Arts Administration</td>
<td>MAartAdmin</td>
</tr>
<tr>
<td>Master of Art Education</td>
<td>MAartEd</td>
</tr>
<tr>
<td>Master of Arts</td>
<td>MA</td>
</tr>
<tr>
<td>Master of Art Theory</td>
<td>MArtTh</td>
</tr>
<tr>
<td>Master of Biomedical Engineering</td>
<td>MBiomedE</td>
</tr>
<tr>
<td>Master of Building</td>
<td>MBuild</td>
</tr>
<tr>
<td>Master of the Built Environment</td>
<td>MEnv</td>
</tr>
<tr>
<td>Master of the Built Environment (Building Conservation)</td>
<td>MEnv</td>
</tr>
<tr>
<td>Master of Business Administration</td>
<td>MBA</td>
</tr>
<tr>
<td>Master of Chemistry</td>
<td>MChem</td>
</tr>
<tr>
<td>Master of Clinical Education</td>
<td>MClinEd</td>
</tr>
<tr>
<td>Master of Cognitive Science</td>
<td>MCogSc</td>
</tr>
<tr>
<td>Master of Commerce (Honours)</td>
<td>MCom(Hons)</td>
</tr>
<tr>
<td>Master of Commerce</td>
<td>MCom</td>
</tr>
<tr>
<td>Master of Community Health</td>
<td>MCH</td>
</tr>
<tr>
<td>Master of Computer Science</td>
<td>MCompSc</td>
</tr>
<tr>
<td>Master of Construction Management</td>
<td>MConstMgt</td>
</tr>
</tbody>
</table>

Calendar

Applied Science

Architecture

Professional Studies

College of Fine Arts

College of Fine Arts

College of Fine Arts

Arts and Social Sciences

University College

College of Fine Arts

Engineering

Architecture

AGSM

Science*

Medicine

Arts and Social Sciences

Commerce and Economics

Commerce and Economics

Medicine

Engineering

Architecture
<table>
<thead>
<tr>
<th>Program</th>
<th>Code</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Education</td>
<td>MEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Education in Creative Arts</td>
<td>MEdCA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Educational Administration</td>
<td>MEDAdmin</td>
<td>Applied Science / Engineering</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>ME</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Engineering without supervision</td>
<td>ME</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Engineering Science</td>
<td>MEngSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Environmental Studies</td>
<td>MEnvStudies</td>
<td>Engineering / Applied Science</td>
</tr>
<tr>
<td>Master of Fine Arts</td>
<td>MFA</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Health Administration</td>
<td>MHA</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Health Personnel Education</td>
<td>MHPEd</td>
<td>College of Fine Arts</td>
</tr>
<tr>
<td>Master of Health Planning</td>
<td>MHP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Higher Education</td>
<td>MHEd</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Industrial Design</td>
<td>MID</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Information Science</td>
<td>MinfSc</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>MLArch</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Landscape Planning</td>
<td>MLP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Laws</td>
<td>LLM</td>
<td>Law</td>
</tr>
<tr>
<td>Master of Librarianship</td>
<td>MLib</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Management Economics</td>
<td>MMgtEc</td>
<td>University College</td>
</tr>
<tr>
<td>Master of Mathematics</td>
<td>MMath</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Music</td>
<td>MMus</td>
<td>Arts and Social Science</td>
</tr>
<tr>
<td>Master of Nursing Administration</td>
<td>MNA</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Optometry</td>
<td>MOptom</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Paediatrics</td>
<td>MPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Physics</td>
<td>MPhysics</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Project Management</td>
<td>MPM</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Public Health</td>
<td>MPH</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Psychology (Applied)</td>
<td>MPsycho</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Psychology (Clinical)</td>
<td>MPsycho</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Master of Psychotherapy</td>
<td>MSociety</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Safety Science</td>
<td>MSafetySc</td>
<td>Applied Science / Architecture</td>
</tr>
<tr>
<td>Master of Science</td>
<td>MSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science without supervision</td>
<td>MSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Science (Acoustics)</td>
<td>MSc(Acoustics)</td>
<td>Engineering / Medicine</td>
</tr>
<tr>
<td>Master of Science (Industrial Design)</td>
<td>MSc(IndDes)</td>
<td>Engineering / Medicine</td>
</tr>
<tr>
<td>Master of Science and Society</td>
<td>MScSoc</td>
<td>Arts and Social Sciences</td>
</tr>
<tr>
<td>Master of Social Work</td>
<td>MSW</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Master of Sports Science</td>
<td>MSPsc</td>
<td>Science*</td>
</tr>
<tr>
<td>Master of Statistics</td>
<td>MStats</td>
<td>Medicine</td>
</tr>
<tr>
<td>Master of Surgery</td>
<td>MS</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying without supervision</td>
<td>MSurv</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Surveying Science</td>
<td>MSurvSc</td>
<td>Engineering</td>
</tr>
<tr>
<td>Master of Town Planning</td>
<td>MTP</td>
<td>Architecture</td>
</tr>
<tr>
<td>Master of Welfare Studies and Practice</td>
<td>MWSP</td>
<td>Professional Studies</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>GradDip</td>
<td>Applied Science/Architecture</td>
</tr>
<tr>
<td>Graduate Certificate</td>
<td>GradCertPhilT</td>
<td>Engineering / Arts/Science*†</td>
</tr>
<tr>
<td></td>
<td>DipClinEd</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>DipPaed</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>DipEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td></td>
<td>DipHEd</td>
<td>Professional Studies</td>
</tr>
<tr>
<td></td>
<td>DipIM-ArchivAdmin</td>
<td>Science*</td>
</tr>
<tr>
<td></td>
<td>DipIM-Lib</td>
<td>Science*</td>
</tr>
<tr>
<td></td>
<td>DipFDA</td>
<td>Science*</td>
</tr>
</tbody>
</table>

*Faculty of Science.
†Faculty of Biological and Behavioural Sciences.
1. The degree of Doctor of Philosophy may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty or board (hereinafter referred to as the Committee) to a candidate who has made an original and significant contribution to knowledge.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor with Honours from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment as a candidate for the degree.

Enrolment

3. (1) An application to enrol as a candidate for the degree shall be lodged with the Registrar at least one month prior to the date at which enrolment is to begin.

(2) In every case before making the offer of a place the Committee shall be satisfied that initial agreement has been reached between the School* and the applicant on the topic area, supervision arrangements, provision of adequate facilities and any coursework to be prescribed and that these are in accordance with the provisions of the guidelines for promoting postgraduate study within the University.

(3) The candidate shall be enrolled either as a full-time or a part-time student.

(4) A full-time candidate will present the thesis for examination no earlier than three years and no later than five years from the date of enrolment and a part-time candidate will present the thesis for examination no earlier than four years and no later than six years from the date of enrolment, except with the approval of the Committee.

(5) The candidate may undertake the research as an internal student, ie at a campus, teaching hospital, or other research facility with which the University is associated, or as an external student not in attendance at the University except for periods as may be prescribed by the Committee.

(6) An internal candidate will normally carry out the research on a campus or at a teaching or research facility of the University except that the Committee may permit a candidate to spend a period in the field, within another institution or elsewhere away from the University provided that the work can be supervised in a manner satisfactory to the Committee. In such instances the Committee shall be satisfied that the location and period of time away from the University are necessary to the research program.

(7) The research shall be supervised by a supervisor and where possible a co-supervisor who are members of the academic staff of the School or under other appropriate supervision arrangements approved by the Committee. Normally an external candidate within another organisation or institution will have a co-supervisor at that institution.

Progression

4. The progress of the candidate shall be considered by the Committee following report from the School in accordance with the procedures established within the School and previously noted by the Committee.

(1) The research proposal will be reviewed as soon as feasible after enrolment. For a full-time student this will normally be during the first year of study, or immediately following a period of prescribed coursework. This review will focus on the viability of the research proposal.

*School is used here and elsewhere in these conditions to mean any teaching unit authorised to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
(2) Progress in the course will be reviewed within twelve months of the first review. As a result of either review the Committee may cancel enrolment or take such other action as it considers appropriate. Thereafter, the progress of the candidate will be reviewed annually.

Thesis

5. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the investigation.

(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.

(3) The thesis shall comply with the following requirements:

(a) it must be an original and significant contribution to knowledge of the subject;
(b) the greater proportion of the work described must have been completed subsequent to enrolment for the degree;
(c) it must be written in English except that a candidate in the Faculty of Arts may be required by the Committee to write a thesis in an appropriate foreign language;
(d) it must reach a satisfactory standard of expression and presentation;
(e) it must consist of an account of the candidate's own research but in special cases work done conjointly with other persons may be accepted provided the Committee is satisfied about the extent of the candidate’s part in the joint research.

(4) The candidate may not submit as the main content of the thesis any work or material which has previously been submitted for a university degree or other similar award but may submit any work previously published whether or not such work is related to the thesis.

(5) Four copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the four copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

6. (1) There shall be not fewer than three examiners of the thesis, appointed by the Committee, at least two of whom shall be external to the University.

(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that one of the following:

(a) The thesis merits the award of the degree.
(b) The thesis merits the award of the degree subject to minor corrections as listed being made to the satisfaction of the head of school.
(c) The thesis requires further work on matters detailed in my report. Should performance in this further work be to the satisfaction of the higher degree Committee, the thesis would merit the award of the degree.
(d) The thesis does not merit the award of the degree in its present form and further work as described in my report is required. The revised thesis should be subject to re-examination.
(e) The thesis does not merit the award of the degree and does not demonstrate that resubmission would be likely to achieve that merit.

(3) If the performance at the further work recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the results of any further work, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate be permitted to resubmit the thesis after a further period of study and/or research.

Fees

7. A candidate shall pay such fees as may be determined from time to time by the Council.
Master of Chemistry (MChem), Master of Mathematics (MMath),
Master of Optometry (MOptom) and Master of Physics (MPhysics)

1. The degree of Master of Chemistry or Master of Mathematics or Master of Optometry or Master of Physics by formal coursework may be awarded by the Council to a candidate who has satisfactorily completed a program or advanced study.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate four-year degree of Bachelor from The University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of a candidate shall be four academic sessions from the date of enrolment for a full-time candidate and eight sessions for a part-time candidate. In special cases an extension of this time may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering (ME) and Master of Science (MSc)

1. The degree of Master of Engineering or Master of Science by research may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

Qualifications

2. (1) A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Committee.

(2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the degree.

(3) When the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant, before being permitted to enrol, to undergo such examination or carry out such work as the Committee may prescribe.
Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least one calendar month before the commencement of the session in which enrolment is to begin.

(2) In every case, before permitting a candidate to enrol, the head of the school* in which the candidate intends to enrol shall be satisfied that adequate supervision and facilities are available.

(3) An approved candidate shall be enrolled in one of the following categories.
(a) full-time attendance at the University;
(b) part-time attendance at the University;
(c) external - not in regular attendance at the University and using research facilities external to the University.

(4) A candidate shall be required to undertake an original investigation on an approved topic. The candidate may also be required to undergo such examination and perform such other work as may be prescribed by the Committee.

(5) The work shall be carried out under the direction of a supervisor appointed from the full-time members of the University staff.

(6) The progress of a candidate shall be reviewed annually by the Committee following a report by the candidate, the supervisor and the head of the school* in which the candidate is enrolled and as a result of such review the Committee may cancel enrolment or take such other action as it considers appropriate.

(7) No candidate shall be granted the degree until the lapse of three academic sessions in the case of a full-time candidate or four academic sessions in the case of a part-time or external candidate from the date of enrolment. In the case of a candidate who has been awarded the degree of Bachelor with Honours or who has had previous research experience the Committee may approve remission of up to one session for a full-time candidate and two sessions for a part-time or external candidate.

(8) A full-time candidate for the degree shall present for examination not later than six academic sessions from the date of enrolment. A part-time or external candidate for the degree shall present for examination not later than ten academic sessions from the date of enrolment. In special cases an extension of these times may be granted by the Committee.

Thesis

4. (1) On completing the program of study a candidate shall submit a thesis embodying the results of the original investigation.

(2) The candidate shall give in writing two months notice of intention to submit the thesis.

(3) The thesis shall present an account of the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of higher degree theses.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

School is used here and elsewhere in these conditions to mean any teaching unit authorized to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a Faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
(2) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the merits of the thesis and shall recommend to the Committee that:
(a) the candidate be awarded the degree without further examination; or
(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school*; or
(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or
(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or
(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(3) If the performance at the further examination recommended under (2)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to a further oral, practical or written examination within a period specified by it but not exceeding eighteen months.

(4) The Committee shall, after consideration of the examiners' reports and the reports of any oral or written or practical examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Engineering (ME), Master of Science (MSc) and Master of Surveying (MSurv) without supervision

1. The degree of Master of Engineering or Master of Science or Master of Surveying without supervision may be awarded by the Council on the recommendation of the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee) to a candidate who has demonstrated ability to undertake research by the submission of a thesis embodying the results of an original investigation.

Qualifications

2. A candidate for the degree shall have been awarded an appropriate degree of Bachelor from the University of New South Wales with at least three years relevant standing in the case of Honours graduates and four years relevant standing in the case of Pass graduates, and at a level acceptable to the Committee.

Enrolment

3. An application to enrol as a candidate for the degree without supervision shall be made on the prescribed form which shall be lodged with the Registrar not less than six months before the intended date of submission of the thesis. A graduate who intends to apply in this way should, in his or her own interest, seek at an early stage the advice of the appropriate head of school* with regard to the adequacy of the subject matter and its presentation for the degree. A synopsis of the work should be available.

Thesis

4. (1) A candidate shall submit a thesis embodying the results of the investigation.
(2) The candidate shall give in writing to the Registrar two months notice of intention to submit the thesis.
(3) The thesis shall present an account on the candidate's own research. In special cases work done conjointly with other persons may be accepted, provided the Committee is satisfied about the extent of the candidate's part in the joint research.

* "School" is used here and elsewhere in these conditions to mean any teaching unit authorized to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching
(4) The candidate may also submit any work previously published whether or not such work is related to the thesis.

(5) Three copies of the thesis shall be presented in a form which complies with the requirements of the University for the preparation and submission of theses for higher degrees.

(6) It shall be understood that the University retains the three copies of the thesis submitted for examination and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act, 1968, the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium.

Examination

5. (1) There shall be not fewer than two examiners of the thesis, appointed by the Academic Board on the recommendation of the Committee, at least one of whom shall be external to the University unless the Committee is satisfied that this is not practicable.

(2) Before the thesis is submitted to the examiners the head of the school in which the candidate is enrolled shall certify that it is prima facie worthy of examination.

(3) At the conclusion of the examination each examiner shall submit to the Committee a concise report on the thesis and shall recommend to the Committee that:

(a) the candidate be awarded the degree without further examination; or

(b) the candidate be awarded the degree without further examination subject to minor corrections as listed being made to the satisfaction of the head of the school; or

(c) the candidate be awarded the degree subject to a further examination on questions posed in the report, performance in this further examination being to the satisfaction of the Committee; or

(d) the candidate be not awarded the degree but be permitted to resubmit the thesis in a revised form after a further period of study and/or research; or

(e) the candidate be not awarded the degree and be not permitted to resubmit the thesis.

(4) If the performance at the further examination recommended under (3)(c) above is not to the satisfaction of the Committee, the Committee may permit the candidate to re-present the same thesis and submit to further examination as determined by the Committee within a period specified by it but not exceeding eighteen months.

(5) The Committee shall, after consideration of the examiners' reports and the results of any further examination, recommend whether or not the candidate may be awarded the degree. If it is decided that the candidate be not awarded the degree the Committee shall determine whether or not the candidate may resubmit the thesis after a further period of study and/or research.

Fees

6. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Mathematics (MMath)

Master of Optometry (MOptom)

Master of Physics (MPhysics)

See Master of Chemistry above for these degrees

"School" is used here and elsewhere in these conditions to mean any teaching unit authorized to enrol research students and includes a department where that department is not within a school, a centre given approval by the Academic Board to enrol students, and an interdisciplinary unit within a Faculty and under the control of the Dean of the Faculty. Enrolment is permitted in more than one such teaching unit.
Master of Psychology (Applied) (MPsychol(Applied))
and Master of Psychology (Clinical) (MPsychol(Clinical))

1. The degree of Master of Psychology (Applied) or Master of Psychology (Clinical) by formal coursework and thesis may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study. The degree shall be awarded at the Pass level or with the grade of Honours Class 1 or with the grade of Honours Class 2 (two divisions).

Qualifications

2. (1) A candidate for the degree shall have been awarded a degree of Bachelor with Honours in psychology from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution, at a level acceptable to the Higher Degree Committee of the Faculty of Biological and Behavioural Sciences (hereinafter referred to as the Committee).

 (2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

 (3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar by 30 November of the year before the year in which enrolment is to begin.

 (2) A candidate for the degree shall be required to undertake such formal subjects and, except in exceptional circumstances, pass at the first attempt such assessment as prescribed.

 (3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

 (4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment in the case of a full-time candidate or six sessions in the case of a part-time candidate. A candidate who has been granted exemptions may have the minimum period reduced by up to one-half. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and ten sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Master of Science (MSc)

Master of Science (MSc) without supervision

See Master of Engineering above for these degrees.

Master of Statistics (MStats)

1. The degree of Master of Statistics by formal coursework may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.
Qualifications

2. (1) A candidate for the degree shall have been awarded a degree of Bachelor with major studies in statistics from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the Faculty of Science (hereinafter referred to as the Committee).

(2) In exceptional cases an applicant who submits evidence of such other academic and professional qualifications as may be approved by the Committee may be permitted to enrol for the degree.

(3) If the Committee is not satisfied with qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for the degree shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the degree shall be required to undertake such formal subjects and pass such assessment as prescribed.

(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the degree until the lapse of four academic sessions from the date of enrolment in the case of a full-time candidate or eight sessions in the case of a part-time candidate. In the case of a candidate who has been awarded a degree of Bachelor with Honours in statistics the Committee may approve remissions of up to two sessions for a full-time candidate and four sessions for a part-time candidate. The maximum period of candidature shall be six academic sessions from the date of enrolment for a full-time candidate and ten sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.

Graduate Diploma (GradDip or DipFDA)

1. A Graduate Diploma may be awarded by the Council to a candidate who has satisfactorily completed a program of advanced study.

Qualifications

2. (1) A candidate for the diploma shall have been awarded an appropriate degree of Bachelor from the University of New South Wales or a qualification considered equivalent from another university or tertiary institution at a level acceptable to the Higher Degree Committee of the appropriate faculty (hereinafter referred to as the Committee).

(2) An applicant who submits evidence of such other academic or professional attainments as may be approved by the Committee may be permitted to enrol for the diploma.

(3) If the Committee is not satisfied with the qualifications submitted by an applicant the Committee may require the applicant to undergo such assessment or carry out such work as the Committee may prescribe, before permitting enrolment.

Enrolment and Progression

3. (1) An application to enrol as a candidate for diploma shall be made on the prescribed form which shall be lodged with the Registrar at least two calendar months before the commencement of the session in which enrolment is to begin.

(2) A candidate for the diploma shall be required to undertake such formal subjects and pass such assessment as prescribed.
(3) The progress of a candidate shall be reviewed at least once annually by the Committee and as a result of its review the Committee may cancel enrolment or take such other action as it considers appropriate.

(4) No candidate shall be awarded the diploma until the lapse of two academic sessions from the date of enrolment in the case of a full-time candidate or four sessions in the case of a part-time candidate. The maximum period of candidature shall be four academic sessions from the date of enrolment for a full-time candidate and six sessions for a part-time candidate. In special cases an extension of these times may be granted by the Committee.

Fees

4. A candidate shall pay such fees as may be determined from time to time by the Council.
The scholarships and prizes listed below are available to students whose courses are listed in this handbook. Each faculty handbook contains in its Scholarships and Prizes section the scholarships and prizes available with that faculty. The General Information section of the Calendar contains a comprehensive list of scholarships and prizes offered throughout the University.

Scholarships

Undergraduate Scholarships

Listed below is an outline only of a number of scholarships available to students. Full information may be obtained from the Student Centre located on the Lower Ground Floor of the Chancellery.

Unless otherwise indicated in footnotes, applications for the following scholarships should be made to the Registrar and Deputy Principal by 14 January each year. Please note that not all of these awards are available every year.

Key: V Value T Tenure C Conditions

General

Australian Development Cooperation Scholarship

V Tuition fees only
T 1992 and 1993 only
C Applicants must complete their studies by the end of the 1993 academic year. Scholarships may only be offered in 1992. Only students from specified countries and in certain fields of study can apply. Applications from the Student Centre. The closing date is well before 1 October 1991.

Equity and Merit Scholarship Scheme

V Tuition fees. Some students may be eligible for airfares and a stipend.
T Determined by normal course duration
C Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country.

Sam Cracknell Memorial

V Up to $3000 pa payable in fortnightly instalments
T 1 year
C Prior completion of at least 2 years of a degree or diploma course and enrolment in a full-time course during the year of application; academic merit; participation in sport both directly and administratively; and financial need.

Girls Realm Guild

V Up to $1500 pa
T 1 year with the prospect of renewal subject to satisfactory progress and continued demonstration of need
C Available only to female students under 35 years of age who are permanent residents of Australia enrolling in any year of a full-time undergraduate course on the basis of academic merit and financial need.
W.S. and L.B. Robinson

V Up to $6500 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Available only to students who have completed their schooling in Broken Hill or whose parents reside in Broken Hill; for a course related to the mining industry. Includes courses in mining engineering, geology, electrical and mechanical engineering, metallurgical process engineering, chemical engineering and science. Applications close 30 September each year. Apply directly to PO Box 460, Broken Hill, NSW 2880.

Alumni Association

V Up to $1500 pa
T 1 year renewable for the possibility of renewal
C Available to students who are accepted into a course of at least two years duration. Prospective applicants should have an outstanding ability in a particular sport and are expected to be an active member of a UNSW Sports Club. Apply directly to Sport and Recreation Section, PO Box 1, Kensington 2033.

Biological and Behavioural Sciences

Faculty of Biological and Behavioural Sciences

V Up to $3000 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Permanent residents of Australia. Available to full-time students enrolled in one of the disciplines of the Faculty of Biological and Behavioural Sciences.

BSSM

Esther Louise Buchwald Memorial Scholarship

V $500 pa
T 1 year
C Available only to a physically handicapped student enrolled in any year of a course in the Board of Studies in Science and Mathematics

Engineering

Computer Science and Engineering

Proctor and Gamble Australia Pty Ltd

V Up to $2500
T 1 year
C Available to students enrolled in any year of a full-time course. Candidates must be the children of Alumni of the University of NSW and may be either permanent residents of Australia or overseas students.

Mathematics

George Szekeres Award

V $200 pa
T 1 year
C Open to students entering the final year of the honours degree course in Pure Mathematics

Optometry

OPSM/Gibb and Beeman

V Up to $1000 pa
T 1 year renewable for the duration of the course subject to satisfactory progress
C Available to students under 21 years of age who are permanent residents of Australia enrolling in Year 1 of the full-time degree course in Optometry
The UNSW Co-op Program

The University of New South Wales has industry-linked education scholarships to the value of $9300 per annum in the following areas: Accounting (and Economics, Finance, Information Systems or Japanese Studies); Business Information Technology, Aeronautical, Ceramic, Chemical, Civil, Computer, Electrical, Environmental, Materials, Mechanical, Metallurgical, Mineral, Mining and Petroleum Engineering; Applied Geology, Industrial Chemistry, Manufacturing Management, Textile Management, Textile Technology, and Wool and Pastoral Science.

Graduate Scholarships

Application forms and further information are available from the Student Centre, located on the Ground Floor of the Chancellery unless an alternative contact address is provided. Information is also available on additional scholarships which may become available from time to time, mainly from funds provided by organizations sponsoring research projects.

The following publications may also be of assistance: 1. Awards for Postgraduate Study in Australia and Awards for Postgraduate Study Overseas, published by the Graduate Careers Council of Australia. PO Box 28, Parkville, Victoria 3052; 2. Study Abroad, published by UNESCO; 3. Scholarships Guide for Commonwealth Postgraduate Students, published by the Association of Commonwealth Universities.

Details of overseas awards and exchanges administered by the Department of Employment, Education and Training can be obtained from: Awards and Exchanges Section, Department of Employment, Education and Training, PO Box 828, Woden, ACT 2606.

Where possible, the scholarships are listed in order of faculty.*Available for reference in the University Library.

Australian Postgraduate Research Awards

V $13,504 to $17,427
T 1-2 years for a Masters and 3-4 years for a PhD degree
C Applicants must be honours graduates or equivalent or scholars who will graduate with honours in current academic year, and who are domiciled in Australia. Applications to Registrar by 31 October.

Australian Postgraduate Course Awards

V Living allowance of $10,903 pa. Other allowances may also be paid. Tax free.
T 1-2 years; minimum duration of course
C Applicants must be graduates or scholars who will graduate in current academic year, and who have not previously held a Commonwealth Postgraduate Award. Applicants must be domiciled in Australia. Preference is given to applicants with employment experience. Applications to the Registrar by 28 September.

Australian Development Cooperation Scholarship

V Tuition fees only
T 1992 and 1993 only
C Applicants must complete their studies by the end of the 1993 academic year. Scholarships may only be offered in 1992. Only students from specified countries and in certain fields of study can apply. Applications from the Student Centre. The closing date is well before 1 October 1991.

Equity and Merit Scholarship Scheme

V Tuition fees. Some students may be eligible for air fares and a stipend.
T Determined by normal course duration
C Information should be obtained from Australian Diplomatic Posts. Conditions and entitlements vary depending on the home country.

Overseas Postgraduate Research Scholarships

V Tuition fees only
T 2 years for a Masters and 3 years for a PhD degree
C Eligibility is confined to postgraduate research students who are citizens of overseas countries excluding citizens of countries which are covered by the Equity and Merit Scholarship Scheme (EMSS). Applications to the Registrar by 28 September.

Special Overseas Postgraduate Fund

V Tuition fees only
T 1 year for a Postgraduate Diploma, 2 years for Masters degree and 3 years for Doctorate
C Eligibility is confined to postgraduate students who are citizens of overseas countries excluding citizens of countries which are covered by the Equity and Merit Scholarship Scheme (EMSS). Applications to the Registrar by 28 September.

General

University Postgraduate Research Scholarships

V Living allowance of $13,504 pa. Other allowances may also be paid. Tax free.
T 1-2 years for a Masters and 3-4 years for a PhD degree
C Applicants must be honours graduates or equivalent. A limited number of scholarships are offered subject to the availability of funds. Information should be obtained from the Faculty office.
Australian American Educational Foundation Fulbright Award
V Travel expenses and $A2000 as establishment allowance
T 1 year, renewable
C Applicants must be graduates who are domiciled in Australia and wish to undertake research or study for a higher degree in America. Applications close 30 September with The Secretary, DEET, AAEF Travel Grants, PO Box 826, Woden, ACT 2606.

Australian Federation of University Women
V Amount varies, depending on award
T Up to 1 year
C Applicants must be female graduates who are members of the Australian Federation of University Women

Commonwealth Scholarship and Fellowship Plan
V Varies for each country. Generally covers travel, living, tuition fees, books and equipment, approved medical expenses. Marriage allowance may be payable.
T Usually 2 years, sometimes 3
C Applicants must be graduates who are Australian citizens and who are not older than 35 years of age. Tenable in Commonwealth countries other than Australia. Applications close with the Registrar in September or October each year.

The English-Speaking Union (NSW Branch)
V $7000
T 1 year
C Applicants must be residents of NSW or ACT. Awarded to young graduates to further their studies outside Australia. Applications close mid-April with The Secretary, Ground Floor, Sydney School of Arts, 275c Pitt Street, Sydney, NSW 2000.

Frank Knox Memorial Fellowships tenable at Harvard University
V Stipend of $US7000 pa plus tuition fees
T 1, sometimes 2 years
C Applicants must be British subjects and Australian citizens, who are graduates or near graduates of an Australian university. Applications close with the Academic Registrar mid October.

Robert Gordon Menzies Scholarship to Harvard
V Up to $US 15,000
T 1 year
C Tenable at Harvard University. Applicants must be Australian citizens and graduates of an Australian tertiary institution. Applications close 31 December with the Registrar, A.N.U., GPO Box 4, Canberra, ACT 2601

Gowrie Scholarship Trust Fund
V $6000 pa. Under special circumstances this may be increased.
T 2 years
C Applicants must be members of the Forces or children of members of the Forces who were on active service during the 1939-45 War. Applications close with the Academic Registrar by 31 October.

Harkness Fellowships of the Commonwealth Fund of New York
V Living and travel allowances, tuition and research expenses, health insurance, book and equipment and other allowances for travel and study in the USA
T 12 to 21 months
C Candidates must be Australian citizens and 1. Either members of the Commonwealth or a State Public Service or semi-government Authority. 2. Either staff or graduate students at an Australian university. 3. Individuals recommended for nomination by the Local Correspondent. The candidate will usually have an honours degree or equivalent, or an outstanding record of achievement, and be not more than 36 years of age. Applications close 29 August with the Academic Registrar. Forms available from Mr J Larkin, Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra ACT 2601.

The Packer, Shell and Barclays Scholarships to Cambridge University
V Living and travel allowances, tuition expenses
T 1-3 years
C Applicants must be Australian citizens who are honours graduates or equivalent, and under 26 years of age. Applications close 15 October with The Secretary, Cambridge Commonwealth Trust, PO Box 252, Cambridge CB2 ITZ, England.

The Rhodes Scholarship to Oxford University
V Approximately £4862 stg pa
T 2 years, may be extended for a third year.
C Unmarried Australian citizens aged between 19 and 25 who have an honours degree or equivalent. Applications close in August each year with The Secretary, University of Sydney, NSW 2006.

Biological and Behavioural Sciences

John Clark Memorial Award in Psychology
V $1000
T 1 year
C Applicants must be enrolled in a graduate course in psychology undertaking research in an area concerned with the ongoing problems of the community, particularly the behaviour of the 'whole person' in a
social milieu. Applications close 1 July with the Registrar.

National Heart Foundation and
The National Health and Medical Research Council
See Calendar entry under Medicine

Science

Australian Telecommunications
V $9000 intended as a supplement to other awards
T 1 year for a Masters and up to 3 years for a PhD degree
C Applicants must be first class honours graduates or equivalent or scholars who will graduate with honours in the current academic year, who are Australian citizens or permanent residents and who are aged under 25 years at 1 January. Applications close November 2 with ATERB, PO Box 76, Epping, NSW 2121.

Australian Institute of Nuclear Science and Engineering
Student Scholarships
See Calendar entry under Engineering

Contact Lens Society of Australia
V $2000 pa
C To enable a graduate in optometry, medicine, or other appropriate discipline to undertake the degree of Master of Science or PhD in the School of Optometry. Enquiries to Associate Professor B. Holden, School of Optometry.

Gordon Godfrey Scholarship in Theoretical Physics
V $1500 pa
T 1-3 years
C To enable a suitable graduate to undertake a research degree in Theoretical Physics. May be held concurrently with another award. Enquiries to School of Physics.

Lionel Murphy Australian Postgraduate Bicentennial Scholarship
See Calendar entry under Law

Shell Scholarship in Science or Engineering
V Adequate funds for living allowance tuition and travel

Prizes

Undergraduate University Prizes

The following table summarizes the undergraduate prizes awarded by the University. Prizes which are not specific to any School are listed under General. All other prizes are listed under the Faculty or Schools in which they are awarded.

Information regarding the establishment of new prizes may be obtained from the Examinations Section located on the Ground Floor or the Chancellery.

General

The Sydney Technical College Union Award
V $400.00 and Bronze Medal
C Leadership in student affairs combined with marked academic proficiency by a graduand

The University of New South Wales Alumni Association Prize
V Statuette
C Achievement for community benefit by a student in the final or graduating year

School of Chemistry

The Inglis Hudson Bequest
V $15.00
C The best performance in CHEM2021 Organic Chemistry

The Jeffery Bequest
V $100.00
C The best performance in CHEM2021 Organic Chemistry
The June Griffith Memorial Prize
V $60.00
C The best performance in CHEM1002 Chemistry 1 in the Bachelor of Science degree course

The Merck Sharp & Dohme (Aust) Pty Ltd Prize
V $52.50
C The best performance in Level 2 Chemistry subjects in the Board of Studies in Science and Mathematics

The Merck Sharp & Dohme (Aust) Pty Ltd Prize
V $52.50
C The best performance in Level 3 Chemistry subjects in the Board of Studies in Science and Mathematics

The RACI Analytical Chemistry Group Prize
V $150.00
C The best performance in CHEM3041 Analytical Chemistry and CHEM3141 Advanced Instrumental Analysis

The University of New South Wales Chemical Society Parke-Pope Prize
V $100.00
C The best performance in a subject selected by the Head of School

The University of New South Wales Chemical Society George Wright Prize
V $100.00
C The best performance in a subject selected by the Head of School

School of Mathematics

The Applied Mathematics Prize
V $50.00
C Excellence in level 3 Applied Mathematics subjects in a bachelor degree or diploma course

The C.H. Peck Prize
V $50.00
C The best performance in Year 2 Mathematics by a student proceeding to Year 3 in the School of Mathematics

The Coca-Cola Amatil Limited Prize
V $200.00
C The best performance in Theory of Statistics or Higher Theory of Statistics 3 subjects in a bachelor degree course

The Head of School's Prize
V $50.00
C Excellence in four or more mathematics units in Year 2 in a bachelor degree or diploma course

The IBM Prize
V $200.00
C The best performance in the final year leading to the award of an honours degree within the School of Mathematics

The Michael Mihailavitch Erihman Award
V $750.00
C The best performance by a student enrolled in a Mathematics Program, in examinations conducted by School of Mathematics in any one year

The Pure Mathematics Prize
V $50.00
C The best performance in Level 3 Pure Mathematics subjects by a student in a bachelor degree or diploma course

The Reuters Australia Pty Limited Prize
V $100.00
C Excellence in Higher Theory of Statistics 2 subjects in a bachelor degree course

The School of Mathematics Prize
V $50.00
C The best performance in either MATH1032 Mathematics 1 or MATH1042 Higher Mathematics 1 by a student in a bachelor degree or diploma course

The School of Mathematics Prize
V $50.00
C Excellence in four or more Mathematics units by a student in Year 2 of a bachelor degree or diploma course

The School of Mathematics Prize
V $50.00
C Excellence in four or more Mathematics units by a student in Year 2 of a bachelor degree or diploma course

The Statistical Society of Australia (NSW Branch) Prize
V $100.00
C The best performance in Theory of Statistics subjects
The T.P.F & C Fourth Year Prize
V $200.00
C The best performance in the fourth year project by a student proceeding to the award of the degree of Bachelor of Science at honours level within the School of Mathematics

The T.P.F & C Third Year Prize
V $200.00
C The best performance in either MATH3601 Pure Mathematics 3 or MATH3181 Applied Mathematics 3

School of Optometry

The ACBO/Learning Frontiers Prize in Excellence in Binocular Vision
V $150.00
C The best performance in the Binocular Vision component of OPTM9042 Optometry B and OPTM9041 Clinical Optometry in the Bachelor of Optometry degree course.

The Australian Optometrical Association Prize
V $200.00
C The best performance in a subject selected by the Head of School

The Bausch & Lomb Soflens Prize
V Contact Lenses valued at $700.00
C The best performance in the contact lens section of OPTM9041 Clinical Optometry in the Bachelor of Optometry degree course.

The Eycon Lens Laboratories Pty Ltd Prize
V Trial fitting set of contact lenses
C The best essay or project on contact lenses in the Bachelor of Optometry degree course

The G Nissell & Company Australia Pty Ltd Prize
V Trial fitting set of contact lenses
C The best performance in the Contact Lens sections of OPTM9042 Optometry B and OPTM9041 Clinical Optometry in the Bachelor of Optometry degree course

The Hoya Lens Australia Pty Ltd Prize
V $250.00
C The best academic record in the Bachelor of Optometry degree course

The Hydron (Australia) Pty Ltd Prize
V $100.00
C The best performance in Year 4 of the Bachelor of Optometry degree course

The Hydron (Australia) Pty Ltd Prize
V $200.00
C The best performance in OPTM9042 Optometry B in the Bachelor of Optometry degree course

The Martin Wells Pty Ltd Prize
V $200.00
C The best performance in OPTM9021 Anatomy and Physiology of the Eye and Visual System in the Bachelor of Optometry degree course

The Martin Wells Pty Ltd Prize
V $200.00
C The best Final Year Essay in the Bachelor of Optometry degree course

The Optical Products Ltd Prize
V $100.00
C The best performance in a subject selected by the Head of School

The Optometric Vision Research Foundation
V $200.00
C The best research project in the final year of the Prize Bachelor of Optometry degree course

The Optometrists Association of NSW Prize
V $100.00
C The best performance in a subject selected by the Head of School

The Optyl (Australia) Pty Ltd Prize
V $100.00
C The best performance in the practical work of OPTM9034 Clinical Methods in the Bachelor of Optometry degree course

The Safilo Australia Prize
V $150.00
C The best performance in a subject selected by the Head of School
The Theo Kannis Prize for Clinical Optometry
V $250.00
C The best performance in OPTM9041 Clinical Optometry by a student in the Bachelor of Optometry degree course

School of Physics

The Australian Institute of Physics Prize
V $100.00 and one years membership of the Institute
C The highest aggregate in any 3 units from
• PHYS3010 Quantum Mechanics
• PHYS3050 Nuclear Physics
• PHYS3021 Statistical Mechanics & Solid State Physics
• PHYS3030 Electromagnetism
• PHYS3060 Advanced Optics
• PHYS3041 Experimental Physics A
by a student in the Bachelor of Science degree course

The Bodal Prize
V $100.00
C The best performance in a competition based on the use of microcomputers in PHYS1601 Computer Applications

The ETP Prize
V $200.00
C The best design study of an optical system in PHYS3710 Lasers and Applications or PHYS3720 Optoelectronics

The Gordon and Mabel Godfrey Award
V $200.00
In Theoretical Physics 4
C Excellence in the subject PHYS4503 Theoretical Physics 4 (Honours) in the Bachelor of Science degree course at honours level

School of Psychology

The Australian Psychological Society Prize
V $100.00
C The best performance in a subject selected by the Head of School

The Milon Buneta Prize
V $80.00
C The best performance in Year 2 of the Bachelor of Science degree course in Psychology

The Physics Staff Prize for Physics Honours
V $200.00
C The best performance in the Physics Honours Year by a student in the Bachelor of Science degree course

The Head of School's Prize in Physics
V $50.00
C The best Year 4 Honours Thesis in Physics in the Bachelor of Science degree course

The Parameters Prize in Electronics
V $200.00
C Excellence in PHYS3631 Electronics or PHYS3041 Experimental Physics A and PHYS3760 Laser and Optoelectronics Technology Laboratory 1

The Physics Staff Prize for Physics 1
V $100.00
C The best performance in PHYS1002 Physics 1

The Physics Staff Prize for Physics 2
V $150.00
C The highest aggregate in
• PHYS2001 Mechanics and Computational,
• PHYS2011 Electromagnetism and Thermal Physics,
• PHYS2021 Quantum Physics and Relativity,
• PHYS2031 Laboratory
by a student in the Bachelor of Science degree course

The Physics Staff Prize for Physics Honours
V $200.00
C The best performance in the Physics Honours Year by a student in the Bachelor of Science degree course

The Gordian and Mabel Godfrey Prize
V $200.00
In Theoretical Physics 3
C The best performance in a selection of Year 3 Theoretical Physics subjects chosen from PHYS3510, PHYS3520, PHYS3540, PHYS3550

The Gordon and Mabel Godfrey Prize
V $200.00
In Theoretical Physics 4
C Excellence in the subject PHYS4503 Theoretical Physics 4 (Honours) in the Bachelor of Science degree course at honours level
Graduate University Prizes

The following table summarizes the graduate prizes awarded by the University.

School of Mathematics

The J.R. Holmes Prize

V $75.00
C Excellence in at least 4 pass-level pure mathematics level 3 units, taken over no more than two consecutive years by a student in the Science, Arts or Education degree courses

School of Optometry

The Hydron Contact Lens Prize

V Trial fitting set of contact lenses
C The best performance in OPTM8005 Advanced Contact Lens Theory and Practice in the Master of Optometry degree course

The Theo Kannis Prize for Advanced Clinical Optometry

V $250.00
C The best performance in OPTM8001 Advanced Clinical Optometry by a student in the Master of Optometry degree course
Calendar of Dates

Session Dates

The academic year is divided into two sessions, each containing 67 days for teaching. There is a recess of approximately six weeks between the two sessions and there are short recesses of one week within each of the sessions.

All Faculties (other than Medicine)

Session 1 commences on the Monday nearest 1 March

<table>
<thead>
<tr>
<th>Session</th>
<th>1992</th>
<th>1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(67 teaching days)</td>
<td>2 March to 16 March</td>
<td>1 March to 8 April</td>
</tr>
<tr>
<td>Recess:</td>
<td>17 April to 26 April</td>
<td>9 April to 18 April</td>
</tr>
<tr>
<td></td>
<td>27 April to 12 June</td>
<td>19 April to 11 June</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>13 June to 18 June</td>
<td>12 June to 17 June</td>
</tr>
<tr>
<td>Examinations</td>
<td>19 June to 7 July</td>
<td>18 June to 6 July</td>
</tr>
<tr>
<td>Midyear Recess:</td>
<td>8 July to 26 July</td>
<td>7 July to 25 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 2</td>
<td>27 July to 25 September</td>
<td>26 July to 24 September</td>
</tr>
<tr>
<td>(67 teaching days)</td>
<td>26 September to 5 October</td>
<td>25 September to 4 October</td>
</tr>
<tr>
<td>Recess:</td>
<td>6 October to 6 November</td>
<td>5 October to 5 November</td>
</tr>
<tr>
<td>Study Recess:</td>
<td>7 November to 12 November</td>
<td>6 November to 11 November</td>
</tr>
<tr>
<td>Examinations</td>
<td>13 November to 1 December</td>
<td>12 November to 30 November</td>
</tr>
</tbody>
</table>
Important Dates for 1992

January

F 10 Last day for acceptance of applications by office of the Admissions Section for transfer to another undergraduate course within the University

M 13 Term 1 begins – Medicine IV

M 20 Term 1 begins – Medicine V

M 27 Australia Day – Public Holiday

February

T 4 Enrolment period begins for new undergraduate students and undergraduate students repeating first year

M 10 Re-enrolment period begins for second and later year undergraduate and graduate students enrolled in formal courses

F 28 Last day for acceptance of enrolment by new and re-enrolling students (late fee payable thereafter if enrolment approved)

March

M 2 Session 1 begins – all courses except Medicine IV and V

Su 8 Term 1 ends – Medicine IV

M 9 Term 2 begins – Medicine IV

F 13 Last day applications are accepted from students to enrol in Session 1 or whole year subjects

Su 22 Term 1 ends – Medicine V

M 30 Term 2 begins – Medicine V

T 31 HECS Census Date for Session 1

April

F 17 Good Friday – Public Holiday

M 20 Easter Monday – Public Holiday

S 25 Anzac Day – Public Holiday

Su 26 Term 2 ends – Medicine IV

Mid-session Recess ends

May

S 2 May Recess begins – University College, ADFA

M 4 Term 3 begins – Medicine IV

F 8 Term 1 ends – AGSM

T 12 Publication of Provisional Timetable for June examinations

Su 17 May Recess ends – University College, ADFA

W 20 Last day for students to advise of examination clashes

Su 31 Term 2 ends – Medicine V

June

M 1 Term 2 begins – AGSM

T 2 Publication of Timetable for June examination

M 8 Queen’s Birthday – Public Holiday

T 9 Term 3 begins – Medicine V

F 12 Session 1 ends

S 13 Study Recess begins

College of Fine Arts Assessment Week begins

Su 14 Term 3 ends – Medicine IV

M 15 Term 4 begins – Medicine IV

Th 18 Study Recess ends

July

T 7 Examinations end

W 8 Midyear Recess begins

S 11 Examinations end – University College, ADFA

Su 19 Midyear Recess ends – University College, ADFA

M 20 Session 2 begins – University College, ADFA

M 26 Midyear Recess ends

M 27 Session 2 begins

August

F 7 Last day applications are accepted from students to enrol in Session 2 subjects.

M 17 Term 3 and 4 ends – Medicine IV and V

M 31 HECS Census Day for Session 2.

Term 3 begins – AGSM

September

F 25 Closing date (or applications to the Universities Admission Centre

S 26 Mid-session Recess begins

September Recess begins – University College, ADFA

October

Su 4 September Recess ends – University College, ADFA

M 5 Labour Day – Public Holiday

T 6 Mid-session Recess ends

W 14 Publication of provisional timetable for November examinations

Su 18 Term 4 ends – Medicine V

F 23 Session 2 ends – University College, ADFA

M 26 Examinations begin – University College, ADFA

November

F 6 Session 2 ends

S 7 Study Recess begins

Term 3 ends – AGSM

College of Fine Arts Assessment Week begins

Su 8 Term 6 ends – Medicine IV

Th 12 Study Recess ends

F 13 Examinations begin

Examinations end – University College, ADFA

College of Fine Arts Assessment Week ends

December

T 1 Examinations end

F 25 Christmas Day – Public Holiday

S 26 Boxing Day – Public Holiday

M 28 Public Holiday
The University of New South Wales, Kensington Campus

Theatres
Biomedical Theatres E27
Central Lecture Block E19
Chemistry Theatres (Dwyer, Mellor, Murphy, Nyholm, Smith) E12
Classroom Block (Western Grounds) H3
Fig Tree Theatre B14
Io Myers Studio D9
Keith Burrows Theatre J14
Maths Theatres D23
Parade Theatre E3
Physics Theatre (Main Building) K14
Rex Vowels Theatre F17
Science Theatre F13
Sir John Clancy Auditorium C24

General
Aboriginal Student Centre:
47 Botany St, Randwick
Accommodation (off-campus) F15
Accounting F20
Admissions C22
Adviser for Prospective Students C22
Anatomy C27
Applied Bioscience D26
Applied Economic Research G14
Applied Geology F10
Applied Science (Faculty Office) F10
Architecture (Faculty Office) H14
Archives, University E21
Arts and Social Sciences (Faculty Office) C20
Asia-Australia Institute:
34 Botany St, Randwick
Audio Visual Unit F20
Australian Graduate School of Management G27
Banking and Finance F20
Biochemistry and Molecular Genetics D26
Biological and Behavioural Sciences (Faculty Office) D26
Biomedical Engineering F26
Biomedical Library F23
Biotechnology F26
Cashier's Office C22
Chaplains L12 & L13
Chemical Engineering and Industrial Chemistry F10
Chemistry E12
Civil Engineering H20
Co-op Bookshop G17
Commerce and Economics (Faculty Office) F20
Communications Law Centre C15
Community Medicine D26
Computer Science and Engineering G17
Computing Services Department F26
Cornea and Contact Lens Research Unit:
22-32 King St, Randwick

Economics F20
Education Studies G2
Educational Testing Centre K14
Electrical Engineering G17
Energy Research, Development & Information Centre F10
Engineering (Faculty Office) K17
English C20
Examinations C22
Finance Office C22
Fisheries Science and Technology G14
Food Science and Technology B8
French C20
Geography K17
German and Russian Studies C20
Graduate Office and Alumni Centre E4
Graduate School of the Built Environment H14
Groundwater Management and Hydrogeology F10
Health Service, University L14b
Health Services Management C22
History C20
House at Pool Corner (Child Care) N8
Industrial Design G15
Industrial Relations and Organizational Behaviour F20
Information Systems F10
Institute of Languages:
14 Francis St, Randwick
International Student Centre F16
IPACE Institute F23
Japanese Economic and Management Studies F20
Kanga's House (Child Care) O14
Landscape Architecture K15
Law (Faculty Office) F21
Law Library F21
Legal Studies & Taxation F20
Liberal and General Studies C20
Librarianship F23
Lost Property 022
Marketing F20
Materials Science and Engineering E8
Mathematics F23
Mechanical and Manufacturing Engineering J17
Medical Education C27
Music B11
Minor Works and Maintenance B14A
Microbiology and Immunology D26
Nowra C4
Optometry J12
Pathology C27
Patrol and Cleaning Services C22
Performing Arts B10
Petroleum Engineering D12
Physics K15
Political Science C20
Printing Section C22
Professional Development Centre K13
Professional Studies (Faculty Office) G2
Property and Works C22
Publications Section C22
Remote Sensing K17
Safety Science:
32 Botany Street, Randwick
Science (Faculty Office) F23
Science and Technology Studies C20
Social Science and Policy C20
Social Policy Research Centre F26
Social Work G2
Sociology C20
Spanish and Latin American Studies C20
Sport and Recreation Centre B6
Squash Courts B7
Staff Office C22
Student Centre (off Library Lawn) C22
Students' Union E4, C21
Student Services:
Careers, Loans, Accommodation etc L14
Counselling L13
Students' Union E4, C21
Surfing K17
Swimming Pool B4
Textile Technology G14
Theatre and Film Studies B10
Town Planning K15
WHO Regional Training Centre C27
Wool and Animal Sciences G14

Buildings
Applied Science F10
Barker Street Gatehouse N11
Basser College (Kensington) C18
Central Store B13
Chancellery C22
Dalton (Chemistry) F12
Goldstein College (Kensington) D16
Golf House A27
Gymnasium B5
International House C6
John Goodsell (Commerce and Economics) F20
Kensington College (Office) C17
Library (University) E21
Link B6
Maintenance Workshop B13
Mathews F23
Menzies Library E21
Morven Brown (Arts) C20
New College L6
Newton J12
NIDA D2
Parking Station H25
Philip Baxter College (Kensington) D14
Robert Heffron (Chemistry) E12
Sam Cracknell Pavilion H8
Samuels Building F26
Shalom College N9
Sir Robert Webster G14
Uniresearch House L5
University Regiment J2

University Union (Roundhouse) E6
University Union (Blockhouse) G6
University Union (Squarehouse) E4
Wallace Wurth School of Medicine C27
Warrane College M7

University Union (Roundhouse) E6
University Union (Blockhouse) G6
University Union (Squarehouse) E4
Wallace Wurth School of Medicine C27
Warrane College M7